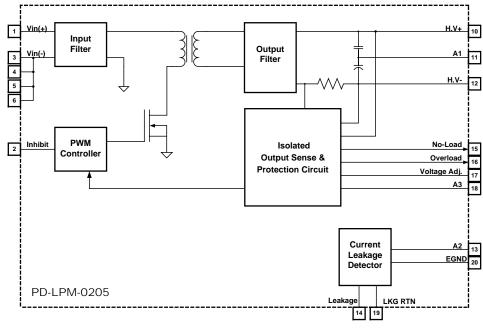


PD-LPM-0205 DSL REMOTE POWER FEEDER: 48V_{DC} INPUT, SINGLE ±60 TO ±100V_{DC}/100mA OUTPUT

FEATURES

- Designed for Span Powering of ETSI & ANSI DSL Systems
- High Efficiency
- Input to Output Isolation
- Adjustable Output Voltage (120 to 200Vdc)
- Output Leakage
- Overload and No-Load Indications
- Outputs of Identical Units can be Paralleled for Increased Output Power
- 90 Days Warranty
- UL1950, CSA22.2-950 and EN60950 Approved
- Open Frame Package
- High Reliability SMD Assembly

APPLICATIONS


- Open Frame Package
- T1/E1 HDSL Voice Pair Gain Systems
- DSL Remotely Energized Systems
- Supports Single Loop Configurations
- General Remote Power Feeding Applications
- 48VdcTelecommunications Systems
- ETSI & ANSI Compatible Systems

DESCRIPTION

The PD-LPM-0205 is a 12 Watt DC/DC converter module designed especially for remote power feeding applications. The module may be located at the feeding side (LTU) and operates from 40 to 60Vdc input voltage. It provides an isolated balanced output of ±60 to ±100Vdc/60 to 100mA. The module is designed to support peak output power of up to 14W at 30% duty cycle and maximum 3 seconds in duration. The output may be configured as a balanced, negative or positive supply rail in reference to earth ground. Output voltage and current limits may be adjusted in the specified range by adding an external resistor. A high precision current limiting circuit is implemented on the output. This feature enables delivery of maximum allowed current through the line, while maintaining the TNV safety requirements. The module also provides unique reporting signals, which are required for DSL terminals, indicating output line current leakage to earth ground, and Overload and No-Load conditions. For simple identification of the faulty wire, different indications are given for positive or negative leakage. The unit is optimally while working in conjunction with the PowerDsine PD-NPM-03xx module series in the remote subsystem. Optimized design for HDSL voice pair gain system requirements simplify integration and reduce overall system cost and time to market.

INTERNAL BLOCK DIAGRAM

TYPICAL APPLICATION 1

BALANCED/UNBALANCED OUTPUT CONFIGURATION

1. Output configured as a balanced to ground power supply Vout = $\pm V (\pm 60 - \pm 100V)$

2. Output configured as a negative to ground power supply Vout = -2*V (-120 - -200V)

3. Output configured as a positive to ground power supply Vout = +2*V(+120 - -200V)

REPORT LINES

O.C1 - Activated when output is overloaded or shorted.

O.C2 - Activated when output is loaded with less than No Load current threshold.

O.C3 - Activated when leakage current from positive line to ground exceeds the leakage current threshold.

O.C4 - Activated when leakage current from negative line to ground exceeds the leakage current threshold.

COMPONENTS RECOMMENDATIONS

The system requirements and noise susceptibility should be considered when selecting output filter components.

Typical values are given below.

Cin = 1 to 47uF, ESR< 0.5Ω , Co1 = 1 to 47uF, ESR< 0.3Ω , Co2, Co3 = 1 to 22nF, Ceramic Capacitor.

L1, L2 - 100 to 1000uHy, rated current > 0.25A.

Rg = Limits the current flowing through ground path (leakage current). Its value depends on output configuration and system requirements. Example: For Output Voltage = $\pm 60V$ balanced configuration during fault conditions, when one of the outputs is shorted to the ground, the maximum voltage across Rg may be 60V. Use Rg=3K Ω to limit the maximum leakage current to 20mA.

Rc1: This resistor determines the over current trip point.

 $Rc1=\infty$ (Not connected): Over current trip points = Set Output Current Limit.

Rc2: This resistor determines the leakage detection trip point.

Rc2=∞: Leakage current trip point = 2mA Typical

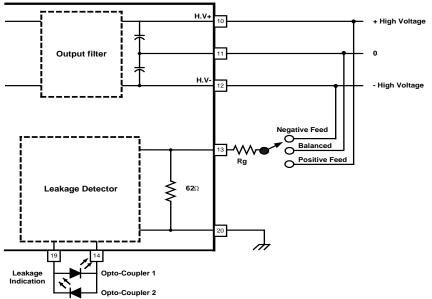
Over Current and Leakage Current detection levels are set according to the following calculation:

Inverse interview
$$f(R) = \frac{60 \times (Rc1 + 5)}{Rc1}$$
 [mA]
Ileakage $f(R) = 2 + \frac{124}{Rc2}$ [mA]
R1 = 30-47K Ω / 250mW
Radj(between pin 10 to 12) $\approx \frac{2915 - 14.3Vout}{Vout - 121}$ [K Ω]

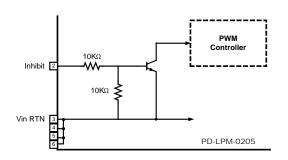
Vout measured between HV + and HV -

 PowerDsine Ltd.
 Tel: +972-9-775-5100 • Fax: +972-9-775-5111 • Email: sales@powerdsine.com

 PowerDsine, Inc.
 Tel: +1-631-756-4680 • Fax: +1-631-756-4691 • Email: sales@powerdsineusa.com


 PowerDsine Europe
 Tel: +49-6187-900-849 • Fax: +49-6187-292848 • Email: europe@powerdsine.com

PD-LPM-0205 DSL REMOTE POWER FEEDER: $48V_{\text{DC}}$ INPUT, SINGLE ±60 TO ±100V_{DC}/100mA OUTPUT


TYPICAL APPLICATION 2

Connection of the Leakage Detector circuit for balanced and unbalanced line feeding

The Leakage Detector circuit is composed of bi-directional current sensors that feed two comperators. When a predetermined reference level is reached, the two comperators activate external opto-couplers. The leakage current direction (in or out of pin 13) dictates which opto-coupler will be activated. Current flow into pin 13 activates Opto-Coupler 1. Current flow out off pin 13 activates Opto-Coupler 2.

INHIBIT CIRCUIT Internal connections

SAFTEY INSTRUCTIONS

- 1. Input voltage (nominal 48Vdc, tolerance 40-60Vdc) must be applied by isolated DC source complying with the earthed SELV or TNV requirements of the UL1950, Third edition.
- 2. DC input must be protected by UL Listed fuse rated maximum T750mA, 250V (slow blow).
- 3. When applicable, protection from excessive voltage on the output should be tested in end-use equipment.

PD-LPM-0205 DSL REMOTE POWER FEEDER: 48V_{DC} INPUT, ±60 TO ±100V_{DC}/100mA OUTPUT

ABSOLUTE MAXIMUM RATI	INGS*		***				
Input Voltage		- 0.5 to 100V	*These are stress ratings. Exposure of the device to any of these conditions may adversely effect long-term				ice to any
Inhibit Input Voltage		- 0.5 to 30V				than as speci	
Storage Temperature		- 50°C to 100°C				L SPECIFICA	
PERFORMANCE / FUNCTION	NAL SPECIFI	CATIONS	1 210			2 01 201 10/1	
Unless otherwise indicated, the data l	below applies to t	he specified operating	nput voltage	e, load (resisti	ve), and temp	erature range	. C _{in} =10µF.
Parameter		Conditions		Min	Тур	Max	Unit
Input Data							
Input Voltage				40		60	V
Innut Current	1/2	- 10\/ Dout 11\/				450	

Input Data					
Input Voltage		40		60	V
Input Current	Vin = 40V, Pout=14W			450	mA
Input Reflected Ripple	Measured on Cin=10µF, ESR≤1Ω External Cap			300	mVp-p
Output Data					
Total Output Power	Continuous			12	W
	Peak @ Duty Cycle \leq 0.3, T _{on} \leq 3Sec			14	W
Output Voltage ²	Full Load (100mA), Radj = Not Connected	±58.5	±60.0	±61.5	V
Output Ripple and Noise	BW=20MHz measured on external output		100	150	mVp-p
	capacitor: 1µF <co1<47µf, 25°c<="" @="" esr≤0.3ω="" td=""><td></td><td></td><td></td><td></td></co1<47µf,>				
	Output Current > 5mA				
Output Voltage Setting Range ²	Via an external resistor, Radj	±60		±100	V
Total Output Voltage Regulation	Load: 20% to 100%			2	%
(line/load/temperature)	Load: 0 to 100%			4	%
Current Limit Set	Rc ₁ = Not Connected	54	56	58	mA
Output Current Limit Setting	Output current limit can be adjusted via external	56		100	mA
Range, see Typ. Application 1	resistors, Rc, up to the rated maximum.				
Efficiency	$40V \le Vin \le 60V$, Load=12W, Vout=120V		87		%
	$40V \le Vin \le 60V$, Load=12W, Vout=200V		81		%
Control and Telemetry					
Inhibit Input High	Referenced to Vin RTN input (Pin 3-6)	2.4			V
(Output Disabled)					
Inhibit Input Low	Referenced to Vin RTN input (Pin 3-6)			0.5	V
(Output Enabled)					
Inhibit Input Current	V _{inhibit} = 0V		0		μA
	V _{inhibit} = 5V	350	430	500	μA
Overload Detection	Overload threshold is equal to the set output current limit				
No-Load Detection	% of maximum set output current limit	15	20	25	%
Leakage Detection	Rc ₂ = Not Connected	1	2	3	mA
Protection Circuitry					
Input Over-Voltage	Trip Point	75			V
Under Voltage Threshold		33		40	V
Overload/Short Circuit Protection	Overload / short circuit conditions			Unlimited	Sec
General Data					
Internal Switching Frequency		200	220	240	kHz
Isolation	1500Vdc, 10Sec	10			MΩ
Input to Output					
Reliability	Calculated MTBF. Continuous operation at	1,000,000			Hours
	$T_A = 40^{\circ}$ C. Calculation method: Relex Bellcore				
	Software Version 5.30.				
Ambient Temperature (T _A)	Continuous Operation with No Derating	-40		60	°C
	Continuous Operation Derated by 250mW/°C.	60		85	°C
Humidity	Non-Condensing, Per IEC 68-2-56			93	%

1. Outputs: Overload, No-Load and Leakage reporting signals are designed to directly drive Opto-Coupler LED with 2mA (no additional resistors are needed). High impedance load on these terminals may develop voltage up to 15Vdc with reference to the A3 terminal.

Output voltage can be adjusted in the range of ±60 to ±100V (120V to 200V) by connecting an external resistor, Radi, between the Adj. 2. Terminal (pin 17) and the A3 terminal (pin 18).

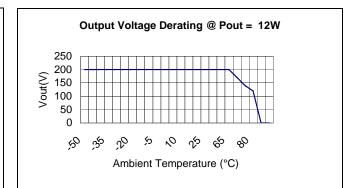
Default setting, Radj not connected (Radj = ∞) \rightarrow Vout = ±60V (voltage measured between HV+ and HV- = 120V). ٠

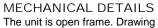
Radj = 0 (Short Circuit) \rightarrow Vout = ±100V (voltage measured between HV+ and HV- = 200V). ٠

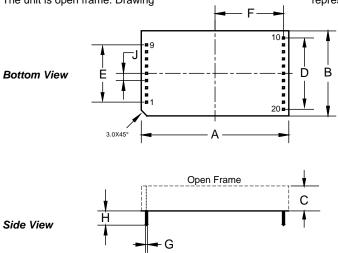
For setting Vout between $\pm 60V$ to $\pm 100V$, refer to Radj calculation formula in the Typical Application section.

Care should be taken when adjusting output current and output voltage so that the total output power does not exceed the 3. unit's maximum rated output power.


The PD-LPM-0205 is designed to meet EN55022 Class B Standard with an external EMI filter. Refer to xDSL Power Modules App. Note. 4.


PowerDsine Ltd. Tel: +972-9-775-5100 • Fax: +972-9-775-5111 • Email: sales@powerdsine.com PowerDsine, Inc. Tel: +1-631-756-4680 • Fax: +1-631-756-4691 • Email: sales@powerdsineusa.com PowerDsine Europe Tel: +49-6187-900-849 • Fax: +49-6187-292848 • Email: europe@powerdsine.com




PD-LPM-0205 DSL REMOTE POWER FEEDER: 40-60V_{DC} INPUT, \pm 60 TO \pm 100V_{DC}/100mA OUTPUT

THERMAL DERATING

represents maximum dimensions and space occupied.

Dim	mm	Inch
Α	52.80±0.40	2.080±0.016
В	30.00±0.40	1.180±0.016
С	12.70 Max	0.500 Max
D	25.40±0.25	0.100±0.01
E	20.32±0.25	0.800±0.01
F	24.13±.0.125	0.950±0.005
G	0.64±0.10 Square Pin	0.025±0.004 Square Pin
Н	4.00±0.50	0.157±0.02
J	2.54±0.25	0.100±0.01

PIN CONNECTIONS

Pin #	Symbol	Description	
1	Vin	Input supply voltage (positive voltage in reference to the Vin RTN terminal)	
2	Inhibit	Digital remote On/Off control. Logic voltage level relative to Pin 3. High level disables output.	
3-6	Vin RTN	Return line for supply voltage	
7-9	N.C	Not Connected	
10	HV +	Positive high voltage output	
11	A1	Ground connection for balanced $(\pm V)$ operation. See typical application.	
12	HV -	Negative high voltage output	
13	A2	Leakage detection connection path. See typical application.	
14	Leakage	Ground current Leakage indication output	
15	No Load	Minimum output current indication output	
16	Overload	Overload indication output	
17	Adj	Output voltage adjustment input, connect resistor R _{adj} between pin 17 and 18	
18	A3	Return line for No Load, Overload and Adjust lines.	
19	LKG RTN	Return path for the Leakage detection indicator.	
20	EGND	Connection to Earth ground	

PD-LPM-0205 V09 0900