Table of Contents

Accessing Serial Flash Memory using SPI Interface Libero SoC and SoftConsole Flow Tutorial for SmartFusion2 SoC FPGA 3

Introduction .. 3
Tutorial Requirements 3
 Associated Project Files 4
 Target Board ... 4
Design Overview .. 4

Step 1: Creating a Libero SoC Project 5
 Launching Libero SoC 5
 Connecting Components in SPI_Flash_top SmartDesign 13
 Configuring and Generating Firmware 14

Step 2: Generating the Program File 15

Step 3: Programming the SmartFusion2 Board Using FlashPro 16

Step 4: Building the Software Application using SoftConsole 18

Step 5: Configuring Serial Terminal Emulation Program 23

Step 6: Debugging the Application Project using SoftConsole 25

Conclusion .. 30

Appendix A - Board Setup for Running the Tutorial 31

Appendix B - SmartFusion2 Development Kit Board Jumper Locations 32

Product Support ... 33
 Customer Service 33
 Customer Technical Support Center 33
 Technical Support 33
 Website .. 33
 Contacting the Customer Technical Support Center 33
 Email .. 33
 My Cases ... 34
 Outside the U.S. 34
 ITAR Technical Support 34
Accessing Serial Flash Memory using SPI Interface
Libero SoC and SoftConsole Flow Tutorial for
SmartFusion2 SoC FPGA

Introduction

The Libero® System-on-Chip (SoC) software generates firmware projects using SoftConsole, IAR, and Keil tools. This tutorial describes the process to build a SoftConsole application that can be implemented and validated using the SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) Development Kit.

The same firmware project can be built using IAR and Keil tools. Refer to the respective tutorials:

• Accessing Serial Flash Memory using SPI Interface - Libero SoC and IAR Embedded Workbench Flow Tutorial for SmartFusion2 SoC FPGA
• Accessing Serial Flash Memory Using SPI Interface - Libero SoC and Keil uVision Flow Tutorial for SmartFusion2 SoC FPGA

After completing this tutorial, you will be able to perform the following tasks:

• Create a Libero SoC project using System Builder
• Generate the programming file to program the SmartFusion2 device
• Open the project in SoftConsole from Libero SoC
• Compile application code
• Debug and run code using SoftConsole

Tutorial Requirements

Table 1 • Reference Design Requirements and Details

<table>
<thead>
<tr>
<th>Reference Design Requirements and Details</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Requirements</td>
<td></td>
</tr>
<tr>
<td>• SmartFusion2 Development Kit</td>
<td>Rev C or later</td>
</tr>
<tr>
<td>– FlashPro4 programmer</td>
<td></td>
</tr>
<tr>
<td>– USB A to Mini-B cable</td>
<td></td>
</tr>
<tr>
<td>– 12 V adapter</td>
<td></td>
</tr>
<tr>
<td>Host PC or Laptop</td>
<td>Any 64-bit Windows Operating System</td>
</tr>
<tr>
<td>Software Requirements</td>
<td></td>
</tr>
<tr>
<td>Libero SoC</td>
<td>11.3</td>
</tr>
<tr>
<td>• SoftConsole v3.4</td>
<td></td>
</tr>
<tr>
<td>• FlashPro programming software v11.3</td>
<td></td>
</tr>
<tr>
<td>USB to UART drivers</td>
<td>-</td>
</tr>
<tr>
<td>One of the following serial terminal emulation programs:</td>
<td>-</td>
</tr>
<tr>
<td>• HyperTerminal</td>
<td></td>
</tr>
<tr>
<td>• TeraTerm</td>
<td></td>
</tr>
<tr>
<td>• PuTTY</td>
<td></td>
</tr>
</tbody>
</table>
Associated Project Files

Download the associated project files for this tutorial from the Microsemi® website:
http://soc.microsemi.com/download/rsc/?f=SF2_SPI_Flash_SC_Tutorial_DF

The demo design files include:
- Libero project
- Programming files
- Source files
- Flash drivers
- Readme file

Refer to the Readme.txt file provided in the design files for the complete directory structure.

Target Board

SmartFusion2 Development Kit board (SF2_DEV_KIT) Rev C (or later).

Design Overview

This design example demonstrates the execution of basic read and write operations on the SPI flash present on the SmartFusion2 Development Kit board. This kit has a built-in Atmel SPI flash memory AT25DF641, which is connected to the SmartFusion2 microcontroller subsystem (MSS) through dedicated MSS SPI_0 interface. The SPI flash memory transfers are performed using the peripheral direct memory access (PDMA).

Read and write data information is displayed using HyperTerminal which communicates to the SmartFusion2 MSS using the MMUART_1 interface.

For more information on SPI, refer to the *SmartFusion2 Microcontroller Subsystem User Guide*.

Figure 1 shows interfacing the external SPI flash to MSS SPI_0.

Figure 1 • SPI Flash Interfacing Block Diagram
Step 1: Creating a Libero SoC Project

Launching Libero SoC

1. Click Start > Programs > Microsemi Libero SoC v11.3 > Libero SoC v11.3, or click the shortcut on desktop to open the Libero SoC v11.3 Project Manager.

2. Create a new project by selecting New on the Start Page tab (highlighted in Figure 2), or by clicking Project > New Project from the Libero SoC menu.

3. Enter the information as required for the new project and the device in the New Project dialog box as shown in Figure 3.
 - Project
 - Name: SPI_Flash
 - Location: Select an appropriate location (for example, D:/Microsemi_prj)
 - Preferred HDL type: Verilog
 - Device (select the following values using the drop-down list provided):
 - Family: SmartFusion2
 - Die: M2S050T
 - Package: 896 FBGA
 - Speed: STD
 - Core Voltage: 1.2
 - Operating conditions: COM

Figure 2 • Libero SoC Project Manager
4. Check the **Use Design Tool** check box and select **Use System Builder** in the **Design Templates and Creators** section of the **New Project** window as shown in **Figure 3**.

Figure 3 • New Project Dialog Box

Note: System Builder is a graphical design wizard. It creates a design based on high-level design specifications by taking the user through a set of high-level questions that will define the intended system.
5. Clicking **Edit Tool Profiles** (highlighted in Figure 3 on page 6) displays the **Tool Profiles** window as shown in Figure 4. Check the following tool settings:
 - Software IDE: SoftConsole
 - Synthesis: Synplify Pro ME I-2013.09M-SP1
 - Simulation: ModelSim ME 10.2c
 - Programming: FlashPro 11.3

6. Click **OK** on the **Tool Profiles** window.
7. Click **OK** on the **New Project** window. This displays the **System Builder** dialog box.
8. **Enter a name for your system**, enter **SPI_Flash** as the name of the system and click **OK**. The **System Builder** dialog box is displayed with the **Device Features** page open by default, as shown in Figure 5.
9. In the System Builder – Device Features page, check the Peripheral DMA check box under Microcontroller Options as shown in Figure 6.

![System Builder – Device Features Page](image-url)
10. Click **Next**. The **System Builder – Peripherals** page is displayed. Under the MSS Peripherals section, uncheck all the check boxes except **MM_UART_1** and **MSS_SPI_0**, as shown in **Figure 7**.

![System Builder Configurator – Peripherals Page](image-url)

Figure 7 • System Builder Configurator – Peripherals Page
11. Configure **MMUART_1** for Fabric by clicking on the **MM_UART_1** configurator highlighted as shown in Figure 8.

![Figure 8 • System Builder – Peripherals Page](image)

12. In the **MM_UART_1** configurator window, select **Fabric** from the **Connect To** drop-down list, as shown in Figure 9.
Step 1: Creating a Libero SoC Project

Figure 9 • Configuring MM_UART_1
13. Click **Next**. The **System Builder – Clocks** page is displayed, as shown in **Figure 10**. Select **System Clock** source as **On-chip 25/50 MHz RC Oscillator**. The M3_CLK is configured to 100 MHz by default.

Figure 10 • System Builder – Clocks Page

14. Click **Next**. The **System Builder – Microcontroller** page is displayed. Leave all the default selections.

15. Click **Next**. The **System Builder – SECDED** page is displayed. Leave all the default selections.

16. Click **Next**. The **System Builder – Security** page is displayed. Leave all the default selections.

17. Click **Next**. The **System Builder – Interrupts** page is displayed. Leave all the default selections.

18. Click **Next**. The **System Builder – Memory Map** page is displayed. Leave all the default selections.

19. Click **Finish**.
The **System Builder** generates the system based on the selected options. The System Builder block is created and added to the Libero SoC project automatically, as shown in **Figure 11**.

![Figure 11 • System Builder Generated System](image)

Connecting Components in SPI_Flash_top SmartDesign

Perform the following steps to connect the SmartDesign components:

1. Right-click **FAB_RESET_N** and select **Tie High**.
2. Right-click **POWER_ON_RESET_N** and select **Mark Unused**.
3. Right-click **MSS_READY** and select **Mark Unused**.
4. Right-click **MMUART_1_FABRIC** and select **Promote to Top Level**.
5. Expand **INIT_PINS**, right-click **INIT_DONE** and select **Mark Unused**.
6. Expand **FAB_CCC_PINS**, right-click **FAB_CCC_GL0** and select **Mark Unused**.
7. Click **File > Save**. The SPI_Flash_top design is displayed as shown in **Figure 12**.

![Figure 12 • SPI_Flash_top Design](image)
Configuring and Generating Firmware

The Design Firmware window displays compatible firmware drivers based on peripherals configured in the design. Following drivers are used in this tutorial:

- CMSIS
- MMUART
- PDMA
- SPI

1. To generate the required drivers click Design > Configure Firmware and uncheck all drivers except CMSIS, MMUART, PDMA, and SPI as shown in Figure 13.

 Note: Select the latest version of the drivers.

2. From the SPI_Flash_top tab, click Generate Component, as shown in Figure 14.

If the design is generated without any errors, a message, ‘SPI_Flash_top’ was generated is displayed on the Libero SoC Log window as shown in Figure 15.
Step 2: Generating the Program File

1. Double-click **I/O Constraints** in the **Design Flow** window as shown in **Figure 16**. The **I/O Editor** window is displayed after completing **Synthesize and Compile**.

2. In the **I/O Editor** window, make the pin assignments as shown in **Table 2**.

Table 2 • Port to Pin Mapping

<table>
<thead>
<tr>
<th>Port Name</th>
<th>Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMUART_1_RXD_F2M</td>
<td>R29</td>
</tr>
<tr>
<td>MMUART_1_TXD_M2F</td>
<td>R24</td>
</tr>
</tbody>
</table>

Figure 16 • I/O Constraints
These pin assignments are for connecting MMUART_1 ports TX and RX to the mini-B USB through fabric I/Os. After the pins are assigned, the I/O Editor window is displayed as shown in Figure 17.

Figure 17 • I/O Editor

3. After updating the I/O Editor, click Commit and Check.
4. Close the I/O Editor window.
5. Click Generate Programming Data as shown in Figure 18 to complete place-and-route and generate the programming file.

Step 3: Programming the SmartFusion2 Board Using FlashPro

1. Connect the FlashPro4 programmer to the J59 connector of the SmartFusion2 Development Kit.
2. Connect the jumpers on the SmartFusion2 Development Kit board as listed in Table 3 on page 17. For more information on jumper locations, refer Appendix B - SmartFusion2 Development Kit Board Jumper Locations.

CAUTION: While making the jumper connections, the SW7 power supply switch on the board must be in OFF position.
Step 3: Programming the SmartFusion2 Board Using FlashPro

3. Connect the power supply to the J18 connector.
4. Switch **ON** the SW7 power supply switch.
 Refer to Appendix A - Board Setup for Running the Tutorial for information on board setup for running the tutorial.
5. To program the SmartFusion2 device, double-click *Run PROGRAM Action* in the Design Flow window as shown in Figure 19.

Table 3 • SmartFusion2 Development Kit Jumper Settings

<table>
<thead>
<tr>
<th>Jumper Number</th>
<th>Settings</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>J70, J93, J94, J117, J123, J142, J157, J160, J167, J225, J226, J227</td>
<td>1-2 closed</td>
<td>These are the default jumper settings of the Development Kit. Ensure that these jumpers are set properly.</td>
</tr>
<tr>
<td>J2</td>
<td>1-3 closed</td>
<td></td>
</tr>
<tr>
<td>J23</td>
<td>2-3 closed</td>
<td></td>
</tr>
<tr>
<td>J121, J110, J119, J118</td>
<td>1-2 closed</td>
<td>To connect the SmartFusion2 SPI0 to the external flash</td>
</tr>
</tbody>
</table>

Figure 19 • Run Programming Action
Step 4: Building the Software Application using SoftConsole

1. After successful programming, open the SoftConsole project by double-clicking Write Application Code under Develop Firmware in the Design Flow window as shown in Figure 20.

Figure 20 • Invoking SoftConsole from the Libero SoC Software
Step 4: Building the Software Application using SoftConsole

The SoftConsole workspace is displayed, as shown in Figure 21.

Figure 21 • SoftConsole Workspace

2. Browse to the main.c file location in the design files folder:
 `<download folder>\SF2_SPI_Flash_SC_Tutorial_DF\Source Files`.

3. Copy the main.c file and replace the existing main.c file under SPI_Flash_MSS_CM3_app project in the SoftConsole workspace.
The SoftConsole window displays the `main.c` file, as shown in Figure 22.

Figure 22 • SoftConsole Workspace main.c file

4. `at25df641` SPI flash drivers are not included in the Libero generated SoftConsole workspace. To include the drivers in the SoftConsole workspace, browse to the location of the `at25df641` drivers in the design files folder:
 `<download_folder>\SF2_SPI_Flash_SC_Tutorial_DF\SPI_Flash_Drivers`.

5. Copy the `at25df641` folder to the drivers folder of SPI_Flash_MSS_CM3_hw_platform project in the SoftConsole workspace, as shown in Figure 23.

Figure 23 • Project Explorer window
This tutorial uses `printf` statements to display memory read data. Redirection of the output of `printf()` to a UART is enabled by adding the `MICROSEMI_STDIO_THRU_UART` symbol.

6. Right-click the `SPI_Flash_MSS_CM3_hw_platform` in Project Explorer window of SoftConsole project and select **Properties** as shown in Figure 24.

7. In Properties window, select **Settings** under **C/C ++ Build**.

8. Select **Symbols** under **GNU C Compiler**.

Figure 24 • Project Explorer window • Properties
9. To add a symbol, click **Add** and enter MICROSEMI_STDIO_THRU_UART in the **Add Symbol** dialog box and click **OK**.

10. Click **Apply** to save the changes made and click **OK** to close the **Properties** window.
Step 5: Configuring Serial Terminal Emulation Program

11. Perform a build by selecting Project > Clean. Leave the default settings in the Clean dialog box and click OK, as shown in Figure 26.

Figure 26 • Settings for a clean build

Note: Ensure that there are no errors.

Step 5: Configuring Serial Terminal Emulation Program

1. Install the USB driver. For serial terminal communication through the FTDI mini USB cable, install the FTDI D2XX driver. Download the drivers and the installation guide from: www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip.

Superseded
2. Connect the host PC to the J24 connector using the USB Mini-B cable. The USB to UART bridge drivers are automatically detected. Of the four COM ports, select the one with Location as **on USB Serial Converter D**. Figure 27 shows an example Device Manager window.

![Device Manager Window](image)

Figure 27 • Device Manager Window

3. Start the HyperTerminal session. If the HyperTerminal program is not available in the computer, any free serial terminal emulation program such as PuTTY or TeraTerm can be used. Refer to the **Configuring Serial Terminal Emulation Programs Tutorial** for configuring the HyperTerminal, TeraTerm, or PuTTY.

 The HyperTerminal settings are as follows:
 - 57,600 baud rate
 - 8 data bits
 - 1 stop bit
 - No parity
 - No flow control
Step 6: Debugging the Application Project using SoftConsole

1. Select **Debug Configurations** from the **Run** menu of the SoftConsole. The **Debug Configurations** dialog box is displayed. Double-click **Microsemi Cortex-M3 Target** to view the configurations, as shown in **Figure 28**.

2. Ensure that the following values are filled in the corresponding fields:
 - **Name**: SPI_Flash_MSS_CM3_app Debug
 - **Project (optional)**: SPI_Flash_MSS_CM3_app
 - **C/C++ Application**: Debug\SPI_Flash_MSS_CM3_app

3. Click **Debug**.

4. On the **Confirm Perspective Switch** window, click **Yes**, as shown in **Figure 29**.

Figure 28 • Debug Configurations

Figure 29 • Confirm Perspective Switch
5. The **SoftConsole Debugger Perspective** window is displayed, as shown in **Figure 30**.

![SoftConsole Debugger Perspective](image)

Figure 30 • **SoftConsole Debugger Perspective**
6. Run the application by clicking **Run > Resume**. Read data from SPI Flash is displayed along with a greeting message on the HyperTerminal, as shown in Figure 31.

Figure 31 • HyperTerminal Window

7. Terminate execution of the code by choosing **Run > Terminate**.

8. Launch the debug session by selecting **Debug Configurations** from the **Run** menu of SoftConsole.
9. Click the **Registers** tab to view the values of the ARM® Cortex™-M3 processor internal registers, as shown in Figure 32.

![Fig 32](image1.png)

Figure 32 • Values of Cortex-M3 Internal Registers

10. Click the **Variables** tab to view the values of variables in the source code, as shown in Figure 33.

![Fig 33](image2.png)

Figure 33 • Values of the Variables in the Source Code
11. In the **Debug** window, select **Window > Show View > Disassembly** to display the assembly level instructions. The **Disassembly** window with assembly instructions is displayed on the right-side of the Debug perspective, as shown in **Figure 34**.

Figure 34 • Assembly Level Instructions

12. Source code can be single-stepped by choosing **Run > Step Into** or **Run > Step Over**. Observe the changes in the source code window and Disassembly view. Performing a Step Over provides an option for stepping over functions. The entire function is run but there is no need to single-step through each instruction contained in the function.

13. Click **Instruction Stepping ()** and perform **Step Into** operations. Observe that **Step Into** executes a single line of assembly code.

14. Click **Instruction Stepping** to exit the instruction stepping mode. Single-step through the application and observe the instruction sequence in the source code window of the Debug perspective, and the values of the variables and registers.

15. Add breakpoints in the application to force the code to halt, then single-step and observe the instruction sequence.

16. When debug process is finished, terminate execution of the code by choosing **Run > Terminate**.

17. Close Debug Perspective by selecting **Close Perspective** from the Window menu.

18. Close SoftConsole using **File > Exit**.

19. Close the HyperTerminal using **File > Exit**.
Conclusion

This tutorial provides steps to create a Libero SoC design using the System Builder. It describes the procedure to build, debug, and run a SoftConsole application. It also provides a simple design to access SPI flash.
Appendix A - Board Setup for Running the Tutorial

Figure 1 shows the board setup for running the tutorial on the SmartFusion2 Development Kit board.

Figure 1 • SmartFusion2 Development Kit Setup
Appendix B - SmartFusion2 Development Kit Board Jumper Locations

Figure 1 shows the jumper locations on the SmartFusion2 Development Kit board.

Note:
- Jumpers highlighted in red are set by default.
- Jumpers highlighted in green must be set manually.
- The location of the jumpers in Figure 1 are searchable.
Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

Superseded
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense and security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 3,400 employees globally. Learn more at www.microsemi.com.