SpaceWire and SpaceFibre

Steve Parkes,
Albert Ferrer Florit, Alberto Gonzalez Villafranca,
Chris McClements and Bruce Yu
STAR-Dundee Ltd.
Contents

- SpaceWire
- SpaceFibre
- SpaceFibre Integrated QoS
- SpaceFibre IP cores
- SpaceFibre on RTAX and RTG4
SpaceWire
SpaceWire IP Cores

- SpaceWire IP
 - SpaceWire Interface
 - SpaceWire Router
 - SpaceWire RMAP Target
 - SpaceWire RMAP Initiator

- Running in RTAX, ProASIC and RTG4
SpaceFibre
SpaceFibre

- SpaceFibre is
 - A spacecraft on-board data link and network

- SpaceFibre runs over
 - Electrical and fibre optic cables

- SpaceFibre initially targeted at
 - Very high data rate instruments
 - Synthetic Aperture Radar
 - Multi-spectral imaging instruments

- SpaceFibre meets the needs of
 - Most spacecraft onboard network applications
 - Because of its built-in capabilities
 - Quality of Service (QoS)
 - Fault detection, isolation and recovery (FDIR)
 - Compatibility with SpaceWire
SpaceFibre Benefits

- Very high data rates
- Reduction of harness mass
- Simplification of redundancy
- Increase in reliability
- Straightforward error recovery
- Deterministic data delivery
- Long distance
- Galvanic isolation
SpaceFibre Key Features

- **High performance**
 - 2.5 Gbits/s current flight qualified technology
 - 3.125 Gbits/s soon (6.25 Gbits/s coming)
 - Multi laning of up to 16 lanes (40 Gbits/s)

- **Innovative integrated QoS**
 - Priority
 - Bandwidth reservation
 - Scheduling

- **Novel integrated FDIR support**
 - Transparent recovery from transient errors
 - Error containment in virtual channels and frames
 - "Babbling Idiot" protection

- **Low latency**
 - Broadcast codes

- **Compatible with SpaceWire at packet level**
SpaceFibre Target Applications

- SpaceFibre now targeted at
 - Most spacecraft onboard network applications
 - SAR and multi-spectral, high resolution optical
 - Any system where SpaceWire is used
 - Interfacing to existing SpaceWire equipment
 - AOCs/GNC and other control systems
 - Launchers

- Single integrated network
 - Carrying
 - Instrument data
 - Configuration and control information
 - Deterministic traffic
 - High resolution time information
 - Event signals
 - Improves reliability, mass, cost
SpaceFibre Integrated QoS
SpaceWire CODEC

Packet Interface Time-Codes Management

SpaceWire CODEC

Serial
SpaceFibre IP Core

- Each VC like pair of SpW FIFOs. Sends and Receives SpFi packets.
- Broadcasts short messages.
- Time distribution, synchronisation, event signalling, error handling.
- Management interface configures VCs, BC, etc.

Virtual Channel Interfaces

Broadcast

SerDes

...
SpaceFibre Quality of Service

- Integrated QoS scheme
 - Priority
 - VC with highest priority
 - Bandwidth reserved
 - VC with allocated bandwidth and recent low utilisation
 - Scheduled
 - Synchronised time-slots
 - E.g. by broadcast messages
 - VCs allocated to specific time-slots
 - In allocated time-slot, VC allowed to send

- “Integrated” because
 - All three QoS work together
 - QoS is implemented in the hardware of the SpaceFibre interface
Virtual Channels

- VC sends when
 - Source VC buffer has data to send
 - Destination VC buffer has space in buffer
 - QoS for VC results in highest precedence
- A SpW packet flowing through one VC does not block another packet flowing through another VC
QoS: Bandwidth Reserved

Precedence

Bandwidth Credit Counter

time
QoS: Bandwidth Reserved
QoS Babbling Idiot Protection

Priority 1

Priority 2

Priority 3
<table>
<thead>
<tr>
<th>Time-slot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VC 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VC 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 5</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 6</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 7</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-slot</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VC 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple Mixed QoS

<table>
<thead>
<tr>
<th>Time-slot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deterministic Data Delivery

<table>
<thead>
<tr>
<th>Time-slot</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **VC 1** (high priority) is highlighted in blue in time-slot 1.
- **VC 2** (high priority) is highlighted in yellow in time-slot 2.

Time-Slot 1:

- **Packets being transmitted**: Blue squares.
- **Packets being received**: Cyan squares and green squares.
SpaceFibre IP Cores
SpaceFibre VHDL IP Core

- Compliant to very latest version of standard specification
- Extensively tested and validated

Incorporates all capabilities
- Full QoS
- Fault detection, isolation and recovery
- Low latency broadcast messages

Available from STAR-Dundee
- Implemented in a range of FPGAs
 - Microsemi: AX, RTG4
 - Xilinx: V4, V5, Spartan 6, …
- Full and “lite” versions
 - Full has configurable number of VCs
 - Lite is designed for a simple instrument interface with 2 VCs
 - High rate data VC
 - Low rate, high priority command and control VC
Radiation Tolerant SpaceFibre ASIC
RC64 Many Core DSP Processor

- 64 fast CEVA X1643 DSP with FP extension and HW scheduler
 - 300 MHz
 - 40 GFLOPS, 384 GOPS
- Modem and Encrypt accelerators
- 4 Mbyte on-chip shared memory
- Fast I/O
 - 12x SpaceFibre,
 - SpaceWire
 - DDR3, AD/DA LVDS I/F, NVM
- Rad-Hard, for space
- Advanced technology
 - TSMC 65nm LP
 - CCGA / PBGA / COB
 - 10 Watt
- Modular
 - Payloads can employ many RC64
- Versatile
 - Designed for all space missions
 - Planned for 2020—2050
- Re-programmable in space
SpaceFibre on RTAX and RTG4
Commercial equivalent of flight proven parts
- Microsemi RTAX1000
- TLK2711-SP SerDes

Pre-programmed with STAR SpFi IP core

FMC interface for connection to development boards

2.5 Gbits/s with 32-bit interface at 62.5 MHz

20% to 25% of AX1000
SpaceFibre on RTG4

- FMC board to provide SpaceWire and SpaceFibre
- RTG4 SerDes running at 2.5 Gbits/s
- SpaceFibre interface 4% to 6% of RTG4 (2 to 8 VCs)
- SpaceWire interface 1%, RMAP Target 2% of RTG4
Demonstration RTG4 Design
Demonstration

STAR Fire
- Packet Generator
- Packet Checker

RTG4
- SpaceFibre
- SpW

RTG4
- SpaceFibre
- SpW

Brick Mk3
- USB 3.0

Command Window
Conclusions

- SpaceFibre designed specifically for spaceflight applications
 - Integrated QoS
 - Integrated FDIR capabilities
 - Galvanic isolation
 - Compatible with SpaceWire packet level
 - Efficient design giving very small footprint

- **Benefits**
 - Very high performance
 - Reduced harness mass
 - Interoperability with existing SpaceWire devices
 - Simplification of redundancy
 - Deterministic data delivery for control applications
 - Single integrated network

- Running on RTAX and RTG4 now
Thank You
Any questions?

For more information and to see a demonstration please visit the STAR-Dundee stand

www.star-dundee.com