

CoreSDLC Driver User’s Guide

Version 2.0

CoreSDLC Driver User's Guide Version 2.0 3

Table of Contents

Introduction .. 5

Features ... 5

Supported Hardware IP ... 5

Files Provided .. 7

Documentation ... 7

Driver Source Code.. 7

Example Code .. 7

Driver Deployment ... 9

Driver Configuration .. 11

Application Programming Interface ... 13

Theory of Operation ... 13

Types ... 17

Constant Values ... 18

Data Structures .. 20

Functions .. 23

Product Support .. 35

Customer Service ... 35

Customer Technical Support Center .. 35

Technical Support .. 35

Website .. 35

Contacting the Customer Technical Support Center ... 35

ITAR Technical Support ... 36

CoreSDLC Driver User's Guide Version 2.0 5

Introduction

This document describes the bare metal software driver for CoreSDLC. CoreSDLC is an implementation of

the SDLC device communication. The CoreSDLC bare metal software driver is designed for use in systems

with no operating system. This driver can be adapted for use as part of an operating system, but the

implementation of the adaptation layer between this driver and the operating system's driver model is

outside the scope of this driver. This software driver provides programming interfaces (Layer 1 / Link Layer)

to configure and access the underlying CoreSDLC hardware. However, implementing any of the (Layer 2 /

Network Layer) protocols is not in scope of this driver.

Features
The CoreSDLC driver provides support for the following features:

 Configuring CoreSDLC communication parameters

 Interrupt driven transmit and receive

 Reading statistical parameters of the SDLC node.

 Raw data transmission and reception as test modes.

The CoreSDLC driver is provided as C source code.

Supported Hardware IP
The CoreSDLC bare metal driver can be used with version 3.0.121 of Microsemi’s CoreSDLC IP.

CoreSDLC Driver User's Guide Version 2.0 7

Files Provided

The files provided as part of the CoreSDLC driver fall into three main categories: documentation, driver

source code, and example projects. The driver is distributed via the Microsemi SoC Products Group’s

Firmware Catalog, which provides access to the documentation for the driver, generates the driver’s source

files into an application project, and generate example projects that illustrating how to use the driver. The

Firmware Catalog is available from: www.microsemi.com/soc/products/software/firmwarecat/default.aspx

Documentation
The Microsemi Firmware Catalog provides access to these documents for the driver:

 User’s guide (this document)

 Release notes

Driver Source Code
The Firmware Catalog generates the driver’s source code into a drivers\CoreSDLC subdirectory of the

selected software project directory. The files making up the driver are detailed below.

core_sdlc.h

This header file contains the public application programming interface (API) of the CoreSDLC software

driver. This file should be included in any C source file that uses the CoreSDLC software driver.

coresdlc_regs.h

This file contains the CoreSDLC register definitions required for accessing the core through the hardware

abstraction layer (HAL). This file is only used within the software driver implementation and does not need to

be directly included in your code.

core_sdlc.c

This C source file contains the implementation of the CoreSDLC software driver.

Example Code
The Firmware Catalog provides access to example projects illustrating the use of the driver. Each example

project is self contained and is targeted at a specific processor and software tool chain combination. The

example projects are targeted at the FPGA designs in the hardware development tutorials supplied with SoC

Product Group’s development boards. The tutorial designs may be found on the Microsemi SoC

Development Kit web page.

Note: Make sure that the base addresses for the peripheral drivers used in the example project match the

memory map of the targeted hardware design. The base addresses are generally specified in the platform.h

file or in the main.c file in the project’s root directory.

http://www.microsemi.com/soc/products/software/firmwarecat/default.aspx
http://www.microsemi.com/soc/products/hardware
http://www.microsemi.com/soc/products/hardware

CoreSDLC Driver User's Guide Version 2.0 9

Driver Deployment

This driver is intended to be deployed from the Firmware Catalog into a software project by generating the

driver’s source files into the project directory. The driver uses the SmartFusion2 Cortex Microcontroller

Software Interface Standard Hardware Abstraction Layer (CMSIS HAL) to access MSS hardware registers.

You must ensure that the SmartFusion2 CMSIS HAL is included in the project settings of the software

toolchain used to build your project and that it is generated into your project. The most up-to-date

SmartFusion2 CMSIS HAL files can be obtained using the Firmware Catalog.

The following example shows the intended directory structure for a project based on SoftConsole ARM®

Cortex™-M3 project targeted at the SmartFusion2 MSS. This project uses the CoreSDLC drivers. Both of

these drivers rely on the SmartFusion2 CMSIS HAL for accessing the hardware. The contents of the drivers

directory result from generating the source files for each driver into the project. The contents of the CMSIS

and hal directory result from generating the source files for the SmartFusion2 CMSIS HAL into the project.

The contents of the drivers_config directory are generated by the Libero project and must be copied into the

software project.

Figure 1 · SmartFusion2 MSS Project Example

CoreSDLC Driver User's Guide Version 2.0 11

Driver Configuration

Your application software should configure the CoreSDLC driver through calls to the SDLC_init() function for

each CoreSDLC instance in the hardware design. SDLC_init() should be called only once for each

CoreSDLC instance in the hardware design. The configuration parameters include the CoreSDLC hardware

instance base address and pointer to a structure of type sdlc_cfg_t. The sdlc_cfg_t structure holds all the

configuration values to be configured for the CoreSDLC device. sdlc_cfg_t structure should be initialized

with the desired values before making call to SDLC_init() API.

No CoreSDLC hardware configuration parameters are needed by the driver, apart from the CoreSDLC

hardware instance base address. Hence, no additional configuration files are required to use the driver.

This driver supports CoreSDLC device configured as primary and secondary node. There is always one

primary node in the network, but there may be one or more secondary nodes. The primary node controls

operation of the secondary nodes and manages the network. Secondary nodes can send information only if

the primary node has given them permission.

This driver can be used for below network configurations.

 Point-to-point, when there is one primary and only one secondary node.

 Multi-drop, when there is one primary and multiple secondary nodes.

CoreSDLC Driver User's Guide Version 2.0 13

Application Programming Interface

This section describes the driver’s API. The functions and related data structures described in this section

are used by the application programmer to control the CoreSDLC peripheral from their application.

Theory of Operation
The CoreSDLC software driver is designed to allow the control of multiple instances of CoreSDLC. Each

instance of CoreSDLC in the hardware design is associated with a single instance of the sdlc_instance_t

structure in the software. You need to allocate memory for one unique sdlc_instance_t structure instance for

each CoreSDLC hardware instance. The contents of these data structures are initialized during calls to

function SDLC_Init(). A pointer to the structure is passed to subsequent driver functions in order to identify

the CoreSDLC hardware instance you wish to perform the requested operation on.

Initialization and Configuration

The CoreSDLC driver is initialized and configured by calling the SDLC_init() function. The SDLC_init()

function takes a pointer to a configuration data structure as parameter. This data structure contains all the

configuration information required to initialize and configure the CoreSDLC.

 The CoreSDLC driver provides the SDLC_cfg_struct_def_init() function to initialize the configuration data

structure to default value. It is recommended to use this function to retrieve the default configuration then

overwrite the defaults with the application specific setting such Mode of operation address length. The

SDLC_init() function must be called before any other CoreSDLC driver functions. The

SDLC_cfg_struct_def_init() is the only function which can called before calling the SDLC_init() function.

The Following functions are used as part of the initialization and configuration process.

 SDLC_cfg_struct_def_init()

 SDLC_init()

If you need to individually configure mode parameters of the CoreSDLC driver or to get the current

CoreSDLC instance configuration, you can use below APIs at the run time. This API takes sdlc_instance_t

type as parameter along with the configuration parameter.

 SDLC_set_mode()

SDLC_set_mode() sets the mode of the CoreSDLC device. Three modes, Normal (0x00), Raw Transmit

(0x01) and Raw receive (0x02) can be set using this API.

 SDLC_get_cfg()

 The SDLC_get_cfg() function is used to read the current node configuration values. This API copies the

current configurations into sdlc_cfg parameter.

Interrupt Driven Transmit and receive Operations

The CoreSDLC driver transmits or receives frames under interrupt control. SDLC operations are performed

using these functions:

 SDLC_rx_data()

 SDLC_tx_data()

 SDLC_tx_abort()

Theory of Operation

14 CoreSDLC Driver User's Guide Version 2.0

 SDLC_is_tx_complete()

 SDLC_enable_rx()

 SDLC_disable_rx()

 SDLC_default_txv_handler()

 SDLC_default_rxe_handler()

 SDLC_default_rdn_handler()

 SDLC_enable_interrupt()

 SDLC_disable_interrupt()

 SDLC_set_interrupt_priority()

 SDLC_read_statistic()

 SDLC_read_rx_status()

A CoreSDLC device, irrespective of its use as a primary or a secondary node, can use all of these APIs as

needed.

Interrupt Handlers

CoreSDLC driver uses four interrupts to handle different events, Transmit valid (TXV), Receive Valid (RXV),

Receive Done (RDN) and Receive Error (RXE). Since each of these events generates independent interrupt

signal, four system level (NVIC level) interrupts are needed. Default implementations (default handlers) of all

the four interrupts are provided as part of this driver. The default handlers should be called from the system

level (NVIC level) interrupt service routine (ISR) assigned to the respective interrupt triggered by the

CoreSDLC signals.

First Receive valid interrupt marks the beginning of the frame reception. SDLC_rx_data() API should be

used when Receive valid event is detected. You should provide the data structure of sdlc_frame_t type to

this API. This data structure is used to store the data received.

Receive done interrupt indicates the completion of Valid frame reception. Though the frame received was
valid, SDLC_default_rdn_handler() API checks for frame without control field. In this case CoreSDLC state is
changed to SDLC_ERROR and SDLC_ERROR_SHORT_LEN will be returned. This API enables the SDLC
reception for receiving next frame.

In case of an error in the reception, SDLC_default_rxe_handler() API updates the appropriate status and

statistics data structures. This API returns value indicating which error had occurred and re-enables SDLC

for receiving next frame.

Transmit valid interrupt occurs when there is place in the transmit FIFO to accept data.

SDLC_default_txv_handler() API puts appropriate number of bytes in the FIFO depending on the availability

of place in the FIFO and the data remaining to be transmitted.

SDLC_enable_interrupt() and SDLC_disable_interrupt() are used to enable or disable interrupts

respectively. The parameter value should be logic OR of the interrupt numbers those should be enabled or

disabled.

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 15

You can choose the priority of interrupt when multiple interrupts occur simultaneously by using

SDLC_set_interrupt_priority() API. Parameter value ‘1’ steps up the priority of the corresponding interrupt

depending on the interrupt number. The parameter value should be logic OR of the interrupt numbers those

should be enabled or disabled.

Transmitting Data

The frame transmission in Normal mode as well as Raw Transmit mode is initiated by using SDLC_tx_data()

API with the frame to be transmitted as its parameter. Your application is then free to perform other tasks

and inquire later whether transmit has completed by calling the SDLC_is_tx_complete() function.

SDLC_tx_data() API enables transmission, loads data from frame in the transmit FIFO and then enables

transmit valid interrupt.

An SDLC Frame consists of the beginning of frame (BOF), Address field, Control field, Info field, CRC field

and the end of frame (EOF) flag. BOF, CRC and EOF are added and transmitted by CoreSDLC in normal

mode. SDLC_tx_data() uses sdlc_frame_t parameter to transmit the frame in correct sequence. Make sure

that the frame is loaded with the proper node Address, Control and the data buffer before making call to this

API.

In Raw Transmit mode, the Address and Control field of the frame are ignored by the driver. Only the data

available in the data buffer of the frame will be transmitted. If you want to use this Raw transmit mode for the

SDLC Receiver testing, then you must fill the data buffer with BOF, ADDRESS and EOF field at appropriate

places along with raw data you want to transmit.

An abort sequence can be transmitted by making a call to the SDLC_tx_abort() API.

Receiving Data

Data reception starts with the Receive valid (RV) interrupt occurs. SDLC_rx_data() should be called from the

RV system level. SDLC_rx_data() starts filling up the frame as it keeps receiving the data.

Data reception in Normal mode as well as in Raw receive mode happens in the same manner. In both

modes receive frame is updates in the same way, except that the CRC field is also loaded in the data buffer

in Raw receive mode.

In case of error in the data reception, Receive Error (RE) interrupt occurs. SDLC_default_rxe_handler()

should be called from the system level interrupt. SDLC_default_rxe_handler() identifies the error occurred

and returns a unique value. This return value along with SDLC Status returned by SDLC_read_rx_status()

should be used in application program to take further action. No error detection is done in Raw receive mode

and receive error interrupt is not asserted.

SDLC_default_rdn_handler() API should be called when Receive Done(RDN) interrupt occurs. This event

marks the end of valid frame reception and updates the status accordingly. Even though the received frame

was valid, CoreSDLC status will be set to SDLC_ERROR when the frame was found to have no control field

(number of bytes received < 2 in 8-bit addressing and number of bytes received < 3 in 16-bit addressing).

Note: In this error scenarios mentioned above SDLC_default_rxe_handler() will not be called since for

CoreSDLC the frame received was still valid. For this reason you should always use

SDLC_read_rx_status() function to identify if the reception was completed successful.

SDLC_read_rx_status() should also be used to find the exact error occurred along with the values

returned by SDLC_default_rxe_handler() or SDLC_default_rdn_handler().

SDLC_enable_rx() and SDLC_disable_rx() are used to enable or disable reception respectively.

Theory of Operation

16 CoreSDLC Driver User's Guide Version 2.0

SDLC_check_rx_line_idle() is used to know whether receive line is idle (15 consecutive '1' values are

received on rxd) or not idle.

SDLC Status and Statistics

SDLC_read_statistics() is used to find the current statistics of the CoreSDLC node. It copies the current

statistics of the node in the sdlc_stat_t type provided as a parameter. Statistics are applicable in Normal

mode only. In Raw transmit and Raw receive modes, no statistics elements are updated. This API should be

used only in Normal mode of communication.

SDLC_read_rx_status() is used to know the current status of the CoreSDLC node.

CoreSDLC Driver User's Guide Version 2.0 17

Types

sdlc_states

Prototype

enum sdlc_states

 {

 SDLC_IDLE=1,

 SDLC_ACTIVE,

 SDLC_ERROR,

 SDLC_RDN,

 SDLC_TDN

 };

Description

This driver uses sdlc_states enum to track the current activity undertaken by the SDLC node. Meaning of

each state is as follows.

 SDLC_IDLE => Node is initialized but no activity is yet started. Line idle bit is found set.

Note: Line idle bit is not checked by driver internally. It should be done by user by

using SDLC_check_rx_line_idle().

 SDLC_ACTIVE => Node is performing either transmit or receive transaction.

 SDLC_ERROR => Error was detected in last receive operation. No error check for transmittion.

 SDLC_RDN => Frame was received successfully.

 SDLC_TDN => Frame was transmitted successfully.

sdlc_receive_error_code

Prototype

enum sdlc_receive_error_code

 {

 SDLC_ERROR_SHORT_LEN=0,

 SDLC_ERROR_ABORT,

 SDLC_ERROR_OVERFLOW,

 SDLC_ERROR_CRC,

 SDLC_ERROR_ALIGNMENT,

 };

Description

sdlc_receive_error_code enum indicates which error occurred while receiving the frame. Meaning of each

error code is as below.

 SDLC_ERROR_SHORT_LEN => Valid frame was received without control field.

 SDLC_ERROR_ABORT => Abort sequence was detected while receiving frame..

 SDLC_ERROR_OVERFLOW => Overflow error was detected while receiving frame

 SDLC_ERROR_CRC => CRC error was detected while receiving frame.

 SDLC_ERROR_ALIGNMENT => Alignment error was detected while receiving frame

Constant Values

18 CoreSDLC Driver User's Guide Version 2.0

Constant Values

Encoding for Transmit or Receive

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node. These values are also used to provide appropriate configuration parameters to the

individual parameter setting APIs.

Constant Description

SDLC_ENCODING_NRZI Transmit or receive will be done using NRZI encoding.

Internal clock is selected

SDLC_ENCODING_NRZ Transmit or receive will be done using NRZ encoding.

External clock is selected

Table 1 · Encoding options

SDLC communication modes

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node.

Constant Description

SDLC_MODE_NORMAL SDLC communication in Normal mode

SDLC_MODE_RAW_TX SDLC Communication in Raw Transmit

mode

SDLC_MODE_RAW_RX SDLC Communication in Raw Transmit

mode

Table 2 · SDLC communication mode Configuration Options

SDLC node address length

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node.

Constant Description

SDLC_ADDRESS_LENGTH_8BIT Target node address is 8bit

SDLC_ADDRESS_LENGTH_16BIT Target node address is 16bit

Table 3 · SDLC node address length configuration options

SDLC communication CRC type

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node.

Constant Description

SDLC_CRC_LENGTH_16BIT 16 bit CRC is used in SDLC communication

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 19

Constant Description

SDLC_CRC_LENGTH_32BIT 32 bit CRC is used in SDLC communication

Table 4 · SDLC communication CRC type configuration options

SDLC communication preamble length

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node.

Constant Description

SDLC_PREAMBLE_LENGTH_0BITS 0-bit length preamble is generated

before frame transmission

SDLC_PREAMBLE_LENGTH_8BITS 8-bit length preamble is generated

before frame transmission

SDLC_PREAMBLE_LENGTH_32BITS 32-bit length preamble is generated

before frame transmission

SDLC_PREAMBLE_LENGTH_64BITS 64-bit length preamble is generated

before frame transmission

Table 5 · SDLC communication preamble length selection option

SDLC communication back-to-back frame reception

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node.

Constant Description

SDLC_B2B_FRAME_RX_DISABLE Back to back frame reception is

disabled

SDLC_B2B_FRAME_RX_ENABLE Back to back frame generation is

enabled

Table 6 · SDLC communication back to back frame reception selection option

SDLC communication Inter-frame space

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node. Two extreme constant values are provided; you can create and use other IFS values to

configure the SDLC node. Please note that the IFS value should always be an even number.

Constant Description

SDLC_INTERFRAME_SPACE_2BIT Transmitter waits for 2-bit time

before starting frame transmission

SDLC_INTERFRAME_SPACE_254BIT Transmitter waits for 254-bit time

before starting frame transmission

20 CoreSDLC Driver User's Guide Version 2.0

Table 7 · SDLC communication Inter frame space selection option

SDLC communication idle flag generation

The following defines are used to build the elements of sdlc_cfg_t type which is used for configuring the

CoreSDLC node.

Constant Description

SDLC_IDLE_FLAG_GENERATION_DISABLE Idle flag is not generated between

two transmit frames

SDLC_IDLE_FLAG_GENERATION_ENABLE Idle flags (01111110) are
generated
between two transmit frames

Table 8 · SDLC communication idle flag generation selection option

SDLC Interrupts

The following defines are used to enable and disable CoreSDLC interrupts. They are used to build the value

of the irq_mask parameter for the SDLC_enable_irq() and SDLC_disable_irq() functions. A bitwise OR of

these constants is used to enable or disable multiple interrupts or setting up the priorities of the interrupts.

Constant Description

SDLC_RXV_IRQ Receive data available interrupt (0x01)

SDLC_RXE_IRQ Receive error detection interrupt (0x02)

SDLC_RDN_IRQ Successful frame reception done (0x04)

SDLC_TXV_IRQ Transmit Valid (TFIFO is not full interrupt)

(0x08)

Table 9 · SDLC Interrupt Mask Constants

Data Structures

sdlc_instance_t

Description

This structure is used to identify the various CoreSDLC hardware instances in your system. Your application

software should declare one instance of this structure for each instance of CoreSDLC in your system. The

function SDLC_init() initializes this structure. A pointer to an initialized instance of the structure should be

passed as the first parameter to the CoreSDLC driver functions, to identify which CoreSDLC hardware

instance should perform the requested operation.

sdlc_frame_t

Description

This structure is used to define a frame used for SDLC transmission and reception. A frame in SDLC

consists of beginning of frame (BOF), address field (ADDR), Control field (CONTROL), data field (INFO),

CRC and end of frame (EOF). BOF, CRC and EOF are generated by the core. User software needs to

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 21

provide the ADDR, CONTROL and INFO fields. ADDRESS and CONTROL fields can be provided in the

address and control elements of the sdlc_frame_t structure. Since the INFO field can be variable in length,

sdlc_frame_t accepts a pointer to the buffer where INFO field is stored and the size of this buffer as its

elements.

Note: Address field of this structure is uint16_t, since the SDLC node address length of then node can be up

to 16bit. While operating with 8bit address length, LSB of Address field is transmitted and MSB is ignored.

sdlc_cfg_t

Description

This structure is used to configure the SDLC node parameters. This structure hold all the values needed for

successful node configuration and is passed to the SDLC_init() function. This structure is also passed to the

SDLC_set_params() functions, to change the configuration of the node or read the configuration of the node

at run time.

sdlc_stat_t

Description

This structure is used to store all the statistical parameters of the node such as successful transmit/receive

transactions, receive error, abort frame transmission etc. One instance of this type is created for each

hardware instance of the CoreSDLC driver

CoreSDLC Driver User's Guide Version 2.0 23

Functions

SDLC_init

Prototype

uint8_t SDLC_init

(

 sdlc_instance_t* this_sdlc,

 sdlc_cfg_t* sdlc_cfg,

 addr_t base_address

);

Description

The SDLC_init() function initializes the driver’s data structures and the CoreSDLC hardware with the

configuration passed as parameters. The SDLC_init() function takes a pointer to a configuration data

structure of type sdlc_cfg_t as parameter. This configuration data structure contains all the information

required to configure the CoreSDLC.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t data structure that holds all data regarding

CoreSDLC hardware instance being initialized. A pointer to the same data structure must be provided in

subsequent calls to the various CoreSDLC driver function in order to identify the CoreSDLC instance that

should perform the operation implemented by the called driver function.

cfg

The cfg parameter is a pointer to a sdlc_cfg_t structure that holds all the configuration data to be used for

initializing the CoreSDLC device. You must initialize this data structure by first calling the

SDLC_cfg_struct_def_init() function to fill the configuration data structure with default values. You can then

overwrite some of the default settings with the ones specific to your application before passing this data

structure as parameter to the call to the SDLC_init() function.

base_addr

The base_address parameter is the base address in the processor's memory map for the registers of the

CoreSDLC instance being initialized.

Return Value

This function returns a zero value when the initialization fails. A non-zero value is returned when the

initialization is successful.

SDLC_rx_data

Prototype

void SDLC_rx_data

(

 sdlc_instance_t* this_sdlc,

 sdlc_frame_t* rx_frame

)

Functions

24 CoreSDLC Driver User's Guide Version 2.0

Description

The SDLC_rx_data() function reads available data from receive FIFO when Receive valid(RXV) interrupt
occurs. CoreSDLC does the address matching when it receives BOF. If address matches, this API starts
loading the data in the frame receive data structure provided as parameters until the reception is done
(RDN) or an error occurs in data reception or the data field in the rx_frame is full. This function returns when
all the available data from RFIFO is read. However the valid frame reception is still in progress and will
complete when RDN interrupt occurs. If rx_frame does not have place to hold data anymore then driver sets
the CoreSDLC status to SDL_ERROR. Data from RFIFO is still read to avoid overflow error, however data is
not loaded in rx_frame structure. CoreSDLC status returned by API SDLC_read_rx_status() should always
be checked to make sure that the reception was done successfully.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

rx_frame

The rx_frame parameter is a pointer to a sdlc_frame_t type, where the received data will be stored.

Return Value

This function does not return any value.

SDLC_tx_data

Prototype

void

SDLC_tx_data

(

 sdlc_instance_t *this_sdlc,

 sdlc_frame_t* tx_frame

)

Description

The SDLC_tx_data() function is used to transmit a SDLC frame in normal mode. This API is also used to

transmit raw data in Raw Transmit mode. This driver uses interrupt method to transmit data. This function

first enables transmission, clears TFIFO and loads appropriate number of bytes in TFIFO. It then enables

the Transmit Valid (TXV) interrupt. Data transmission starts when the transmission is enabled and data is

available in TFIFO. TXV occurs when the transmission is enabled and there is place in TFIFO to accept

more data.

Note: All the data may not be transmitted when this function returns. If you need to know the completion of

transmission you can use SDLC_read_rx_status() API.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

tx_frame

tx_frame is used to pass a SDLC frame to SDLC_tx_data() API. User can provide SDLC target node

address, control field and the data to be sent in info field and its size.

Return Value

This function does not return any value.

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 25

SDLC_tx_abort

Prototype

void

SDLC_tx_abort

(

 sdlc_instance_t * this_sdlc

);

Description

SDLC_tx_abort() generates abort sequence by going into Raw transmit mode and transmitting 0xFF.

Abort sequence is a pattern of seven consecutive ‘1’. Abort sequence is transmitted to abort the current
frame transmission. Driver then returns back to the mode of operation in which it was operating before
calling this API.

Note: Abort sequence can be generated in different ways; this implementation is one of the ways to

implement abort sequence.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function does not return any value.

Example

uint8_t g_CoreSDLC0_tx_buffer[]={0x10,0x20,0x30};

sdlc_frame_t tx_frame =

{

 .address = NODE0_RX_ADDRESS,

 .control_field = 0x02,

 .data_buffer=g_CoreSDLC1_tx_buffer,

 .data_buffer_size =sizeof(g_CoreSDLC1_tx_buffer),

};

sdlc_instance_t g_CoreSDLC1;

SDLC_tx_data (&g_CoreSDLC1, & tx_frame);

SDLC_tx_abort (&g_CoreSDLC1);

SDLC_default_txv_handler

Prototype

void

SDLC_default_txv_handler

(

 sdlc_instance_t *this_sdlc

);

Description

This API is the default implementation of TXV interrupt handler. TXV interrupt occurs when transmission is

enabled and there is place in TFIFO to accept data. This API puts appropriate number of bytes into TFIFO

from the frame provided in SDLC_tx_data(). This API should be called from the driver’s top level interrupt

Functions

26 CoreSDLC Driver User's Guide Version 2.0

handler function, from the system level (NVIC level) interrupt handler assigned to the interrupt triggered by

the CoreSDLC TXV signal.

It is your responsibility to enable the system level (NVIC level) interrupt connected to the CoreSDLC TXV

interrupt signal.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function does not return any value.

SDLC_default_rxe_handler

Prototype

sdlc_receive_error_code_t

SDLC_default_rxe_handler

(

 sdlc_instance_t * this_sdlc

)

Description

This SDLC_default_rxe_handler() function is the default implementation of the RXE interrupt. RXE interrupt

occurs when SDLC is receiving data in normal mode and an error is detected during reception. Different

errors such as overflow error, CRC error, abort error, or alignment error can happen. This API detects which

error has occurred and returns value accordingly. This API should be called from the driver’s top level

interrupt handler function, from the system level (NVIC level) interrupt handler assigned to the interrupt

triggered by the CoreSDLC RXE signal.

Note:

1. There can be errors in reception even when RXE interrupt is not asserted. These errors are indicated by

return value of SDLC_default_rdn_handler() API. It is recommended that you always use

SDLC_read_rx_status() API to know if the last frame received had error or the frame was received

without error.

2. Use the return value of this API along value returned by SDLC_read_rx_status() to know the exact error

occurred.

3. It is your responsibility to enable the system level (NVIC level) interrupt connected to the CoreSDLC

RXE interrupt signal.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function returns a value of type sdlc_receive_error_code_t.

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 27

SDLC_default_rdn_handler

Prototype

size_t

SDLC_default_rdn_handler

(

 sdlc_instance_t * this_sdlc

) ;

Description

This API is the default implementation to handle RDN interrupt. RDN interrupt occurs when valid frame is

received in normal or Raw receive mode. SDLC_default_rdn_handler() API should be called when Receive

Done(RDN) interrupt occurs. This event marks the end of valid frame reception. Though the frame received

was valid, status of SDLC will be changed to SDLC_ERROR, if the received frame was bigger than the size

of the data structure provided by user or the frame does not contain the control field. Driver makes

CoreSDLC ready for receiving next frame.

Note: It is your responsibility to enable the system level (NVIC level) interrupt connected to the

CoreSDLC RDN interrupt signal.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function returns number of bytes received (including ADDRESS, CONTROL and INFO field) when the

status of SDLC is SDLC_RDN. If status of SDLC is SDLC_ERROR then return value indicates the exact

error which occurred. Only SDLC_ERROR_SHORT_LEN can occur when RDN interrupt is asserted. No

other error type can occur since Received frame was valid for the SDLC core and no RXE interrupt was

asserted.

SDLC_read_statistics

Prototype

void

SDLC_read_statistics

(

 sdlc_instance_t * this_sdlc,

 sdlc_stat_t * statistics

);

Description

The SDLC_read_statistics() function is used to read statistical information on the performance of the node at

run time. Statistics information is provided only in normal mode of operation.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Functions

28 CoreSDLC Driver User's Guide Version 2.0

statistics

SDLC_read_statistics() API will copy the current statistical parameters to statistics parameter when this API

is called.

Return Value

This function does not return any value.

SDLC_read_rx_status

Prototype

sdlc_states_t

SDLC_read_rx_status

(

 sdlc_instance_t * this_sdlc

);

Description

The SDLC_read_rx_status() function is used to know the status of the receiver of the CoreSDLC node.

This API returns the status value of type enum sdlc_states_t.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function returns a sdlc_states_t type value. This value indicates if the last frame reception was

successful or there was error in receiving frame.

SDLC_enable_interrupt

Prototype

void

SDLC_enable_interrupt

(

 sdlc_instance_t * this_sdlc,

 uint8_t irq_mask

);

Description

The SDLC_enable_interrupt() function enables the CoreSDLC interrupts specified by the irq_mask

parameter. The irq_mask parameter identifies the CoreSDLC interrupts by bit position, as defined in the

interrupt enable register (IEN1) of CoreSDLC. The CoreSDLC interrupts and their identifying irq_mask bit

positions are as follows:

 Receive valid interrupt enable (RXV) (irq_mask bit 0)

 Receive error interrupt enable (RXE) (irq_mask bit 1)

 Transmit valid interrupt enable (TXV) (irq_mask bit 3)

When an irq_mask bit position is set to 1, this function enables the corresponding CoreSDLC interrupt.

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 29

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

irq_mask

The irq_mask parameter is used to select which of the CoreSDLC’s interrupts you want to enable. The

allowed value for the irq_mask parameter is one of the following constants or a bitwise OR of more than

one:

 SDLC_RXV_IRQ ((uint8_t) 0x01)

 SDLC_RXE_IRQ ((uint8_t) 0x02)

 SDLC_TXV_IRQ ((uint8_t) 0x08)

Return Value

This function does not return any value.

Example

SDLC_enable_interrupt(&g_CoreSDLC1, SDLC_RXV_IRQ| SDLC_RXE_IRQ);

SDLC_disable_Interrupt

Prototype

void

SDLC_disable_interrupt

(

 sdlc_instance_t * this_sdlc,

 uint8_t irq_mask

);

Description

The SDLC_disable_Interrupt() function disables the CoreSDLC interrupts specified by the irq_mask

parameter. The irq_mask parameter identifies the CoreSDLC interrupts by bit position, as defined in the

interrupt enable register (IEN1) of CoreSDLC. The CoreSDLC interrupts and their identifying bit positions

are as follows:

 Receive valid interrupt enable (RXV) (irq_mask bit 0)

 Receive error interrupt enable (RXE) (irq_mask bit 1)

 Transmit valid interrupt enable (TXV) (irq_mask bit 3)

When an irq_mask bit position is set to 1, this function disables the corresponding CoreSDLC interrupt.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

irq_mask

The irq_mask parameter is used to select which of the CoreSDLC’s interrupts you want to enable. The

allowed value for the irq_mask parameter is one of the following constants or a bitwise OR of more than

one:

 SDLC_RXV_IRQ ((uint8_t) 0x01)

 SDLC_RXE_IRQ ((uint8_t) 0x02)

Functions

30 CoreSDLC Driver User's Guide Version 2.0

 SDLC_TXV_IRQ ((uint8_t) 0x08)

Return Value

This function does not return any value.

Example

SDLC_disable_interrupt(&g_CoreSDLC1, SDLC_RXV_IRQ | SDLC_RXE_IRQ);

SDLC_set_interrupt_priority

Prototype

void

SDLC_set_interrupt_priority

(

 sdlc_instance_t * this_sdlc,

 uint8_t irq_prio_mask

);

Description

The SDLC_set_interrupt_priority() function sets the priority of the interrupt compared to other interrupts in

CoreSDLC depending on the parameter int_prio_mask. The int_prio_mask parameter identifies the

CoreSDLC interrupts by bit position, as defined in the interrupt priority register (IPN1) of CoreSDLC. The

CoreSDLC interrupts and their identifying bit positions are as follows:

 Receive error interrupt enable (RXE) (irq_mask bit 0)

 Receive valid interrupt enable (RXV) (irq_mask bit 1)

 Transmit valid interrupt enable (TXV) (irq_mask bit 3)

When an irq_prio_mask bit position is set to 1, this function sets the priority of the corresponding CoreSDLC

interrupt.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

irq_prio_mask

The irq_prio_mask parameter is used to select which of the CoreSDLC’s interrupts you want to change the

priority. The allowed value for the irq_prio_mask parameter is one of the following constants or a bitwise OR

of more than one:

 SDLC_RXE_IRQ ((uint8_t) 0x01)

 SDLC_RXV_IRQ ((uint8_t) 0x02)

 SDLC_TXV_IRQ ((uint8_t) 0x08)

Return Value

This function does not return any value.

Example

SDLC_set_interrupt_priority(&g_CoreSDLC1, SDLC_RXV_IRQ | SDLC_RXE_IRQ);

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 31

SDLC_cfg_struct_def_init

Prototype

void

SDLC_cfg_struct_def_init

(

 sdlc_cfg_t * sdlc_cfg

);

Description

The SDLC_cfg_struct_def_init() function is used to initializes a sdlc_cfg_t configuration data structure to

default values. This default configuration can then be used as parameter to SDLC_init(). Typically the

default configuration would be modified to suit the application before being passed to SDLC_init().

Parameters

sdlc_cfg

The sdlc_cfg parameter is a pointer to a sdlc_cfg_t structure that holds all the configuration data to be used

for initializing the CoreSDLC device.

Return Value

This function does not return any value.

Example

sdlc_cfg_t g_SDLC1_cfg;

SDLC_cfg_struct_def_init(& g_SDLC1_cfg);

SDLC_get_cfg

Prototype

void

SDLC_get_cfg

(

 sdlc_instance_t* this_sdlc,

 sdlc_cfg_t * sdlc_cfg

);

Description

The SDLC_get_cfg() function is used to read the current node configuration values. This API copies the

current configurations into sdlc_cfg parameter.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

sdlc_cfg

The sdlc_cfg parameter is a pointer to a sdlc_cfg_t structure that holds all the configuration data to be used

for initializing the CoreSDLC device.

Return Value

This function does not return any value.

Functions

32 CoreSDLC Driver User's Guide Version 2.0

Example

sdlc_cfg_t current_cfg_values;

SDLC_get_cfg (&g_CoreSDLC1,¤t_cfg_values);

SDLC_set_mode

Prototype

void SDLC_set_mode

(

 sdlc_instance_t * this_sdlc,

 uint8_t mode

);

Description

SDLC_set_mode() sets the mode of the CoreSDLC device. Three modes, Normal (0x00), Raw Transmit

(0x01) and Raw receive (0x02) can be set using this API.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

mode

Mode = 0x00 => Normal mode
Mode = 0x01 => Raw Tx Mode
Mode = 0x02 => Raw Rx mode

Return Value

This function does not return any value.

SDLC_enable_rx

Prototype

void

SDLC_enable_rx

(

 sdlc_instance_t * this_sdlc

);

Description

SDLC_enable_rx() is used to enable the reception.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function does not return any value.

Application Programming Interface

CoreSDLC Driver User's Guide Version 2.0 33

SDLC_disable_rx

Prototype

void

SDLC_disable_rx

(

 sdlc_instance_t * this_sdlc

);

Description

SDLC_disable_rx() is used to disable the reception.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function does not return any value.

SDLC_check_rx_line_idle_status

Prototype

uint8_t

SDLC_check_rx_line_idle

(

 sdlc_instance_t * this_sdlc

);

Description

SDLC_check_rx_line_idle() is used to know whether receive line is idle (15 consecutive '1' values are

received on rxd) or not idle.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance

of the CoreSDLC.

Return Value

This function returns non-zero value, if Receive line is idle. Zero value is returned when receive line is not

idle.

SDLC_is_tx_complete

Prototype

uint8_t

SDLC_is_tx_complete

(

 sdlc_instance_t * this_sdlc

);

Functions

34 CoreSDLC Driver User's Guide Version 2.0

Description

The SDLC_is_tx_complete() function is used to find out if the interrupt driven transmit previously initiated

through a call to SDLC_tx_data() is complete. This is typically used to find out when it is safe to reuse or

release the memory buffer holding transmit data. This routine returns the information about the transmit

state.

Parameters

this_sdlc

The this_sdlc parameter is a pointer to a sdlc_instance_t structure that holds all data regarding this instance
of the CoreSDLC.

Return Value

This function return a non-zero value if transmit has completed, otherwise it returns zero.

CoreSDLC Driver User's Guide Version 2.0 35

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer

Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This

appendix contains information about contacting Microsemi SoC Products Group and using these support

services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,

update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers

who can help answer your hardware, software, and design questions about Microsemi SoC Products. The

Customer Technical Support Center spends a great deal of time creating application notes, answers to

common design cycle questions, documentation of known issues and various FAQs. So, before you contact

us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support
Visit the Microsemi SoC Products Group Customer Support website for more information and support

(http://www.microsemi.com/soc/support/search/default.aspx). Many answers available on the searchable

web resource include diagrams, illustrations, and links to other resources on website.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group

home page, at http://www.microsemi.com/soc/

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted

by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,

fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We

constantly monitor the email account throughout the day. When sending your request to us, please be sure

to include your full name, company name, and your contact information for efficient processing of your

request.

The technical support email address is soc_tech@microsemi.com.

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/
file:///C:/Documents%20and%20Settings/alim/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/BPCDM203/soc_tech@microsemi.com

ITAR Technical Support

36 CoreSDLC Driver User's Guide Version 2.0

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My

Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email

(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at

www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations

(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR

drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/mycases/
http://www.microsemi.com/soc/ITAR/

Microsemi Corporation (NASDAQ: MSCC) offers the industry’s most comprehensive portfolio of

semiconductor technology. Committed to solving the most critical system challenges,

Microsemi’s products include high-performance, high-reliability analog and RF devices, mixed

signal integrated circuits, FPGAs and customizable SoCs, and complete subsystems. Microsemi

serves leading system manufacturers around the world in the defense, security, aerospace,

enterprise, commercial, and industrial markets. Learn more at www.microsemi.com .

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi

Corporation. All other trademarks and service marks are the property of their respective owners.

5-02-00284-0/03.15

Microsemi Corporate Headquarters

2381 Morse Avenue, Irvine, CA 92614
Phone; 949.221.7100 · Fax: 949.756.0308
www.microsemi.com

http://www.microsemi.com/
http://www.microsemi.com/

	Table of Contents
	Features 5
	Supported Hardware IP 5
	Documentation 7
	Driver Source Code 7
	Example Code 7
	Theory of Operation 13
	Types 17
	Constant Values 18
	Data Structures 20
	Functions 23
	Customer Service 35
	Customer Technical Support Center 35
	Technical Support 35
	Website 35
	Contacting the Customer Technical Support Center 35
	ITAR Technical Support 36

	Introduction
	Features
	Supported Hardware IP
	Files Provided
	Documentation
	Driver Source Code
	core_sdlc.h
	coresdlc_regs.h
	core_sdlc.c

	Example Code
	Driver Deployment
	Driver Configuration
	Application Programming Interface
	Theory of Operation
	Initialization and Configuration
	The CoreSDLC driver is initialized and configured by calling the SDLC_init() function. The SDLC_init() function takes a pointer to a configuration data structure as parameter. This data structure contains all the configuration information required to ...
	Interrupt Driven Transmit and receive Operations
	Interrupt Handlers
	Transmitting Data
	Receiving Data

	SDLC Status and Statistics

	Types
	sdlc_states
	Prototype
	Description

	sdlc_receive_error_code
	Prototype
	Description

	Constant Values
	Encoding for Transmit or Receive
	SDLC communication modes
	SDLC node address length
	SDLC communication CRC type
	SDLC communication preamble length
	SDLC communication back-to-back frame reception
	SDLC communication Inter-frame space
	SDLC communication idle flag generation
	SDLC Interrupts

	Data Structures
	sdlc_instance_t
	Description

	sdlc_frame_t
	Description

	sdlc_cfg_t
	Description

	sdlc_stat_t
	Description

	Functions
	SDLC_init
	Prototype
	Description
	Parameters
	this_sdlc
	cfg
	base_addr

	Return Value

	SDLC_rx_data
	Prototype
	Description
	Parameters
	this_sdlc
	rx_frame

	Return Value

	SDLC_tx_data
	Prototype
	Description
	Parameters
	this_sdlc
	tx_frame

	Return Value

	SDLC_tx_abort
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value
	Example

	SDLC_default_txv_handler
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_default_rxe_handler
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_default_rdn_handler
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_read_statistics
	Prototype
	Description
	Parameters
	this_sdlc
	statistics

	Return Value

	SDLC_read_rx_status
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_enable_interrupt
	Prototype
	Description
	Parameters
	this_sdlc
	irq_mask

	Return Value
	Example

	SDLC_disable_Interrupt
	Prototype
	Description
	Parameters
	this_sdlc
	irq_mask

	Return Value
	Example

	SDLC_set_interrupt_priority
	Prototype
	Description
	Parameters
	this_sdlc
	irq_prio_mask

	Return Value
	Example

	SDLC_cfg_struct_def_init
	Prototype
	Description
	Parameters
	sdlc_cfg

	Return Value
	Example

	SDLC_get_cfg
	Prototype
	Description
	Parameters
	this_sdlc
	sdlc_cfg

	Return Value
	Example

	SDLC_set_mode
	Prototype
	Description
	Parameters
	this_sdlc
	mode

	Return Value

	SDLC_enable_rx
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_disable_rx
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_check_rx_line_idle_status
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	SDLC_is_tx_complete
	Prototype
	Description
	Parameters
	this_sdlc

	Return Value

	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

