

Microsemi Corporation

August 14, 2017

Product/Process Change Notification No: PCN17026

Change Classification: Major

Subject: RTG4 FPGA Family Important Changes

Contents

PCN17026.1 L	LVDS DC Voltage Specification	1
PCN17026.2 F	Power-up and Power-down Sequence Requirement Changes	3
PCN17026.3 (Cold-sparing Supply Termination	4
PCN17026.4 U	Updated Register Timing When Using SET Filter	5
	Timing Data Adjustments for a Subset of Fabric to Custom Block Interconnect	
	SpaceWire Recovered Data Rate	
		-

PCN17026.1 LVDS DC Voltage Specification

Description of Change

The input common mode voltage and input differential voltage specifications have been changed for the LVDS25 and LVDS33 I/O standards.

LVDS25 Changes

Current LVDS25 Specification

Symbols	Parameters	Min	Typical	Max	Units
VICM	Input common mode voltage	0.05	1.25	2.35	V
VID	Input differential voltage	100	350	600	mV

New LVDS25 Specification

Symbols	Parameters	Conditions	Min	Typical	Max	Units
land to a second		With on-die termination	0.05	1.25	1.5	V
VICM	Input common mode voltage	With external differential termination	0.05	1.25	2.2	V
	Input differential	With on-die termination	200	350	2400	mV
VID	Input differential voltage	With external differential termination	200	350	2400	mV
		On-die termination	90	100	150	Ω
Rt	Termination Resistance	External 100 Ω differential termination	95	100	105	Ω
		External 200 Ω differential termination	190	200	210	Ω

LVDS33 Changes

Current LVDS33 Specification

Symbols	Parameters		Typical	Max	Units
VICM	Input common mode voltage	0.05	1.25	2.35	V
VID	Input differential voltage	100	350	600	mV

New LVDS33 Specification

Symbols	Parameters	Conditions	Min	Typical	Max	Units
VICM	Input common mode voltage	With external differential termination	0.6	1.25	1.8	V
VID	Input differential voltage	With external differential termination	500	_	2400	mV
Rt	Termination Resistance	External differential termination	190	200	210	Ω

Action Required

LVDS25

When VICM > 1.5 V, an external differential termination of 100 Ω (typical) or 200 Ω (typical) is required to meet the minimum input differential voltage specification of 200 mV. A 200 Ω differential termination effectively doubles the differential voltage for a given drive current compared to a 100 Ω on-die termination (ODT). For example, a 2.5 mA current produces 500 mV of differential voltage across the 200 Ω termination, whereas it produces only 250 mV across a 100 Ω termination. When using external termination, please ensure ODT is disabled in Libero SoC software.

This change affects devices using LVDS25, RSDS, Mini-LVDS, and HCSL I/O standards.

LVDS33

An external differential termination of 200 Ω (typical) is required to meet the minimum input differential voltage specification of 500 mV since the LVDS33 receiver no longer supports ODT.

Libero SoC v11.8 SP1 software disables ODT for LVDS33 I/O standards.

- When a design with ODT-enabled LVDS33 I/Os is first opened in Libero SoC v11.8 SP1 software, the Generate Programming step is invalidated. To continue designing in this software release, disable ODT for all impacted I/O standards.
- If a design contains ODT-enabled LVDS33 I/Os for high-speed serial interfaces (For example, SERDES REFCLK is ODT-enabled LVDS33 I/O), these configurations with ODT enabled are no longer supported in this software release. To continue designing in Libero SoC v11.8 SP1 software, regenerate these configurations with ODT disabled.

Products Affected by this Change

See the list of affected devices in the Appendix.

PCN17026.2 Power-up and Power-down Sequence Requirement Changes Description of Change

The power-up and power-down sequence requirements have been updated for RTG4 devices.

Power-up Sequence

1. VDDPLL Requirements

No power-up sequence is required if the device is held in reset by asserting DEVRST_N until the VDDPLL supplies reach their minimum level recommended in the datasheet.

If the device cannot be held in reset, the following power-up requirements apply:

- All PLLs are held in reset until the VDDPLL supply reaches its minimum recommended level OR
- VDDPLL must NOT be the last supply to ramp up and must reach its minimum recommended level before the last supply (VDD or VDDIx) starts ramping up.
- 2. SERDES x Lyz VDDAIO Requirements

There is no power-up sequence if SERDES_x_Lyz_VDDAIO supplies are tied to VDD. If SERDES_x_Lyz_VDDAIO and VDD cannot be tied together, power up SERDES_x_Lyz_VDDAIO and VDD at the same time.

Power-down Sequence

No power-down sequence is required if an external $1-k\Omega$ pull-up or pull-down resistor is used for each critical output that cannot tolerate an output glitch during power-down or DEVRST_N assertion. If an external resistor cannot be used, the following requirements apply:

- VDDIx supplies are powered down first and remain powered-down through 0V
 OR
- VPP is powered down last. If VPP or VDD levels fall below the minimum recommended level, both VPP and VDD must be powered down through 0V before powering back up. Do not power down VPP without powering down VDD. VPP and VDD can be powered down in any sequence.

Products Affected by this Change

See the list of affected devices in the Appendix.

PCN17026.3 Cold-sparing Supply Termination Description of Change

The following terminations are required on RTG4 power supplies in cold-sparing mode.

Refer to the RTG4 I/O User Guide for more information.

RTG4 Power Supply Termination Requirements for Cold-Sparing Mode

Supply Pins	Description	Cold Sparing Board Tie-Off
VDD	Core supply	10 KΩ to VSS
VDDIx	I/O supplies	Supplied
VDDPLL	PLL supply	Supplied or 10 KΩ to VSS
VPP	Supply for the programming blocks	10 KΩ to VSS
VDDI3	JTAG I/O supply	Supplied
SERDES_x_Lyz_VDDAIO	SERDES analog supplies	10 KΩ to VSS
SERDES_x_Lyz_VDDAPLL	SERDES PLL supplies	Supplied or 10 KΩ to VSS
SERDES_VDDI	SERDES reference clock receiver supply	Supplied
SERDES_VREF	Reference voltage for SERDES reference clock	10 KΩ to VSS
VREF0 VREF9	FDDR voltage reference	10 KΩ to VSS

Products Affected by this Change

See the list of affected devices in the Appendix.

PCN17026.4 Updated Register Timing When Using SET Filter Description of Change

When the Single Event Transient (SET) filter is enabled, either globally or per instance, the static timing analyzer, SmartTime, does not account for the SET filter impact while analyzing the timing on pins En and SLn of the fabric register or the mathblock register. As a result, SmartTime has been showing more optimistic timing data on these pins when using SET filter. The impact of having SET filter to the fabric register pins' set-up time and hold time is as follows:

Additional delay with SET Filter ON, Tj=125 °C					
Register Pins Speed Grade -1 Speed Grade -STD Units					
FF:En/SLn setup	917	968	ps		
FF:En/SLn hold	313	395	ps		
MATH:En/SLn setup	1017	967	ps		
MATH:En/SLn hold	162	194	ps		

Register timing with SET filter is now updated in Libero SoC v11.8 SP1 software.

Action Required

No action is needed for designs not using SET filters. By default, SET filters are disabled in Libero SoC software.

Customers using SET filters in their designs must open their designs with Libero v11.8 SP1 and re-run the timing analysis. If there are no timing violations, no action is required. If new timing violations exist, the following options can be used to resolve them:

- Re-run place-and-route
- Re-run place-and-route with high effort
- Re-run place-and-route with repair min-delay option
- Run place-and-route with multi-pass
- Adjust timing constraints or use Chip Planner to floorplan the affected interfaces

If timing violations still occur, contact our technical support for further assistance.

Products Affected by this Change

See the list of affected devices in the Appendix.

PCN17026.5 Timing Data Adjustments for a Subset of Fabric to Custom Block Interconnect

Description of Change

Interconnect timing data has been updated to more accurately reflect silicon measurements between the fabric and the surrounding blocks. These fabric to custom block interconnects have variable metal length depending on I/O location that was not accounted for in the previous software timing model. The following table contains the worst-case additional timing delay introduced in Libero SoC v11.8 SP1 software for the following affected interfaces:

- I/O to CCC and GB
- APB to CCC
- CCC to GB
- Fabric to CCC, APB, NPSS, PCIE and FDDR
- Fabric to I/O and I/O to Fabric
- IOINFF
- I/O tap delays

Application Impact

- Clock insertion delays and propagation delays between I/Os and flip-flops depending on the I/O location
- Clock-to-out, external setup and external hold timing are impacted
- The additional timing delay is important for source synchronous applications where I/O delay taps are used to align data and clock
- The impact on register-to-register clock frequencies is less than 1%

Additional delay, Tj = 125 °C					
Affected Interface	Speed Grade -1	Speed Grade -STD	Units		
CCC to GB	1040	1224	ps		
GB to RGB	207	240	ps		
I/O to CCC	680	799	ps		
I/O to GB	582	685	ps		
APB to CCC	253	297	ps		
CCC to Fabric	617	726	ps		
Fabric to CCC	966	1136	ps		
Fabric to APB	392	461	ps		
Fabric to NPSS	379	446	ps		
Fabric to PCIE	359	422	ps		
Fabric to FDDR	446	525	ps		
Fabric to I/O	302	355	ps		
I/O to Fabric	147	173	ps		

Action Required

Customers must open their designs with Libero v11.8 SP1 and re-run the timing analysis. If there are no timing violations, no action is required. If new timing violations exist, the following options can be used to resolve them:

- Re-run place-and-route
- Re-run place-and-route with high effort
- Re-run place-and-route with repair min-delay option on
- Run place-and-route with multi-pass
- Adjust timing constraints or use chip planner to floorplan the affected interfaces

If timing violations still occur, contact our technical support for further assistance.

Products Affected by this Change

See the list of affected devices in the Appendix.

PCN17026.6 SpaceWire Recovered Data Rate Description of Change

For the embedded SpaceWire clock and data recovery circuits in RTG4, the recovered data rate has been updated to reflect the latest timing updates in Libero SoC v11.8 SP1 software. The following table contains the updated maximum data rate and frequency:

SET Filter	I/O Bank	Number of Channels	Max Data Rate (Mbps)		Max Frequency (MHz)	
		Channels	-1 Speed Grade	-STD Speed Grade	-1 Speed Grade	-STD Speed Grade
OFF	MSIO/MSIOD	14	200	180	100	90
	DDRIO	2	132	116	66	58
ON	MSIO/MSIOD	14	150	132	75	66
	DDRIO	2	132	116	66	58

Products Affected by this Change

See the list of affected devices in the Appendix.

Contact Information

PRO Product Group Technical Support

Web: https://soc.microsemi.com/mycases

Within North America: +1 (800) 262-1060

Outside the USA: +1 (650) 318-4460

Email: soc_tech@microsemi.com

Regards,

Microsemi Corporation

Any projected dates in this PCN are based on the most current product information at the time this PCN is being issued, but they may change due to unforeseen circumstances. For the latest schedule and any other information, please contact your local Microsemi Sales Office, the factory contact shown above, or your local distributor.

This Product/Process Change Notification is confidential and proprietary information of Microsemi and is intended only for distribution by Microsemi to its customers, for customers' use only. It must not be copied or provided to any third party without Microsemi's prior written consent.

Appendix

List of Affected RTG4 Devices

RT4G150-CG1657EV	RT4G150-LG1657PROTO
RT4G150-LG1657EV	RT4G150-1CG1657PROTO
RT4G150-CG1657E	RT4G150-1CB1657PROTO
RT4G150-LG1657E	RT4G150-1LG1657PROTO
RT4G150-CG1657B	RT4G150-CQ352EV
RT4G150-LG1657B	RT4G150-CQ352E
RT4G150-1CG1657EV	RT4G150-CQ352B
RT4G150-1LG1657EV	RT4G150-1CQ352EV
RT4G150-1CG1657E	RT4G150-1CQ352E
RT4G150-1LG1657E	RT4G150-1CQ352B
RT4G150-1CG1657B	RT4G150-CQ352PROTO
RT4G150-1LG1657B	RT4G150-1CQ352PROTO
RT4G150-CG1657PROTO	RT4G150-CQ352ES
RT4G150-CB1657PROTO	RT4G150-CQ352MS

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Fax: +1 (949) 215-4996

Email: <u>sales.support@microsemi.com</u> <u>www.microsemi.com</u>

© 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.