DESCRIPTION

This “Ultrafast Recovery” rectifier diode series is military qualified to MIL-PRF-19500/590 and is ideal for high-reliability applications where a failure cannot be tolerated. These industry-recognized 2.0 to 4.0 Amp rated rectifiers for working peak reverse voltages from 200 to 1000 volts are hermetically sealed with voidless-glass construction using an internal “Category I” metallurgical bond. These devices are also available in axial-leaded packages for thru-hole mounting (see separate data sheet for 1N6626 thru 1N6631). Microsemi also offers numerous other rectifier products to meet higher and lower current ratings with various recovery time speed requirements including standard, fast and ultrafast device types in both through-hole and surface mount packages.

IMPORTANT: For the most current data, consult MICROSEMI’s website: http://www.microsemi.com

FEATURES

- Surface mount series equivalent to the JEDEC registered 1N6626 to 1N6631 series
- Voidless hermetically sealed glass package
- Extremely robust construction
- Triple-layer passivation
- Internal “Category I” Metallurgical bonds
- JAN, JANTX, and JANTXV available per MIL-PRF-19500/590
- Further options for screening in accordance with MIL-PRF-19500 for JANS by using a “SP” prefix, e.g. SP6626US, SP6629US, etc.
- Axial-leaded equivalents also available (see separate data sheet for 1N6626 thru 1N6631)

MAXIMUM RATINGS

- Junction Temperature: -65°C to +150°C
- Storage Temperature: -65°C to +175°C
- Peak Forward Surge Current @ 25°C: 75A (except 1N6631 which is 60A)
 Note: Test pulse = 8.3ms, half-sine wave.
- Average Rectified Forward Current (Iₒ) at Tₑc = +110°C:
 1N6626US thru 1N6628US 2.3 A
 1N6629US thru 1N6631US 1.8 A
 (Derate linearly at 2.5%/°C for Tₑc > +110°C)
- Average Rectified Forward Current (Iₒ) at Tₐ=25°C:
 1N6626US thru 1N6628US 1.75 A
 1N6629US thru 1N6631US 1.40 A
 (Derate linearly at 0.80%/°C for Tₐ>+25°C. This Iₒ rating is for PC boards where thermal resistance from mounting point to ambient is sufficiently controlled where Tₑ(max) is not exceeded. See latest issue of MIL-PRF-19500/590)
- Thermal Resistance junction to endcap (RₑJEC): 6.5°C/W
- Capacitance at Vₑ = 10 V: 40 pF
- Solder temperature: 260°C for 10 s (maximum)

APPLICATIONS / BENEFITS

- Ultrafast recovery rectifier series 200 to 1000 V
- Military and other high-reliability applications
- Switching power supplies or other applications requiring extremely fast switching & low forward loss
- High forward surge current capability
- Low thermal resistance
- Controlled avalanche with peak reverse power capability
- Inherently radiation hard as described in Microsemi MicroNote 050

MECHANICAL AND PACKAGING

- CASE: Hermetically sealed voidless hard glass with Tungsten slugs
- TERMINATIONS: End caps are Copper with Tin/Lead (Sn/Pb) finish. Note: Previous inventory had solid Silver end caps with Tin/Lead finish.
- MARKING: Cathode band only
- POLARITY: Cathode indicated by band
- Tape & Reel option: Standard per EIA-481-B
- Weight: 539 mg
- See package dimensions and recommended pad layout on last page
ELECTRICAL CHARACTERISTICS @ 25°C

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>MINIMUM BREAKDOWN VOLTAGE V<sub>R</sub>, I<sub>R</sub> = 50 μA</th>
<th>MAXIMUM FORWARD VOLTAGE V<sub>F</sub> @ I<sub>F</sub></th>
<th>WORKING PEAK REVERSE VOLTAGE V<sub>RWM</sub></th>
<th>MAXIMUM REVERSE CURRENT I<sub>R</sub> @ V<sub>RWM</sub></th>
<th>MAXIMUM REVERSE RECOVERY TIME (LOW CURRENT) T<sub>r</sub><sub>R</sub></th>
<th>MAXIMUM REVERSE RECOVERY TIME (HIGH CURRENT) T<sub>r</sub><sub>R</sub></th>
<th>PEAK RECOVERY CURRENT I<sub>RM</sub> (rec)</th>
<th>FORWARD RECOVERY VOLTAGE V<sub>FRM</sub> Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N6626US</td>
<td>220 1.35V @ 2.0 A</td>
<td>1.50V @ 4.0 A</td>
<td>200 2.0 500</td>
<td>30</td>
<td>45</td>
<td>3.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1N6627US</td>
<td>440 1.35V @ 2.0 A</td>
<td>1.50V @ 4.0 A</td>
<td>400 2.0 500</td>
<td>30</td>
<td>45</td>
<td>3.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1N6628US</td>
<td>660 1.35V @ 2.0 A</td>
<td>1.50V @ 4.0 A</td>
<td>600 2.0 500</td>
<td>30</td>
<td>45</td>
<td>3.5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1N6629US</td>
<td>880 1.40V @ 1.4 A</td>
<td>1.70V @ 3.0 A</td>
<td>800 2.0 500</td>
<td>50</td>
<td>60</td>
<td>4.2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1N6630US</td>
<td>990 1.40V @ 1.4 A</td>
<td>1.70V @ 3.0 A</td>
<td>900 2.0 500</td>
<td>50</td>
<td>60</td>
<td>4.2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1N6631US</td>
<td>1100 1.60V @ 1.4 A</td>
<td>1.95V @ 2.0 A</td>
<td>1000 4.0 600</td>
<td>60</td>
<td>80</td>
<td>5.0</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Low Current Reverse Recovery Time Test Conditions: I_R=0.5A, I_{RM}=1.0A, I_{R(REC)} = 0.25A per MIL-STD-750, Method 4031, Condition B.

NOTE 2: High Current Reverse Recovery Time Test Conditions: I_F = 2 A, 100 A/μs MIL-STD-750, Method 4031, Condition D.

SYMBOLS & DEFINITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>BR</sub></td>
<td>Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.</td>
</tr>
<tr>
<td>V<sub>RWM</sub></td>
<td>Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range.</td>
</tr>
<tr>
<td>V<sub>F</sub></td>
<td>Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.</td>
</tr>
<tr>
<td>I<sub>R</sub></td>
<td>Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.</td>
</tr>
<tr>
<td>C</td>
<td>Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.</td>
</tr>
<tr>
<td>t<sub>r</sub><sub>R</sub></td>
<td>Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified recovery decay point after a peak reverse current is reached.</td>
</tr>
</tbody>
</table>

CHARTS AND GRAPHS

FIGURE 1
Typical Forward Current vs Forward Voltage

FIGURE 2
Typical Forward Current vs Forward Voltage
VOIDLESS-HERMETICALLY-SEALED SURFACE MOUNT ULTRA FAST RECOVERY GLASS RECTIFIERS

FIGURE 3
Typical Reverse Current vs. Applied Reverse Voltage

FIGURE 4
Typical Reverse Current vs. Applied Reverse Voltage

FIGURE 5
Forward Pulse Current vs. Pulse Duration

FIGURE 6
Reverse Pulse Power vs. Pulse Duration
NOTE: This Package Outline has also previously been identified as “D-5B”

<table>
<thead>
<tr>
<th>INCHES</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>BL</td>
<td>.200</td>
</tr>
<tr>
<td>BD</td>
<td>.137</td>
</tr>
<tr>
<td>ECT</td>
<td>.019</td>
</tr>
<tr>
<td>S</td>
<td>.003</td>
</tr>
</tbody>
</table>

PAD LAYOUT

Note: If mounting requires adhesive separate from the solder, an additional 0.080 inch diameter contact may be placed in the center between the pads as an optional spot for cement.