PRODUCT RELIABILITY REPORT
FOR

MAX24188

Maxim Integrated Products

4401 South Beltwood Parkway
Dallas, TX 75244-3292

Prepared by:

Don Lipps
Manager, Reliability Engineering
Maxim Integrated Products
4401 South Beltwood Pkwy.
Dallas, TX 75244-3292
Email: don.lipps@maxim-ic.com
ph: 972-371-3739
Conclusion:
The following qualification successfully meets the quality and reliability standards required of all Maxim products:

MAX24188

In addition, Maxim's continuous reliability monitor program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. The current status of the reliability monitor program can be viewed at http://www.maxim-ic.com/TechSupport/dsreliability.html.

Device Description:
A description of this device can be found in the product data sheet. You can find the product data sheet at http://dbserv.maxim-ic.com/l_datasheet3.cfm.

Reliability Derating:
The Arrhenius model will be used to determine the acceleration factor for failure mechanisms that are temperature accelerated.

\[
Af_T = \exp\left(\frac{E_a}{k}\right) \left(\frac{1}{T_u} - \frac{1}{T_s}\right) = \frac{t_u}{t_s}
\]

- \(Af_T\) = Acceleration factor due to Temperature
- \(t_u\) = Time at use temperature (e.g. 55°C)
- \(t_s\) = Time at stress temperature (e.g. 125°C)
- \(k\) = Boltzmann's Constant \((8.617 \times 10^{-5} \text{ eV/°K})\)
- \(T_u\) = Temperature at Use (°K)
- \(T_s\) = Temperature at Stress (°K)
- \(E_a\) = Activation Energy (e.g. 0.7 ev)

The activation energy of the failure mechanism is derived from either internal studies or industry accepted standards, or activation energy of 0.7ev will be used whenever actual failure mechanisms or their activation energies are unknown. All deratings will be done from the stress ambient temperature to the use ambient temperature.

An exponential model will be used to determine the acceleration factor for failure mechanisms, which are voltage accelerated.

\[
Af_V = \exp(B (V_s - V_u))
\]

- \(Af_V\) = Acceleration factor due to Voltage
- \(V_s\) = Stress Voltage (e.g. 7.0 volts)
- \(V_u\) = Maximum Operating Voltage (e.g. 5.5 volts)
- \(B\) = Constant related to failure mechanism type (e.g. 1.0, 2.4, 2.7, etc.)

The Constant, \(B\), related to the failure mechanism is derived from either internal studies or industry accepted standards, or a \(B\) of 1.0 will be used whenever actual failure mechanisms or their \(B\) are unknown. All deratings will be done from the stress voltage to the maximum operating voltage. Failure rate data from the operating life test is reported using a Chi-Squared statistical model at the 60% or 90% confidence level (\(C_f\)).

The failure rate, \(F_r\), is related to the acceleration during life test by:

\[
F_r = \frac{X}{(t_s \cdot Af_V \cdot Af_T \cdot N \cdot 2)}
\]

- \(X\) = Chi-Sq statistical upper limit
- \(N\) = Life test sample size
Failure Rates are reported in FITs (Failures in Time) or MTTF (Mean Time To Failure). The FIT rate is related to MTTF by:

\[
\text{MTTF} = \frac{1}{Fr}
\]

NOTE: MTTF is frequently used interchangeably with MTBF.

The calculated failure rate for this device/process is:

<table>
<thead>
<tr>
<th>FAILURE RATE:</th>
<th>MTTF (YRS):</th>
<th>FITS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>76501</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEVICE HOURS:</th>
<th>FAILS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>614053816</td>
<td>0</td>
</tr>
</tbody>
</table>

Only data from Operating Life or similar stresses are used for this calculation.

The parameters used to calculate this failure rate are as follows:

\[
\text{Cf: } 60\% \quad \text{Ea: } 0.7 \quad \text{B: } 0 \quad \text{Tu: } 25 \quad \text{Vu: } 3.6 \quad \text{Volts}
\]

The reliability data follows. At the start of this data is the device information. The next section is the detailed reliability data for each stress. The reliability data section includes the latest data available and may contain some generic data. **Bold** Product Number denotes specific product data.

Device Information:
- **Process:** TSMC 0.13um Mixed signal, Genera Purpose, Single poly Six metal, 1.2V/3.3V
- **Passivation:** SiO/SiN = 400 nm/600 nm
- **Die Size:** 123 x 133
- **Number of Transistors:** 1200000
- **Interconnect:** Copper
- **Gate Oxide Thickness:** 20 Å

ESD HBM

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD SENSITIVITY</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD22-A114 HBM 500 VOLTS</td>
<td>1 PUL’S</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD22-A114 HBM 1000 VOLTS</td>
<td>1 PUL’S</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD22-A114 HBM 1500 VOLTS</td>
<td>1 PUL’S</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD22-A114 HBM 2000 VOLTS</td>
<td>1 PUL’S</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ESD SENSITIVITY</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD22-A114 HBM 2500 VOLTS</td>
<td>1 PUL’S</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total: 0

LATCH-UP

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATCH-UP I</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD78A, I-TEST 25C 100mA</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP I</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD78A, I-TEST 25C 250mA</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATCH-UP V</td>
<td>1115 MAX24288</td>
<td>AT9ZBQ002 JESD78A, V-SUPPLY TEST 25C</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 0
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>DATE CODE/PRODUCT/LOT</th>
<th>CONDITION</th>
<th>READPOIN</th>
<th>QTY</th>
<th>FAILS</th>
<th>FA#</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1041 MAX2982</td>
<td>QXUZCQ001 135C, 3.3V (PSA) & 1.2V (PSB)</td>
<td>1000 HRS</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1045 MAX2982</td>
<td>QXUZDQ002 135C, 3.3V (PSA) & 1.2V (PSB)</td>
<td>2000 HRS</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1052 MAX2982</td>
<td>QXUZDQ003 135C, 3.3V (PSA) & 1.2V (PSB)</td>
<td>1000 HRS</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1104 MAX2992</td>
<td>QW5ZCQ001 125C, 1.2V (PSA) & 3.3V (PSB)</td>
<td>240 HRS</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1122 MAX24288</td>
<td>AT9ZBQ002 120C, 3.63V (PSA) & 1.32V (PSB)</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1122 MAX24288</td>
<td>AT9ZBQ002 120C, 3.63V (PSA) & 1.32V (PSB)</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>HIGH TEMP OP LIFE</td>
<td>1122 MAX24288</td>
<td>AT9ZBQ002 120C, 3.63V (PSA) & 1.32V (PSB)</td>
<td>1000 HRS</td>
<td>45</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Total: 0

FAILURE RATE: FITS: 1.5
MTTF (YRS): 76501
DEVICE HOURS: 614053816
FAILS: 0