
SPI-DirectC v2.0
User Guide

2

Table of Contents

1 System Overview . 4
Systems with Direct Access to Memory . 4

Systems with Indirect Access to Memory . 5

Motorola SPI Protocol . 6

2 Generating Data Files and Integrating DirectC . 9
SPI-DirectC v1.3 Code Integration . 9

3 Required Source Code Modifications. 11
Compiler Switches . 11

Hardware Interface Components . 11

4 Data File Format. 16
DAT File Description for M2GL and M2S Devices . 16

5 Source File Description . 18
DPUSER.H . 18

DPCOM.C and DPCOM.H . 18

DPALG.C and DPALG.H . 18

DPG4ALG.C and DPG4ALG.H . 18

DPDUTSPI.C and DPDUTSPI.H . 18

DPG4SPI.C and DPG4SPI.H . 18

DPUTIL.C and DPUTIL.H . 18

6 Data File Bit Orientation . 19

7 Sample Project . 20
Project Requirements . 20

Procedure . 20

8 Error Messages & Troubleshooting Tips . 22

A SmartFusion2 and IGLOO2 SPI-Slave Programming Waveform Analysis

B Product Support . 24
Customer Service . 24

Customer Technical Support Center . 24

Technical Support . 24

Website . 24

Contacting the Customer Technical Support Center . 24

ITAR Technical Support . 25

3

Introduction

This document describes how to enable processor-based embedded ISP (In-System Programming) on
Microsemi IGLOO2™, SmartFusion2™, and PolarFire™ devices using the SPI Slave programming
method. In-System Programming refers to an external processor on board programming one of the
IGLOO2, SmartFusion2, or PolarFire devices via SPI peripheral interface.

The document assumes that the target system contains a processor or a soft-core microprocessor with a
minimum 1200 bytes of RAM, a SPI interface to the target device from the processor, and access to the
programming data to be used for programming the device. Access to programming data can be provided
by a telecommunications link for most remote systems.

SPI-DirectC is a set of C code designed to support embedded In-System Programming for the M2S,
M2GL, and MPF families of devices. To use SPI-DirectC v2.0, you must make some minor modifications
to the source code, add the necessary API, and compile the source code and the API together to create
a binary executable. The binary executable is downloaded to the system along with the programming
data file.

The programming data file is a binary file that can be generated by Libero SOC version 11.2 or later. The
detailed specification of the programming file is included in "Data File Format" on page 17.

SPI-DirectC supports systems with direct and indirect access to the memory space containing the data
file image. With paging support, it is possible to implement the embedded ISP using SPI-DirectC on
systems with no direct access to the entire memory space containing the data. Paging support is
accomplished by making modifications to the data communication functions defined in dpuser.h, dpcom.c
and dpcom.h.

1 – System Overview

To perform In-System Programming (ISP) for the SmartFusion2, IGLOO2, or PolarFire target device, the
system must contain the following parameters:

• A microprocessor with at least 1200 bytes of RAM or a softcore processor implemented in
another FPGA

• SPI IP to interface to the target device. SPI Mode 3 must be used.

• Access to the data file containing the programming data

• Memory to store and run SPI-DirectC code

Note: See your device datasheet for information on power requirements for Vpump and other power
supplies.

Table 1-1 shows the memory requirements.

Text - This is the compiled code size memory requirements.

Data - This is the run time memory requirement, i.e. the free data memory space required to execute the
code.

BSS - This is the Block Started by Symbol allocation for variables that do not yet have values, i.e.
uninitialized data. It is part of the overall Data size.

Systems with Direct Access to Memory
Figure 1-1 shows the overview of a typical system with direct access to the memory space holding the
data file. See Table 1-2 for data storage memory requirements.

Table 1-1 • Code Memory Requirements- SPI-DirectC Code Size on M3 16-Bit Mode

Compile Options Enabled

Units are in Bytes

Text Data BSS

ENABLE_G4M_SUPPORT 13558 4860 1196

ENABLE_G5M_SUPPORT 12482 4904 762

All the above 18630 4960 1196
4

http://www.actel.com/techdocs/ds/default.aspx

Figure 1-1 • System with Direct Access to Memory

Systems with Indirect Access to Memory
Figure 1-2 is an overview of a system with no direct access to the memory space holding the data file.
For example, the programming data may be received via a communication interface peripheral that

Table 1-2 • Data Storage Memory Requirements - Data Image Size

Data Image Size

Device Core/FPGA Array -
Encrypt (kB)

Embedded Flash
Memory Block -

Encrypt (kB)

Core/FPGA Array &
Security - Encrypt (kB)

M2GL005 297 133 851

M2GL010 557 267 1639

M2GL025 1197 267 2918

M2GL050 2364 267 5253

M2GL090 3564 532 8178

M2GL150 5997 531 13046

M2S005 297 137 860

M2S010 557 272 1648

M2S025 1197 272 2926

M2S050 2364 272 5261

M2S090 3564 536 8186

M2S150 5997 535 13054

MPF300 9472 N/A N/A

The total image size is the sum of all the corresponding enabled blocks for the specific target device.
5

exists between the processor memory and the remote system holding the data file. dpcom.h and
dpcom.c must be modified to interface with the communication peripheral.

Figure 1-2 • System With Indirect Access to Memory

Motorola SPI Protocol
Motorla SPI Mode 3 is required to communicate with M2S, M2GL, and MPF devices using dedicated
system controller SPI port. Please refer Motorola SPI standard for more information.

The Motorola SPI is a full duplex, four-wire synchronous transfer protocol which supports programmable
clock polarity (SPO) and clock phase (SPH). The state of SPO and SPH control bits decides the data
transfer modes as shown in Table 1-3.

Table 1-3 • Data Transfer Modes

The SPH control bit determines the clock edge that captures the data.

• When SPH is Low, data is captured on the first clock transition.

– Data is captured on the rising edge of SPI_CLK when SPO = 0

– Data is captured on the falling edge of SPI_CLK when SPO = 1

• When SPH is High, data is captured on the second clock transition (rising edge if SPO = 1).

– Data is captured on the falling edge of SPI_CLK when SPO = 0.

– Data is captured on the rising edge of SPI_CLK when SPO = 1.

The SPO control bit determines the polarity of the clock and SPS defines the slave select behavior.

• When SPO is Low and no data is transferred, SPI_CLK is driven to Low.

• When SPO is High and no data is transferred, SPI_CLK is driven to High.
6

Table 1-4 • Summary of the Clock Active Edges in Various SPI Master Modes

Single Frame Transfer - Mode 0: SPO = 0, SPH = 0

Figure 1-3 • Motorola SPI Mode 0

Multiple Frame Transfer - Mode 0: SPO = 0, SPH = 0

Figure 1-4 • Motorola SPI Mode 0 Multiple Frame Transfer

Notes:

• Between frames, the slave select (SPI_SS[x]) signal is asserted for the duration of the clock
pulse.
7

• Between frames, the clock (SPI_CLK) is Low.

• Data is transferred to most significant bit (MSB) first.

• The output enable (SPI_DOE_N) signal is asserted during the transmission and deasserted at the
end of the transfer (after the last frame is sent).

Single Frame Transfer - Mode 1: SPO = 0, SPH = 1

Figure 1-5 • Motorola SPI Mode 1

Single Frame Transfer - Mode 2: SPO = 1, SPH = 0

Figure 1-6 • Motorola SPI Mode 2

Single Frame Transfer - Mode 3: SPO = 1, SPH = 1

Figure 1-7 • Motorola SPI Mode 3
8

2 – Generating Data Files and Integrating DirectC

This chapter describes the flows for data file generation and SPI-DirectC code integration.

To generate your data file:
1. Generate the DAT file using Libero SoC v11.2 or later. If programming security is required, use

Libero SoC v11.4 or later to generate the DAT file. See the latest Libero SoC online help for
information on generating a DAT file.

2. Program the DAT file into the storage memory.

SPI-DirectC Code Integration
Figure 2-1 shows the SPI-DirectC integration use flow.

Figure 2-1 • Importing SPI-DirectC Files
9

To use SPI-DirectC code integration:

1. Import the SPI-DirectC files shown in Figure 2-2 into your development environment.

Figure 2-2 • SPI-DirectC Files to import into your Development Environment

2. Modify the SPI-DirectC code.

– Add the SPI driver (available with the processor used to run SPI-DirectC).

– Modify the hardware interface functions (do_SPI_SCAN_in and do_SPI_SCAN_out) to use
the hardware API functions designed to control the SPI port.

– Modify memory access functions to access the data blocks within the image file programmed
into the system memory. See "Data File Bit Orientation" on page 19.

– Call dp_top with the action code desired.

3. Compile the source code. This creates a binary executable that is downloaded to the system for
execution.
10

3 – Required Source Code Modifications

You must modify the dpuser.h, dpDUTspi.c, dpcom.c, and dputil.c files when using the SPI-DirectC
source code. contains a short description of SPI-DirectC source code and their functions. Functions that
must be modified are listed in Table 3-1.

Compiler Switches
The compiler switches are shown in Table 3-2

Hardware Interface Components

Hardware Interface Function (dpDUTspi.c)
do_SPI_SCAN_in and do_SPI_SCAN_out functions are used to interface with the SPI port to clock data
into and out of the target device. These functions should use the SPI driver API available for the targeted
device processor.

dp_SPI_SCAN_in Function
This function takes three arguments:

• Command: 8-bit variable holding the command value

• Data_bits: The number of bits to clock into the device.

• input_buffer: pointer to the buffer which holds valid data to be clocked into the device.

Table 3-1 • Modified Functions

Function Source File Purpose

do_SPI_SCAN_in dpspi.c Hardware interface function used to scan data in using the SPI driver

do_SPI_SCAN_out dpspi.c Hardware interface function used to scan data out using the SPI driver

dp_get_page_data dpcom.c Programming file interface function

dp_display_text dpuser.c Function to display text to an output device

dp_display_value dpuser.c Function to display value of a variable to an output device

dp_delay dputil.c Delay function

Table 3-2 • Compiler Switches

Function Source File Purpose

USE_PAGING dpuser.h Enables paging implementation for memory access.

ENABLE_G4M_SUPPORT dpuser.h Enables M2S/M2GL programming support.

ENABLE_G5M_SUPPORT dpuser.h Enables MPF programming support.

PERFORM_CRC_CHECK dpuser.h Enables CRC check of the programming data prior to performing the
desired action.

ENABLE_DISPLAY dpuser.h Enables display to hyper terminal or other output devices.
11

dp_SPI_SCAN_OUT Function
This function takes four arguments:

• Command bits: The number of bits to clock in for the command portion of the frame. This value
should be 8 as all SPI commands are 8 bit long.

• Command: 8-bit variable holding the command value

• Data_bits: The number of bits to read from the device.

• Ouput_buffer: pointer to the buffer to hold the data read from the target device.

Display Functions
Three functions, dp_display_array, dp_display_text, and dp_display_value, are available to display text
as well as numeric values. You must modify these functions for proper operation.

Memory Interface Functions
All access to the memory blocks within the data file is done through the dp_get_data function within the
DirectC code. This is true for all system types.

This function returns an address pointer to the byte containing the first requested bit.

The dp_get_data function takes two arguments:

• var_ID: an integer variable which contains an identifier specifying which block within the data file
needs to be accessed.

• bit_index: The bit index addressing the bit to address within the data block specified in Var_ID.
Upon completion of the function, it is expected that return_bytes will indicate the total number of
valid bytes available for the client of the function.

See "Systems with Direct Access to the Memory Containing the Data File" and "Systems with Indirect
Access to the Data File" for details.

Systems with Direct Access to the Memory Containing the Data File
Since the memory space holding the data file is accessible by the microprocessor, it can be treated as an
array of unsigned characters. In this case:

1. Disable the USE_PAGING compiler switch. See "Compiler Switches" on page 11.

2. Assign the physical address pointer to the first element of the data memory location
(image_buffer defined in dpcom.c). Image_buffer is used as the base memory for accessing the
information in the programming data in storage memory.

The dp_get_data function calculates the address offset to the requested data and adds it to
image_buffer.

Return_bytes is the requested data.

An example of the dp_get_data function implementation is:

DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)

{
DPULONG image_requested_address;
if (var_ID == Header_ID)
current_block_address = 0;

else dp_get_data_block_address(var_ID);

if ((current_block_address ==0) && (var_ID != Header_ID))
{

return_bytes = 0;
return NULL;
}

/* Calculating the relative address of the data block needed within the image */
12

image_requested_address = current_block_address + bit_index / 8;

return_bytes=image_size - image_requested_address;
return image_buffer+image_requested_address;
}

Systems with Indirect Access to the Data File
These systems access programming data indirectly via a paging mechanism. Paging is a method of
copying a certain range of data from the memory containing the data file and pasting it into a limited size
memory buffer that DirectC can access.

To implement paging:

1. Enable the USE_PAGING compiler option. See "Compiler Switches" on page 11.

2. Define Page_buffer_size. The minimum buffer size is 16 bytes.

3. Modify the dp_get_page_data function. This function copies the requested data from the external
memory device into the page buffer. See "Data File Bit Orientation" on page 20 for additional
information. For correct operation:

– Fill the entire page unless the end of the image is reached. See "Data File Format" on
page 17.

– Update return_bytes to reflect the number of valid bytes in the page.

SPI-DirectC programming functions call the dp_get_data function every time access to a data block
within the image data file is needed. The dp_get_data function calculates the relative address location of
the requested data and checks if it already exists in the current page data. The paging mechanism is
triggered if the requested data is not within the page buffer.

Example of dp_get_page_data Function Implementation
dp_get_page_data is the only function that must interface with the communication peripheral of the
image data file. Since the requested data blocks may not be contiguous, it must have random access to
the data blocks. Its purpose is to fill the page buffer with valid data.

In addition, this function must maintain start_page_address, end_page_address, and return_bytes.
These global variables contain the range of data currently in the page as well as the number of valid
bytes.

dp_get_page_data takes one argument:

• address_offset - Contains the relative address of the needed element within the data block of the
image file.

void dp_get_page_data(DPULONG image_requested_address)
{

DPULONG image_address_index;
start_page_address=0;

image_address_index=image_requested_address;
return_bytes = PAGE_BUFFER_SIZE;
if (image_requested_address + return_bytes > image_size)
return_bytes = image_size - image_requested_address;

while (image_address_index < image_requested_address + return_bytes)
{

page_global_buffer[start_page_address]=image_buffer[image_address_index];
start_page_address++;
image_address_index++;
}

start_page_address = image_requested_address;
end_page_address = image_requested_address + return_bytes - 1;
13

return;
}

Main Entry Function
The main entry function is dp_top defined in dpalg.c. It must be called to initiate the programming
operation. Prior to calling the function, a global variable Action_code must be assigned a value as
defined in dpuser.h. Action codes are listed below.

#define DP_DEVICE_INFO_ACTION_CODE 1
#define DP_READ_IDCODE_ACTION_CODE 2
#define DP_ERASE_ACTION_CODE 3
#define DP_PROGRAM_ACTION_CODE 4
#define DP_VERIFY_ACTION_CODE 5
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 6
#define DP_VERIFY_DIGEST_ACTION_CODE 7

Note: Programming of individual blocks, such as array only, eNVM only, or security only is not possible
with one data file because of how the data is constructed. If you wish to use such a feature you
must generate multiple data files.

Data Type Definitions
Microsemi uses DPUCHAR, DPUINT, DPULONG, DPBOOL, DPCHAR, DPINT, and DPLONG in the SPI-
DirectC source code. Change the corresponding variable definition if different data type names are used.

/***/
/* DPCHAR -- 8-bit Windows (ANSI) character */
/* i.e. 8-bit signed integer */
/* DPINT -- 16-bit signed integer */
/* DPLONG -- 32-bit signed integer */
/* DPBOOL -- boolean variable (0 or 1) */
/* DPUCHAR -- 8-bit unsigned integer */
/* DPUSHORT -- 16-bit unsigned integer */
/* DPUINT -- 16-bit unsigned integer */
/* DPULONG -- 32-bit unsigned integer */
\/***/
typedef unsigned char DPUCHAR;
typedef unsigned short DPUSHORT;
typedef unsigned int DPUINT;
typedef unsigned long DPULONG;
typedef unsigned char DPBOOL;
typedef char DPCHAR;
typedef int DPINT;
typedef long DPLONG;

Supported Actions
Table 3-3 lists supported actions and devices.

Table 3-3 • Supported Actions

Action Supported Devices Description

DP_DEVICE_INFO_ACTION SmartFusion2, IGLOO2,
PolarFire

Displays device security settings.

DP_READ_IDCODE_ACTION SmartFusion2, IGLOO2,
PolarFire

Reads and displays the content of
the IDCODE register.
14

DP_ERASE_ACTION SmartFusion2, IGLOO2,
PolarFire

Erases all supported blocks in the
data file.

DP_PROGRAM_ACTION SmartFusion2, IGLOO2,
PolarFire

Performs erase, program and verify
operations for all the supported
blocks in the data file.

DP_VERIFY_ACTION SmartFusion2, IGLOO2,
PolarFire

Performs verify operation for all the
supported blocks in the data file.

DP_ENC_DATA_AUTHENTICATION_ACTION SmartFusion2, IGLOO2,
PolarFire

It performs data authentication of the
bitstream within the data file

DP_VERIFY_DIGEST_ACTION_CODE SmartFusion2, IGLOO2,
PolarFire

This action checks the digest of a
programmed target device.

Table 3-3 • Supported Actions (continued)
15

4 – Data File Format

DAT File Description for M2GL, M2S, and MPF Devices
The M2GL and M2S data file contains the following sections:

• Header Block - Contains information identifying the type of the binary file and data size blocks.

• Constant Data Block - Includes device ID, silicon signature and other information needed for
programming.

• Data Lookup Table - Contains records identifying the starting relative location of all the different
data blocks used in the SPI-DirectC code and data size of each block. The format is described in
Table 4-1.

• Data Block - Contains the raw data for all the different variables specified in the lookup table.

Table 4-1 • DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer Version Number 24

Header Size 1

Image Size 4

DAT File Version 1

Tools Version Number 2

Map Version Number 2

Feature Flag 2

Device Family 1

Constant Data Block

Device ID 4

Device ID Mask 4

Silicon Signature 4

Checksum 2

Number of BSR Bits 2

Number of Components 2

Data Size 2

Erase Data Size 2

Verify Data Size 2

ENVM Data Size 2
16

Header Section of DAT File

ENVM Verify Data Size 2

UEK1_EXISTS 1

UEK2_EXISTS 1

SEC_ERASE 1

UEK3_EXISTS (M2S, M2GL only) 1

Number of Records 1

Look Up Table

Information # of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block section 4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block section 4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block section 4

of bytes of data x 4

Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

Table 4-1 • DAT Image Description (continued)
17

18

5 – Source File Description

DPUSER.H
File contains definitions of all Action codes as well as possible error codes that could be reported within
SPI-DirectC code.

DPCOM.C and DPCOM.H
These files contain memory interface functions.

DPALG.C and DPALG.H
These files contain the main entry function dp_top and device ID check function.

DPG4ALG.C and DPG4ALG.H
These files contain the main entry function dp_top_g4 and all other functions common to M2S and MGL
families.

DPG5ALG.C and DPG5ALG.H
These files contain the main entry function dp_top_g5 and all other functions common to the MPF

family of devices.

DPDUTSPI.C and DPDUTSPI.H
These files contain the SPI interface function declaration and definition to the target device. SPI Mode 3
must be used to program M2S/M2GL devices. Refer to SPI IP block used for proper initialization.

DPG4SPI.C and DPG4SPI.H
These files contain the SPI interface function declaration and definition to the target device specific to
M2S and M2GL device families.

DPG5SPI.C and DPG5SPI.H
These files contain the SPI interface function declaration and definition to the target device specific to
MPF device families.

DPUTIL.C and DPUTIL.H
These files contain utility functions needed in the SPI-DirectC code.

19

6 – Data File Bit Orientation

This chapter specifies the data orientation of the binary data file generated by the Libero software. The
SPI-DirectC implementation must be in sync with the specified data orientation. Table 6-1 illustrates how
the data is stored in the binary data file. See "Data File Format" on page 16" for additional information on
the data file..

If the number of bits in a data block is not a multiple of eight, the rest of the most significant bits (msb) in
the last byte are filled with zeros. An example below shows a given 70 bit data to be shifted into the target
shift register from the least significant bit (lsb) to the most significant bit (msb). A binary representation of
the same data follows.

This data is stored in the data block section. Table 6-2 shows how the data is stored in the data block.

Table 6-1 • Binary Data File Example

Byte O Byte 1 Byte 2 Byte 3 Byte N

Bit7..Bit0 Bit15..Bit8 Bit23..Bit16 Bit35..Bit24 Bit(8N+7)..Bit(8N)

Valid Data Valid Data Valid Data Valid Data o <-Valid Data

20E60A9AB06FAC78A6 tdi

10000011100110 00001010100110101011000001101111101011000111100010100110 tdi

Bit 69 Bit 0

Table 6-2 • Data Block Section Example

Byte O Byte 1 Byte 2 Byte 3 Byte 4 .. Byte 8

Bit7...Bit0 Bit15..Bit8 Bit23..Bit16 Bit31..Bit24 Bit43..Bit32 .. Bit71..Bit64

10100110 01111000 10101100 01101111 10110000 00100000

A6 78 AC 6F B0 20

7 – Sample Project

The sample project, IAR_SPI_SlaveDirectC.zip, available with this release of SPI-DirectC is based on
IAR Embedded Workbench version 6.40. It is designed to work on M2GL_M2S-EVAL-KIT with
SmartFusion2 M2S025-FGG484 device.

Project Requirements
You will need the following hardware and software to run the sample project:

Hardware:

• SmartFusion2 Security Evaluation Kit with SmartFusion2 M2S090-FGG484 device.

• jLink from IAR.

Software:

• IAR Embedded Workbench version 6.4.

• UART Host Loader available with this release package.

Procedure
1. Program the evaluation kit with SPI_DC_top.stp STAPL file included under "M2S Eval Kit Files"

directory. The M2S090 design connects SPI1 port to certain pins of J1 header. Although not
needed for this project, it also maps out specific MSS IOs to other J1 header pins for JTAG
access.

2. Connect the SPI pins as described in HeaderPinAssignment.xlsx available under "M2S Eval Kit
Files" directory. Ignore JTAG portion of the header.

3. Connect the Mini USB (J18) to your PC. The mini USB is connected to FTDI FT4232h device
used as a USB to UART bridge.

4. Make sure the appropriate drivers are installed on your PC to communicate with this chip.

5. Run Host Loader available with this release package.

6. There should be 4 com ports available in the serial port setup window. Select the 4th one from
the list and configure the Baud Rate as shown below.

7. Click Initialize Port to establish connection with the selected COM port.

8. Select the programming file and desired action.

9. Click Run. The UART Host Loader application waits for data from the SmartFusion2 evaluation
kit.

10. The STAPL file programmed into the evaluation kit has a SPI-DirectC sample project that
supports SmartFusion2, IGLOO2, and PolarFire devices. Resetting the board runs the embedded
application and performs the action selected. To run another action or select a different
programming file, select it from the UART Host Loader and click Run again.
20

11. To make changes to the embedded project, run IAR workbench and modify the compile options
as desired. You can download the embedded application using jLink as follows:

 a. Connect jLink to RVI/IAR header.

 b. Set the JTAG select jumper low.

 c. Click on download and run from IAR.
21

8 – Error Messages & Troubleshooting Tips

The information in this chapter may help you solve or identify a problem when using SPI-DirectC code. If
you have a problem that you cannot solve, visit the Microsemi website at
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support or contact Microsemi
Customer Technical Support at tech@microsemi.com or call our hotline 1-800-262-1060.

See Table 7-1 for a description of exit codes and their solutions.

Table 8-1 • Exit Codes

Exit Code Error Message Action/Solution

0 This code does not indicate an error. This message indicates success

2 Data processing failed. - Check the Vpump level.

- Try with a new device.

- Measure SPI pins and noise or reflection.

- Load the correct DAT file.

6 The IDCODE of the target device does not
match the expected value in the DAT file
image.

Possible Causes:

- The data file loaded was compiled for a different
device. Example: M2S010 DAT file loaded to pro-
gram M2S050 device.

- Noise or reflections on one or more of the SPI pins
causing incorrect read-back of the SDO Bits.

Solution:

- Choose the correct DAT file for the target device.

- Cut down the extra length of ground connection.

7 Device polling error. - Check the Vpump level

- Try with a new device

- Measure SPI pins and noise or reflection.

- Load the correct DAT file.

8 FPGA failed during the Erase operation. Possible Causes:

- The device is secured, and the corresponding data
file is not loaded. The device has been permanently
secured and cannot be unlocked.

Solution:

- Load the correct DAT file.

10 Failed to program device. - Check Vpump level.

- Try with new device.

- Measure SPI pins and noise or reflection.
22

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support

11 FPGA failed verify. Possible Cause:

- The device is secured, and the corresponding DAT
file is not loaded.

- The device is programmed with an incorrect
design.

Solution:

- Load the correct DAT file.

- Check Vpump level.

- Measure SPI pins and noise or reflection.

18 Failed to authenticate the encrypted data. - Make sure the AES key used to encrypt the data
matches the AES key programmed in the device.

25 Device initialization failure. - Check Vpump level.

- Try with new device.

- Measure SPI pins and noise or reflection.

100 CRC data error. Data file is corrupted or pro-

gramming on system board is not successful.

- Regenerate data file.

- Reprogram data file into system memory.

150 Request action is not found. Check spelling.

151 Action is not supported because required data
block is missing from the data file.

Regenerate DAT file with the needed block/feature
support.

Table 8-1 • Exit Codes (continued)
23

A – SmartFusion2 and IGLOO2 SPI-Slave
Programming Waveform Analysis

Read ID code waveform:
Step 1: Hardware Status Check

Step 2: Hardware Status Check

Step 3: Clock in read_id command (0x21)

Step 4: Clock in 16 bytes of zero values - Byte 0

Step 5: Clock in 16 bytes of zero values - Byte 1

Step 6: Clock in 16 bytes of zero values - Byte 2

Step 7: Clock in 16 bytes of zero values - Byte 3

Step 8: Clock in 16 bytes of zero values - Byte 4

Step 9: Clock in 16 bytes of zero values - Byte 5

Step 10: Clock in 16 bytes of zero values - Byte 6

Step 11: Clock in 16 bytes of zero values - Byte 7

Step 12: Clock in 16 bytes of zero values - Byte 8

Step 13: Clock in 16 bytes of zero values - Byte 9

Step 14: Clock in 16 bytes of zero values - Byte 10

Step 15: Clock in 16 bytes of zero values - Byte 11

Step 16: Clock in 16 bytes of zero values - Byte 12

Step 17: Clock in 16 bytes of zero values - Byte 13

Step 18: Clock in 16 bytes of zero values - Byte 14

Step 19: Clock in 16 bytes of zero values - Byte 15

Step 20: Hardware Status Check

Step 21: Hardware Status Check

Step 22: Hardware Status Check

Step 23: Clock in read command (0x5)

Step 24: Reading out 16 Bytes of data – Byte 0 = 0xCF

Step 25: Reading out 16 Bytes of data – Byte 1 = 0x21

Step 26: Reading out 16 Bytes of data – Byte 2 = 0x80

Step 27: Reading out 16 Bytes of data – Byte 3 = 0x3F

Step 28: Reading out 16 Bytes of data – Byte 4 = 0x0

Step 29: Reading out 16 Bytes of data – Byte 5 = 0x0

Step 30: Reading out 16 Bytes of data – Byte 6 = 0x0

Step 31: Reading out 16 Bytes of data – Byte 7 = 0x0

Step 32: Reading out 16 Bytes of data – Byte 8 = 0x0

Step 33: Reading out 16 Bytes of data – Byte 9 = 0x0

Step 34: Reading out 16 Bytes of data – Byte 10 = 0x0

Step 35: Reading out 16 Bytes of data – Byte 11 = 0x0

Step 36: Reading out 16 Bytes of data – Byte 12 = 0x0

Step 37: Reading out 16 Bytes of data – Byte 13 = 0x0

Step 38: Reading out 16 Bytes of data – Byte 14 = 0x0

Step 39: Reading out 16 Bytes of data – Byte 15 = 0x0

Read FSN waveform:
Step 1: Hardware Status Check

Step 2: Hardware Status Check

Step 3: Clock in read_FSN command (0x18)

Step 4: Clock in 16 bytes of zero values - Byte 0

Step 5: Clock in 16 bytes of zero values - Byte 1

Step 6: Clock in 16 bytes of zero values - Byte 2

Step 7: Clock in 16 bytes of zero values - Byte 3

Step 8: Clock in 16 bytes of zero values - Byte 4

Step 9: Clock in 16 bytes of zero values - Byte 5

Step 10: Clock in 16 bytes of zero values - Byte 6

Step 11: Clock in 16 bytes of zero values - Byte 7

Step 12: Clock in 16 bytes of zero values - Byte 8

Step 13: Clock in 16 bytes of zero values - Byte 9

Step 14: Clock in 16 bytes of zero values - Byte 10

Step 15: Clock in 16 bytes of zero values - Byte 11

Step 16: Clock in 16 bytes of zero values - Byte 12

Step 17: Clock in 16 bytes of zero values - Byte 13

Step 18: Clock in 16 bytes of zero values - Byte 14

Step 19: Clock in 16 bytes of zero values - Byte 15

Step 20: Hardware Status Check

Step 21: Hardware Status Check

Step 22: Clock in read command (0x5)

Step 23: Reading out 16 Bytes of FSN data – Byte 0 = 0x14

Step 24: Reading out 16 Bytes of FSN data – Byte 1 = 0x0

Step 25: Reading out 16 Bytes of FSN data – Byte 2 = 0x12

Step 26: Reading out 16 Bytes of FSN data – Byte 3 = 0x0

Step 27: Reading out 16 Bytes of FSN data – Byte 4 = 0x13

Step 28: Reading out 16 Bytes of FSN data – Byte 5 = 0x0

Step 29: Reading out 16 Bytes of FSN data – Byte 6 = 0x44

Step 30: Reading out 16 Bytes of FSN data – Byte 7 = 0x0

Step 31: Reading out 16 Bytes of FSN data – Byte 8 = 0x5A

Step 32: Reading out 16 Bytes of FSN data – Byte 9 = 0xCD

Step 33: Reading out 16 Bytes of FSN data – Byte 10 = 0x0

Step 34: Reading out 16 Bytes of FSN data – Byte 11 = 0x0

Step 35: Reading out 16 Bytes of FSN data – Byte 12 = 0x4

Step 36: Reading out 16 Bytes of FSN data – Byte 13 = 0xD8

Step 37: Reading out 16 Bytes of FSN data – Byte 14 = 0x88

Step 38: Reading out 16 Bytes of FSN data – Byte 15 = 0x13

Program frame waveform:

When performing “Program, Verify or Authenticate” actions, the data to be clocked into the device
starts at the beginning of the “datastream” block as shown below.
Obviously, this data is different depending on the device and the design, but in all cases, the data is
clocked in 16 bytes at a time.

The scope plots below show how the first data frame is clocked. In this example, the following data is
clocked:

Bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7C 5D 1C 2B 3D 75 19 B3 92 4A AB EE 4E D5 6C 62

The SPI mode used is mode 3 and the data is clocked byte 0 MSB first.

Please note the following:

1. Before performing any data shift, the target device SPI buffer status is checked by shifting 0xff.

This is the only instruction that is 8 bit long and the data is read out at the same time as it is

shifted in. The result of the first shift is ignored.

2. When shifting data, into the device, the first byte is the command followed by 16 bytes of data.

16 bytes of zero value must be shifted for commands that do not require data.

3. Shifting data out from the device is a two steps operation. The command is clocked into the

device first and then the data is clocked out using a read command of 0x5.

4. All operations with the exception of spi hardware status check are made of one byte of

command followed by 16 bytes of data. CS line must be driven low before clocking the

command and should remain low until the last bit of data is shifted in. Then it must be driven

high to execute the loaded instruction.

Notes 1, 2, 3 above are taken care of by the programming algorithm.

Step 1: Hardware Status Check

Step 2: Hardware Status Check

Step 3: Shift in the first frame. Command = 0x1. Data to follow. Note CS signal

Step 4: Data Byte0 = 0x7C

Step 5: Data Byte1 = 0x5D

Step 6: Data Byte2 = 0x1C

Step 7: Data Byte3 = 0x2B

Step 8: Data Byte4 = 0x3D

Step 9: Data Byte5 = 0x75

Step 10: Data Byte6 = 0x19

Step 11: Data Byte7 = 0xB3

Step 12: Data Byte8 = 0x92

Step 13: Data Byte9 = 0x4A

Step 14: Data Byte10 = 0xAB

Step 15: Data Byte11 = 0xEE

Step 16: Data Byte12 = 0x4E

Step 17: Data Byte13 = 0xD5

Step 18: Data Byte14 = 0x6C

Step 19: Data Byte15 = 0x62. Note CS signal

At this point, the first frame of data is clocked in. The next operation is to check the status.
Step 20: Hardware Status Check

Step 21: Hardware Status Check

Step 22: Frame Status command. Command = 0x4. Note CS signal

Step 23: Data Byte0 = 0x0

Step 24: Data Byte1 = 0x0

Step 25: Data Byte2 = 0x0

Step 26: Data Byte3 = 0x0

Step 27: Data Byte4 = 0x0

Step 28: Data Byte5 = 0x0

Step 29: Data Byte6 = 0x0

Step 30: Data Byte7 = 0x0

Step 31: Data Byte8 = 0x0

Step 32: Data Byte9 = 0x0

Step 33: Data Byte10 = 0x0

Step 34: Data Byte11 = 0x0

Step 35: Data Byte12 = 0x0

Step 36: Data Byte13 = 0x0

Step 37: Data Byte14 = 0x0

Step 38: Data Byte15 = 0x0

Instruction is loaded. Issue read instruction using 0x5 command
Step 39: Hardware Status Check

Step 40: Hardware Status Check

Step 41: Read command. Command = 0x5. Note CS signal

Step 42: Data Byte0 read

Step 43: Data Byte1 read

Step 44: Data Byte2 read

Step 45: Data Byte3 read

Step 46: Data Byte4 read

Step 47: Data Byte5 read

Step 48: Data Byte6 read

Step 49: Data Byte7 read

Step 50: Data Byte8 read

Step 51: Data Byte9 read

Step 52: Data Byte10 read

Step 53: Data Byte11 read

Step 54: Data Byte12 read

Step 55: Data Byte13 read

Step 56: Data Byte14 read

Step 57: Data Byte15 read

B – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/
fpga-soc-support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products
Group home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
24

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
www.microsemi.com/soc
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

M
O
CA

W
O
Sa
Fa

E-

©2
re
lo
Co
se
re
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800
employees globally. Learn more at www.microsemi.com.icrosemi Corporate Headquarters

ne Enterprise, Aliso Viejo,
 92656 USA

ithin the USA: +1 (800) 713-4113
utside the USA: +1 (949) 380-6100
les: +1 (949) 380-6136
x: +1 (949) 215-4996

mail: sales.support@microsemi.com

017 Microsemi Corporation. All rights
served. Microsemi and the Microsemi
go are trademarks of Microsemi
rporation. All other trademarks and

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
5-02-00523-3/10.17

information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

rvice marks are the property of their
spective owners.

http://www.microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:tech@microsemi.com

	Introduction
	1 – System Overview
	Systems with Direct Access to Memory
	Systems with Indirect Access to Memory
	Motorola SPI Protocol

	2 – Generating Data Files and Integrating DirectC
	SPI-DirectC Code Integration

	3 – Required Source Code Modifications
	Compiler Switches
	Hardware Interface Components
	Hardware Interface Function (dpDUTspi.c)
	Display Functions
	Memory Interface Functions
	Main Entry Function
	Data Type Definitions
	Supported Actions

	4 – Data File Format
	DAT File Description for M2GL, M2S, and MPF Devices

	5 – Source File Description
	DPUSER.H
	DPCOM.C and DPCOM.H
	DPALG.C and DPALG.H
	DPG4ALG.C and DPG4ALG.H
	DPG5ALG.C and DPG5ALG.H
	DPDUTSPI.C and DPDUTSPI.H
	DPG4SPI.C and DPG4SPI.H
	DPG5SPI.C and DPG5SPI.H
	DPUTIL.C and DPUTIL.H

	6 – Data File Bit Orientation
	7 – Sample Project
	Project Requirements
	Procedure

	8 – Error Messages & Troubleshooting Tips
	A - Programming Waveform Analysis
	B – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

