Features

Inputs/Outputs
- Accepts differential or single-ended input
 - LVPECL, LVDS, CML, HCSL, LVCMOS
- Four precision LVDS outputs
- Operating frequency up to 750 MHz

Power
- Options for 2.5 V or 3.3 V power supply
- On-chip Low Drop Out (LDO) Regulator for superior power supply noise rejection
- Current consumption of 61 mA

Performance
- Ultra low additive jitter of 92 fs RMS

Applications
- General purpose clock distribution
- Low jitter clock trees
- Logic translation
- Clock and data signal restoration
- Wired communications: OTN, SONET/SDH, GE, 10 GE, FC and 10G FC
- Wireless communications
- High performance micro-processor clock distribution

Figure 1 - Functional Block Diagram
Table of Contents

Features ... 1
 Inputs/Outputs .. 1
 Power .. 1
 Performance .. 1

Applications .. 1

1.0 Package Description ... 4

2.0 Pin Description .. 4

3.0 Functional Description 5
 3.1 Clock Inputs .. 5
 3.2 Clock Outputs .. 10
 3.3 Device Additive Jitter 13
 3.4 Power Supply ... 14
 3.4.1 Sensitivity to power supply noise 14
 3.4.2 Power supply filtering 14
 3.4.3 PCB layout considerations 14

4.0 AC and DC Electrical Characteristics 15

5.0 Performance Characterization 17

6.0 Typical Behavior ... 18

7.0 Package Thermal Characteristics 19

8.0 Mechanical Drawing .. 20
List of Figures

Figure 1 - Functional Block Diagram .. 1
Figure 2 - Pin Connections .. 4
Figure 3 - LVPECL Input DC Coupled Thevenin Equivalent 5
Figure 4 - LVPECL Input DC Coupled Parallel Termination 6
Figure 5 - LVPECL Input AC Coupled Termination 6
Figure 6 - LVDS Input DC Coupled ... 7
Figure 7 - LVDS Input AC Coupled ... 7
Figure 8 - CML Input AC Coupled ... 8
Figure 9 - HCSL Input AC Coupled ... 8
Figure 10 - CMOS Input DC Coupled Referenced to VDD/2 9
Figure 11 - CMOS Input DC Coupled Referenced to Ground 9
Figure 12 - Simplified LVDS Output Driver ... 10
Figure 13 - LVDS DC Coupled Termination (Internal Receiver Termination) . 10
Figure 14 - LVDS DC Coupled Termination (External Receiver Termination) . 11
Figure 15 - LVDS AC Coupled Termination ... 11
Figure 16 - LVDS AC Output Termination for CML Inputs 12
Figure 17 - Additive Jitter ... 13
Figure 18 - Decoupling Connections for Power Pins 14
Figure 19 - Differential Voltage Parameter ... 16
Figure 20 - Input To Output Timing ... 16
1.0 Package Description

The device is packaged in a 16 pin QFN.

![Pin Connections Diagram](image)

Figure 2 - Pin Connections

2.0 Pin Description

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 4</td>
<td>clk_p, clk_n</td>
<td>Differential Input (Analog Input). Differential (or singled ended) input signals. For all input signal configuration see “Clock Inputs” on page 5.</td>
</tr>
<tr>
<td>15, 14, 12, 11, 10, 9, 7, 6</td>
<td>out0_p, out0_n, out1_p, out1_n, out2_p, out2_n, out3_p, out3_n</td>
<td>Differential Output (Analog Output). Differential outputs.</td>
</tr>
<tr>
<td>8, 13</td>
<td>vdd</td>
<td>Positive Supply Voltage. 2.5 V_{DC} or 3.3 V_{DC} nominal.</td>
</tr>
<tr>
<td>5, 16</td>
<td>gnd</td>
<td>Ground. 0 V.</td>
</tr>
<tr>
<td>2, 3</td>
<td>NC</td>
<td>No Connection. Leave unconnected.</td>
</tr>
</tbody>
</table>
3.0 Functional Description

The ZL40214 is an LVDS clock fanout buffer with four identical output clock drivers capable of operating at frequencies up to 750MHz.

Inputs to the ZL40214 are externally terminated to allow use of precision termination components and to allow full flexibility of input termination. The ZL40214 can accept DC or AC coupled LVPECL, LVDS, CML or HCSL input signals; single ended input signals can also be accepted. A pin compatible device with internal termination is also available.

The ZL40214 is designed to fan out low-jitter reference clocks for wired or optical communications applications while adding minimal jitter to the clock signal. An internal linear power supply regulator and bulk capacitors minimize additive jitter due to power supply noise. The device operates from 2.5V+-5% or 3.3V+-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C.

The device block diagram is shown in Figure 1; its operation is described in the following sections.

3.1 Clock Inputs

The ZL40214 is adaptable to support different types of differential and single-ended input signals depending on the passive components used in the input termination. The application diagrams in the following figures allow the ZL40214 to accept LVPECL, LVDS, CML, HCSL and single-ended inputs.

![Figure 3 - LVPECL Input DC Coupled Thevenin Equivalent](image-url)
VDD_driver=3.3V: R1 = 50 ohm
VDD_driver=2.5V: R1 = 20 ohm

Figure 4 - LVPECL Input DC Coupled Parallel Termination

VDD_driver=3.3V: R = 143 ohm
VDD_driver=2.5V: R = 82 ohm

Figure 5 - LVPECL Input AC Coupled Termination
Figure 6 - LVDS Input DC Coupled

Figure 7 - LVDS Input AC Coupled
Figure 8 - CML Input AC Coupled

Figure 9 - HCSL Input AC Coupled
Figure 10 - CMOS Input DC Coupled Referenced to VDD/2

Figure 11 - CMOS Input DC Coupled Referenced to Ground

<table>
<thead>
<tr>
<th>VDD_driver</th>
<th>R1 (kΩ)</th>
<th>R2 (kΩ)</th>
<th>R3 (kΩ)</th>
<th>RA (kΩ)</th>
<th>C (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>1.25</td>
<td>3.075</td>
<td>open</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>1.8</td>
<td>1</td>
<td>3.8</td>
<td>open</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>0.33</td>
<td>4.2</td>
<td>open</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>0.75</td>
<td>open</td>
<td>4.2</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1 - Component Values for Single Ended Input Reference to Ground

* For frequencies below 100 MHz, increase C to avoid signal integrity issues.
3.2 Clock Outputs

LVDS has lower signal swing than LVPECL which results in a low power consumption. A simplified diagram for the LVDS output stage is shown in Figure 12.

![Figure 12 - Simplified LVDS Output Driver](image)

The methods to terminate the ZL40214 drivers are shown in the following figures.

![Figure 13 - LVDS DC Coupled Termination (Internal Receiver Termination)](image)
Figure 14 - LVDS DC Coupled Termination (External Receiver Termination)

Figure 15 - LVDS AC Coupled Termination

Note: R1 and R2 values and need for external termination depend on the specification of the LVDS receiver.
Figure 16 - LVDS AC Output Termination for CML Inputs
3.3 Device Additive Jitter

The ZL40214 clock fanout buffer is not intended to filter clock jitter. The jitter performance of this type of device is characterized by its additive jitter. Additive jitter is the jitter the device would add to a hypothetical jitter-free clock as it passes through the device. The additive jitter of the ZL40214 is random and as such it is not correlated to the jitter of the input clock signal.

The square of the resultant random RMS jitter at the output of the ZL40214 is equal to the sum of the squares of the various random RMS jitter sources including: input clock jitter; additive jitter of the buffer; and additive jitter due to power supply noise. There may be additional deterministic jitter sources, but they are not shown in Figure 17.

\[J_{\text{in}}^2 + J_{\text{add}}^2 + J_{\text{ps}}^2 = J_{\text{out}}^2 \]

\(J_{\text{in}} \) = Random input clock jitter (RMS)
\(J_{\text{add}} \) = Additive jitter due to the device (RMS)
\(J_{\text{ps}} \) = Additive jitter due to power supply noise (RMS)
\(J_{\text{out}} \) = Resultant random output clock jitter (RMS)

Figure 17 - Additive Jitter
3.4 Power Supply

This device operates with either a 2.5V supply or 3.3V supply.

3.4.1 Sensitivity to power supply noise

Power supply noise from sources such as switching power supplies and high-power digital components such as FPGAs can induce additive jitter on clock buffer outputs. The ZL40214 is equipped with a low drop out (LDO) power regulator and on-chip bulk capacitors to minimize additive jitter due to power supply noise. The LDO regulator on the ZL40214 allows this device to have superior performance even in the presence of external noise sources. The on-chip measures in combination with the simple recommended power supply filtering and PCB layout minimize the additive jitter from power supply noise.

The performance of these clock buffers in the presence of power supply noise is detailed in ZLAN-403, “Power Supply Rejection in Clock Buffers” which is available from Applications Engineering.

3.4.2 Power supply filtering

For optimal jitter performance, the device should be isolated from the power planes connected to its power supply pins as shown in Figure 18.

- 10 µF capacitors should be size 0603 or size 0805 X5R or X7R ceramic, 6.3 V minimum rating
- 0.1 µF capacitors should be size 0402 X5R ceramic, 6.3 V minimum rating
- Capacitors should be placed next to the connected device power pins
- a 0.3 ohm resistor is recommended for the filter shown in Figure 18

![Figure 18 - Decoupling Connections for Power Pins](image)

3.4.3 PCB layout considerations

The power nets in Figure 18 can be implemented either as a plane island or routed power topology without changing the overall jitter performance of the device.
4.0 AC and DC Electrical Characteristics

Absolute Maximum Ratings*

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym.</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Supply voltage</td>
<td>(V_{DD,R})</td>
<td>-0.5</td>
<td>4.6</td>
<td>V</td>
</tr>
<tr>
<td>2 Voltage on any digital pin</td>
<td>(V_{PIN})</td>
<td>-0.5</td>
<td>(V_{DD})</td>
<td>V</td>
</tr>
<tr>
<td>3 Soldering temperature</td>
<td>(T)</td>
<td>260</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>4 Storage temperature</td>
<td>(T_{ST})</td>
<td>-55</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>5 Junction temperature</td>
<td>(T_j)</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>6 Voltage on input pin</td>
<td>(V_{input})</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>7 Input capacitance each pin</td>
<td>(C_p)</td>
<td>500</td>
<td>fF</td>
<td></td>
</tr>
</tbody>
</table>

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

* Voltages are with respect to ground (GND) unless otherwise stated.

Recommended Operating Conditions*

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Supply voltage 2.5 V mode</td>
<td>(V_{DD25})</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>2 Supply voltage 3.3 V mode</td>
<td>(V_{DD33})</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>3 Operating temperature</td>
<td>(T_A)</td>
<td>-40</td>
<td>25</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Voltages are with respect to ground (GND) unless otherwise stated.

DC Electrical Characteristics - Current Consumption

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Supply current LVDS drivers - loaded</td>
<td>(I_{dd,load})</td>
<td>61</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DC Electrical Characteristics - Inputs and outputs - for 2.5/3.3 V supply

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LVDS Differential input common mode voltage</td>
<td>(V_{ICM})</td>
<td>1.1</td>
<td>1.6</td>
<td>V</td>
<td>for 2.5 V</td>
<td></td>
</tr>
<tr>
<td>2 LVDS Differential input common mode voltage</td>
<td>(V_{ICM})</td>
<td>1.1</td>
<td>2.0</td>
<td>V</td>
<td>for 3.3 V</td>
<td></td>
</tr>
<tr>
<td>3 LVDS Differential input voltage</td>
<td>(V_{ID})</td>
<td>0.25</td>
<td>1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 LVDS output differential voltage*</td>
<td>(V_{OD})</td>
<td>0.25</td>
<td>0.30</td>
<td>0.40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>5 LVDS output common mode voltage</td>
<td>(V_{CM})</td>
<td>1.1</td>
<td>1.25</td>
<td>1.375</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

* The VOD parameter was measured from 125 to 750 MHz.
AC Electrical Characteristics - Inputs and Outputs (see Figure 20) - for 2.5/3.3 V supply.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sym.</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Maximum Operating Frequency</td>
<td>$1/\tau_p$</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>2 input to output clock propagation delay</td>
<td>τ_{pd}</td>
<td>0</td>
<td></td>
<td>1</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>3 output to output skew</td>
<td>$\tau_{out2out}$</td>
<td>50</td>
<td></td>
<td>100</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>4 part to part output skew</td>
<td>$\tau_{part2part}$</td>
<td>80</td>
<td></td>
<td>300</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>5 Output clock Duty Cycle degradation</td>
<td>τ_{PWH}/τ_{PWL}</td>
<td>-5</td>
<td></td>
<td>0</td>
<td>5</td>
<td>Percent</td>
</tr>
<tr>
<td>6 LVDS Output slew rate</td>
<td>r_{sl}</td>
<td>0.55</td>
<td></td>
<td></td>
<td>V/ns</td>
<td></td>
</tr>
</tbody>
</table>

* Supply voltage and operating temperature are as per Recommended Operating Conditions
5.0 Performance Characterization

Additive Jitter at 2.5 V*

<table>
<thead>
<tr>
<th>Output Frequency (MHz)</th>
<th>Jitter Measurement Filter</th>
<th>Typical (fs)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 125</td>
<td>12 kHz - 20 MHz</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>2 212.5</td>
<td>12 kHz - 20 MHz</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>3 311.04</td>
<td>12 kHz - 20 MHz</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>4 425</td>
<td>12 kHz - 20 MHz</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>5 500</td>
<td>12 kHz - 20 MHz</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>6 622.08</td>
<td>12 kHz - 20 MHz</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>7 750</td>
<td>12 kHz - 20 MHz</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

*The values in this table were taken with an approximate slew rate of 0.8 V/ns.

Additive Jitter at 3.3 V*

<table>
<thead>
<tr>
<th>Output Frequency (MHz)</th>
<th>Jitter Measurement Filter</th>
<th>Typical (fs)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 125</td>
<td>12 kHz - 20 MHz</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>2 212.5</td>
<td>12 kHz - 20 MHz</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>3 311.04</td>
<td>12 kHz - 20 MHz</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>4 425</td>
<td>12 kHz - 20 MHz</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>5 500</td>
<td>12 kHz - 20 MHz</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>6 622.08</td>
<td>12 kHz - 20 MHz</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>7 750</td>
<td>12 kHz - 20 MHz</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

*The values in this table were taken with an approximate slew rate of 0.8 V/ns.

Additive jitter in the presence of power supply noise*

<table>
<thead>
<tr>
<th>Carrier frequency</th>
<th>Parameter</th>
<th>Typical</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>25 mV at 100 kHz</td>
<td>48</td>
<td>fs RMS</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>25 mV at 100 kHz</td>
<td>53</td>
<td>fs RMS</td>
<td></td>
</tr>
</tbody>
</table>

*The values in this table are the additive periodic jitter caused by an interfering tone typically caused by a switching power supply. For this test, measurements were taken over the full temperature and voltage range for VDD = 3.3 V. The magnitude of the interfering tone is measured at the DUT.
6.0 Typical Behavior

Typical Waveform at 155.52 MHz

VOD versus Frequency

Power Supply Tone Frequency versus PSRR

Power Supply Tone Magnitude versus PSRR

Propagation Delay versus Temperature

Note: This is for a single device. For more details see the characterization section.
7.0 Package Thermal Characteristics

Thermal Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Condition</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction to Ambient Thermal Resistance</td>
<td>Θ_{JA}</td>
<td>Still Air</td>
<td>67.9</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 m/s</td>
<td>61.6</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 m/s</td>
<td>58.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to Case Thermal Resistance</td>
<td>Θ_{JC}</td>
<td>Still Air</td>
<td>44.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction to Board Thermal Resistance</td>
<td>Θ_{JB}</td>
<td>Still Air</td>
<td>23.2</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction Temperature*</td>
<td>T_{Jmax}</td>
<td>Still Air</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Ambient Temperature</td>
<td>T_{A}</td>
<td></td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Proper thermal management must be practiced to ensure that T_{jmax} is not exceeded.
8.0 Mechanical Drawing

NOTE:
1. DIMENSIONS ARE IN MILLIMETERS. TOLERANCES ARE IN MILLIMETERS.
2. DIMENSIONS OF SOLDER WELLS ARE IN MILLIMETERS. TOLERANCES ARE BETWEEN ±0.25mm AND ±0.35mm.
3. THE USE OF DIMENSIONS SHALL NOT BE MEASURED IN THIS SCALE AREA.

MICROSEMIX CMIC

BODY SIZE: 3X3X0.90 mm
PITCH: 0.50mm

CS04-08-01-17-211

1 of 1

Microsemi Corporation
Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively "Microsemi") is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi.

This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi’s conditions of sale which are available on request.

Purchase of Microsemi’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips.

Microsemi, ZL, and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Microsemi Corporation.

TECHNICAL DOCUMENTATION - NOT FOR RESALE