
DirectC v4.0
User Guide

Table of Contents

Introduction . 4
Important Note . 4

1 System Overview . 5
Systems with Direct Access to Memory . 6

2 Generating Data Files and Integrating DirectC . 8
Data File Compatibility . 8

DirectC v4.0 Code Integration . 9

3 Required Source Code Modifications. 12
Compiler Switches . 12

Hardware Interface Components . 14

4 Chain Programming . 21
Pre/Post Data Variable Declaration . 21

5 Data File Format. 24
DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and A2F Devices . 24

DAT File Description for M2GL, M2S, RTG4, and MPF Devices . 26

6 Source File Description . 28
DPUSER.C and DPUSER.H . 28

DPCOM.C and DPCOM.H . 28

DPALG.C and DPALG.H . 28

DPG3ALG.C and DPG3ALG.H . 28

DPCORE.C and DPCORE.H . 28

DPFROM.C and DPFROM.H . 28

DPNVM.C and DPNVM.H . 28

DPSECURITY.C and DPSECURITY.H . 28

DPG4ALG.C and DPG4ALG.H . 28

DPJTAG.C and DPJTAG.H . 28

DPCHAIN.C and DPCHAIN.H . 29

DPUTIL.C and DPUTIL.H . 29

DPRTG4ALG.C and DPRTG4ALG.H . 29

DPG5ALG.C and DPG5ALG.H . 29

7 Disabled Features with ENABLE_CODE_SPACE_OPTIMIZATION . 30
DMK Verification for ARM Enabled Devices . 30

030/015 Device Check . 30

8 Data File Bit Orientation . 31

9 Sample Project . 32
Project Requirements . 32

Procedure . 32
2

10 Error Messages & Troubleshooting Tips . 34

A Product Support . 37
Customer Service . 37

Customer Technical Support Center . 37

Technical Support . 37

Website . 37

Contacting the Customer Technical Support Center . 37

ITAR Technical Support . 38
3

4

Introduction

This document describes how to enable microprocessor-based embedded ISP (In-System
Programming) on Microsemi PolarFire™, RTG4™, IGLOO2™, SmartFusion2™, ProASIC®3 (including
ProASIC3 nano), IGLOO™ (including IGLOO nano), SmartFusion™ and Fusion™ devices. In-System
Programming refers to an external processor on board programming a Microsemi device through general
purpose IOs using a JTAG interface.

The document assumes that the target system contains a microprocessor with a minimum 256 bytes of
RAM, a JTAG interface to the target device from the microprocessor, and access to the programming
data to be used for programming the FPGA. Access to programming data can be provided by a
telecommunications link for most remote systems.

DirectC v4.0 is a set of C code designed to support embedded In-System Programming for AGL, AFS,
A3PL, A3PEL, A3P/E, A2F, M2S, M2GL, RTG4, and MPF families. To use DirectC v4.0, you must make
some minor modifications to the source code, add the necessary API, and compile the source code and
the API together to create a binary executable. The binary executable is downloaded to the system along
with the programming data file.

The programming data file is a binary file that can be generated by Libero SoC. The detailed specification
of the programming file is included in "Data File Format" on page 24.

DirectC v4.0 contains several compile options to reduce the code size as much as possible. The compile
options enable you to disable support for specific device families and features that are not needed in the
compile.

DirectC v4.0 supports systems with direct and indirect access to the memory space containing the data
file image. With paging support, it is possible to implement the embedded ISP using DirectC on systems
with no direct access to the entire memory space containing the data. Paging support is accomplished by
making modifications to the data communication functions defined in dpuser.h, dpuser.c, dpcom.c, and
dpcom.h.

Important Note
This version of DirectC supports RTG4 family of devices. These devices have a feature called Avionics
mode. When enabled, it prevents the user from performing programming operation.

To exit out of this mode, the JTAG_TRST pin must be held high and DEVRST_N pin must be toggled.

dp_exit_avionics_mode function is created for that purpose. It is defined in dpuser.c and must be
modified by the user to set JTAG_TRST pin high and toggle DEVRST_N pin.

1 – System Overview

To perform In-System Programming (ISP) for the FPGA, the system must contain the following
parameters:

• Control logic (a microprocessor or a softcore microprocessor implemented in another FPGA)

• JTAG interface to the target device

• Access to the data file containing the programming data

• Memory to store and run DirectC code

Note: See your device datasheet for information on power requirements for Vpump, V and other power
supplies.

Memory requirements depend on the options that are enabled. Table 1-1 is an example of the code size
and run time memory required to support the different device families. Refer to "Required Source Code
Modifications" on page 12 for more detailed description of available compiler switches.

Text - This is the compiled code size memory requirements.

Data - This is the run time memory requirement, i.e. the free data memory space required to execute the
code.

BSS - This is the Block Started by Symbol allocation for variables that do not yet have values, i.e.
uninitialized data. It is part of the overall Data size.

Note: All compile options related to conserving code space are relevant to A3P, AGL, Fusion, and
SmartFusion device support. If the "ENABLE_G3_SUPPORT" compile option is not defined, these
compile options do not make a difference in reducing the memory size required to support M2S/
M2GL and RTG4 devices. See "Required Source Code Modifications" on page 12 for details
about all compile options.

Table 1-1 • Code Memory Requirements- DirectC Code Size on CM3 in Thumb Mode

Compile Options Enabled

Units are in Bytes

Text Data BSS

ENABLE_G3_SUPPORT 31168 2393 99

ENABLE_G4_SUPPORT 15200 2398 98

ENABLE_G5_SUPPORT 15960 2422 98

ENABLE_RTG4_SUPPORT 12260 3031 98

All the above 53324 3302 91
5

http://www.actel.com/techdocs/ds/default.aspx

Systems with Direct Access to Memory
Figure 1-1 shows the overview of a typical system with direct access to the memory space holding the
data file. See "Generating Data Files and Integrating DirectC" on page 8 for generating DAT files and
Table 1-2 for data storage memory requirements. Systems with Indirect Access to Memory

Figure 1-2 is an overview of a system with no direct access to the memory space holding the data file.
For example, the programming data may be received via a communication interface peripheral that
exists between the processor memory and the remote system holds the data file. dpcom.h and dpcom.c
must be modified to interface with the communication peripheral.

Figure 1-1 • System with Direct Access to Memory

Figure 1-2 • System With Indirect Access to Memory

Microprocessor

I/O Functions

Internal RAM

Internal/External
Memory Running

DirectC

A3P/AFS/M2S

JTAG Bus

On Board
Memory
Device

.dat file

Target Device

Microprocessor

IO Functions

JTAG Bus

Bidirectional
Link

Communication
Peripheral

Internal
RAM

Internal/
External
Memory
Running
DirectC

A3P/AFS/M2S

External
Memory
Device

(Remote
Location)

DAT File

Target
 Device
6

Table 1-2 • Data Storage Memory Requirements - Data Image Size

Data Image Size

Device

Core/FPGA Array FROM
Embedded Flash

Memory Block

Security (kB)
Plain
(kB)

Encrypt
(kB) Plain (kB)

Encrypt
(kB)

Plain
(kB) Encrypt (kB)

A3PE600 526 647 1 1 N/A N/A 1

A3PE1500* 1434 1765 1 1 N/A N/A 1

A3PE3000 2790 3433 1 1 N/A N/A 1

A3P015 32 N/A 1 N/A N/A N/A 1

A3P030 32 N/A 1 N/A N/A N/A 1

A3P060 64 79 1 1 N/A N/A 1

A3P125 127 156 1 1 N/A N/A 1

A3P250 235 288 1 1 N/A N/A 1

A3P400 351 432 1 1 N/A N/A 1

A3P600 523 647 1 1 N/A N/A 1

A3P1000 915 1126 1 1 N/A N/A 1

AFS090 96 117 1 1 256 545 1

AFS250 234 288 1 1 256 545 1

AFS600 526 647 1 1 512 1090 1

AFS1500 1434 1765 1 1 2048 2180 1

A2F200M3F 181 222 1 1 256 545 1

A2F500M3G 455 560 1 1 512 1090 1

M2GL010 N/A 557 N/A N/A N/A 267 N/S

M2GL025 N/A 1197 N/A N/A N/A 267 N/S

M2GL050 N/A 2364 N/A N/A N/A 267 N/S

M2S005 N/A 297 N/A N/A N/A 137 N/S

M2S010 N/A 557 N/A N/A N/A 272 N/S

M2S025 N/A 1197 N/A N/A N/A 272 N/S

M2S050 N/A 2364 N/A N/A N/A 272 N/S

RT4G150 4992 N/A N/A N/A N/A N/A N/A

MPF300 N/A 9472 N/A N/A N/A N/A N/A

A3PE1500 is not supported with an 8-bit processor.

INA - Information not available at this time.

N/A - Not applicable

N/S - Not supported

All data in the table for base FPGA devices applies equally to the M1, M7, P1, and U1 encrypted versions of the
devices, e.g. data for AFS1500 is equally applicable to M1AFS1500, P1AFS1500, and U1AFS1500. Not all
combinations of M1, M7, P1, and U1 are available for all devices. Refer to the product datasheets for available
devices.

The total image size is the sum of all the corresponding enabled blocks for the specific target device.
7

2 – Generating Data Files and Integrating DirectC

This chapter describes the flows for data file generation and DirectC code integration.

To generate your data file:
1. Generate the DAT file using Designer v8.5 or later. DAT file generation is done by running Export

Bitstream under Handoff Design for Production in the Libero Design Flow window. See the
latest Libero SoC online help for information about generating a DAT file.

2. Program the DAT file into the storage memory.

Data File Compatibility
DirectC data files can be generated from Designer v8.5 and above. Data files generated from Designer
v8.5 are identical to the files generated by the original datgen tool with the exception of the file title.
However, data files generated by Designer version v8.6 are enhanced to support nano devices. DirectC
v4.0 can detect which version of the file is being used and handle it accordingly.
8

DirectC v4.0 Code Integration
Figure 2-1 shows the DirectC integration use flow.

Figure 2-1 • Importing DirectC Files

Done

Generate DAT file

Define JTAG bit position
in the I/O register; discrete

toggling is required

Define JTAG interface
functions JTAG_INP and

JTAG_OUTP

Program the DAT file into
the system memory

Define delay function
dp_delay

Define memory interface
functions dp_get_data

and dp_get_page_data if
paging is required

Call dp_top function to
initiate desired action

Compile source code
and download to

microprocessor

Start

Define delay function
dp_delay and

dp_exit_avionics if applicable
9

To use DirectC v4.0 code integration:
1. Import the DirectC v4.0 files shown in Figure 2-2 into your development environment.

2. Modify the DirectC code. Refer to Figure 2-1.

– Define JTAG pin bit locations in the I/O register.

– For RTG4, assign an additional pin bit to control the devrst pin.

– Add API to support discrete toggling of the individual JTAG pins.

– Modify the hardware interface functions (jtag_inp and jtag_outp) to use the hardware API
functions designed to control the JTAG port.

– Modify the delay function (dp_delay).

– Modify memory access functions to access the data blocks within the image file programmed
into the system memory. See "Data File Bit Orientation" on page 31.

Figure 2-2 • DirectC v4.0 Files to import into your Development Environment
10

– Call dp_top function with the action code desired.

3. Compile the source code. This creates a binary executable that is downloaded to the system for
execution.
11

3 – Required Source Code Modifications

You must modify the dpuser.h, dpuser.c, dpcom.c, dpcom.h, and dpG3alg.h (if applicable) files when
using the DirectC source code. "Source File Description" on page 28 contains a short description of
DirectC source code and their function. Functions that must be modified are listed in Table 3-1.

Compiler Switches
The compiler switches in Table 3-2 are designed to allow you to easily adjust the compiled code size by
enabling or disabling specific support in DirectC. For example, to enable FPGA Array (Core) plain text
programming, CORE_SUPPORT and CORE_PLAIN must be defined. Table 3-2 lists the available
compiler switches in the project.

Table 3-1 • Functions to be Modified by the User

Function Source File Purpose

jtag_inp dpuser.c Hardware interface function used to set JTAG pins and read TDO.

jtag_outp dpuser.c Hardware interface function used to set JTAG pins.

dp_get_page_data dpcom.c Programming file interface function.

dp_delay dpuser.c Delay function.

dp_display_text dpuser.c Function to display text to an output device. ENABLE_DISPLAY
compile option must be defined.

dp_display_value dpuser.c Function to display value of a variable to an output device.
ENABLE_DISPLAY compile option must be defined.

dp_exit_avionics_
mode

dpuser.c Function to exit Avionics Mode for RTG4 devices.

Table 3-2 • Compiler Switches

Compiler Switch Source File Purpose

 CORE_SUPPORT dpG3alg.h Enables FPGA Array Programming support.

 CORE_ENCRYPT dpG3alg.h Specify to include FPGA Array Encrypted
programming support.

 CORE_PLAIN dpG3alg.h Specify to include FPGA Array Plain Text
programming support.

 FROM_SUPPORT dpG3alg.h Enables FlashROM Programming support.

 FROM_ENCRYPT dpG3alg.h Specify to include FlashROM Encrypted
programming support.

 FROM_PLAIN dpG3alg.h Specify to include FlashROM Plain Text
programming support.

 NVM_SUPPORT dpG3alg.h Enables eNVM Programming support.
12

 NVM_ENCRYPT dpG3alg.h Specify to include eNVM Encrypted programming
support.

 NVM_PLAIN dpG3alg.h Specify to include eNVM Plain Text programming
support.

 SECURITY_SUPPORT dpG3alg.h Enables Security Programming support.

 SILSIG_SUPPORT dpG3alg.h Enables SILSIG Programming support

 ENABLE_DAS_SUPPORT dpG3alg.h Enables support for A3PE1500 rev A devices;
support for this feature is not available on some 8-
bit microcontrollers because of Run Time Memory
requirements.

ENABLE_GPIO_SUPPORT dpuser.h This switch must be defined to enable external
device programming.

ENABLE_G3_SUPPORT dpuser.h Enables support for AGL, AFS, A3PL, A3PEL,
A3P/E, and A2F devices.

ENABLE_G4_SUPPORT dpuser.h Enables support for M2S and MGL devices.

ENABLE_G5_SUPPORT dpuser.h Enables support for MPF devices.

ENABLE_RTG4_SUPPORT dpuser.h Enables support for RTG4 devices.

 ENABLE_DISPLAY dpuser.h Enables display functions.

 USE_PAGING dpuser.h Used to enable paging implementation for memory
access.

 CHAIN_SUPPORT dpuser.h Used to enable support for chain programming as
described in Table 4-2 on page 22.

 BSR_SAMPLE dpuser.h Enable this option to maintain the last known IO
states during programming.

BSR loading and BSR_SAMPLE are not
supported for IAP.

ENABLE_CODE_SPACE_OPTIMIZATION dpG3alg.h See "Disabled Features with
ENABLE_CODE_SPACE_OPTIMIZATION" on
page 30.

DISABLE_CORE_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
array specific actions such as erase, program and
verify array actions.

DISABLE_FROM_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
FROM specific actions such as erase, program and
verify FROM actions.

DISABLE_NVM_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
NVM specific actions such as program and verify
NVM actions.

Table 3-2 • Compiler Switches (continued)

Compiler Switch Source File Purpose
13

Note: Make sure that the appropriate compiler options are enabled to support all features available in the
STAPL/DAT file. Otherwise, DirectC may report an error depending on the requested action. Avoid
using source files that have all options enabled. The number of options selected incrementally
increases the number of variables that need to be maintained and the amount of memory that is
used.

Compiler options defined in dpG3alg.h are specific to the AGL, AFS, A3PL, A3PEL, A3P/E, and A2F
families of devices, whereas compiler switches defined in dpuser.h are common to all devices.

Hardware Interface Components

Define JTAG Hardware Bit Assignments (dpuser.h)
Define the JTAG bits corresponding to each JTAG pin. This is usually the bit location of the I/O register
controlling the JTAG port of the target device.

#define TCK 0x1 /* ... user code goes here ... */
#define TDI 0x2 /* ... user code goes here ... */
#define TMS 0x4 /*... user code goes here ... */
#define TRST 0x0 /* ... user code goes here ... set to zero if does not exist !!!*/
#define TDO 0x80 /*.. user code goes here ... */

Hardware Interface Function (dpuser.c)
jtag_inp and jtag_outp functions are used to interface with the JTAG port. A register jtag_port_reg is an 8
bit register already defined in DirectC. DirectC uses it to track the logical states of all the JTAG pins.

jtag_inp Function
This function returns the logical state of the TDO pin. If it is logic level zero, then this function must return
zero. If the logical state is 1, then it must return 0x80.

jag_outp Function
This function takes one argument that is the value of the JTAG port register containing the states of all
the JTAG pins. It sets the JTAG pins to the values in this argument.

Delay Function (dpuser.c)
dp_delay function takes one argument which is the amount of time in microseconds. Its purpose is to
pause for a minimum of time passed in its argument.

Longer delay time does not impact programming other than programming time.

Display Functions (dpuser.c)
Display functions are only enabled if the ENABLE_DISPLAY compiler switch is enabled. Three functions,
dp_display_array, dp_display_text, and dp_display_value, are available to display text as well as numeric
values. You must modify these functions for proper operation.

DISABLE_SEC_SPECIFIC_ACTIONS dpG3alg.h For code size reduction. This option will disable
security specific actions such as erase and
program security actions.

PERFORM_CRC_CHECK dpuser.h Enables CRC check of the programming data prior
to performing the desired action.

Table 3-2 • Compiler Switches (continued)

Compiler Switch Source File Purpose
14

Memory Interface Functions (dpuser.c)
All access to the memory blocks within the data file is done through dp_get_data function within the
DirectC code. This is true for all system types.

This function returns an address pointer to the byte containing the first requested bit.

The dp_get_data function takes two arguments as follows:

• var_ID: an integer variable which contains an identifier specifying which block within the data file
needs to be accessed.

• bit_index: The bit index addressing the bit to address within the data block specified in Var_ID.
Upon completion of this function, the return_bytes variable must hold the total number of valid
bytes available for the calling function.

See "Systems with Direct Access to the Memory Containing the Data File" on page 15 and "Systems with
Indirect Access to the Data File" on page 15 for details.

Systems with Direct Access to the Memory Containing the Data File
Since the memory space holding the data file is accessible by the microprocessor, it could be treated as
an array of unsigned characters. In this case, complete these steps:

1. Disable USE_PAGING compiler switch. See "Compiler Switches" on page 12.

2. Assign the physical address pointer to the first element of the data memory location
(image_buffer defined in dpcom.c). image_buffer is used as the base memory for accessing the
information in the programming data in storage memory.

The dp_get_data function calculates the address offset to the requested data and adds it to
image_buffer. return_bytes is the requested data.

An example of dp_get_data function implementation follows. This function can be used as is.

DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)
{
 DPUCHAR * data_address = (DPUCHAR*)DPNULL;
 dp_get_data_block_address(var_ID);
 if ((current_block_address == 0U) && (var_ID != Header_ID))
 {
 return_bytes = 0U;
 }
 else
 {
 data_address = dp_get_data_block_element_address(bit_index);
 }
 return data_address;
}

Systems with Indirect Access to the Data File
These systems access programming data indirectly via a paging mechanism. Paging is a method of
copying a certain range of data from the memory containing the data file and pasting it into a limited size
memory buffer that DirectC can access.

To implement paging:
1. Enable USE_PAGING compiler option. See "Compiler Switches" on page 12.

2. Define Page_buffer_size. The recommended minimum buffer size is 16 bytes for efficiency
purposes. If eNVM encrypted programming support is required on SmartFusion or Fusion
devices, two buffers are needed of Page_buffer_size. Therefore, the run time memory required
must be able to hold 2 x Page_buffer_size.

3. Modify the dp_get_page_data function. This function copies the requested data from the external
memory device into the page buffer. See "Data File Bit Orientation" on page 31 for additional
information. Follow these rules for correct operation:

– Fill the entire page unless the end of the image is reached. See "Data File Format" on page 24

– Update return_bytes to reflect the number of valid bytes in the page.

DirectC programming functions call dp_get_data function every time access to a data block within the
image data file is needed. The dp_get_data function calculates the relative address location of the
15

requested data and checks if it already exists in the current page data. The paging mechanism is
triggered if the requested data is not within the page buffer.

Example of dp_get_page_data Function Implementation
dp_get_page_data is the only function that must interface with the communication peripheral of the
image data file. Since the requested data blocks may not be contiguous, it must have random access to
the data blocks. Its purpose is to fill the page buffer with valid data.

In addition, this function must maintain start_page_address, end_page_address, and return_bytes.
These global variables contain the range of data currently in the page as well as the number of valid
bytes.

dp_get_page_data takes one argument:

• address_offset - Contains the relative address of the needed element within the data block of the
image file.

void dp_get_page_data(DPULONG image_requested_address)

{

 DPULONG image_address_index;

 start_page_address=0;

 image_address_index=image_requested_address;

 return_bytes = PAGE_BUFFER_SIZE;

 if (image_requested_address + return_bytes > image_size)

 return_bytes = image_size - image_requested_address;

 while (image_address_index < image_requested_address + return_bytes)

 {

 page_global_buffer[start_page_address]=image_buffer[image_address_index];

 start_page_address++;

 image_address_index++;

 }

 start_page_address = image_requested_address;

 end_page_address = image_requested_address + return_bytes - 1;

 return;

}

Main Entry Function
The main entry function is dp_top defined in dpalg.c. It must be called to initiate the programming
operation. Prior to calling the dp_top function, a global variable Action_code must be assigned a value as
defined in dpalg.h. Action codes are listed below.

#define DP_DEVICE_INFO_ACTION_CODE 1
#define DP_READ_IDCODE_ACTION_CODE 2
#define DP_ERASE_ACTION_CODE 3
#define DP_PROGRAM_ACTION_CODE 5
#define DP_VERIFY_ACTION_CODE 6
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 7
#define DP_ERASE_ARRAY_ACTION_CODE 8
#define DP_PROGRAM_ARRAY_ACTION_CODE 9
#define DP_VERIFY_ARRAY_ACTION_CODE 10
#define DP_ERASE_FROM_ACTION_CODE 11
#define DP_PROGRAM_FROM_ACTION_CODE 12
#define DP_VERIFY_FROM_ACTION_CODE 13
#define DP_ERASE_SECURITY_ACTION_CODE 14
16

#define DP_PROGRAM_SECURITY_ACTION_CODE 15
#define DP_PROGRAM_NVM_ACTION_CODE 16
#define DP_VERIFY_NVM_ACTION_CODE 17
#define DP_VERIFY_DEVICE_INFO_CODE 18
#define DP_READ_USERCODE_ACTION_CODE 19
#define DP_PROGRAM_NVM_ACTIVE_ARRAY_CODE 20
#define DP_VERIFY_NVM_ACTIVE_ARRAY_CODE 21
#define DP_IS_CORE_CONFIGURED_ACTION_CODE 22

/* Smart Fusion specific actions */
#define DP_PROGRAM_PRIVATE_CLIENTS_ACTION_CODE 23u
#define DP_VERIFY_PRIVATE_CLIENTS_ACTION_CODE 24u
#define DP_PROGRAM_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE 25u
#define DP_VERIFY_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE 26u

The following are the only actions supported on the RTG4, SmartFusion2, IGLOO2, and PolarFire family
of devices.

#define DP_DEVICE_INFO_ACTION_CODE 1
#define DP_READ_IDCODE_ACTION_CODE 2
#define DP_ERASE_ACTION_CODE 3
#define DP_PROGRAM_ACTION_CODE 5
#define DP_VERIFY_ACTION_CODE 6
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 7
#define DP_VERIFY_DIGEST_ACTION_CODE 28

Note: For M2S/M2GL/RTG4 and MPF device families only. Programming of individual blocks such as
array or eNVM is not possible with one DAT file that contains both array and eNVM. It will always
program all enabled blocks.

To program eNVM or Fabric only, for example, the user must generate DAT files for eNVM or
Fabric only. See the Libero online help for more information.
17

Data Type Definitions
Microsemi uses DPUCHAR, DPUINT, DPULONG, DPBOOL, DPCHAR, DPINT, and DPLONG in the
DirectC source code. Change the corresponding variable definition if different data type names are used.

/***/
/* DPCHAR -- 8-bit Windows (ANSI) character */
/* i.e. 8-bit signed integer */
/* DPINT -- 16-bit signed integer */
/* DPLONG -- 32-bit signed integer */
/* DPBOOL -- boolean variable (0 or 1) */
/* DPUCHAR -- 8-bit unsigned integer */
/* DPUSHORT -- 16-bit unsigned integer */
/* DPUINT -- 16-bit unsigned integer */
/* DPULONG -- 32-bit unsigned integer */
\/***/
typedef unsigned char DPUCHAR;
typedef unsigned short DPUSHORT;
typedef unsigned int DPUINT;
typedef unsigned long DPULONG;
typedef unsigned char DPBOOL;
typedef char DPCHAR;
typedef int DPINT;
typedef long DPLONG;

Supported Actions
Table 3-3 lists supported actions and devices. l

Table 3-3 • Supported Actions

Action Supported Devices Description

DP_DEVICE_INFO_ACTION All Displays device security settings and
the content of the FROM if not
encrypted.

DP_READ_IDCODE_ACTION All Reads and displays the content of the
IDCODE register.

DP_ERASE_ACTION All Erases all supported blocks in the
data file.

DP_PROGRAM_ACTION All Performs erase, program and verify
operations for all the supported
blocks in the data file including
SmartFusion MSS private clients.

DP_VERIFY_ACTION All Performs verify operation for all the
supported blocks in the data file
including SmartFusion MSS private
clients.

DP_ENC_DATA_AUTHENTICATION_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion,
SmartFusion2, IGLOO2

Valid for encrypted array devices and
files only. It performs data
authentication for the array to make
sure the data was encrypted with the
same encryption key as the device.

DP_ERASE_ARRAY_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs erase operation on the
array blocks.
18

DP_PROGRAM_ARRAY_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs erase, program and verify
operations on the array block and
SmartFusion MSS private clients.

DP_VERIFY_ARRAY_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs verify operation on the
array block and SmartFusion MSS
private clients.

DP_ERASE_FROM_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs erase operation on the
FROM block.

DP_PROGRAM_FROM_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs erase, program and verify
operations on the FROM block.

DP_VERIFY_FROM_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs verify operation on the
FROM block.

DP_ERASE_SECURITY_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs erase operation on the
security registers.

DP_PROGRAM_SECURITY_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs erase and program
operations on the security registers.

DP_PROGRAM_NVM_ACTION Fusion, SmartFusion Performs program and verify
operations on all supported NVM
blocks in the data file including
SmartFusion MSS private clients.

DP_VERIFY_NVM_ACTION Fusion, SmartFusion Performs verify operation on all
supported NVM blocks in the data file
including SmartFusion MSS private
clients.

DP_VERIFY_DEVICE_INFO_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs verification of the security
settings of the device against the
data file security setting.

DP_READ_USERCODE_ACTION ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Reads and displays the device
usercode while the FPGA Array
remains active.

DP_PROGRAM_NVM_ACTIVE_ARRAY Fusion, SmartFusion Programs the targeted EFMBs while
the FPGA Array remains active
including SmartFusion MSS private
clients.

DP_VERIFY_NVM_ACTIVE_ARRAY Fusion, SmartFusion Verifies the targeted EFMBs while the
FPGA Array remains active including
SmartFusion MSS private clients.

DP_IS_CORE_CONFIGURED_ACTION_COD
E

ProASIC3/E/L, IGLOO/+/E,
Fusion, SmartFusion

Performs a quick check on the array
to determine if the core is
programmed and enabled.

DP_PROGRAM_PRIVATE_CLIENTS_ACTION
_CODE

SmartFusion SmartFusion specific action. This
action programs the system boot
code as well as initialization clients in
SmartFusion used by the MSS.

Table 3-3 • Supported Actions (continued)
19

DP_VERIFY_PRIVATE_CLIENTS_ACTION_C
ODE

SmartFusion SmartFusion specific action. This
action verifies the system boot code
as well as initialization clients in
SmartFusion used by the MSS.

DP_PROGRAM_PRIVATE_CLIENTS_ACTIVE
_ARRAY_ACTION_CODE

SmartFusion SmartFusion specific action. This
action updates the system boot code
as well as initialization clients in
smart fusion used by the MSS while
the FPGA array remains active.

DP_VERIFY_PRIVATE_CLIENTS_ACTIVE_A
RRAY_ACTION_CODE

SmartFusion SmartFusion specific action. This
action updates the system boot code
as well as initialization clients in
smart fusion used by the MSS while
the FPGA array remains active.

DP_VERIFY_DIGEST_ACTION_CODE SmartFusion2, IGLOO2,
RTG4, PolarFire

SmartFusion2 / IGLOO2 / RTG4 /
PolarFire specific action. This action
checks the digest of a programmed
M2S/M2GL/RTG4 device.

DP_CHECK_BITSTREAM_ACTION_CODE RTG4 Checks the integrity of the bitstream

Table 3-3 • Supported Actions (continued)
20

4 – Chain Programming

Chain programming refers to a chain of devices (from various vendors) connected together serially
through a JTAG port. When devices are joined together in a JTAG chain, all of their Instruction Registers
(IR) and Data Registers (DR) are put in a long shift register from TDI to TDO. The IR length differs from
device to device and the DR length depends on the instruction that shifts into the instruction register.

Pre/Post Data Variable Declaration
The pre/post data variable declaration variables are initialized and used in the dpchain.c file. Their
default values are 0s. You do not need to change these values if you are programming a standalone
device. However, you must correctly set these variables if you are programming Microsemi devices in a
daisy chain.

The variables that must be set are defined in dpchain.c and are listed below:

DPUINT dp_preir_length = PREIR_LENGTH_VALUE;
DPUINT dp_predr_length = PREDR_LENGTH_VALUE;
DPUINT dp_postir_length = POSTIR_LENGTH_VALUE;
DPUINT dp_postdr_length = POSTDR_LENGTH_VALUE;

These variables are used to hold the pre and post IR and DR data:

DPUCHAR dp_preir_data[PREIR_DATA_SIZE];
DPUCHAR dp_predr_data[PREDR_DATA_SIZE];
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE];
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE];

PREIR_DATA_SIZE = (dp_preir_length + 7) / 8;
PREDR_DATA_SIZE = (dp_predr_length + 7) / 8;
POSTIR_DATA_SIZE = (dp_postir_length + 7) / 8;
POSTDR_DATA_SIZE = (dp_postdr_length + 7) / 8;

In the example below, the devices sitting in a chain between the need-programming A3P device and the
TDO of programming header are called pre-devices. The devices between the need-programming A3P
device and the TDI of the programming header are called post-devices. In Figure 4-1, devices one and
two are pre-devices, devices four, five, and six are post-devices, and A3P3 is the device that is
programmed.

If there are N1 pre-devices and N2 post-devices in a chain, L1 is the sum of IR lengths of all the pre-
devices. L2 is the sum of IR lengths of all the post devices. Table 4-2 is an example of how to set the
values for the dpchain.c file using the variables assuming the values shown in Table 4-1.

Figure 4-1 • Devices in the Chain

Table 4-1 • Device IR Length

Device IR Length

Dev 1 5

Dev 2 8

6 4 A3P3 2 1TDI TDO5
21

L1 = 5 + 8 = 13

L2 = 3 + 12 + 5 = 20

Initialize the following arrays as follows for this particular example:

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff,0x1f};
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x3};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff,0xff,0xf};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x1f};

Note: Chain programming does not support programming multiple devices simultaneously. Instead, it is a
method to communicate with one device to perform programming. All other devices must be placed
in bypass mode, as implemented in the above example.

Example
The following example shows the definitions of all relevant constants and variables to target a specific
device in the chain.

Dev 3 8

Dev 4 3

Dev 5 12

Dev 6 5

Table 4-2 • Example Variable Values for dpchain.c File

Pre/Post Data Values Comments

#define PREIR_LENGTH_VALUE 13 L1

#define PREDR_LENGTH_VALUE 2 N1

#define POSTIR_LENGTH_VALUE 20 L2

#define POSTDR_LENGTH_VALUE 3 N2

#define PREIR_DATA_SIZE 2 Number of bytes needed to hold L1

#define PREDR_DATA_SIZE 1 Number of bytes needed to hold N1

#define POSTIR_DATA_SIZE 3 Number of bytes needed to hold L2

#define POSTDR_DATA_SIZE 1 Number of bytes needed to hold N2

Figure 4-2 • Constants and Variables Targeting a Specific Device in the Chain

Table 4-1 • Device IR Length (continued)

Device IR Length
22

To program igloo2-1

#define PREIR_LENGTH_VALUE 24
#define PREDR_LENGTH_VALUE 3
#define POSTIR_LENGTH_VALUE 0
#define POSTDR_LENGTH_VALUE 0
#define PREIR_DATA_SIZE 3
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 1
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff, 0xff , 0xff };
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x7};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0x0};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x0};

To program Igloo2-2

#define PREIR_LENGTH_VALUE 16
#define PREDR_LENGTH_VALUE 2
#define POSTIR_LENGTH_VALUE 8
#define POSTDR_LENGTH_VALUE 1
#define PREIR_DATA_SIZE 2
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 1
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff, 0xff};
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x3};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x1};

To program igloo2-3

#define PREIR_LENGTH_VALUE 8
#define PREDR_LENGTH_VALUE 1
#define POSTIR_LENGTH_VALUE 16
#define POSTDR_LENGTH_VALUE 2
#define PREIR_DATA_SIZE 1
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 2
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff}
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x1}
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff, 0xff}
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x3}

To program Igloo2-4

#define PREIR_LENGTH_VALUE 0
#define PREDR_LENGTH_VALUE 0
#define POSTIR_LENGTH_VALUE 24
#define POSTDR_LENGTH_VALUE 3
#define PREIR_DATA_SIZE 1
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 3
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]= {0x0}
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x0}
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff, 0xff, 0xff}
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x7}
23

5 – Data File Format

DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and
A2F Devices

The AGL / AFS / A3PL / A3PEL / A3P/3 A2F data file contains the following sections:

• Header Block - Contains information identifying the type of the binary file, data size blocks, target
device ID and different flags needed in the DirectC code to identify which block is supported and
its associated options.

• Data Lookup Table - Contains records identifying the starting relative location of all the different
data blocks used in the DirectC code and data size of each block. The format is described in
Table 5-1.

• Data Block - Contains the raw data for all the different variables specified in the lookup table.

Table 5-1 • DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer version number 24

Header Size 1

Image Size 4

Data Compression Flag 1

M1/P1/M7 Flag 1

Target Device ID 4

Tools Version Number 2

Map Version Number 2

Core Support Flag 1

FORM Support Flag 1

NVM Support Flag 1

NVM Block 0 Support Flag 1

NVM Block 1 Support Flag 1

NVM Block 2 Support Flag 1

NVM Block 3 Support Flag 1

NVM Verify Support Flag 1

PASS Key Support Flag 1

AES Key Support Flag 1
24

Core Encryption Flag 1

FROM Encryption Flag 1

NVM Block 0 Encryption Flag 1

NVM Block 1 Encryption Flag 1

NVM Block 2 Encryption Flag 1

NVM Block 3 Encryption Flag 1

Device Exception Flag 2

ID Mask 4

SD Tiles 1

Mapped rows 2

BSR Length 2

SE Wait 1

Dual Key Support Flag 1

Number of DirectC data blocks in file 1

Look Up Table

Information # of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block
section

4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block
section

4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block
section

4

of bytes of data x 4

Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

Table 5-1 • DAT Image Description (continued)

Header Section of DAT File
25

DAT File Description for M2GL, M2S, RTG4, and MPF Devices
The M2GL, M2S, RTG4, and MPF data file contains the following sections:

• Header Block - Contains information identifying the type of the binary file and data size blocks.

• Constant Data Block - Includes device ID, silicon signature and other information needed for
programming.

• Data Lookup Table - Contains records identifying the starting relative location of all the different
data blocks used in the DirectC code and data size of each block. The format is described in
Table 5-2.

• Data Block - Contains the raw data for all the different variables specified in the lookup table.

Table 5-2 • DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer version number 24

Header Size 1

Image Size 4

DAT File Version 1

Tools Version Number 2

Map Version Number 2

Feature Flag 2

Device Family 1

Constant Data Block

Device ID 4

Device ID Mask 4

Silicon Signature 4

Checksum 2

Number of BSR Bits 2

Number of Components 2

Data Size 2

Erase Data Size 2

Verify Data Size 2

ENVM Data Size 2

ENVM Verify Data Size 2

UEK1_EXISTS Flag (Excluding RTG4) 1

UEK2_EXISTS Flag (Excluding RTG4) 1

SEC_ERASE Flag (Excluding RTG4) 1
26

UEK3_EXISTS Flag (Excluding RTG4 and MPF) 1

Number of Records 1

Look Up Table

Information # of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block
section

4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block
section

4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block
section

4

of bytes of data x 4

Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

Table 5-2 • DAT Image Description (continued)

Header Section of DAT File
27

6 – Source File Description

DPUSER.C and DPUSER.H
These files contain hardware interface functions and require user modification.

DPCOM.C and DPCOM.H
These files contain memory interface functions and require user modification..

DPALG.C and DPALG.H
dpalg.c contains the main entry function dp_top.

dpalg.h contains definitions of all the STAPL actions and their corresponding codes.

DPG3ALG.C and DPG3ALG.H
dpG3alg.c contains the main entry function dp_top_g3 and all other functions common to AGL, AFS,
A3PL, A3PEL, A3P/E, and A2F families.

dpG3alg.h contains compile options specific to AGL, AFS, A3PL, A3PEL, A3P/E, and A2F families. User
modification may be required.

DPCORE.C and DPCORE.H
Files that contain the specific functions to support array erase, program and verify actions of AGL, AFS,
A3PL, A3PEL, A3P/E and A2F families.

DPFROM.C and DPFROM.H
Files that contain the specific functions to support FROM erase, program and verify actions of AGL, AFS,
A3PL, A3PEL, A3P/E and A2F families.

DPNVM.C and DPNVM.H
Files that contain the specific functions to support NVM program and verify actions of AFS and A2F
families.

DPSECURITY.C and DPSECURITY.H
Files that contain the specific functions to support security erase, program actions of AGL, AFS, A3PL,
A3PEL, A3P/E, and A2F families.

DPG4ALG.C and DPG4ALG.H
dpG4alg.c contains the main entry function dp_top_g4 and all other functions common to M2S and MGL
families.

DPJTAG.C and DPJTAG.H
The JTAG related functions are declared in dpjtag.h and implemented in dpjtag.c.
28

DPCHAIN.C and DPCHAIN.H
Files that contain the specific functions to support chain programming.

dpchain.c contains pre- and post-IR/DR data definition to support chain programming. User modification
to set up a chain may be required.

DPUTIL.C and DPUTIL.H
These files contain utility functions needed in the DirectC code.

DPRTG4ALG.C and DPRTG4ALG.H
dpRTG4alg.c contains the main entry function dp_top_rtg4 and all other functions specific to RTG4

devices.

DPG5ALG.C and DPG5ALG.H
dpG5alg.c contains the main entry function dp_top_g5 and all other functions specific to MPF devices.
29

30

7 – Disabled Features with
ENABLE_CODE_SPACE_OPTIMIZATION

DMK Verification for ARM Enabled Devices
This feature identifies whether the target device is M1, M7, or P1 device.

Affected devices: ARM enabled devices

Impact if removed: DirectC will be unable to identify if the device is standard Fusion or ARM enabled
device. DirectC still supports programming; however, it relies on the data file processing the target device
as an ARM enabled device.

030/015 Device Check
This feature identifies if the target device is a 015 or 030 device; needed to prevent the wrong design
from being programmed into the device.

Affected devices: A3P and AGL 015 / 030 device

Impact if removed: If the design does not match the target device, programming may pass, but the
device may not function

31

8 – Data File Bit Orientation

This section specifies the data orientation of the binary data file generated by Libero software. DirectC
implementation must be in sync with the specified data orientation. Table 8-1 illustrates how the data is
stored in the binary data file. See "Data File Format" on page 24 for additional information about the data
file.

If the number of bits in a data block is not a multiple of eight, the rest of the most significant bits (msb) in
the last byte are filled with zeros. The example below shows a given 70-bit data to be shifted into the
target shift register from the least significant bit (lsb) to the most significant bit (msb). A binary
representation of the same data follows.

This data is stored in the data block section. Table 8-2 shows how the data is stored in the data block.

Table 8-1 • Binary Data File Example

Byte 0 Byte 1 Byte 2 Byte 3 Byte N

Bit7..Bit0 Bit15..Bit8 Bit23..Bit16 Bit35..Bit24 Bit(8N+7)..Bit(8N)

Valid Data Valid Data Valid Data Valid Data o <-Valid Data

20E60A9AB06FAC78A6 tdi

10000011100110 00001010100110101011000001101111101011000111100010100110 tdi

Bit 69 Bit 0

Table 8-2 • Data Block Section Example

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 .. Byte 8

Bit7...Bit0 Bit15..Bit8 Bit23..Bit16 Bit35..Bit24 Bit43..Bit36 .. Bit71..Bit64

10100110 01111000 10101100 01101111 10110000 00100000

A6 78 AC 6F B0 20

9 – Sample Project

The sample project, IAR_JTAG_DirectC.zip, available with this release of DirectC, is based on IAR
Embedded Workbench version 6.40. It is designed to work on SmartFusion Security Evaluation Kit with
the SmartFusion2 M2S090-FGG484 device.

Project Requirements
You will need the following hardware and software to run the sample project:

Hardware:

• SmartFusion2 Security Evaluation Kit with SmartFusion2 M2S090-FGG484 device.

• jLink from IAR.

• Target board with Microsemi device to be programmed.

Software:

• IAR Embedded Workbench version 6.4.

• UART Host Loader available with this release package.

Procedure
1. Program the evaluation kit with JTAG_DC_top.stp under the M2S Eval Kit Files directory. The

M2S090 design connects specific MSS IO pins and SPI1 port to specific J1 header pins for JTAG
and SPI access.

2. Connect the JTAG pins as described in HeaderPinAssignment.xlsx available under the M2S Eval
Kit Files directory.

3. Connect the Mini USB (J18) to your PC. The mini USB is connected to the FTDI FT4232h device
used as a USB to UART bridge.

4. Make sure the appropriate drivers are installed on your PC to communicate with this chip.

5. Run UART Host Loader available with this release package.

6. There should be four com ports available in the serial port setup window. Select the 4th one from
the list and configure the Baud Rate as shown below. If more than 4 ports are available,
disconnect the J18 header and refresh the com ports in the UARTHostLoader application to
identify exiting ports. Reconnect the J18 header and refresh the USB ports. Select the 4th port
from the newly generated port list.

7. Click Initialize Port to establish connection with the selected COM port.

8. Select the programming file and desired action.

9. Click Run. The UART Host Loader application waits for data from the SmartFusion2 evaluation
kit.

10. The STAPL file programmed into the evaluation kit has a DirectC sample project that supports
SmartFusion2, IGLOO2, RTG4, and PolarFire devices. Resetting the board runs the embedded
application and performs the action selected. To run another action or select a different
programming file, select it from the UART Host Loader and click Run again.
32

11. To make changes to the embedded project, run IAR workbench and modify the compile options
as desired. You can download the embedded application using jLink as follows:

 a. Connect jLink to RVI/IAR header.

 b. Set the JTAG select jumper low.

 c. Click on download and run from IAR.
33

10 – Error Messages & Troubleshooting Tips

The information in this chapter may help you solve or identify a problem when using DirectC code. If you
have a problem that you cannot solve, visit the Microsemi website at
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support or contact Microsemi
Customer Technical Support at tech@microsemi.com or call our hotline 1-800-262-1060.

See Table 10-1 for a description of exit codes and their solutions.

Table 10-1 • Exit Codes

Exit Code Error Message Action/Solution

0 This code does not indicate an error This message indicates success

6 JEDEC standard message. The IDCODE of
the target device does not match the expected
value in the DAT file image.

Possible Causes:

- The data file loaded was compiled for a different
device. Example AFS250 DAT file loaded to
program AFS600 device.

- Device TRST pin is grounded

- Noise or reflections on one or more of the JTAG
pins causing incorrect read-back of the IR Bits.

Solutions:

- Choose the correct DAT file for the target device.

- Measure JTAG pins and noise or reflection. TRST
should be floating or tied high.

- Cut down the extra length of ground connection.

8 This message occurs when the FPGA failed
during the Erase operation.

Possible Causes:

- The device is secured, and the corresponding data
file is not loaded. The device has been permanently
secured and cannot be unlocked.

Solution:

- Load the correct DAT file.

10 Failed to program FlashROM - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

11 The message occurs when the FPGA failed
verify.

Possible Cause:

- The device is secured, and the corresponding DAT
file is not loaded.

- The device is programmed with an incorrect
design.

Solution:

- Load the correct DAT file.

- Check Vpump level.

- Measure JTAG pins and noise or reflection.

14 Failed to program Silicon Signature - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.
34

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support

18 Failed to authenticate the encrypted data. - Make sure the AES key used to encrypt the data
matches the AES key programmed in the device.

20 Failed to verify FlashROM at row ###. - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

-Make sure the device is programmed with the
correct design.

22 Failed to program pass key - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

23 Failed to program AES key - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

24 Failed to program UROW - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

- Make sure you mounted 0.01uF and 0.33ufF caps
on Vpump (close to the pin).

25 Failed to enter programming mode - Try programming with a new device.

- Measure JTAG pins and noise or reflection.

27 FlashROM Write/Erase is protected by the
pass key. A valid pass key needs to be
provided.

- Provide a data file with a pass key.

30 FPGA Array verification is protected by a pass
key. A valid pass key needs to be provided.

- Provide a data file with a valid pass key.

31 Failed to program DMK - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

33 FPGA Array encryption is enforced. Plain text
programming is prohibited.

Provide a data file with an encrypted FPGA Array.

34 FlashROM encryption is enforced. Plain text
programming is prohibited.

- Provide a data file with an encrypted FlashROM.

35 Pass key match failure. - Provide a data file with correct pass key.

36 FlashROM Encryption is not enforced. AES
key may not be present in the target device.

Unable to proceed with Encrypted FlashROM
programming.

- Make sure the device is properly secured with AES
encryption protection turned on.

- Provide correct DAT file for programming.

37 FPGA Array Encryption is not enforced.
Cannot guarantee valid AES key present in
target device.

Unable to proceed with Encrypted FPGA
Array programming.

- Make sure the device is properly secured with the
AES encryption protection turned on for FPGA
Array.

- Provide the correct data file for programming.

Table 10-1 • Exit Codes (continued)

Exit Code Error Message Action/Solution
35

38 Failed to program pass key. - Check that the device is not already secured with a
different pass key.

- Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

39 Failed the Embedded Flash Block verification. - Check that the device is not read secured already
with a different pass key.

- Measure JTAG pins and noise or reflection.

41 Failed to program Embedded Flash Block. - Check Vpump level.

- Try with new device.

- Measure JTAG pins and noise or reflection.

42 User lock bits do not match the lock bits in the
data file.

Provide a data file with the correct lock bits data.

43 User urow information does not match the
urow information in the data file.

Provide a data file with the correct urow information
data.

47 NVM encryption is enforced. Plain text
programming is prohibited.

Provide a data file with an encrypted NVM.

49 NVM encryption is not enforced. Cannot
guarantee valid AES key present in target
device.

Unable to proceed with encrypted NVM
programming.

- Make sure the device is properly secured with the
AES encryption protection turned on for NVM.

- Provide the correct data file for programming.

100 CRC data error. Data file is corrupted or
programming on system board is not
successful.

- Regenerate data file.

- Reprogram data file into system memory.

150 Requested action is not found. Check spelling.

151 Action is not supported because required data
block is missing from the data file.

Regenerate STAPL/DAT file with the needed block/
feature support.

152 Compiled code does not support the
requested action.

Compile DirectC code with the appropriate compile
options enabled.

153 Data file contain data for the protected portion
of NVM0 block

Regenerate the data file from the latest Designer
software

154 Device security settings do not match with the
data file

Regenerate the data file with the correct device
security settings

Table 10-1 • Exit Codes (continued)

Exit Code Error Message Action/Solution
36

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 650.318.8044

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/
fpga-soc-support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products
Group home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.
37

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
www.microsemi.com/soc
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

M
O
CA

W
O
Sa
Fa

E-

©2
re
lo
Co
se
re
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800
employees globally. Learn more at www.microsemi.com.icrosemi Corporate Headquarters

ne Enterprise, Aliso Viejo,
 92656 USA

ithin the USA: +1 (800) 713-4113
utside the USA: +1 (949) 380-6100
les: +1 (949) 380-6136
x: +1 (949) 215-4996

mail: sales.support@microsemi.com

017 Microsemi Corporation. All rights
served. Microsemi and the Microsemi
go are trademarks of Microsemi
rporation. All other trademarks and

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
5-13-00109-3/10.17

information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

rvice marks are the property of their
spective owners.

http://www.microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:tech@microsemi.com

	Introduction
	Important Note

	1 – System Overview
	Systems with Direct Access to Memory

	2 – Generating Data Files and Integrating DirectC
	Data File Compatibility
	DirectC v4.0 Code Integration

	3 – Required Source Code Modifications
	Compiler Switches
	Hardware Interface Components
	Define JTAG Hardware Bit Assignments (dpuser.h)
	Hardware Interface Function (dpuser.c)
	Delay Function (dpuser.c)
	Display Functions (dpuser.c)
	Memory Interface Functions (dpuser.c)
	Main Entry Function
	Data Type Definitions
	Supported Actions

	4 – Chain Programming
	Pre/Post Data Variable Declaration
	Example

	5 – Data File Format
	DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and A2F Devices
	DAT File Description for M2GL, M2S, RTG4, and MPF Devices

	6 – Source File Description
	DPUSER.C and DPUSER.H
	DPCOM.C and DPCOM.H
	DPALG.C and DPALG.H
	DPG3ALG.C and DPG3ALG.H
	DPCORE.C and DPCORE.H
	DPFROM.C and DPFROM.H
	DPNVM.C and DPNVM.H
	DPSECURITY.C and DPSECURITY.H
	DPG4ALG.C and DPG4ALG.H
	DPJTAG.C and DPJTAG.H
	DPCHAIN.C and DPCHAIN.H
	DPUTIL.C and DPUTIL.H
	DPRTG4ALG.C and DPRTG4ALG.H
	DPG5ALG.C and DPG5ALG.H

	7 – Disabled Features with ENABLE_CODE_SPACE_OPTIMIZATION
	DMK Verification for ARM Enabled Devices
	030/015 Device Check

	8 – Data File Bit Orientation
	9 – Sample Project
	Project Requirements
	Procedure

	10 – Error Messages & Troubleshooting Tips
	A – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

