

MAIPDMC40X120A Hybrid Power Drive with SiC Power Stage Datasheet

1 Product Overview

The Hybrid Power Drive (HPD) is an intelligent, cost-effective module that is built on Microsemi's legacy of flight heritage and design excellence. The HPD is targeted at electric motor drives and solenoids on aircraft actuator systems up to 5 kVA. It is designed to be driven with external PWM signals.

The HPD module is comprised of a power stage substrate and a driver circuit sub-assembly. The power stage of the HPD is comprised of a three-phase inverter bridge with embedded SiC MOSFETs and SiC Schottky antiparallel diodes. The driver circuit sub-assembly provides a galvanically isolated interface to the power MOSFETs and their local feedback signals. It also features the SiC MOSFETs and SiC Schottky freewheel diode that form the solenoid driver.

The HPD design features screw-on M3 terminals for power connections and a standard connector interface for low-voltage signals. The module is offered in a plastic package with an AlSiC baseplate and dimensions of 105.5 mm × 85.5 mm × 25 mm. The power substrate is potted with silicone gel and the driver printed wiring board (PWB) is Parylene coated, providing best possible environmental protection in a cost-effective, non-hermetic package.

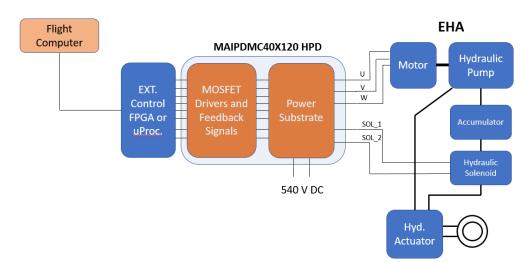
Documentation support includes qualification and reliability data (reliability is based on FIDES guidelines).

Figure 1 • MAIPDMC40X120A

1.1 Features

The MAIPDMC40X120A Hybrid Power Drive module provides a fully engineered solution, offering excellent performance and reliability in electrohydrostatic actuator (EHA), electrical back-up hydraulic actuator (EBHA), and electromechanical actuator (EMA) aviation applications. The following are the key features of the MAIPDMC40X120A Hybrid Power Drive:

- Power Stage
 - SiC MOSFETs for power conversion
 - Low RDS(on)
 - High-speed switching
 - High power efficiency
 - SiC Schottky diodes for freewheeling
 - Zero-reverse recovery
 - Temperature-independent switching behavior


• Driver Circuit Sub-Assembly

- Integrated galvanically isolated gate drive circuitry
- Circuitry for three-phase current sense, DC bus voltage sense, solenoid current sense, and temperature sense
- SiC MOSFETs and SiC Schottky freewheel diode for solenoid driver

Package

- AlSiC base plate for extended reliability and reduced weight
- Si₃N₄ substrate for improved thermal performance and extended reliability
- Direct mounting to heat sink (isolated package)
- Designed for multi-sourced SiC devices, easily expandable to higher currents and technology platforms
- Custom variants are available; contact your Microsemi sales representative for more details

The following illustration shows the application of an HPD within the power drive electronics system.

Figure 2 • Intelligent Power Electrical Control System (in Electrohydrostatic Actuator (EHA))

1.2 Part Numbering

The following table shows the naming methodology for the MAIPDMC40X120A Hybrid Power Drive.

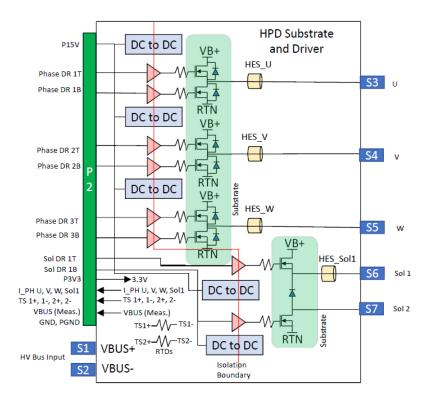
М	Microsemi	
Α	Screening level	A = Aviation
I	Intelligent power solutions	
PD	Туре	PD = Hybrid Power Drive
MC	Technology	MC = SIC MOSFET
40	Maximum current rating in amps that MOSF	ETs can handle
х	Topology	X = three-phase bridge
120	Voltage rating	120 = 1200 V
Α	Standard package	

Table 1 • Module Naming Methodology

2 Functional Description

The HPD architecture has evolved from Microsemi's standard module design, providing gate drive, monitoring, and power stages for motor control applications. The HPD has two parts—the substrate power devices and the isolated gate driver/signal board. A functional block diagram of the HPD with the subassembly architecture is shown in Figure 3 below.

The driver circuit subassembly within the HPD provides the gate-drive signals to the MOSFETs in the three-phase bridge and solenoid driver. There are five sets of gate-drive signals to control the SiC MOSFETs. Four floating bias power supplies generate the bias voltages for the logic side gate drivers and other telemetry circuits are supplied by the input connector. The solenoid driver SiC MOSFETs and SiC Schottky freewheel diode are located on the driver circuit subassembly along with Hall Effect Sensors (HES) to monitor the motor and solenoid output currents. The driver PWB also measures the HVDC bus voltage and provides an isolated DC voltage output signal. The gate drivers, HES, and the voltage amplifier within the driver PWB provide the voltage isolation to allow reliable interface with next-level circuitry. Two platinum resistive temperature transducers (PT1000) on the driver PWB monitor the HPD temperature.


A 26-pin external connector is mounted on the driver circuit subassembly to interface the LV power supply, drive, and monitoring signals to the system.

The substrate contains 1200 V–rated, high-speed SiC MOSFETs and SiC Schottky antiparallel diodes to generate the three-phase switching outputs. Power and low-level signal routing are provided through pin terminals from the driver PWB to the substrate.

The following illustration shows the functional blocks of the MAIPDMC40X120A Hybrid Power Drive.

Figure 3 • Functional Block Diagram

3 Electrical Specifications

This section details the electrical specifications for the MAIPDMC40X120A Hybrid Power Drive device.

3.1 Absolute Maximum Ratings

This section shows the absolute maximum ratings of the MAIPDMC40X120A Hybrid Power Drive device.

Table 2 • Absolute Maximum Ratings

Symbol	Parameter		Ratings	Unit
VDSS	Drain-source breakdown voltage		1200	V
lo	Continuous switch drain current	Tc = 25 °C	63	А
		Tc = 100 °C	46	А
ldm	Pulsed drain current		160	А
lf	Antiparallel diode maximum DC forward current	TJ = 25 °C	43	А
P15V	Input bias1 supply voltage		18	V
P3.3V				
lcc	Input bias1 supply current (at 12 V)		250	mA
VDISC	Discrete signal input voltage		3.6	V
τ	Maximum power semiconductor junction tem	perature	175	°C

3.2 Typical Electrical Performance

The following table shows the input electrical characteristics of the MAIPDMC40X120A Hybrid Power Drive at 25 °C unless otherwise specified.

Table 3 • Input Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Steady-state HVDC input voltage	VBUS		540	750	V	
Bias1 power supply voltage	P15V	12	15	18	V	
Bias1 supply current	ICC		140		mA	Fsw ¹ = 10 kHz
Bias2 power supply voltage	P3V3	0.0	3.3	3.6	V	
Bias2 supply current	P3V3		50		mA	

Note:

1. Fsw corresponds to the switching frequency.

The following table shows the output electrical characteristics of the MAIPDMC40X120A Hybrid Power Drive at 25 °C unless otherwise specified.

Table 4 • Output Electrical Characteristics

Parameter		Symbol	Min	Тур	Max	Unit	Notes
Phase current	Peak amplitude	lph			12.5	A	Fsw = 10 kHz Tc = 110 °C HVDC = 540 VDC
					25	_	Fsw = 10 kHz
					23		Tc = 95 °C
							HVDC = 540 VDC
Solenoid	Steady state	SOL_SW-		1		Α	Fsw = 10 kHz
current		SS					Tc = 110 °C
							HVDC = 540 VDC
	Transient	SOL_SW-		5		_	Fsw = 10 kHz
		Т					Tc = 110 °C
							HVDC = 540 VDC
							For <100 ms
Power rating		Роит		5		kVA	
Switching voltage	e transient rate	dV _{DS} /dt		16		kV	Fsw = 10 kHz
						/µs	HVDC = 540 VDC
							ID = 12.5 A
Power efficiency		η		99.5		%	Fsw = 10 kHz
							Tc = 20 °C
							HVDC = 540 VDC
							ID = 12.5 A
							MI = 0.98
							CosΦ = 0.87
Phase current se	nse range	PR	-40		40	А	
Solenoid current	sense range	Isr	-10		10	А	
Full-scale curren	t sense accuracy	Ітот		Motor current	12.8	%	T _A = -55 °C to 110 °C
				Solenoid	10.6		T _A = -55 °C to 110 °C
Full-scale HVDC s accuracy	sense accuracy				3.0	%	T _A = -55 °C to 110 °C

The following table shows the SiC MOSFET characteristics of the MAIPDMC40X120A Hybrid Power Drive at 25 °C unless otherwise specified. The SiC MOSFET characteristics listed in Table 6 are bare die measurements. This data is for analysis only and has not been validated in the HPD package.

Table 5 • SiC MOSFET Die Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Drain-source on resistance	RDS(on)		40	52	mΩ	V _{GS} = 20 V
						Tc = 25 °C
						I _D = 40 A
Turn-on delay time	Td(on)		15		ns	V _{GS} = 20/-5 V
Turn-off delay time	Td(off)		26		_	V _{Bus} = 800 V
Rise time	Tr		52		_	I _D = 40 A Rg = 2.5 Ω
Fall time	Tf		34		_	Inductive switching
Turn-on energy	Eon		1		mJ	_
Turn-off energy	Eoff		0.4		-	

The following table shows the body diode and SiC freewheeling diode characteristics of the MAIPDMC40X120A Hybrid Power Drive at 25 °C unless otherwise specified. The SiC diode characteristics listed in Table 6 are bare die measurements. This data is for analysis only and has not been validated in the HPD package.

Table 6 • Body Diode and SiC Freewheeling Diode Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Body diode forward voltage	VSD		4.1		V	$V_{GS} = -5 V$ I _{SD} = 20 A
						TJ = 25 °C
Body diode reverse recovery time	trr		54		ns	ISD = 40 A VGS = -5 V VR = 800 V diF/dt = 1000 A/μs
Body diode reverse recovery charge	Qrr		283		nC	- T₁ = 25 °C
Body diode reverse recovery current	lrr		15		А	-
Peak repetitive reverse voltage	Vrrm			1200	V	
Freewheeling diode forward voltage	VF		1.5	1.8	V	IF = 10 A TJ = 25 C
			2.3		V	IF = 10 A TJ = 175 C

The following table shows the isolation characteristics of the MAIPDMC40X120A Hybrid Power Drive at 25 °C unless otherwise specified.

Table 7 • Isolation Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Gate driver common-mode transient immunity (CMTI)	dVıso/dt			100	kV/μs	Vcm = 1 kV
RMS isolation voltage, any terminal to case t = 1 min, 50 Hz/60 Hz	VISOL1	1500			Vrms	
Isolation dielectric between power and control stage under DC voltage	VISOL2	2120			VDC	
Isolation resistance between power and control stage under 500 VDC	VISOL3	100			MΩ	

The following table shows the temperature sensor PTC characteristics of the MAIPDMC40X120A Hybrid Power Drive at 25 °C unless otherwise specified. Use the values in the following table to calculate the thermistor value (R_T):

 $R_T = R_0(1 + A \cdot T + B \cdot T^2)$ for the temperature range from 0 °C to 250 °C

 $R_T = R_0(1 + A \cdot T + B \cdot T^2 + C(T - 100)T^3)$ for the temperature range from -55 °C to 0 °C

Table 8 • Temperature Sensor PTC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Temperature sense range	Tr	-55		250	°C	
RTD nominal value	Ro		1000		Ω	At 0 °C
Temperature sense accuracy	Ттот	-2		2	°C	
	А		3.9083 × 10 ⁻³		°C ⁻¹	
	В		-5.775 × 10 ⁻⁷		°C ⁻²	
	С		-4.183×10^{-12}		°C ⁻⁴	
	ΔT					As per IEC60751 Class A

4 Thermal Characteristics

The following table shows the thermal characteristics of the MAIPDMC40X120A Hybrid Power Drive.

Table 9 • Thermal Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Case temperature	Tc	-55		110	°C	Refer to derating curves in Characteristic Curves (see page 9)
Storage	Ts	-55		125	°C	
Pressure range		11.6		190	kPa	
Thermal resistance (junction-case)	O JC MOSFET			0.77	°C/W	
	O JC DIODE			0.67	-	

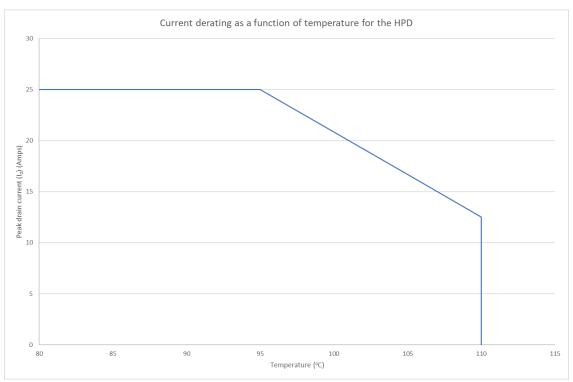
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power dissipation			25		W	Fsw = 10 kHz
						Tc = 20 °C
						CosΦ = 0.97
						V _{BUS} = 540 V
						I _D = 12.5 A

5 Mechanical Characteristics

The following table shows the mechanical characteristics of the MAIPDMC40X120A Hybrid Power Drive. Use caution as these devices are sensitive to electrostatic discharge. Be sure to follow proper handling procedures.

Parameter	Max	Unit
Size: MAIPDMC40X120A	105.5 × 85.5 × 25	mm
Mass	270	g
Mounting: fastener	4.4 Ø (×6) (through-hole)	mm
Mounting: washer	9.0 Ø (×6) (surface)	mm
Mounting torque: M4 (to heat sink)	1.2–3.5	Nm
Power connector	M3 screw terminals (×7)	
Mounting torque: power connector ¹	0.9–1	Nm
Signal connector pin pitch	2.00	mm
Signal connector pin dimension	0.5 × 0.5	mm
Baseplate information	AlSiC material with thickness	: 4 mm

Table 10 • Mechanical Characteristics


Note:

1. Hole call-outs in Figure 6 indicate threaded depth only. Copper terminals are an additional 0.7 mm to the indicated value.

6 Characteristic Curves

The following illustration shows the thermal derating curve of the MAIPDMC40X120A Hybrid Power Drive.

Figure 4 • Thermal Derating Curve

7

Pin Descriptions

The following table shows the power pin descriptions for the MAIPDMC40X120A Hybrid Power Drive.

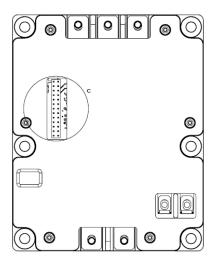
Power pin	Description	Reference	I/O Type	Connector Type
S1	HVDC bus input	V_BUS +	Input	M3 screw terminal
S2	HVDC bus input return	V_BUS –	Input	M3 screw terminal
\$3	Output current for phase	Phase_U	Output	M3 screw terminal
S4	Output current for phase	Phase_V	Output	M3 screw terminal
S5	Output current for phase	Phase_W	Output	M3 screw terminal
S6	Solenoid output current	Sol_1	Output	M3 screw terminal
S7	Solenoid output current return	Sol_2	Output	M3 screw terminal

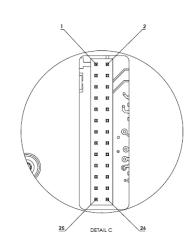
Table 11 • Power Pin Descriptions

The following table shows the signal pin descriptions for the MAIPDMC40X120A Hybrid Power Drive.

Table 12 • MAIPDMC40X120 Signal Pin Descriptions

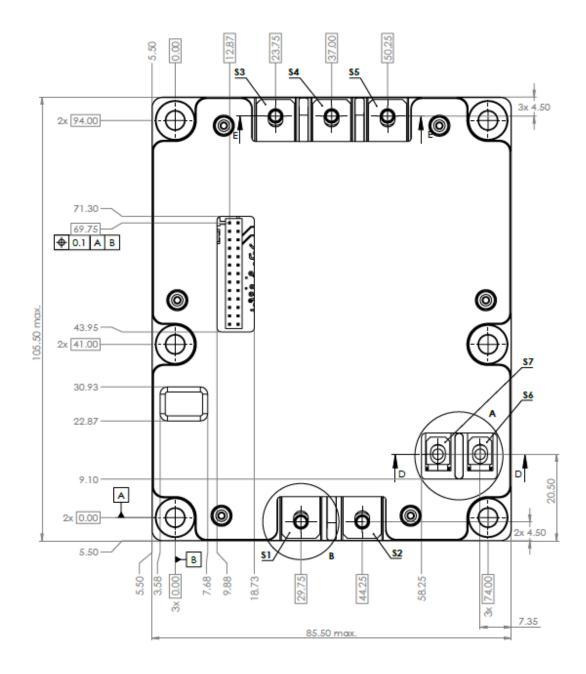
P2 Signal Pin	Description	Designator	I/O Type	Signal Definition
1	Ground reference	GND_REF	Output	
2	Logic ground	GND	Input	
3	Phase 3 sense current	IPHASE_3	Output	Single-ended voltage proportional to the motor phase current 3 Current range: –25 A to 25 A Zero current output range: Vcc/2 Sensitivity: 33 mV/A
4	3.3 V	Vcc ^{1,2}	Input	Low-voltage DC power source
5	Phase 2 sense current	IPHASE_2	Output	Single-ended voltage proportional to the motor phase current 2 Zero current output range: Vcc/2 Sensitivity: 33 mV/A
6	Temperature sensor (1) +	RT1+	Output	Refer to Temperature Sensor (see page 7)
7	Phase 1 sense current	IPHASE_1	Output	Single-ended voltage proportional to the motor phase current 1 Zero current output range: Vcc/2 Sensitivity: 33 mV/A
8	Temperature sensor (1) –	RT1-	Output	Return for RT1+
9	Phase 3 gate drive signal – bottom MOSFET	PHASE_DR_3B	Input	High level = $0.7 * V_{CC}$ to $+ V_{CC}$ Low level = GND to $0.3 * V_{CC}$
10	Temperature sensor (2) +	RT2+	Output	Refer to Temperature Sensor (see page 7)
11	Phase 2 gate drive signal – bottom MOSFET	PHASE_DR_2B	Input	High level = 0.7 * Vcc to + Vcc Low level = GND to 0.3 * Vcc
12	Temperature sensor (2) –	RT2-	Output	Return for RT2+
13	Phase 1 gate drive signal – bottom MOSFET	PHASE_DR_1B	Input	High level = 0.7 * Vcc to + Vcc Low level = GND to 0.3 * Vcc
14	Scaled HVDC voltage (+)	TM_VBUS+	Output	Differential voltage proportional to the bus voltage Voltage range: 0 V to 1000 V Zero voltage output voltage: 0 V Sensitivity: 2 mV/V
15	Phase 3 gate drive signal – top MOSFET	PHASE_DR_3T	Input	High level = 0.7 * Vcc to + Vcc Low level = GND to 0.3 * Vcc
16	Scaled HVDC voltage (–)	TM_VBUS-	Output	Return for TM_VBUS+
17	Phase 2 gate drive signal – top MOSFET	PHASE_DR_2T	Input	High level = $0.7 * V_{CC}$ to + V_{CC} Low level = GND to $0.3 * V_{CC}$
18	Bus current sense signal	IBUS	Output	Single-ended voltage proportional to the bus current Current range: –25 A to 25 A Zero current output range: Vcc/2 Sensitivity: 33 mV/A
19	Phase 1 gate drive signal – top MOSFET	PHASE_DR_1T	Input	High level = 0.7 * Vcc to + Vcc Low level = GND to 0.3 * Vcc
20	Solenoid sense current	ISOL	Output	Single-ended voltage proportional to the solenoid current Current range: –10 A to 10 A Zero current output range: Vcc/2 Sensitivity: 132 mV/A
21		SOL_DR_1B	Input	

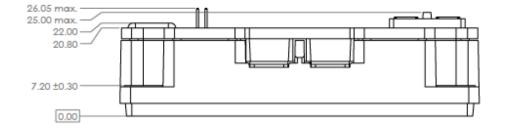



P2 Signal Pin	Description	Designator	I/O Type	Signal Definition
	Solenoid gate drive signal – bottom MOSFET			High level = $0.7 * V_{cc}$ to $+ V_{cc}$ Low level = GND to $0.3 * V_{cc}$
22	Solenoid gate drive signal – top MOSFET	SOL_DR_1T	Input	High level = $0.7 * V_{cc}$ to + V_{cc} Low level = GND to $0.3 * V_{cc}$
23	15 V	P15V	Input	15 V power source
24	Power ground	PGND	Input	
25	15 V	P15V	Input	15 V power source
26	Power ground	PGND	Input	

Notes:

- 1. Voltage range levels are calculated based on V_{CC} = 3.3 V.
- 2. The HPD module is designed to accept 3.3 V or 5 V bias input. Standard design uses 3.3 V.
- The following image shows the P1 signal pin locations for the MAIPDMC40X120A Hybrid Power Drive.


Package Outlines


8

The following illustrations show the package outlines for the MAIPDMC40X120A Hybrid Power Drive.

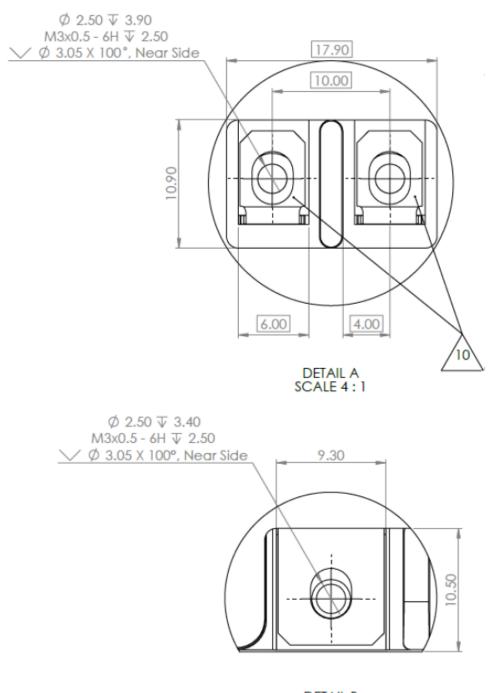

Figure 6 • Package Outline

Figure 7 • Terminals Detailed View

DETAIL B SCALE 4 : 1

а 🔨 Міскоснір company

Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92556 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com

© 2019 Microsemi. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mision-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any part any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAS, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions; security technologies and scalable anti-tamper products; thernet solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; thernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www microsemi.com.

A150-0001 | June 2019 | Preliminary