@ Micr Osemi Application Note AC392

SmartFusion2 SoC FPGA SRAM Initialization from
eNVM

Table of Contents

References e 1
Introduction L e e A 2
Tools Required e 2
Embedded SRAM Blocks in SmartFusion2 SoOCFPGAso ... 2
SRAM Initialization Reference Designs L 400 ool 6
Initialize SRAM using Cortex-M3 ProcessorastheMaster <. 10
Initializing the SRAM using Fabric Mastero A 14
Customizing the Wrapper Interface 40 oL Lo 21
Conclusion L e e 22
Appendix A - Design and Programming Files o . 0o L L4 22
ListofChanges A 23
References

The following list of references is used in this document. The references complement and help in
understanding the relevant Microsemi® SmartFusion®2 system-on-chip (SoC) field programmable gate
array (FPGA) device features and.flows that are demonstrated in this document:

* SmartFusion2 Microcontroller Subsystem User Guide

» SmartDebug — Hardware Design Debug Tools Tutorial

* SmartFusion2 Development Kit‘Board

* SmartFusion2 MSS Embedded Nonvolatile Memory (eNVM) Simulation
* SmartFusion2 SoC FPGA Fabric User Guide

April 2014

© 2014 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_content&id=1645&lang=en&view=article
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_mss_envm_sim_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133136
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Introduction

SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices have embedded
static random access memory (SRAM) blocks in fabric. There are two types of SRAM blocks in
SmartFusion2 FPGA fabric: Large SRAMs (LSRAMs) and Micro SRAMs (uSRAMs). The LSRAMSs are
used for storing large data or for creating big FIFOs. The LSRAM and uSRAM blocks are volatile memory
types, the stored data disappears in the absence of power. After the device is powered-up, the content of
SRAM is unknown. There are some applications which require the SRAM data to be initialized and
validated after power-up.

There are several methods of initializing the LSRAM and uSRAM. This document offers two solutions for
implementing this initialization method, and also provides the design examples. The design examples
describe initializing the fabric SRAM blocks after power-up with the initialization data from.the embedded
non-volatile memory (eNVM) block using the ARM® Cortex™-M3 processor or fabric logic as the master.
The Cortex-M3 processor or the fabric master transfers the data from eNVM to the SRAM blocks after
power-up.

Figure 4 and Figure 5 show block diagrams of the design examples. The reference designs use the
SRAM block configured as a two-port memory, but this initialization approach can be used for all the
variations of LSRAM and uSRAM in the SmartFusion2 SoC FPGA device. The teference design is
simulated and tested on silicon using SmartFusion2 Development Kit board.

Tools Required

Table 1 lists the reference design requirements and details.
Table 1 » Reference Design Requirements and Details

Reference Design Requirements and Details ‘ Description

Hardware Requirements

SmartFusion2 Development Kit ‘ Rev C or later

Software Requirements

Libero® System-on-Chip (SoC) 11.3
FlashPro programming software 11.3
SoftConsole 34
Terminal Emulator. Program HyperTerminal or Equivalent

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

This section describes the fabric SRAM blocks in various SmartFusion2 devices and clarifies their
differences.

Table 2 lists the types of fabric SRAM blocks in various SmartFusion2 SoC FPGA devices.

Table 2+ SRAM Blocks in Various SmartFusion2 SoC FPGA Devices

Features M2S005 M2S010 M2S025 M2S050 | M2S090 | M2S100 | M2S150
LSRAM 18K Blocks 10 21 31 69 109 160 236
uSRAM 1K Blocks 11 22 34 72 112 160 240
Total RAM (KBits) 191 400 592 1,314 2074 3040 4488
The LSRAM blocks can be configured as a dual-port SRAM or two-port SRAM. LSRAM configured as
dual-port SRAM provides two independent access ports: Port A and Port B. In dual-port mode, data can
be transfered through these ports independently based on various parameters. Each port has its own
address, data in, data out, clock, clock enable, and write enable. LSRAM configured as two-port SRAM
2 Revision 5

& Microsemi

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

has Port A dedicated to read operations, and Port B dedicated to write operations. The read and write
operations in LSRAM are synchronous and require a clock edge.

The uSRAM has two read ports (Port A and Port B) and one write port (Port C). The read ports operate
either in synchronous or asynchronous modes. The write operation is performed only in synchronous
mode.

The SRAM blocks support rich variations in size and features of memory blocks for SmartFusion2 SoC
FPGA devices. Although these variations require changes for a specific implementation of initializing the
SRAM blocks, the changes are not significant enough to affect the fundamentals of the reference design.
Therefore, the two reference designs target only the LSRAM block. The effects of feature and size
variations on the reference designs are discussed in the "Customizing the Wrapper Interface" section on
page 21.

SmartFusion2 SoC FPGA eNVM Controller for Data Storage

The design example uses the eNVM array in microcontroller subsystem (MSS) as the source of the
SRAM initialization. The flash memory block in the eNVM is used to store the SRAM initialization data,
and it is loaded to SRAM after power-up. The eNVM controller is an advanced high-performance bus
(AHB) slave that provides access to eNVM. It converts the logical AHB addresses to physical eNVM
addresses, and allows to command the eNVM to perform specific tasks such as read, and write
operations. For more information, refer to Embedded eNVM Controller section in the SmartFusion2
Microcontroller Subsystem User Guide.

In the design examples, the data is defined first to be programmed into, eNVM, which is used for the
SRAM initialization. The user can define an eNVM "Data Client", which-is configured as 64x8 using the
eNVM configurator. Figure 1 shows the eNVM configurator graphical user interface (GUI) in Libero SoC
that is accessed through the System Builder tools.

> Device Features » » _Memories » »_Peripherals ») Clocks) » _Microcontroller ») _SECDED)) Security » y _Interrupts » .

Configure your external and embedded memories

[ENVM \
Available Client types User Clients in eNVM
Data Storage =
Serialization Client Type Cllent Name Depthxwidth Start Address(Hex) Page Start Page End Initialization Order Lock
I [) Data Storagel =t WL
O Modify Data Storage Clie
Client name: sram_data
eNvM
‘ Content:
Add to System...
Q) Memory file: AM_INIT/constraint/sram_envm.mem :}
Usage Stafistics
Format:
Available Pages: 2032
Uked Pages: a Use absolute addressing €
Free Pages: 2031 Content filled with 0s
No Content (Client is a placeholder)
Start address: 0x 800 <
Size of word: bits
Number of Words: 64 (decimal)
[[JuseasroM @
["] use Content for Simulation

Figure 1 » Data Storage eNVM Client (System Builder)

Revision 5 3

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Page 16 (start address 0x800) is used here for demonstration purposes. Figure 2 shows an excerpt of
the data storage client content using Microsemi binary scheme (sram_envm.mem) that is defined in the
eNVM. The sram_envm.mem file is included in the Libero project under the constraint folder.

=l sram_envm.mem l

1 00000001 -
00000010
00000011
00000100
00000101 —
00000110
01010011
11111111
01010011
10 11111111
11 01010101
12 11100010
13 10101010
14 11110000
15 01010011
l1é 11111111
17 01010011 N

m

=] o Lnod W Da

oo

Dos\W ANSI INS

Figure 2 « Memory file Content Saved into the eNVM

4 Revision 5

& Microsemi

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

SRAM to APB3 Wrapper

The section describes connecting the SRAM block to the advanced microcontroller bus architecture
(AMBA®) APB3 bus system. To move the data from eNVM to SRAM using the Coretex-M3 processor as
the master or a fabric master, the user needs to create a wrapper logic around the SRAM block. The
wrapper generates the write enable and read enable for SRAM using the APB3 bus signals. Figure 3
shows the state diagram for the APB3 bus specification.

No Transfer

IDLE
PSELx=0
PENABLE=0

Transfer

PREADY=1
and No
Transfer

SETUP
PSELx=1
PENABLE=0

PREADY=1
and Transfer

PREADY=0

ACCESS
PSELx=1
PENABLE=1

Figure 3 + APB3 State Diagram

Following are the three states:
« IDLE: This is the default state for the peripheral bus.

+ SETUP: When a transfer is required, the bus moves to this state where the appropriate select
signal PSELx is asserted. The bus remains in this state for one clock cycle only and always
moves to the ACCESS state on the next rising edge of the clock.

* ACCESS: In this state, the enable signal PENABLE is asserted. The address, write, and select
signals should be stable during the transition from SETUP to ACCESS state. The transition from
the ACCESS state is controlled by the PREADY signal from the slave.

— |/ If PREADY is held low by the slave, then the peripheral bus remains in the ACCESS state.

< If PREADY is held high by the slave and no more transfers are required, the bus transitions
from the ACCESS state to the IDLE state. Alternatively, if another transfer follows, the bus
moves directly to the SETUP state.

In this design example, the wrapper logic generates the write enable and read enable for SRAM using
the PSEL, PWRITE, and PENABLE signals. The PREADY signal is used to insert the wait state.

Revision 5 5

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

SRAM Initialization Reference Designs

This document discusses two methods of initializing the fabric SRAM. The first method uses the Cortex-
M3 processor as the master that transfers the data from eNVM to SRAM. The second method uses a
master in the fabric to transfer the data from eNVM to SRAM. The two reference designs are described
and analyzed in the following sections:

» Cortex-M3 Processor as the Master: This section describes the method of initializing SRAM using
the Cortex-M3 processor as the master.

» Fabric Master:This section describes the method of initializing SRAM using a fabric master.

Cortex-M3 Processor as the Master

The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. This design
implements an advanced peripheral bus 3 (APB3) slave wrapper interface on Port A and Port B of the
SRAM block, and the APB3 wrapper is memory mapped to the MSS. The user can also implement the
AHBLite wrapper instead of APB3 wrapper on the SRAM block and connect to the MSS. However, the
APBS3 interface is much simpler than the AHBLite interface, and it is easy to create this interface with the
SRAM ports. This APB3 slave wrapper interface is connected to the MSS' through the CoreAPB3,
CoreAHBTOAPB3, CoreAHBLite and fabric interface controller (FIC_0) interface as shown in Figure 4.
FIC_0 and FIC_1 enable the connectivity between the fabric and.the MSS. The FIC 0 is part of the MSS,
and performs a bridging functionality between MSS and FPGA fabric. The FIC can be configured either
in the AHBLite mode or in the APB3 mode. In this design example, the FIC_0 is configured in the
AHBLite, so that the other AHBLite blocks in the fabric can be connected to MSS through FIC. Figure 4
shows a top level block diagram of the design example using.the Cortex-M3 processor as the master.

The muxing arbiter block in the APB3 slave wrapper allows switching the SRAM ports as user-ports after
the initialization is done. The Cortex-M3 processorin MSS acts as a master to read data from eNVM after
powering-up and initializing the fabric SRAM block. After the initialization is done, the APB3 wrapper
interface asserts a SEL signal for muxing arbiter to switch the SRAM ports as user-ports. After the
initialization in done, the user reads/writes from/to SRAM block can be started. Figure 4 shows the
design example block diagram using the Cortex-M3-processor as the master.

Cortex-M3 eNVM
Processor
FICO MSS
A
; Y Fabric
CoreAHBLite 4—“—>
Y
CoreAHBLITETOAPB3
A
CoreAPB3 & y .
J'}
Y
SRAM to APB3)) User RAM
Slave V\(I)rapper -t - Muxing Arbiter <s—m |nterface
SEL A
Y
SRAM
RAM with_wrapper Block

Figure 4 » Design Example Block Diagram

6 Revision 5

& Microsemi

SRAM Initialization Reference Designs

Interface Description

Table 3 shows the top-level Cortex-M3 processor as the master interface signal descriptions.
Refer to SmartFusion2 SoC FPGA Fabric User Guide for more details on the LSRAM and uSRAM
functionalities and features.

Table 3 « Top-level Cortex-M3 Processor as the Master Interface Signals

Signal Direction Description
raddr_user[5:0] Input User read address
rclk_user Input User read clock
rd_enable_user Input User read enable
waddr_user[5:0] Input User write address
wclk_user Input User write clock
wdata_user[7:0] Input User write data
wr_enable_user Input User write enable
rdata_user[7:0] Output User read data
INIT_DONE Output Initialization complete
DEVRST_N Input Active low reset
MMUART_0_RXD_F2M Input Uart RX input (for debug only)
MMUART_0_TXD_M2F Output Uart TX output (for debug only)
SEL Output Selection for RAM muxing logic (for
debug only)

Status Output

The INIT_DONE output of the reference design indicates the sequence of initialization done. At power-
up, it is asserted as low to indicate the start of initialization process. It remains low until the Cortex-M3
processor or a fabric master finishes reading the data from eNVM and writing it to SRAM. Once
INIT_DONE output is asserted, the asserted state indicates the end of initialization process. The Port A
and Port B of SRAM interface are available to the user for read and write access operations.

Revision 5 7

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Fabric Master

The design is similar to the design that is implemented using the Cortex-M3 processor as the master.
The fabric acts as a master to read data from eNVM after powering-up and initializing the SRAM block.
After the initialization is done, the APB3 wrapper interface asserts a SEL signal for muxing arbiter to
switch the SRAM ports as user-ports. After the initialization is done, the write and read data to/from the
SRAM block can be started. The INIT_DONE output of the reference design indicates the sequence of
initialization done. Figure 5 shows a top level block diagram of the design example.

MSS eNVM
CoreAHBLite
CoreAHBLITETOAPB3 Fabric Master
CoreAPB3
SRAM to APB3 Musxing Arbiter User RAM
Slave wrapper Interface
SEL T
RAM_with_wrapper SRAM block

Figure 5 » Design Example Block Diagram using Fabric Master

The Fabric Master block shown in Figure 5 acts as an AHB_lite master logic to read data from eNVM and
write it to SRAM. The AHB-Lite master drives the address and controls the signals onto the bus after the
rising edge of HCLK. If HREADY is in low state, the Fabric Master waits. If HREADY is in high state, the
logic moves to the data phase. During the data phase, if HREADY is in low state, the AHB-Lite master
holds the data stable throughout the extended cycle for a write operation, or read the data only after
HREADY is in high state. Figure 6 shows the state diagram for the fabric master.

8 Revision 5

& Microsemi

SRAM Initialization Reference Designs

Figure 6 Fabric Master State Diag

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Interface Description for Fabric Master Design

Table 4 shows the top-level interface signal descriptions.

Table 4 « Top-level Interface Signals

Signal Direction Description

raddr_user[5:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

waddr_user[5:0] Input User write address

rdata_user[7:0] Output User read data

wclk_user Input User write clock

wdata_user[7:0] Input User write data

wr_enable_user Input User write enable

INIT_DONE Output Initialization‘complete

DEVRST_N Input Active Low reset

MMUART_0_RXD_F2M Input Uart RX input (for debug only)

MMUART_0_TXD_M2F Output Uart TX output (for debug only)

RESP_err[1:0] Output Ahb error response

ram_init_done Output Initialization complete

SEL Output Selection for RAM muxing logic (for
debug only)

ahb_busy Qutput Ahb busy indication

Initialize SRAM using Cortex-M3 Processor as the Master

This section explains the following topics:

* Hardware Implementation
* Firmware and Application Code Software Implementation

+ Simulating Reference Design with the Cortex-M3 Processor as the Master
* Running the Design with the Cortex-M3 Processor as the Master

10

Revision 5

& Microsemi

Initialize SRAM using Cortex-M3 Processor as the Master

Hardware Implementation

The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. The MSS along
with FIC_0, MMUART, and the eNVM are configured using System Builder. Through the System Builder,
the design is configured to use a 50 Mhz RC oscillator as a reference clock for the fabric phase-locked
loop (PLL). The fabric PLL then generates a 100 Mhz clock that is used as the main system clock. The
design example consists of MSS, SRAM wrapper logic, and IP cores (CoreAHBToAPB3, CoreAPB3) as

shown in Figure 7.

my_mss_top_0
[DEVEST I DEVRST N FIC 0
4P FAB RESET N mﬁlsc UI;EEOCK
MMUART 0 FABRICE ~@ENMMUART_U_FABRIC]
MMUART_0”TXD_M ! o
MMUART D RXD_F2
~ TINIT_PINSH

AHBs!
save B AVBA SLAVE 0

COREAHBTOAFB3_0

—:HCLK
HRESETN

CoreAPB3 0
[rdls

L M @8 APBmaster

BIF_13——350

RAM_with_wrapper_0

wr_enable_user INT_QUTEX
. rclk_user — TSELP—
rd_enable_user rdata_user[7:0]——
- welk user - -
- PRESETN
PCLK
raddr user[S:U[l
:U]

= = e
& ;i B waddr_user[5
i 450

Figure 7 » Top-Level Hardware Design for Cortex-M3 Processor as the Master

CoreAHBLite IP is generated and used automatically inside the System Builder block. The IP cores along
with the SRAM wrapper are used to initialize the fabric SRAM by moving the data from eNVM to the
fabric SRAM through the FIC_0 AHB master interface. A Data Storage client is defined in the eNVM with

the data to be written to the SRAM.

Revision 5 1

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Firmware and Application Code Software Implementation

Firmware and application code is required only while using the Cortex-M3 processor as the master. This
design example includes the MSS MMUART_O block. The MMUART_0 block is used so that the
initialization sequence and the debug of SRAM block can be viewed through HyperTerminal. The
software design includes an initialization function (nvm_access()) that reads the eNVM content and
writes it to the SRAM block.

nvm_access ()

This function reads the eNVM content which is loaded during SmartFusion2 SoC FPGA device
programming. Each read output is 64-bit data. It converts the 64-bit data to four sets of 8-bit data, and
then writes each set of 8-bit data to four SRAM locations. This process (read, ‘convert, and write)
continues until the last SRAM address is initialized. It also reads back the SRAM content to check the
data.

Note: Once the last address location is written, the SEL signal is generated and the SRAM interface is
switched to User mode, so the last address read back should be seen as zeros.

Simulating Reference Design with the Cortex-M3 Processor as the
Master

The design file includes the test bench files to run simulation in/the Libero SoC. The simulation uses the
bus functional model (BFM) command to exercise data transfer between the MSS and the fabric.

Note: After system reset, the BFM has several commands to load the eNVM content, which is not needed
for software implementation.

The BFM has the following sequence:
1. Setting access privileges to eNVM
2. Writing the initialization data to eNVM (for simulation only)

3. Reading from eNVM and then write to SRAM Reading SRAM through the MSS and check the
data

Figure 8 shows the BFM simulation transcript results and Figure 9 shows the Modelism presynthesis
simulation waveform results.

{3 Transcript — s H i x|
BFM:Write t/© last data to finish the initilization _:J
BFM: 32868¢write w 300000£f0 000000aa at 57740 ns

SFM: Data Read 300000e8 00000000 at 57800.010000ns

BFM:32869:write w 300000f4 000000bb at 57810 ns

SFM: Data Read 300000ec 000000ff at 57870.010000ns

BEM: 32870 write w 300000f8 000000cc at 57880 ns

BFM: Data Write 300000f0 000000aa

BFM: 32871:write w 300000fc¢ 000000dd at 57910 ns

BFM: Data irite 300000f4 000000bb

BFM: 32894 return

BFM:24: return

BFM: Data Write 300000f8 000000cc

BFM: Data Write 300000fc 000000dd
‘###

#
MS8S BFM Simulation Complete - 408 Instructions - NO ERRORS

#

S S S S :j
v

EE R EEEEE RS

Now: 70 us Delta: 10 sim:/my_testhench p

Figure 8 - BFM Transcript Simulation Results

12 Revision 5

& Microsemi

Initialize SRAM using Cortex-M3 Processor as the Master

Hex||

g tatizan|a-a-= @r@“ QUL @t e=E nmjulma@ e |

F@JJJ B| | & LTl T & 5|35 mrcnlijfsﬁmsz EELEEEITT R

£ fmy_testbench/Top_|
— New Divider

£ fmy_testbench/Te

Cme
L]

I -
| N A S RN—
30000004 00 5mn3mmm:mmmammm POEVEERCTOIREIERERECOLEURRVRIPRIITIOCEVE

000053 AR DHACY
0o0a00

[N #0710 60 o1 717 €0 D)11 PRV YU 00 FEPFYCOVRR YRR PRRRTR OO
I

DU TDHCH A
I BB B8]

e s S R 1)1 30 D B) i
BRI B)
DR DDA
mi;mmmmmmmmmw
70000 ne ,

Cursor 1 | 50256.712278 s

[T 3

| 48693750 ps to 56726017012 5 | sims/my_testbench/Top_M3_Master_0jmy_mss_top_0/my_mss_Ofmy_mss_MSS_Q/FIC_0_AHB_M_HREADY

Figure 9 - MSS Master Design Example Waveform

Running the Design with the Cortex-M3 Processor as the Master

This section describes running the Cortex-M3 processor as the master design example in SmartFusion2
Development Kit.

1.

Program the SmartFusion2 SoC FPGA device Development Kit board with the provided Cortex-
M3 processor as the master STAPL file (refer to "Appendix A - Design and Programming Files" on
page 22).using FlashPro4.

Set the jumpers on the Development Kit board as:

a.J129 (Pin 2 - Pin 3)

b.J133 (Pin2 - Pin 3)

Connect the USB to PC.

Invoke the SoftConsole integrated design environment (IDE) from Libero SoC project and launch
the debugger.

Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or Tera Term can be used. Refer to Configuring Serial
Terminal Emulation Programs tutorial for configuring HyperTerminal, Tera Term, or PuTTY.

Revision 5 13

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

6. Run the debugger in the SoftConsole, the HyperTerminal window shows the initialization
sequence by reading eNVM and writing to SRAM. Figure 10 shows the screenshot of
HyperTerminal.

a COM19:57600baud - Tera Term

| Flle Edit Setup Control Window Help
pooooSnartFusion2: Start SRAM Initialization»eeee -

30000000 78
1 Reading from eNUM...
60.0.8.0 4030201

1 2 3 4

Uriting to SRAM...
tBBOgOBB 1

SRRH..i

to SRAM...
2

SRAM. ..

Reading
30000004
Uriting to SRAM...
30000008 3
Reading SRAM...
:BIBIBIS

Uriting to SRAM...
3000000C 4
Reading SRAM...
:BIBIBIC
Reading from eNUH...
8000804FF530685

5 6

53 FF

WUriting to SRAM...
30000010 5

Reading SRAM...

:BIBIBIB 5

WUriting to SRAM...

30000014 6

Reading SRAM...

:Bl0l014 6

Uriting to SRAM...

30000018 53

Reading SRAM...

:BlBlBis 53

Uriting to SRAM...

3000001 C FF

Reading SRAM... Y

Figure 10 * Screenshot of HyperTerminal Showing the Design Example

Initializing the SRAM using Fabric Master

The fabric master design implementation is similar to the Cortex-M3 processor master design except that
the master is responsible for moving the initialization data from the eNVM to SRAM master in the fabric.

The following section details the hardware implementation using a fabric master. In addition, it also
details how to simulate the provided design along with the steps on how to run the design on the
SmartFusion2 Evaluation Kit board:

14 Revision 5

& Microsemi

Initializing the SRAM using Fabric Master

Hardware Implementation

The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. Through the
System Builder, the design is configured to use a 50 Mhz RC oscillator as a reference clock for the fabric
phase-locked loop (PLL). The fabric PLL then generates a 100 Mhz clock that is used as the main
system clock. The design example consists of MSS, SRAM wrapper logic, fabric master
(AHBMASTER_FIC_0) as shown in Figure 11.

| AHBMASTER_FIC_0
B HCLK ahb_busy
HRESETn ram init_done
2B START RESP_er[1:0] o

Fabric Master

.—‘ @BIF_1

AMBA_MASTER_O

my_mss_top 0

[DEVRST N0® | ® DEVRST N MSS READYB——
I FAB RESET N POWER ON RESET NBX
—P M3_RESET_N MMUART_0” FABRICE® L pEIVIMUIART 0_FABRIC |
IMT-PINSH
FIC_0_PINS &= B Clock CCC
g
o
=
il
2
z #
=
[T
m

RAM_with_wrapper_0

wr_enable_user INT_OQUT
rd”enable user ~SEL
wclk_user rdata_user[7:0] _

rclk user
PRESETN
PCLEK
waddr userE:U]

wdata_user[7:0
raddr_user[5:0]

dr_user’:
fa user| /[
dr_user(5:

Figure 11 » Top-Level Hardware Design for Fabric Master

The SRAM wrapper along with the fabric master is used to initialize the fabric SRAM by moving data from
the eNVM to the fabric SRAM through the FIC_0 AHB master interface. The System Builder is mainly
used to configure the MSS, eNVM Data Storage client, and FIC interface. A Data Storage client is
defined in the eNVM with the data to write to SRAM. Refer to Figure 1 and Figure 2 for more details.

At power-up or at power-on reset, the Cortex-M3 processor fetches the initial stack pointer from
0x00000000 (eNVM address 0x60000000) and address of the reset handler from 0x00000004 (eNVM
address 0x60000004). If the execution control goes to the default reset handler, the boot up sequence is
executed and the execution control moves to the user boot code. The Cortex-M3 processor is not used
for this particular design since there is no user boot code implemented for it. The user can expose the

Revision 5 15

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

reset signal M3_RESET_N and tie it LOW to keep the Cortex-M3 in reset as shown in Figure 11.

Note: To expose the M3_RESET_N signal, the System Builder block is re-opened as SmartDesign block.
Refer to "Modifying/Inspecting Your System Builder Design" section in SmartFusion2 System
Builder User' s Guide for more details.

Simulating Reference Design with a Fabric as Master

This section describes the detail of simulating the fabric master design using the top-level test bench,
which is automatically generated by SmartDesign for Top_Fabric_Master component using the “Use
Content for Simulation” option in the Data Storage Client Configurator as shown in Figure 12.

-
(=} Modify Data Storage Clien i -

Client name: my_envM
eNVM
Content: I

@ Memory file: “AB_MST_RAM_INIT/constraint/sram_snvm_orig.mem E

[7] Use absolute addressing e

() Content filed with 0s

) Mo Content (Client is a placeholder)

Start address: Ox 800 [%
Size of word: bits
Mumber of Words: &4 \ {decimal)

[UseasroM D

IJse Content for Simulation

Help ' [Ok] [Cancel

Figure 12 « Use Content for Simulation Data Storage for Client Option

By using “User Content for Simulation” option, the Data Client mem file content is automatically used by
the simulation model and the user do not have to emulate the process of writing into eNVM.

16 Revision 5

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

& Microsemi

Initializing the SRAM using Fabric Master

Figure 13 shows the simulation transcript waveform results showing the eNVM read data at the
equivalent eNVM address.

1 Transcript H Y x|
Loading SmartFusion2.UDE DL -
%% ENVM init.mem.

Fow 0.

§ o 32768.

NVM_0: Write into CMD Reg Zddr: 1fc : CMD: 00 : Page#: 00 : Sectorf: 00
§ NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 43410 ns
NVM_0: User Read Data: : Time: 43500 ns
§ NVM_0: User Read Data: 3Z2"h00003001 : Mem Address: 120 : Time: 43680 ns
¥ NVM 0: User Read Data:|32'hf£530605 |: pem Zddress: ED4|: Time: 43750 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 43330 ns
§ NVM_0: User Read Data: 32'he255f££53 : Mem Address: B0B : Time: 44020 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 44200 ns
§ NVM_0: User Read Data: 32'hff53f0aa : Mem Address: BOc : Time: 44270 ns
¥ NVM 0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 44450 ns=
§ NVM_0: User Read Data: 32'he255f£53 : Mem Address: B10 : Time: 44540 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 44720 ns
NVM_0: User Read Data: 32'hff53f0aa : Mem Address: 814 : Time: 44790 ns
§ NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 44570 ns
¥ NVM 0: User Read Data: 32'he255££f53 : Mem Address: 818 : Time: 45060 =
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 45240 ns
¥ NVM 0: User Read Data: 32'hff53f0aa : Mem Address: 8lc : Time: 45310 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 45490 ns
NVM_0: User Read Data: 32'he255f££53 : Mem Address: B20 : Time: 45580 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 45760 ns
§ NVM_0: User Read Data: 32'hff53f0aa : Mem Address: B24 & Time: 45830 n=
¥ NVM 0O: User Read Data: 32'h00003001 : Mem Address: 120 2 Timie: 46010 ns=
§ NVM_0: User Read Data: 32'h0201££53 : Mem Address: B28(: Time: 46100 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 46280 ns
NVM_0: User Read Data: 32'h06050403 : Mem AddreSs: 82c : Times 46350 ns
§ NVM_0: User Read Data: 32'h00003001 : Mem Address: 120ms Time: 46530 ns
¥ NVM 0: User Read Data: 32'he255£f£f53 : Mem Addresss: 830 = Time: 46620 ns=
NVM_0: User Read Data: 32'h00003001 : Mem /[Address: 120 i Time: 46800 ns
¥ NVM 0: User Read Data: 32'hff53f0aa : Mefm Address: 8344z Time: 46870 ns
NVM_0: User Read Data: 32'h00003001 : Mem Address: 120 : Time: 47050 ns
NVM_0: User Read Data: 32'h0201££53 : Mem Address: B3B8 : Time: 47140 ns
NVM_0: User Read Data: 32'h00003004 ¢ Mem Address: 120 : Time: 47320 ns
§ NVM_0: User Read Data: 32'h06050403 : Mem Address: B3c : Time: 47390 ns
VSIM 2> -

|Now: 100 us Delta: 10 |si.m:!teslbench |

Figure 13 » Transcript eNVM Data and Address Results

Revision 5 17

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Figure 14 and Figure 15 show the Modelsim presynthesis simulation waveform results.

3| e] [RgeFam

A PenchTop M1 Mamter EMIRSTER FIC_Dham it done

— b S
Pty M1 Manter (UMM mith_mracper O faed 3iEADOR
PG Top M Manter QA st srapper OFFRM G 3RO
i M Mariter BN maty e aroer 05500 feamd GEEN
Pty o M1 Manter_QEUAM_mith aracomr_O/SFAM Gl 3/WAD0R:
FamSanchTop M Manter QAN s srapper OFFRM G 31K
M M U RN mal_ e e DSIRAM el 2IWE
ey e M Paber_0JFUMS_walt_srappver_0/SFUN_BAnS. 0 WER

AXNraOORY & e i LI | e eaeraih ATIOLE

Figure 14 « Fabric Master Design Example Simulation Waveform (1)

e Yoew fdd Fgrman Teok Boopmads ffedos Help

e - Tetmt

H-gE & RO Mttt tasd-2-00-9|| GELEHD|| 4 m- @ nlENGHS | T RS
DR T - S N B - of - B T

Figure 15 shows the HRDATA is 04030201 at the.eNVM address 800 which matches with the SRAM

read data on WD.

&) Wave - Default

CEH & FBRBOO-ME|| Rt KRS

| T a0 | $E BT || %t me EF] 100 e Y AEELR G W WO

e x|

INEEIE
.
ftastbench/SYSCLK
ftestbench/NSYSRESET
— SRAM Signals
4 ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HCLK
4 ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HRESETn
= <% jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HADDR.
£-“ /testbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HTRANS
“a ftestbench/Top_Fabric_Master_0/AHBMASTER_FI
B-“- ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_(/HSIZE
£ ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HEURST
E-“. ftestbench/Top_Fabric_Master_0/AHIMASTER_FIC_O/HPROT
B-“- ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HWDATA
3% ftestbench/Tap_|
4 ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HREADY
B¢ ftestbench/Top_Fabric_Master_0/AHBMASTER_F]
4 ftestbench/Top_Fabric_| d
B-“. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/RESP_err
“a ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/ahb_busy
“w ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/ram_init_done

M

Bt
£ ftesthench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RCLK
4 frestbench/Top_Fabric_I /RAM_with_wrapper_0/SRAM_64x8_0/REN
B¢ ftesthench/Top_Fabric_Master_0/RAM_wi

E<

£ ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/WEN
B ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RD

Cursor 1 [328103 fs
4

| KT [T e Tl

IIEEaE - 4 I EEL T T T
ISgs

i o1 02 GE}
|
| 01 02 03

Tor 02 03

43201241279 f5 to 43683135042 | sim:/testbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HTRANS [1:0]

Figure 15 « Fabric Master Design Example Simulation Waveform (2)

18 Revision 5

& Microsemi

Initializing the SRAM using Fabric Master

Running the Design with a Fabric Master

This section describes running the design example in SmartFusion2 Development Kit board where
SRAM is initialized using a master in the fabric instead of the Cortex-M3 processor. The content of eNVM
and SRAM is checked with real-time data using the SmartDebug tools as shown in the following steps:
1. Program the SmartFusion2 SoC FPGA device Development Kit Board with the provided fabric
master version of STAPL file (refer to "Appendix A - Design and Programming Files" on page 22)
using FlashPro4.
2. Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow window
as shown in Figure 16.The SmartDebug window is displayed.

:DesgnFlow & X

e o[¢

Tool
E’: Update eNVM Memory Content
v 4 » Program Design
v E‘ Generate Programming Data
v E‘ Run PROGRAM Action
4 » Debug Design

—)L
4) Ha;d(;f—[);iqn for Production -

| Desg.. | Desgnier. | StmaiiSiie. | Gatalog’| Fies

{© SmartDebug Design

Figure 16 Launching SmartDebug Design Tools

3. Click View Flash Memory Content to retrieve the eNVM content from the device using the
SmartDebug window as shown in Figure 17.

The Flash Memory window is displayed.

Device: | M2SDSOIL (MZSESAL). - Programmer:[?S?US (usb75705)

1D code read fromdevice: 3F8021CF

View Device Status Debug FPGA Array

[View Flash Memary Content] Debug SERDES

Figure 17 « SmartDebug Window Debug Options

Revision 5 19

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

4. Enter the Start Page and End Page as 16 because the data storage client is stored in page16.
Page 16 is used for demonstration purposes.

5. Click Read from Device as shown in Figure 18.

B ———— Lo
= Flash Memory &
Retrieve Flash Memory Content from Device:
Fromblock 0 - <noefc> ~
S&«[Omhm) -) Read from Device
StartPage: 16 (address 0x800)
EndPage: 16 (1page, 128 bytes)
Latest Content Retrieved from Device: Toe Mar 04 18:23:54 2014

Retrieved Content: at Page 16, 128 bytes starting from address 0x800

Content
e enta | A i ;
s ! ofl1l 21341l s5]e6]l 71l AW IN £
oosc0jor 02 03

r
16 04 0s 06 s3 FF s3 FF sS E2 AA R 53 FF
" o0810|53 FF S5 E2 AA FO S3 FF S3 FF 5§ l A RO VS3 FF
% | 082|s3 FF ss E2 A FO 53 FF 53 ol o2 ol os B
" oen|s3 FF ss E2 A F0 53 F saf0F 40 o2 03 04 o5 06

Figure 18 « Flash Memory (eNVM) Content Read from the Device

6. Click Debug FPGA Array as shown in Figure 17 to open the Debug FGPA Array window as
shown in Figure 19.

Debug File: 2_SRAM_InWRAM_MIT;FBT)M_FAB/FAB;MSTR_RAM_INII’/designer[T op_Fabric_Master/Top_Fabric_Master_debug.txt

FPGA Array Debug Data n the Maory Blocks tab 1. Browse and select the Debug File from ﬁ

the local system
| Live Probes | Active Probes . Memory Blocks | <——

[RAM_with_wrapper_D/SRAM_64x8_0/SRAM_64x8_0/SRAM_64x8_SRAM_64x8_0_TPSRAM_ROCO/INST_RAI ¥ | [Read Block | | write Block
Memory Block Data & ﬁ

0000001002 1003 005 053 OFF 053 OFF 053 OFF “| 3 Click Read Block to

0010 053 OFF | 055 0AA 053 OFF 053 OFF 053 OFF read the SRAM
content from the

0020_’053 OFF 055 0AA 053 OFF 053 OFF 005 006 device

0030 053 OFF 055 0AA 053 OFF 053 OFF 005 m

0040 022 0ED 102 121 1A2 OF0 09D 1CD

Figure 19 - SRAM Content Read from the Device

20 Revision 5

& Microsemi

Customizing the Wrapper Interface

a.Browse to select the Top_Fabric_Master_debug.txt file. The Debug File must be specified before
starting the FPGA Array Debug as shown in Figure 19. For example, the Debug File = <project
root>/designer/Top/Top_Fabric_Master_debug.txt

Libero SoC generates the Debug File, <projectName>_debug.txt, during Place and Route and
stores the file into the <project path>\designer folder. The Debug File contains information used
by SmartDebug mainly for mapping the user design names to their respective physical addresses
on the device. It also contains other information used during the debug process.

b.Select the Memory Blocks tab.

c.Click Read Block to read the SRAM content in real-time from the device. The content of the
SRAM is displayed as shown in Figure 19. The SRAM data that is stored into eNVM which is
used to initialize the SRAM block.

Customizing the Wrapper Interface

This section describes how to customize SRAM initialization block.

The RAM_with_wrapper block presented in the design example can be modified based on the user
SRAM configuration. In addition, the software code needs to be modified based on the user SRAM
setting. Figure 20 shows the RAM_with_wrapper block. It has three blocks as mentioned below:

* SRAM64x8_0: Two-port SRAM block with depth 64 and width 8.
*+ mem_apb_wrp_0: Creates APB3 wrapper on SRAM port.
* mux_blk_0: Creates the Muxing arbiter.

Depending on the user SRAM block configuration, the SRAM64x8_0 setting needs to be updated. In
addition, the DATA_WIDTH and ADDR_WIDTH parameterin mem_apb_wrp, and mux_blk file should be
modified according to their design requirement and the blocks should be re-connected, if needed.

Note: The wrapper interface used in the design example, supports up to 32-bit DATA_WIDTH.

nmux bk 0
enable_user d_en
wendle user] " enable_ s er wien
welk_user Jk_user wek
relk_user] er rek
_enable_irit ta_user(7:0] rdata use 7:0]
enable_nit mem data_out_ink[7:0] B—
it raddr[S:0] B—
ck_hit waddr|5:0] B—
d wdaxal7:0] B
(7333 e S]] ddr_user{5:0)
[owddr user 50 Jf_us:ls:n
[wdata used 7:0} wata_user| 7:0]
ddr_nit]5:0]
e sl
drrem data_in_ink[7:
I al70]”
bl
1l SRAM_64x8_0
WEN RO{7:0] -
REN
ARST N
mem_apb_wrp_0 (R
Eﬁl PAK rd_enable - L—@®RAK
wenabl 7:0)
— 1_data_out[7:0] /! nlﬂz!sm]
BIF_1 I L REOOR(S:0] &
I =l %

Figure 20 - RAM_with_wrapper Block

Revision 5 21

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM

Conclusion

This design example shows how the SRAM blocks in SmartFusion2 SoC FPGA fabric can be initialized
after power-up either by using the Cortex-M3 processor as the master or by using a master in the fabric.
This example application uses an eNVM to initialize the SRAM after power-up. The eNVM can also be
updated using programming, or flash loader, or by writing to eNVM, if needed. This application note
presents an interface that can be instantiated into the user's design, performing the initialization at
power-up. The reference design utilizes a very small portion of the FPGA logic for implementation, and
does not affect the performance of the main design. The design in this document initializes a 64x8 SRAM
block, but can be easily modified to support memory organizations of different width and depth.

Appendix A - Design and Programming Files

The user can download the design files from the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=M2S_AC392_DF.

The design file consists of Libero Verilog projects, SoftConsole software project, and programming files
(*.stp) for SmartFusion2 SoC FPGA Development Kit.Two programming| files are included: the Cortex-

M3 processor as the master (Top_M3_Master.stp), and the fabric master (Top_Fabric_Master.stp) files.
Refer to the Readme.txt file included in the design file for the directory structure and description.

22

Revision 5

http://www.microsemi.com/soc/download/rsc/?f=M2S_AC392_DF

& Microsemi

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.
Revision* Changes Page
Revision 5 Added "References" section (SAR 51324) 1
(March 2014) Updated Figure 1, Figure 2, Figure 5, Figure 6, and Figure 8 (SAR 51324) 3, 4, 8,
9, and
12
Updated "SRAM Initialization Reference Designs" section (SAR 51324) 6
Added "Cortex-M3 Processor as the Master" section (SAR 51324) 6
Updated "Running the Design with the Cortex-M3 Processor as the Master" section | 13
(SAR 51324)
Added "Initializing the SRAM using Fabric Master" section (SAR 51324) 14
Added "Simulating Reference Design with a Fabric as Master" section (SAR 51324) 16
Added "Running the Design with a Fabric Master" section (SAR 51324) 19
Updated "Appendix A - Design and Programming Files" section (SAR 51324) 22
Revision 4 Updated Figure 1 and Figure 8 (SAR 51324). 3,12
(December 2013)
Revision 3 Modified "Introduction” section (SAR 48177). 2
(June 2013) Modified "SmartFusion2 SoC FPGA eNVM Controllerfor Data Storage” section (SAR| 3
48177).
Modified "SRAM Initialization Reference Designs" section (SAR 48177). 6
Modified "Fabric Master" section (SAR 48177). 8
Modified "Appendix A - Design.and Programming Files" section (SAR 48177). 22
Modified Table 2 (SAR 48177). 2
Added Figure 5, Figure 6 and.Figure 8 (SAR 48177). 8,9,12
Revision 2 Updated the document for Libero SoC v11.0 beta SP1 release and made required NA
(March 2013) changes for better usage of the term 'SEL’ (SAR 45591).
Revision 1 Updated "Introduction" section. (SAR 42893) 2
(November 2012) | ypdated."Appendix A - Design and Programming Files" section (SAR 42893) 22
Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

Revision 5 23

Microsemi.

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

51900260-5/04.14

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA SRAM Initialization from eNVM
	References
	Introduction
	Tools Required
	Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
	SmartFusion2 SoC FPGA eNVM Controller for Data Storage
	SRAM to APB3 Wrapper

	SRAM Initialization Reference Designs
	Cortex-M3 Processor as the Master
	Fabric Master

	Initialize SRAM using Cortex-M3 Processor as the Master
	Hardware Implementation
	Firmware and Application Code Software Implementation
	Simulating Reference Design with the Cortex-M3 Processor as the Master
	Running the Design with the Cortex-M3 Processor as the Master

	Initializing the SRAM using Fabric Master
	Hardware Implementation
	Simulating Reference Design with a Fabric as Master
	Running the Design with a Fabric Master

	Customizing the Wrapper Interface
	Conclusion
	Appendix A - Design and Programming Files
	List of Changes

