Synopsys FPGA Synthesis
Synplify Pro for Microsemi
Edition

Reference

January 2014

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright © 2013 Synopsys, Inc. All rights reserved. This software and
documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance
with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the
license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of and its
employees. This is copy number R

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
2 January 2014

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, COMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 3

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
January 2014

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
4 January 2014

Contents

Chapter 1: Product Overview

Synopsys FPGA and Prototyping Products 20
FPGA Implementation TOOIS 20
Identify Tool Set e 22
Synphony Model Compiler 22
Rapid Prototyping oo 23

Overview of the Synthesis TOOIS i e 24
Synplify Pro Features 24
BEST Algorithmso 25
Graphic User Interface e 25
Projects and Implementations i i 28

Starting the Synthesis Tool e 29
Starting the Synthesis Tool in Interactive Mode 29
Starting the ToolinBatchMode 30

LogiCc SynthesisS OVEIVIEWot e e e e 31
Synthesizing Your Designt 33

Getting Help ... oo 35

Chapter 2: User Interface Overview

The Project View 38
Multiple Pane Project VIiew 38
The Project Results VIew e 42
Project Status Tab 42
Implementation DIreCtoryo 47
PrOCESS VIBW . ..ot e 48
Other Windows and VIEWS e e e e 51
Dockable GUIENtItieSo e e e 52
Watch WIindow 52
Tcl Script and Messages WIindows 55
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014

5

Tel SCript WINAOW e 56

MESSAgE VIBWET . . ottt e 56
Output Windows (Tcl Script and Watch Windows) 60
R L ViEW o e 61
Technology View e 62
Hierarchy BrOWSEr e e e e 65
FSM Viewer Windowot e e e e 67
Text EAitOr VIEWot e 68
Context Help Editor Window e i 71
Interactive Attribute Examples 73
Search SoIVNEL e 75
FSM Compiler 76
Whento Use FSM Compiler e 77
Where to Use FSM Compiler (Global and LocalUse) 77
FSOM EXplOrer ... 78
UsiNg the MOUSE e e e e e e e 78
Mouse Operation Terminologyt e 79
Using MouSse StroKESo 79
Using the Mouse BULtONS i e e 81
Usingthe Mouse Wheel i i 83
User Interface PreferenCes oot e 83
Managing VieWs e 84
T00IDaArS . . 85
Project Toolbar 85
Analyst Toolbar 87
FSM Viewer Toolbar e 89
Text Editor Toolbar 90
Tools ToOoIbar 92
Keyboard ShortCuts 93
Buttons and Options i e 101
Chapter 3: HDL Analyst Tool
HDL Analyst Views and Commandsttt 106
Filtered and Unfiltered Schematic Views 106
Accessing HDL Analyst Commands it 107
Schematic Objects and TheirDisplay 108
Object Information 108
Sheet CONNECIOISo oot e e e e e e e e e e e 109
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

6 January 2014

Primitive and Hierarchical Instances, 110

Transparent and Opaque Display of Hierarchical Instances 111
Hidden Hierarchical Instances 113
Schematic Display i 113
Basic Operations on Schematic Objects v .. 117
Finding Schematic Objects i 117
Selecting and Unselecting Schematic Objects 119
Crossprobing ObJeCtSt e 120
Dragging and Dropping Objects e 122
Multiple-sheet Schematics e 123
Controlling the Amount of LogiconaSheet 123
Navigating Among Schematic Sheets 123
Multiple Sheets for Transparent Instance Details 125
Exploring Design Hierarchy 126
Pushing and Popping Hierarchical Levels 126
Navigating With a Hierarchy Browser i 129
Looking Inside Hierarchical Instances 131
Filtering and Flattening Schematics 133
Commands That Result in Filtered Schematics 133
Combined Filtering Operations 134
Returning to The Unfiltered Schematic 135
Commands That Flatten Schematics 135
Selective Flattening e 136
Filtering Compared to Flattening 137
Timing Information and Critical Paths o ... 139
TIMING REPOMS . . .o e 139
Critical Paths and the Slack Margin Parameter 140
Examining Critical Path Schematics 141

Chapter 4: Constraints

CONSIrAINt TYPES . . v vttt ettt e 144
Constraint Fileso 145
TimINg CoNStraiNtSot e e 147
FDC CONStraints . . .ttt et e e e e 151
Methods for Creating Constraints i, 152
Constraint Translation 154

sdc2fdc CONVErSION e 154

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 7

Constraint Checking i e e 159

Database Object Search i e 161
Forward ANNOtationot 162
AULO CONSHIaINIS . ..ottt e e 162
Chapter 5: SCOPE Constraints Editor
SCOPE User Interface i e e e 164
SCOPE Tabs ..ot e 165
CloCKS . o o 165
Generated CloCKSot 170
CollECtiONS . . oo 173
INPUES/OULPULS . . o o 175
REIS IS . .o 178
Delay Paths 179
A OULES . . 182
O Standardst 183
Compile POINISo 185
TCL ViBW ot e 188
Industry I/O Standards 189
Industry I/O Standards 190
Delay Path Timing EXCeptions o i e 193
Multicycle Paths 193
False Paths 196
Specifying From, To, and Through Points 199
Timing Exceptions Object TYPeSttt e 199
From/To PoOINtS . .. oot e 199
Through PoINtS 200
Product of Sums Interface 202
Clocks as From/To POINtS oot e e e e e e 204
Conflict Resolution for Timing Exceptions 206
SCOPE User Interface (LEgacy)« vt it e 210

Chapter 6: Constraint Syntax

FPGA TIMIing CONSLraints e e 212
create_CloCK e 213
create_generated_clock 215
reset_path 217

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

8 January 2014

Set_CloCK grouUps . ..o 219

set clock latency 222
set clock route delay 224
set_clock uncertainty i 225
set false_path 227
set input_ delay 229
set max delay e 231
set_multicycle_path 234
set output_delay e 237
set_reg input_delay 239
set_reg output_ delay 240
Naming Rule Syntax Commands i, 241
Design CoNStraintSttt e e 242
define_compile_point 243
define_current_design i e 244
define io standard e 245

Chapter 7: Input and Result Files

INPUL FIlES o 248
HDL Source Fileso e e 250
Libraries ... 251
The Synplicity Generic Technology Library 252
OUtPUL FilesS ..o 253
Log File . .o 257
Compiler REPOIT 259
Premap Report 259
Mapper Report 259
Clock Buffering Report e 259
Net Buffering Report 260
Compile Point Information e 260
TiMING SECHIONo 261
Resource Usage Report 261
Retiming Report 261
Errors, Warnings, Notes, and MeSsagesuiiiinnnnnn.... 262
TIMING REPOIS 263
Timing Report Header e 264
Performance SUmMmary 264
Clock Relationships e 266
Interface Information 268
Detailed CIoCK RepOIt 268
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 9

Asynchronous Clock Report e e 270
Constraint Checking Report i e 272

Chapter 8: Verilog Language Support

Support for Verilog Language Constructst 282
Data TYPES . .ttt 284
Built-in Gate Primitives 285
Port Definitions 286
StalEMENTS 286
BlOCKS . . o 288
OPIaAlOrS . . ottt 290

Verilog 2001 SUPPOIt . .o e 294
Combined Data, Port Types (ANSI C-style Modules) 295
Comma-separated Sensitivity List 296
Wildcards (*) in Sensitivity List 296
Signed Signals e 297
Inline Parameter Assignmentby Name 297
Constant FUNCLION 298
Localparam 298
Configuration BIOCKS e 299
Localparams 309
$signed and $unsigned Built-in Functions o . 309
$clog2 Constant Math Function i 309
Generate Statement 311
Automatic Task Declarationt 312
Multidimensional Arrayst e 313
Variable Partial Select 314
Cross-Module Referencingt e 315
ifndef and elsif Compiler Directives 318

Verilog Synthesis Guidelines i 319
General Synthesis Guidelines i 319
Library Support in Verilog 320
Constant Function Syntax Restrictions, 324
Multi-dimensional Array Syntax Restrictions 325
Signed MultipliersinVerilog e 326
Verilog Language Guidelines: alwaysBlocks 327
Initial Values in Verilog e 328
Cross-language Parameter Passingin Mixed HDL 330
Library Directory Specification for the Verilog Compiler 331

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

10

January 2014

Verilog Module Template e e 332

Scalable Modules 333
Creatinga Scalable Module i 333
Using Scalable Modules 334

Combinational Logic e e 336
Combinational Logic Examples i, 336
always Blocks for Combinational Logic 338
Continuous Assignments for Combinational Logic 340
Signed MUItIpliers e e 341

Sequential LOgICottt 342
Sequential Logic Examples 342
Flip-flops Using always Blocks i i 343
Level-sensitive LatChes 344
Sets and RESELS . .. oot 347
SRL INfErENCE o 351

Verilog State Machines e 353
State Machine Guidelines 353
State Valueso 355
Asynchronous State Machines 356

Instantiating Black Boxes inVerilog, 357

PREP Verilog Benchmarks 358

Hierarchical or Structural Verilog Designst .. 359
Using Hierarchical Verilog Designs 359
Creating a Hierarchical VerilogDesign, 359
SYNthESIS MAcCIO 361
Xt MaAaCIO .. e 362

Verilog Attribute and Directive Syntax i 366
Attribute Examples Using Verilog 2001 Parenthetical Comments 368

Chapter 9: SystemVerilog Language Support

Feature SUMMANY 372
SystemVerilog Limitations 375
Unsized Literals 377
Data TYPES . . oot 377
TYPEdelS . 378
Enumerated TYpeSt ti 379
Struct CONSIIUCE o 381
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 11

UNION CONSITUCE . . .ottt e e e et e e et e e e e e 383

Static Casting vt 385
AT Y S o ot 385
AT Y S L ot 386
Arrays of StrUCTUreS 388
Array Querying FUNCLIONSt e 388
Data Declarations i e 389
CONStANTS . . .o 389
Variables 389
NS . 390
Data Typesin Parameters 391
Type Parameters 391
Operators and EXPresSSionNS vttt e 396
OPBIaALOrS . 396
Adgregate EXPresSSioNSot 398
Streaming OPeratorttt 399
Set Membership Operator 400
Set Membership Case Inside Operator, 401
Type OPratorottt e 404
Procedural Statements and Control Flow 407
Do-While LOOPS . . .ot 408
FOr LOOPS . . 408
Unnamed BIOCKS 409
Block Name onend Keyword i, 409
Unique and Priority Modifiers 409
PrOCESSES . . 411
always _Comb 411
always _latch 413
always ff .. 414
Tasks and FUNCLIONSt e e 416
Implicit Statement Group 416
Formal Arguments 416
endtask /fendfunction Names 419
HierarChy e 420
Compilation UNits 421
Packages e 423
Port Connection CONSIIUCES e 424
Extern Module 427
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

12 January 2014

INterfaCe . . . 428

Interface CONSIIUCTo o 428
MOOPOIS .ot e 435
Limitations and Non-Supported Featurest 435
System Tasks and System Functions, 436
$bits System Function 436
Array Querying Functions 437
Generate Statement e 438
Conditional Generate CONSIIUCESottt e 440
ASSEITIONS . o .ttt e 444
SVA System FUNCLIONS e 445
Keyword SUPPOIto 448

Chapter 10: VHDL Language Support

Language CONSIIUCESottt e e 450
Supported VHDL Language CONStructs, 450
Unsupported VHDL Language Constructs 451
Partially-supported VHDL Language Constructs 452
Ignored VHDL Language CONStrUuCtS oottt 452

VHDL Language CONSIIUCESttt e ey 452
Data TYPES . . o 453
Declaring and Assigning Objectsin VHDL 456
VHDL Dynamic Range ASSIgNMENtSttt 456
NUILRANGES . . oo 457
Signals and Ports 458
Variables 460
VHDL CoNnstantS 461
Libraries and Packages 461
OPBIAONS . . ot 465
Large Time ResOIution 467
VHDL ProCess e 469
Common Sequential Statements 471
Concurrent Signal ASSIgNMENtS 473
Resource Sharing 476
Combinational LOGICot 476
Sequential LOgICo oo e 477
Component Instantiation in VHDL 477
VHDL Selected Name Support e 479
User-defined Function Support 483
Demand Loading 484

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 13

VHDL Implicit Data-type Defaults 485

VHDL Synthesis Guidelines e e 490
General Synthesis Guidelines i 490
VHDL Language Guidelines i 491
Model Template e 492
Constraint Files for VHDL DeSIgnNso oo e 493
Creating Flip-flops and Registers Using VHDL Processes 494
CloCK EAQES .. . e 496
Defining an Event Outside aProcesso 497
Using a WAIT Statement InsideaProcess, 497
Level-sensitive Latches Using Concurrent Signal Assignments 498
Level-sensitive Latches Using VHDL Processes ..., .. 499
Signed mod Support for ConstantOperands 502

Setsand Resets 504
Asynchronous Setsand Resets 504
Synchronous Setsand Resets i 505

VHDL State Machines 508
State Machine Guidelines 508
Using Enumerated Types for State Values 513
Simulation Tips When Using Enumerated Types 513
Asynchronous State Machinesin VHDL 515

Hierarchical Design Creation in VHDL 517

Configuration Specification and Declaration 521
Configuration Specification 521
Configuration Declaration 525
VHDL Configuration Statement Enhancement 531

Scalable DeSigNS 546
Creating a Scalable Design Using Unconstrained Vector Ports 546
Creating a Scalable Design Using VHDL Generics 547
Using a Scalable Architecture with VHDL Generics 548
Creating a Scalable Design Using Generate Statements 550

Instantiating Black Boxes in VHDL 552
Black-Box Timing Constraints 553

VHDL Attribute and Directive Syntax 554

VHDL Synthesis Examples e 556
Combinational Logic Examples 556
Sequential Logic Examples 557

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

14 January 2014

PREP VHDL Benchmarks e 558

Chapter 11: VHDL 2008 Language Support

L] o7= =Y 0] £ 560
Logical Reduction Operatorsouiiiiit i 560
Condition Operatorttt e 560
Matching Relational Operatorst 561
Bit-string Literals e 561

Unconstrained Data TYPeSottt i e 563

Unconstrained Record Elements i 565

Predefined FUNCLIONS e 566
GENEIIC TYPES o ottt 566

PaCKagesS 568
New Packageso e 569
Modified Packages i 569
Unsupported Packages/Functions 569
Usingthe Packages i i 570

Genericsin Packages 571

Context Declarations 571

Case-generate Statementst 572

Matching case and select Statements i 574

Else/elsif Clauses 575

Syntax CoNVENLiONSo 576
AlLKEYWOrd . .o 576
Comment Delimiters 576
Extended Character Set 576

Chapter 12: RAM and ROM Inference

Guidelines and Support for RAM Inference 578

Block RAM EXamples 579
Block RAM Mode Examples 579
Single-Port Block RAM Examples i 583
Single-Port RAM with Read Address Registered Example 583
Single-Port RAM with RAM Output Registered Examples 584
Dual-Port Block RAM Examples 586
True Dual-Port RAM Example i 588
Limitations to RAM Inference 590

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 15

Initial Values for RAMSo e 590

RAM Initialization Example e 590
Initialization Data File 591
Forward Annotation of Initial Values 594
RAM Instantiation with SYNCORE 594
ROM INferenCe e 595

Chapter 13: IP and Encryption Tools

SYNCore FIFO Compiler e 602
Synchronous FIFOS 602
FIFO Read and Write Operationst 603
FIFO POrtS . .. 605
FIFO Parameters e 607
FIFO Status Flags e e 609
FIFO Programmable Flags e 612

SYNCore RAM Compiler e 619
Single-Port Memories 619
Dual-POrt MEMOKIES . . .ot e 621
Read/Write TimiNg SEQUENCESot e e 626

SYNCore Byte-Enable RAM Compiler 629
Functional OVEerVIEW 629
Read/Write TimiNg SEQUENCESot e e 630
Parameter List 633

SYNCore ROM Compiler e e 634
Functional OVEeIVIEW e 634
Single-Port Read Operationt 636
Dual-Port Read Operationo e 637
Parameter List 637
Clock LatencCyo 639

SYNCore Adder/Subtractor Compiler 640
Functional DesCription 640
AdAer . 641
SUBLIaCTOr . . . oo 644
Dynamic Adder/Subtractor 647

SYNCore Counter Compiler 652
Functional OVEIVIEW e 652
UP Counter Operationttt 653
Down Counter Operationttt 653
Dynamic Counter Operationttt 654

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

16 January 2014

ENCryption SCriptS . ..o 657

Encryption and Decryption Methodologies 657
The encryptPl1735 SCript . ..ottt e 658
The encryptlP SCripto e e 662

Chapter 14: Scripts

SyNhooks File Syntax e e e 668
Tel Script EXamples e 670
Using Target Technologies i, 670
Different Clock Frequency Goals i, 671
Setting Options and Timing Constraints, 672

Appendix A: Designing with Microsemi

Basic Support for Microsemi Designs e 676
Microsemi Device-specific Support 676
Microsemi Features ittt e 676
Synthesis Constraints and Attributes for Microsemi 677

Microsemi COMPONENESttt 679
Macros and Black Boxes in Microsemi Designs oo 679
DSP Block Inference i e 681
Microsemi RAM Implementations 685
Instantiating RAMs with SYNCORE i 693

Output Files and Forward-annotation for Microsemi 694
VM FIOW SUPPOIt . .o 694
Forward-annotating Constraints for Placement and Routing 695
SYNthesiS REPOIMS e 696

Optimizations for Microsemi Designsttt 697
The syn_maxfan Attribute in Microsemi Designs 697
Promote Global Buffer Threshold 698
O INSEItION 699
Number of Critical Paths e 700
Retiming 700
Update Compile Point Timing Data Option 700
Operating Condition Device Option i 702
Radiation-tolerant Applications i 705

Integration with Microsemi Toolsand Flows 706
Compile Point Synthesis 706
Incremental Flow Synthesis 707
Microsemi Place-and-Route TOOIS, 707

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 17

Microsemi Device Mapping Options i e 708

Microsemi Tcl set_option Command Options, 710
Microsemi Attribute and Directive Summary, 713
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

18 January 2014

JALLED &

Chapter 1

Product Overview

This document is part of a set that includes reference and procedural infor-
mation for the Synplify Pro® synthesis tool. The reference manual details the
synthesis tool user interface, commands, and features. The user guide
contains “how-to” information, emphasizing user tasks, procedures, design
flows, and results analysis.

The following provide an introduction to the synthesis tools.
* Synopsys FPGA and Prototyping Products, on page 20
* Overview of the Synthesis Tools, on page 24
¢ Starting the Synthesis Tool, on page 29
* Logic Synthesis Overview, on page 31

* Getting Help, on page 35

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 19

Product Overview Synopsys FPGA and Prototyping Products

Synopsys FPGA and Prototyping Products

The following figure displays the Synopsys FPGA and Prototyping family of

products.
Synplify Pro
Advanced FPGA Synthesis
FPGA Synplify” Premier
Implementation The Ultimate FPGA Implementation Platform
Identify” Tool Set
\ Identify Instrumentor and Identify Debugger
High-Level Synphony Model Compiler
Synthesis Language and Model-Based High-Level Synthesis
) Certify’
Multi-FPGA ASIC Prototyping
ASIC/ASSP < HAPSTM

Rapid Prototyping High-Performance ASIC Prototyping System™

() CHIPit " Platinum & Iridium
I Automated Prototyping Systems

A '
L vy

FPGA Implementation Tools

The Synplify Pro and Synplify Premier products are RTL synthesis tools
especially designed for FPGAs (field programmable gate arrays) and CPLDs
(complex programmable logic devices).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
20 January 2014

Synopsys FPGA and Prototyping Products Product Overview

Synplify Pro Product

The Synplify Pro FPGA synthesis software is the de facto industry standard
for producing high-performance, cost-effective FPGA designs. Its unique
Behavior Extracting Synthesis Technology® (B.E.S.T.™) algorithms, perform
high-level optimizations before synthesizing the RTL code into specific FPGA
logic. This approach allows for superior optimizations across the FPGA, fast
runtimes, and the ability to handle very large designs. The Synplify Pro
software supports the latest VHDL and Verilog language constructs including
SystemVerilog and VHDL 2008. The tool is technology independent allowing
quick and easy retargeting between FPGA devices and vendors from a single
design project.

Synplify Premier Product

The Synplify Premier solution is a superset of the Synplify Pro product
functionality and is the ultimate FPGA implementation and debug environ-
ment. It provides a comprehensive suite of tools and technologies for
advanced FPGA designers, as well as ASIC prototypers targeting single FPGA-
based prototypes. The Synplify Premier software is a technology independent
solution that addresses the most challenging aspects of FPGA design
including timing closure, logic verification, IP usage, ASIC compatibility, DSP
implementation, debug, and tight integration with FPGA vendor back-end
tools.

The Synplify Premier product offers FPGA designers and ASIC prototypers,
targeting single FPGA-based prototypes, with the most efficient method of
design implementation and debug. The Synplify Premier software provides in-
system verification of FPGAs, dramatically accelerates the debug process, and
provides a rapid and incremental method for finding elusive design problems.
Features exclusively supported in the Synplify Premier tool are the following:

* Fast and Enhanced Synthesis Modes

* Physical Synthesis

* Design Planning (Optional)

¢ DesignWare Support

* Integrated RTL Debug (Identify Tool Set)

* Power Switching Activity (SAIF Generation)

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 21

Product Overview Synopsys FPGA and Prototyping Products

Identify Tool Set

The Identify® tool set allows you to instrument and debug an operating FPGA
directly in the source RTL code. The Identify software is used to verify your
design in hardware as you would in simulation, however much faster and
with in-system stimulus. Designers and verification engineers are able to
navigate the design graphically and instrument signals directly in RTL with
which they are familiar, as probes or sample triggers. After synthesis, results
are viewed embedded in the RTL source code or in a waveform. Design itera-
tions are rapidly performed using incremental place and route. Identify
software is closely integrated with synthesis and routing tools to create a
seamless development environment.

Synphony Model Compiler

Synphony Model Compiler is a language and model-based high-level
synthesis technology that provides an efficient path from algorithm concept
to silicon. Designers can construct high-level algorithm models from math
languages and IP model libraries, then use the Synphony Model Compiler
engine to synthesize optimized RTL implementations for FPGA and ASIC
architectural exploration and rapid prototyping. In addition, Synphony Model
Compiler generates high performance C-models for system validation and
early software development in virtual platforms. Key features for this product
include:

¢ MATLAB Language Synthesis

* Automated Fixed-point Conversion Tools

* Synthesizable Fixed-point High Level IP Model Library

* High Level Synthesis Optimizations and Transformations
* Integrated FPGA and ASIC Design Flows

* RTL Testbench Generation

* (C-model Generation for Software Development and System Validation

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
22 January 2014

Synopsys FPGA and Prototyping Products Product Overview

Rapid Prototyping

The Certify® and Identify products are tightly integrated with the HAPS™ and
ChipIT® hardware tools.

Certify Product

The Certify software is the leading implementation and partitioning tool for
ASIC designers using FPGA-based prototypes to verify their designs. The tool
provides a quick and easy method for partitioning large ASIC designs into
multi-FPGA prototyping boards. Powerful features allow the tool to adapt
easily to existing device flows, therefore, speeding up the verification process
and helping with the time-to-market challenges. Key features include the
following:

* Graphical User Interface (GUI) Flow Guide

¢ Automatic/Manual Partitioning

* Synopsys Design Constraints Support for Timing Management

* Multi-core Parallel Processing Support for Faster Runtimes

* Support for Most Current FPGA Devices

* Industry Standard Synplify Premier Synthesis Support

¢ Compatible with HAPS-5x and HAPS-6x Boards Including HSTDM

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 23

Product Overview Overview of the Synthesis Tools

Overview of the Synthesis Tools

This section introduces the technology, main features, and user interface of
the FPGA Synplify Pro synthesis tool. See the following for details:

Synplify Pro Features, on page 24
BEST Algorithms, on page 25
Graphic User Interface, on page 25

Projects and Implementations, on page 28

Synplify Pro Features

The following features are specific to the Synplify Pro tool.

The HDL Analyst® RTL analysis and debugging environment, a graphical
tool for analysis and crossprobing. See RTL View, on page 61,
Technology View, on page 62, and Analyzing With the HDL Analyst Tool,
on page 247 in the User Guide.

The Text Editor window, with a language-sensitive editor for writing and
editing HDL code. See Text Editor View, on page 68.

The SCOPE"” (Synthesis Constraint Optimization Environment®) tool,
which provides a spreadsheet-like interface for managing timing
constraints and design attributes. See SCOPE User Interface, on
page 164.

FSM Compiler, a symbolic compiler that performs advanced finite state
machine (FSM) optimizations. See FSM Compiler, on page 76.

Integration with the Identify RTL Debugger.

FSM Explorer, which tries different state machine optimizations before
picking the best implementation. See FSM Explorer, on page 78.

The FSM Viewer, for viewing state transitions in detail. See FSM Viewer
Window, on page 67.

The Tcl window, a command line interface for running TCL scripts. See
Tcl Script Window, on page S56.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
24

January 2014

Overview of the Synthesis Tools Product Overview

¢ The Timing Analyst window, which allows you to generate timing
schematics and reports for specified paths for point-to-point timing
analysis.

* Place-and-Route implementation(s) to automatically run placement and
routing after synthesis. You can run place-and-route from within the
tool or in batch mode. This feature is supported for the latest Microsemi
technologies (see Running P&R Automatically after Synthesis, on
page 492 in the User Guide).

* Other special windows, or views, for analyzing your design, including
the Watch Window and Message Viewer (see The Project View, on
page 38).

* Retiming optimizations are only available with this tool.

* Advanced analysis features like crossprobing and probe point insertion.

BEST Algorithms

The Behavior Extracting Synthesis Technology (BEST™ feature is the under-
lying proprietary technology that the synthesis tools use to extract and imple-
ment your design structures.

During synthesis, the BEST algorithms recognize high-level abstract struc-
tures like RAMs, ROMs, finite state machines (FSMs), and arithmetic opera-
tors, and maintain them, instead of converting the design entirely to the gate
level. The BEST algorithms automatically map these high-level structures to
technology-specific resources using module generators. For example, the
algorithms map RAMs to target-specific RAMs, and adders to carry chains.
The BEST algorithms also optimize hierarchy automatically.

Graphic User Interface
The Synopsys FPGA family of products share a common graphical user interface
(GUI), in order to ensure a cohesive look and feel across the different products. The

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 25

Product Overview Overview of the Synthesis Tools

following figure shows the graphical user interface for the Synplify Pro tool.

Status Implementation

Project view Results view

Menus Project Tree

B Wi Fro)
- S RN
Toolbars — = & o s ju s e

Buttons
; emanz
: sl il e M it v R o BN .2 . S0
Eea 1,' Mo BOSMEE | Compitz (160 [0 |Bectls | fetds | 1wp | S1202
FSM Explarer -lj
R szuynoe Sharing £l
Retming]
Tabs to
access -I
main views S

x|
'- St Fiter_ | (] Apghy Fiter | ¥ GroupCammon [

|iassage | Saurcs Lacaion [Rapan
Found et g mem_regfie{7:0]', 32 words b 1ag fiey (17 5o4d.. Pre-mapging Rapert
Faind ROM, ‘rom. Daca_t[11:0]", 9F worde by 12 g rooutet 21 - Pro-mapping Ra o

| Viriting default progerty prataion Me £:law k.. - 5i35... Fre-mapping Faport

|= M 3 D0 Sefting fma reselitian b ng L (125 . Complir Rapart

TOLSTRt | Measages |

[i N\ [N zir. K2 r]

Tabs to access Tcl

Script and Messages Output Window Watch Window

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
26

January 2014

Overview of the Synthesis Tools

Product Overview

The following table shows where you can find information about different

parts of the GUI, some of which are not shown in the above figure. For more

information, see the User Guide.

For information about...
Project window

RTL view

Technology view

Text Editor view

FSM Viewer window

Tel window

Watch Window

SCOPE spreadsheet
Other views and windows

Menu commands
and their dialog boxes

Toolbars
Buttons

Context-sensitive popup menus
and their dialog boxes

Online help

Synplify Pro for Microsemi Edition Reference Manual
January 2014

See...

The Project View, on page 38

RTL View, on page 61

Technology View, on page 62

Text Editor View, on page 68

FSM Viewer Window, on page 67
Tcl Script Window, on page 56
Watch Window, on page 52

SCOPE User Interface, on page 164
The Project View, on page 38

Chapter 4, User Interface Commands

Toolbars, on page 85

Buttons and Options, on page 101

Popup Menus, on page 317

Use the F1 keyboard shortcut or click the Help

button in a dialog box. See Help Menu, on
page 313, for more information.

Copyright © 2013 Synopsys, Inc.
27

Product Overview Overview of the Synthesis Tools

Projects and Implementations

Projects contain information about the synthesis run, including the names of
design files, constraint files (if used), and other options you have set. A project
file (prj) is in Tcl format. It points to all the files you need for synthesis and
contains the necessary optimization settings. In the Project view, a project
appears as a folder.

An implementation is one version (also called a revision) of a project, run with
certain parameter or option settings. You can synthesize again, with a
different set of options, to get a different implementation. In the Project view,
an implementation is shown in the folder of its project; the active implemen-
tation is highlighted. You can display multiple implementations in the same
Project view. The output files generated for the active implementation are
displayed in the Implementation Results view on the right.

A Place and Route implementation, located in the project implementation
hierarchy, is created automatically for supported technologies. To view the
P&R implementation, select the plus sign to expand the project implementa-
tion hierarchy. To add, remove, or set options, right-click on the P&R imple-
mentation. You can create multiple P&R implementations for each project
implementation. Select a P&R implementation to activate it.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
28 January 2014

Starting the Synthesis Tool Product Overview

Starting the Synthesis Tool

Before you can start the synthesis tool, you must install it and set up the
software license appropriately. You can then start the tool interactively or in
batch mode. How you start the tool depends on your environment. For
details, see the installation instructions for the tool.

Starting the Synthesis Tool in Interactive Mode

You can start interactive use of the synthesis tool in any of the following
ways:

* To start the synthesis tool from the Microsoft® Windows® operating
system, choose

— Start->Programs->Synopsys->Synplify Pro version
* To start the tool from a DOS command line, specify the executable:
— installDirectory\ bin\ synplify_pro.exe

The executable name is the name of the product followed by an exe file
extension.

¢ To start the synthesis tool from a Linux platform, type the appropriate
command at the system prompt:

— synplify pro

For information about using the synthesis tool in batch mode, see Starting
the Tool in Batch Mode, on page 30.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 29

Product Overview Starting the Synthesis Tool

Starting the Tool in Batch Mode

The command to start the synthesis tool from the command line includes a
number of command line options. These options control tool action on
startup and, in many cases, can be combined on the same command line. To
start the synthesis tool, use the following syntax:

toolName [-option ...] [projectFile]
In the syntax statement, toolName is synplify_pro.

For complete syntax details, refer to synplify_pro, on page 91 in the
Command Reference.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
30 January 2014

Logic Synthesis Overview Product Overview

Logic Synthesis Overview

When you run the synthesis tool, it performs logic synthesis. This consists of
two stages:

* Logic compilation (HDL language synthesis) and optimization

¢ Technology mapping

Logic Compilation

The synthesis tool first compiles input HDL source code, which describes the
design at a high level of abstraction, to known structural elements. Next, it
optimizes the design in two phases, making it as small as possible to
improving circuit performance. These optimizations are technology
independent. The final result is an srs database, which can be graphically
represented in the RTL schematic view.

The following figure summarizes the stages of the standard compiler flow:

ﬁ&sign Lewvel \

Design Parsing

Module Level

Module Elaboration

Hardware Generation

Optimization Phase 1

Al srs Netlist

Optimization Phase 2
(Advanced Optimizations) —-ﬁ

e /

You can also run the compiler incrementally.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 31

Product Overview Logic Synthesis Overview

Technology Mapping

During this stage, the tool optimizes the logic for the target technology, by
mapping it to technology-specific components. It uses architecture-specific
techniques to perform additional optimizations. Finally, it generates a design
netlist for placement and routing.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
32 January 2014

Logic Synthesis Overview Product Overview

Synthesizing Your Design

The synthesis tool accepts high-level designs written in industry-standard
hardware description languages (Verilog and VHDL) and uses Behavior
Extracting Synthesis Technology® (BEST™) algorithms to keep the design at
a high level of abstraction for better optimization. The tool can also write
VHDL and Verilog netlists after synthesis, which you can simulate to verify
functionality.

You perform the following actions to synthesize your design. For detailed
information, see the Tutorial.

1. Access your design project: open an existing project or create a new one.

2. Specify the input source files to use. Right-click the project name in the
Project view, then choose Add Source Files.

Select the desired Verilog, VHDL, or IP files in formats such as EDIF,
then click OK. (See the examples in the directory

installation dir/examples, where installation dir is the directory
where the product is installed.)

You can also add source files in the Project view by dragging and
dropping them there from a Windows® Explorer folder (Microsoft®
Windows" operating system only).

Top-level file: The last file compiled is the top-level file. You can designate
a new top-level file by moving the desired file to the bottom of the source
files list in the Project view, or by using the Implementation Options

dialog box.

3. Add design constraints. Use the SCOPE spreadsheet to assign system-
level and circuit-path timing constraints that can be forward-annotated.

See SCOPE Tabs, on page 165, for details on the SCOPE spreadsheet.

4. Choose Project->Implementation Options, then define the following:
— Target architecture and technology specifications
— Optimization options and design constraints

— Outputs

For an initial run, use the default options settings for the technology,
and no timing goal (Frequency = O MHz).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 33

Product Overview Logic Synthesis Overview

5. Synthesize the design by clicking the Run button.

This step performs logic synthesis. While synthesizing, the synthesis
tool displays the status (Compiling... or Mapping...). You can monitor
messages by checking the log file (View->View Log File) or the Tcl window
(View->Tcl Window). The log file contains reports with information on
timing, usage, and net buffering.

If synthesis is successful, you see the message Done! or Done (warnings). If
processing stops because of syntax errors or other design problems, you
see the message Errors! displayed, along with the error status in the log
file and the Tcl window. If the tool displays Done (warnings), there might
be potential design problems to investigate.

6. After synthesis, do one of the following:

— If there were no synthesis warnings or error messages (Donel!), analyze
your results in the RTL and Technology views. You can then
resynthesize with different implementation options, or use the
synthesis results to simulate or place-and-route your design.

— If there were synthesis warnings (Done (warnings)) or error messages
(Errors!), check them in the log file. From the log file, you can jump to
the corresponding source code or display information on the specific
error or warning. Correct all errors and any relevant warnings and
then rerun synthesis.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
34 January 2014

Getting Help Product Overview

Getting Help

Before calling Synopsys SolvNet Support, look through the documentation for

information. You can access the information online from the Help menu, or
refer to the corresponding manual. The following table shows you how the
information is organized.

Finding Information

For help with...

How to...

Flow information

FPGA Implementation
Tools

Synthesis features
Language and syntax

Attributes and
directives

Tcl language

Synthesis Tcl
commands

Using tool-specific
features and attributes

Error and warning
messages

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Refer to the...

User Guide and various application notes available on the
Synplicity support web site

User Guide and various application notes available on the
Synopsys SolvNet support web site

Synopsys Web Page (Web->FPGA Implementation Tools
menu command from within the software)

User Guide and Reference Manual

Reference Manual

Reference Manual

Online help (Help->Tcl Help)

Reference Manual or type help followed by the command
name in the Tcl window

User Guide

Click on the message ID code

Copyright © 2013 Synopsys, Inc.
35

Product Overview Getting Help

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
36 January 2014

SYNOPSYs

erating Innovation

CHAPTER 2

User Interface Overview

This chapter presents tools and technologies that are built into the Synopsys
FPGA synthesis software to enhance your productivity.

This chapter describes the following aspects of the graphical user interface
(GUI):

¢ The Project View, on page 38

¢ The Project Results View, on page 42

* Other Windows and Views, on page 51
* FSM Compiler, on page 76

* FSM Explorer, on page 78

* Using the Mouse, on page 78

* User Interface Preferences, on page 83
* Toolbars, on page 85

* Keyboard Shortcuts, on page 93

* Buttons and Options, on page 101

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 37

User Interface Overview The Project View

The Project View

The Project View is the main interface to the tool. The Project view consists of
a Project Management View on the left and a Project Results View on the
right. See Multiple Pane Project View, on page 38 for an overview:

Multiple Pane Project View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. You can use it to manage and synthesize hierar-
chical designs. The Project Results view is on the right.

The following figure shows the main parts of the interface. Additional detail
about the project view is described here:

* Project Management View, on page 39

* The Project Results View

The Project view has the following main parts:

Project View Interface Description

Status Displays the current status of the synthesis job that is
running. Clicking in this area displays additional
information about the current job (see Job Status
Command, on page 218).

Buttons and options Allow immediate access to some of the more common
commands. See Buttons and Options, on page 101 for
details.

Project Management Lists the projects and implementations, and their

view associated HDL source files and constraint files. See

Projects and Implementations, on page 28 for details.

Implementation Results Lists the result of the synthesis runs for the
view implementations of your design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
38 January 2014

The Project View

User Interface Overview

Project Management View

Synplify Pro®

\ Ready

Project Files

Design Hierarchy

Project Status

Implementation Directory

Process View

5

Project Management Views

Project Results View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and

initiate design synthesis. The graphical user interface (GUI) lets you manage

hierarchical designs that can be synthesized independently and imported
back to the top-level project in a team design flow. The following figure shows
the Project view as it appears in the interface.

The following figure shows the Project view as it appears in the Synplify Pro

interface.

Hierarchical Project view Status

Buttons

Synplily Prao®

Ready

Implementation Results view

srarch Snhetict |

|1:r Uper foxazt

|-a- s amphrenlosn..

|-& arphanenlolen Ul .

|m Mz A brphepel o

|_-.'I\ W Lo

[Es e el

Fab Tl

User

= fauly Lo

Options

TRTR

Fraypsel ey I Masan Hlmm Ty

il - bl

I_';;l

PreteT AtNIE Pnzenss dlun eelay | Precassvan
|| hesmpd =yl e
Hama C|%zs Tipe
GV Lo T lury
=] B om Diectoiy
g '|',::| sprhn Trelury
1 E syt Cirgetary
Ui syt Cwactziy
v B oeghn b oareass 18 <D Arment) Fe
v B ocght_bi_uc.con 3 Tk
: = b v fea fee ke
A izl anr Fie
L E waz e
L E 174 hiytes
r E 5 kR
B 1 MEe:
: L eohl b s M Lygles
o cphn b Lcsid T B
' @ eght_be_ocer 104 ke rastEr (KLY
@ eghl bl s Al Hi Bl wl [tias)
v B cght_bit_ucsm 33 B 1k

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Copyright © 2013 Synopsys, Inc.
39

User Interface Overview The Project View

The Synplify Pro tool provides hierarchical management support for large
designs. The tool lets you manage hierarchical projects in a team design flow,
where you have independent hierarchical subprojects.

The Project view contains two tabs with different views of the design that help
you manage hierarchical projects:

* Project Files Tab
* Design Hierarchy Tab

Both tabs in this view have right-click popup menu commands for managing
design files and hierarchy. For descriptions of these commands, see Project
Management Commands, on page 323.

Project Files Tab

The Project Files view displays the top-level design and any sub-projects that
can be synthesized.

G- verlog
& EfJ Constraint
= SubProjects
[=}- W) [camera_wb_if] - C:\t=am_designs\Demo_testcase\camera_wb_if \camera_wb_if.prj
& [Verilog
[g rew
[=+- &) [camera_io_cak] - C:\team_designs\Demo_testcase\camera_jo_cak\camera_jo_calc.pr
[# g Verilog
[rev 1
[=+- @) [camera_ch_table] - C:\team_designs\Demo_testcase\camera_ch_table\camera_ch_table.prj
[l Verilag
L g rev 1

@ el

Design Hierarchy Tab

The Design Hierarchy view displays the instance block and design block
hierarchy for a design.

The colors for the block icons represent the following:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
40 January 2014

The Project View User Interface Overview

Icon Description Designates the following...

White rectangle Black box

surrounding a b

Yellow Design block (subproject)

Yellow with a T inside Top-level design

Green with a P inside Design block that has been exported as a sub-project

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
41

January 2014

User Interface Overview The Project Results View

The Project Results View

The Project Results view appears on the right side of the Project view and
contains the results of the synthesis runs for the implementations of your
design. The Project Results view includes the following:

* Project Status Tab
¢ Implementation Directory

* Process View

Project Status Tab

The Project Status view provides an overview of the project settings and
at-a-glance summary of synthesis messages and reports such as an area or
optimization summary for the active implementation. You can track the
status and settings for your design and easily navigate to reports and
messages in the Project view.

To display this window, click the Project Status tab in the Project view. An
overview for the project is displayed in a spreadsheet format for each of the
following sections:

* Project Settings
* Run Status

* Reports

For details about how to access synthesis results, see Accessing Specific
Reports Quickly, on page 179.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
42 January 2014

The Project Results View User Interface Overview

Project Files Design Hierarchy Project Status [Implementation Directory | Process View]

‘

E!--_- [praj] - C\synplfy_pro_actel|| |=
= VHDL

: Project Mame proj Implementation Name rev_1

- Veriog Tap Module [auto] [Retiming 0

-4 rev_1 Resource Sharing 1 Fanout Guide 24
Disable [/ Insertion 0 FSM Compiler 1

‘

CPU Real §

Job Name |Status m | A 0 Time Time Memory | Date/Time
Compile

Input Complete) 27 | 0 |0 |- Om:03s |- 3_‘;9;531;“‘
Detsiled report :28:
Premap . . 97972011
Detailegrepe | COMPlete 410 |0 | 0m00s | Om01s | 57MB | S7 S0
Map &

Optimize | Complete) 15| 10| 0 | Om:04s | Om:04s | 101mB | /32011
Detsiled report :28:

Core Cells 1530 10 Cells 26
Block RAMs 1
Detailed report

‘

‘

Clock Name Req Freq Est Freq Slack
1 s |) e|gh.t bit_uc|clock 1.0 MHz 42.4 MHz 976.426
) Detailed report

You can expand or collapse each section of the Project Status view by clicking
on the + or - icon in the upper left-corner of each section.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 43

User Interface Overview The Project Results View

Project Status Implementation Directory Process View |

(5] Project Settings

Project Mame proj Implementation Mame rev_1
Top Module [auto] |Retiming 0
Resource Sharing 1 Fanout Guide 24
Disable /O Insertion 0 FSM Compiler 1

(S Run Status

Job Name |Status m & L |CPU Time |Real Time |Memory|Date/Time
Compile

Input Complete| 27 (0 |0 |- 0m:03s 2:;?5;%21':11
Detsiled report - .
Premap . . 9/9/2011
Detailed report CrmpE 4 |U |0 | Lmkls L TiE 3:28:47 PM
Map &

Optimize Complete{ 15 [10 | 0 | 0m:04s | Om:04s | 101MB g;’?ﬁmi
Detsiled report e
® Area Summary

Detailed report

) Timing Summary

Detailed report

Project Settings

Project Settings is populated with the project settings from the run_options.ixt file
after a synthesis run. This section displays information, like the following:

* Project name, top-level module, and implementation name

* Project options currently specified, such as Retiming, Resource Sharing,
Fanout Guide, and Disable I/O Insertion.

Run Status

The Run Status table gets updated during and after a synthesis run. This
section displays job status information for the compiler, premap job, mapper,
and place-and-route runs, as needed. This section displays information
about the synthesis run:

¢ Job name - Jobs include Compiler Input, Premap, and Map & Optimize. The
job might have a Detailed Report link. When you click this link, it takes
you to the corresponding report in the log file.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
44 January 2014

The Project Results View

User Interface Overview

£} Run Status
Job Name Status @ | A\ [€ |CPU Time |Real Time Memory |Date/Time
Compile Input - . . 9/9/2011
Detailes " Complete |27 [0 |0 0m:03s .
Premap . . 9/9/2011
A Complete (4 |0 |0 |0m:00s Om:015 57TMB ETT T
Map &
Optimize Comple|| <2 | Compile Input : Detailed report
Detailed report ¢ Start of Compile

4Fri Sep 09 15:28:41 2011

Synopsys HDL Compiler, wersion comp560rc, Build 019R, built RAug 22 2011
@N|Running in 32-bit mode
Copyright (C) 1994-2011 Synopsys, Inc. This software the associated documentation are
@N:Top-level is not specified. Trying to extract autcmatically...
Synopsys VHOL Compiler, wersion compSé0rec, Build 019R, built Rug 22
@N|Running in 32-bit mode

Copyright (C) 1994-2011 Synopava,

2011

Inc. This software the assoclated documentation are

@N: CD720 :"C:\builds\syn201109_159R\1ib\vhd\std.vhd":123:18:123:21|5etting time resol
@N:"C:\synplify pro_actel\vhdl\ins_rom.vhd":13:7:13:13|Tcp entity is set te INS ROM.
WHOL syntax check successaful!

4 Fri Sep 09 15:

28:42 2011

Synopsys Verilog Compiler, wversion comp560rc, Build 01%9R, bl-lllt Eung 22 2011
BN |Running in 32-bit mode
Copyright (C) 1994-2011 Synopsys,

Inc. This software the associated documentation are

\synplify pro_actel‘\weriloghalu.v":93:31:93:39|Read full_case directive

Werilog syntax

* Status - Reports whether the job is running or completed.

* Notes, warnings, and errors — These columns are headed by the respec-
tive icons and display the number of messages. The messages
themselves are displayed in the Messages tab, beside the TCL Script tab.
Links are available to the error message and the log location.

|2 wornings (2 fikered?, 39 notes (24 fikzre) Fing: | = Apply Fiter o Shetez Paga Fiker | CroupCommen ('3
f f T =
Ine= | = TS | Lo Lonaton [T = £}
N MIZE Mo Congimn mede = enazed sight bl ez L Fre-magpre Raaart
=Wz MPGEC ook corverzion snckled stahl bt uesT . Pre-mapprg Regort
1] FEEE Fonn addmim 0 v eswenrk s be_nefeaning] . abis (i eght b ucs Pra-MApy Ko |
1) Foung SOUNTAF I Mo i prom_eilfvon o) | 1. P (337 ight W1 gCg, 1312048, Pra-mappng Raport =

TOLSPL | Magsanes

* Real and CPU times, peak memory, and a timestamp

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Copyright © 2013 Synopsys, Inc.
45

User Interface Overview

The Project Results View

Reports

The mapper summary table generates various reports such as an Area
Summary, Compile Point Summary, or Optimization Summary. Click the
Detailed Report link when applicable, to go to the log file and information about
the selected report. These reports are written to the synlog folder for the active
implementation.

Area Summary

For example, the Area Summary contains a resource usage count for compo-
nents such as registers, LUTs, and I/O ports in the design. Click the Detailed
report link to display the usage count information in the design for this report.

: [Job Namz Status oy | 4 | [CPUTime |Real Time |Memory |DatefTime
: |Comaie Input i Al i 11472017
Dcto led repor: f:nl'l'pF.-’F.- & E L Mrm-18s B:12:35 &M
. [Premap . . 4 e : 11472011
[| p— Corpee [(1 | Um:1is Uri13a 146V G1aeg AM
: [Iap & Dotimza . 2 e e = 112/2011
1| }C:Jrrpc.& 234 1143 0 | Cem:11s 1Em:33s 1283 B 52593 A
= Area Summary
IO portz oL Mon #O Rog omer bits 444972 13E1%)
: |0 lemster kit oo Blocklams| asds) i
NsP4ns -'I?é Repuil: luleral {12v_3) Deanures [Tsage Rennrt Far sight_hit ae !
Delaed ol Ll F;}'nl‘f‘PF‘.iF‘. Mopping So part: wgive22Cexrfll1s7-14
] : Zomoller Report Cell usage:
= O~ 2re-mapping Repot D5P40E1 1 u=e
! |Clock Hame Cleck Summary D B uzes
] FOC 133 uss
sbg |aquariz_too|shif:_cloes El-Mapper Ragort i 134 ﬁaj
shg Jaquans_na|systam_clack Cloce Conversion L 5 uzes
Letaled recort : E-Timing Rzport ECT 2 uszes
3 Per [ridncz Sumienary ELODE 24 paes
: Clock Relatiznships EHD 10 L=es
= : Interface Information MITEV_T 13 vamz
: [Gengratec Clock Optmizaton : 14 Netailed Report for Clacgs | [MORET 2 uzes
"""" ' Resource Utlizatan ;;”;3‘5’“‘ Ij“‘i;:a
: Higrarchival & ea Repoligichl_bil_ S P
1 _ = = wIes
| B Place end Route) ITTL 27 Laes
Jackanrotztion Report (13020 08-8 |poz: Z3 Loes
Session Log (13:20 08-Aug) LUT2 S uses
Lura Wi uses
LUTG 72 vaes
LTS 154 us=s
Iurs z 2 umzs

Copyright © 2013 Synopsys, Inc.
46

Synplify Pro for Microsemi Edition Reference Manual

January 2014

The Project Results View User Interface Overview

Implementation Directory

An implementation is one version of a project, run with certain parameter or
option settings. You can synthesize again, with a different set of options, to
get a different implementation. In the Project view, an implementation is
shown in the folder of its project; the active implementation is highlighted.
You can display multiple implementations in the same Project view. The
output files generated for the active implementation are displayed in the
Implementation Directory.

Project Files Design Hierarchy | | Project Status Implementation Directory Process View |
[[

E"‘;J [proj]l - C:\synplfy_pro |Name / |Size Type |M0diﬁed =]
% :eHrli:lng E;J backup Directory 10:16:33
ey 1 ﬁ? dm Directory 10:54:48

- B £ synlog Directory 13:48:08

B syntmp Directory 13:48:01

B synwork Directory 13:48:01

~ [eight_bit_uc.areasrr 18 kB areasrr File 15:28:52

- [eight_bit_uc.edn 723 kB edn File 15:28:52

- [eight_bit_uc.fse 1 kB fse File 15:28:52

~[A eight_bit_uc.htm 373 bytes htm File 15:28:53

~[A eight_bit_uc.map 28 bytes map File 15:28:521

- [eight_bit_uc.pdc 129 bytes pdc File 15:28:52

- [eight_bit_uc.sap 6 kB sap File 15:28:47

~[A eight_bit_uc.sdf 1 MB sdf File 15:28:52

~[A eight_bit_uc.so 211 bytes so File 15:28:52

- @ eight_bit_uc.srd 78 kB Netlst 15:28:52

- @ eight_bit_uc.srl 103 kB MNetlist (RTL) 15:28:44

1@ eight_bit_uc.srm 740 kB Netlist (Gate) 15:28:52

Lo =Rl B eight_bit_uc.srr 33 kB st File 15:28:53

o (4] s
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 47

User Interface Overview The Project Results View

Process View

As process flow jobs become more complex, the benefits of exposing the
underlying job flow is extremely valuable. The Process View gives you this
visibility to track the design progress for the synthesis and place-and-route
job flows.

Click the Process View tab on the right side of the Project Results view. This
displays the job flow hierarchy run on the active implementation and is a
function of this current implementation and its project settings.

Project Files | Design Hierarchy | Project Status | Implementation Directory | Process View
[.
E|‘.| [prof] - Ci\synplfy._pro_acte [rev_1 Show Hierarchy
[‘f' VHDL Process |State Run Time TCL Name
E? Veriog . 2 3] Logic Synthesis Running. 00:00:03 synthesis
4 rev_1 (Pre-mapping...) E *] Compile Running. 00:00:03 compile
- @ 3| Compie Process Complete 00:00:03 compile_flow

o Bb > Premap Running. 00:00:01 premap
= 2 Map Complete 00:00:00 map
= ¥ Map & Optimize Complete 00:00:00 fpga_mapper

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
48 January 2014

The Project Results View User Interface Overview

Process View Displays and Controls

The Process View shows the current state of a job and allows you to control
the run. You can see various aspects of the synthesis process flow, such as
logical synthesis, premap, map, and placement. If you run place and route,
you can see its job processes as well.

Appropriate jobs of the process flow contains the following information:

Job Input and Output Files
Completion State
Displays if the job generated an error, warning, or was canceled.

Job State

— Out-of-date — Job needs to be run.

— Running — Job is active.

— Complete — Job has completed and is up-to-date.

— Complete * — Job is up-to-date, so the job is skipped.

Run/File Time — Job process flow runtime in real time or file creation
date timestamp.

Job TCL Command — Job process name.

Each job has the following control commands that allows you to run jobs at
any stage of the design process, for example map. Right-click any job icon and
select one of the following commands from the popup menu:

Cancel jobProcess that is running

Disable jobProcess that you do not want to run
Run this jobProcess only

Run to this jobProcess from the beginning of run

Run from this jobProcess to the end of run

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 49

User Interface Overview The Project Results View

Hierarchical Job Flows

A hierarchical job flow runs two or more subordinate jobs. Primitive jobs
launch an executable, but have no subordinate jobs. The Logical Synthesis
flow is a hierarchical job that runs the Compile and Map flows.

The state of a hierarchical job depends on the state of its subordinate jobs.
¢ If a subordinate job is out-of-date, then its parent job is out-of-date.

¢ If a subordinate job has an error, then its parent job terminates with
this error.

* Ifa subordinate job has been canceled, then its parent job is canceled as
well.

¢ If a subordinate job is running, then its parent job is also running.

The Process View is a hierarchical tree view. To collapse or expand the main
hierarchical tree, enable or disable the Show Hierarchy option. Use the plus or
minus icon to expand or collapse each process flow to show the details of the
jobs. The icons below are used to show the information for the state of each

process:

* Red arrow (¥) — Job is out-of-date and needs to be rerun.
* Green arrow (5) —Job is up-to-date.

* Red Circle with! (@) - Job encountered an error.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
50 January 2014

Other Windows and Views User Interface Overview

Other Windows and Views

Besides the Project view, the Synopsys FPGA synthesis tools provide other
windows and views that help you manage input and output files, direct the
synthesis process, and analyze your design and its results. The following
windows and views are described here:

* Dockable GUI Entities, on page 52

* Watch Window, on page 52

® Tcl Script and Messages Windows, on page 55
® Tcl Script Window, on page 56

* Message Viewer, on page 56

* Output Windows (Tcl Script and Watch Windows), on page 60
¢ RTL View, on page 61

¢ Technology View, on page 62

* Hierarchy Browser, on page 65

* FSM Viewer Window, on page 67

* Text Editor View, on page 68

* Context Help Editor Window, on page 71

* Interactive Attribute Examples, on page 73

* Search SolvNet, on page 75

See the following for descriptions of other views and windows that are not
covered here:

Project view The Project View, on page 38

SCOPE SCOPE Tabs, on page 165
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 51

User Interface Overview Other Windows and Views

Dockable GUI Entities

Some of the main GUI entities can appear as either independent windows or
docked elements of the main application window. These entities include the
menu bar, Watch window, Tcl window, and various toolbars (see the descrip-
tion of each entity for details). Docked elements function effectively as panes
of the application window; you can drag the border between two such panes
to adjust their relative areas.

Watch Window

The Watch window displays selected information from the log file (see Log
File, on page 257) as a spreadsheet of parameters that you select to monitor.
The values are updated when synthesis finishes.

Watch Window Display

Display of the Watch window is controlled by the View ->Watch Window
command. By default, the Watch window is below the Project view in the
lower right corner of the main application window.

To access the Watch window configuration menu, right-click in any cell.
Select Configure Watch to display the Log Watch Configuration dialog box.

Log Watch Configuration 21xl

Wakch Selection
® ‘Watch Active Implementation
‘Watch Selecked Implementations

‘wiakch all Implementations

Selected Implementations ko watch:

[rew_1

[rev_tfpr_t Select Al

Clear Al

K

Cancel

In the Watch window, indicate which implementations to watch under Watch
Selection. The selected implementation(s) will display in the Watch window.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
52 January 2014

Other Windows and Views User Interface Overview

You can move the Watch window anywhere on the screen; you can make it
float in its own window (named Watch Window) or dock it at a docking area (an
edge) of the application window. Double-click in the banner to toggle between
docked and floating.

The Watch window has a special positioning popup menu that you access by
right-clicking the window border. The following commands are in the menu:

Command Description
Allow Docking A toggle: when enabled, the window can be docked.
Hide Hides the window; use View ->Watch Window to show it again.

Float in Main Window A toggle: when enabled, the window is floated (undocked).

Right-clicking the window title bar when the Watch window is floating
displays an alternative popup menu with commands Hide and Move; Move lets
you position the window using either the arrow keys or the mouse.

Using the Watch Window

You can view and compare the results of multiple implementations in the
Watch window.

nabnle ran 1
- B Log Parameter rew_2 2ip ren_4 4,
worsk Slack -0.418 <. | -1.266 kS
nahle run 1 eight_bit_uclc(éck— Estimated Frequency |\299.6 MHz |<... | 1300 MHz | =
] eight_bit_uclclkik— Requested Frequency / 3424 MHz <. | 1556 MHz | <

Log Watch J
Log Parameters Watch Window

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 53

User Interface Overview

Other Windows and Views

To choose log parameters from a pull-down menu, click in the Log Parameter
section of the window. Click the pull-down arrow that appears to display the

parameter list choices:

eight_bit_uc|clock - Estimated Period
eight_bit_uc|clock - Requested Period
eight_bit_uc|clock - Slack

= eight_bit_uc Part

eight_bit_uc [0 ATOMs

If

Log Parameter rew_2
1D
/
<elear> -
Part
Warst Slack,
eight_bit_uc|clock - Estimated Frequency]
eight_bit_uc|clock - Requested Frequency

I

@g

Click pull-down arrow
to

display list of choices

The Watch window creates an entry for each implementation of a project:

Log Parameter rew_2 rev_4 =

Wharst Slack. -0.418 -1.266 |
eight_bit_uc|clock - Estimated Frequency 299.6 MHz 130.0 MHz

eight_hit_uc|clock - Requested Frequency 342.4 MHz 155.6 MHz z

-

To choose the implementations to watch, use the Log Watch Configuration dialog
box. To display this box, right-click in the Watch window, then choose

Configure Watch in the popup menu. Enable Watch Selected Implementations, then
choose the implementations you want to watch in the list Selected Implementa-
tions to watch. The other buttons let you watch only the active implementation

or all implementations.

Copyright © 2013 Synopsys, Inc.
54

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Other Windows and Views User Interface Overview

Log Watch Configuration 2 x|

Configure “Watch. .
Configure Wa hL
Refresh
Clear Parameters
Hide

Wakch Selection

() wiatch Active Implementation
® Watch Selecked Implementations

() watch all Implementations

Selected Implementations to watch:

rev_2
_ ev_.l'par_l Select Al
[] rev_4/par_1

Clear Al

(019

Canecel

Tcl Script and Messages Windows

The Tcl window has tabs for the Tcl Script and Messages windows. By default,
the Tcl windows are located below the Project Tree view in the lower left corner
of the main application window.

Inalysis Property Generator Complete
Purming PROASICIE Mapper. ..

Launching mapper in pro mode

PROASICIE Mapper Completed with warnings

kd

TCL Scripk Messages

ﬁ Messages panel displays errors,

warnings, and notes

Tcl Script panel to display and
input Tcl commands

You can float the Tcl windows by clicking on a window edge while holding the
Ctrl or Shift key. You can then drag the window to float it anywhere on the
screen or dock it at an edge of the application window. Double-click in the
banner to toggle between docked and floating.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 55

User Interface Overview Other Windows and Views

Right-clicking the Tcl windows title bar when the window is floating displays a
popup menu with commands Hide and Move. Hide removes the window (use
View ->Tcl Window to redisplay the window). Move lets you position the window
using either the arrow keys or the mouse.

For more information about the Tcl windows, see Tcl Script Window, on
page 56 and Message Viewer, on page 56.

Tcl Script Window

The Tcl Script window is an interactive command shell that implements the
Tcl command-line interface. You can type or paste Tcl commands at the
prompt (“% ”). For a list of the available commands, type “help *” (without the
quotes) at the prompt. For general information about Tcl syntax, choose Help
->TCL.

The Tcl script window also displays each command executed in the course of
running the synthesis tool, regardless of whether it was initiated from a
menu, button, or keyboard shortcut. Right-clicking inside the Tcl window
displays a popup menu with the Copy, Paste, Hide, and Help commands.

See also

* Synthesis Commands, on page 94, for information about the Tcl
synthesis commands.

* Generating a Job Script, on page 465 in the User Guide.

Message Viewer

To display errors, warnings, and notes after running the synthesis tool, click
the Messages tab in the Tcl Window. A spreadsheet-style interactive interface
appears.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
56 January 2014

Other Windows and Views

User Interface Overview

| 1 warming, 28 notes Find: | |- | at Biter... | [dpphy Fiker ||?|au.pcmm1nfs
Twpe ! |JEI |MH5# |Sn|.r|:|.-Locnhu| Ian'LDcd:m |R:wt |ﬂ
— i BNEZT This daka was produced by & restricted version of 5., - picht b ueoerr {115) 10:10047... PROASICIE Mappe
m WERAR Running in 325t mode. ' might b uc.pr {1Z1) 10:1047,., PROASICIE
~m HEEE Gabed clock cormversion dissbled - pight bk ucosr (122) 10010047, PROASICHE Mappd
~m HFL35 Ferd RAM, Tegs.mem_reofis(7:07, 32 words by 8. rea fe.x (171 gicht b ue.sre {1550 PROASTCIE Happe
m HOI0E Foured ROM, ‘rom.Daka_I[11:07, 92 words by 12 bks ins romvhd (22) might b uc.arr {134) PROASICIE Mappd:
S =Rk Found RAH mem _regfie, depkheX2, vidth=8 e e (17 gizt bk gy (48] w44 HOL Compler
—m D550 Syrikhessizie) veork.ing_rom.fiest ing rom vhe (130 pioht b ucsredOV) BRiLOe44.. HIM Comoder
& @ 10 S Fyrihasizing moduls sight_bE_uc - sight b uc.orr | HM. Compler
II--@ 2 HELTE Drefault genarstor successful = pigbt bt uc.or 1 ... PROAZICHE
= 2 WEZ3E Fourd 11 bit incrementor, 'uniS_pef10:0] Py picht b e ere 1 PROASICIE Mapp
L T Found 11 bt incrementor, 'un7_stack{10:0] e (77 sight b ycgrr{1sd) 10:10:50,, PROASICE =
A o % Found 11 bit incrementor, 'uni®_pcf10:6] % mfm L0107 PROAZICHR -
1] o] o

&

Error Message |ds Location in source

Grouped Commaon Ids Log File Location

lcon shows message type

Interactive tasks in the Messages panel include:

Drag the pane divider with the mouse to change the relative column size.
Click on the ID entry to open online help for the error, warning, or note.

Click on a Source Location entry to go to the section of code in the source
HDL file that is causing the message.

Click on a Log Location entry to go to its location in the log file.

The following table describes the contents of the Messages panel. You can sort
the messages by clicking the column headers. For further sorting, use Find
and Filter. For details about using this window, see Checking Results in the
Message Viewer, on page 189 in the User Guide.

Item Description
Find Type into this field to find errors, warnings, or notes.
Filter Opens the Warning Filter dialog box. See Messages Filter, on
page 59.
Apply Filter Enable/disable the last saved filter.
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 57

User Interface Overview Other Windows and Views

Iltem

Group Common
ID's

Type

ID

Message

Source Location

Log Location

Time

Report

Description

Enable/disable grouping of repeated messages. Groups are

indicated by a number next to the type icon. There are two types

of groups:

* The same warning or note ID appears in multiple source files
indicated by a dash in the source files column.

* Multiple warnings or notes in the same line of source code
indicated by a bracketed number.

The icons indicate the type of message:

9 Error

A Warning

m Note

@ Advisory

A plus sign next to an icon indicates that repeated messages are

grouped together. Click the plus sign to expand and view the
various occurrences of the message.

This is the message ID. You can select an underlined ID to
launch help on the message.

The error, warning, or note message text.

The HDL source file that generated the error, warning, or note
message.

The location of the error, warning, or note message in the log
file.

The time that the error, warning, or note message was recorded
in the log file for the various stages of synthesis (for example:
compiler, premap, and map). If you rerun synthesis, only new
messages generate a new timestamp for this session.

Note: Once synthesis has run to completion, all the srr files for
the different stages of synthesis are merged into one unified srr
file. If you exit the GUI, these timestamps remain the same
when you re-open the same project in the GUI again.

Indicates which section of the Log File report the error appears,
for example Compiler or Mapper.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
58

January 2014

Other Windows and Views

User Interface Overview

Messages Filter

You filter which errors, warnings, and notes appear in the Messages panel of
the Tcl Window using match criteria for each field. The selections are combined
to produce the result. You can elect to hide or show the warnings that match
the criteria you set. See Checking Results in the Message Viewer, on

page 189 in the User Guide.

Warning Filter EE
(@ Hide Filtet Matches () Show Filker Matched | Apply | | Close | | Syntax Help |
Enable Type his) Message Source Location Log Location Time -
1 Warning Fx107
H Mote CD233
3 Mote CD630 @
-
a Dl
Iltem Description

Hide Filter Matches
Show Filter Matches

Syntax Help
Apply

Type, ID, Message,
Source Location, Log
Location, Time, Report

Hides matched criteria in the Messages Panel.
Shows matched criteria in the Messages Panel.
Gives quick syntax descriptions.

Applies the filter criteria to the Messages Panel report,
without closing the window.

Log file report criteria to use when filtering.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
59

January 2014

User Interface Overview Other Windows and Views

The following is a filtering example.

) Hide Filter Matches (@) Show Filker Matched | Apply | | Clase | | Syntax Help |
Enable Type ol Message Source Location Log Location Tirne j
1 Warning L Eé].DE)
H Hoke cé(aa
3 Mot CDS}‘ B
\ -

A \)
\
A\

\
H [1 warning, 37 ates (19 Fikered) | Find: []v” Set Filter... Apply Filer I GroupCammon ID's
Show Filter e I J
Matches we Y D | Message | sourcelocation | Loglostion | Time | Report
W 9 D233 Using sequential encading for type aluep_type constplag.vhd spel regzsr 07:37:47 Wed May 09 hdl Compller
mw 9 DE30 Synthesieing work.reg_fie first - spel regssr 07:37:47 Wed May 09 vhdl Compiler
Ay EX107 Mo readfwrite conflict check, Simulation mismatch pos... req fleshd (23) spel regs.sre (87} O7:37:47 Wed May 09 Mapper Report

TCL Seript | Messages

Hide Filter [1 warring {1 fikered), 37 notes (1 fiered) | Find: | - I | setFiter... |] apply Fiter [GroupCommon ID's
Matches Type | o | Message | sourcelocation | Loglocation | Time | Repot |+

W s FY27l Tnstance 'DECODE ALUGR[3] with 30 Inars has beer sprl rens.sr (17137147 Wed May 03 SPARTANS M

n D720 Sekting tins resslution b ns stelwhd (122) sprl rens.sir (16) (7537147 Wed May 03 Vhel Compiler

n CLI34 Found RAM mem, depth=32, width—i ven Fle.vhd (23) sprl rens. (55) (7:37:47 Wed May 03 vkl Compiler

n L0 Trying b sstract skabe machine For registsr STACKLEY. pe.shd (34) Sprl rens.sr (57) (7137147 Wed May 03 Vhel Compiler

n Fi2l4 Gensrsting ROM ROM.Daks_1[11:0] ins rom.shd (2] sprl rens.s (120) (7537147 Wed May 03 SPARTANS Ma

n MT206 Auboranstrsin Mads is ON - Sprl rens.sr (B3) (7137147 Wed May 03 Mapper Report

TCL Scripk Messages

Output Windows (Tcl Script and Watch Windows)

The Output windows are the Tcl Script and Log Watch windows. To display or
hide them, use View->Output Windows from the main menu. Refer to Watch

Window, on page 52 and Tcl Script and Messages Windows, on page 55 for
more information.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
60

January 2014

Other Windows and Views User Interface Overview

RTL View

The RTL view provides a high-level, technology-independent, graphic repre-
sentation of your design after compilation, using technology-independent
components like variable-width adders, registers, large multiplexers, and
state machines. RTL views correspond to the srs netlist files generated during
compilation. RTL views are only available after your design has been success-
fully compiled. For information about the other HDL Analyst view (the
Technology view generated after mapping), see Technology View, on page 62.

To display an RTL view, first compile or synthesize your design, then select
HDL Analyst->RTL and choose Hierarchical View or Flattened View, or click the
RTL icon (|@]).

An RTL view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 65. Your design is drawn as a set of
schematics. The schematic for a design module (or the top level) consists of
one or more sheets, only one of which is visible in a given view at any time.
The title bar of the window indicates the current hierarchical schematic level,
the current sheet, and the total number of sheets for that level.

Sheet # of total # Current schematic level Movable pane divider

—

@ Filtered Shezt 1 of 1 top level [of module prep2_2) (Filtered RTL View)

[#}- < Instances(Te
[+ © Ports (8]
< Mets [23)
-- < Clock Tree

| U,

Hierarchy Browser Schematic

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 61

User Interface Overview Other Windows and Views

The design in the RTL schematic can be hierarchical or flattened. Further, the
view can consist of the entire design or part of it. Different commands apply,
depending on the kind of RTL view.

The following table lists where to find further information about the RTL view:

For information about...
Hierarchy Browser

Procedures for RTL view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

Commands for RTL view
operations like filtering,
flattening, etc.

Viewing commands like
zooming, panning, etc.

History commands: Back
and Forward

Search command

See...
Hierarchy Browser, on page 65

Working in the Schematic Views, on page 204 of the
User Guide.

HDL Analyst Tool, on page 105

Accessing HDL Analyst Commands, on page 107
HDL Analyst Menu, on page 272

View Menu: RTL and Technology Views Commands, on
page 171

View Menu: RTL and Technology Views Commands, on
page 171

Find Command (HDL Analyst), on page 163

Technology View

A Technology view provides a low-level, technology-specific view of your
design after mapping, using components such as look-up tables, cascade and
carry chains, multiplexers, and flip-flops. Technology views are only available
after your design has been synthesized (compiled and mapped). For informa-
tion about the other HDL Analyst view (the RTL view generated after compila-
tion), see RTL View, on page 61.

To display a Technology view, first synthesize your design, and then either
select a view from the HDL Analyst->Technology menu (Hierarchical View, Flattened
View, Flattened to Gates View, Hierarchical Critical Path, or Flattened Critical Path) or
select the Technology view icon (E).

Synplify Pro for Microsemi Edition Reference Manual

Copyright © 2013 Synopsys, Inc.
62 January 2014

Other Windows and Views User Interface Overview

A Technology view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 65. Your design is drawn as a set of
schematics at different design levels. The schematic for a design module (or
the top level) consists of one or more sheets, only one of which is visible in a
given view at any time. The title bar of the window indicates the current
schematic level, the current sheet, and the total number of sheets for that

level.

Sheet # of total # Current schematic level Movable pane divider

B-Sheet 1 of 3 | top level [of module prep2_2) (Technology Yiew]
—
[+]- < Instances [122] AN o g 1
[+]- < Porls [8) = r i_w
F < Nets (135 e T [
I i
Hierarchy Browser Schematic

The schematic design can be hierarchical or flattened. Further, the view can
consist of the entire design or a part of it. Different commands apply,
depending on the kind of view. In addition to all the features available in RTL
views, Technology views have two additional features: critical path filtering

and flattening to gates.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 63

User Interface Overview

Other Windows and Views

The following table lists where to find further information about the

Technology view:

For information about...
Hierarchy Browser

Procedures for
Technology view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

Commands for
Technology view
operations like filtering,
flattening, etc.

Viewing commands like
zooming, panning, etc.

History commands: Back
and Forward

Search command

Copyright © 2013 Synopsys, Inc.
64

See...
Hierarchy Browser, on page 65

Working in the Schematic Views, on page 204 of the
User Guide

HDL Analyst Tool, on page 105

Accessing HDL Analyst Commands, on page 107
HDL Analyst Menu, on page 272

View Menu: RTL and Technology Views Commands, on
page 171

View Menu: RTL and Technology Views Commands, on
page 171

Find Command (HDL Analyst), on page 163

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Other Windows and Views User Interface Overview

Hierarchy Browser

The Hierarchy Browser is the left pane in the RTL and Technology views. (See
RTL View, on page 61 and Technology View, on page 62.) The Hierarchy
Browser categorizes the design objects in a series of trees, and lets you
browse the design hierarchy or select objects. Selecting an object in the
Browser selects that object in the schematic. The objects are organized as
shown in the following table, with a symbol that indicates the object type. See
Hierarchy Browser Symbols, on page 66 for common symbols.

Instances Lists all the instances and primitives in the design. In a Technology
view, it includes all technology-specific primitives.

Ports Lists all the ports in the design.
Nets Lists all the nets in the design.

Clock Tree Lists all the instances and ports that drive clock pins in an RTL view. If
you select everything listed under Clock Tree and then use the Filter
Schematic command, you see a filtered view of all clock pin drivers in
your design. Registers are not shown in the resulting schematic,
unless they drive clocks. This view can help you determine what to
define as clocks.

A tree node can be expanded or collapsed by clicking the associated icons:
the square plus () or minus (|E|) icons, respectively. You can also expand
or collapse all trees at the same time by right-clicking in the Hierarchy
Browser and choosing Expand All or Collapse All.

You can use the keyboard arrow keys (left, right, up, down) to move between
objects in the Hierarchy Browser, or you can use the scroll bar. Use the Shift
or Ctrl keys to select multiple objects. See Navigating With a Hierarchy
Browser, on page 129 for more information about using the Hierarchy
Browser for navigation and crossprobing.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 65

User Interface Overview

Other Windows and Views

Hierarchy Browser Symbols

Common symbols used in Hierarchy Browsers are listed in the following

table.

Symbol

PROT 60 YO0

v s

Description

Folder

Input port

Output port
Bidirectional port

Net

Other primitive instance
Hierarchical instance

Technology-specific primitive
or inferred ROM

Register
or inferred state machine

Multiplexer
Tristate

Inverter

Copyright © 2013 Synopsys, Inc.
66

Symbol

oW ® @08 FY oo

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Description
Buffer

AND gate
NAND gate
OR gate
NOR gate
XOR gate
XNOR gate
Adder

Multiplier

Equal comparator
Less-than comparator

Less-than-or-equal comparator

Other Windows and Views User Interface Overview

FSM Viewer Window

Pushing down into a state machine primitive in the RTL view displays the
FSM Viewer and enables the FSM toolbar. The FSM Viewer contains graphical
information about the finite state machines (FSMs) in your design. The
window has a state-transition diagram and tables of transitions and state
encodings.

B FSM Viewer - present_statel4-0]

State- =)
Transition /
Diagram _(»

~ _7_7_7""_;\

Transitions
and _— Tl
Encodings

Tables P

From State To State Condition

1 |LAND LARND lis_landed

2 |OWN_MISSION | Ok_MISSION

3 | LAUMCH ON_MISSION .
4 |sEQUEMCE |LaumcH 1ent[0]edent[1]edent[2]ecnt[3] -
Transitions | RTL Encodings | Mapped Encodings |

For the FSM Viewer to display state machine names for a Verilog design, you
must use the Verilog parameter keyword. If you specify state machine names
using the define keyword, the FSM Viewer displays the binary values for the
state machines, rather than their names.

You can toggle display of the FSM tables on and off with the Toggle FSM Table
icon () on the FSM toolbar. The FSM tables are in the following panels:

* The Transitions panel describes, for each transition, the From State, To State,
and Condition of transition.

* The RTL Encodings panel describes the correlation, in the RTL view,
between the states (State) and the outputs (Register) of the FSM cell.

* The Mapped Encodings panel describes the correlation, in the Technology
view, between the states (State) and their encodings into technology-
specific registers. The information in this panel is available only after the
design has been synthesized.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 67

User Interface Overview

Other Windows and Views

The following table describes FSM Viewer operations.

To accomplish this...

Open the FSM Viewer

Hide/display the table

Filter selected states and
their transitions

Display the encoding
properties of a state

Display properties for the
state machine

Crossprobe

See also:

Do this...

Run the FSM Compiler or the FSM Explorer. Use the
push/pop mode in the RTL view to push down into
the FSM and open the FSM Viewer window.

Use the FSM icons.

Select the states. Right-click and choose the filter
criteria from the popup, or use the FSM icons.

Select a state. Right-click to display its encoding
properties (RTL or Mapped).

Right-click the window, outside the state-transition
diagram. The property sheet shows the selected
encoding method, the number of states, and the total
number of transitions among states.

Double-click a register in an RTL or Technology view
to see the corresponding code. Select a state in the
FSM view to highlight the corresponding code or
register in other open views.

* Pushing and Popping Hierarchical Levels, on page 126, for information
on the operation of pushing into a state machine.

* FSM Viewer Toolbar, on page 89, for information on the FSM icons.

* See Using the FSM Viewer, on page 263 of the User Guide for more infor-
mation on using the FSM viewer.

Text Editor View

The Text Editor view displays text files. These can be constraint files, source
code files, or other informational or report files. You can enter and edit text in
the window. You use this window to update source code and fix syntax or
synthesis errors. You can also use it to crossprobe the design. For informa-
tion about using the Text Editor, see Editing HDL Source Files with the Built-
in Text Editor, on page 36 in the User Guide.

Copyright © 2013 Synopsys, Inc.
68

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Other Windows and Views

User Interface Overview

C:/tutorial/tutorial/tutorial/rtl/ins_decode.vhd

12
13
14
13
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

23

):

CLE : in std logic;

EESET: in std logic:

INST : in std logic wector(ll downto 0);
LONGE :out std logic wector (8 downto 0):
ALUCP : out ALUCP TYPE;

FWE : out std logic:

W_Reg Write : out std logic:

ALUA SEL : out ALU SEL TYPE;

ALUE SEL : out ALU SEL TYPE;
STATUS Z WRITE : out s=td logic:
STATUS C WRITE : out std logic:

TRIS WE : out std logic:

TWO CYC INST : out std logic:

SKEIP INST : out std logic:

OPCODE_GOTO : out =std logic:

OPCODE CALL : out std logic;
OPCODE_RETLW : out std_logic

end INS Decode;

32 Rrchitecture RTL of Ins Decode is

[10

-

[1)

Ln 3 Col| 14 Total|

Opening the Text Editor

331 [owr |

To open the Text Editor to edit an existing file, do one of the following:

* Double-click a source code file (v or vhd) in the Project view.

* Choose File ->Open. In the dialog box displayed, double-click a file to

open it.

With the Microsoft® Windows® operating system, you can instead drag
and drop a source file from a Windows folder into the gray background
area of the GUI (not into any particular view).

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Copyright © 2013 Synopsys, Inc.
69

User Interface Overview Other Windows and Views

To open the Text Editor on a new file, do one of the following:
* Choose File ->New, then specify the kind of text file you want to create.

* Click the HDL icon () to create and edit an HDL source file.

The Text Editor colors HDL source code keywords such as module and output
blue and comments green.

Text Editor Features

The Text Editor has the features listed in the following table.

Feature Description

Color coding Keywords are blue, comments green, and strings red. All
other text is black.

Editing text You can use the Edit menu or keyboard shortcuts for
basic editing operations like Cut, Copy, Paste, Find, Replace,
and Goto.

Completing keywords To complete a keyword, type enough characters to make
the string unique and then press the Esc key.

Indenting a block of text The Tab key indents a selected block of text to the right.
Shift-Tab indents text to the left.

Inserting a bookmark Click the line you want to bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of the line.

Deleting a bookmark Click the line with the bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon

() on the Edit toolbar.

Deleting all bookmarks ~ Choose Edit ->Delete all Bookmarks, type Ctrl-Shift-F2, or click
the Clear All Bookmarks icon () on the Edit toolbar.

Editing columns Press and hold Alt, then drag the mouse down a column of
text to select it.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
70 January 2014

Other Windows and Views User Interface Overview

Feature Description

Commenting out code Choose Edit ->Advanced ->Comment Code. The rest of the

current line is commented out: the appropriate comment
prefix is inserted at the current text cursor position.

Checking syntax Use Run ->Syntax Check to highlight syntax errors, such as

incorrect keywords and punctuation, in source code. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Checking synthesis Use Run ->Synthesis Check to highlight hardware-related

errors in source code, like incorrectly coded flip-flops. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

See also:

Editor Options Command, on page 293, for information on setting Text
Editor preferences.

File Menu, on page 154, for information on printing setup operations.

Edit Menu Commands for the Text Editor, on page 160, for information
on Text Editor editing commands.

Text Editor Popup Menu, on page 319, for information on the Text
Editor popup menu.

Text Editor Toolbar, on page 90, for information on bookmark icons of
the Edit toolbar.

Keyboard Shortcuts, on page 93, for information on keyboard shortcuts
that can be used in the Text Editor.

Context Help Editor Window

Use the Context Help button to copy Verilog or SystemVerilog constructs into
your source file or Tcl constraint commands into your Tcl file. When you load
a Verilog/SystemVerilog file or Tcl file into the UI, the Context Help button
displays at the bottom of the window. Click this button to display the Context
Help Editor.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 71

User Interface Overview Other Windows and Views

legic, or bit) or, they can be user-defined types
(typedef) */

1 module d££2(gl, 41, clk, el, eZ, e3);
2 input [4:0] 41;
3 input clk;
4 cutput [4:0] gl;
5 reg [4:0] gl;
B input el, e3;
¥ input eZ;
8 zlwavs Bl 2l
Jibe gn} . |Verilog | FEpEmE
10 if (el R e
. Gy
11 ql = s S.;Tm rieg | Top | |\$Bad< | | . Forward | ‘ Onling Help ‘
12 end - Sunit
- always_comb
13 end - always_ff
- always_latch Synopsys FPGA R oe Manual
14 endmedule| kil
- do Dats Types
- endfunction
- endpackage Struct Construct
[I - endtask
- enum SystemVerilog adds zeveral enhancements to Verilog for representing large
| - for amounts of data. In SystemVerilog, the Verilog array constructs are extended
Context Help - function both in how data can be reprezented and for operations on arrays. A structure
- interface data type has been defined as a means to represent collections of data types.
- modpert These data types can be sither standard data types (such as int, logic, or bit)
- package or, they can be defined types (using temVeriog typedef). Structures
-quar::DEr allow multiple signals, of various data types, to be bundled together and
- priart referenced by a single name.
| o3 - struct e g
- task .
- typedef Template:
-+ union
- /+Structure data type represents collections of
datz types. These dsta types can be either standard
1 date types (such a3 int,
i

struct [packed <signing>] { variazble declarations;...
[Packed Dimensions.] structNames, ...

f/examples: @

| Copy | |j31nsertTEmpIatE |

A

When you select a construct in the left-side of the window, the online help
description for the construct is displayed. If the selected construct has this
feature enabled, the online help topic is displayed on the top of the window
and a generic code or command template for that construct is displayed at
the bottom. The Insert Template button is also enabled. When you click the
Insert Template button, the code or command shown in the template window is
inserted into your file at the location of the cursor. This allows you to easily
insert the code or constraint command and modify it for the design that you
are going to synthesize. If you want to copy only parts of the template, select
the code or constraint command you want to insert and click Copy. You can
then paste it into your file.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
72 January 2014

Other Windows and Views

User Interface Overview

Field/Option
Top

Back

Forward

Online Help

Copy

Insert Template

Description

Takes you to the top of the context help page for the selected
construct.

Takes you back to the last context help page previously
viewed.

Once you have gone back to a context help page, use Forward
to return to the original context help page from where you
started.

Brings up the interactive online help for the synthesis tool.

Allows you to copy selected code from the Template file and
paste it into the editor file.

Automatically copies the code description in its entirety from
the Template file to the editor file.

Interactive Attribute Examples

The Interactive Attribute Examples wizard lets you select pre-defined attri-
butes to run in a project. To use this tool:

1. Click Help.

2. Click Interactive Attribute Examples.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
73

January 2014

User Interface Overview Other Windows and Views

> Interactive Attribute Example ?_ —— l ? 2 I
SYNoPSys' |
el | syn_ramstyle attribute |
- About_wizard
- Memory The syn_ramstyle attribute specifies the implementation to use for an inferred RAM. You can apply syn_ramstyle
syn_ramstyle, _alnba na module ortoa RAM instance Tn tum off RA erance set the value tn reqiste
Miscellaneous |/« Interactive Attribute Example - syn_ramstyle Eﬂm
- Optimization
H syn_maxfan r o
E- Probe *
syn_probe SY"UPS‘IS . It uses the
Microsemi ProASIC3 I
| prevent the
ST L use no_rw_check |
[¥] Block Ram |¥| Registers No RW Check the same RAM
Working Directory l ‘ | Browse... I
Generate | |Generat&Run| | Cancel | ‘ Help...
h

3. Double-click an attribute to start the wizard.
4. Specify the Working Directory location to write your project.
5. Click Generate to generate a project for your attribute.

A project will be created with an implementation for each attribute value
selected.

6. Click Generate Run to run synthesis for all the implementations. When
synthesis completes:

— The Technology view opens to show how the selected attribute
impacts synthesis.

— You can compare resource utilization and timing information
between implementations in the Log Watch window.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
74 January 2014

Other Windows and Views User Interface Overview

Search SolvNet

The Synopsys FPGA synthesis tools provide an easy way to access SolvNet
from within the Project view. Click the Search SolvNet button in the GUI, a
Search SolvNet dialog box appears.

|{$ Implementation Options. ..

|“ Add P&R Implementation

i ‘ Synplify Pro® Click
— ynplify
|Ready | Search Solviiet |
| "} Open Project... | | Project Files Implementation Directory
T Close Project | |Name / |Size
||} Add File... |
|8y Crange ie... | ¥ Search Solviiet 2| x|
|{* Add Implementation... |
| Search application notes and articles:

| &, view Log @ o) Browse all application notes
- Browse all artices
B «MNo projects = Go to tutorial

You can search the SolvNet database for Articles and Application Notes using
the following methods:

* Specify a topic in the Search application notes and articles field, then click the
Go button—takes you to Application Notes and Articles on SolvNet
related to the topic.

* Click the Browse all application notes link—takes you to a SolvNet page that
links to all the Synopsys FPGA products Application Notes.

* Click the Browse all articles link—takes you to the Browse Atrticles by Product-
SolvNet page.

* Click the Go to tutorial link—takes you to the tutorial page for the
Synopsys FPGA product you are using (same as Help->Tutorial).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 75

User Interface Overview FSM Compiler

FSM Compiler

The FSM Compiler performs proprietary, state-machine optimization
techniques (other synthesis tools treat state machines as regular logic). You
enable the FSM compiler to take advantage of these techniques; you do not
need special directives or attributes to locate the state machines in your
design. You can also, however, enable the FSM compiler selectively for
individual state machines, using synthesis directives in the HDL description.

The FSM compiler examines your design for state machines. It looks for regis-
ters with feedback that is controlled by the current value of the register, such
as case or if-then-else statements that test the current value of a state register.
It converts state machines to a symbolic form that provides a better starting
point for logic optimization. Several proprietary optimizations are performed
on each symbolic state machine.

Converting from an encoded state machine to a one-hot state machine often
produces better results. However, one-hot implementations are not always
the best choice for FPGAs or for CPLDs. For example, one-hot state machines
might result in higher speeds in CPLDs, but cause fitting problems because
of the larger number of global signals. An example where the one-hot imple-
mentation can be detrimental in an FPGA is a state machine that drives a
large decoder, generating many output signals. For example, in a 16-state
state machine the output decoder logic might reference eight signals in a one-
hot implementation, but only four signals in an encoded representation.

During synthesis, a state encoding for an FSM is determined based on certain
predefined characteristics of the state machine. The optional FSM Explorer
feature enhances this capability by automatically determining and using the
best encoding styles for the state machines based on the design constraints
and the area/delay requirements. You can force the use of a particular
encoding style for a state machine by including the appropriate directive in
the HDL description.

The log file contains a description of each state machine extracted, including
a list of the reachable states and the state encoding method used.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
76 January 2014

FSM Compiler User Interface Overview

When to Use FSM Compiler

Use the symbolic FSM compiler to generate better results for state machines
or to debug state machines. If you do not want to use the symbolic FSM
compiler on the final circuit, you can use it only during initial synthesis to
check that the state machines are described correctly. Many common state
machine description errors result in unreachable states, which are optimized
away during synthesis, resulting in a smaller number of states than you
expect. Reachable states are reported in the log file.

To view a textual description of a state machine in terms of inputs, states,
and transitions, select the state machine in the RTL view, right-click, then
choose View FSM Info File in the popup menu. You can view the same informa-
tion graphically with the FSM viewer. The graphical description of a state
machine makes it easier to verify behavior. For information on the FSM
Viewer, see FSM Viewer Window, on page 67.

See also:
* Log File, on page 257, for information on the log file.

* RTL and Technology Views Popup Menus, on page 337, for information
on the command View FSM Info File.

Where to Use FSM Compiler (Global and Local Use)

Enable the FSM Compiler check box in the Project view to turn on FSM
synthesis. This allows the tool to recognize, extract, and optimize the state
machines in the design.

The following table summarizes the operations you can perform. For more
information, see Deciding when to Optimize State Machines, on page 348 of
the User Guide.

To... Do this...

Globally enable (disable) Enable (disable) the FSM Compiler check box in the
the FSM Compiler Project view.

Enable (disable) the FSM Disable (enable) the FSM Compiler check box and set
compiler for a specific the Verilog syn_state_machine directive to 1 (0), or the
register VHDL syn_state_machine directive to true (false), for

that instance of the state register.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 77

User Interface Overview FSM Explorer

FSM Explorer

The FSM Explorer automatically explores different encoding styles for state
machines and picks the style best suited to your design. The FSM explorer
runs the FSM viewer to identify the finite state machines in a design, then

analyzes the FSMs to select the optimum encoding style for each.

To enable the FSM Explorer, do one of the following:
* Turn on the FSM Explorer check box in the Project view

¢ Display the Implementation Options dialog box (Project ->Implementation
Options) and enable the FSM Explorer option on the Options/Constraints
panel.

The FSM Explorer runs during synthesis. The cost of running analysis is
significant, so when analysis finishes, the encoding information is saved to a
file. The synthesis tool reuses the file in subsequent synthesis iterations,
which reduces overhead and saves runtime by not reanalyzing the design
when you recompile. However, if you make changes to your design or your
state machine, you must rerun the FSM Explorer (Run ->FSM Explorer or the
F10 key) to reanalyze the encoding.

For more information about using the FSM Explorer, see Running the FSM
Explorer, on page 353 in the User Guide.

Using the Mouse

The mouse button operations in Synopsys FPGA products are standard; refer
to Mouse Operation Terminology for a summary of supported functions. The
Synopsys FPGA tools also provide support for:

* Using Mouse Strokes, on page 79
* Using the Mouse Buttons, on page 81
¢ Using the Mouse Wheel, on page 83

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
78 January 2014

Using the Mouse User Interface Overview

Mouse Operation Terminology

The following terminology is used to refer to mouse operations:

Term Meaning

Click Click with the left mouse button: press then release it without
moving the mouse.

Double-click Click the left mouse button twice rapidly, without moving the mouse.
Right-click Click with the right mouse button.

Drag Press the left mouse button, hold it down while moving the mouse,
then release it. Dragging an object moves the object to where the
mouse is released; then, releasing is sometimes called “dropping”.

Dragging initiated when the mouse is not over an object often traces
a selection rectangle, whose diagonal corners are at the press and
release positions.

Press Depress a mouse button; unless otherwise indicated, the left button
is implied. It is sometimes used as an abbreviation for “press
and hold”.

Hold Keep a mouse button depressed. It is sometimes used as an

abbreviation for “press and hold”.

Release Stop holding a mouse button depressed.

Using Mouse Strokes

Mouse strokes are used to quickly perform simple repetitive commands.
Mouse strokes are drawn by pressing and holding the right mouse button as
you draw the pattern. The stroke must be at least 16 pixels in width or height
to be recognized. You will see a green mouse trail as you draw the stroke (the
actual color depends on the window background color).

Some strokes are context sensitive. That is, the interpretation of the stroke
depends upon the window in which the stroke is started. For example, in an
Analyst view, the right stroke means “Next Sheet.” In a dialog box, the right
stroke means “OK.”

For information on each of the available mouse strokes, consult the Mouse
Stroke Tutor.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 79

User Interface Overview Using the Mouse

The strokes you draw are interpreted on a grid of one to three rows. Some
strokes are similar, differing only in the number of columns or rows, so it may
take a little practice to draw them correctly. For example, the strokes for Redo
and Back differ in that the Redo stroke is back and forth horizontally, within a
single-row grid, while the Back stroke involves vertical movement as well.

Redo Last Operation Back to Previous View

The Mouse Stroke Tutor

Do one of the following to access the Mouse Stroke Tutor:
* Help->Stroke Tutor
* Draw a question mark stroke ("?")

* Scribble (Show tutor when scribbling must be enabled on the Stroke Help
dialog box)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
80 January 2014

Using the Mouse User Interface Overview

Stioke Tutor K E
Use the right mouse button ko draw a stroke,
Strokes are interpreted as being either horizontal, vertical, or drawn on a 3%3 grid

Click on a command below to see what stroke bo use,

Show () All Strokes (@) Current Conbext

Unda

Redao

Find

CpeEn
Stroke Tubor
Help

Unda the last operation

Show tutar when scribbling

The tutor displays the available strokes along with a description and a
diagram of the stroke. You can draw strokes while the tutor is displayed.

Mouse strokes are context sensitive. When viewing the Stroke Tutor, you can
choose All Strokes or Current Context to view just the strokes that apply to the
context of where you invoked the tutor. For example, if you draw the "?"
stroke in an Analyst window, the Current Context option in the tutor shows only
those strokes recognized in the Analyst window.

You can display the tutor while working in a window such as the Analyst RTL
view. However you cannot display the tutor while a modal dialog is displayed,
as input is restricted to the modal dialog.

Using the Mouse Buttons

The operations you can perform using mouse buttons include the following:

* You select an object by clicking it. You deselect a selected object by
clicking it. Selecting an object by clicking it deselects all previously
selected objects.

* You can select and deselect multiple objects by pressing and holding the
Control key (Ctrl) while clicking each of the objects.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 81

User Interface Overview Using the Mouse

* You can select a range of objects in a Hierarchy Browser, as follows:
— select the first object in the range

— scroll the tree of objects, if necessary, to display the last object in the
range

— press and hold the Shift key while clicking the last object in the range

Selecting a range of objects in a Hierarchy Browser crossprobes to the
corresponding schematic, where the same objects are automatically
selected.

* You can select all of the objects in a region by tracing a selection
rectangle around them (lassoing).

* You can select text by dragging the mouse over it. You can alternatively
select text containing no white space (such as spaces) by double-
clicking it.

* Double-clicking sometimes selects an object and immediately initiates a
default action associated with it. For example, double-clicking a source
file in the Project view opens the file in a Text Editor window.

* You can access a contextual popup menu by clicking the right mouse
button. The menu displayed is specific to the current context, including
the object or window under the mouse.

For example, right-clicking a project name in the Project view displays a
popup menu with operations appropriate to the project file. Right-
clicking a source (HDL) file in the Project view displays a popup menu
with operations applicable to source files.

Right-clicking a selectable object in an HDL Analyst schematic also
selects it, and deselects anything that was selected. The resulting popup
menu applies only to the selected object. See RTL View, on page 61, and
Technology View, on page 62, for information on HDL Analyst views.

Most of the mouse button operations involve selecting and deselecting
objects. To use the mouse in this way in an HDL Analyst schematic, the
mouse pointer must be the cross-hairs symbol: ~‘— If the cross-hairs pointer
is not displayed, right-click the schematic background to display it.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
82 January 2014

User Interface Preferences User Interface Overview

Using the Mouse Wheel

If your mouse has a wheel and you are using a Microsoft Windows platform,
you can use the wheel to scroll and zoom, as follows:

* Whenever only a horizontal scroll bar is visible, rotating the wheel
scrolls the window horizontally.

* Whenever a vertical scroll bar is visible, rotating the wheel scrolls the
window vertically.

* Whenever both horizontal and vertical scroll bars are visible, rotating
the wheel while pressing and holding the Shift key scrolls the window
horizontally.

* In a window that can be zoomed, such as a graphics window, rotating
the wheel while pressing and holding the Ctrl key zooms the window.

User Interface Preferences

The following table lists the commands with which you can set preferences
and customize the user interface. For detailed procedures, see the User
Guide.

Preferences Description For option descriptions, see...
Text Editor Fonts and colors Editor Options Command
HDL Analyst tool HDL Analyst options HDL Analyst Menu
(RTL/Technology views)

Project view Organization and Project View Options

display of project files =~ Command

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 83

User Interface Overview User Interface Preferences

Managing Views

As you work on a project, you move between different views of the design. The
following guidelines can help you manage the different views you have open.

1. Enable the option View ->Workbook Mode.

Below the Project view are tabs, one for each open view. The icon accom-
panying the view name on a tab indicates the type of view. This example,
shows tabs for four views: the Project view, an RTL view, a Technology
view, and a Verilog Text Editor view.

l B proj_L.prj |@ spol_regs.srs |3D' spel_regs.srm]@ AL _cp.sde * [

2. To bring an open view to the front and make it the current (active) view,
click any visible part of the window, or click the tab of the view.

If you previously minimized the view, it will be activated but will remain
minimized. To display it, double-click the minimized view.

3. To activate the next view and bring it to the front, type Ctrl-F6. Repeating
this keyboard shortcut cycles through all open views. If the next view
was minimized it remains minimized, but it is brought to the front so
that you can restore it.

4. To close a view, type Cirl-F4 in the view, or choose File ->Close.

5. You can rearrange open windows using the Window menu: you can
cascade them (stack them, slightly offset), or tile them horizontally or
vertically.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
84 January 2014

Toolbars User Interface Overview

Toolbars

Toolbars provide a quick way to access common menu commands by clicking
their icons. The following standard toolbars are available:

* Project Toolbar — Project control and file manipulation.
* Analyst Toolbar — Manipulation of RTL and Technology views.

* FSM Viewer Toolbar — Display of finite state machine (FSM) informa-
tion.

e Text Editor Toolbar — Text Editor bookmark commands.

* Tools Toolbar — Opens supporting tools.

You can enable or disable the display of individual toolbars — see Toolbar
Command, on page 173.

By dragging a toolbar, you can move it anywhere on the screen: you can
make it float in its own window or dock it at a docking area (an edge) of the
application window. To move the menu bar to a docking area without docking
it there (that is, to leave it floating), press and hold the Ctrl or Shift key while
dragging it.

Right-clicking the window title bar when a toolbar is floating displays a popup
menu with commands Hide and Move. Hide removes the window. Move lets you
position the window using either the arrow keys or the mouse.

Project Toolbar

The Project toolbar provides the following icons, by default:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 85

User Interface Overview

Toolbars

M
Er%?:c 1 anw ctmit | Open iﬁve Copy Undo Find
File |
| | | | | |
e EL T RS LT
| | | | | !
M M
Hg‘!tr D:;}Ign Save Cut Paste Redo
File File

The following table describes the default Project icons. Each is equivalent to a
File or Edit menu command; for more information, see the following:

* File Menu, on page 154

¢ Edit Menu, on page 159

Icon

Open Project

New HDL file

=1 New Constraint File (SCOPE)

Open
Save

Copyright © 2013 Synopsys, Inc.
86

Description

Displays the Open Project dialog box to create a
new project or to open an existing project.

Same as File ->Open Project.

Opens the Text Editor window with a new, empty
source file.

Same as File ->New, Verilog File or VHDL File.

Opens the SCOPE spreadsheet with a new,
empty constraint file.

Same as File ->New, Constraint File (SCOPE).

Displays the Open dialog box, to open a file.
Same as File ->Open.

Saves the current file. If the file has not yet been
saved, this displays the Save As dialog box, where
you specify the filename. The kind of file depends
on the active view.

Same as File ->Save.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Toolbars User Interface Overview

Icon Description

&) Save All Saves all files associated with the current design.
Same as File ->Save All.

Cut Cuts text or graphics from the active view,
making it available to Paste.

Same as Edit ->Cut.

Paste Pastes previously cut or copied text or graphics
to the active view.

Same as Edit ->Paste.

Undo Undoes the last action taken.
Same as Edit ->Undo.
Redo Performs the action undone by Undo.

Same as Edit ->Redo.

Find Finds text in the Text Editor or objects in an RTL
view or Technology view.

Same as Edit ->Find.

Analyst Toolbar

The Analyst toolbar becomes active after a design has been compiled. The
toolbar provides the following icons, by default:

RTL Timing Critical wCD Forward Zoom FZoom Pushin Next
View Report Paths Control In Full or Sheet

| Panel Fit Pop Out |

| | I |

r o i =] - [g " T \ a
PP H FMESQAQRDU LD
Technology Filter on Run Back Zoom Zoom Zoom Previous Enable
Wiew Selected Timing Momal Out To Sheet Selecfion

Gates Report Fit Tool

The following table describes the default Analyst icons. Each is equivalent to
an HDL Analyst menu command — see HDL Analyst Menu, on page 272, for more
information.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 87

User Interface Overview Toolbars

Icon Description

RTL View Opens a new, hierarchical RTL view: a register
transfer-level schematic of the compiled design,
together with the associated Hierarchy Browser.

Same as HDL Analyst ->RTL ->Hierarchical View.

Technology View Opens a new, hierarchical Technology view: a
technology-level schematic of the mapped
(synthesized) design, together with the associated
Hierarchy Browser.

Same as HDL Analyst ->Technology ->Hierarchical View.

Filter Schematic Filters your entire design to show only the selected
objects. The result is a filtered schematic.

Same as HDL Analyst ->Filter Schematic.

Show Critical Path Filters your design to show only the instances (and
their paths) whose slack times are within the slack
margin of the worst slack time of the design (see HDL
Analyst ->Set Slack Margin). The result is flat if the entire
design was already flat. Icon Show Critical Path also
enables HDL Analyst ->Show Timing Information.

Available only in a Technology view. Not available in a
Timing view.
Same as HDL Analyst ->Show Critical Path.

Timing Analyst Generates and displays a custom timing report and
view. The timing report provides more information
than the default report (specific paths or more than
five paths) or one that provides timing based on
additional analysis constraint files. See Analysis
Menu, on page 260.

Only available for certain device technologies. (Not
available in Synplify.)
Same as Analysis ->Timing Analyst.

[!VCD Panel When enabled, displays the VCS-Analyst Simulation
Panel in the HDL Analyst Technology view.

Back Goes backward in the history of displayed sheets of the
current HDL Analyst view.

Same as View ->Back.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
88 January 2014

Toolbars

User Interface Overview

Icon

Forward

Zoom 100%

Zoom In
Zoom Out
Zoom Full

Zoom Selected

Push/Pop Hierarchy
Previous Sheet

Next Sheet

% Select Tool

Description

Goes forward in the history of displayed sheets of the
current HDL Analyst view.

Same as View ->Forward.

Zooms in at a 1:1 ratio and centers the active view
where you click. If the view is already normal size, it
re-centers the view at the new click location.

Same as View ->Normal View.2

Zooms the view in or out. Buttons stay active until
deselected.

Same as View ->Zoom In or View ->Zoom Out.

Zoom that reduces the active view to display the entire
design.

Same as View ->Full View.b

When selected, zooms in on only the selected objects to
the full window size.

Toggles traversing the hierarchy using the push/pop
mode.

Same as View ->Push/Pop Hierarchy.

Displays the previous sheet of a multiple-sheet
schematic.

Same as View ->Previous Sheet.

Displays the next sheet of a multiple-sheet schematic.
Same as View ->Previous Sheet.

Switches from zoom to the selection tool.

a. Available only in the SCOPE spreadsheet, FSM Viewer, RTL views, and Technol-

ogy views.

b. Available only in the FSM Viewer, RTL views, and Technology views.

FSM Viewer Toolbar

When you push down into a state machine primitive in an RTL view, the FSM
Viewer displays and enables the FSM toolbar. The FSM Viewer graphically
displays the states and transitions. It also lists them in table form. By default,
the FSM toolbar provides the following icons, providing access to common

FSM Viewer commands.

Synplify Pro for Microsemi Edition Reference Manual

Copyright © 2013 Synopsys, Inc.
January 2014 89

User Interface Overview Toolbars

Toggle FSM Table

R
=a '1:'| Filter by outputs

Unfilter FSM

The following table describes the default FSM icons. Each is available in the
FSM viewer, and each is equivalent to a View menu command available there
— see View Menu, on page 170, for more information.

Icon Description

Toggle FSM Table Toggles the display of state-and-transition tables.
Same as View->FSM Table.

Unfilter FSM Restores a filtered FSM diagram so that all the states and
transitions are showing.
Same as View->Unfilter.

Filter by outputs Hides all but the selected state(s), their output
transitions, and the destination states of those
transitions.

Same as View->Filter->By output transitions.

Text Editor Toolbar

The Edit toolbar is active whenever the Text Editor is active. You use it to edit
bookmarks in the file. (Other editing operations are located on the Project
toolbar — see Project Toolbar, on page 85.) The Edit toolbar provides the
following icons, by default:

Toggle Bookmark Previous Bookmark
P b b P‘*\
Next Bookmark Clear All Bookmarks

The following table describes the default Edit icons. Each is available in the
Text Editor, and each is equivalent to an Edit menu command there — see Edit
Menu Commands for the Text Editor, on page 160, for more information.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
90 January 2014

Toolbars User Interface Overview

Icon Description

Toggle Bookmark Alternately inserts and removes a bookmark at the line
that contains the text cursor.

Same as Edit ->Toggle bookmark.

Next Bookmark Takes you to the next bookmark.
Same as Edit ->Next bookmark.

Previous Bookmark Takes you to the previous bookmark.
Same as Edit ->Previous bookmark.

Clear All Bookmarks Removes all bookmarks from the Text Editor window.
Same as Edit ->Delete all bookmarks.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 91

User Interface Overview Toolbars

Tools Toolbar

The Tools Toolbar opens supporting tools.

Icon Description

Iy, Constraint Check Checks the syntax and applicability of the
timing constraints in the constraint file for your
project and generates a report
(project_name_cck.rpt).

Same as Run->Constraint Check.

Launch Identify Instrumentor Launches the Synopsys Identify Instrumentor
product. For more information, see Working
with the Identify Tools, on page 493 of the
User Guide.

Launch Identify Debugger Launches the Synopsys Identify Debugger
product. For more information, see Working
with the Identify Tools, on page 493 of the
User Guide.

Launch SYNCore Launches the SYNCore IP wizard. This tool
helps you build IP blocks such as memory
models for your design.

For more information, see Launch SYNCore
Command, on page 221.

™ Launch SystemDesigner Not applicable for Microsemi technologies.

ves VCS Simulator Configures and launches the VCS simulator.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
92 January 2014

Keyboard Shortcuts User Interface Overview

Keyboard Shortcuts

Keyboard shortcuts are key sequences that you type in order to run a
command. Menus list keyboard shortcuts next to the corresponding
commands.

For example, to check syntax, you can press and hold the Shift key while you
type the F7 key, instead of using the menu command Run ->Syntax Check.

Run

Resynthesize all

Compile Only F7
Write Output Metlist Only

Estimate Area Fa
Compile Physical Hierarchy Shift+F2
FSM Explorer Fi0

Translate Constraints. ..

Synbay Check Shift+F

(Synthesis Check Shift+Fg)
[Constraink Check, hift-+F101

v

Arrange YHDL Files

Launch Identify

ﬁ} Launch Identify Debugger

€1 Launch SYMCore...

W68 Configure and Launch YC3 Simulator ...
Run TCL Seripk. .,

Fun &l Implementations

Job Status
Mext ErrorfWarning F5
Previous Error/'Warning Shift+F5

The following table describes the keyboard shortcuts.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 93

User Interface Overview Keyboard Shortcuts

Keyboard
Shortcut

b

Ctrl-++
(number pad)

Ctrl-+-
(number pad)

Citrl-+*
(number pad)

Ctrl-1

Ctrl-a
Ctrl-b

Citrl-c

Ctrl-d

Description

In an RTL or Technology view, shows all logic between two or
more selected objects (instances, pins, ports). The result is a
filtered schematic. Limited to the current schematic.

Same as HDL Analyst ->Current Level ->Expand Paths (see HDL
Analyst Menu: Filtering and Flattening Commands, on
page 275).

In the FSM Viewer, hides all but the selected state(s), their
output transitions, and the destination states of those
transitions.

Same as View ->Filter ->By output transitions.

In the FSM Viewer, hides all but the selected state(s), their input
transitions, and the origin states of those transitions.

Same as View ->Filter ->By input transitions.

In the FSM Viewer, hides all but the selected state(s), their input
and output transitions, and their predecessor and successor
states.

Same as View ->Filter ->By any transition.

In an RTL or Technology view, zooms the active view, when you
click, to full (normal) size. Same as View ->Normal View.

Centers the window on the design. Same as View ->Pan Center.

In an RTL or Technology view, shows all logic between two or
more selected objects (instances, pins, ports). The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.

Same as HDL Analyst ->Hierarchical ->Expand Paths (see HDL Analyst
Menu: Hierarchical and Current Level Submenus, on
page 273).

Copies the selected object. Same as Edit ->Copy. This shortcut is
sometimes available even when Edit ->Copy is not. See, for
instance, Find Command (HDL Analyst), on page 163.)

In an RTL or Technology view, selects the driver for the selected
net. Operates hierarchically, on lower levels as well as the
current schematic.

Same as HDL Analyst->Hierarchical ->Select Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 273).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
94

January 2014

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

Ctrl-e

Ctrl-Enter (Return)

Citrl-f
Ctrl-F2

Ctrl-F4
Ctrl-F6
Ctrl-g

Ctrl-h

Cirl-i

Crl-|

Description

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). The result is a filtered schematic.
Operates hierarchically, on lower levels as well as the current
schematic.

Same as HDL Analyst->Hierarchical ->Expand (see HDL Analyst
Menu: Hierarchical and Current Level Submenus, on
page 273).

In the FSM Viewer, hides all but the selected state(s).
Same as View->Filter->Selected (see View Menu, on page 170).

Finds the selected object. Same as Edit->Find.

Alternately inserts and removes a bookmark to the line that
contains the text cursor.

Same as Edit->Toggle bookmark (see Edit Menu Commands for the
Text Editor, on page 160).

Closes the current window. Same as File ->Close.
Toggles between active windows.

In the Text Editor, jumps to the specified line. Same as Edit->Goto
(see Edit Menu Commands for the Text Editor, on page 160).

In an RTL or Technology view, selects the sheet number in a
multiple-page schematic. Same as View->View Sheets (see View
Menu: RTL and Technology Views Commands, on page 171).

In the Text Editor, replaces text. Same as Edit->Replace (see Edit
Menu Commands for the Text Editor, on page 160).

In an RTL or Technology view, selects instances connected to the
selected net. Operates hierarchically, on lower levels as well as
the current schematic. Same as HDL Analyst->Hierarchical->Select
Net Instances (see HDL Analyst Menu: Hierarchical and Current
Level Submenus, on page 273).

In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net. Operates
hierarchically, on lower levels as well as the current schematic.

Same as HDL Analyst->Hierarchical->Goto Net Driver (see HDL

Analyst Menu: Hierarchical and Current Level Submenus, on
page 273).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
95

January 2014

User Interface Overview Keyboard Shortcuts

Keyboard
Shortcut

Cirl-l

Ctrl-m

Ctrl-n
Ctrl-o
Ctrl-p
Ctrl-q

Citrl-r

Citrl-s
Citrl-t

Ctrl-u

Citrl-v

Description

In the FSM Viewer, or an RTL or Technology view, toggles zoom
locking. When locking is enabled, if you resize the window the
displayed schematic is resized proportionately, so that it
occupies the same portion of the window.

Same as View->Zoom Lock (see View Menu Commands: All Views,
on page 170).

In an RTL or Technology view, expands inside the subdesign,
from the lower-level port that corresponds to the selected pin, to
the nearest objects (no farther). Same as HDL
Analyst->Hierarchical->Expand Inwards (see HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 273).

Creates a new file or project. Same as File->New.
Opens an existing file or project. Same as File->Open.
Prints the current view. Same as File->Print.

In an RTL or Technology view, toggles the display of visual
properties of instances, pins, nets, and ports in a design.

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.

Same as HDL Analyst->Hierarchical->Expand to Register/Port (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 273).

In the Project View, saves the file. Same as File ->Save.

Toggles display of the Tcl window.
Same as View ->Tcl Window (see View Menu, on page 170).

In the Text Editor, changes the selected text to lower case. Same
as Edit->Advanced->Lowercase (see Edit Menu Commands for the
Text Editor, on page 160).

In the FSM Viewer, restores a filtered FSM diagram so that all
the states and transitions are showing. Same as View->Unfilter
(see View Menu: FSM Viewer Commands, on page 172).

Pastes the last object copied or cut. Same as Edit ->Paste.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
96

January 2014

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

Citrl-x

Ctrl-y

Ctrl-z

Ctrl-Shift-F2

Ctrl-Shift-h

Ctrl-Shift-i

Ctrl-Shift-p

Ctrl-Shift-u

Description

Cuts the selected object(s), making it available to Paste. Same as
Edit ->Cut.

In an RTL or Technology view, goes forward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Forward (see View Menu: RTL and Technology Views
Commands, on page 171).

In other contexts, performs the action undone by Undo. Same as
Edit->Redo.

In an RTL or Technology view, goes backward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Back (see View Menu: RTL and Technology Views
Commands, on page 171).

In other contexts, undoes the last action. Same as Edit ->Undo.

Removes all bookmarks from the Text Editor window. Same as
Edit ->Delete all bookmarks (see Edit Menu Commands for the Text
Editor, on page 160).

In an RTL or Technology view, shows all pins on selected
transparent hierarchical (non-primitive) instances. Pins on
primitives are always shown. Available only in a filtered
schematic.

Same as HDL Analyst ->Show All Hier Pins (see HDL Analyst Menu:
Analysis Commands, on page 279).

In an RTL or Technology view, selects all instances on the
current schematic level (all sheets). This does not select
instances on other levels.

Same as HDL Analyst->Select All Schematic->Instances (see HDL
Analyst Menu, on page 272).

In an RTL or Technology view, selects all ports on the current
schematic level (all sheets). This does not select ports on other
levels.

Same as HDL Analyst->Select All Schematic->Ports (see HDL Analyst
Menu, on page 272).
In the Text Editor, changes the selected text to lower case.

Same as Edit->Advanced->Uppercase (see Edit Menu Commands
for the Text Editor, on page 160).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
97

January 2014

User Interface Overview Keyboard Shortcuts

Keyboard Description
Shortcut
d In an RTL or Technology view, selects the driver for the selected

net. Limited to the current schematic.

Same as HDL Analyst ->Current Level ->Select Net Driver (see HDL
Analyst Menu, on page 272).

Delete (DEL) Removes the selected files from the project. Same as
Project->Remove Files From Project.

e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). Limited to the current schematic.

Same as HDL Analyst->Current Level->Expand (see HDL Analyst
Menu, on page 272).

F1 Provides context-sensitive help. Same as Help->Help.

F2 In an RTL or Technology view, toggles traversing the hierarchy
using the push/pop mode. Same as View->Push/Pop Hierarchy (see
View Menu: RTL and Technology Views Commands, on
page 171).
In the Text Editor, takes you to the next bookmark. Same as
Edit->Next bookmark (see Edit Menu Commands for the Text
Editor, on page 160).

F4 In the Project view, adds a file to the project. Same as
Project->Add Source File (see Build Project Command, on
page 158).

In an RTL or Technology view, zooms the view so that it shows
the entire design. Same as View->Full View (see View Menu: RTL
and Technology Views Commands, on page 171).

F5 Displays the next source file error.
Same as Run->Next Error/Warning (see Run Menu, on page 213).

F7 Compiles your design, without mapping it.
Same as Run->Compile Only (see Run Menu, on page 213).

F8 Synthesizes (compiles and maps) your design.
Same as Run->Synthesize (see Run Menu, on page 213).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
98 January 2014

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

F10

F11

F12

Shift-F2
Shift-F4

Shift-F5

Shift-F7

Description

In the Project view, runs the FSM Explorer to determine
optimum encoding styles for finite state machines. Same as Run
->FSM Explorer (see Run Menu, on page 213).

In an RTL or Technology view, lets you pan (scroll) the schematic
by dragging it with the mouse. Same as View ->Pan (see View
Menu: RTL and Technology Views Commands, on page 171).

Toggles zooming in.

Same as View->Zoom In (see View Menu: RTL and Technology
Views Commands, on page 171).

In an RTL or Technology view, filters your entire design to show
only the selected objects.

Same as HDL Analyst->Filter Schematic — see HDL Analyst Menu:
Filtering and Flattening Commands, on page 275.

In an RTL or Technology view, selects instances connected to the
selected net. Limited to the current schematic.

Same as HDL Analyst->Current Level->Select Net Instances (see HDL
Analyst Menu, on page 272).

In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net.

Same as HDL Analyst->Current Level->Goto Net Driver (see HDL
Analyst Menu, on page 272).

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Limited to the current schematic.

Same as HDL Analyst ->Current Level->Expand to Register/Port (see
HDL Analyst Menu, on page 272).
In the Text Editor, takes you to the previous bookmark.

Allows you to add source files to your project (Project->Add Source
Files).

Displays the previous source file error.

Same as Run->Previous Error/Warning (see Run Menu, on

page 213).

Checks source file syntax.

Same as Run->Syntax Check (see Run Menu, on page 213).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
99

January 2014

User Interface Overview Keyboard Shortcuts

Keyboard
Shortcut

Shift-F8

Shift-F10

Shift-F11

Shift-Left Arrow
Shift-Right Arrow
Shift-s

Description

Checks synthesis.
Same as Run->Synthesis Check (see Run Menu, on page 213).

Checks the timing constraints in the constraint files in your
project and generates a report (project_name_cck.rpt).

Same as Run->Constraint Check (see Run Menu, on page 213).

Toggles zooming out.
Same as View->Zoom Out (see View Menu, on page 170).

Displays the previous sheet of a multiple-sheet schematic.
Displays the next sheet of a multiple-sheet schematic.

Dissolves the selected instances, showing their lower-level
details. Dissolving an instance one level replaces it, in the
current sheet, by what you would see if you pushed into it using
the push/pop mode. The rest of the sheet (not selected) remains
unchanged.

The number of levels dissolved is the Dissolve Levels value in the
Schematic Options dialog box. The type (filtered or unfiltered) of the
resulting schematic is unchanged from that of the current
schematic. However, the effect of the command is different in
filtered and unfiltered schematics.

Same as HDL Analyst ->Dissolve Instances — see Dissolve Instances,
on page 281.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
100

January 2014

Buttons and Options User Interface Overview

Buttons and Options

The Project view contains several buttons and a few additional features that
give you immediate access to some of the more common commands and user

options.

2Run

?} Open Projeck. ..

'l: Close Project

[Add File...

By change File. ..

&dd Implementation. ..

% Implementation Options. ..

“ Add P&R. Implementation

A, Wiew Log

—Frequency{MHz):

o) (I
A =

(@) Auto Constrain

The following table describes the Project View buttons and options.

Button/Option Action

Open Project... Opens a new or existing project.
Same as File->Open Project (see Open Project Command, on
page 158).

Close Project Closes the current project.

Same as File->Close Project (see Run Menu, on page 213).

Add File... Adds a source file to the project.
Same as Project->Add Source File (see Build Project
Command, on page 158).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 101

User Interface Overview

Buttons and Options

Button/Option
Change File...

Add Implementation

Implementation Options/

Add P&R
Implementation

View Log

Frequency (MHz)

Auto Constrain

FSM Compiler

Copyright © 2013 Synopsys, Inc.
102

Action

Replaces one source file with another.

Same as Project ->Change File (see Change File Command,
on page 181).

Creates a new implementation.
Same as Project ->New Implementation.

Displays the Implementation Options dialog box, where you
can set various options for synthesis.

Same as Project ->Implementation Options (see
Implementation Options Command, on page 191).

Creates a place-and-route implementation to control and
run place and route from within the synthesis tool. See
Add P&R Implementation Popup Menu Command, on
page 333 for a description of the dialog box, and
Running P&R Automatically after Synthesis, on

page 492 in the User Guide for information about using
this feature.

Displays the log file.
Same as View ->View Log File (see View Menu, on page 170).

Sets the global frequency, which you can override locally
with attributes.

Same as enabling the Frequency (MHz) option on the
Constraints panel of the Implementation Options dialog box.

When Auto Constrain is enabled and no clocks are
defined, the software automatically constrains the design
to achieve best possible timing by reducing periods of
individual clock and the timing of any timed I/O paths in
successive steps.

See Using Auto Constraints, on page 287 in the User
Guide for detailed information about using this option.

You can also set this option on the Constraints panel of the
Implementation Options dialog box.

Turning on this option enables special FSM optimizations.

Same as enabling the FSM Compiler option on the Options
panel of the Implementation Options dialog box (see FSM
Compiler, on page 76 and Optimizing State Machines, on
page 347 in the User Guide).

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Buttons and Options User Interface Overview

Button/Option Action

FSM Explorer When enabled, the FSM Explorer selects an encoding style
for the finite state machines in your design.

Same as enabling the FSM Explorer option on the Options
panel of the Implementation Options dialog box. For more
information, see FSM Explorer, on page 78 and Running
the FSM Compiler, on page 349 in the User Guide.

Resource Sharing When enabled, makes the compiler use resource sharing
techniques. This option does not affect resource sharing
by the mapper.

The option is the same as the Resource Sharing option on
the Options panel of the Implementation Options dialog box.
See Sharing Resources, on page 345 in the User Guide.

Retiming When enabled, improves the timing performance of
sequential circuits. The retiming process moves storage
devices (flip-flops) across computational elements with no
memory (gates/LUTs) to improve the performance of the
circuit. This option also adds a retiming report to the log
file.

Same as enabling the Retiming option on the Options panel
of the Implementation Options dialog box. Use the
syn_allow_retiming attribute to enable or disable retiming for
individual flip-flops. See syn_black_box, on page 37 for
syntax details.

Run Runs synthesis (compilation and mapping).
Same as the Run->Synthesize command (see Run Menu, on
page 213).
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 103

User Interface Overview Buttons and Options

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
104 January 2014

SYNOPSYs

erating Innovation

CHAPTER 3

HDL Analyst Tool

The HDL Analyst tool helps you examine your design and synthesis results,
and analyze how you can improve design performance and area.

The following describe the HDL Analyst tool and the operations you can
perform with it.

¢ HDL Analyst Views and Commands, on page 106

* Schematic Objects and Their Display, on page 108

* Basic Operations on Schematic Objects, on page 117

* Multiple-sheet Schematics, on page 123

* Exploring Design Hierarchy, on page 126

¢ Filtering and Flattening Schematics, on page 133

¢ Timing Information and Critical Paths, on page 139
For additional information, see the following:

* Descriptions of the HDL Analyst commands in Chapter 4, User Interface
Commands:

* Chapter 13, Optimizing Processes for Productivity in the User Guide

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 105

HDL Analyst Tool HDL Analyst Views and Commands

HDL Analyst Views and Commands

The HDL Analyst tool graphically displays information in two schematic
views: the RTL and Technology views (see RTL View, on page 61 and
Technology View, on page 62 for information). The graphic representation is
useful for analyzing and debugging your design, because you can visualize
where coding changes or timing constraints might reduce area or increase
performance.

This section gives you information about the following:
¢ Filtered and Unfiltered Schematic Views, on page 106
* Accessing HDL Analyst Commands, on page 107

Filtered and Unfiltered Schematic Views

HDL Analyst views (RTL View, on page 61 and Technology View, on page 62)
consist of schematics that let you analyze your design graphically. The

schematics can be filtered or unfiltered. The distinction is important because
the kind of view determines how objects are displayed for certain commands.

¢ Unfiltered schematics display all the objects in your design, at appro-
priate hierarchical levels.

¢ Filtered schematics show only a subset of the objects in your design,
because the other objects have been filtered out by some operation. The
Hierarchy Browser in the filtered view always list all the objects in the
design, not just the filtered objects. Some commands, such as HDL
Analyst -> Show Context, are only available in filtered schematics. Views
with a filtered schematic have the word Filtered in the title bar.

Indicates a filtered schematic

B E} Instances (449)

[['f] Primitives (35) data mux
- {1 decode (ins_decode) -
I:l

dmux (data_mux)

.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
106 January 2014

HDL Analyst Views and Commands HDL Analyst Tool

Filtering commands affect only the displayed schematic, not the under-
lying design. See the following topics:

* For a detailed description of filtering, see Filtering and Flattening
Schematics, on page 133.

* For procedures on using filtering, see Filtering Schematics, on page 251
in the User Guide.

Accessing HDL Analyst Commands

You can access HDL Analyst commands in many ways, depending on the
active view, the currently selected objects, and other design context factors.
The software offers these alternatives to access the commands:

¢ HDL Analyst and View menus

* HDL Analyst popup menus appear when you right-click in an HDL
Analyst view. The popup menu is context-sensitive, and includes
commonly used commands from the HDL Analyst and View menus, as well
as some additional commands.

¢ HDL Analyst toolbar icons provide shortcuts to commonly used
commands

For brevity, this document primarily refers to the menu method of accessing
the commands and does not list alternative access methods.

See also:
¢ HDL Analyst Menu, on page 272
¢ View Menu, on page 170
* RTL and Technology Views Popup Menus, on page 337
* Analyst Toolbar, on page 87

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 107

HDL Analyst Tool Schematic Objects and Their Display

Schematic Objects and Their Display

Schematic objects are the objects that you manipulate in an HDL Analyst
schematic: instances, ports, and nets. Instances can be categorized in
different ways, depending on the operation: hidden/unhidden, trans-
parent/opaque, or primitive/hierarchical. The following topics describe
schematic objects and the display of associated information in more detail:

Object Information, on page 108

Sheet Connectors, on page 109

Primitive and Hierarchical Instances, on page 110

Hidden Hierarchical Instances, on page 113

Transparent and Opaque Display of Hierarchical Instances, on page 111

Schematic Display, on page 113

For most objects, you select them to perform an operation. For some objects
like sheet connectors, you do not select them but right-click on them and
select from the popup menu commands.

Object Information

To obtain information about specific objects, you can view object properties
with the Properties command from the right-click popup menu, or place the
pointer over the object and view the object information displayed. With the
latter method, information about the object displays in these two places until
you move the pointer away:

The status bar at the bottom of the synthesis window displays the name
of the instance, net, port, or sheet connector and other relevant informa-
tion. If HDL Analyst->Show Timing Information is enabled, the status bar also
displays timing information for the object. Here is an example of the
status bar information for a net:

Net clock (local net clock) Fanout=4

You can enable and disable the display of status bar information by
toggling the command View -> Status Bar.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
108

January 2014

Schematic Objects and Their Display HDL Analyst Tool

* In a tooltip at the mouse pointer
Displays the name of the object and any attached attributes. The
following figure shows tooltip information for a state machine:

statemachine .
data |
ok = 0[20] B A ’ [guess ===
rst R uni_state
Mouse pointer |, State[0-3]

Tooltip | ztate[0: 3] [statemachine] -- Properties: syn_fem_id: 6218211 |

To disable tooltip display, select View -> Toolbars and disable the Show
Tooltips option. Do this if you want to reduce clutter.

See also
* Pin and Pin Name Display for Opaque Objects, on page 115
¢ HDL Analyst Options Command, on page 297

Sheet Connectors

When the HDL Analyst tool divides a schematic into multiple sheets, sheet
connector symbols indicate how sheets are related. A sheet connector symbol
is like a port symbol, but it has an empty diamond with sheet numbers at one
end. Use the Options->HDL Analyst Options command (see Sheet Size Panel, on
page 300) to control how the schematic is divided into multiple sheets.

QW [resetn —
Ports <
Diamond indicates sheet connector

If you enable the Show Sheet Connector Index option in the (Options->HDL Analyst
Options), the empty diamond becomes a hexagon with a list of the connected
sheets. You go to a connecting sheet by right-clicking a sheet connector and
choosing the sheet number from the popup menu. The menu has as many
sheet numbers as there are sheets connected to the net at that point.

INST 0 @ INST_0>
Show Sheet Connector Index disabled Show Sheet Connector Index enabled
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 109

HDL Analyst Tool Schematic Objects and Their Display

See also
* Multiple-sheet Schematics, on page 123
¢ HDL Analyst Options Command, on page 297
¢ RTL and Technology Views Popup Menus, on page 337

Primitive and Hierarchical Instances

HDL Analyst instances are either primitive or hierarchical, and sorted into
these categories in the Hierarchy Browser. Under Instances, the browser first
lists hierarchical instances, and then lists primitive instances under
Instances->Primitives.

Primitive Instances

Although some primitive objects have hierarchy, the term is used here to
distinguish these objects from user-defined hierarchies. Primitive instances
include the following:

RTL View Technology View

High-level logic primitives, like XOR gates Black boxes
or priority-encoded multiplexers

Inferred ROMs, RAMs, and state Technology-specific primitives, like
machines LUTs or FPGA block RAMs

Black boxes

Technology-specific primitives, like LUTs
or FPGA block RAMs

In a schematic, logic gate primitives are represented with standard schematic
symbols, and technology-specific primitives with various symbols (see
Hierarchy Browser Symbols, on page 66). You can push into primitives like
technology-specific primitives, inferred ROMs, and inferred state machines to
view internal details. You cannot push into logic primitives.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
110 January 2014

Schematic Objects and Their Display HDL Analyst Tool

Hierarchical Instances

Hierarchical instances are user-defined hierarchies; all other instances are
considered to be primitives. Hierarchical instances correspond to Verilog
modules and VHDL entities.

The Hierarchy Browser lists hierarchical instances under Instances, and uses
this symbol: I} . In a schematic, the display of hierarchical instances
depends on the combination of the following:

* Whether the instance is transparent or opaque. Transparent instances
show their internal details nested inside them; opaque instances do not.
You cannot directly control whether an object is transparent or opaque;
the views are automatically generated by certain commands. See Trans-
parent and Opaque Display of Hierarchical Instances, on page 111 for
details.

* Whether the instance is hidden or not. This is user-controlled, and you
can hide instances so that they are ignored by certain commands. See
Hidden Hierarchical Instances, on page 113 for more information.

Transparent and Opaque Display of Hierarchical Instances

A hierarchical instance can be displayed transparently or opaquely. You
cannot directly control the display; certain commands cause instances to be
transparent. The distinction between transparent and opaque is important
because some commands operate differently on transparent and opaque
instances. For example, in a filtered schematic Flatten Current Schematic flattens
only transparent hierarchical instances.

* Opaque instances are pale yellow boxes, and do not display their
internal hierarchy. This is the default display.

miod1
[ELE = cu
e ——
i - M1 3100 -—q
il B1| | .
AT =] ; Ny U_ —— * Nonested logic
BZ[114)
inst
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 111

HDL Analyst Tool Schematic Objects and Their Display

* Transparent instances display some or all their lower-level hierarchy
nested inside a hollow box with a pale yellow border. Transparent
instances are only displayed in filtered schematics, and are a result of
certain commands. See Looking Inside Hierarchical Instances, on
page 131 for information about commands that generate transparent
instances.

A transparent instance can contain other opaque or transparent
instances nested inside. The details inside a transparent instance are
independent schematic objects and you can operate on them indepen-
dently: select, push into, hide, and so on. Performing an operation on a
transparent object does not automatically perform it on any of the
objects nested inside it, and conversely.

|
@: ﬂkr:nls!r 'aiﬂzr ﬂkl!nlsir . | ——t .
i [dewn | 'n.u:@;;m " ————Nested opaque instance

Ire 1.0 Ire i3

Nested transparent instance
Iresna_z
regl=sker
B am
L T

Transparent instance

Ire i1

Inst

See also
* Looking Inside Hierarchical Instances, on page 131
* Multiple Sheets for Transparent Instance Details, on page 125

* Filtered and Unfiltered Schematic Views, on page 106

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
112 January 2014

Schematic Objects and Their Display HDL Analyst Tool

Hidden Hierarchical Instances

Certain commands do not operate on the lower-level hierarchy of hidden
instances, so you can hide instances to focus the operation of a command
and improve performance. You hide opaque or transparent hierarchical
instances with the Hide Instances command (described in RTL and Technology
Views Popup Menus, on page 337). Hiding and unhiding only affects the
current HDL Analyst view, and does not affect the Hierarchy Browser. You
can hide and unhide instances as needed. The hierarchical logic of a hidden
instance is not removed from the design; it is only excluded from certain
operations.

The schematics indicate hidden hierarchical instances with a small H in the
lower left corner. When the mouse pointer is over a hidden instance, the
status bar and the tooltip indicate that the instance is hidden.

ins_rom
-— clk
—-— rst data_out[11:0] —
o 3l [110:0]
“H” indicates a rom
hidden instance = - . .
USER(HIDDENrorfine Tooltip mentions

instance is hidden

Schematic Display

The HDL Analyst Options dialog box controls general properties for all HDL
Analyst views, and can determine the display of schematic object informa-
tion. Setting a display option affects all objects of the given type in all views.
Some schematic options only take effect in schematic windows opened after
the setting change; others affect existing schematic windows as well.

The following are some commonly used settings that affect the display of
schematic objects. See HDL Analyst Options Command, on page 297 for a
complete list of display options.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 113

HDL Analyst Tool

Schematic Objects and Their Display

Option
Show Cell Interior
Compress Buses

Dissolve Levels

Instances
Filtered Instances

Instances added for
expansion

Instance Name
Show Conn Name
Show Symbol Name
Show Port Name

Show Pin Name

HDL Analyst->Show All Hier
Pins

Copyright © 2013 Synopsys, Inc.

114

Controls the display of...
Internal logic of technology-specific primitives
Buses as bundles

Hierarchical levels in a view flattened with HDL Analyst
-> Dissolve Instances or Dissolve to Gates, by setting the
number of levels to dissolve.

Instances on a schematic by setting limits to the
number of instances displayed

Object labels

Pin names. See Pin and Pin Name Display for Opaque
Objects, on page 115 and Pin and Pin Name Display
for Transparent Objects, on page 115 for details.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Schematic Objects and Their Display HDL Analyst Tool

Pin and Pin Name Display for Opaque Objects

Although it always displays the pins, the software does not automatically
display pin names for opaque hierarchical instances, technology-specific
primitives, RAMS, ROMs, and state machines. To display pin names for these
objects, enable Options-> HDL Analyst Options->Text->Show Pin Name. The following
figures illustrate this display. The first figure shows pins and pin names of an
opaque hierarchical instance, and the second figure shows the pins of a
technology-specific primitive with its cell contents not displayed.

Tooltip with pin

Mouse pointer pin symbol data_mux
Pins Pin names
LUT4_DDD8
. |0
Mouse Pointer 3
a Pin Symbal . lins an
Pins and names ’ 2 e O]
a1
ALUB ret_14 Fanout=1
Mouse pointer
(pin symbol)
alub_d_3 am[5]

Pin and Pin Name Display for Transparent Objects

This section discusses pin name display for transparent hierarchical
instances in filtered views and technology-specific primitives.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 115

HDL Analyst Tool Schematic Objects and Their Display

Transparent Hierarchical Instances

In a filtered schematic, some of the pins on a transparent hierarchical
instance might not be displayed because of filtering. To display all the pins,
select the instance and select HDL Analyst -> Show All Hier Pins.

To display pin names for the instance, enable Options->HDL Analyst Options->Text
->Show Pin Name. The software temporarily displays the pin name when you
move the cursor over a pin. To keep the pin name displayed even after you
move the cursor away, select the pin. The name remains until you select
something else.

Primitives

To display pin names for technology primitives in the Technology view, enable
Options-> HDL Analyst Options->Text->Show Pin Name. The software displays the pin
names until the option is disabled. If Show Pin Name is enabled when Options->
HDL Analyst Options->General->Show Cell Interior is also enabled, the primitive is
treated like a transparent hierarchical instance, and primitive pin names are
only displayed when the cursor moves over the pins. To keep a pin name
displayed even after you move the cursor away, select the pin. The name
remains until you select something else.

register

Pin selected,
| c2p10] showing name
T UOlnpa) apo) ped'd
- R
inst1.11_0.C2[1:0]
inst1.1_0 alub_d_3 am[5]
See also:

¢ HDL Analyst Options Command, on page 297
* Controlling the Amount of Logic on a Sheet, on page 123

* Analyzing Timing in Schematic Views, on page 270 in the User Guide

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
116 January 2014

Basic Operations on Schematic Objects HDL Analyst Tool

Basic Operations on Schematic Objects

Basic operations on schematic objects include the following:
* Finding Schematic Objects, on page 117
* Selecting and Unselecting Schematic Objects, on page 119
* Crossprobing Objects, on page 120
* Dragging and Dropping Objects, on page 122

For information about other operations on schematics and schematic objects,
see the following:

¢ Filtering and Flattening Schematics, on page 133

* Timing Information and Critical Paths, on page 139
* Multiple-sheet Schematics, on page 123

¢ Exploring Design Hierarchy, on page 126

Finding Schematic Objects

You can use the following techniques to find objects in the schematic. For
step-by-step procedures using these techniques, see Finding Objects, on
page 226 in the User Guide.

®* Zooming and panning
* HDL Analyst Hierarchy Browser

You can use the Hierarchy Browser to browse and find schematic
objects. This can be a quick way to locate an object by name if you are
familiar with the design hierarchy. See Browsing With the Hierarchy
Browser, on page 226 in the User Guide for details.

e Edit -> Find command

The Edit -> Find command is described in Find Command (HDL Analyst),
on page 163. It displays the Object Query dialog box, which lists
schematic objects by type (Instances, Symbols, Nets, or Ports) and lets you
use wildcards to find objects by name. You can also fine-tune your
search by setting a range for the search.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 117

HDL Analyst Tool Basic Operations on Schematic Objects

This command selects all found objects, whether or not they are
displayed in the current schematic. Although you can search for hidden
instances, you cannot find objects that are inside hidden instances at a
lower level. Temporarily hiding an instance thus further refines the
search range by excluding the internals of a a given instance. This can
be very useful when working with transparent instances, because the
lower-level details appear at the current level, and cannot be excluded
by choosing Current Level Only. See Using Find for Hierarchical and
Restricted Searches, on page 228 in the User Guide.

¢ Edit-> Find command combined with filtering

Edit->Find enhances filtering. Use Find to select by name and hierarchical
level, and then filter the design to limit the display to the current selec-
tion. Unselected objects are removed. Because Find only adds to the
current selection (it never deselects anything already selected), you can
use successive searches to build up exactly the selection you need,
before filtering.

¢ Filtering before searching with Edit->Find

Filtering helps you to fine-tune the range of a search. You can search for
objects just within a filtered schematic by limiting the search range to
the Current Level Only.

Filtering adds to the expressive power of displaying search results. You
can find objects on different sheets and filter them to see them all
together at once. Filtering collapses the hierarchy visually, showing
lower-level details nested inside transparent higher-level instances. The
resulting display combines the advantage of a high-level, abstract view
with detail-rich information from lower levels.

See Filtering and Flattening Schematics, on page 133 for further infor-
mation.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
118 January 2014

Basic Operations on Schematic Objects HDL Analyst Tool

Selecting and Unselecting Schematic Objects

Whenever an object is selected in one place it is selected and highlighted
everywhere else in the synthesis tool, including all Hierarchy Browsers, all
schematics, and the Text Editor. Many commands operate on the currently
selected objects, whether or not those objects are visible.

The following briefly list selection methods; for a concise table of selection
procedures, see Selecting Objects in the RTL/Technology Views, on page 211
in the User Guide.

Using the Mouse to Select a Range of Schematic Objects

In a Hierarchy Browser, you can select a range of schematic objects by
clicking the name of an object at one end of the range, then holding the Shift
key while clicking the name of an object at the other end of the range.To use
the mouse for selecting and unselecting objects in a schematic, the cross-
hairs symbol (~‘—) must appear as the mouse pointer. If this is not currently
the case, right-click the schematic background.

Using Commands to Select Schematic Objects

You can select and deselect schematic objects using the commands in the
HDL Analyst menu, or use Edit->Find to find and select objects by name.

The HDL Analyst menu commands that affect selection include the following:

* Expansion commands like Expand, Expand to Register/Port, Expand Paths,
and Expand Inwards select the objects that result from the expansion. This
means that (except for Expand to Register/Port) you can perform successive
expansions and expand the set of objects selected.

* The Select All Schematic and Select All Sheet commands select all instances
or ports on the current schematic or sheet, respectively.

* The Select Net Driver and Select Net Instances commands select the appro-
priate objects according to the hierarchical level you have chosen.

¢ Deselect All deselects all objects in all HDL Analyst views.
See also

* Finding Schematic Objects, on page 117

* HDL Analyst Menu, on page 272

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 119

HDL Analyst Tool Basic Operations on Schematic Objects

Crossprobing Objects

Crossprobing helps you diagnose where coding changes or timing constraints
might reduce area or increase performance. When you crossprobe, you select
an object in one place and it or its equivalent is automatically selected and
highlighted in other places. For example, selecting text in the Text Editor
automatically selects the corresponding logic in all HDL Analyst views.
Whenever a net is selected, it is highlighted through all the hierarchical
instances it traverses, at all schematic levels.

Crossprobing Between Different Views

You can crossprobe objects (including logic inside hidden instances) between
RTL views, Technology views, the FSM Viewer, HDL source code files, and
other text files. Some RTL and source code objects are optimized away during
synthesis, so they cannot be crossprobed to certain views.

The following table summarizes crossprobing to and from HDL Analyst (RTL
and Technology) views. For information about crossprobing procedures, see
Crossprobing, on page 239 in the User Guide.

From... To... Do this...
Text Editor: log Text Editor: Double-click a log file note, error, or warning.
file HDL source The corresponding HDL source code appears in
file the Text Editor.
Text Editor: HDL Analyst view The RTL view or Technology view must be open.
code . Select the code in the Text Editor that
FSM Viewer corresponds to the object(s) you want to
crossprobe.

The object corresponding to the selected code is
automatically selected in the target view, if an
HDL source file is in the Text Editor. Otherwise,
right-click and choose the Select in Analyst
command.

To cross-probe from text other than source
code, first select Options->HDL Analyst Options and
then enable Enhanced Text Crossprobing.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
120 January 2014

Basic Operations on Schematic Objects

HDL Analyst Tool

From...

FSM Viewer

Analyst view

FSM Viewer

Analyst view

Tcl window

Text Editor: any
text containing
instance names,
like a timing
report

To...

Analyst view

Text Editor

Another open
view

Text Editor

Corresponding
instance

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Do this...

The target view must be open. The state
machine must be encoded with the onehot style
to crossprobe from the transition table.

Select a state anywhere in the FSM Viewer
(bubble diagram or transition table). The
corresponding object is automatically selected
in the HDL Analyst view.

Double-click an object. The source code
corresponding to the object is automatically
selected in the Text Editor, which is opened to
show the selection.

If you just select an object, without double-
clicking it, the corresponding source code is
still selected and displayed in the editor
(provided it is open), but the editor window is
not raised to the front.

Select an object in an HDL Analyst view. The
object is automatically selected in all open
views.

If the target view is the FSM Viewer, then the
state machine must be encoded as onehot.

Double-click an error or warning message
(available in the Tcl window errors or warnings
panel, respectively). The corresponding source
code is automatically selected in the Text
Editor, which is opened to show the selection.

Highlight the text, then right-click & choose
Select or Filter. Use this to filter critical paths
reported in a text file by the FPGA timing
analysis tool.

Copyright © 2013 Synopsys, Inc.
121

HDL Analyst Tool Basic Operations on Schematic Objects

Dragging and Dropping Objects

You can drag and drop objects like instances, nets, and pins from the HDL
Analyst schematic views to other windows to help you analyze your design or
set constraints. You can drag and drop objects from an RTL or Technology
views to the following other windows:

* SCOPE editor
¢ Text editor window

¢ Tcl window

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
122 January 2014

Multiple-sheet Schematics HDL Analyst Tool

Multiple-sheet Schematics

When there is too much logic to display on a single sheet, the HDL Analyst
tool uses additional schematic sheets. Large designs can take several sheets.
In a hierarchical schematic, each module consists of one or more sheets.
Sheet connector symbols (Sheet Connectors, on page 109) mark logic connec-
tions from one sheet to the next.

For more information, see
¢ Controlling the Amount of Logic on a Sheet, on page 123
* Navigating Among Schematic Sheets, on page 123

* Multiple Sheets for Transparent Instance Details, on page 125

Controlling the Amount of Logic on a Sheet

You can control the amount of logic on a schematic sheet using the options in
Options->HDL Analyst Options->Sheet Size. The Maximum Instances option sets the
maximum number of instances on an unfiltered schematic sheet. The
Maximum Filtered Instances option sets the maximum number of instances
displayed at any given hierarchical level on a filtered schematic sheet.

See also:
¢ HDL Analyst Options Command, on page 297

* Setting Schematic View Preferences, on page 215 of the User Guide.

Navigating Among Schematic Sheets

This section describes how to navigate among the sheets in a given
schematic. The window title bar lets you know where you are at any time.

Multisheet Orientation in the Title Bar

The window title bar of an RTL view or Technology view indicates the current
context. For example, uc_alu (of module alu) in the title indicates that the
current schematic level displays the instance uc_alu (which is of module alu).
The objects shown are those comprising that instance.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 123

HDL Analyst Tool Multiple-sheet Schematics

The title bar also indicates, for the current schematic, the number of the
displayed sheet, and the total number of sheets — for example, sheet 2 of 4. A
schematic is initially opened to its first sheet.

Sheet # of total # Context (level) of current sheet: instance name and module

® Sheet 4 of 8 - prgmentr (of modul: prgm_cntr) (Technology View) PROASICIE: ASPEGOOPQFP208-2 _[rev_1[eight_bit_ucsrm

E}- [,;’J' Instances (44) li —1 e oA [=]

& [Primitives (35)
H- {F decode (ins_decode) — —
T dmux (data_mux) —ﬁ

- {F p1 (prep4)

E- {} prgmantr (prgm_antr) enjsee e 10 u e 2

el

| Gk [Nets (125)

i i - ™ dock_c, Fanout=111 oMt A
skip_in_0_0_a2_0_0, Fano
fin, Fanout=1
inst, Fanout=1
k, Fanout[1-3] P P70 M0
opcode_call, Fanout=14
opcode_call_0, Fanout=15
opcode_goto, Fanout=13 o omA o=
opcode_rethw, Fanout=7 L
pc, Fanout[3-5] j ZD 4
pc_0, Fanout[1-2] | 3 > Fs

" 4.|_.._. .—_,[i ,j [I| an

Navigating Among Sheets
You can navigate among different sheets of a schematic in these ways:

¢ Follow a sheet connector, by right-clicking it and choosing a connecting
sheet from the popup menu

¢ Use the sheet navigation commands of the View menu: Next Sheet,
Previous Sheet, and View Sheets, or their keyboard shortcut or icon equiva-
lents

* Use the history navigation commands of the View menu (Back and
Forward), or their keyboard shortcuts or icon equivalents to navigate to
sheets stored in the display history

For details, see Working with Multisheet Schematics, on page 213 in the User
Guide.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
124 January 2014

Multiple-sheet Schematics HDL Analyst Tool

You can navigate among different design levels by pushing and popping the
design hierarchy. Doing so adds to the display history of the View menu, so
you can retrace your push/pop steps using View -> Back and View->Forward.
After pushing down, you can either pop back up or use View->Back.

See also:
¢ Filtering and Flattening Schematics, on page 133
* View Menu: RTL and Technology Views Commands, on page 171
¢ Pushing and Popping Hierarchical Levels, on page 126

Multiple Sheets for Transparent Instance Details

The details of a transparent instance in a filtered view are drawn in two ways:

* Generally, these interior details are spread out over multiple sheets at
the same schematic level (module) as the instance that contains them.
You navigate these sheets as usual, using the methods described in
Navigating Among Schematic Sheets, on page 123.

¢ If the number of nested contents exceeds the limit set with the Filtered
Instances option (Options->HDL Analyst Options), the nested contents are
drawn on separate sheets. The parent hierarchical instance is empty,
with a notation (for example, Go to sheets 4-16) inside it, indicating which
sheets contain its lower-level details. You access the sheets containing
the lower-level details using the sheet navigation commands of the View
menu, such as Next Sheet.

See also:
¢ Controlling the Amount of Logic on a Sheet, on page 123
* View Menu: RTL and Technology Views Commands, on page 171

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 125

HDL Analyst Tool Exploring Design Hierarchy

Exploring Design Hierarchy

The hierarchy in your design can be explored in different ways. The following
sections explain how to move between hierarchical levels:

* Pushing and Popping Hierarchical Levels, on page 126
* Navigating With a Hierarchy Browser, on page 129

* Looking Inside Hierarchical Instances, on page 131

Pushing and Popping Hierarchical Levels

You can navigate your design hierarchy by pushing down into a high-level
schematic object or popping back up. Pushing down into an object takes you
to a lower-level schematic that shows the internal logic of the object. Popping
up from a lower level brings you back to the parent higher-level object.

Pushing and popping is best suited for traversing the hierarchy of a specific
object. If you want a more general view of your design hierarchy, use the
Hierarchy Browser instead. See Navigating With a Hierarchy Browser, on
page 129 and Looking Inside Hierarchical Instances, on page 131 for other
ways of viewing design hierarchy.

Pushable Schematic Objects

To push into an instance, it must have hierarchy. You can push into the
object regardless of its position in the design hierarchy; for example, you can
push into the object if it is shown nested inside a transparent instance. You
can push down into the following kinds of schematic objects:

* Non-hidden hierarchical instances. To push into a hidden instance,
unhide it first.

* Technology-specific primitives (not logic primitives)

¢ Inferred ROMs and state machines in RTL views. Inferred ROMs, RAMs,
and state machines do not appear in Technology views, because they are
resolved into technology-specific primitives.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
126 January 2014

Exploring Design Hierarchy HDL Analyst Tool

When you push/pop, the HDL Analyst window displays the appropriate level
of design hierarchy, except in the following cases:

* When you push into an inferred state machine in an RTL view, the FSM
Viewer opens, with graphical information about the FSM. See the FSM
Viewer Window, on page 67, for more information.

* When you push into an inferred ROM in an RTL view, the Text Editor
window opens and displays the ROM data table (rom.info file).

You can use the following indicators to determine whether you can push into
an object:

* The mouse pointer shape when Push/Pop mode is enabled. See How to
Push and Pop Hierarchical Levels, on page 127 for details.

* A small H symbol () in the lower left corner indicates a hidden
instance, and you cannot push into it.

¢ The Hierarchy Browser symbols indicates the type of instance and you
can use that to determine whether you can push into an object. For
example, hierarchical instance (I}), technology-specific primitive
(&), logic primitive such as XOR (i+), or other primitive instance
({F). The browser symbol does not indicate whether or not an instance
is hidden.

* The status bar at the bottom of the main synthesis tool window reports
information about the object under the pointer, including whether or not
it is a hidden instance or a primitive.

How to Push and Pop Hierarchical Levels

You push/pop design levels with the HDL Analyst Push/Pop mode. To enable
or disable this mode, toggle View->Push/Pop Hierarchy, use the icon, or use the
appropriate mouse strokes.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 127

HDL Analyst Tool Exploring Design Hierarchy

ins_rom €
clk ;
rst data_i : -

out[11:0] sl Pop
082 - gi(10:0] ‘ Down (push) or up (pop)
| arrow mouse pointer
\ rorm Hafn fins_rom]] \

clk

Push L
\> ram

EEEGREED] L Mt N T BOUT10] el £711:0] 2[11:0] e T AT 0] -
R

Data[11:0]
= data_out[11:0]

Once Push/Pop mode is enabled, you push or pop as follows:

* To pop, place the pointer in an empty area of the schematic background,
then click or use the appropriate mouse stroke. The background area
inside a transparent instance acts just like the background area outside
the instance.

* To pushinto an object, place the mouse pointer over the object and click
or use the appropriate mouse stroke. To push into a transparent
instance, place the pointer over its pale yellow border, not its hollow
(white) interior. Pushing into an object nested inside a transparent
hierarchical instance descends to a lower level than pushing into the
enclosing transparent instance. In the following figure, pushing into
transparent instance inst2 descends one level; pushing into nested
instance inst2.ll_3 descends two levels.

Push into transparent

instance along its border
iI Pop from background

register Il 0 Il 3 (interior or exterior),

S ae T unless at top level
RET C2[1:0] s ——
- _
Push into nested I
pushable object inst2_3

ingt2 1|_3 [register_I_0_11_3]

Inside | Outside

The following arrow mouse pointers indicate status in Push/Pop mode. For
other indicators, see Pushable Schematic Objects, on page 126.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
128 January 2014

Exploring Design Hierarchy HDL Analyst Tool

A down arrow f], Indicates that you can push (descend) into the object under
the pointer and view its details at the next lower level.

An up arrow ‘G Indicates that there is a hierarchical level above the current
sheet.

A crossed-out Indicates that there is no accessible hierarchy above or below

double arrow @ the current pointer position. If the pointer is over the

schematic background it indicates that the current level is the
top and you cannot pop higher. If the pointer is over an object,
the object is an object you cannot push into: a non-
hierarchical instance, a hidden hierarchical instance, or a
black box.

See also:
* Hidden Hierarchical Instances, on page 113
* Transparent and Opaque Display of Hierarchical Instances, on page 111
* Using Mouse Strokes, on page 79
* Navigating With a Hierarchy Browser, on page 129

Navigating With a Hierarchy Browser

Hierarchy Browsers are designed for locating objects by browsing your
design. To move between design levels of a particular object, use Push/Pop
mode (see Pushing and Popping Hierarchical Levels, on page 126 and
Looking Inside Hierarchical Instances, on page 131 for other ways of viewing
design hierarchy).

The browser in the RTL view displays the hierarchy specified in the RTL
design description. The browser in the Technology view displays the
hierarchy of your design after technology mapping.

Selecting an object in the browser displays it in the schematic, because the
two are linked. Use the Hierarchy Browser to traverse your hierarchy and
select ports, nets, components, and submodules. The browser categorizes the
objects, and accompanies each with a symbol that indicates the object type.
The following figure shows crossprobing between a schematic and the
hierarchy browser.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 129

HDL Analyst Tool Exploring Design Hierarchy

® Sheet 1 of 1 - top level (of module eight_bit_uc) (Technology View) PROASIC3E: ASPEGDOPQFP208-2 _[rev_1[eight_bit_uc....

B} [Primitives (35)

- {F decode (ins_decode)

- I dmux (data_mux)

- pi(prepd) Lo |

-} prgmentr {prgm_cntr)

- L regs (reg_file) =l

- {} special_regs (spcl_regs)

- 0 I:u%_alu (alu) =il
B [Nets (111)
B [Ports (10) FH
B} [2¥ Primitives (127) L |
- 1} alu_b_0[0] (xOR3

H -} alu_b_0_2[0] (XO ! =il

-} alu_b_n_3[0] (xO L

=8 @ Instances (44) ﬁ

m i

-

alu_cour
alu_cou
alu_cou:
alu_cou:
alu_cou:

aluz_re@

P

Explore the browser hierarchy by expanding or collapsing the categories in
the browser. You can also use the arrow keys (left, right, up, down) to move
up and down the hierarchy and select objects. To select more than one object,
press Ctrl and select the objects in the browser. To select a range of schematic
objects, click an object at one end of the range, then hold the Shift key while
clicking the name of an object at the other end of the range.

See also:
* Crossprobing Objects, on page 120
¢ Pushing and Popping Hierarchical Levels, on page 126

* Hierarchy Browser Popup Menu Commands, on page 337

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
130 January 2014

Exploring Design Hierarchy HDL Analyst Tool

Looking Inside Hierarchical Instances

An alternative method of viewing design hierarchy is to examine transparent
hierarchical instances (see Navigating With a Hierarchy Browser, on page 129
and Navigating With a Hierarchy Browser, on page 129 for other ways of
viewing design hierarchy). A transparent instance appears as a hollow box
with a pale yellow border. Inside this border are transparent and opaque
objects from lower design levels.

Transparent instances provide design context. They show the lower-level logic
nested within the transparent instance at the current design level, while

pushing shows the same logic a level down. The following figure compares the
same lower-level logic viewed in a transparent instance and a push operation:

rmod?

e Pushing down to lower-level schematic:
(=l I8 gy 59010 The pushed instance itself is not shown at
—— the lower level; only its details are shown.

inst1
E mnls!r* regls er
[EF ok ader = LA N
=P | POl BN e o) DU o R
no . Lz n3
L regls er
EE—
ni
Dissolving:

The dissolved instance is shown transparently,
with its details nested inside it.

iz er

L cik ~
Rat o =Y

i

DeTeIn ——.L'7— cin
Insi.1_A8

neTe
b Ires i3
Ire 1.2
x
L rar citny
L T

Same details

2 ce— e e
.
—raT i __“j_nnmlllﬂ’“r

iz ier
L

Transparent (dissolved)

Irs .1

Irsit

Synplify Pro for Microsemi Edition Reference Manual
January 2014

instance

Copyright © 2013 Synopsys, Inc.
131

HDL Analyst Tool Exploring Design Hierarchy

You cannot control the display of transparent instances directly. However,
you can perform the following operations, which result in the display of
transparent instances:

Hierarchically expand an object (using the expansion commands in the
HDL Analyst menu).

Dissolve selected hierarchical instances in a filtered schematic (HDL
Analyst -> Dissolve Instances).

Filter a schematic, after selecting multiple objects at more than one
level. See Commands That Result in Filtered Schematics, on page 133
for additional information.

These operations only make non-hidden hierarchical instances transparent.
You cannot dissolve hidden or primitive instances (including technology-
specific primitives). However, you can do the following:

Unhide hidden instances, then dissolve them.

Push down into technology-specific primitives to see their lower-level
details, and you can show the interiors of all technology-specific primi-
tives.

See also:

Pushing and Popping Hierarchical Levels, on page 126

Navigating With a Hierarchy Browser, on page 129

HDL Analyst Command, on page 273

Transparent and Opaque Display of Hierarchical Instances, on page 111

Hidden Hierarchical Instances, on page 113

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
132

January 2014

Filtering and Flattening Schematics HDL Analyst Tool

Filtering and Flattening Schematics

This section describes the HDL Analyst commands that result in filtered and
flattened schematics. It describes

* Commands That Result in Filtered Schematics, on page 133
* Combined Filtering Operations, on page 134

* Returning to The Unfiltered Schematic, on page 135

* Commands That Flatten Schematics, on page 135

* Selective Flattening, on page 136

* Filtering Compared to Flattening, on page 137

Commands That Result in Filtered Schematics

A filtered schematic shows a subset of your design. Any command that
results in a filtered schematic is a filtering command. Some commands, like
the Expand commands, increase the amount of logic displayed, but they are
still considered filtering commands because they result in a filtered view of
the design. Other commands like Filter Schematic and Isolate Paths remove
objects from the current display.

Filtering commands include the following:
* Filter Schematic, Isolate Paths — reduce the displayed logic.

* Dissolve Instances (in a filtered schematic) — makes selected instances
transparent.

* Expand, Expand to Register/Port, Expand Paths, Expand Inwards, Select Net Driver,
Select Net Instances — display logic connected to the current selection.

* Show Critical Path, Flattened Critical Path, Hierarchical Critical Path — show critical
paths.

All the filtering commands, except those that display critical paths, operate
on the currently selected schematic object(s). The critical path commands
operate on your entire design, regardless of what is currently selected.

All the filtering commands except Isolate Paths are accessible from the HDL
Analyst menu; Isolate Paths is in the RTL view and Technology view popup
menus (along with most of the other commands above).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 133

HDL Analyst Tool Filtering and Flattening Schematics

For information about filtering procedures, see Filtering Schematics, on
page 251 in the User Guide.

See also:
* Filtered and Unfiltered Schematic Views, on page 106

* HDL Analyst Menu, on page 272 and RTL and Technology Views Popup
Menus, on page 337

Combined Filtering Operations

Filtering operations are designed to be used in combination, successively.
You can perform a sequence of operations like the following:

1. Use Filter Schematic to filter your design to examine a particular instance.
See HDL Analyst Menu: Filtering and Flattening Commands, on
page 275 for a description of the command.

2. Select Expand to expand from one of the output pins of the instance to
add its immediate successor cells to the display. See HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 273 for a
description of the command.

3. Use Select Net Driver to add the net driver of a net connected to one of the
successors. See HDL Analyst Menu: Hierarchical and Current Level
Submenus, on page 273 for a description of the command.

4. Use Isolate Paths to isolate the net driver instance, along with any of its
connecting paths that were already displayed. See HDL Analyst Menu:
Analysis Commands, on page 279 for a description of the command.

Filtering operations add their resulting filtered schematics to the history of
schematic displays, so you can use the View menu Forward and Back
commands to switch between the filtered views. You can also combine
filtering with the search operation. See Finding Schematic Objects, on
page 117 for more information.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
134 January 2014

Filtering and Flattening Schematics HDL Analyst Tool

Returning to The Unfiltered Schematic

A filtered schematic often loses the design context, as it is removed from the
display by filtering. After a series of multiple or complex filtering operations,
you might want to view the context of a selected object. You can do this by:

* Selecting a higher level object in the Hierarchy Browser; doing so always
crossprobes to the corresponding object in the original schematic.

* Using Show Context to take you directly from a selected instance to the
corresponding context in the original, unfiltered schematic.

* Using Goto Net Driver to go from a selected net to the corresponding
context in the original, unfiltered schematic.

There is no Unfilter command. Use Show Context to see the unfiltered schematic
containing a given instance. Use View->Back to return to the previous, unfil-
tered display after filtering an unfiltered schematic. You can go back and
forth between the original, unfiltered design and the filtered schematics,
using the commands View->Back and Forward.

See also:
* RTL and Technology Views Popup Menus, on page 337
¢ View Menu: RTL and Technology Views Commands, on page 171

Commands That Flatten Schematics

A flattened schematic contains no hierarchical objects. Any command that
results in a flattened schematic is a flattening command. This includes the
following.

Command Unfiltered Schematic Filtered Schematic

Dissolve Instances Flattens selected instances -

Flatten Current Flattens at the current level Flattens only non-hidden

Schematic (Flatten and all lower levels. RTL view: transparent hierarchical

Schematic) flattens to generic logic level instances; opaque and hidden
Technology view: flattens to hierarchical instances are not
technology-cell level flattened.

RTL->Flattened Creates a new, unfiltered RTL schematic of the entire design,

View flattened to the level of generic logic cells.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 135

HDL Analyst Tool Filtering and Flattening Schematics

Command Unfiltered Schematic Filtered Schematic
Technology-> Creates a new, unfiltered Technology schematic of the entire
Flattened View design, flattened to the level of technology cells.

Technology-> Creates a new, unfiltered Technology schematic of the entire
Flattened to Gates design, flattened to the level of Boolean logic gates.

View

Technology-> Creates a filtered, flattened Technology view schematic that
Flattened Critical shows only the instances with the worst slack times and their
Path path.

Unflatten Schematic Undoes any flattening done by Dissolve Instances and Flatten
Current Schematic at the current schematic level. Returns to the
original schematic, as it was before flattening (and any
filtering).

All the commands are on the HDL Analyst menu except Unflatten Schematic,
which is available in a schematic popup menu.

The most versatile commands, are Dissolve Instances and Flatten Current
Schematic, which you can also use for selective flattening (Selective Flattening,
on page 136).

See also:
¢ Filtering Compared to Flattening, on page 137
* Selective Flattening, on page 136

Selective Flattening

By default, flattening operations are not very selective. However, you can
selectively flatten particular instances with these commands (see RTL and
Technology Views Popup Menus, on page 337 for descriptions):

¢ Use Hide Instances to hide instances that you do not want to flatten, then
flatten the others (flattening operations do not recognize hidden
instances). After flattening, you can Unhide Instances that are hidden.

* Flatten selected hierarchical instances using one of these commands:
— If the current schematic is unfiltered, use Dissolve Instances.

— If the schematic is filtered, use Dissolve Instances, followed by Flatten
Current Schematic. In a filtered schematic, Dissolve Instances makes the

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
136 January 2014

Filtering and Flattening Schematics HDL Analyst Tool

selected instances transparent and Flatten Current Schematic flattens
only transparent instances.

The Dissolve Instances and Flatten Current Schematic (or Flatten Schematic)
commands behave differently in filtered and unfiltered schematics as
outlined in the following table:

Command Unfiltered Schematic Filtered Schematic
Dissolve Instances Flattens selected Provides virtual flattening: makes
instances selected instances transparent,

displaying their lower-level details.

Flatten Current Flattens everything Flattens only the non-hidden,
Schematic at the current level transparent hierarchical instances: does
Flatten Schematic and below not flatten opaque or hidden instances.

See below for details of the process.

In a filtered schematic, flattening with Flatten Current Schematic is actually a
two-step process:

1. The transparent instances of the schematic are flattened in the context
of the entire design. The result of this step is the entire hierarchical
design, with the transparent instances of the filtered schematic replaced
by their internal logic.

2. The original filtering is then restored: the design is refiltered to show
only the logic that was displayed before flattening.

Although the result displayed is that of Step 2, you can view the intermediate
result of Step 1 with View->Back. This is because the display history is erased
before flattening (Step 1), and the result of Step 1 is added to the history as if
you had viewed it.

Filtering Compared to Flattening

As a general rule, use filtering to examine your design, and flatten it only if
you really need it. Here are some reasons to use filtering instead of flattening:

* Filtering before flattening is a more efficient use of computer time and
memory. Creating a new view where everything is flattened can take
considerable time and memory for a large design. You then filter anyway
to remove the flattened logic you do not need.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 137

HDL Analyst Tool Filtering and Flattening Schematics

* Filtering is selective. On the other hand, the default flattening operations
are global: the entire design is flattened from the current level down.
Similarly, the inverse operation (UnFlatten Schematic) unflattens every-
thing on the current schematic level.

* Flattening operations eliminate the history for the current view: You can
not use View->Back after flattening. (You can, however, use UnFlatten
Schematic to regenerate the unflattened schematic.).

See also:
* RTL and Technology Views Popup Menus, on page 337
* Selective Flattening, on page 136

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
138 January 2014

Timing Information and Critical Paths HDL Analyst Tool

Timing Information and Critical Paths

The HDL Analyst tool provides several ways of examining critical paths and
timing information, to help you analyze problem areas. The different ways are
described in the following sections.

* Timing Reports, on page 139
® Critical Paths and the Slack Margin Parameter, on page 140

* Examining Critical Path Schematics, on page 141

See the following for more information about timing and result analysis:
* Watch Window, on page 52
* Log File, on page 257
* Chapter 13, Optimizing Processes for Productivity in the User Guide

Timing Reports

When you synthesize a design, a default timing report is automatically
written to the log file, which you can view using View->View Log File. This report
provides a clock summary, I/O timing summary, and detailed timing infor-
mation for your design.

For certain device technologies, you can use the Analysis->Timing Analyst
command to generate a custom timing report. Use this command to specify
start and end points of paths whose timing interests you, and set a limit for
the number of paths to analyze between these points.

By default, the sequential instances, input ports, and output ports that are
currently selected in the Technology views of the design are the candidates for
choosing start and end points. In addition, the start and end points of the
previous Timing Analyst run become the default start and end points for the
next run. When analyzing timing, any latches in the path are treated as level-
sensitive registers.

The custom timing report is stored in a text file named resultsfile.ta, where
resultsfile is the name of the results file (see Implementation Results Panel,
on page 197). In addition, a corresponding output netlist file is generated,

named resultsfile ta.srm. Both files are in the implementation results direc-

tory.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 139

HDL Analyst Tool Timing Information and Critical Paths

The Timing Analyst dialog box provides check boxes for viewing the text report
(Open Report) in the Text Editor and the corresponding netlist (Open Schematic)
in a Technology view. This Technology view of the timing path, labeled Timing
View in the title bar, is special in two ways:

* The Timing View shows only the paths you specify in the Timing Analyst
dialog box. It corresponds to a special design netlist that contains
critical timing data.

* The Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are unavailable whenever the Timing View is active.

See also:
* Analysis Menu, on page 260
* Timing Reports, on page 263
* Log File, on page 257

Critical Paths and the Slack Margin Parameter

The HDL Analyst tool can isolate critical paths in your design, so that you can
analyze problem areas, add timing constraints where appropriate, and resyn-
thesize for better results.

After you successfully run synthesis, you can display just the critical paths of
your design using any of the following commands from the HDL Analyst menu:

¢ Hierarchical Critical Path
¢ Flattened Critical Path
¢ Show Critical Path

The first two commands create a new Technology view, hierarchical or
flattened, respectively. The Show Critical Path command reuses the current
Technology view. Neither the current selection nor the current sheet display
have any effect on the result. The result is flat if the entire design was already
flat; otherwise it is hierarchical. Use Show Critical Path if you want to maintain
the existing display history.

All these commands filter your design to show only the instances (and their
paths) with the worst slack times. They also enable HDL Analyst -> Show Timing
Information, displaying timing information.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
140 January 2014

Timing Information and Critical Paths HDL Analyst Tool

Negative slack times indicate that your design has not met its timing require-
ments. The worst (most negative) slack time indicates the amount by which
delays in the critical path cause the timing of the design to fail. You can also
obtain a range of worst slack times by setting the slack margin parameter to
control the sensitivity of the critical-path display. Instances are displayed
only if their slack times are within the slack margin of the (absolutely) worst
slack time of the design.

The slack margin is the criterion for distinguishing worst slack times. The
larger the margin, the more relaxed the measure of worst, so the greater the
number of critical-path instances displayed. If the slack margin is zero (the
default value), then only instances with the worst slack time of the design are
shown. You use HDL Analyst->Set Slack Margin to change the slack margin.

The critical-path commands do not calculate a single critical path. They filter
out instances whose slack times are not too bad (as determined by the slack
margin), then display the remaining, worst-slack instances, together with
their connecting paths.

For example, if the worst slack time of your design is -10 ns and you set a
slack margin of 4 ns, then the critical path commands display all instances
with slack times between -6 ns and -10 ns.

See also:
¢ HDL Analyst Menu, on page 272
* HDL Analyst Command, on page 273
¢ Handling Negative Slack, on page 276 of the User Guide
¢ Analyzing Timing in Schematic Views, on page 270 of the User Guide

Examining Critical Path Schematics

Use successive filtering operations to examine different aspects of the critical
path. After filtering, use View -> Back to return to the previous point, then filter
differently. For example, you could use the command Isolate Paths to examine
the cone of logic from a particular pin, then use the Back command to return
to the previous display, then use Isolate Paths on a different pin to examine a
different logic cone, and so on.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 141

HDL Analyst Tool Timing Information and Critical Paths

Also, the Show Context and Goto Net Driver commands are particularly useful

after you have done some filtering. They let you get back to the original, unfil-
tered design, putting selected objects in context.

See also:

* Returning to The Unfiltered Schematic, on page 135

Filtering and Flattening Schematics, on page 133

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
142

January 2014

SYNOPSYs

erating Innovation

CHAPTER 4

Constraints

Constraints are used in the FPGA synthesis environment to achieve optimal
design results. Timing constraints set performance goals, non-timing
constraints (design constraints) guide the tool through optimizations that
further enhance performance and physical constraints define regions and
locations for placement-aware synthesis.

This chapter provides an overview of how constraints are handled in the
FPGA synthesis environment.

* Constraint Types, on page 144

* Constraint Files, on page 145

¢ Timing Constraints, on page 147

¢ FDC Constraints, on page 151

* Methods for Creating Constraints, on page 152
¢ Constraint Translation, on page 154

¢ Constraint Checking, on page 159

* Database Object Search, on page 161

¢ Forward Annotation, on page 162

¢ Auto Constraints, on page 162

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 143

Constraints

Constraint Types

Constraint Types

One way

to ensure the FPGA synthesis tools achieve the best quality of

results for your design is to define proper constraints. In the FPGA environ-

ment, co

Type
Timing

Design

nstraints can be categorized by the following types:

Description

Performance constraints that guide the synthesis tools to achieve optimal
results. Examples: clocks (create_clock), clock groups (set_clock_groups),
and timing exceptions like multicycle and false paths
(set_multicycle_path...)

See Timing Constraints, on page 147 for information on defining these
constraints.

Additional design goals that enhance or guide tool optimizations.
Examples: Attributes and directives (define_attribute,
define_global_attribute), I/O standards (define_io_standard), and compile
points (define_compile_point).

The easiest way to specify constraints is through the SCOPE interface. The
tool saves timing and design constraints to an FDC file that you add to your

project.

See Also

Constraint Files, on page 145 Overview of constraint files

Timing Constraints, on page 147 Overview of timing constraint definitions and

FDC file generation.

SCOPE Constraints Editor, on Information about automatic generation of

page 163 timing and design constraints.

Chapter 6, Constraint Syntax Timing constraint syntax

Chapter 6, Constraint Syntax Design constraint syntax
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
144 January 2014

Constraint Files Constraints

Constraint Files

The figure below shows the files used for specifying various types of
constraints. The FDC file is the most important one and is the primary file for
both timing and non-timing design constraints. The other constraint files are
used for specific features or as input files to generate the FDC file, as
described in Timing Constraints, on page 147. The figure also indicates the
specific processes controlled by attributes and directives.

TIMING
PESICN Legacy Synplify Timing
iracti Constraints
Directives
Attributes Synopsys Standard

Timing Constraints

Standard SDC \
j A

Other Design Constraints

<

il

-— > CDC

T

Physical
Synthesis

———>» Compiler Mapper Timing
Analyzer

==p= Timing constraints

=== Design constraints

wuy- Controlling constraint & module
== Physical constraint

=1 Constraint files

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 145

Constraints Constraint Files

The table is a summary of the various kinds of constraint files.

File Type Common Commands Comments
FDC Timing create_clock, Used for synthesis. Includes
constraints set_multicycle_delay ... timing constraints that
)]] follow the Synopsys
Design define_attribute, standard format as well as
constraints define_io_standard ... design constraints.
ADC Timing create_clock, Used with the stand-alone
constraints set_multicycle_delay ... timing analyzer.
for timing
analysis
SDC FPGAtiming create_clock, Use sdc2fdc to convert
(Synopsys constraints get clock_latency, constraints to an FDC file so
Standard) set_false_path ... that they can be passed to
- - the synthesis tools.
SDC Legacy define_clock, Use sdc2fdc to convert the
(Legacy) timing define_false_path constraints to an FDC file so
constraints {efine_attribute, that they can be passed to
and non- define collection ... the synthesis tools.
timing (or -
design)
constraints
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
146 January 2014

Timing Constraints Constraints

Timing Constraints

The synthesis tools have supported different timing formats in the past, and
this section describes some of the details of standardization:

* Legacy SDC and Synopsys Standard SDC, on page 147
* FDC File Generation, on page 148

* Timing Constraint Precedence in Mixed Constraint Designs, on page 149
Legacy SDC and Synopsys Standard SDC

Releases prior to G-2012.09M had two types of constraint files that could be
used in a design project:

* Legacy “Synplify-style” timing constraints (define_clock, define_false_path...)
saved to an sdc file. This file also included non-timing design
constraints, like attributes and compile points.

* Synopsys standard timing constraints (create_clock, set_false_path...).
These constraints were also saved to an sdc file, which only contained
timing constraints. Non-timing constraints were in a separate sdc file.
The tool used the two files together, drawing timing constraints from one
and non-timing constraints from the other.

Starting with the G-2012.09 release, Synopsys standard timing constraint
format has replaced the legacy-style constraint format, and a new FDC (FPGA
design constraint) file consolidates both timing and design formats. As a
result of these updates, there are some changes in the use model:

* Timing constraints in the legacy format are converted and included in
an FDC file, which includes both timing and non-timing constraints. The
file uses the Synopsys standard syntax for timing constraints
(create_clock, set_multicyle_path...). The syntax for non-timing design
constraints is unchanged (define_attribute, define_io_standard...).

* The SCOPE editor has been enhanced to support the timing constraint
changes, so that new constraints can be entered correctly.

* For older designs, use the sdc2fdc command to do a one-time conversion.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 147

Constraints Timing Constraints

FDC File Generation

The following figure is a simplified summary of constraint-file handling and
the generation of fdc.

It is not required that you convert Synopsys standard sdc constraints as the
figure implies, because they are already in the correct format. You could have
a design with mixed constraints, with separate Synopsys standard sdc and fdc
files. The disadvantage to keeping them in the standard sdc format is that you
cannot view or edit the constraints through the SCOPE interface.

Existing Designs
Synplify-Style Timing Synopsys Standard Timing
Legacy sdc Standard sdc
Timing and Design Timing Constraints Only
Constraints
create clock._ ..
define_clock...
define_attribute. . Legacy sdc
New B Design Constraints Only
Designs 1File define attibate

2 Files

FDC

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
148 January 2014

Timing Constraints Constraints

Timing Constraint Precedence in Mixed Constraint Designs

Your design could include timing constraints in a Synopsys standard sdc file
and others in an fdc file. With mixed timing constraints in the same design,
the following order of precedence applies:

* The tool reads the file order listed in the project file and any conflicting
constraint overwrites a previous constraint.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 149

Constraints Timing Constraints

With the legacy timing constraints, it is strongly recommended that you
convert them to the fdc format. However, even if you retain the old format in
an existing design, they must be used alone and cannot be mixed in the same
design as fdc or Synopsys standard timing sdc constraints. Specifically, do
not specify timing constraints using mixed formats. For example, do not
define clocks with define_clock and create_clock together in the same constraint
file or multiple SDC/FDC files.

For the list of FPGA timing constraints (FDC) and their syntax, see FPGA
Timing Constraints, on page 212.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
150 January 2014

FDC Constraints Constraints

FDC Constraints

The FPGA design constraints (FDC) file contains constraints that the tool uses
during synthesis. This FDC file includes both timing constraints and non-
timing constraints in a single file.

* Timing constraints define performance targets to achieve optimal
results. The constraints follow the Synopsys standard format, such as
create_clock, set_input_delay, and set_false_path.

* Non-timing (or design constraints) define additional goals that help the
tool optimize results. These constraints are unique to the FPGA
synthesis tools and include constraints such as define_attribute,
define_io_standard, and define_compile_point.

The recommended method to define constraints is to enter them in the
SCOPE editor, and the tool automatically generates the appropriate syntax. If
you define constraints manually, use the appropriate syntax for each type of
constraint (timing or non-timing), as described above. See Methods for
Creating Constraints, on page 152 for details on generating constraint files.

Prior to release G-2012.09M, designs used timing constraints in either legacy
Synplify-style format or Synopsys standard format. You must do a one-time
conversion on any existing SDC files to convert them to FDC files using the
following command:

% sdc2fdc

sdc2fdc converts constraints as follows:

For legacy Synplify-style Converts timing constraints to Synopsys standard
timing constraints format and saves them to an FDC file.

For Synopsys standard Preserves Synopsys standard format timing
timing constraints constraints and saves them to an FDC file.

For non-timing or design Preserves the syntax for these constraints and
constraints saves them to an FDC file.

Once defined, the FDC file can be added to your project. Double-click this file
from the Project view to launch the SCOPE editor to view and/or modify your
constraints. See Converting SDC to FDC, on page 150 for details on how to
run sdc2fdc.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 151

Constraints Methods for Creating Constraints

Methods for Creating Constraints

Constraints are passed to the synthesis environment in FDC files using Tcl
command syntax.

New Designs

For new designs, you can specify constraints using any of the following

methods:
Definition Method Description
SCOPE Editor Use this method to specify constraints wherever possible.

The SCOPE editor automatically generates fdc
constraints with the right syntax. You can use it for most
constraints. See Chapter 5, SCOPE Constraints Editor,
for information how to use SCOPE to automatically
generate constraint syntax.

Access: File->New->FPGA Design Constraints ...

(fdc file)-Recommended

Manually-Entered Text You can manually enter constraints in a text file. Make

Editor sure to use the correct syntax for the timing and design
(fdc file, all other commands.
constraint files) The SCOPE GUI includes a TCL View with an advanced

text editor, where you can manually generate the
constraint syntax. For a description of this view, see TCL
View, on page 188.

You can also open any constraint file in a text editor to

modify it.
Source Code Directives must be entered in the source code because
Attributes/Directives they affect the compiler. Do not include any other
(HDL files) constraints in the source code, as this makes the source

code less portable. In addition, you must recompile the
design for the constraints to take effect.

Attributes can be entered through the SCOPE interface,
as they affect the mapper, not the compiler

Automatic— First Pass Enable the Auto Constrain button in the Project view to
have the tool automatically generate constraints based
on inferred clocks. See Using Auto Constraints, on
page 287 in the User Guide for details.

Use this method as a quick first pass to get an idea of
what constraints can be set.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
152 January 2014

Methods for Creating Constraints Constraints

If there are multiple timing exception constraints on the same object, the
software uses the guidelines described in Conflict Resolution for Timing
Exceptions, on page 206 to determine the constraint that takes precedence.

See Also
To specify the correct syntax for the timing and design commands, see:
* Chapter 6, Constraint Syntax

* Attribute Reference Manual

Existing Designs

The SCOPE editor in this release does not save constraints to SDC files. For
designs prior to G-2012.09M, it is recommended that you migrate your
timing constraints to FDC format to take advantage of the tool’s enhanced
handling of these types of constraints. To migrate constraints, use the sdc2fdc
command (see Converting SDC to FDC, on page 150l) on your sdc files.

Note: If you need to edit an SDC file, either use a text editor, or double-
click the file to open the legacy SCOPE editor. For information on
editing older SDC files, see SCOPE User Interface (Legacy), on
page 210 or Design Constraints, on page 242.

See Also

To use the current SCOPE editor, see:
* Chapter 5, SCOPE Constraints Editor
* Chapter 5, Specifying Constraints

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 153

Constraints Constraint Translation

Constraint Translation

The tool includes a number of scripts for converting constraints to the correct
format. The sdc2fdc script translates sdc files to fdc files. For constraints from
vendor tools, you must first use the appropriate utility to translate the
constraints to sdc, and then migrate them to fdc with the sdc2fdc script.

This table lists the translation scripts:
Vendor Command/Utility For details, see
Synopsys sdc2fdc sdc2fdc, on page 64

In addition to the information above, refer to Converting SDC to FDC, on
page 150 for information about using this utility.

sdc2fdc Conversion

The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to
Synopsys FPGA timing constraints. This command scans the input SDC files
and attempts to convert constraints for the implementation.

For details, see the following:
* Troubleshooting Conversion Error Messages, on page 154
* sdc2fdc FPGA Design Constraint (FDC) File, on page 156

¢ sdc2fdc, on page 64 in the Command Reference manual (syntax)

Troubleshooting Conversion Error Messages

The following table contains common types of error messages you might
encounter when running the sdc2fdc Tcl shell command. The error messages
include descriptions of how you can resolve these problems.

Problem and Solution Examples

Cannot translate a translated Remove/disable
file D:FDC_constraints/rev_FDC/top_translated.fdc
from the current implementation.

No active constraint files Add/enable one or more SDC constraint files.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
154 January 2014

Constraint Translation Constraints

Clock not translated * Add clock object qualifier (p: n: ...) for:
"define_clock -name {clka {clka} -period 10
-clockgroup {default_clkgroup_0}"
Synplicity_SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

e Specify -name for: "define_clock {p:clkb} -period 20
-clockgroup {default_clkgroup_1}"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

Bad -from list for Missing qualifier(s) (i: p: n: ...)

define_multicycle_path {a* b*} "define multlcycle_path 4 -from {a* b*} -to
$fdc_cmd_O -start" Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 76

Bad -to list for Mixing of object types not permitted

define_multicycle_path "define_multicycle_path -to {i:*y*.q[*] p:ena} 3"

{i: *y* .q[*] p:ena} Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Bad -from list for Mixing of object types and missing qualifiers not

define_multicycle_path permitted "define_multicycle_path -from {i:*y*.q[*]

{i*y* .q[*] p:ena enab} p:ena enab} 3" Synplicity SDC source file:

D:.../clk_prior/scratch/top.sdc. Line number: 77

No period or frequency found Default 1000.
"create_clock -name {clkb} {p:clkb} -period 1000
-waveform {0 500.0}" Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

Must specify both -rise and -fall "create_clock -name {clka} {p:clka} -period 10 -rise 5
or neither -clockgroup {default_clkgroup_0"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

Besides these error messages, make sure that your files have read/write
permissions set properly and there is sufficient disk space. Fix any issues in
the SDC source file and rerun the sdc2fdc command.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 155

Constraints Constraint Translation

Batch Mode
If you run sdc2fdc -batch, then the following occurs:

* The two Clock not translated messages in the table above are not
generated.

* When the translation is successful, the SDC file is disabled and the FDC
file is enabled and saved automatically in the project file.

However, if the -batch option is not used and the translation is
successful, then the SDC file is disabled and the FDC file is enabled but
not automatically saved in the Project file. A message to this effect
displays in the Tcl shell window.

sdc2fdc FPGA Design Constraint (FDC) File

The FDC constraint file generated after running sdc2fdc contains translated
legacy FPGA timing constraints (SDC), which are now in the FDC format. This
file is divided into two sections:

First Contains the following:

* Valid FPGA design constraints (e.g. define_scope_collection and
define_attribute)

* Legacy timing constraints that were not translated because they were
specified with -disable.

Second Contains the legacy timing constraints that were translated.

This file also provides the following:
¢ Each source sdc file has its separate subhead.

¢ Each compile point is treated as a top level, so its sdc file has its own
_translated.fdc file.

* The translator adds the naming rule, set_rtl_ff names, so that the
synthesis tool knows these constraints are not from the Synopsys
Design Compiler.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
156 January 2014

Constraint Translation Constraints

The following example shows the contents of the FDC file.

FHHHHHHHHHEEEE R
####This file contains constraints from Synplicity SDC files that have been
####translated into Synopsys FPGA Design Constraints (FDC.

####Translated FDC output file:

####D: /bugs/timing 88/clk_prior/scratch/FDC_constraints/rev_2/top_translated.fdc
####Source SDC files to the translation:

####D: /bugs/timing 88/clk prior/scratch/top.sdc
R

HEHHHHFHHHH AT R R A R
####Source SDC file to the translation:

####D: /bugs/timing 88/clk _prior/scratch/top.sdc

HEHHHHFHHHH AT H R A R R R

#Legacy constraint file

#C:\Clean Demos\Constraints Training\top.sdc
#Written on Mon May 21 15:58:35 2012

#by Synplify Pro, Synplify Pro Scope Editor
#

#Collections

#

define scope collection all_grp {deflne collection \
find -inst {i:FirstStbcPhase}] \

[
[find -inst {i:NormDenom[6:0]}] \
[find -inst {i:NormNum[7:0]1}] \
[find -inst {i:PhaseOut[9:0]1}] \
[find -inst {i:PhaseOut0ld[9:0]1}] \
[find -inst {i:Phasevalidout}] \
[find -inst {i:ProcessData}]l \
[find -inst {i:Quadrant[1:0]}] \
ffind -inst {i:State[2:0]1}] \

#

#Clocks

#define clock -disable -name {clkc} -virtual -freqg 150 -clockgroup default clkgroup 1

#Clock to Clock

#

#

#Inputs/Outputs

#

define input delay -disable {bl
define input delay -disable {clI 0.20 -ref clkb:r
define input delay -disable {d[

define output delay -disable }x
define output delay -disable {y
#

#Registers

#

#

#Multicycle Path

#

#

#False Path

#

#

define false path -disable -from {i:x[1]}
#

0 2.00 -ref clka:r
0
0

1
1
]} 0.30 -ref clkb:r

:0] 1 -improve 0.00 -route 0.00
:0]

7:
7:
7:
[7
[7 -improve 0.00 -route 0.00

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 157

Constraints Constraint Translation

#Path Delay
#
#
#Attributes
#

define io standard -default input -delay type input syn pad type {LVCMOS 33}#

#I/0 standards
#
#
#Compile Points
#
#

#Other Constraints

HH#HE R R R R R R
#SDC compliant constraints translated from Legacy Timing Constraints
HH##HHEFHH R R R R R R R R
#

set_rtl ff names {#}

create clock -name {clka{ [get ports {clka{] -period 10 -waveform {0 5.0}
create clock -name {clkb} [get ports {clkb}] -period 6.666666666666667
-waveform {0 3.3333333333333335}
set_input delay -clock [get clocks {clka}] -clock fall -
add_delay 0.000 [all_inputs]
set_output _delay -clock [get clocks {clka}] -add delay 0.000 [all outputs]
set_input delay -clock [get clocks {clka}] -
add_delay 2.00 [get ports {al[7:0]}]
set_input delay -clock [get clocks {clka}] -add delay 0 [get ports {rst}]
set mcp 4
set_multicycle path $mcp -start \
-from \
[get _ports \
(ax %
b*} \
1\
-to \
[find -seq -hier {g?[*1}]

set_multicycle path 3 -end \
-from \
[find -seq {*y*.ql[*1} 1]

set clock groups -name default clkgroup 0 -asynchronous \
-group [get clocks {clka dcm|clk0 derived clock dcm|
clk2x derived clock decm|clk0fx derived clock}]

set _clock groups -name default clkgroup 1 -asynchronous \
-group [get clocks {clkb}]

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
158 January 2014

Constraint Checking Constraints

Constraint Checking

The synthesis tools include several features to help you debug and analyze
design constraints. Use the constraint checker to check the syntax and appli-
cability of the timing constraints in the project. The synthesis log file includes
a timing report as well as detailed reports on the compiler, mapper, and
resource usage information for the design. A stand-alone timing analyzer
(STA) generates a customized timing report when you need more details
about specific paths or want to modify constraints and analyze, without
resynthesizing the design. The following sections provide more information
about these features.

Constraint Checker

Check syntax and other pertinent information on your constraint files using
Run->Constraint Check or the Check Constraints button in the SCOPE editor. This
command generates a report that checks the syntax and applicability of the
timing constraints that includes the following information:

* Constraints that are not applied
* Constraints that are valid and applicable to the design
* Wildcard expansion on the constraints

* Constraints on objects that do not exist

See Constraint Checking Report, on page 272 for details.

Timing Constraint Report Files

The results of running constraint checking, synthesis, and stand-alone
timing analysis are provided in reports that help you analyze constraints.

Use these files for additional timing constraint analysis:

File Description

_cck.rpt Lists the results of running the constraint checker (see Constraint
Checking Report, on page 272).

_cck _fde rpt Lists the wildcard expansion results of running the constraint
checker for collections with the get_* and all_* object query
commands using the check_fdc_query Tcl command. See
check_fdc_query, on page 28 for more information.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 159

Constraints

Constraint Checking

File

_scck.rpt

.ta

.srr or .htm

Description

Lists the results of running the constraint checker for collections
with the get_* and all_* object query commands.

Reports timing analysis results (see Generating Custom Timing
Reports with STA, on page 277).

Reports post-synthesis timing results as part of the text or HTML
log file (see Timing Reports, on page 263 and Log File, on
page 257).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
160

January 2014

Database Object Search Constraints

Database Object Search

To apply constraints, you have to search the database to find the appropriate
objects. Sometimes you might want to search for and apply the same
constraint to multiple objects. The FPGA tools provide some Tcl commands to
facilitate the search for database objects:

Commands Common Commands Description

Find Tcl Find, open_design... Lets you search for design objects to
form collections that can apply
constraints to the group. See Using
Collections, on page 140 and find, on

page 98.
Collections define_collection, Create, copy, evaluate, traverse, and
C_union... filter collections. See Using Collections,

on page 140 and synhooks File Syntax,
on page 668 for more information.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 161

Constraints Forward Annotation

Forward Annotation

The tool can automatically generate vendor-specific constraint files for
forward annotation to the place-and-route tools when you enable the Write
Vendor Constraints switch (on the Implementation Results tab) or use the
-write_apr_constraint option of the set_option command.

Vendor File Extension

Microsemi _SDC.SDC

For information about how forward annotation is handled for your target
technology, refer to the appropriate vendor chapter of the FPGA Synthesis
Reference Manual.

Auto Constraints

Auto constraints are automatically generated by the synthesis tool, however,
these do not replace regular timing constraints in the normal synthesis flow.
Auto constraints are intended as a quick first pass to evaluate the kind of
timing constraints you need to set in your design.

To enable this feature and automatically generate register-to-register
constraints, use the Auto Constrain option on the left panel of the Project view.
For details, see Using Auto Constraints, on page 287 in the User Guide.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
162 January 2014

LI 4

CHAPTER 5

SCOPE Constraints Editor

The SCOPE (Synthesis Constraints Optimization Environment®) editor
automatically generates syntax for synthesis constraints. Enter information
in the SCOPE tabs, panels, columns, and pulldowns to define constraints
and parameter values. You can also drag-and-drop objects from the HDL
Analyst Ul to populate values in the constraint fields.

This interface creates Tcl-format Synopsys Standard timing constraints and
Synplify-style design constraints and saves the syntax to an FPGA design
constraints (FDC) file that can automatically be added to your synthesis
project. See Constraint Types, on page 144 for definitions of synthesis
constraints.

Topics in this section include:
* SCOPE User Interface, on page 164
* SCOPE Tabs, on page 165
¢ Industry I/O Standards, on page 190
¢ Delay Path Timing Exceptions, on page 193
* Specifying From, To, and Through Points, on page 199

¢ Conflict Resolution for Timing Exceptions, on page 206

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 163

SCOPE Constraints Editor SCOPE User Interface

SCOPE User Interface

The SCOPE editor contains a number of panels for creating and managing
timing constraints and design attributes. This GUI offers the easiest way to
create constraint files for your project. The syntax is saved to a file using an
FDC extension and can be included in your design project.

constraint.fdc *

Current Design: |<Top Level= v| |rJJ Check Constraints |

Enablel MName | Objectl Period |Wa\.reform| Add | Clock Groupl Latency | Uncertainty Comment E
1
5 |
s |
4 |
A -
Clocks Generated Clocks Collections Inputs/Cutputs Registers Delay Paths Attributes 10 Standards Compile Points TCL View |

From this editor, you specify timing constraints for clocks, ports, and nets as
well as design constraints such as attributes, collections, and compile points.
However, you cannot set black-box constraints from the SCOPE window.

To bring up the editor, use one of the following methods from the Project view:

* For a new file (the project file is open and the design is compiled):

— Choose File->New-> FPGA Design Constraints; select FPGA Constraint File
(SCOPE).

— Click the SCOPE icon in the toolbar; select FPGA Constraint File (SCOPE).

* You can also open the editor using an existing constraint file. Double-
click on the constraint file (FDC), or use File->Open, specifying the file
type as FPGA Design Constraints File (*.£dc).

See Using the SCOPE Editor, on page 110 in the User Guide.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
164 January 2014

SCOPE Tabs

SCOPE Constraints Editor

SCOPE Tabs

Here is a summary of the constraints created through the SCOPE editor:

SCOPE Panel
Clocks
Generated Clocks
Collections
Inputs/Outputs
Registers

Delay Paths
Attributes

I/O Standards
Compile Points

TCL View

See...

Clocks, on page 165
Generated Clocks, on page 170
Collections, on page 173
Inputs/Outputs, on page 175
Registers, on page 178

Delay Paths, on page 179
Attributes, on page 182

I/O Standards, on page 183
Compile Points, on page 185
TCL View, on page 188

If you choose an object from a SCOPE pull-down menu, it has the appropriate
prefix appended automatically. If you drag and drop an object from an RTL
view, for example, make sure to add the prefix appropriate to the language
used for the module. See Naming Rule Syntax Commands, on page 241 for

details.

Clocks

You use the Clocks panel of the SCOPE spreadsheet to define a signal as a

clock.

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Copyright © 2013 Synopsys, Inc.
165

SCOPE Constraints Editor

SCOPE Tabs

1
2

i
|

Oode=

| Enate | raame ooject | Period | wizveform | Add | Chdkeow | Lstency | uncertainty Comrent |

The Clocks panel includes the following options:

Field

Name

Period

Waveform

Add Delay

Copyright © 2013 Synopsys, Inc.
166

Description

Specifies the clock object name.

Clocks can be defined on the following objects:
* Pins

* Ports

* Nets

For virtual clocks, the field must contain a unique name not
associated with any port, pin, or net in the design.

Specifies the clock period in nanoseconds. This is the
minimum time over which the clock waveform repeats. The
period must be greater than zero.

Specifies the rise and fall edge times for the clock waveforms of
the clock in nanoseconds, over an entire clock period. The first
time in the list is a rising transition, typically the first rising
transition after time zero. There must be two edges, and they
are assumed to be rise and then fall. The edges must be
monotonically increasing. If you do not specify this option, a
default waveform is assumed, which has a rise edge of 0.0 and
a fall edge of period/2.

Specifies whether to add this delay to the existing clock or to
overwrite it. Use this option when multiple clocks must be
specified on the same source for simultaneous analysis with
different clock waveforms. When you use this option, you
must also specify the clock, and clocks with the same source
must have different names.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

SCOPE Tabs SCOPE Constraints Editor

Field Description

Clock Group Assigns clocks to asynchronous clock groups. The clock
grouping is inclusionary (for example, clk2 and clk3 can each be
related to clkl without being related to each other). For details,
see Clock Groups, on page 167.

Latency Specifies the clock latency applied to clock ports and clock
aliases. Applying the latency constraint on a port can be used
to model the off-chip clock delays in a multichip environment.
Clock latency can only:

* Apply to clocks defined on input ports.
* Be used for source latency.
* Apply to port clock objects.

Uncertainty Specifies the clock uncertainty (skew characteristics) of the
specified clock networks. You can only apply latency to clock
objects.

Clock Groups

Clock grouping is associative; two clocks can be asynchronous to each other
but both can be synchronous with a third clock.

The SCOPE GUI prompts you for a clock group for each clock that you define.
By default, the tool assigns all clocks to the default clock group. When you
add a name that differs from the default clock group name, the clock is
assigned its own clock group and is asynchronous to the default clock group
as well as all other named clock groups.

This section presents scenarios for defining clocks and includes the following
examples:

* Example 1 — SCOPE Definition

* Example 2 — Equivalent Tcl Syntax

* Example 3 — Establish Clock Relationships
* Example 4 — Using a Single Group Option
* Example 6 — Legacy Clock Grouping

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 167

SCOPE Constraints Editor SCOPE Tabs

Example 1 — SCOPE Definition

A design has three clocks, clkl, clk2, clk3. You want clkl and clk2 to be in the
same clock group—synchronous to each other but asynchronous to clk3. You
can do this by adding a name in the Clock Group column, as shown below:

Current Design: ‘ <Top Level> v‘ |VJ Check Constraints

Enable | Name | Object Period Waveform | Add | Clock Group Latency u

clid clid 7 O groupl
clk2 niclk2 10 O groupl
cli3 cli3 12 O <default>

||m|m|h|m|m|>—n

This definition assigns clkl and clk2 to clock group groupl, synchronous to
each other and asynchronous to clk3. This is the equivalent command that
appears in the text editor window:

set _clock groups -derive -asynchronous -name {groupl}
-group { {c:clkil} {c:clk2} }

Example 2 — Equivalent Tcl Syntax

A design has three clocks: clkl, clk2, clk3. Use the following commands to set
clk2 synchronous to clk3, but asynchronous to clkl:

set clock groups -asynchronous -group [get clocks {clk3 clk2}]

set _clock groups -asynchronous -group [get clocks {clkl}]

Example 3 — Establish Clock Relationships
A design has the following clocks defined:

create clock -name {clka} {p:clka} -period 10 -waveform {0 5.0}
create clock -name {clkb} {p:clkb} -period 20 -waveform {0 10.0}
create clock -name {my sys} {p:sys clk} -period 200 -waveform {0
100.0}

You want to define clka and clkb as asynchronous to each other and clka and
clkb as synchronous to my_sys.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
168 January 2014

SCOPE Tabs SCOPE Constraints Editor

For the tool to establish these relationships, multiple -group options are
needed in a single set_clock_groups command. Clocks defined by the first
—group option are asynchronous to clocks in the subsequent —group option.
Therefore, you would use the following syntax to establish the relationships
described above:

set _clock groups -asynchronous -group [get clocks {clka}]
-group [get clocks {clkb}]

Example 4 — Using a Single Group Option

set_clock_groups has a unique behavior when a single —group option is specified
in the command. For example, in the following constraint specification:

set _clock groups -asynchronous -name {default clkgroup 0} -group
[get clocks {clka my sys}]

set _clock groups -asynchronous -name {default clkgroup 1} -group
[get clocks {clkb my sys}]

The first statement assigns clka AND my_sys as asynchronous to clkb, and the
second statement assigns clkb AND my_sys as asynchronous to clka. Therefore,
with this specification, all three clocks are established as asynchronous to
each other.

Example 6 — Legacy Clock Grouping

This section shows how the legacy clock group definitions (Synplify-style
timing constraints) are converted to the Synopsys standard timing syntax
(FDC). Legacy clock grouping can be represented through Synopsys standard
constraints, but the multi-grouping in the Synopsys standard constraints
cannot be represented in legacy constraints.

For example, the following table shows legacy clock definitions and their
translated FDC equivalents:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 169

SCOPE Constraints Editor SCOPE Tabs

Legacy define_clock -name{clka}{p:clka}-period 10 -clockgroup default_clkgroup_0
Definition define_clock -name {clkb}{p:clkb} -freq 150 -clockgroup default_clkgroup_1
define_clock -name {clkc} {p:clkc} -freq 200 -clockgroup default_clkgroup_1

FDC ###==== BEGIN Clocks - (Populated from SCOPE tab, do not edit)

Definition create_clock -name {clka} {p:clka} -period 10 -waveform {0 5.0}
create_clock -name {clkb} {p:clkb} -period 6.667 -waveform {0 3.3335}
create_clock -name {clkc} {p:clkc} -period 5.0 -waveform {0 2.5}

set_clock_groups -derive -name default_clkgroup_0 -asynchronous
-group {c:clka}

set_clock_groups -derive -name default_clkgroup_1 -asynchronous
-group {c:clkb c:clkc}

###==== END Clocks

The create_generated_clock constraints used in legacy SDC are preserved in
FDC. The -derive option directs the create_generated_clock command to inherit
the -source clock group. This behavior is unique to FDC and is an extension of
the Synopsys SDC standard functionality.

See Also

For equivalent Tcl syntax, see the following sections:
* create_clock, on page 213
* set clock groups, on page 219
¢ set_clock_latency, on page 222

* set_clock uncertainty, on page 225

For information about other SCOPE panels, see SCOPE Tabs, on page 165.

Generated Clocks

Use the Generated Clocks panel of the SCOPE spreadsheet to define a signal as
a generated clock. The equivalent Tcl constraint is create_generated_clock; its
syntax is described in create generated_clock, on page 215.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
170 January 2014

SCOPE Tabs

SCOPE Constraints Editor

e

FEEE]

Generated Clocka

Sourcs |Ctv:p:t ||"|nsb=' Clok | Generats Type | Gererets Parametsrs | Generats Hodfer Nndrfu'Pammsl Invert | A | omment

The Generated Clocks panel includes the following options:

Field

Name

Source

Object

Master Clock

Description

Specifies the name of the generated clock.

If this option is not used, the clock gets the name of the first
clock source specified in the source.

Specifies the master clock pin, which is either a master
clock source pin or a fanout pin of the master clock driving
the generated clock definition pin. The clock waveform at
the master pin is used for deriving the generated clock
waveform.

Generated clocks can be defined on the following objects:
* Pins

* Ports

* Nets

* Instances—where instances have only one output.

Specifies the master clock to be used for this generated
clock, when multiple clocks fan into the master pin.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys,

January 2014

Inc.
171

SCOPE Constraints Editor

SCOPE Tabs

Field
Generate Type

Generate Parameters

Generate Modifier

Modify Parameters

Invert

Add

Description

Specifies any of the following:

edges — Specifies a list of integers that represents edges from
the source clock that are to form the edges of the generated
clock. The edges are interpreted as alternating rising and
falling edges and each edge must not be less than its
previous edge. The number of edges must be an odd number
and not less than 3 to make one full clock cycle of the
generated clock waveform. For example, 1 represents the
first source edge, 2 represents the second source edge, and
SO on.

divide_by — Specifies the frequency division factor. If the
divide factor value is 2, the generated clock period is twice
as long as the master clock period.

multiply_by — Specifies the frequency multiplication factor. If
the multiply factor value is 3, the generated clock period is
one-third as long as the master clock period.

Specifies integers that define the type of generated clock.

Defines the secondary characteristics of the generated
clock.

Defines modifier values of the generated clock.

Specifies whether to use invert — Inverts the generated clock
signal (in the case of frequency multiplication and division).

Either add this clock to the existing clock or overwrite it.
Use this option when multiple generated clocks must be
specified on the same source, because multiple clocks fan
into the master pin. Ideally, one generated clock must be
specified for each clock that fans into the master pin. If you
specify this option, you must also specify the clock and
master clock. The clocks with the same source must have
different names.

For more information about other SCOPE options, see SCOPE Tabs, on

page 165.

Copyright © 2013 Synopsys, Inc.
172

Synplify Pro for Microsemi Edition Reference Manual
January 2014

SCOPE Tabs SCOPE Constraints Editor

Collections

The Collections tab allows you to set constraints for a group of objects you
have defined as a collection with the Tcl command. For details, see Creating
and Using SCOPE Collections, on page 141 of the User Guide.

Enable | Name | Command Comment

-)

2

3

o Collections

Field Description

Name Enter the collection name.

Command Select a collection creation command from the drop-down
menu. See Collection Commands, on page 117 for
descriptions of the commands.

Command Specify the Tcl syntax for the constraint you want to apply to

Arguments the collection.

Comment Enter comments that are included in the constraints file.

You can crossprobe the collection results to an HDL Analyst view. To do this,
right-click in the SCOPE cell and select the option Select in Analyst.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 173

SCOPE Constraints Editor

SCOPE Tabs

Collection Commands

You can use the collection commands on collections or Tcl lists. Tcl lists can be
just a single element long.

To...

Use this command...

Create a collection

Copy a collection

Evaluate a collection

Concatenate a list to a
collection

Identify differences
between lists or
collections

Identify objects
common to a list and a
collection

Identify objects
common to two or more
collections

Identify objects that
belong exclusively to
only one list or
collection

set modules

To create and save a collection, assign it to a variable.
You can also use this command to create a collection
from any combination of single elements, TCL lists and
collections:

set modules [define_collection {v:top} {v:cpu} $mycoll $mylist]

Once you have created a collection, you can assign
constraints to it in the SCOPE interface.

set modules_copy $modules
This copies the collection, so that any change to $modules
does not affect $modules_copy.

c_print

This command returns all objects in a column format.
Use this for visual inspection.

c_list

This command returns a Tcl list of objects. Use this to
convert a collection to a list. You can manipulate a Tcl
list with standard Tcl list commands.

C_union

c_diff

Identifies differences between a list and a collection or
between two or more collections. Use the -print option to
display the results.

C_intersect
Use the -print option to display the results.

c_sub
Use the -print option to display the results.

c_symdiff

Use this to identify unique objects in a list and a
collection, or two or more collections. Use the -print
option to display the results.

Copyright © 2013 Synopsys, Inc.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

SCOPE Tabs SCOPE Constraints Editor

For information about all SCOPE panels, see SCOPE Tabs, on page 165.

Inputs/Outputs

The Inputs/Outputs panel models the interface of the FPGA with the outside
environment. You use it to specify delays outside the device.

Encbke | DebyTpe | Port | Rise | Fol [Max | mn | coc | coodiral | amipoey | v | comment

EEEE]

Trpu s /Cutputs

The Inputs/Outputs panel includes the following options:

Field Description

Delay Type Specifies whether the delay is an input or output delay.

Port Specifies the name of the port.

Rise Specifies that the delay is relative to the rising transition on
specified port.

Fall Specifies that the delay is relative to the falling transition on
specified port.

Max Specifies that the delay value is relative to the longest path.

Min Specifies that the delay value is relative to the shortest path.

Clock Specifies the name of a clock for which the specified delay is

applied. If you specify the clock fall, you must also specify the
name of the clock.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 175

SCOPE Constraints Editor SCOPE Tabs

Field Description

Clock Fall Specifies that the delay relative to the falling edge of the clock.
For examples, see Input Delays, on page 176 and Output
Delays, on page 176.

Add Delay Specifies whether to add delay information to the existing
input delay or overwrite the input delay. For examples, see
Input Delays, on page 176 and Output Delays, on page 176.

Value Specifies the delay path value.

Input Delays
Here is how this constraint applies for input delays:

* Clock Fall - The default is the rising edge or rising transition of a reference
pin. If you specify clock fall, you must also specify the name of the clock.

¢ Add Delay — Use this option to capture information about multiple paths
leading to an input port relative to different clocks or clock edges.

For example, set input_delay 5.0 -max -rise -clock phil {A} removes all
maximum rise input delay from A, because the -add_delay option is not
specified. Other input delays with different clocks or with -clock_fall are
removed.

In this example, the -add_delay option is specified as set_input_delay 5.0 -
max -rise -clock phil -add_delay {A}. If there is an input maximum rise delay
for A relative to clock phil rising edge, the larger value is used. The
smaller value does not result in critical timing for maximum delay. For
minimum delay, the smaller value is used. If there is maximum rise
input delay relative to a different clock or different edge of the same
clock, it remains with the new delay.

Output Delays
Here is how this constraint applies for output delays:

* Clock Fall - If you specify clock fall, you must also specify the name of the
clock.

* Add Delay — By using this option, you can capture information about
multiple paths leading from an output port relative to different clocks or
clock edges.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
176 January 2014

SCOPE Tabs SCOPE Constraints Editor

For example, the set_output_delay 5.0 -max -rise -clock phil {OUT1} command
removes all maximum rise output delays from OUT1, because the
-add_delay option is not specified. Other output delays with a different
clock or with the -clock_fall option are removed.

In this example, the -add_delay option is specified: set_output_delay 5.0 -max
-rise -clock phil -add_delay {Z}. If there is an output maximum rise delay for
Z relative to the clock phil rising edge, the larger value is used. The
smaller value does not result in critical timing for maximum delay. For
minimum delay, the smaller value is used. If there is a maximum rise
output delay relative to a different clock or different edge of the same
clock, it remains with the new delay.

Priority of Multiple 1/0O Constraints

You can specify multiple input and output delays constraints for the same
I/O port. This is useful for cases where a port is driven by or feeds multiple
clocks. The priority of a constraint and its use in your design is determined
by a few factors:

The software applies the tightest constraint for a given clock edge, and
ignores all others. All applicable constraints are reported in the timing
report.

You can apply I/O constraints on three levels, with the most specific
overriding the more global:

— Global (top-level netlist), for all inputs and outputs
— Port-level, for the whole bus
— Bit-level, for single bits

If there are two bit constraints and two port constraints, the two bit
constraints override the two port constraints for that bit. The other bits
get the two port constraints. For example, take the following constraints:

al3:0]3 clkl:r
al[3:0]13 clk2:r
al0]2 clkl:r

In this case, port a[0] only gets one constraint of 2 ns. Ports a[1], a[2], and
a[3] get two constraints of 3 ns each.

If at any given level (bit, port, global) there is a constraint with a refer-
ence clock specified, then any constraint without a reference clock is
ignored. In this example, the 1 ns constraint on port a[0] is ignored.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 177

SCOPE Constraints Editor SCOPE Tabs

al0]2 clkl:r
afo]1
See Also
For equivalent Tcl syntax, see:
¢ set_input_delay, on page 229
* set _output_delay, on page 237

For information about all SCOPE panels, see SCOPE Tabs, on page 165.

Registers

This panel lets the advanced user add delays to paths feeding into/out of
registers, in order to further constrain critical paths. You use this constraint
to speed up the paths feeding a register. See set_reg input_delay, on

page 239, and set_reg output_delay, on page 240 for the equivalent Tcl

commands.
Current Design: |<Top Level= vl |?J Check Constraints |
. Enable |Delav T\rpel Register | Route | Comment l
|
|
|
Registers
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
178

January 2014

SCOPE Tabs

SCOPE Constraints Editor

The Registers SCOPE panel includes the following fields:

Field
Enabled
Delay Type

Register

Route

Comment

Delay Paths

Description
(Required) Turn this on to enable the constraint.

(Required) Specifies whether the delay is an input or output
delay.

(Required) Specifies the name of the register. If you have
initialized a compiled design, you can choose from the pull-
down list.

(Required) Improves the speed of the paths to or from the
register by the given number of nanoseconds. The value shrinks
the effective period for the constrained registers without
affecting the clock period that is forward-annotated to the
place-and-route tool.

Lets you enter comments that are included in the constraints
file.

Use the Delay Paths panel to define the timing exceptions.

ook | DelyType | Frem | Through To | Maxbeay | senp | sertfm | ordes | comment |

{Multicycle
Falze
Pax Delay
Reset Poth

Datzpath Only |

= [

Deday Paths

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014

179

SCOPE Constraints Editor

The Path Delay panel includes the following options:

Field
Delay Type

From

Through

To

Max Delay

Copyright © 2013 Synopsys, Inc.
180

Description

Specifies the type of delay path you want the synthesis tool to
analyze. Choose one of the following types:

e Multicycle

¢ False

* Max Delay

* Reset Path

¢ Datapath Only

Starting point for the path. From points define timing start
points and can be defined for clocks (c:), registers (i:), top-level
input or bi-directional ports (p:), or black box output pins (i).
For details, see the following:

* Defining From/To/Through Points for Timing Exceptions
* Naming Objects, on page 456

Specifies the intermediate points for the timing exception.
Intermediate points can be combinational nets (n:),
hierarchical ports (t:), or instantiated cell pins (t:). If you click
the arrow in a column cell, you open the Product of Sums (POS)

interface where you can set through constraints. For details, see
the following:

* Product of Sums Interface

* Defining From /To/Through Points for Timing Exceptions
* Naming Objects, on page 456

Ending point of the path. To points must be timing end points
and can be defined for clocks (c:), registers (i:), top-level output

or bi-directional ports (p:), or black box input pins (i;). For
details, see the following:

* Defining From /To/Through Points for Timing Exceptions
* Naming Objects, on page 456

Specifies the maximum delay value for the specified path in
nanoseconds.

SCOPE Tabs

Synplify Pro for Microsemi Edition Reference Manual
January 2014

SCOPE Tabs SCOPE Constraints Editor

Field Description

Setup Specifies the setup (maximum delay) calculations used for
specified path.

Start/End Used for multicycle paths with different start and end clocks.
This option determines the clock period to use for the
multiplicand in the calculation for clock distance. If you do not
specify a start or end clock, the end clock is the default.

Cycles Specifies the number of cycles required for the multicycle
path.

See Also
* For equivalent Tcl syntax, see:
— set_multicycle_path, on page 234
— set_false path, on page 227
— set_max_delay, on page 231
— reset_path, on page 217

* For more information on timing exception constraints and how the tool
resolves conflicts, see:

— Delay Path Timing Exceptions, on page 193

— Conlflict Resolution for Timing Exceptions, on page 206

* For information about all SCOPE panels, see SCOPE Tabs, on page 165.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 181

SCOPE Constraints Editor

SCOPE Tabs

Attributes

You can assign attributes directly in the editor.

Enabled | Object Type Chiject Attribute Value | Val Type Description mrme | * |
1 output_part | <global= syn_noclockbuf lv
syn_clean_reset -
e syn_dspstyle
syn_edif_bit_format
3 syn_edif_scalar_Format
syn_Forwar.. onstraints
& syn_multstyle
syn_netlist_hierarchy
5 syN_noarrayparts -
synnoclockbul -
-

syn_ramstyle

Attributes

Here are descriptions for the Attributes columns:

Column
Enabled
Object Type

Object

Attribute

Value

Copyright © 2013 Synopsys, Inc.
182

Description
(Required) Turn this on to enable the constraint.

Specifies the type of object to which the attribute is assigned.
Choose from the pull-down list, to filter the available choices
in the Object field.

(Required) Specifies the object to which the attribute is
attached. This field is synchronized with the Attribute field, so
selecting an object here filters the available choices in the
Attribute field.

(Required) Specifies the attribute name. You can choose from
a pull-down list that includes all available attributes for the
specified technology. This field is synchronized with the Object
field. If you select an object first, the attribute list is filtered. If
you select an attribute first, the Synopsys FPGA synthesis
tool filters the available choices in the Object field. You must
select an attribute before entering a value.

If a valid attribute does not appear in the pull-down list,
simply type it in this field and then apply appropriate values.

(Required) Specifies the attribute value. You must specify the
attribute first. Clicking in the column displays the default
value; a drop-down arrow lists available values where
appropriate.

Synplify Pro for Microsemi Edition Reference Manual

January 2014

SCOPE Tabs SCOPE Constraints Editor
Val Type Specifies the kind of value for the attribute. For example,
string or boolean.
Description Contains a one-line description of the attribute.
Comment Lets you enter comments about the attributes.

Enter the appropriate attributes and their values, by clicking in a cell and

choosing from the pull-down menu.

To specify an object to which you want to assign an attribute, you may also
drag-and-drop it from the RTL or Technology view into a cell in the Object
column. After you have entered the attributes, save the constraint file and
add it to your project.

See Also

* For more information on specifying attributes, see How Attributes and
Directives are Specified, on page 4.

* For information about all SCOPE panels, see SCOPE Tabs, on page 165.

I/O Standards

You can specify a standard I/O pad type to use in the design. Define an I/O
standard for any port appearing in the I/O Standards panel.

Enabled

Fart

Type

I/ Standard

Dl

Dz

Slew Rate

Drive Strength | Termination

Description!;

<input default=

input

LWCMOS_15

Fast

3

pullup

1.5v0|t-C..‘

2 <output default> output
3 (O <bidir default> bidir
4 | resetn input

g

L)

Synplify Pro for Microsemi Edition Reference Manual
January 2014

I1/0 Standards

Copyright © 2013 Synopsys, Inc.

183

SCOPE Constraints Editor

SCOPE Tabs

Field Description

Enabled (Required) Turn this on to enable the constraint, or off to
disable a previous constraint.

Port (Required) Specifies the name of the port. If you have
initialized a compiled design, you can select a port name from
the pull-down list. The first two entries let you specify global
input and output delays, which you can then override with
additional constraints on individual ports.

Type (Required) Specifies whether the delay is an input or output
delay.

I/O Standard Supported I/O standards by Synopsys FPGA products. See
Industry I/O Standards, on page 190 for a description of the
standards.

Slew Rate The values for these parameters are based on the selected

Drive Strength I/0 standard.

Termination

Power

Schmitt

Description Describes the selected I/O Standard.

Comment Enter comments about an I/O standard.

See Also

* The Tcl equivalent of this constraint is define_io_standard.

* For information about all SCOPE panels, see SCOPE Tabs, on page 165.

Synplify Pro for Microsemi Edition Reference Manual

Copyright © 2013 Synopsys, Inc.
184 January 2014

SCOPE Tabs

SCOPE Constraints Editor

Compile Points

Use the Compile Points panel to specify compile points in your design, and to
enable/disable them. This panel, available only if the device technology
supports compile points, is used to define a top-level constraint file.

| Enabled Module

Type

Comment

1

i

{locked

soft
hard

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Compile Points

Copyright © 2013 Synopsys, Inc.
185

SCOPE Constraints Editor SCOPE Tabs

Here are the descriptions of the fields in the Compile Points panel.

Field Description
Enabled (Required) Turn this on to enable the constraint.
Module (Required) Specifies the name of the compile-point module.

You must specify a view module, with a v: prefix to identify
the module as a view. For example: v:alu.

Type (Required) Specifies the type of compile point:

* locked (default) — no timing reoptimization is done on the
compile point. The hierarchical interface is unchanged
and an interface logic model is constructed for the
compile point.

* soft — compile point is included in the top-level synthesis,
boundary optimizations can occur.

* hard — compile point is included in the top-level synthesis,
boundary optimizations can occur, however, the
boundary remains unchanged. Although, the boundary is
not modified, instances on both sides of the boundary
can be modified using top-level constraints.

For details, see Compile Point Types, on page 365 in the

User Guide.

Comment Lets you enter a comment about the compile point.

Constraints for Compile Points

You can set constraints at the top-level or for modules to be used as the
compile points from the Current Design pull-down menu shown below. Use the
Compile Points tab to select compile points and specify their types.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
186 January 2014

SCOPE Tabs SCOPE Constraints Editor

Current Design: | <Top Level> [»] 'y neck canstraintz |

e

|| reble | vk ins e —[| Type Comment
work. alu

2 work.data_mux

waork.ins_d=cod= -

work.io

weork.mult

work.prepd

k. prgm _anlr

warkreg_fie

il ¥

R

Comple Ponts

See Also
* The Tcl equivalent is define_compile_point.

For more information on compile points and using the Compile Points
panel, see Synthesizing Compile Points, on page 378 in the User Guide.

* For information about all SCOPE panels, see SCOPE Tabs, on page 165.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 187

SCOPE Constraints Editor

SCOPE Tabs

TCL View

The TCL View is an advanced text file editor for defining FPGA timing and

design constraints.

E

[find —-seg -hier {gbl*]

Current Desgn: | <Top Level= ~| |y check Constreints
48
147 set_rol_f7f_nsmes {2}
148 ser qffs [define_collection
149 ==t £ _maxn 150
150 crest=_clock {clka} [get_ports {clkal]
151 create clock {clkb} [get_ports [clkb}]
152 ==t ainput _delay [g=t_clocks {clkal]
153 sct output delay [get_clocks {clka]]
154 sct input delay [get_clocks [olka}]
155 =st_input_delay [g=t_rclocks (olka}]
156 ast &
157 SET_mm “leyele_peth $mep Y
158 from \
159 [get_ports %
160 [a* 1
161 Ll Y
162 1
163
164 [find —zeg -hRier [g7[*]]]
165
166 cicycle_path 3
167 1
168 [find -=eg {*y*.ql*1}]
169
170 |=s=t_clock groups default clkgroup D v &
7 -group [get clocks {clkas dem|clkD deriwved clock dom|clk =

[‘l |Name

Et FDC Constraints
bus_dimensien_separat..
bus_naming_stylz
create_clock
creste_genersted_clock
define_attribute
define_com pile_point
define_global_attribute
define_io_rtandard
define_scope_collection
read_sdc
reset_path
seb_clock_groups
set_clock_letency
PR ey [I ppup—pa—

Constraint Syntax:

set_rtl_ff_names
vaue <string vaue=

[4]+]

[+]r

_Hdesyn x Help | Ln|

L ool L ol

173 [ow [Bosc

Click on Hide Syntax Help
to close this browser

This text editor provides the following capabilities:

* Uses dynamic keyword expansion and tool tips for commands that

Automatically completes the command from a popup list
Displays complete command syntax as a tool tip
Displays parameter options for the command from a popup list

Includes a keyword command syntax help

Checks command syntax and uses color indicators that

— Validate commands and command syntax

— Identifies FPGA design constraints and SCOPE legacy constraints

Copyright © 2013 Synopsys, Inc.
188

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Industry I/O Standards SCOPE Constraints Editor

* Allows for standard editor commands, such as copy, paste,
comment/un-comment a group of lines, and highlighting of keywords.

For information on how to use this Tcl text editor, see Using the TCL View of
SCOPE GUI, on page 120.

See Also

¢ For Tcl timing constraint syntax, see FPGA Timing Constraints, on
page 212.

* For Tcl design constraint syntax, see Chapter 6, Constraint Syntax.

* You can also use the SCOPE editor to set attributes. See How Attributes
and Directives are Specified, on page 4 for details.

Industry 1/O Standards

The synthesis tool lets you specify a standard I/O pad type to use in your
design. You can define an I/O standard for any port supported from the
industry standard and proprietary I/O standards.

For industry I/O standards, see Industry [/O Standards, on page 190.

For vendor-specific I/O standards, see Microsemi I/O Standards, on
page 677.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 189

SCOPE Constraints Editor

Industry 1/0O Standards

Industry 1/0O Standards

The following table lists industry I/O standards.

I/O Standard

AGP1X
AGP2X
BLVDS_25
CTT

DIFF_HSTL_15_Class_I
DIFF_HSTL_15_Class_II
DIFF_HSTL_18_Class_I
DIFF_HSTL_18_Class_II
DIFF_SSTL_18 Class_II
DIFF_SSTL 2_Class_I

DIFF_SSTL _2_Class_II

GTL

GTL+
GTL25

GTL+25
GTL33

GTL+33

Copyright © 2013 Synopsys, Inc.
190

Description

Intel Corporation Accelerated Graphics Port

Intel Corporation Accelerated Graphics Port

Bus Differential Transceiver

Center Tap Terminated - EIA/JEDEC Standard JESD8-4
1.5 volt - Differential High Speed Transceiver Logic

- EIA/JEDEC Standard JESD8-6

1.5 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6

1.8 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-9A

1.8 volt - Differential High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-9A

1.8 volt - Differential Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-6

2.5 volt - Pseudo Differential Stub Series
Terminated Logic - EIA/JEDEC Standard JESD8-9A

2.5 volt - Pseudo Differential Stub Series
Terminated Logic - EIA/JEDEC Standard JESD8-9A

Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3

Gunning Transceiver Logic Plus

Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3

Gunning Transceiver Logic Plus

Gunning Transceiver Logic
- EIA/JEDEC Standard JESD8-3

Gunning Transceiver Logic Plus

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Industry I/O Standards

SCOPE Constraints Editor

I/0 Standard
HSTL 12

HSTL_15_Class_II

HSTL_18_Class_I

HSTL_18_Class_II

HSTL_18_Class_III

HSTL_18_Class_IV

HSTL_Class_I

HSTL_Class_II

HSTL_Class_III

HSTL_Class_IV

Description

1.2 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.8 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6
1.5 volt - High Speed Transceiver Logic
- EIA/JEDEC Standard JESD8-6

HyperTransport 2.5 volt - Hypertransport - HyperTransport Consortium

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Copyright © 2013 Synopsys, Inc.
191

SCOPE Constraints Editor

Industry 1/0O Standards

I/O Standard

LVCMOS_12
LVCMOS_15
LVCMOS_18
LVCMOS_25
LVCMOS_33
LVCMOS_5
LVDS
LVDSEXT_25
LVPECL
LVTTL
MINI_LVDS

PCI33
PCI66
PCI-X_133

PCML
PCML_12
PCML_14
PCML_15
PCML_25
RSDS

SSTL_18_Class_I
SSTL_18_Class_II
SSTL_2_Class_I
SSTL_2_Class_II

SSTL_3_Class_I

SSTL_3_Class_II

ULVDS_25

Copyright © 2013 Synopsys, Inc.
192

Description

1.2 volt - EIA/JEDEC Standard JESD8-16

1.5 volt - EIA/JEDEC Standard JESD8-7

1.8 volt - EIA/JEDEC Standard JESD8-7

2.5 volt - EIA/JEDEC Standard JESD8-5

3.3 volt CMOS - EIA/JEDEC Standard JESD8-B
5.0 volt CMOS

Differential Transceiver - ANSI/TIA/EIA-644-95
Differential Transceiver

Differential Transceiver - EIA/JEDEC Standard JESD8-2
3.3 volt TTL - EIA/JEDEC Standard JESD8-B
Mini Differential Transceiver

3.3 volt PCI 33MHz - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)

3.3 volt PCI 66 MHz - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)

3.3 volt PCI-X - PCI Local Bus Spec. Rev. 3.0
(PCI Special Interest Group)

3.3 volt - PCML
1.2 volt - PCML
1.4 volt - PCML
1.5 volt - PCML
2.5 volt - PCML
Reduced Swing Differential Signalling

1.8 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-15

1.8 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-15

2.5 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-9B

2.5 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-9B

3.3 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-8

3.3 volt - Stub Series Terminated Logic
- EIA/JEDEC Standard JESD8-8

Differential Transceiver

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Delay Path Timing Exceptions SCOPE Constraints Editor

Delay Path Timing Exceptions

For details about the following path types, see:
* Multicycle Paths, on page 193
¢ False Paths, on page 196

Multicycle Paths

Multicycle paths lets you specify paths with multiple clock cycles. The
following table defines the parameters for this constraint. For the equivalent
Tcl constraints, see set_multicycle_path, on page 234. This section describes
the following:

¢ Multi-cycle Path with Different Start and End Clocks, on page 193

* Multicycle Path Examples, on page 194

Multi-cycle Path with Different Start and End Clocks

The start/end option determines the clock period to use for the multiplicand in
the calculation for required time. The following table describes the behavior of
the multi-cycle path constraint using different start and end clocks. In all
equations, n is number of clock cycles, and clock distance is the default,
single-cycle relationship between clocks that is calculated by the tool.

Basic required time for a multi-cycle path clock_distance + [(n-1) * end_clock_period]
Required time with no end clock defined clock_distance + [(n-1) * global_period]
Required time with -start option defined clock_distance + [(n-1) * start_clock_period]

Required time with no start clock defined clock_distance + [(n-1) * global_period]

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 193

SCOPE Constraints Editor

Delay Path Timing

Exceptions

If you do not specify a start or end option, by default the end clock is used for

the constraint. Here is an example:

Multicycle Path Examples

Multicycle Path Example 1

If you apply a multicycle path constraint from D1 to D2, the allowed time is
#cycles x normal time between D1 and D2. In the following figure, CLK1 has a
period of 10 ns. The data in this path has only one clock cycle before it must
reach D2. To allow more time for the signal to complete this path, add a
multiple-cycle constraint that specifies two clock cycles (10 x 2 or 20 ns) for
the data to reach D2.

reqtiired time

required time

4—20ns —p

Enabled Delay Type Fram To Through Start/End | Cycles | Max Delay(ns) | Comment ﬂ
1 Mulkicycle End -
= Start
3
-
4 L
Delay Paths

D1 Q1 @ D2
LJ

i i

with multiple-cycle path=2

—10ns —p; :
: : :
|] |]
Qt ¢ N2 Q2 .
-} F>
CLK1
without constraint
CLK1
0 1:0 20 30
QL ___| 7
D2 . ________._ ‘

(multiple-cycle path=2)

Copyright © 2013 Synopsys, Inc.
194

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Delay Path Timing Exceptions SCOPE Constraints Editor

Multicycle Path Example 2

The design has a multiplier that multiplies signal_a with signal_b and puts the
result into signal_c. Assume that signal_a and signal_b are outputs of registers
register_a and register_b, respectively. The RTL view for this example is shown
below. On clock cycle 1, a state machine enables an input enable signal to
load signal_a into register_a and signal_b into register_b. At the beginning of clock
cycle 2, the multiply begins. After two clock cycles, the state machine enables
an output_enable signal on clock cycle 3 to load the result of the multiplication
(signal_c) into an output register (register_c).

[0, N

_ DI15:0] Q[1s0] | sl o ster ol15.0]
15:Q] register_c[15:0]

Dir0] Qo]

register_a[7:0]

register_c_

o

H_-m—F—'“#—.D[m] QL7 0] frter

register_b[7:0]

The design frequency goal is 50 MHz (20 ns) and the multiply function takes
35 ns, but it is given 2 clock cycles. After optimization, this 35 ns path is
normally reported as a timing violation because it is more than the 20 ns
clock-cycle timing goal. To avoid reporting the paths as timing violations, use
the SCOPE window to set 2-cycle constraints (From column) on register_a and
register_b, or include the following in the timing constraint file:

Paths from register a use 2 clock cycles
set multicycle path -from register a 2

Paths from register b use 2 clock cycles
set multicycle path -from register b 2

Alternatively, you can specify a 2-cycle SCOPE constraint (To column) on
register_c, or add the following to the constraint file:

Paths to register c use 2 clock cycles
set multicycle path -to register c 2

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 195

SCOPE Constraints Editor Delay Path Timing Exceptions

False Paths

You use the Delay Paths constraint to specify clock paths that you want the
synthesis tool to ignore during timing analysis and assign low (or no) priority
during optimization. The equivalent Tcl constraint is described in
set_false_path, on page 227.

This section describes the following:
¢ Types of False Paths, on page 196
* Priority of False Path Constraints, on page 197

Types of False Paths

A false path is a path that is not important for timing analysis. There are two
types of false paths:

* Architectural false paths

These are false paths that the designer is aware of, like an external reset
signal that feeds internal registers but which is synchronized with the
clock. The following example shows an architectural false path where
the primary input X is always 1, but which is not optimized because the
software does not optimize away primary inputs.

* Code-introduced false paths

These are false paths that you identify after analyzing the schematic.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
196 January 2014

Delay Path Timing Exceptions SCOPE Constraints Editor

Priority of False Path Constraints

False path constraints can be either explicit or implicit, and the priority of the
constraint depends on the type of constraint it is.

* An explicit false path constraint is one that you apply to a path using
the Delay Paths pane of the SCOPE GUI, or the following Tcl syntax:

set_false_path {-from point } | {-to point} | {-through point}

This type of false path constraint has the highest priority of any of the
types of constraints you can place on a path. Any path containing an
explicit false path constraint is ignored by the software, even if you place
a different type of constraint on the same path.

* Lower-priority false path constraints are those that the software
automatically applies as a result of any of the following actions:

— You assign clocks to different groups (Clocks pane of SCOPE GUI).

— You assign an implicit false path (by selecting the false option in the
Delay (ns) column of the SCOPE Clock to Clock panel). (This condition
applies for legacy timing constraints.)

— You disable the Use clock period for unconstrained 10 option (Project ->
Implementation Options->Constraints).

Implicit false path constraints are overridden by any subsequent
constraints you place on a path. For example, if you assign two clocks to
different clock groups, then place a maximum delay constraint on a
path that goes through both clocks, the delay constraint has priority.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 197

SCOPE Constraints Editor Delay Path Timing Exceptions

False Path Constraint Examples

In this example, the design frequency goal is 50 MHz (20ns) and the path
from register_a to register_c is a false path with a large delay of 35 ns. After
optimization, this 35 ns path is normally reported as a timing violation
because it is more than the 20 ns clock-cycle timing goal. To lower the
priority of this path during optimization, define it as a false path. You can do
this in many ways:

e If all paths from register_a to any register or output pins are not timing-
critical, then add a false path constraint to register_a in the SCOPE inter-
face (From), or put the following line in the timing constraint file:

#Paths from register a are ignored
set false path -from {i:register a}

e If all paths to register_c are not timing-critical, then add a false path
constraint to register_c in the SCOPE interface (To), or include the
following line in the timing constraint file:

#Paths to register c are ignored
set false path -to {i:register c}

e If only the paths between register_a and register_c are not timing-critical,
add a From/To constraint to the registers in the SCOPE interface (From
and To), or include the following line in the timing constraint file:

#Paths to register c are ignored
set false path -from {i:register a} -to {i:register c}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
198 January 2014

Specifying From, To, and Through Points SCOPE Constraints Editor

Specifying From, To, and Through Points

The following section describes from, to, and through points for timing excep-
tions specified by the multicycle paths, false paths, and max delay paths
constraints.

* Timing Exceptions Object Types, on page 199
* From/To Points, on page 199

* Through Points, on page 200

* Product of Sums Interface, on page 202

* Clocks as From/To Points, on page 204

Timing Exceptions Object Types

Timing exceptions must contain the type of object in the constraint specifica-
tion. You must explicitly specify an object type, n: for a net, or i: for an
instance, in the instance name parameter of all timing exceptions. For
example:

set multicycle path -from {i:inst2.lowreg output [7]}
-to {i:inst1.DATAO[7]} 2

If you use the SCOPE GUI to specify timing exceptions, it automatically
attaches the object type qualifier to the object name.

From/To Points

From specifies the starting point for the timing exception. To specifies the
ending point for the timing exception. When you specify an object, use the
appropriate prefix (see syn_black box, on page 37) to avoid confusion. The
following table lists the objects that can serve as starting and ending points:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 199

SCOPE Constraints Editor

Specifying From, To, and Through Points

From Points

Clocks. See Clocks as From/To Points,
on page 204 for more information.

Registers
Top-level input or bi-directional ports

Instantiated library primitive cells (gate
cells)

Black box outputs

To Points

Clocks. See Clocks as From/To Points,
on page 204 for more information.

Registers
Top-level output or bi-directional ports

Instantiated library primitive cells (gate
cells)

Black box inputs

You can specify multiple from points in a single exception. This is most
common when specifying exceptions that apply to all the bits of a bus. For
example, you can specify constraints From A[0:15]to B — in this case, there is an
exception, starting at any of the bits of A and ending on B.

Similarly, you can specify multiple to points in a single exception. If you
specify both multiple starting points and multiple ending points such as From
A[0:15] to B[0:15], there is actually an exception from any start point to any end
point. In this case, the exception applies to all 16 * 16 = 256 combinations of

start/end points.

Through Points

Through points are limited to nets; however, there are many ways to specify

these constraints.
* Single Point
¢ Single List of Points
* Multiple Through Points
* Multiple Through Lists

Copyright © 2013 Synopsys, Inc.
200

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Specifying From, To, and Through Points SCOPE Constraints Editor

You define these constraints in the appropriate SCOPE panels, or in the POS
GUI (see Product of Sums Interface, on page 202). When a port and net have
the same name, preface the name of the through point with n: for nets, t: for
hierarchical ports, and p: for top-level ports. For example n:regs_mem[2] or
t:dmux.bdpol. The n: prefix must be specified to identify nets; otherwise, the
associated timing constraint will not be applied for valid nets.

Single Point

You can specify a single through point. In this case, the constraint is applied to
any path that passes through regs_mem[2]:

set false path -through regs mem[2]

Single List of Points

If you specify a list of through points, the through option behaves as an OR
function and applies to any path that passes through any of the points in the
list. In the following example, the constraint is applied to any path through
regs_mem[2] OR prgcntr.pc[7] OR dmux.alub[0] with a maximum delay value of 5
ns (-max 5):

set_max delay
-through {regs mem[2], prgcntr.pc[7], dmux.alub[0]} 5

Multiple Through Points

You can specify multiple points for the same constraint by preceding each
point with the -through option. In the following example, the constraint
operates as an AND function and applies to paths through regs_mem[2] AND
prgentr.pc[7] AND dmux.alub[0]:

set _max delay

-through regs mem[2]
-through prgcntr.pc[7]
-through dmux.alub[0] 5

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 201

SCOPE Constraints Editor Specifying From, To, and Through Points

Multiple Through Lists

If you specify multiple -through lists, the constraint is applied as an AND/OR
function and is applied to the paths through all points in the lists. The
following constraint applies to all paths that pass through {A; or A, or...A_}
AND {B; or B, or B3}:

set false path -through {A; A,...A } -through {B; B, B;}
In this example,

set multicycle path
-through {netl, net2}
-through {net3, net4}
2

all paths that pass through the following nets are constrained at 2 clock
cycles:

netl AND net3

OR netl AND net4
OR net2 AND net3
OR net2 AND net4

Product of Sums Interface

You can use the SCOPE GUI to format -through points for nets with multicycle
path, false path, and max delay path constraints in the Product of Sums (POS)

interface of the SCOPE editor. You can also manually specify constraints that
use the -through option. For more information, see Defining From/To/Through
Points for Timing Exceptions, on page 126 in the User Guide.

The POS interface is accessible by clicking the arrow in a Through column cell
in the following SCOPE panels:

¢ Multi-Cycle Paths
* False Paths

¢ Delay Paths

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
202 January 2014

Specifying From, To, and Through Points SCOPE Constraints Editor

Sum 1 Sum 2 Sum 3 Surn 4 Sum 5 Sum & Surmn 7 !;
Prod 1 |\
Prod 2
Prod 3
Prod 4
Prod 5 ‘%
< | [+
Drag and Drop: Drag and Drop goes:
| Save |
® Inserts Mew Cells ® Along Row
Overrites Cells Daown Calumn | cancel |
Field Description
Prod 1, 2, etc. Type the first net name in a cell in a Prod row, or drag the
net from a HDL Analyst view into the cell. Repeat this
step along the same row, adding other nets in the Sum
columns. The nets in each row form an OR list.
Sum 1, 2, etc. Type the first net name in the first cell in a Sum column,

or drag the net from a HDL Analyst view into the cell.
Repeat this step down the same Sum column. The nets in
each column form an AND list.

Drag and Drop Goes Along Row - places objects in multiple Sum columns,
utilizing only one Prod row.
Down Column - places objects in multiple Prod rows, utilizing
only one Sum column.

Drag and Drop Inserts New Cells - New cells are created when dragging and
dropping nets.
Overwrites Cells - Existing cells are overwritten when
dragging and dropping nets.

Save/Cancel Saves or cancels your session.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 203

SCOPE Constraints Editor Specifying From, To, and Through Points

Clocks as From/To Points

You can specify clocks as from/to points in your timing exception constraints.
Here is the syntax:

set_timing_exception -from | -to { c:clock_name [:edge] }
where

* timing_exception is one of the following constraint types: multicyclepath, false-
path, or maxdelay

¢ c:clock_name:edge is the name of the clock and clock edge (r or f). If you do
not specify a clock edge, by default both edges are used.

See the following sections for details and examples on each timing exception.

Multicycle Path Clock Points

When you specify a clock as a from or to point, the multicycle path constraint
applies to all registers clocked by the specified clock.

The following constraint allows two clock periods for all paths from the rising
edge of the flip-flops clocked by clkl:

set multicycle path -from {c:clkl:r} 2

You cannot specify a clock as a through point. However, you can set a
constraint from or to a clock and through an object (net, pin, or hierarchical
port). The following constraint allows two clock periods for all paths to the
falling edge of the flip-flops clocked by clkl and through bit 9 of the hierar-
chical net:

set multicycle path -to {c:clkl:f} -through (n:MYINST.mybus2[9]} 2

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
204 January 2014

Specifying From, To, and Through Points SCOPE Constraints Editor

False Path Clock Points

When you specify a clock as a from or to point, the false path constraint is set
on all registers clocked by the specified clock. False paths are ignored by the
timing analyzer. The following constraint disables all paths from the rising
edge of the flip-flops clocked by clkl:

set false path -from {c:clkl:r}

You cannot specify a clock as a through point. However, you can set a
constraint from or to a clock and through an object (net, pin, or hierarchical
port). The following constraint disables all paths to the falling edge of the flip-
flops clocked by clkl and through bit 9 of the hierarchical net.

set false path -to {c:clkl:f} -through (n:MYINST.mybus2[9]}

Path Delay Clock Points

When you specify a clock as a from or to point for the path delay constraint,
the constraint is set on all paths of the registers clocked by the specified
clock. This constraint sets a max delay of 2 ns on all paths to the falling edge
of the flip-flops clocked by clkl:

set max delay -to {c:clkl:f} 2

You cannot specify a clock as a through point, but you can set a constraint
from or to a clock and through an object (net, pin, or hierarchical port). The
next constraint sets a max delay of 0.2 ns on all paths from the rising edge of
the flip-flops clocked by clkl and through bit 9 of the hierarchical net:

set max delay -from {c:clkl:r} -through (n:MYINST.mybus2[9]} .2

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 205

SCOPE Constraints Editor

Conflict Resolution for Timing Exceptions

Copyright © 2013 Synopsys, Inc.
206

Conflict Resolution for Timing Exceptions

The term timing exceptions refers to the false path, max path delay, and
multicycle path timing constraints. When the tool encounters conflicts in the
way timing exceptions are specified through the constraint file, the software
uses a set priority to resolve these conflicts. Conflict resolution is categorized
into four levels, meaning that there are four different tiers at which conflicting
constraints can occur, with one being the highest. The table below summa-
rizes conflict resolution for constraints. The sections following the table
provide more details on how conflicts can occur and examples of how they are
resolved.

Conflict Constraint Conflict Priority For Details, see ...
Level

1 Different timing 1 — False Path Conflicting Timing
exceptions set on the 2 — Path Delay Exceptions, on
same object. 3 — Multi-cycle Path page 207.

2 Timing exceptions of 1 — From Same Constraint
the same constraint 2~ To Type with Different
type, using different Semantics, on
semantics 3 - Through page 208.
(from/to/through).

3 Timing exceptions of 1 -Ports/Instances/Pins Same Constraint
the same constraint 2 — Clocks and Semantics with
type using the same Different Objects,
semantic, but set on on page 209.
different objects.

4 Identical timing Tightest, or most Identical

Constraints with
Different Values, on
page 209.

constraints, except
constraint values differ.

constricting constraint.

In addition to the four levels of conflict resolution for timing exceptions, there
are priorities for the way the tool handles multiple I/O delays set on the same
port and implicit and explicit false path constraints. For information on
resolving these types of conflicts, see Priority of Multiple I/O Constraints, on
page 177 and Priority of False Path Constraints, on page 197.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Conflict Resolution for Timing Exceptions SCOPE Constraints Editor

Conflicting Timing Exceptions

The first (and highest) level of resolution occurs when timing exceptions—
false paths, max path delay, or multicycle path constraints—conflict with
each other. The tool follows this priority for applying timing exceptions:

1. False Path
2. Path Delay
3. Multicycle Path

For example:

I % 5 C1=3 ns

c1 I |

set false path -from {c:Cl:r}
set max delay -from {i:A} -to {i:B} 10
set multicycle path -from {i:A} -to {i:B} 2

These constraints are conflicting because the path from A to B has three
different constraints set on it. When the tool encounters this type of conflict,
the false path constraint is honored. Because it has the highest priority of all
timing exceptions, set false_path is applied and the other timing exceptions are
ignored.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 207

SCOPE Constraints Editor Conflict Resolution for Timing Exceptions

Same Constraint Type with Different Semantics

The second level of resolution occurs when conflicts between timing excep-
tions that are of the same constraint type, use different semantics
(from/to/through). The priority for these constraints is as follows:

1. From
2. To
3. Through

If there are two multicycle constraints set on the same path, one specifying a
from point and the other specifying a to point, the constraint using -from takes
precedence, as in the following example.

I % 5 C1=3ns

c1 | |

set multicycle path -from {i:A} 3
set_multicycle path -to {i:B} 2

In this case, the tool uses:
set multicycle path -from {i:A} 3

The other constraint is ignored even though it sets a tighter constraint.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
208 January 2014

Conflict Resolution for Timing Exceptions SCOPE Constraints Editor

Same Constraint and Semantics with Different Objects

The third level resolves timing exceptions of the same constraint type that use
the same semantic, but are set on different objects. The priority for design
objects is as follows:

1. Ports/Instances/Pins
2. Clocks

If the same constraints are set on different objects, the tool ignores the
constraint set on the clock for that path.

set multicycle path -from {i:macl.datax[0]} -start 4
set multicycle path -from {c:clkl:r} 2

In the example above, the tool uses the first constraint set on the instance
and ignores the constraint set on the clock from i:macl.datax[0], even though
the clock constraint is tighter.

For details on how the tool prioritizes multiple I/O delays set on the same
port or implicit and explicit false path constraints, see Priority of False Path
Constraints, on page 197 and Priority of Multiple I/O Constraints, on

page 177.

Identical Constraints with Different Values

Where timing constraints are identical except for the constraint value, the
tightest or most constricting constraint takes precedence. In the following
example, the tool uses the constraint specifying two clock cycles:

set multicycle path -from {i:special regs.trisal[7:0]} 2
set multicycle path -from {i:special regs.trisal[7:0]} 3

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 209

SCOPE Constraints Editor SCOPE User Interface (Legacy)

SCOPE User Interface (Legacy)

You can use the legacy SCOPE editor for the SDC constraint files created
before release version G-2012.09. However, it is recommended that you
translate your SDC files to FDC files to enable the latest version of the SCOPE
editor and to utilize the enhanced timing constraint handling in the tool. The
latest version of the SCOPE editor automatically formats timing constraints
using Synopsys Standard syntax (such as create_clock, and set_multicyle_path).

To do this, add your SDC constraint files to your project and run the following
at the command line:
% sdc2fdc

°

This feature translates all SDC files in your project.

If you want to edit your existing SDC file, to open the legacy SCOPE editor,
double-click your constraint file in the Project view.

Chsoftware’ tutorialitutorial_L.sdc ™

»

= Frequency | Period Rise At Fall & | Duky Cycle | Route | Wirtual
Enabled Clock Object Clock Alias (HHz) (ns) Clock Group (ns) (ns) (%) (ns) Clock

1 (O clack. defaul_clkgroup_0]

Comment |~

3

-
4

Clacks Clack ta Clack Collections InputsfOutputs Registers Delay Paths Atkributes I/ Standards Compile Points Other

The details of the legacy SCOPE interface and constraint syntax are no longer
documented here. Refer to the Solvnet article on legacy constraints for
details.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
210 January 2014

SYNOPSYs

erating Innovation

CHAPTER 6

Constraint Syntax

The following describe Tcl equivalents for the timing and design constraints
you specify in the SCOPE editor or in a constraint file.

¢ FPGA Timing Constraints, on page 212

* Design Constraints, on page 242

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 211

Constraint Syntax

FPGA Timing Constraints

FPGA Timing Constraints

The FPGA synthesis tools support FPGA timing constraints for a subset of the
clock definition, I/O delay, and timing exception constraints.

For more information about using FPGA timing constraints with your project,
see Using the SCOPE Editor, on page 110 in the User Guide.

For specific information on individual constraint options and arguments, see
the Synthesis Commands PDF document at
https://solvnet.synopsys.com/dow_retrieve/G-2012.06/manpages/ni/syn2.pdf.

For information on which options and arguments are supported, see the SDC
Standard for FPGA Synthesis document on SolvNet.

For general information on the Design Constraints Format, see the Using the
Synopsys Design Constraints Format Application Note on SolvNet.

The remainder of this section describes the constraint file syntax for the
following FPGA timing constraints in the FPGA synthesis tools.

create_clock
create_generated_clock
reset_path
set_clock_groups
set_clock_latency
set_clock_route_delay
set_clock_uncertainty
set_false path
set_input_delay
set_max_delay
set_multicycle_path
set_output_delay
set_reg_input_delay
set_reg output_delay

Copyright © 2013 Synopsys, Inc.
212

Synplify Pro for Microsemi Edition Reference Manual
January 2014

FPGA Timing Constraints Constraint Syntax

create_clock

Creates a clock object and defines its waveform in the current design.

Syntax
The supported syntax for the create_clock constraint is:

create_clock

-name clockName [-add] {objectList} |
-name clockName [-add] [{objectList}] |
[-name clockName [-add]] {objectList}

-period value

[-waveform {riseValue fallValue}]

[-disable]

[Fcomment commentString]

Arguments

-name Specifies the name for the clock being created, enclosed in quotation

clockName marks or curly braces. If this option is not used, the clock gets the
name of the first clock source specified in the objectList option. If you
do not specify the objectList option, you must use the -name option,
which creates a virtual clock not associated with a port, pin, or net.
You can use both the -name and objectList options to give the clock a
more descriptive name than the first source pin, port, or net. If you
specify the -add option, you must use the -name option and the clocks
with the same source must have different names.

-add Specifies whether to add this clock to the existing clock or to
overwrite it. Use this option when multiple clocks must be specified
on the same source for simultaneous analysis with different clock
waveforms. When you specify this option, you must also use the
-name option.

-period value Specifies the clock period in nanoseconds. This is the minimum time
over which the clock waveform repeats. The value type must be
greater than zero.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 213

Constraint Syntax FPGA Timing Constraints

-waveform Specifies the rise and fall edge times for the clock waveforms of the
riseValue clock in nanoseconds, over an entire clock period. The first time is a
fallvValue rising transition, typically the first rising transition after time zero.

There must be two edges, and they are assumed to be rise followed
by fall. The edges must be monotonically increasing. If you do not
specify this option, a default waveform is assumed, which has a rise
edge of 0.0 and a fall edge of periodValue/2.

objectList Clocks can be defined on the following objects: pins, ports, and nets

The FPGA synthesis tools support nets and instances, where
instances have only one output.

-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool honors
textString the annotation and preserves it with the object so that the exact

string is written out when the constraint is written out. The
comment remains intact through the synthesis, place-and-route,
and timing-analysis flows.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
214 January 2014

FPGA Timing Constraints Constraint Syntax

create_generated clock

Creates a generated clock object.
Syntax
The supported syntax for the create_generated_clock constraint is:

create_generated_clock
-name clockName [-add]] | {clockObject}
-source masterPinName
[-master_clock clockName]
[-divide_by integer | -multiply_by integer [-duty_cycle value]]
[-invert]
[-edges {edgeList}]
[-edge_shift {edgeShiftList}]
[-combinational]
[-disable]
[Fcomment commentString]

Arguments

-name Specifies the name of the generated clock. If this option is not

clockName used, the clock gets the name of the first clock source specified
in the -source option (clockObject). If you specify the -add option,
you must use the -name option and the clocks with the same
source must have different names.

-add Specifies whether to add this clock to the existing clock or to
overwrite it. Use this option when multiple generated clocks
must be specified on the same source, because multiple clocks
fan into the master pin. Ideally, one generated clock must be
specified for each clock that fans into the master pin. If you
specify this option, you must also use the -name and
-master_clock options.

clockObject The first clock source specified in the -source option in the
absence of clockName. Clocks can be defined on pins, ports, and
nets. The FPGA synthesis tools support nets and instances,
where instances have only one output.

-source Specifies the master clock pin, which is either a master clock

masterPinName source pin or a fanout pin of the master clock driving the
generated clock definition pin. The clock waveform at the master
pin is used for deriving the generated clock waveform.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 215

Constraint Syntax

FPGA Timing Constraints

-master_clock
clockName

-divide_by
integer

-multiply_by
integer

-duty_cycle
percent

-invert

-edges edgelist

-edge_shift
edgeShiftList

-combinational

Specifies the master clock to be used for this generated clock,
when multiple clocks fan into the master pin.

Specifies the frequency division factor. If the divideFactor value
is 2, the generated clock period is twice as long as the master
clock period.

Specifies the frequency multiplication factor. If the
multiplyFactor value is 3, the generated clock period is one-third
as long as the master clock period.

Specifies the duty cycle, as a percentage, if frequency
multiplication is used. Duty cycle is the high pulse width.

Inverts the generated clock signal (in the case of frequency
multiplication and division).

Specifies a list of integers that represents edges from the source
clock that are to form the edges of the generated clock. The
edges are interpreted as alternating rising and falling edges and
each edge must not be less than its previous edge. The number
of edges must be an odd number and not less than 3 to make
one full clock cycle of the generated clock waveform. For
example, 1 represents the first source edge, 2 represents the
second source edge, and so on.

Specifies a list of floating point numbers that represents the
amount of shift, in nanoseconds, that the specified edges are to
undergo to yield the final generated clock waveform. The
number of edge shifts specified must be equal to the number of
edges specified. The values can be positive or negative; positive
indicating a shift later in time, while negative indicates a shift
earlier in time. For example, 1 indicates that the corresponding
edge is to be shifted by one library time unit.

The source latency paths for this type of generated clock only
includes the logic where the master clock propagates. The
source latency paths do not flow through sequential element
clock pins, transparent latch data pins, or source pins of other
generated clocks.

-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool
textString honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
216 January 2014

FPGA Timing Constraints Constraint Syntax

reset_path

Resets the specified paths to single-cycle timing.

Syntax
The supported syntax for the reset path constraint is:

reset_path [-setup]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
[-disable]
[-comment commentString]

Arguments

-setup Specifies that setup checking (maximum delay) is reset to
single-cycle behavior.

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:

* Clocks

* Registers

* Top-level input or bi-directional ports)
e Black box outputs

When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 217

Constraint Syntax FPGA Timing Constraints

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
* Combinational nets
e Hierarchical ports
* Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
If more than one object is included, the objects must be
enclosed either in quotation marks (") or in braces ({}). If you
specify the -through option multiple times, reset_path applies to
the paths that pass through a member of each objectList. If you
use the -through option in combination with the -from or -to
options, reset_path applies only if the -from or -to and the -through
conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:

* Clocks

* Registers

¢ Top-level output or bi-directional ports
¢ Black box inputs

If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points.

-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool
textString honors the annotation and preserves it with the object so that

the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
218 January 2014

FPGA Timing Constraints Constraint Syntax

set_clock _groups

Specifies clock groups that are mutually exclusive or asynchronous with each
other in a design so that the paths between these clocks are not considered
during timing analysis.

Syntax
The supported syntax for the set_clock_groups constraint is:

set_clock_groups
-asynchronous
-group {clockList} [-group {clockList} ...]
-derive
[-disable]
[-comment commentString]

Arguments

-asynchronous Specifies that the clock groups are asynchronous to each other
(the FPGA synthesis tools assume all clock groups are
synchronous). Two clocks are asynchronous with respect to
each other if they have no phase relationship at all.

-group clockList Specifies the clocks in a group (clockList). You can use the -group
option more than once in a single command execution.
However, you can include a clock only in one group in a single
command execution. To include a clock in multiple groups, you
must execute the set_clock_groups command multiple times.

By default, a generated clock and its master clock are not in the
same group when the exclusive or asynchronous clock groups
are defined. The -derive option can be used to override this
behavior and allow generated or derived clocks to inherit the
clock group of their parent source clock.

Each -group instance specifies a group of clocks, which are
exclusive or asynchronous with the clocks in all other groups. If
you specify only one group, it means that the clocks in that
group are exclusive or asynchronous with all other clocks in the
design. A default other group is created for this single group.
Whenever a new clock is created, it is automatically included in
this group.

-derive Specifies that generated and derived clocks inherit the clock
group of the parent clock.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 219

Constraint Syntax FPGA Timing Constraints

-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool
textString honors the annotation and preserves it with the object so that

the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

Limitations

Clock grouping in the FPGA synthesis environment is inclusionary or exclu-
sionary (for example, clk2 and clk3 can each be related to clkl without being
related to each other).

The following set_clock_groups constraint specifies that clkl and clk2 are
asynchronous, but clkl and clk2 are synchronous to clk3.

create clock [get ports {cl}] -name clkl -period 10

create clock [get ports {c2}] -name clk2 -period 16

create clock [get ports {c3}] -name clk3 -period 5

set clock groups -asynchronous -group [get clocks {clkl}]
-group [get clocks {clk2}]

This set_clock_groups constraint specifies that clock clkl1, clk2, and clk3 are
synchronous to one another, but asynchronous to all other clocks in the
design.

set_clock groups -asynchronous -group {clkl clk2 clk3}

This set_clock_groups constraint specifies that clkl and clk2 are synchronous to
one another, but are asynchronous to clk3 and clk4. However, clk3 and clk4 are
synchronous to each other.

set_clock groups -asynchronous -group {clkl clk2}
-group {clk3 clk4}

This set_clock_groups constraint specifies that clk4 is asynchronous to all other
clocks in the design.

set clock groups -asynchronous -group {clk4}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
220 January 2014

FPGA Timing Constraints Constraint Syntax

Note: The -group option contains a list of clocks that are separated by a space.
Do not add a comma after the clock name.

For example, if you specify the following:
set _clock groups -asynchronous -group {clkl, clk2}

The tool generates a warning that clkl cannot be found, because the comma is
treated as part of the clock name. This is true for all constraints that contain
lists.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 221

Constraint Syntax FPGA Timing Constraints

set_clock_latency

Specifies clock network latency.

Syntax
The supported syntax for the set_clock_latency constraint is:

set_clock_latency
-source
[-clock {clockList}]
delayValue
{objectList}
[-disable]

Arguments

-source Indicates that the specified delay is applied to the clock source
latency.

-clock clockList Indicates that the specified delay is applied with respect to the
specified clocks. By default, the specified delay is applied to all
specified objects.

delayValue Specifies the clock latency value.
objectList Specifies the input ports for which clock latency is to be set
Description

In the FPGA synthesis tools, the set_clock_latency constraint accepts both clock
objects and clock aliases. Applying a set clock latency constraint on a port can
be used to model the off-chip clock delays in a multi-chip environment. Clock
latency is forward annotated in the top-level constraint file as part of the time
budgeting that takes place in the Certify/HAPS flow. The annotated values
represent the arrival times for clocks on specific ports of any particular FPGA
in a HAPS design.

In the above syntax, objectList references either input ports with defined
clocks or clock aliases defined on the input ports. When more than one clock
is defined for an input port, the -clock option can be used to apply different
latency values to each alias.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
222 January 2014

FPGA Timing Constraints Constraint Syntax

Restrictions

The following limitations are present in the FPGA synthesis environment:
* Clock latency can only be applied to clocks defined on input ports.
* The set_clock_latency constraint is only used for source latency.
* The constraint only applies to port clock objects.

* Latency on clocks defined with create_generated clock is not supported.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
223

January 2014

Constraint Syntax FPGA Timing Constraints

set_clock route_delay

Translates the -route option for the legacy define_clock constraint.

Syntax
The supported syntax for the set_clock_route_delay constraint is:

set_clock_route_delay {clockAliasList} {delayValue}

Arguments

clockAliasList Lists the clock aliases to include the route delay.
delayValue Specifies the route delay value.

Description

The sdc2fdc translator performs a translation of the -route option for the legacy
define_clock constraint and places a set _clock route_delay constraint in the
*_translated.fdc file using the following format:

set clock route delay [get clocks {clk alias_1 clk_alias_2 ...}]
{delay_in_ns}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
224 January 2014

FPGA Timing Constraints Constraint Syntax

set_clock _uncertainty

Specifies the uncertainty (skew) of the specified clock networks.

Syntax
The supported syntax for the set_clock_uncertainty constraint is:

set_clock_uncertainty
{objectList}
-from fromClock |-rise_from riseFromClock | -fall_from fallFromClock
-to toClock |-rise_to riseToClock | -fall_to fallToClock
value

Arguments

objectList Specifies the clocks for simple uncertainty. The uncertainty is
applied to the capturing latches clocked by one of the specified
clocks. You must specify either this argument or a clock pair
with the -from/-rise_from/-fall_from and -to/-rise_to/-fall_to options;
you cannot specify both an object list and a clock pair.

-from fromClock Specifies the source clocks for interclock uncertainty. You can
use only one of the -from, -rise_from, and -fall_from options and you
must specify a destination clock with one of the -to, -rise_to, and
-fall_to options.

-rise_from Specifies that the uncertainty applies only to the rising edge of

riseFromClock the source clock. You can use only one of the -from, -rise_from,
and -fall_from options and you must specify a destination clock
with one of the -to, -rise_to, and -fall_to options.

-fall_from Specifies that the uncertainty applies only to the falling edge of

fallFromClock the source clock. You can use only one of the -from, -rise_from,
and -fall_from options and you must specify a destination clock
with one of the -to, -rise_to, and -fall_to options.

-to toClock Specifies the destination clocks for interclock uncertainty. You
can use only one of the -to, -rise_to, and -fall_to options and you
must specify a source clock with one of the -from, -rise_from, and
-fall_from options.

-rise_to Specifies that the uncertainty applies only to the rising edge of

riseToClock the destination clock. You can use only one of the -to, -rise_to,
and -fall_to options and you must specify a source clock with one
of the -from, -rise_from, and -fall_from options.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 225

Constraint Syntax FPGA Timing Constraints

-fall_to fallToClock Specifies that the uncertainty applies only to the falling edge of
the destination clock. You can use only one of the -to, -rise_to,
and -fall_to options and you must specify a source clock with one
of the -from, -rise_from, and -fall_from options.

value Specifies a floating-point number that indicates the uncertainty
value. Typically, clock uncertainty should be positive. Negative
uncertainty values are supported for constraining designs with
complex clock relationships. Setting the uncertainty value to a
negative number could lead to optimistic timing analysis and
should be used with extreme care.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
226 January 2014

FPGA Timing Constraints Constraint Syntax

set_false path

Removes timing constraints from particular paths.

Syntax
The supported syntax for the set_false_path constraint is:

set_false_path
[-setup]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
[-disable]
[-Fcomment commentString]

Arguments

-setup Specifies that setup checking (maximum delay) is reset to
single-cycle behavior.

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:

* Clocks

* Registers

» Top-level input or bi-directional ports
e Black box outputs

When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 227

Constraint Syntax FPGA Timing Constraints

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:
* Combinational nets
e Hierarchical ports
* Pins on instantiated cells
By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
If more than one object is included, the objects must be
enclosed either in quotation marks (") or in braces ({}). If you
specify the -through option multiple times, set_path applies to the
paths that pass through a member of each objectList. If you use
the -through option in combination with the -from or -to options,
set_false_path applies only if the -from or -to and the -through
conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:

* Clocks

* Registers

¢ Top-level output or bi-directional ports
¢ Black box inputs

If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points.

-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool
textString honors the annotation and preserves it with the object so that

the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
228 January 2014

FPGA Timing Constraints

Constraint Syntax

set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

Syntax

The supported syntax for the set_input_delay constraint is:

set_input_delay
[-clock clockName [-clock_fall]]

[-rise|-fall]
[-min|-max]

[-add_delay]

delayValue

{portPinList}

[-disable]

[-Fcomment commentString]

Argument

-clock clockName

Specifies the clock to which the specified delay is related. If
-clock_fall is used, -clock clockName must be specified. If -clock is
not specified, the delay is relative to time zero for combinational
designs. For sequential designs, the delay is considered relative
to a new clock with the period determined by considering the
sequential cells in the transitive fanout of each port.

-clock_fall Specifies that the delay is relative to the falling edge of the clock.
The default is the rising edge.

-rise Specifies that delayValue refers to a rising transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed to be equal.

-fall Specifies that delayValue refers to a falling transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed equal.

-min Specifies that delayValue refers to the shortest path. If neither
-max nor -min is specified, maximum and minimum input delays
are assumed equal.

-max Specifies that delayValue refers to the longest path. If neither
-max nor -min is specified, maximum and minimum input delays
are assumed equal.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 229

Constraint Syntax FPGA Timing Constraints

-add_delay Specifies if delay information is to be added to the existing input
delay or if is to be overwritten. The -add_delay option enables you
to capture information about multiple paths leading to an input
port that are relative to different clocks or clock edges.

-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool
textString honors the annotation and preserves it with the object so that

the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

delayValue Specifies the path delay. The delayValue must be in units
consistent with the technology library used during optimization.
The delayValue represents the amount of time the signal is
available after a clock edge. This represents a combinational
path delay from the clock pin of a register.

portPinList Specifies a list of input port names in the current design to
which delayValue is assigned. If more than one object is
specified, the objects are enclosed in quotes ("") or in braces ({}).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
230 January 2014

FPGA Timing Constraints

Constraint Syntax

set_max_delay

Specifies a maximum delay target for paths in the current design.

Syntax

The supported syntax for the set_ max_delay constraint is:

set_max_delay
[-from {objectList}]
[-through{objectList} [-through {objectList} ...]]
[-to {objectList}]

delayValue

[-disable]

[-Fcomment commentString]

Arguments

-from

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Specifies the names of objects to use to find path start points.
The -from objectList includes:

* Clocks

* Registers

» Top-level input or bi-directional ports

¢ Black box outputs

When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points. All paths from these start points to the end points in the
-from objectList are constrained to delayValue. If a -to objectList is
not specified, all paths from the -from objectList are affected. If

you include more than one object, you must enclose the objects
in quotation marks ("") or braces ({}).

Copyright © 2013 Synopsys, Inc.

231

Constraint Syntax FPGA Timing Constraints

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:

¢ Combinational nets
e Hierarchical ports
¢ Pins on instantiated cells

By default, the through points are treated as an OR list. The
constraint is applied if the path crosses any points in objectList.
The max delay value applies only to paths that pass through
one of the points in the -through objectList. If more than one
object is included, the objects must be enclosed either in
quotation marks ("") or in braces ({}). If you specify the -through
option multiple times, set_max_delay applies to the paths that
pass through a member of each objectList. If you use the -through
option in combination with the -from or -to options, set_max_delay
applies only if the -from or -to and the -through conditions are
satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:

* Clocks

* Registers

* Top-level output or bi-directional ports
e Black box inputs

If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points. All
paths to the end points in the -to objectList are constrained to
delayValue. If a -from objectList is not specified, all paths to the
-to objectList are affected. If you include more than one object,
you must enclose the objects in quotation marks (") or braces

(&)
-disable Disables the constraint.
-comment Allows the command to accept a comment string. The tool
textString honors the annotation and preserves it with the object so that

the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
232 January 2014

FPGA Timing Constraints Constraint Syntax

delayValue Specifies the value of the desired maximum delay for paths
between start and end points. You must express delayValue in
the same units as the technology library used during
optimization. If a path start point is on a sequential device,
clock skew is included in the computed delay. If a path start
point has an input delay specified, that delay value is added to
the path delay. If a path end point is on a sequential device,
clock skew and library setup time are included in the computed
delay. If the end point has an output delay specified, that delay
is added into the path delay.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 233

Constraint Syntax FPGA Timing Constraints

set_multicycle_path

Modifies the single-cycle timing relationship of a constrained path.

Syntax
The supported syntax for the set_multicycle_path constraint is:

set_multicycle_path
[-start |-end]
[-from {objectList}]
[-through {objectList} [-through {objectList} ...]]
[-to {objectList}]
pathMultiplier
[-disable]
[-Fcomment commentString]

Arguments

-start | -end Specifies if the multi-cycle information is relative to the period of
either the start clock or the end clock. These options are only
needed for multi-frequency designs; otherwise start and end are
equivalent. The start clock is the clock source related to the
register or primary input at the path start point. The end clock
is the clock source related to the register or primary output at
the path endpoint. The default is to move the setup check
relative to the end clock, and the hold check relative to the start
clock. A setup multiplier of 2 with -end moves the relation
forward one cycle of the end clock. A setup multiplier of 2 with -
start moves the relation back one cycle of the start clock. A hold
multiplier of 1 with -start moves the relation forward one cycle of
the start clock. A hold multiplier of 1 with -end moves the
relation back one cycle of the end clock.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
234 January 2014

FPGA Timing Constraints Constraint Syntax

-from Specifies the names of objects to use to find path start points.
The -from objectList includes:

* Clocks

* Registers

¢ Top-level input or bi-directional ports

¢ Black box outputs

When the specified object is a clock, all flip-flops, latches, and
primary inputs related to that clock are used as path start
points. If a -to objectList is not specified, all paths from the -from

objectList are affected. If you include more than one object, you
must enclose the objects in quotation marks (") or braces ({}).

-through Specifies the intermediate points for the timing exception. The
-through objectList includes:

¢ Combinational nets
e Hierarchical ports
* Pins on instantiated cells

The multi-cycle values apply only to paths that pass through
one of the points in the -through objectList. If more than one
object is included, the objects must be enclosed either in double
quotation marks ("") or in braces ({}). If you specify the -through
option multiple times, set_multicycle_delay applies to the paths
that pass through a member of each objectList. If the -through
option is used in combination with the -from or -to options, the
multi-cycle values apply only if the -from or -to conditions and
the -through conditions are satisfied.

-to Specifies the names of objects to use to find path end points.
The -to objectList includes:

* Clocks

* Registers

¢ Top-level output or bi-directional ports
¢ Black box inputs

If a specified object is a clock, all flip-flops, latches, and primary
outputs related to that clock are used as path end points. If a
-from objectList is not specified, all paths to the -to objectList are
affected. If you include more than one object, you must enclose
the objects in quotation marks (") or braces ({})..

-disable Disables the constraint.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 235

Constraint Syntax FPGA Timing Constraints

-comment Allows the command to accept a comment string. The tool

textString honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

pathMultiplier Specifies the number of cycles that the data path must have for
setup or hold relative to the start point or end point clock before
data is required at the end point. When used with -setup, this
value is applied to setup path calculations. When used with
-hold, this value is applied to hold path calculations. If neither
-hold nor -setup are specified, pathMultiplier is used for setup,
and O is used for hold. Changing the pathMultiplier for setup
also affects the hold check.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
236 January 2014

FPGA Timing Constraints Constraint Syntax

set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

Syntax
The supported syntax for the set_output_delay constraint is:

set_output_delay
[-clock clockName [-clock_fall]]
[-rise|[-fall]
[-min|-max]
[-add_delay]
delayValue
{portPinList}
[-disable]
[-comment commentString]

Arguments

-clock clockName Specifies the clock to which the specified delay is related. If
-clock_fall is used, -clock clockName must be specified. If -clock is
not specified, the delay is relative to time zero for combinational
designs. For sequential designs, the delay is considered relative
to a new clock with the period determined by considering the
sequential cells in the transitive fanout of each port.

-clock_fall Specifies that the delay is relative to the falling edge of the clock.
If -clock is specified, the default is the rising edge.

-rise Specifies that delayValue refers to a rising transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed to be equal.

-fall Specifies that delayValue refers to a falling transition on the
specified ports of the current design. If neither -rise nor -fall is
specified, rising and falling delays are assumed equal.

-min Specifies that delayValue refers to the shortest path. If neither
-max nor -min is specified, maximum and minimum output
delays are assumed equal.

-max Specifies that delayValue refers to the longest path. If neither
-max nor -min is specified, maximum and minimum output
delays are assumed equal.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 237

Constraint Syntax

FPGA Timing Constraints

-add_delay

-disable

-comment
textString

delayValue

portPinList

Specifies whether to add delay information to the existing
output delay or to overwrite. The -add_delay option enables you
to capture information about multiple paths leading to an
output port that are relative to different clocks or clock edges.

Disables the constraint.

Allows the command to accept a comment string. The tool
honors the annotation and preserves it with the object so that
the exact string is written out when the constraint is written
out. The comment remains intact through the synthesis, place-
and-route, and timing-analysis flows.

Specifies the path delay. The delayValue must be in units
consistent with the technology library used during optimization.
The delayValue represents the amount of time that the signal is
required before a clock edge. For maximum output delay, this
usually represents a combinational path delay to a register plus
the library setup time of that register. For minimum output
delay, this value is usually the shortest path delay to a register
minus the library hold time

A list of output port names in the current design to which
delayValue is assigned. If more than one object is specified, the
objects are enclosed in double quotation marks ("") or in braces

(®)-

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
238

January 2014

FPGA Timing Constraints Constraint Syntax

set_reg_input_delay

Speeds up paths feeding a register by a given number of nanoseconds.

Syntax

set_reg_input_delay {registerName} [-route ns] [-disable] [[comment textString]

Arguments

registerName A single bit, an entire bus, or a slice of a bus.

-route Advanced user option that you use to tighten constraints during
resynthesis, when the place-and-route timing report shows the
timing goal is not met because of long paths to the register.

-comment Allows the command to accept a comment string. The tool honors the
annotation and preserves it with the object so that the exact string is
written out when the constraint is written out. The comment remains
intact through the synthesis, place-and-route, and timing-analysis
flows.

-disable Disables the constraint.

Description

The set_reg_input_delay timing constraint speeds up paths feeding a register by
a given number of nanoseconds. The Synopsys FPGA synthesis tool attempts
to meet the global clock frequency goals for a design as well as the individual
clock frequency goals (set with create_clock). Use this constraint to speed up
the paths feeding a register. For information about the equivalent SCOPE
spreadsheet interface, see Registers, on page 178.

Use this constraint instead of the legacy constraint, define_reg_input_delay.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 239

Constraint Syntax FPGA Timing Constraints

set_reg_output_delay

Speeds up paths coming from a register by a given number of nanoseconds.

Syntax

set_reg_output_delay {registerName} [-route ns] [-disable] [-comment textString]

Arguments

registerName A single bit, an entire bus, or a slice of a bus.

-route Advanced user option that you use to tighten constraints during
resynthesis, when the place-and-route timing report shows the
timing goal is not met because of long paths from the register.

-comment Allows the command to accept a comment string. The tool honors
the annotation and preserves it with the object so that the exact
string is written out when the constraint is written out. The
comment remains intact through the synthesis, place-and-route,
and timing-analysis flows.

-disable Disables the constraint.

Description

The set_reg_output_delay constraint speeds up paths coming from a register by
a given number of nanoseconds. The synthesis tool attempts to meet the
global clock frequency goals for a design as well as the individual clock
frequency goals (set with create_clock). Use this constraint to speed up the
paths coming from a register. For information about the equivalent SCOPE
spreadsheet interface, see Registers, on page 178.

Use this constraint instead of the legacy constraint, define_reg_output_delay.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
240 January 2014

FPGA Timing Constraints Constraint Syntax

Naming Rule Syntax Commands

The FPGA synthesis environment uses a set of naming conventions for design
objects in the RTL when your project contains constraint files. The following
naming rule commands are added to the constraint file to change the
expected default values. These commands must appear at the beginning of
the constraint file before any other constraints. Similarly, when multiple
constraint files are included in the project, the naming rule commands must
be in the first constraint file read.

set_hierarchy_separator Command

The set_hierarchy_separator command redefines the hierarchy separator
character (the default separator character is the period in the FPGA synthesis
environment). For example, the following command changes the separator
character to a forward slash:

set _hierarchy separator {/}

set_rtl_ff names Command

The set_rtl_ff nhames command controls the stripping of register suffixes in the
object strings of delay-path constraints (for example, set false_path,
set_multicycle_path). Generally, it is only necessary to change this value from its
default when constraints that target ASIC designs are being imported from
the Design Compiler (in the Design Compiler, inferred registers are given a
_reg suffix during the elaboration phase; constraints targeting these registers
must include this suffix). When importing constraints from the Design
Compiler, include the following command to change the value of this naming
rule to {_reg} to automatically recognize the added suffix.

set_rtl ff names { reg}
For example, using the above value allows the DC exception
set false path -to [get cells {register bus reg[0]}]

to apply to the following object without having to manually modify the
constraint:

[get cells {register bus[0]}]

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 241

Constraint Syntax Design Constraints

bus_naming_style Command

The bus_naming_style command redefines the format for identifying bits of a
bus (by default, individual bits of a bus are identified by the bus name
followed by the bus bit enclosed in square brackets). For example, the
following command changes the bus-bit identification from the default
busName[busBit] format to the busName_busBit format:

bus naming style {%s %d}

bus_dimension_separator_style Command

The bus_dimension_separator_style command redefines the format for identifying
multi-dimensional arrays (by default, multidimensional arrays such as row 2,
bit 3 of array ABC[n x m] are identified as ABC[2][3]). For example, the
following command changes the bus-dimension separator from individual
square bracket sets to an underscore:

bus dimension separator style { }
The resulting format for the above example is:

ABC[2 3]

read_sdc Command

Reads in a script in Synopsys FPGA constraint format. The supported syntax
for the read_sdc constraint is:

read_sdc fileName

Design Constraints

This section describes the constraint file syntax for the following non-timing
design constraints:

¢ define_compile_point, on page 243
¢ define_current_design, on page 244

¢ define_io_standard, on page 245

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
242 January 2014

Design Constraints Constraint Syntax

define_compile_point

The define_compile_point command defines a compile point in a top-level
constraint file. You use one define_compile_point command for each compile
point you define. For the equivalent SCOPE spreadsheet interface, see
Compile Points, on page 185. (Compile points are only available for certain
technologies.)

This is the syntax:

define_compile_point [-disable] {moduleName}
-type {soft|hard|locked|} [-comment textString]

-disable Disables a previous compile point definition.
-type Specifies the type of compile point. This can be soft, hard, or locked. See

Compile Point Types, on page 365 for more information.

Refer to Methods for Creating Constraints, on page 152 for details about the
syntax and prefixes for naming objects.

Here is a syntax example:

define compile point {v:work.prgm cntr} -type {locked}

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 243

Constraint Syntax Design Constraints

define_current_design

The define_current_desigh command specifies the module to which the
constraints that follow it apply. It must be the first command in a block-level
or compile-point constraint file. The specified module becomes the top level
for objects defined in this hierarchy and the constraints applied in the
respective block-level or compile-point constraint file.

This is the syntax:
define_current_design {regionName | libraryName.moduleName }

Refer to Methods for Creating Constraints, on page 152 for details about the
syntax and prefixes for naming objects.

Here is an example:
define current design {libl.prgm cntr}

Objects in all constraints that follow this command relate to prgm_cntr.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
244 January 2014

Design Constraints Constraint Syntax

define_io_standard

Specifies a standard I/O pad type to use for various Microsemi families. See
I/O Standards, on page 183 for details of the SCOPE equivalent.

define_io_standard [-disable] {p:portName} -delay_type input|output|bidir
syn_pad_type {IO_standard} [parameter {value}...]

In the above syntax:
portName is the name of the input, output, or bidirectional port.
-delay_type identifies the port direction which must be input, output, or bidir.

syn_pad_type is the I/O pad type (I/O standard) to be assigned to
portName.

parameter is one or more of the parameters defined in the following
table. Note that these parameters are device-family dependent.

Parameter Function

syn_io_termination The termination type; typical values are pullup
and pulldown.

syn_io_drive The output drive strength; values include low
and high or numerical values in mA.
syn_io_dv2 Switch to use a 2x impedance value.
syn_io_dci Switch for digitally-controlled impedance (DCI).
syn_io_slew The slew rate for single-ended output buffers;

values include slow and fast or low and high.

Example:

define io standard {p:DATA1[7:0]} -delay type input
syn pad type {LVCMOS 33} syn io slew {high}
syn io drive {12} syn io termination {pulldown}

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 245

Constraint Syntax Design Constraints

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
246 January 2014

SYNOPSYs

erating Innovation

CHAPTER 7

Input and Result Files

This chapter describes the input and output files used by the synthesis tool.
¢ Input Files, on page 248
* Libraries, on page 251
* Output Files, on page 253
* Log File, on page 257
¢ Timing Reports, on page 263
* Constraint Checking Report, on page 272

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 247

Input and Result Files

Input Files

Input Files

The following table describes the input files used by the synthesis tool.

Extension File

.adc Analysis
Design
Constraint

.fde Synopsys
FPGA Design
Constraint

.ini Configuration
and
Initialization

.prj Project

Copyright © 2013 Synopsys, Inc.
248

Description

Contains timing constraints to use for stand-alone
timing analysis. Constraints in this file are used only
for timing analysis and do not change the result files
from synthesis. Constraints in the .adc file are applied
in addition to .fdc constraints used during synthesis.
Therefore, .adc constraints affect timing results only if
there are no conflicts with .fdc constraints.

You can forward annotate adc constraints to your
vendor constraint file without rerunning synthesis.
See Using Analysis Design Constraints, on page 280
of the User Guide for details.

Create FPGA timing and design constraints with
SCOPE. You can run the sdc2fdc utility to translate
legacy FPGA timing constraints (SDC) to Synopsys
FPGA timing constraints (FDC). For details, see
sdc2fdc, on page 64.

Governs the behavior of the synthesis tool. You
normally do not need to edit this file. For example,
use the HDL Analyst Options dialog box, instead, to
customize behavior. See HDL Analyst Options
Command, on page 297.

On the Windows 7 platforms, the .ini file is in the
C:\Users\userName\AppData\Roaming\Synplicity directory,
and on the Windows XP platforms, the .ini file is in the
C:\Documents and Settings\userName\Application
Data\Synplicity directory.

On Linux workstations, the .ini file is in the following
directory:(~/.synplicity, where ~ is your home directory,
which can be set with the environment variable
$HOME).

Contains all the information required to complete a
design. It is in Tcl format, and contains references to
source files, compilation, mapping, and optimization
switches, specifications for target technology and
other runtime options.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Input Files Input and Result Files

Extension File Description

.sdc Constraint Contains the timing constraints (clock parameters,
I/0O delays, and timing exceptions) in Tcl format.
You can either create this file manually or generate it
by entering constraints in the SCOPE window. For
more information about creating the .sdc file, see
SCOPE Tabs, on page 165.

.sv Source files Design source files in SystemVerilog format. The sv
(Verilog) source file is added to the Verilog directory in the

Project view. For more information about the Verilog
and SystemVerilog languages, and the synthesis
commands and attributes you can include, see
Verilog, on page 251, Chapter 8, Verilog Language
Support, and Chapter 9, SystemVerilog Language
Support. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files, on page 45 of the User

Guide.
.vhd Source files Design source files in VHDL format. See VHDL, on
(VHDL) page 250 and Chapter 10, VHDL Language Support

for details. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files, on page 45 of the User

Guide.
Y Source files Design source files in Verilog format. For more
(Verilog) information about the Verilog language, and the

synthesis commands and attributes you can include,
see Verilog, on page 251, Chapter 8, Verilog
Language Support, and Chapter 9, SystemVerilog
Language Support. For information about using
VHDL and Verilog files together in a design, see Using
Mixed Language Source Files, on page 45 of the
User Guide.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 249

Input and Result Files Input Files

HDL Source Files

The HDL source files for a project can be in either VHDL (vhd), Verilog (v), or
SystemVerilog (sv) format.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the built-
in macro libraries, you can easily instantiate vendor macros directly into the
VHDL designs, and forward-annotate them to the output netlist. Refer to the
appropriate vendor support documentation for more information.

VHDL

The Synopsys FPGA synthesis tool supports a synthesizable subset of
VHDLO93 (IEEE 1076), and the following IEEE library packages:

* numeric_bit
* numeric_std
¢ std_logic_1164

The synthesis tool also supports the following industry standards in the IEEE
libraries:

e std logic_arith
e std logic_signed
¢ std_logic_unsigned

The Synopsys FPGA synthesis tool library contains an attributes package
(installDirectory/lib/vhd/synattr.vhd) of built-in attributes and timing constraints
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes, and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

For more information about the VHDL language, and the synthesis
commands and attributes you can include, see Chapter 10, VHDL Language
Support.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
250 January 2014

Libraries Input and Result Files

Verilog

The Synopsys FPGA synthesis tool supports a synthesizable subset of Verilog
2001 and Verilog 95 (IEEE 1364) and SystemVerilog extensions. For more
information about the Verilog language, and the synthesis commands and
attributes you can include, see Chapter 8, Verilog Language Support and
Chapter 9, SystemVerilog Language Support.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the built-
in macro libraries, you can instantiate vendor macros directly into Verilog
designs and forward-annotate them to the output netlist. Refer to the User
Guide for more information.

Libraries

You can instantiate components from a library, which can be either in Verilog
or VHDL. For example, you might have technology-specific or custom IP
components in a library, or you might have generic library components. The
installDirectory/lib directory included with the software contains some compo-
nent libraries you can use for instantiation.

There are two kinds of libraries you can use:

* Technology-specific libraries that contain I/O pad, macro, or other
component descriptions. The lib directory lists these kinds of libraries
under vendor sub-directories. The libraries are named for the technology
family, and in some cases also include a version number for the version
of the place-and-route tool with which they are intended to be used.

For information about using vendor-specific libraries to instantiate
LPMs, PLLs, macros, I/O pads, and other components, refer to the
appropriate sections in Chapter 15, Optimizing for Microsemi Designs in
the User Guide.

¢ Technology-independent libraries that contain common components.
You can have your own library or use the one Synplicity provides. The
Synplicity library is a Verilog library of common logic elements, much
like the Synopsys® GTECH component library. See The Synplicity
Generic Technology Library, on page 252 for a description of this library.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 251

Input and Result Files Libraries

The Synplicity Generic Technology Library

The synthesis software includes this Verilog library for generic components
under the installDirectory/lib/generic_technology directory. Currently, the library is
only available in Verilog format. The library consists of technology-indepen-
dent common logic elements, which help the designer to develop technology-
independent parts. The library models extract the functionality of the compo-
nent, but not its implementation. During synthesis, the mappers implement
these generic components in implementations that are appropriate to the
technology being used.

To use components from this directory, add the library to the project by doing
either of the following:

* Add add _file -verilog "$LIB/generic_technology/gtech.v to your prj file or type it in
the Tcl window.

* In the tool window, click the Add file button, navigate to the installDirec-
toryl/lib/generic_technology directory and select the gtech.v file.

When you synthesize the design, the tool uses components from this library.

You cannot use the Synplicity generic technology library together with other
generic libraries, as this could result in a conflict. If you have your own
GTECH library that you intend to use, do not use the Synplicity generic
technology library.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
252 January 2014

Output Files

Input and Result Files

Output Files

The synthesis tool generates reports about the synthesis run and files that
you can use for simulation or placement and routing.The following table
describes the output files, categorizing them as either synthesis result and
report files, or output files generated as input for other tools.

Extension

_cck.rpt

.info

.fse

.pfl

Results file:

e .edf
e .edn

File

Constraint Checker
Report

Design component
files

FSM information file

Message Filter
criteria

Vendor-specific
results file

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Description

Checks the syntax and applicability of
the timing constraints in the .fdc file for
your project and generates a report
(projectName_cck.rpt). See Constraint
Checking Report, on page 272 for more
information.

Design-dependent. Contains detailed
information about design components
like state machines or ROMs.

Design-dependent. Contains information
about encoding types and transition
states for all state machines in the
design.

Output file created after filtering
messages in the Messages window. See
Updating the projectName.pfl file, on
page 198 in the User Guide.

Results file that contains the
synthesized netlist, written out in a
format appropriate to the technology
and the place-and-route tool you are
using. Generally, the format is EDIF, but
there could be vendor-specific formats,
like the Microsemi .edf format.

Specify this file on the Implementation
Results panel of the Implementation Options
dialog box (Implementation Results
Panel, on page 197).

Copyright © 2013 Synopsys, Inc.
253

Input and Result Files

Output Files

Extension File

run _options.txt Project settings for
implementations

.sap Synplify Annotated
Properties

.sar Archive file

_scck.rpt Constraint Checker
Report

.srd Intermediate
mapping files

.srm Mapping output files

Copyright © 2013 Synopsys, Inc.
254

Description

This file is created when a design is
synthesized and contains the project
settings and options used with the
implementations. These settings and
options are also processed for displaying
the Project Status view after synthesis is
run. For details, see Project Status Tab,
on page 42.

This file is generated after the Annotated
Properties for Analyst option is selected in
the Device panel of the Implementation
Options dialog box. After the compile
stage, the tool annotates the design with
properties like clock pins. You can find
objects based on these annotated
properties using Tcl Find. For more
information, see find, on page 98 and
Using the Tcl Find Command to Define
Collections, on page 134 in the User
Guide.

Output of the Synopsys FPGA Archive
utility in which design project files are
stored into a single archive file. Archive
files use Synplicity Proprietary Format.
See Archive Project Command, on
page 183 for details on archiving,
unarchiving and copying projects.

Generates a report that contains an
overview of the design information, such
as, the top-level view, name of the
constraints file, if there were any
constraint syntax issues, and a
summary of clock specifications.

Used to save mapping information
between synthesis runs. You do not
need to use these files.

Output file after mapping. It contains
the actual technology-specific mapped
design. This is the representation that
appears graphically in a Technology
view.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Output Files Input and Result Files

Extension File Description

.srr Synthesis log file Provides information on the synthesis
run, as well as area and timing reports.
See Log File, on page 257, for more
information.

.srs Compiler output file Output file after the compiler stage of
the synthesis process. It contains an
RTL-level representation of a design.
This is the representation that appears
graphically in an RTL view.

synlog folder Intermediate This folder contains intermediate
technology mapping netlists and log files after technology
files mapping has been run. Timestamp

information is contained in these netlist
files to manage jobs with up-to-date
checks. For more information, see Using
Up-to-date Checking for Job
Management, on page 170.

synwork folder Intermediate pre- This folder contains intermediate
mapping files netlists and log files after pre-mapping
has been run. Timestamp information is
contained in these netlist files to manage
jobs with up-to-date checks. For more
information, see Using Up-to-date
Checking for Job Management, on

page 170.
.ta Customized Timing Contains the custom timing
Report information that you specify through

Analysis->Timing Analyst. See Analysis
Menu, on page 260, for more
information.

_ta.srm Customized Creates a customized output netlist
mapping output file when you generate a custom timing
report with HDL Analyst->Timing Analyst. It
contains the representation that appears
graphically in a Technology view. See
Analysis Menu, on page 260 for more
information.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 255

Input and Result Files

Output Files

Extension File

.tap Timing Annotated
Properties

.tlg Log file

vendor constraint Constraints file for
file forward annotation

Copyright © 2013 Synopsys, Inc.
256

Description

This file is generated after the Annotated
Properties for Analyst option is selected in
the Device panel of the Implementation
Options dialog box. After the compile
stage, the tool annotates the design with
timing properties and the information
can be analyzed in the RTL view. You
can also find objects based on these
annotated properties using Tcl Find. For
more information, see Using the Tcl
Find Command to Define Collections,
on page 134 in the User Guide.

This log file contains a list of all the
modules compiled in the design.

Contains synthesis constraints to be
forward-annotated to the place-and-
route tool. The constraint file type varies
with the vendor and the technology.
Refer to the vendor chapters for specific
information about the constraints you
can forward-annotate. Check the
Implementation Results dialog
(Implementation Options) for supported
files. See Implementation Results
Panel, on page 197.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Log File Input and Result Files

Extension File Description
. vm Mapped Verilog or Optional post-synthesis netlist file in
. vhm VHDL netlist Verilog (.vm) or VHDL (.vhm) format. This

is a structural netlist of the synthesized
design, and differs from the original RTL
used as input for synthesis. Specify
these files on the Implementation Results
dialog box (Implementation Options). See
Implementation Results Panel, on
page 197.

Typically, you use this netlist for gate-
level simulation, to verify your synthesis
results. Some designers prefer to
simulate before and after synthesis, and
also after place-and-route. This
approach helps them to isolate the stage
of the design process where a problem
occurred.

The Verilog and VHDL output files are
for functional simulation only. When you
input stimulus into a simulator for
functional simulation, use a cycle time
for the stimulus of 1000 time ticks.

Log File

The log file report, located in the implementation directory, is written out in
two file formats: text (projectName.srr), and HTML with an interactive table of
contents (projectName.htm and projectName_sir.htm) where projectName is the
name of your project. Select View Log File in HTML in the Options->Project View
Options dialog box to enable viewing the log file in HTML. Select the View Log
button in the Project view (Buttons and Options, on page 101) to see the log
file report.

The log file is written each time you compile or synthesize (compile and map)
the design. When you compile a design without mapping it, the log file
contains only compiler information. As a precaution, a backup copy of the log
file (srr) is written to the backup sub-directory in the Implementation Results
directory. Only one backup log file is updated for subsequent synthesis runs.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 257

Input and Result Files

Log File

Copyright © 2013 Synopsys, Inc.
258

The log file contains detailed reports on the compiler, mapper, timing, and
resource usage information for your design. Errors, notes, warnings, and
messages appear in both the log file and the Messages tab in the Tcl window.

For further details about different sections of the log file, see the following:

For information about...

Compiled files, messages (warnings, errors, and
notes), user options set for synthesis, state machine
extraction information, including a list of reachable
states.

Buffers added to clocks in certain supported
technologies.

Buffers added to nets.

Timing results. This section of the log file begins with
“START TIMING REPORT” section.

If you use the Timing Analyst to generate a custom
timing report, its format is the same as the timing
report in the log file, but the customized timing
report is in a ta file.

Compile point remapping.

Resources used by synthesis mapping.

Design changes made as a result of retiming.

See...

Compiler Report, on
page 259

Timing Reports, on
page 263

Net Buffering Report, on
page 260

Timing Reports, on
page 263

Compile Point Information,
on page 260

Resource Usage Report, on
page 261

Retiming Report, on
page 261

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Log File Input and Result Files

Compiler Report

This report starts with the compiler version and date, and includes the
following:

* Project information: the top-level module.

* Design information: HDL syntax and synthesis checks, black box
instantiations, FSM extractions and inferred RAMs/ROMs. It also
includes informational or warning messages about unused ports,
removal of redundant logic, and latch inference. See Errors, Warnings,
Notes, and Messages, on page 262 for details about the kinds of
messages.

Premap Report

This report begins with the pre-mapper version and date, and reports the
following:

* File loading times and memory usage

* Clock summary

Mapper Report

This report begins with the mapper version and date, and reports the
following:

* Project information: the names of the constraint files, target technology,
and attributes set in the design.

* Design information such as flattened instances, extraction of counters,
FSM implementations, clock nets, buffered nets, replicated logic, RTL
optimizations, and informational or warning messages. See Errors,
Warnings, Notes, and Messages, on page 262 for details about the kinds
of messages.

Clock Buffering Report
This section of the log file reports any clocks that were buffered. For example:

Clock Buffers:
Inserting Clock buffer for port clock0,TNM=clockO

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 259

Input and Result Files Log File

Net Buffering Report

Net buffering reports are generated for most all of the supported FPGAs and
CPLDs. This information is written in the log file, and includes the following
information:

* The nets that were buffered or had their source replicated
* The number of segments created for that net
¢ The total number of buffers added during buffering

* The number of registers and look-up tables (or other cells) added during
replication

Example: Net Buffering Report

Net buffering Report:

Badd c[2] - loads: 24, segments 2, buffering source
Badd c[1] - loads: 32, segments 2, buffering source
Badd c[0] - loads: 48, segments 3, buffering source
Aadd c[0] - loads: 32, segments 3, buffering source

Added 10 Buffers
Added 0 Registers via replication
Added 0 LUTs via replication

Compile Point Information

The Summary of Compile Points section of the log file (projectName.srr) lists each
compile point, together with an indication of whether it was remapped, and, if
so, why. Also, a timing report is generated for each compile point located in
its respective results directories in the Implementation Directory. The compile
point is the top-level design for this report file.

For more information on compile points and the compile-point synthesis flow,
see Synthesizing Compile Points, on page 378of the User Guide.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
260 January 2014

Log File

Input and Result Files

Timing Section

A default timing report is written to the log file (projectName.str) in the “START
OF TIMING REPORT” section. See Timing Reports, on page 263, for details.

For certain device technologies, you can use the Timing Analyst to generate
additional timing reports for point-to-point analysis (see Analysis Menu, on
page 260). Their format is the same as the timing report.

Resource Usage Report

A resource usage report is added to the log file each time you compile or
synthesize. The format of the report varies, depending on the architecture you
are using. The report provides the following information:

The total number of cells, and the number of combinational and sequen-
tial cells in the design

The number of clock buffers and I/O cells

Details of how many of each type of cell in the design

See Checking Resource Usage, on page 187 in the User Guide for a brief
procedure on using the report to check for overutilization.

Retiming Report

Whenever retiming is enabled, a retiming report is added to the log file
(projectName.srr). It includes information about the design changes made as a
result of retiming, such as the following:

The number of flip-flops added, removed, or modified because of
retiming. Flip-flops modified by retiming have a _ret suffix added to their
names.

Names of the flip-flops that were moved by retiming and no longer exist
in the Technology view.

Names of the flip-flops created as result of the retiming moves, that did
not exist in the RTL view.

Names of the flip-flops modified by retiming; for example, flip-flops that
are in the RTL and Technology views, but have different fanouts because
of retiming.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 261

Input and Result Files Log File

Errors, Warnings, Notes, and Messages

Throughout the log file, interactive error, note, warning, and informational
messages appear.

* Error messages begin with “eg:”

¢ Warning messages begin with “@w:”

* Notes begin with “eN:”

* Advisories begin with “@A:”

* Informational messages begin with “@I:”

Colors distinguish different types of messages:

Color Message Type Example
Blue Information (@1) @l: :"C:\designs\Designs6\module1\mychip.v”

Notes (@N) @N: CL201 |Trying to extract state machine for ...
Brown Warnings (@W) @W: CG146 |Creating black_box for empty module ...
Red Errors(@E) @E: CS106 |Reference to undefined module ...

The errors, warnings, and notes are also displayed in the Messages tab of the
Output window. To get help on a message, you can single click on the
numeric ID at the beginning of the message in the log file or Messages window.
To crossprobe to the corresponding HDL source code, single click on the
source file name.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
262 January 2014

Timing Reports Input and Result Files

Timing Reports
Timing results can be written to one or more of the following files:

.srr or .htm Log file that contains a default timing report. To find
this information, after synthesis completes, open the
log file (View -> Log File), and search for START OF TIMING
REPORT.

.ta Timing analysis file that contains timing information
based on the parameters you specify in the stand-alone
Timing Analyst (Analysis->Timing Analyst).

designName async clk Asynchronous clock report file that is generated when
.rpt.scv you enable the related option in the stand-alone Timing
Analyzer (Analysis->Timing Analyst). This report can be
displayed in a spreadsheet tool and contains
information for paths that cross between multiple clock
groups. See Asynchronous Clock Report, on page 270
for details on this report.
The timing reports in the str/htm and ta files have the following sections:
* Timing Report Header, on page 264
* Performance Summary, on page 264
* Clock Relationships, on page 266
¢ Interface Information, on page 268
¢ Detailed Clock Report, on page 268

* Asynchronous Clock Report, on page 270

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 263

Input and Result Files Timing Reports

Timing Report Header

The timing report header lists the date and time, the name of the top-level
module, the number of paths requested for the timing report, and the
constraint files used.

LIS Y
OO056 ####4 START TIMING FEPORT #####
00057 # Timing Report written on Fri Sep 06 13:35:15 Z002

oo0ss #

ooos9

000e0

00061 Top wiew: modz
00062 Paths requested: 5

00063 Constraint File(s):
00064 [EN| This timing report estimates place and route data. Please look

00065 [EN| Clock constraints cower all FF-to-FF, FF-to-output, input-to-FF
MrNEA

You can control the size of the timing report by choosing Project -> Implementa-
tion Options, clicking the Timing Report tab of the panel, and specifying the
number of start/end points and the number of critical paths to report. See
Timing Report Panel, on page 199, for details.

Performance Summary

The Performance Summary section of the timing report reports estimated and
requested frequencies for the clocks, with the clocks sorted by negative slack.
The timing report has a different section for detailed clock information (see
Detailed Clock Report, on page 268). The Performance Summary lists the
following information for each clock in the design:

Performance Summary Description
Column
Starting Clock Clock at the start point of the path.

If the clock name is system, the clock is a collection
of clocks with an undefined clock event. Rising and
falling edge clocks are reported as one clock
domain.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
264 January 2014

Timing Reports

Input and Result Files

Performance Summary
Column

Requested/Estimated
Frequency

Requested/Estimated Period

Slack

Clock Type

Clock Group

The synthesis tool does not report inferred clocks that have an unreasonable

Description

Target frequency goal /estimated value after
synthesis. See Cross-Clock Path Timing Analysis,
on page 267 for information on how cross-clock
path slack is reported.

Target clock period/estimated value after
synthesis.

Difference between estimated and requested
period. See Cross-Clock Path Timing Analysis, on
page 267 for information on how cross-clock path
slack is reported.

The type of clock: inferred, declared, derived or system.
For more information, see Clock Types, on
page 265.

Name of the clock group that a clock belongs.

slack time. Also, a real clock might have a negative period. For example,

suppose you have a clock going to a single flip-flop, which has a single path

going to an output. If you specify an output delay of —1000 on this output,
then the synthesis tool cannot calculate the clock frequency. It reports a
negative period and no clock.

Clock Types

The synthesis timing reports include the following types of clocks:

* Declared Clocks

User-defined clocks specified in the constraint file.

* Inferred Clocks

These are clocks that the synthesis timing engine finds during
synthesis, but which have not been constrained by the user. The tool
assigns the default global frequency specified for the project to these

clocks.

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Copyright © 2013 Synopsys, Inc.
265

Input and Result Files Timing Reports

¢ Derived Clocks

These are clocks that the synthesis tool identifies from a clock divider or
multiplier. The tool reports these clocks for timing purposes only.

¢ System Clock

The system clock is the delay for the combinatorial path. Additionally, a
system clock can be reported if there are sequential elements in the
design for a clock network that cannot be traced back to a clock. Also,
the system clock can occur for unconstrained I/O ports. You must
investigate these conditions.

Clock Relationships

For each pair of clocks in the design, the Clock Relationships section of the
timing report lists both the required time (constraint) and the worst slack time
for each of the intervals rise to rise, fall to fall, rise to fall, and fall to rise. See Cross-
Clock Path Timing Analysis, on page 267 for details about cross-clock paths.

This information is provided for the paths between related clocks (that is,
clocks in the same clock group). If there is no path at all between two clocks,
then that pair is not reported. If there is no path for a given pair of edges
between two clocks, then an entry of No paths appears.

For information about how these relationships are calculated, see Clock
Groups, on page 167. For tips on using clock groups, see Defining Other
Clock Requirements, on page 164 in the User Guide.

Clock Relationships
FTERT IR ATLARLLEERESLSS

Clocks | rige to rise | fall to fall | rige to fall | fall to rise
Jtarting Ending | constraint slack | constraint =lack | constraint =slack | constraint =slack
clkl clkl | 25.000 15.843 | 25.000 17.764 | HNo paths - | No paths -
clkl clk2 | 1l.00d -5.430 | HNo paths - | Mo paths - | 1.000 -1.531
clkz clkl | Mo paths - | 1l.000 -0.811 | l.000 -1.531 | HNo paths -

clkz clkz | &.000 0.764 | §.000 -1.057 | HNo paths - | 6.000 zZ.514
clk3 clk3 | Mo paths - | 1l0.000 0.943 | HNo paths - | No paths -

Note: 'No paths' indicates there are no paths in the design for that pair of clock edges.
'Diff grp' indicates that paths exist but the starting clock and ending clock are in different clock ¢

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
266 January 2014

Timing Reports Input and Result Files

Cross-Clock Path Timing Analysis

The following describe how the timing analyst calculates cross-clock path
frequency and slack.

Cross-Clock Path Frequency

For each data path, the tool estimates the highest frequency that can be set
for the clock(s) without a setup violation. It finds the largest scaling factor
that can be applied to the clock(s) without causing a setup violation. If the
start clock is not the same as the end clock, it scales both by the same factor.

scale = (minimum time period -(-current slack))/minimum time period

It assumes all other delays in the setup calculation (e.g., uncertainty) are
fixed.

It applies relevant multicycle constraints to the setup calculation.

The estimated frequency for a clock is the minimum frequency over all paths
that start or end on that clock, with the following exceptions:

* The tool does not consider paths between the system clock and another
clock to estimate frequency.

* It considers paths with a path delay constraint to be asynchronous, and
does not use them to estimate frequency.

* It considers paths between clocks in different domains to be asynchro-
nous, and does not use them to estimate frequency.

Slack for Cross-Clock Paths

The slack reported for a cross-clock path is the worst slack for any path that
starts on that clock. Note that this differs from the estimated frequency calcu-
lation, which is based on the worst slack for any path starting or ending on
that clock.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 267

Input and Result Files Timing Reports

Interface Information

The interface section of the timing report contains information on arrival
times, required times, and slack for the top-level ports. It is divided into two
subsections, one each for Input Ports and Output Ports. Bidirectional ports are
listed under both. For each port, the interface report contains the following

information.
Port parameter Description
Port Name Port name.

Starting Reference Clock The reference clock.

User Constraint The input/output delay. If a port has multiple delay
records, the report contains the values for the record with
the worst slack. The reference clock corresponds to the
worst slack delay record.

Arrival Time Input ports: define_input_delay, or default value of 0.

Output ports: path delay (including clock-to-out delay of
source register).

For purely combinational paths, the propagation delay is
calculated from the driving input port.

Required Time Input ports: clock period — (path delay + setup time of
receiving register + define_reg_input_delay value).

Output ports: clock period — define_output_delay. Default
value of define_output_delay is 0.

Slack Required Time — Arrival Time

Detailed Clock Report

Each clock reported in the performance summary also has a detailed clock
report section in the timing report. The clock reports are listed in order of
negative slack.

General Critical Path Information

This section contains general information about the most critical paths in the
design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
268 January 2014

Timing Reports Input and Result Files

Clock Information Description

N most critical start points Start points can be input ports or registers. If the
start point is a register, you see the starting pin in the
report. To change the number of start points reported,
choose Project -> Implementation Options, and set the
number on the Timing Report panel.

N most critical end points End points can be output ports or registers. If the end
point is a register, you see the ending pin in the
report. To change the number of end points reported,
select Project -> Implementation Options, and set the
number on the Timing Report panel.

Nworst path information Starting with the most critical path, the worst path

(see the next table for Information sections contain details of the worst

details) paths in the design. Paths from clock A to clock B are
reported as critical paths in the section for clock A.

You can change the number of critical paths on the
Timing Report panel of the Implementation Options dialog
box.

Worst Path Information

For each critical path, the timing report has a detailed description. It starts
with a summary of the information and is followed by a detailed pin-by-pin
report. The summary reports information like requested period, actual
period, start and end points, and logic levels. Note that the requested period
here is period -route delay, while the requested period in the Performance
Summary (Performance Summary, on page 264) is just the clock period.

The detailed path report uses this format: Output pin — Net — Input pin — Output pin —
Net — Input pin. The following table describes the critical path information
reported:

Critical path information Description

Instance/Net Name Technology view names for the instances and nets in
the critical path
Type Type of cell
Pin Name Name of the pin
Pin Dir Pin direction
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 269

Input and Result Files

Timing Reports

Critical path information
Delay

Arrival Time

Fan Out

Description
The delay value.

Clock delay at the source + the propagation delay
through the path

Number of fanouts for the point in the path

Asynchronous Clock Report

You can generate a report for paths that cross between clock groups using
the stand-alone Timing Analyst (Analysis->Timing Analyst, Generate Asynchronous
Clock Report check box). Generally, paths in different clock groups are
automatically handled as false paths. This option provides a file that contains
information on each of the paths and can be viewed in a spreadsheet tool. To
display the CSV-format report:

1. Locate the file in your results directory
projectName async clk.rpt.csv.

2. Open the file in your spreadsheet tool.

Column
Index
Path Delay

Logic Levels

Types

Route Delay
Source Clock
Destination Clock
Data Start Pin
Data End Pin

Copyright © 2013 Synopsys, Inc.
270

Description
Path number.
Delay value as reported in standard timing (ta) file.

Number of logic levels in the path (such as LUTs,
cells, and so on) that are between the start and end
points.

Cell types, such as LUT, logic cell, and so on.
As reported for each path in ta.

Start clock.

End clock.

Sequential device output pin at start of path.

Setup check pin at destination.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Timing Reports Input and Result Files

EJ async_clk.rpt.csy

i D E F G H |
1 Index Fath Delay Logic Levels Types Route Delay Source Clock Destination Clock Data Stant Pin - Data End Pin
| 2 | 1.533 1LUTT_L 0.632 Clock_A Clock_B reg_A.Q reg_B.00
2176 1LUTT_ L 0.884 Clock_B Clock_C rag_B.Q reg_C.00
4
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 271

Input and Result Files Constraint Checking Report

Constraint Checking Report

Use the Run->Constraint Check command to generate a report on the constraint
files in your project. The projectName_cck.rpt file provides information such as
invalid constraint syntax, constraint applicability, and any warnings or
errors. For details about running Constraint Check, see Tcl Syntax Guidelines
for Constraint Files, on page 52 in the User Guide.

This section describes the following topics:
* Reporting Details, on page 272
¢ Inapplicable Constraints, on page 273
* Applicable Constraints With Warnings, on page 274
¢ Sample Constraint Check Report, on page 275

Reporting Details

This constraint checking file reports the following:
* Constraints that are not applied
* Constraints that are valid and applicable to the design
¢ Wildcard expansion on the constraints

* Constraints on objects that do not exist

It contains the following sections:

Summary Statement which summarizes the total number of issues
defined as an error or warning (X) out of the total number of
constraints with issues (y) for the total number of constraints
(2) in the .fdc file.

Found <x> issues in <y> out of <z> constraints
Clock Relationship Standard timing report clock table, without slack.

Unconstrained Lists I/O ports that are missing input/output delays.
Start/End Points

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
272 January 2014

Constraint Checking Report

Input and Result Files

Unapplied
constraints

Applicable
constraints with
issues

Constraints with
matching wildcard
expressions

Constraints that cannot be applied because objects do not
exist or the object type check is not valid. See Inapplicable
Constraints, on page 273 for more information.

Constraints will be applied either fully or partially, but there
might be issues that generate warnings which should be
investigated, such as some objects/collections not existing.
Also, whenever at least one object in a list of objects is not
specified with a valid object type a warning is displayed. See
Applicable Constraints With Warnings, on page 274 for more
information.

Lists constraints or collections using wildcard expressions up
to the first 1000, respectively.

Inapplicable Constraints

Refer to the following table for constraints that were not applied because
objects do not exist or the object type check was not valid:

For these constraints... Objects must be...

Attributes

create_clock

Valid definitions

e Ports

* Nets

* Pins

* Registers

* Instantiated buffers

create_generated_clock Clocks
define_compile_point * Region
* View
define_current_design viview
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014

273

Input and Result Files

Constraint Checking Report

For these constraints...

set_false_path
set_multicycle_path
set_path_delay

set_multicycle_path

set_input_delay

set_output_delay

set_reg_input_delay
set_reg_output_delay

Applicable Constraints With Warnings

Objects must be...

For -to or -from objects:
* i:sequential instances
* p:ports

¢ i:black boxes

For -through objects

* n:nets

¢ t:hierarchical ports

* t:pins

Specified as a positive integer

e Input ports
¢ bidir ports

* Output ports
¢ Bidir ports

Sequential instances

The following table lists reasons for warnings in the report file:

For these constraints...

create_clock

set_clock_uncertainty

define_compile_point

define_current_design

Copyright © 2013 Synopsys, Inc.
274

Objects must be...

e Ports

* Nets

¢ Pins

* Registers

* Instantiated buffers

A single object. Multiple objects are
not supported.

A single object. Multiple objects are
not supported.

viview

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Constraint Checking Report Input and Result Files

For these constraints... Objects must be...
set_false path For -to or -from objects:
set_multicycle_path * i:sequential instances
set_path_delay * p:ports

* i:black boxes

For -through objects:

* n:nets

¢ t:hierarchical ports

* t:pins

set_input_delay A single object. Multiple objects are
not supported.

set_output_delay A single object. Multiple objects are
not supported.

set_reg_input_delay A single object. Multiple objects are

set_reg_output_delay not supported.

Sample Constraint Check Report

The following is a sample report generated by constraint checking:

Synopsys Constraint Checker, version maprc, Build 1138R, built Jun 7 2013
Copyright (C) 1994-2013, Synopsys, Inc.

Written on Fri Jun 7 09:42:22 2013
DESIGN INFO ##fHf##H##iHH

Top View: "decode_ top"
Constraint File(s) : "C:\timing 88\FPGA decode top.sdc"
HHHHHE SUMMARY #HHHHEHHHEHEHEHHEHEREHEHE AR R

Found 3 issues in 2 out of 27 constraints

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 275

Input and Result Files Constraint Checking Report

HH### DETATILS ##HHHHHHHHEHEHHE B R

Clock Relationships
K*hkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkx

Starting Ending rise to rise | fall to fall | rise to fall | fall to rise
clk2x clk2x | 24.000 | 24.000 | 12.000 | 12.000
clk2x clk | 24.000 | No paths | No paths | 12.000

clk clk2x | 24.000 | No paths | 12.000 | No paths
clk clk | 48.000 | No paths | No paths | No paths

Note:

'No paths' indicates there are no paths in the design for that pair of clock edges.
'Diff grp' indicates that paths exist but the starting clock and ending clock are in
different clock groups

Unconstrained Start/End Points
dhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkdhkhhkkhkhkhk

p:test_mode

Inapplicable constraints
*khkkkkkkhkhkhkhkhkhkhkhkhkhkhkhhkkkkk

set_false path -from p:next synd -through i:core.tabl.ram loader

@E: |[object "i:core.tabl.ram loader" does not exist

@E: |object "i:core.tabl.ram loader" is incorrect type; "-through" objects must be of
type net (n:), or pin (t:)

Applicable constraints with issues
Kkhkkhkkhkkhkkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhhkkhx

set false path -from {core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.omega_ inst.omega tmp d 1lch([7:0]}

@W: |object "core.decoder.root mult*.root prod pre[*]" is missing qualifier which may
result in undesired results; "-from" objects must be of type clock (c:), inst (i:), port
(p:), or pin (t:)

Constraints with matching wildcard expressions
EEE RS R RS SRS SRS R RS E RS E R EREEEEEEEEEEEEEEEEEEE SRS

set false path -from {core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.omega_inst.omega tmp d 1lch([7:0]}

@N: |expression "core.decoder.root mult*.root prod prel[*]" applies to objects:
core.decoder.root_multl.root prod pre[14:0]
core.decoder.root _mult.root prod pre[14:0]

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
276 January 2014

Constraint Checking Report Input and Result Files

set false path -from {i:core.decoder.*.root prod pre[*]} -to {i:core.decoder.t * [*]}
@N: |expression "core.decoder.*.root prod pre[*]" applies to objects:
core.decoder.root_multl.root prod pre[l4:0]
core.decoder.root mult.root prod pre[l4:0]

@N: |expression "core.decoder.t * [*]" applies to objects:

core.decoder.t_20_ [7:0]

core.decoder.t 19 [7:0]
core.decoder.t_18 [7:0]
core.decoder.t_17 [7:0]
core.decoder.t 16 [7:0]
core.decoder.t_15 [7:0]
core.decoder.t_14 [7:0]
core.decoder.t 13 [7:0]
core.decoder.t_12 [7:0]
core.decoder.t_11 [7:0]
core.decoder.t 10 [7:0]
core.decoder.t_9 [7:0]
core.decoder.t_8 [7:0]
core.decoder.t_7 [7:0]
core.decoder.t_6_[7:0]
core.decoder.t_5_ [7:0]
core.decoder.t_4 [7:0]
core.decoder.t_3_ [7:0]
core.decoder.t_2 [7:0]
core.decoder.t_1 [7:0]
core.decoder.t_0_[7:0]

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.err([7:0]}

N: |expression "core.decoder.root mult*.root prod pre[*]" applies to objects:
core.decoder.root_multl.root_prod pre[14:0]
core.decoder.root mult.root prod pre[l4:0]

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.omega_inst.deg omega[4:0]}

@N: |expression "core.decoder.root mult*.root prod pre[*]" applies to objects:
core.decoder.root_multl.root_ prod pre[14:0]
core.decoder.root mult.root prod pre[l4:0]

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.omega_ inst.omega tmp[0:7]}

@N: |expression "core.decoder.root mult*.root prod pre[*]" applies to objects:
core.decoder.root_multl.root_ prod pre[14:0]
core.decoder.root mult.root prod pre[l4:0]

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.root [7:0]}

@N: |expression "core.decoder.root mult*.root prod pre[*]" applies to objects:
core.decoder.root_multl.root prod pre[14:0]
core.decoder.root mult.root prod pre[l4:0]

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 277

Input and Result Files Constraint Checking Report

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.root_inst.count[3:0]}

N: |expression "core.decoder.root mult*.root prod pre[*]" applies to objects:
core.decoder.root multl.root prod pre[l4:0]
core.decoder.root _mult.root prod pre[14:0]

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.root_inst.q reg[7:0]}

@N: |expression "core.decoder.root mult*.root prod prel[*]" applies to objects:
core.decoder.root multl.root prod pre[l4:0]
core.decoder.root _mult.root prod pre[14:0]

set false path -from {i:core.decoder.root mult*.root prod pre[*]} -to
{i:core.decoder.root_inst.q reg d 1ch[7:0]}

@N: |expression "core.decoder.root mult*.root prod prel[*]" applies to objects:
core.decoder.root multl.root prod pre[l4:0]
core.decoder.root _mult.root prod pre[14:0]

set false path -from {i:core.decoder.root mult.root prod pre[*]} -to
{i:core.decoder.error inst.den[7:0]}

@N: |expression "core.decoder.root mult.root prod pre[*]" applies to objects:
core.decoder.root _mult.root prod pre[14:0]

set false path -from {i:core.decoder.root multl.root prod pre[*]} -to
{i:core.decoder.error inst.numl[7:0]}

@N: |expression "core.decoder.root multl.root prod prel[*]" applies to objects:
core.decoder.root _multl.root prod pre[l4:0]

set_false path -from {i:core.decoder.synd reg * [7:0]} -to {i:core.decoder.b * [7:0]}
@N: |expression "core.decoder.synd reg * [7:0]" applies to objects:
core.decoder.unl _synd reg 0 [7:0]

core.decoder.synd reg 20 [7:0]

core.decoder.synd reg 19 [7:0]

core.decoder.synd reg 18 [7:0]

core.decoder.synd reg 17 [7:0]

core.decoder.synd reg 16 [7:0]

core.decoder.synd reg 15 [7:0]

core.decoder.synd reg 14 [7:0]

core.decoder.synd reg 13 [7:0]

core.decoder.synd reg 12 [7:0]

core.decoder.synd reg 11 [7:0]

core.decoder.synd reg 10
core.decoder.synd reg 9 [
core.decoder.synd reg 8 [
core.decoder.synd reg 7 [
core.decoder.synd reg 6 [
core.decoder.synd reg 5 [
core.decoder.synd reg 4 [
core.decoder.synd reg 3_[
core.decoder.synd reg 2 [
core.decoder.synd reg 1 [

O O O O O O O O O -
2

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
278 January 2014

Constraint Checking Report

Input and Result Files

@N: |expression "core.decoder.b * [7:0]" applies to objects:
core.

core

core.
core.
.decoder

core

core.
core.
core.
core.

core

core.
core.
core.
core.

core

core.
core.

core

core.

core

core.

decoder

.decoder
core.
core.

decoder
decoder
decoder
decoder

decoder
decoder

decoder.
decoder.
.decoder.
decoder.
decoder.
decoder.
decoder.
.decoder.
decoder.
decoder.
.decoder.
decoder.
.decoder.
decoder.

.unl b 0 [7:0]

.b_calc.unl lambda 0 [7:0]
.b 20 [7:
b 19
.b 18 _

b 1
o 1
o 1
b 1

b

o ooooo oo o oo oo

Library Report
kkkhkhkhhkhhhkkkx

N S
R L I R A N S I Al

=
w

[C2le) BN e N I N
o B N

IS

7

[0}

5

IS

RN B B B N |

|
|
O OO0 0000 OO0 O -

~

RN N RN N RN N B Y

End of Constraint

Synplify Pro for Microsemi Edition Reference Manual

January 2014

0]
:0]
:0]
:0]
:0]
:0]
:0]
:0]
:0]
:0]

s s s e e)
=

Checker Report

Copyright © 2013 Synopsys, Inc.
279

Input and Result Files Constraint Checking Report

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
280 January 2014

SYNoPSYS

zcelerating Innovation

CHAPTER 8

Verilog Language Support

This chapter discusses Verilog support in the synthesis tool. SystemVerilog
support is described separately, in Chapter 9, SystemVerilog Language
Support. This chapter includes the following topics:

* Support for Verilog Language Constructs, on page 282
* Verilog 2001 Support, on page 294

* Verilog Synthesis Guidelines, on page 319

* Verilog Module Template, on page 332

* Scalable Modules, on page 333

* Combinational Logic, on page 336

* Combinational Logic, on page 336

* Sequential Logic, on page 342

* Verilog State Machines, on page 353

* Instantiating Black Boxes in Verilog, on page 357

* PREP Verilog Benchmarks, on page 358

* Hierarchical or Structural Verilog Designs, on page 359

* Verilog Attribute and Directive Syntax, on page 366

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 281

Verilog Language Support

Support for Verilog Language Constructs

Support for Verilog Language Constructs

This section describes support for various Verilog language constructs:

¢ Supported and Unsupported Verilog Constructs, on page 282

¢ Ignored Verilog Language Constructs, on page 283

Supported and Unsupported Verilog Constructs

The following table lists the supported and unsupported Verilog constructs. If
the tool encounters an unsupported construct, it generates an error message

and stops.

Supported Verilog Constructs

Net types
wire, tri, tri0, tril

Register types:
* reg, integer, time (64-bit reqg)
e arrays of reg

Gate primitive, module, and
macromodule instantiations

always blocks, user tasks, user
functions

inputs, outputs, and inouts to a module

All operators
+ - *

LI] /5 %7 <, >7 <:’ >:, ::’ Ty Ty T
&&’ ||7 !7 ~7 &’ ~&’ |’ ~I’ A~7 ~A7 A? <<7 >>7
2, {1 {1}, rol, ror

(See Operators, on page 290 for

additional details.)

Procedural statements:

assign, if-else-if, case, casex, casez, for,
repeat, while, forever, begin, end, fork, join

Copyright © 2013 Synopsys, Inc.
282

Unsupported Verilog Constructs

Net types:
trireg, triand, trior, wand, wor, charge strength

Register types:
real

Built-in unidirectional and bidirectional
switches, and pull-up/pull-down

Named events and event triggers

UDPs and specify blocks

Net names:

force, release, and hierarchical net names
(for simulation only)

Procedural statements:

deassign, wait

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Support for Verilog Language Constructs Verilog Language Support

Procedural assignments:
* Blocking assignments =
* Non-blocking assignments <=

Do not use = with <= for the same
register. Use parameter override: #
and defparam (down one level of
hierarchy only).

Continuous assignments

Compiler directives:

“define, Jifdef, ‘ifndef, “else, “elsif, “endif,
‘include, “undef

Miscellaneous:
e Parameter ranges
¢ Local declarations to begin-end block

* Variable indexing of bit vectors on
the left and right sides of
assignments

Ignored Verilog Language Constructs

When it encounters certain Verilog constructs, the tool ignores them and
continues the synthesis run. The following constructs are ignored:

* delay, delay control, and drive strength
* scalared, vectored
* initial block

* Compiler directives (except for “define, “ifdef, “ifndef, “else, “elsif, “endif,
‘include, and “undef, which are supported)

* Calls to system tasks and system functions (they are only for simulation)

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 283

Verilog Language Support Support for Verilog Language Constructs

Data Types

Verilog data types can be categorized into the following general types:
* Net Data Types, on page 284
* Register Data Types, on page 284
* Miscellaneous Data Types, on page 285

Net Data Types

Net data types are used to model physical connections. The following net
types are supported:

wire Connects elements; used with nets driven by a single gate or
continuous assignment

tri Connects elements; used when a net includes more than one
driver

trio Models resistive pulldown device (its value is O when no driver is
present)

tril Models resistive pullup device (its value is 1 when no driver is
present)

While the Synopsys FPGA Verilog compiler allows the use of tri0 and tril nets,
these nets are treated as wire net types during synthesis, and any variable
declared as a tri0 or tril net type behaves as a wire net type. A warning is issued
in the log file alerting you that a tri0 or tril variable is being treated as a wire
net type and that a simulation mismatch is possible.

Register Data Types

The supported register data types are outlined in the following table:

reg A 1-bit wide data type; when more than one bit is required, a
range declaration is included

integer A 32-bit wide data type that cannot include a range declaration

time A 64-bit wide data type that stores simulation time as an unsigned

number; a range declaration is not allowed

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
284 January 2014

Support for Verilog Language Constructs Verilog Language Support

Miscellaneous Data Types

The following data types are also supported:

parameter Specifies a constant value for a variable (see Creating a Scalable
Module, on page 333)

localparam A local constant parameter (see Localparams, on page 309)

genvar A Verilog 2001 temporary variable used for index control within a

generate loop (see Generate Statement, on page 311)

Built-in Gate Primitives

You can create hardware by directly instantiating built-in gates into your
design (in addition to instantiating your own modules). The built-in Verilog
gates are called primitives.

Syntax
gateTypeKeyword [instanceName] (portList) ;

The gate type keywords for simple and tristate gates are listed in the following
tables. The instanceName is a unique instance name and is optional. The signal
names in the portList can be given in any order with the restriction that all
outputs must precede any inputs. For tristate gates, outputs come first, then
inputs, and then enable. The following tables list the supported keywords.

Keyword (Simple Gates) Definition

buf buffer
not inverter
and and gate
nand nand gate
or or gate
nor nor gate
xor exclusive or gate
xnor exclusive nor gate
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 285

Verilog Language Support Support for Verilog Language Constructs

Keyword (Tristate Gates) Definition

bufifl tristate buffer with logic one enable
bufifo tristate buffer with logic zero enable
notifl tristate inverter with logic one enable
notifo tristate inverter with logic zero enable

Port Definitions

Port signals are defined as input, output, or bidirectional and are referred to
as the port list for the module. The three signal declarations are input, output,
and inout as described in the following table.

input An input signal to the module

output An output signal from the module

inout A bidirection signal to/from the module
Statements

Statement types include loop statements, case statements, and conditional
statements as described in the ensuing subsections.

loop Statements

Loop statements are used to modify blocks of procedural statements. The
loop statements include for, repeat, while, and forever as described in the
following table:

for Continues to execute a given statement until the expression
becomes true; the first assignment is executed initially and then
the expression is evaluated repeatly

repeat Executes a given statement a fixed number of times; the number
of executions is defined by the expression following the repeat
keyword.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
286 January 2014

Support for Verilog Language Constructs Verilog Language Support

while Executes a given statement until the expression becomes true

forever Continuously repeats the ensuing statement

case Statements

Case statements select one statement from a list of statements based on the
value of the case expression. A case statement is introduced with a case,
casex, or casez keyword and is terminated with an endcase statement. A case
statement can include a default condition that is taken when none of the case
select expressions is valid.

case allow branching on multiple conditional expressions based on case
statement matching

casex allows branching of multiple conditional expression matching
where any 'x' (unknown) or 'z' value appearing in the case
expression is treated as a don't care

casez allows branching of multiple conditional expression matching
where any 'z' (high impedance) value appearing in the case
expression is treated as a don't care

endcase terminates a case, casex, or casez statement

default assigns a case expression to a default condition when there are no
other matching conditions

Conditional Statements

Conditional statements are used to determine which statement is to be
executed based on a conditional expression. The conditional statements
include if, else, and else if. The simplified syntax for these conditional state-
ments is either:

if (conditionalExpression)

statementl;
else
statement2;
or
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 287

Verilog Language Support Support for Verilog Language Constructs

if (conditionalExpression)
statementl,

else if (conditionalExpression);
statement2;

else
statement3;

The if statement can be used in one of two ways:
* as a single “if-else” statement shown in the first simplified syntax

* as a multiple “if-else-if” statement shown in the second simplified syntax

In the first syntax, when conditionalExpression evaluates true, statementl is
executed, and when conditionalExpression evaluates false, statement?2 is
executed.

In the second syntax, when conditionalExpression evaluates true, statementl
is executed as in the first syntax example. However, when conditionalEx-
pression evaluates false, the second conditional expression (else if) is
evaluated and, depending on the result, either statement2 or statement3 is
executed.

Blocks

Blocks delimit a set of statements. The block is typically introduced by a
keyword that identifies the start of the block, and is terminated by an end
keyword that identifies the end of the block.

module/endmodule Block

The module/endmodule block is the basic compilation unit in Verilog.
Modules are introduced with the module (or macromodule) keyword and are
terminated by the endmodule keyword. For more information, see Verilog
Module Template, on page 332. The following example shows the basic
module syntax.

module add (out, inl, in2);output out;
input inl, in2;

assign out = inl & in2;

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
288 January 2014

Support for Verilog Language Constructs Verilog Language Support

begin/end Block

A begin/end block provides a method of grouping multiple statements into a
always block. The statements within the this block are executed in the order
listed. When a timing control statement is included within the block,
execution of the next statement is delayed until after the timing delay. The
following example illustrates a begin/end block:

module tmp (inl, in2, outl, out2);
input inl, in2;

output outl, out2;

reg outl, out2;

always@ (inl, in2)
begin
outl =(inl & in2);
out2 =(inl | in2);
end
endmodule

fork/join Block

A fork/join block provides a method of grouping multiple statements into a an
always block. The statements within this block are executed simultaneously.
With parallel blocks, because all statements are executed at the same time,
mutually dependent statements are not allowed. The following example illus-
trates a fork/join block:

module tmp (inl, in2, outl, out2);
input inl, in2;

output outl, out2;

reg outl, out2;

always@(inl, in2)

fork
outl =(inl & in2);
out2 =(inl | in2);
join

endmodulefork, join

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 289

Verilog Language Support Support for Verilog Language Constructs

generate/endgenerate Block

A generate block is created using one of the generate-loop, generate-condi-
tional, or generate-case format. The block is introduced with the keyword
generate and terminated with the keyword endgenerate. For more information,
see Generate Statement, on page 311.

Operators

Arithmetic Operators

Arithmetic operators can be used with all data types.

Symbol Usage Function
+ a+b aplusb
- a-b a minus b
* a*b a multiplied by b
/ alb a divided by b
% a%b a modulo b

The / and % operators are supported for compile-time constants and constant
powers of two. For the modulus operator (%), the result takes the sign of the
first operand.

Relational Operators

Relational operators compare expressions. The value returned by a relational
operator is 1 if the expression evaluates true or O if the expression evaluates
false.

Symbol Usage Function

< a<b aisless than b

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
290 January 2014

Support for Verilog Language Constructs Verilog Language Support

> a>b a is greater than b
<= a<=b ais less than or equal to b
= a=>b a equal to or greater than b

Equality Operators

The equality operators compare expressions. When a comparison fails, the
result is O, otherwise it is 1. When both operands of a logical equality (==) or
logical inequality (!=) contain an unknown value (x) or high-impedance (z)
value, the result of the comparison is unknown (x); otherwise the result is
either true or false.

When an operands of case equality (===) or case inequality (!==) contains an
unknown value (x) or high-impedance (z) value, the result is calculated bit-

by-bit.

Symbol Usage Function
== m == m is equal to n
I= m!=n m is not equal to n
=== m === m is identical to n
I== m == m is not identical to n
When an equality (==) or inequality (!=) operator includes unknown bits (for

example, A==4'b10x1 or Al=4'b111z), the Synopsys Verilog compiler assumes
that the output is always False. This assumption contradicts the LRM which
states that the output should be x (unknown) and can result in a possible
simulation mismatch

Logical Operators

Logical operators connect expressions. The result a logical operation is O if
false, 1 if true, or x (unknown) if ambiguous. The negation operator (!)
changes a nonzero or true value of the operand to O or a zero or false value to
1; an ambiguous value results in x (unknown) value.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 291

Verilog Language Support Support for Verilog Language Constructs

Symbol Usage Function
&& a&&b aandb
Il allb aorhb
! la not a

Bitwise Operators

Bitwise operators are described in the following table:

Symbol Usage Function
~ ~m Invert each bit
& mé&n AND each bit
| m|n OR each bit
n m”~n Exclusive OR each bit
~N N~ m-~"n Exclusive NOR each bit
m”~n

Unary Reduction Operators

Unary reduction operators are described in the following table:

Symbol Usage Function

& &m AND all bits

~& ~&m NAND all bits

| [m OR all bits

~| ~|m NOR all bits

A m Exclusive OR all bits

A, N ~"m Exclusive NOR all bits
A~m

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
292 January 2014

Support for Verilog Language Constructs Verilog Language Support

Shift/Rotate Operators

Shift/rotate operators are described in the following table:

Symbol Usage Function
<< m<<n Shift left n times
>> m>>n Shift right n times
rol m rol n Rotate left n times
ror m ror n Rotate right n times

Rol and ror are the rotate left and rotate right operators respectively, and shift
bits by the specified amount. Rol shifts each bit in the left operand by the
number of bits specified in the right operand. Bits in the left-most positions
are shifted to become the right-most bits. For example:

myreg <= myreg rol 2;

Ror shifts each bit in the right operand by the number of bits specified in the
left operand. Bits in the right-most positions are shifted to become the left-
most bits. For example:

myreg <= myreg ror 2;

Miscellaneous Operators

Miscellaneous operators are described in the following table:

Symbol Usage Function
?: sel? m:n If sel is true, select m
{} {m,n} Concatenate m to n
{{}} {n{m}} Replicate m n times
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
293

January 2014

Verilog Language Support

Verilog 2001 Support

Verilog 2001 Support

You can choose the Verilog standard to use for a project or given files within a
project: Verilog ‘95 or Verilog 2001. See File Options Popup Menu Command,
on page 328 and Setting Verilog and VHDL Options, on page 82 of the User
Guide. The synthesis tool supports the following Verilog 2001 features:

Feature

Combined Data, Port Types
(ANSI C-style Modules)

Comma-separated Sensitivity
List

Wildcards (*) in Sensitivity List

Signed Signals

Inline Parameter Assignment by
Name

Constant Function
Configuration Blocks
Localparams

$signed and $unsigned Built-in
Functions

$clog2 Constant Math Function

Generate Statement

Automatic Task Declaration

Copyright © 2013 Synopsys, Inc.
294

Description

Module data and port type declarations can be
combined for conciseness.

Commas are allowed as separators in sensitivity
lists (as in other Verilog lists).

Use @* or @(*) to include all signals in a
procedural block to eliminate mismatches
between RTL and post-synthesis simulation.

Data types net and reg, module ports, integers of
different bases and signals can all be signed.
Signed signals can be assigned and compared.
Signed operations can be performed for vectors
of any length.

Assigns values to parameters by name, inline.

Builds complex values at elaboration time.

Specifies a set of rules that defines the source
description applied to an instance or module.

A constant that cannot be redefined or modified.

Built-in Verilog 2001 function that converts
types between signed and unsigned.

Returns the value of the log base-2 for the
argument passed.

Creates multiple instances of an object in a
module. You can use generate with loops and
conditional statements.

Dynamic allocation and release of storage for
tasks.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Verilog 2001 Support Verilog Language Support

Feature Description

Multidimensional Arrays Groups elements of the declared element type
into multi-dimensional objects.

Variable Partial Select Supports indexed part select expressions (+:
and -:), which use a variable range to provide
access to a word or part of a word.

Cross-Module Referencing Accesses elements across modules.
ifndef and elsif Compiler ‘ifndef and “elsif compiler directive support.
Directives

Combined Data, Port Types (ANSI C-style Modules)

In Verilog 2001, you can combine module data and port type declarations to
be concise, as shown below:

Verilog ‘95

module adder 16 (sum, cout, cin, a, b);
output [15:0] sum;

output cout;

input [15:0] a, b;

input cin;

reg [15:0] sum;

reg cout;

wire [15:0] a, b;

wire cin;

Verilog 2001

module adder 16 (output reg [15:0] sum, output reg cout,
input wire cin, input wire [15:0] a, b);

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 295

Verilog Language Support Verilog 2001 Support

Comma-separated Sensitivity List

In Verilog 2001, you can use commas as separators in sensitivity lists (as in
other Verilog lists).

Verilog ‘95
always @(a or b or cin)
sum = a - b - cin;

always @(posedge clock or negedge reset)
if (!reset)

g <= 0;
else
g <= d;
Verilog 2001

always @(a, b or cin)
sum = a - b - cin;

always @(posedge clock, negedge reset)
if (!reset)

g <= 0;
else
g <= d;

Wildcards (*) in Sensitivity List

In Verilog 2001, you can use @* or @(*) to include all signals in a procedural
block, eliminating mismatches between RTL and post-synthesis simulation.

Verilog ‘95

always @(a or b or cin)
sum = a - b - cin;

Verilog 2001

// Style 1:
always @(*)
sum = a - b - cin;
// Style 2:
always @*
sum = a - b - cin;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
296 January 2014

Verilog 2001 Support Verilog Language Support

Signed Signals

In Verilog 2001, data types net and reg, module ports, integers of different bases
and signals can all be signed. You can assign and compare signed signals,
and perform signed operations for vectors of any length.

Declaration

module adder (output reg signed [31:0] sum,
wire signed input [31:0] a, b;

Assignment
wire signed [3:0] a = 4’sbl001;

Comparison

wire signed [1:0] sel;
parameter p0 = 2’'sb00, pl = 2’sb01l, p2 = 2'sbl0, p3 = 2’'sbll;
case sel
pO:
pl:
p2:
p3:
endcase

Inline Parameter Assignment by Name
In Verilog 2001, you can assign values to parameters by name, inline:
module top(/* port list of top-level signals */);
dff #(.paraml(10), .param2(5)) inst dff(q, d, clk);
endmodule
where:
module dff # (parameter paraml=1l, param2=2) (g, d, clk);
input d, clk;
output g;

endmodule

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 297

Verilog Language Support Verilog 2001 Support

Constant Function

In Verilog 2001, you can use constant functions to build complex values at
elaboration time.

Example — Constant function

module ram
// Verilog 2001 ANSI parameter declaration syntax
(parameter depth= 129,
parameter width=16)
// Verilog 2001 ANSI port declaration syntax
(input clk, we,
// Calculate addr width using Verilog 2001 constant function
input [clogb2 (depth)-1:0] addr,
input [width-1:0] di,
output reg [width-1:0] do);
function integer clogb2;
input [31:0] value;
for (clogb2=0; value>0; clogb2=clogb2+1)
value = value>>1;
endfunction
reg [width-1:0] mem[depth-1:0];

always @(posedge clk) begin

if (we)
begin
mem[addr] <= di;
do<= di;
end
else
do<= mem[addr] ;
end
endmodule
Localparam

In Verilog 2001, localparam (constants that cannot be redefined or modified)
follow the same parameter rules in regard to size and sign. Unlike parameter,
localparam cannot be overidden by a defparam from another module.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
298 January 2014

Verilog 2001 Support Verilog Language Support

Example:
parameter ONE = 1
localparam TWO=2*ONE
localparam [3:0] THREE=TWO+1;
localparam signed [31:0] FOUR=2*TWO;

Configuration Blocks

Verilog configuration blocks define a set of rules that explicitly specify the
exact source description to be used for each instance in a design. A configu-
ration block is defined outside the module. Currently, support is limited to
single configuration blocks.

Syntax

config configName;
design libraryldentifier.moduleName;
default liblist listofLibraries;
configurationRule;

endconfig

Design Statement

The design statement specifies the library and module for which the configu-
ration rule is to defined.

design libraryldentifier.moduleName;
libraryldentifier :- Library Name
moduleName :- Module Name

Default Statement

The default liblist statement lists the library from which the definition of the
module and sub-modules can be selected. A use clause cannot be used in this
statement.

default liblist listof_Libraries;
listofLibraries :- List of Libraries
Configuration Rule Statement

In this section, rules are defined for different instances or cells in the design.
The rules are defined using instance or cell clauses.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 299

Verilog Language Support Verilog 2001 Support

* instance clause — specifies the particular source description for a given
instance in the design.

¢ cell clause — specifies the source description to be picked for a particular
cell/module in a given design.

A configuration rule can be defined as any of the following:
¢ instance clause with liblist
instance moduleName.instance liblist listofLibraries;
* instance clause with use clause

instance moduleName .instance use libraryldentifier.cellName;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
300 January 2014

Verilog 2001 Support Verilog Language Support

¢ cell clause with liblist

cell cellName 1liblist listofLibraries;

¢ cell clause with use clause

cell cellName use libraryldentifier.cellName;

Configuration Block Examples

The following examples illustrate Verilog 2001 configuration blocks.

Example — Configuration with instance clause

The following example has different definitions for the leaf module compiled
into the multlib and xorlib libraries; configuration rules are defined specifically
for instance u2 in the top module to have the definition of leaf module as XOR
(by default the leaf definition is multiplier). This example uses an instance
clause with liblist to define the configuration rule.

//**x***xx*xL,eaf module with the Multiplication definition

// Multiplication definition is compiled to the library "multlib"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add_file -verilog -lib multlib "leaf mult.v"

module leaf
(
//Input Port

input [7:0] di,

input [7:0] d2,
//Output Port

output reg [15:0] dout
) ;

always@*
dout = dl1 * d2;
endmodule //EndModule

J/**x*xxx*x*Leaf module with the XOR definition

// XOR definition is compiled to the library "xorlib"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib xorlib "leaf xor.v"

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 301

Verilog Language Support

Verilog 2001 Support

module leaf
(
//Input Port

input [7:0] d1,

input [7:0] 42,
//Output Port

output reg[l5:0] dout
)i

always@(*)
dout = di1 * d42;
endmodule //EndModule

/[**x*x*x*x*xTop module definition

// Top module definition is compiled to the library "TOPLIB"

// Command to be added in the synplify project file
// specific HDL to a specific library is
// add file -verilog -lib TOPLIB "top.v"

module top

(
//Input Port

input [7:0] di,
input [7:0] d2,
input [7:0] d3,
input [7:0] d4,

//Output Port
output [15:0] doutl,
output [15:0] dout2
)

to compile a

leaf
ul
(
.d1l(d1),
.d2(d2),
.dout (dout1l)
)i
leaf
u2
(
.dl(d3),
.d2(d4),
.dout (dout2)
)i
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
302 January 2014

Verilog 2001 Support Verilog Language Support

endmodule //End Module
//**x**%**xx*Configuration Definition

// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib TOPLIB "cfg.v"

config cfg;
design TOPLIB.top;
default liblist multlib xorlib TOPLIB; //By default the leaf
// definition is Multiplication definition
instance top.u2 liblist xorlib; //For instance u2 the default
// definition is overridden and the "leaf" definition is
// picked from "xorlib" which is XOR.
endconfig //EndConfiguration

Example — Configuration with cell clause

In the following example, different definitions of the leaf module are compiled
into the multlib and xorlib libraries; a configuration rule is defined for cell leaf
that picks the definition of the cell from the multlib library. This example uses
a cell clause with a use clause to define the configuration rule.

[/ *x**x*xx*L,eaf module with the Multiplication definition

// Multiplication definition is compiled to the library "multlib"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib multlib "leaf mult.v"

module leaf
(
//Input Port

input [7:0] di,

input [7:0] d2,
//Output Port

output reg [15:0] dout
)i

always@*
dout = dl1 * d2;
endmodule //EndModule

J/*x*xx*xx*xxLeaf module with the XOR definition

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 303

Verilog Language Support

Verilog 2001 Support

// XOR definition is compiled to the library "xorlib"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

//add_file -verilog -1lib xorlib "leaf xor.v"

module leaf

(

//Input Port
input [7:0]
input [7:0]

//Output Port

output reg[l5:0] dout

)i

always@ (*)
dout = d1 *

[/ **x*%xxx*xTop module definition

di,
dz,

dz;
endmodule //EndModule

// Top module definition is compiled to the library "TOPLIB"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib TOPLIB "top.v"

module top

(
//Input Port

input [7:0]
input [7:0]
input [7:0]
input [7:0]

//Output Port

output [15:0] doutl,
output [15:0] dout2

)i

leaf

ul

(
.dl(d1),
.d2(d2),
.dout (doutl)

)

Copyright © 2013 Synopsys, Inc.
304

di,
dz,
ds,
d4,

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Verilog 2001 Support Verilog Language Support

leaf

u2

(
.dl(d3),
.d2(d4),
.dout (dout2)

) ;
endmodule //End Module

//**x*x**xx*xConfiguration Definition

// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add_file -verilog -lib TOPLIB "cfg.v"

config cfg;
design TOPLIB.top;
default liblist xorlib multlib TOPLIB; //By default the leaf
// definition uses the XOR definition
cell leaf use multlib.leaf; //Definition of the instances ul and
u2
// will be Multiplier which is picked from "multlib"
endconfig //EndConfiguration

Example — Hierarchical reference of the module inside the configuration

In the following example, different definitions of leaf are compiled into the
multlib, addlib, and xorlib libraries; the configuration rule is defined for instance
u2 that is referenced in the hierarchy as the lowest instance module using an
instance clause.

//*x**x*xx*L,eaf module with the Multiplication definition

// Multiplication definition is compiled to the library "multlib"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib multlib "leaf mult.v"

module leaf
(
//Input Port

input [7:0] di,

input [7:0] d2,
//Output Port

output reg [15:0] dout
)i

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 305

Verilog Language Support Verilog 2001 Support

always@*
dout = dl * d2;
endmodule //EndModule

J/**xx*xxx*Leaf module with the XOR definition

// XOR definition is compiled to the library "xorlib"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -lib xorlib "leaf xor.v"

module leaf
(
//Input Port

input [7:0] di,

input [7:0] 42,
//Output Port

output reg[l5:0] dout
)i

always@ (*)
dout = d1 * d2;
endmodule //EndModule

//***x*xx*x*Leaf module with the ADDER definition

// ADDER definition is compiled to the library "addlib"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib xorlib "leaf add.v"

module leaf
(
//Input Port
input [7:0] di,
input [7:0] 42,
//Output Port
output [15:0] dout
)i

assign dout = dl + d2;
endmodule

//****x*x*xSub module definition

// Sub module definition is compiled to the library "SUBLIB"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib SUBLIB "sub.v"

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
306 January 2014

Verilog 2001 Support Verilog Language Support

module sub
(
//Input Port
input [7:0] di,
input [7:0] d2,
input [7:0] d3,
input [7:0] d4,
//Output Port
output [15:0] doutl,
output [15:0] dout2
)i

leaf

ul

(
.di(d1),
.d2(d2),
.dout (dout1)

)i

leaf

u2

(
.d1(d3),
.d2(d4),
.dout (dout2)

)i
endmodule //End Module

[/ *x***xxx*xTop module definition

// Top module definition is compiled to the library "TOPLIB"

// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is

// add file -verilog -1lib TOPLIB "top.v"

module top
(
//Input Port
input [7:0] di,
input [7:0] d2,
input [7:0] d3,
input [7:0] d4,
//Output Port
output [15:0] doutl,
output [15:0] dout2
) ;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 307

Verilog Language Support Verilog 2001 Support

sub

ul

(
.d1l(d1),
.d2(d2),
.d3(d3),
.d4 (d4)

7

.doutl (dout1l),
.dout?2 (dout2)

)i

endmodule //End Module

//**x***x*Configuration Definition

// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the synplify project file to compile a
// specific HDL to a specific library is
// add file -verilog -1lib TOPLIB "cfg.v"

config cfg;
design TOPLIB.top;
default liblist addlib multlib xorlib TOPLIB SUBLIB; //By
default,
//the leaf definition uses the ADDER definition
instance top.ul.u2 liblist xorlib multlib; //For instances u2 is
//referred hierarchy to lowest instances and the default
definition
//is overridden by XOR definition for this instanceendconfig
//EndConfiguration

Limitations

Verilog configuration support is limited to single configuration.
Nested configuration is not supported.

Top-level design name in the project file must match the top-level design
name in the design clause of the configuration construct.

A use clause with the cell name or library name omitted is not supported.

The case where the configuration name and the module name are the
same is not supported.

Mixed HDL configuration is not supported.

Multiple top levels in the design clause are not supported.

Compiling the same configuration file to multiple libraries is not
supported.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
308

January 2014

Verilog 2001 Support Verilog Language Support

Localparams

In Verilog 2001, localparams (constants that cannot be redefined or modified)
follow the same parameter rules in regard to size and sign.

Example:

parameter ONE = 1

localparam TWO=2*ONE

localparam [3:0] THREE=TWO+1;
localparam signed [31:0] FOUR=2*TWO;

$signed and $unsigned Built-in Functions

In Verilog 2001, the built-in Verilog 2001 functions can be used to convert
types between signed and unsigned.

$Ssigned (s); /* Assign signed valued of s to c. */
Sunsigned (s); /* Assign unsigned valued of s to d. */

c
d

$clog2 Constant Math Function

Verilog-2005 includes the $clog2 constant math function which returns the
value of the log base-2 for the argument passed. This system function can be
used to compute the minimum address width necessary to address a memory

of a given size or the minimum vector width necessary to represent a given
number of states.

Syntax
$clog2(argument)

In the above syntax, argument is an integer or vector.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 309

Verilog Language Support Verilog 2001 Support

Example 1 — Constant Math Function Counter

module top

#(parameter COUNT = 256)

//Input

(input clk,
input rst,

//Output

//Function used to compute width based on COUNT value of counter:
output [$clog2 (COUNT)-1:0] dout) ;

reg[$clog2 (COUNT) -1:0] count ;

always@ (posedge clk)

begin
if (rst)
count = 'b0;
else
count = count + 1'bl;
end
assign dout = count;
endmodule

Example 2 — Constant Math Function RAM

module top

#

(parameter DEPTH = 256,
parameter WIDTH = 16)

(

//Input
input clk,
input we,
input rst,

//Function used to compute width of address based on depth of RAM:
input [$clog2 (DEPTH)-1:0] addr,
input [WIDTH-1:0] din,

//Output
output reg[WIDTH-1:0] dout);

reg [WIDTH-1:0] mem[(DEPTH-1) :0];

always @ (posedge clk)
if (rst == 1)
dout = 0;
else
dout = meml[addr] ;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
310 January 2014

Verilog 2001 Support Verilog Language Support

always @(posedge clk)
if (we) mem[addr] = din;

endmodule

Generate Statement

The newer Verilog 2005 generate statement is now supported in Verilog 2001.
Defparams, parameters, and function and task declarations within generate state-
ments are supported. In addition, the naming scheme for registers and
instances is enhanced to include closer correlation to specified generate
symbolic hierarchies. Generated data types have unique identifier names and
can be referenced hierarchically. Generate statements are created using one of
the following three methods: generate-loop, generate-conditional, or generate-
case.

// for loop
generate
begin:Gl
genvar 1i;
for (i=0; i<=7; i=i+1)
begin :inst
adder8 add (sum [8*i+7 : 8*i], cO[i+1],
a[8*i+7 : 8*i], b[8*i+7 : 8*i], cO[i]);
end
end
endgenerate

// if-else
generate
if (adder width < 8)
ripple carry # (adder width) ul (a, b, sum);
else
carry look ahead # (adder width) ul (a, b, sum);
endgenerate

// case
parameter WIDTH=1;
generate
case (WIDTH)
1: adderl x1 (cO0, sum, a, b, ci);
2: adder2 x1 (c0, sum, a, b, ci);
default: adder # width (c0, sum, a, b, ci);
endcase
endgenerate

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 311

Verilog Language Support Verilog 2001 Support

Automatic Task Declaration

In Verilog 2001, tasks can be declared as automatic to dynamically allocate
new storage each time the task is called and then automatically release the
storage when the task exits. Because there is no retention of tasks from one
call to another as in the case of static tasks, the potential conflict of two
concurrent calls to the same task interfering with each other is avoided.
Automatic tasks make it possible to use recursive tasks.

This is the syntax for declaring an automatic task:
task automatic taskName (argument [, argument , ...]) ;

Arguments to automatic tasks can include any language-defined data type
(reg, wire, integer, logic, bit, int, longint, or shortint) or a user-defined datatype
(typedef, struct, or enum). Multidimensional array arguments are not supported.

Automatic tasks can be synthesized but, like loop constructs, the synthesis
tool must be able to statically determine how many levels of recursive calls
are to be made. Automatic (recursive) tasks are used to calculate the factorial
of a given number.

Example

module automatic task (input byte inl,
output bit [8:0] dout);

parameter FACT OP = 3;

bit [8:0] dout tmp;

task automatic factorial (input byte operand,
output bit [8:0] outl);
integer nFuncCall = 0;

begin

if (operand == 0)

begin
outl = 1;

end

else

begin
nFuncCall++;

factorial ((operand-1), outl);
outl = outl * operand;

end
end
endtask
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
312 January 2014

Verilog 2001 Support Verilog Language Support

always comb

factorial (FACT OP,dout tmp) ;
assign dout = dout tmp + inl ;
endmodule

Multidimensional Arrays

In Verilog 2001, arrays are declared by specifying the element address ranges
after the declared identifiers. Use a constant expression, when specifying the
indices for the array. The constant expression value can be a positive integer,
negative integer, or zero. Refer to the following examples.

2-dimensional wire object my_wire is an eight-bit-wide vector with indices from 5 to O.
wire [7:0] my wire [5:0];

3-dimensional wire object my_wire is an eight-bit-wide vector with indices from 5 to O
whose indices are from 3 down to O.

wire [7:0] my wire [5:0] [3:0];

3-dimensional wire object my_wire is an eight-bit-wide vector (-4 to 3) with indices
from -3 to 1 whose indices are from 3 down to O.

wire [-4:3] my wire [-3:1] [3:0];
These examples apply to register types too:

reg [3:0] mem[7:0]; // A regular memory of 8 words with 4
//bits/word.

reg [3:0] mem[7:0][3:0]; // A memory of memories.

There is a Verilog restriction which prohibits bit access into memory words.
Verilog 2001 removes all such restrictions. This applies equally to wires
types. For example:

wire[3:0] my wire([3:0];

assign y = my wirel[2] [1]; // refers to bit 1 of 27d word (word
//does not imply storage here) of my wire.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 313

Verilog Language Support Verilog 2001 Support

Variable Partial Select

In Verilog 2001, indexed partial select expressions (+: and -:), which use a
variable range to provide access to a word or part of a word, are supported.
The software extracts the size of the operators at compile time, but the index
expression range can remain dynamic. You can use the partial select opera-
tors to index any non-scalar variable.

The syntax to use these operators is described below.

vectorName [baseExpression +: widthExpression]
vectorName [baseExpression -: widthExpression]

vectorName Name of vector. Direction in the declaration affects the
selection of bits

baseExpression Indicates the starting point for the array. Can be any legal
Verilog expression.

+: The +: expression selects bits starting at the
baseExpression while adding the widthExpression.
Indicates an upward slicing.

- The -: expression selects bits starting at the
baseExpression while subtracting the widthExpression.
Indicates a downward slicing.

widthExpression Indicates the width of the slice. It must evaluate to a
constant at compile time. If it does not, you get a syntax
error.

This is an example using partial select expressions:

module part select support (down vect, up vect, outl, out2, out3);
output [7:0] outl;
output [1:0] out2;
output [7:0] out3;
input [31:0] down vect;
input [0:31] up vect;
wire [31:0] down vect;
wire [0:31] up vect;
wire [7:0] outl;

wire [1:0] out2;

wire [7:0] out3;

wire [5:0] indexl;
assign indexl = 1;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
314 January 2014

Verilog 2001 Support Verilog Language Support

assign outl = down vect[index1+:8]; // resolves to [8:1]

assign out2 = down vect[index1-:8]; // should resolve to [1:0],
// but resolves to constant 2'b00 instead

assign out3 = up vect [index1+:8]; // resolves to [1:8]

endmodule

For the Verilog code above, the following description explains how to validate
partial select assignments to out2:

* The compiler first determines how to slice down_vect.
— down_vect is an array of [31:0]
— assign out2 = down_vect [1 -: 8] will slice down_vect starting at value 1
down to -6 as [1 : -6], which includes [1, O, -1, -2, -3, -4, -5, -6]
¢ Then, the compiler assigns the respective bits to the outputs.

— out2 [0] = down_vect [-6]
out2 [1] = down_vect [-5]

— Negative ranges cannot be specified, so out?2 is tied to “00”.

— Therefore, change the following expression in the code to:
assign out2 = down_vect [1 -: 2], which resolves to down_vect [1,0]

Cross-Module Referencing

Cross-module referencing is a method of accessing an element across
modules in Verilog and SystemVerilog. Verilog supports accessing elements
across different scopes using the hierarchical reference (.) operator. Cross-
module referencing can also be done on the variable of any of the data types
available in SystemVerilog.

Cross-module referencing can be downward or upward, starting with the top
module.

Downward Cross-Module Referencing

In downward cross-module referencing, you reference elements of lower-level
modules in the higher-level modules through instantiated names. This is the
syntax for a downward cross-module reference:

port/variable = instl.inst2.value; /I XMR Read

instl.inst2.port/variable = value; // XMR Write

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 315

Verilog Language Support

Verilog 2001 Support

In this syntax, instl is the name of an instance instantiated in the top module
and inst2 is the name of an instance instantiated in instl. Value can be a
constant, parameter, or variable. Port/variable is defined/declared once in

the current module.

Example — Downward Read Cross-Module Reference

module top (
input a,
input b,
output c,
output d);

sub instl (.af(a),

endmodule

module sub (
input a,
input b,
output c);

assign ¢ = a
endmodule

.b(b),
assign d = instl.a;

& b;

Example — Downward Write Cross-Module Reference

module top

(input a,
input b,
output c,
output d

)i

sub instl (.a(a),

endmodule

module sub

(input a,
input b,
output c,
output d

)i

assign ¢ = a & b;

endmodule

Copyright © 2013 Synopsys, Inc.
316

-b(b),
assign top.instl.d = a;

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Verilog 2001 Support Verilog Language Support

Upward Cross-Module Referencing

In upward cross-module referencing, a lower-level module references items in
a higher-level module in the hierarchy through the name of the top module.

This is the syntax for an upward reference from a lower module:
port/variable = top.instl.inst2.value; // XMR Read
top.instl.inst2.port/variable = value; // XMR Write

The starting reference is the top-level module. In this syntax, top is the name
of the top-level module, inst1 is the name of an instance instantiated in top
module and inst2 is the name of an instance instantiated in instl. Value can
be a constant, parameter, or variable. Port/variable is the one
defined/declared in the current module.

Example — Upward Read Cross-Module Reference

module top (
input a,
input b,
output c,
output d);

sub instl (.a(a), .b(b), .c(c), .d(d));
endmodule

module sub (
input a,
input b,
output c,
output d);

assign ¢ = a & b;
assign d = top.a;
endmodule

Limitations
The following limitations currently exist with cross-module referencing;:

* Cross-module referencing through an array of instances is not
supported.

* Cross-module referencing into generate blocks is not supported.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 317

Verilog Language Support Verilog 2001 Support

¢ In upward cross-module referencing, the reference must be an absolute
path (an absolute path is always from the top-level module).

* Functions and tasks cannot be accessed through cross-module refer-
ence notation.

* You can only use cross-module referencing with Verilog/SystemVerilog
elements. You cannot access VHDL elements with hierarchical refer-
ences.

ifndef and elsif Compiler Directives

Verilog 2001 supports the ‘ifndef and “elsif compiler directives. Note that the
“ifndef directive is the opposite of “ifdef.

module top (output out) ;
“ifndef a
assign out = 1'b01;
“elsif b
assign out
“else
assign out = 1'b00;
“endif
endmodule

1'b10;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
318 January 2014

Verilog Synthesis Guidelines Verilog Language Support

Verilog Synthesis Guidelines

This section provides guidelines for synthesis using Verilog and covers the
following topics:

* General Synthesis Guidelines, on page 319

¢ Library Support in Verilog, on page 320

¢ Constant Function Syntax Restrictions, on page 324

* Multi-dimensional Array Syntax Restrictions, on page 325

¢ Signed Multipliers in Verilog, on page 326

* Verilog Language Guidelines: always Blocks, on page 327

* Initial Values in Verilog, on page 328

* Cross-language Parameter Passing in Mixed HDL, on page 330

* Library Directory Specification for the Verilog Compiler, on page 331

General Synthesis Guidelines

Some general guidelines are presented here to help you synthesize your
Verilog design. See Verilog Module Template, on page 332 for additional infor-
mation.

* Top-level module — The synthesis tool picks the last module compiled
that is not referenced in another module as the top-level module.
Module selection can be overridden from the Verilog panel of the Implemen-
tation Options dialog box.

* Simulate your design before synthesis to expose logic errors. Logic
errors that you do not catch are passed through the synthesis tool, and
the synthesized results will contain the same logic errors.

* Simulate your design after placement and routing — Have the place-and-
route tool generate a post placement and routing (timing-accurate)
simulation netlist, and do a final simulation before programming your
devices.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 319

Verilog Language Support Verilog Synthesis Guidelines

* Avoid asynchronous state machines — To use the synthesis tool for
asynchronous state machines, make a netlist of technology primitives
from your target library.

* Level-sensitive latches — For modeling level-sensitive latches, use contin-
uous assignment statements.

Library Support in Verilog

Verilog libraries are used to compile design units; this is similar to VHDL
libraries. Use the libraries in Verilog to support mixed-HDL designs, where
the VHDL design includes instances of a Verilog module that is compiled into
a specific library. Library support in Verilog can be used with Verilog 2001
and SystemVerilog designs.

Compiling Design Units into Libraries

By default, the Verilog source files are compiled into the work library. You can
compile these Verilog source files into any user-defined library.

To compile a Verilog file into a user-defined library:
1. Select the file in the Project view.

The library name appears next to the filename; it directly follows the
filename.

2. Right-click and select File Options from the popup menu. Specify the
name for your library in the Library Names field. You can:
— Compile multiple files into the same library.

— Also compile the same file into multiple libraries.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
320 January 2014

Verilog Synthesis Guidelines Verilog Language Support

File Path: [C:‘,desigr1s‘lsystem'u'eriIag_library_update‘lsystem'u'erilng_library‘lsub_signed.'u']

Modified: |15:47:54 02-ov-2009 |

Library Names: [user_lil:urary]
Save File

File Type: |verilng | v|

@ Relative to Project

Verlog Standard: |Use Project Default . v| 1 Absolute Path

[] use for Place and Route only

[] use for Simulation only

0K | | Cancel

Searching for Verilog Design Units in Mixed-HDL Designs

When a VHDL file references a Verilog design unit, the compiler first searches
the corresponding library for which the VHDL file was compiled. If the Verilog
design unit is not found in the user-defined library for which the VHDL file
was compiled, the compiler searches the work library and then all the other
Verilog libraries.

Therefore, to use a specific Verilog design unit in the VHDL file, compile the
Verilog file into the same user-defined library for which the corresponding
VHDL file was compiled. You cannot use the VHDL library clause for Verilog
libraries.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 321

Verilog Language Support Verilog Synthesis Guidelines

Specifying the Verilog Top-level Module

To set the Verilog top-level module for a user-defined library, use library-
Name.moduleName in the Top Level Module field on the Verilog tab of the Imple-
mentation Options dialog box. You can also specify the following equivalent Tcl
command:

set _option -top module "signed.top"

Verilog

Top Level Module: Compiler Directives and Parameters

[mgned.b:up Parameter Mame Value

Verilog Language

verilog 2001
System Verilog

Push Tristates
Allow Duplicate Modules
Multiple File Compilation Unit

Compiler Directives: e.qg. SIZE=8

ﬂ
e
-
Extract Parameters

Limitations
The following functions are not supported:
* Direct Entity Instantiation

* Configuration for Verilog Instances

Example 1: Specifying Verilog Top-level Module—Compiled to the
Non-work Library

//top_unsigned.v compiled into a user defined library - "unsigned"
//add_file -verilog -lib unsigned "./top unsigned.v"

module top (input unsigned [7:0] a, b,

output unsigned [15:0] result);

assign result = a * b;

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
322 January 2014

Verilog Synthesis Guidelines Verilog Language Support

//top_signed.v compiled into a user defined library - "signed"
//add file -verilog -1lib signed "./top signed.v"

module top (input signed [7:0] a, b,

output signed [15:0] result);

assign result = a * b;

endmodule

To set the top-level module from the signed library:

* Specify the prefix library name for the module in the Top Level Module
option in the Verilog panel of the Implementation Options dialog box.

®* set option -top module "signed.top"

Example 2: Referencing Verilog Module from VHDL

This example includes two versions of the Verilog sub module that are
compiled into the signed_lib and unsigned_lib libraries. The compiler uses
the sub module from unsigned_lib when the top.vhd is compiled into
unsigned_lib.

//Sub module sub in sub unsigned is compiled into unsigned 1ib
//add_file -verilog -1lib unsigned lib "./sub unsigned.v"
module sub (input unsigned [7:0] a, b,

output unsigned [15:0] result);

assign result = a * b;

endmodule

//Sub module sub in sub signed is compiled into signed 1ib
//add file -verilog -1lib signed 1ib "./sub signed.v"
module sub (input signed [7:0] a, b,

output signed [15:0] result);

assign result = a * b;

endmodule

//VHDL Top module top is compiled into unsigned lib library
// add file -vhdl -1lib unsigned lib "./top.vhd"
LIBRARY ieee;
USE ieee.std logic 1164 .ALL;
ENTITY top IS
GENERIC (
size t : integer := 8
)i
PORT(a_top : IN std logic vector(size t-1 DOWNTO O0) ;
b top : IN std logic vector(size t-1 DOWNTO O0) ;
result top : OUT std logic vector (2*size t-1 DOWNTO O)
)i

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 323

Verilog Language Support Verilog Synthesis Guidelines

END top;

ARCHITECTURE RTL OF top IS
component sub

PORT (a : IN std logic vector (7 DOWNTO O) ;

b : IN std logic vector (7 DOWNTO 0) ;

result : OUT std logic_ vector (15 DOWNTO O0)) ;
END component ;

BEGIN
Ul : sub
PORT MAP (
a => a top,
b => b top,

result => result top
)i
END ARCHITECTURE RTL;

Constant Function Syntax Restrictions

For Verilog 2001, the syntax for constant functions is identical to the existing
function definitions in Verilog. Restrictions on constant functions are as
follows:

No hierarchal references are allowed

Any function calls inside constant functions must be constant functions
System tasks inside constant functions are ignored

System functions inside constant functions are illegal

Any parameter references inside a constant function should be visible

All identifiers, except arguments and parameters, should be local to the
constant function

Constant functions are illegal inside the scope of a generate statement

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
324

January 2014

Verilog Synthesis Guidelines Verilog Language Support

Multi-dimensional Array Syntax Restrictions

For Verilog 2001, the following examples show multi-dimensional array
syntax restrictions.

reg [3:0] arrayb [7:0] [0:255];

arrayb[1] = 0;
// Illegal Syntax - Attempt to write to elements [1] [0]..[1] [255]

arrayb[1] [12:31] = O;
// Illegal Syntax - Attempt to write to elements [1] [12]..[1][31]

arrayb[1] [0] = O;
// Okay. Assigns 32'b0 to the word referenced by indices [1] [0]

Arrayb[22] [8] = 0;
// Semantic Error, There is no word 8 in 27d dimension.

When using multi-dimension arrays, the association is always from right-to-
left while the declarations are left-to-right.

Example 1

module test (input a,b, output z, input clk, inl, in2);
reg tmp [0:1] [1:0];

always @(posedge clk)
begin
tmp [1]
tmp [1]
tmp [0]
tmp [0]
end
assign z = tmp[inl] [in2];

0] <=
1] <=
0] <=

[
[
[
[1] <=

JUR\ V)

~ b;

endmodule

Example 2

module bb(input [2:0] in, output [2:0] out)
/* synthesis syn black box */;
endmodule

module top (input [2:0] in, input [2:1] dl, output [2:0] out);
wire [2:0] wl[2:1];
wire [2:0] w2[2:1];

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 325

Verilog Language Support Verilog Synthesis Guidelines

generate

begin : ABCD
genvar 1i;
for(i=1; 1 < 3; i = i+1)
begin : CDEF

assign wl[i] = in;
bb my bb(wl[i], w2[i]);
end
end
endgenerate

assign out = w2[dl];

endmodule

Signed Multipliers in Verilog

This section applies only to those using Verilog compilers earlier than version
2001.

The software contains an updated signed multiplier module generator. A
signed multiplier is used in Verilog whenever you multiply signed numbers.
Because earlier versions of Verilog compilers do not support signed data
types, an example is provided on how to write a signed multiplier in your
Verilog design:

module smul4 (a, b, clk, result);

input [3:0]a;

input [3:0]b;

input clk;

output [7:0]result;

wire [3:0] inputa signbits, inputb signbits;
reg [3:0]inputa;

reg [3:0] inputb;

reg [7:0]out, result;

assign inputa signbits = {4{inputal[3]}};
assign inputb signbits = {4{inputb[3]}};

always @(inputa or inputb or inputa signbits or inputb signbits)

begin
out = {inputa signbits, inputa} * {inputb signbits, inputb};
end
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
326 January 2014

Verilog Synthesis Guidelines Verilog Language Support

always @(posedge clk)

begin
inputa = a;
inputb = b;
result = out;

end

endmodule

Verilog Language Guidelines: always Blocks

An always block can have more than one event control argument, provided
they are all edge-triggered events or all signals; these two kinds of arguments
cannot be mixed in the same always block.

Examples

// OK: Both arguments are edge-triggered events
always @(posedge clk or posedge rst)

// OK: Both arguments are signals
always @(A or B)

// No good: One edge-triggered event, one signal
always @(posedge clk or rst)

An always block represents either sequential logic or combinational logic. The
one exception is that you can have an always block that specifies level-sensi-
tive latches and combinational logic. Avoid this style, however, because it is
error prone and can lead to unwanted level-sensitive latches.

An event expression with posedge/negedge keywords implies edge-triggered
sequential logic; and without posedge/negedge keywords implies combina-
tional logic, a level-sensitive latch, or both.

Each sequential always block is triggered from exactly one clock (and optional
sets and resets).

You must declare every signal assigned a value inside an always block as a reg
or integer. An integer is a 32-bit quantity by default, and is used with the
Verilog operators to do two's complement arithmetic.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 327

Verilog Language Support Verilog Synthesis Guidelines

Syntax:
integer [msb:Isb] identifier ;

Avoid combinational loops in always blocks. Make sure all signals assigned in
a combinational always block are explicitly assigned values every time the
always block executes, otherwise the synthesis tool needs to insert level-sensi-
tive latches in the design to hold the last value for the paths that do not
assign values. This is a common source of errors, so the tool issues a warning
message that latches are being inserted into your design.

You will get an error message if you have combinational loops in your design
that are not recognized as level-sensitive latches by the synthesis tool (for
example if you have an asynchronous state machine).

It is illegal to have a given bit of the same reg or integer variable assigned in
more than one always block.

Assigning a 'bx to a signal is interpreted as a “don't care” (there is no 'bx value
in hardware); the synthesis tool then creates the hardware with the most
efficient design.

Initial Values in Verilog

In Verilog, you can now store and pass initial values that the synthesis
software previously ignored. Initial values specified in Verilog only affect the
compiler output. This ensures that the synthesis results match the simula-
tion results. For initial values for RAM, see Initial Values for RAMs, on

page 590.

Initial Values for Registers

The synthesis compiler reads the procedural assign statements with initial
values. It then stores the values, propagates them to inferred logic, and
passes them down stream. The initial values only affect the output of the
compiler; initial value properties are not forward-annotated to the final
netlist.

If synthesis removes an unassigned register that has an initial value, the
initialization values are still propagated forward. If bits of a register are
unassigned, the compiler removes the unassigned bits and propagates the
initial value.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
328

January 2014

Verilog Synthesis Guidelines Verilog Language Support

In the following example (without an initial value specified), register one does
not get any input. If it is not initialized, it is removed during the optimization

process:
RTL View
clk
RTL View
_Zgg‘“__%;; [STU] zg _Hip:o; Q[3:0] -—m_lﬂ’@_ﬁ
| c_2[3.0] o[3:0]

However, if the register is initialized to a value of 1, the compiler ensures that
the initial value is used in synthesis.

module top(a, b, ¢, clk);
input clk;

input [3:0]a, b;

output [3:0]c;

reg [3:0]c =3'b1100;

alwayse@ (posedge clk)
begin
c<= a & b;
end
endmodule

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 329

Verilog Language Support

Verilog Synthesis Guidelines

Technology View
UT2 L 8
. z o
(37 =
=0
.23
L
T2 L 8 FD
~a -
el
e 22} FD
LUTZ L 8 | “Hc[2)(FD)
et INIT = 1
ciock = top|ck
diock_edge = rise
:D [Fol syn_force_seq_prim = C
<21 <A
LuT2. L 8

& 2l0)

Cross-language Parameter Passing in Mixed HDL

The compiler supports the passing of parameters for integers, natural

numbers, real numbers, and strings from Verilog to VHDL. The compiler also
supports the passing of these same generics from VHDL to Verilog.

Copyright © 2013 Synopsys, Inc.
330

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Verilog Synthesis Guidelines Verilog Language Support

Library Directory Specification for the Verilog Compiler

Currently, if a module is instantiated in a module top without a module
definition, the Verilog compiler errors out. Verilog simulators provide a
command line switch (-y libraryDirectory) to specify a set of library directories
which the compiler searches.

Library directories are specified in the Library Directories section in the Verilog
panel of the Implementations Options dialog box.

Example:

If the project has one Verilog file specified
module foo(input a, b, output z);
foobar ul (a, b, z);
endmodule

and the project directories D:/libdir and D:/lib2dir are specified as the library
directories, the following is passed

c_ver some options -y "D:/libdir" -y "D:/lib2dir" more options foo.v

to the Verilog compiler. Then, if foobar.v exists in one of the specified directo-
ries, it is loaded into the compiler.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 331

Verilog Language Support Verilog Module Template

Verilog Module Template

Hardware designs can include combinational logic, sequential logic, state
machines, and memory. These elements are described in the Verilog module.
You also can create hardware by directly instantiating built-in gates into your
design (in addition to instantiating your own modules).

Within a Verilog module you can describe hardware with one or more contin-
uous assignments, always blocks, module instantiations, and gate instantia-
tions. The order of these statements within the module is irrelevant, and all
execute concurrently. The following is the Verilog module template:

module <top module names> (<port lists);

/* Port declarations. followed by wire,
reg, integer, task and function declarations */

/* Describe hardware with one or more continuous assignments,
always blocks, module instantiations and gate instantiations */

// Continuous assignment
wire <result signal name>;
assign <result signal name> = <expressions;

// always block
always @(<event expression>)

begin
// Procedural assignments
// if statements
// case, casex, and casez statements
// while, repeat and for loops
// user task and user function calls
end

// Module instantiation
<module name> <instance name> (<port lists);

// Instantiation of built-in gate primitive
gate type keyword (<port list>);

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
332 January 2014

Scalable Modules Verilog Language Support

The statements between the begin and end statements in an always block
execute sequentially from top to bottom. If you have a fork-join statement in an
always block, the statements within the fork-join execute concurrently.

A disable statement can be included to terminate an active procedure within a
module. As shown in the example, including a disable statement in the
begin/end block prevents the out2 =(inl | in2) expression from being executed.

always@(inl, in?2)
begin : combl

outl =(inl & in2);
disable combl;

out2 =(inl | in2);
endendmodule

You can add comments in Verilog by preceding your comment text with // (two
forward slashes). Any text from the slashes to the end of the line is treated as
a comment, and is ignored by the synthesis tool. To create a block comment,
start the comment with /* (forward slash followed by asterisk) and end the
comment with */ (asterisk followed by forward slash). A block comment can
span any number of lines but cannot be nested inside another block
comment.

Scalable Modules

This section describes creating and using scalable Verilog modules. The
topics include:

* Creating a Scalable Module, on page 333
* Using Scalable Modules, on page 334

Creating a Scalable Module

You can create a Verilog module that is scalable, so that it can be stretched or
shrunk to handle a user-specified number of bits in the port list buses.

Declare parameters with default parameter values. The parameters can be
used to represent bus sizes inside a module.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 333

Verilog Language Support Scalable Modules

Syntax
parameter parameterName = value ;

You can define more than one parameter per declaration by using comma-
separated parameterName = value pairs.

Example

parameter size = 1;
parameter word size = 16, byte size = 8;

Using Scalable Modules

To use scalable modules, instantiate the scalable module and then override
the default parameter value with the defparam keyword. Give the instance
name of the module you are overriding, the parameter name, and the new
value.

Syntax

defparam instanceName.parameterName = newValue ;

Example

big register my register (g, data, clk, rst);
defparam my register.size = 64;

Combine the instantiation and the override in one statement. Use a # (hash
mark) immediately after the module name in the instantiation, and give the
new parameter value. To override more than one parameter value, use a
comma-separated list of new values.

Syntax

moduleName # (newValuesList) instanceName (portList) ;

Example

big register #(64) my register (g, data, clk, rst);

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
334 January 2014

Scalable Modules Verilog Language Support

Creating a Scalable Adder

module adder (cout, sum, a, b, cin);

/* Declare a parameter, and give a default value */
parameter size = 1;
output cout;

/* Notice that sum, a, and b use the value of the size parameter */
output [size-1:0] sum;

input [size-1:0] a, b;

input cin;

assign {cout, sum} = a - b - cin;

endmodule

Scaling by Overriding a Parameter Value with defparam

You can instantiate a Verilog module for the VHDL entity adder and override
its size parameter using the following statement highlighted in the Verilog
code:

module adder8 (cout, sum, a, b, cin);
output cout;

output [7:0] sum;

input [7:0] a, b;

input cin;

adder my adder (cout, sum, a, b, cin);

// Creates my adder as an eight bit adder
defparam my adder.size = 8;
endmodule

Scaling by Overriding the Parameter Value with #

module adderl6 (cout, sum, a, b, cin);
output cout;

You can define a parameter at this level of hierarchy and pass that value
down to a lower-level instance. In this example, a parameter called my_size is
declared. You can declare a parameter with the same name as the lower level
name (size) because this level of hierarchy has a different name range than
the lower level and there is no conflict — but there is no correspondence
between the two names either, so you must explicitly pass the parameter
value down through the hierarchy.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 335

Verilog Language Support Combinational Logic

parameter my size = 16; // I want a 16-bit adder
output [my size-1:0] sum;

input [my size-1:0] a, b;

input cin;

/* my size overrides size inside instance my adder of adder */
// Creates my adder as a 16-bit adder

adder #(my size) my adder (cout, sum, a, b, cin);

endmodule

Combinational Logic

Combinational logic is hardware with output values based on some function
of the current input values. There is no clock, and no saved states. Most
hardware is a mixture of combinational and sequential logic.

You create combinational logic with an always block and/or continuous
assignments.

Combinational Logic Examples

The following combinational logic synthesis examples are included in the
installDirectory /examples /verilog/common_rtl/combinat directory:

Adders

ALU

Bus Sorter

3-to-8 Decoder

8-t0-3 Priority Encoders
Comparator

Multiplexers (concurrent signal assignments, case statements, or if-then-
else statements can be used to create multiplexers; the tool automati-
cally creates parallel multiplexers when the conditions in the branches
are mutually exclusive)

Parity Generator

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
336

January 2014

Combinational Logic Verilog Language Support

* Tristate Drivers

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 337

Verilog Language Support Combinational Logic

always Blocks for Combinational Logic

Use the Verilog always blocks to model combinational logic as shown in the
following template.

always @(event expression)
begin
// Procedural assignment statements,
// 1f, case, casex, and casez statements
// while, repeat, and for loops
// task and function calls
end

When modeling combinational logic with always blocks, keep the following in
mind:

The always block must have exactly one event control (@(event_ expres-
sion)) in it, located immediately after the always keyword.

List all signals feeding into the combinational logic in the event expres-
sion. This includes all signals that affect signals that are assigned inside
the always block. List all signals on the right side of an assignment inside
an always block. The tool assumes that the sensitivity list is complete,
and generates the desired hardware. However, it will issue a warning
message if any signals on the right side of an assignment inside an
always block are not listed, because your pre- and post-synthesis simula-
tion results might not match.

You must explicitly declare as reg or integer all signals you assign in the
always block.

Note: Make sure all signals assigned in a combinational always block

are explicitly assigned values each time the always block executes.
Otherwise, the synthesis tool must insert level-sensitive latches
in your design to hold the last value for the paths that do not
assign values. This will occur, for instance, if there are combina-
tional loops in your design. This often represents a coding error.
The synthesis tool issues a warning message that latches are
being inserted into your design because of combinational loops.
You will get an error message if you have combinational loops in
your design that are not recognized as level-sensitive latches by
the synthesis tool.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
338

January 2014

Combinational Logic Verilog Language Support

Event Expression

Every always block must have one event control (@(event_expression)), that
specifies the signal transitions that trigger the always block to execute. This is
analogous to specifying the inputs to logic on a schematic by drawing wires to
gate inputs. If there is more than one signal, separate the names with the or
keyword.

Syntax
always @ (signall or signal2 ...)

Example
/* The first line of an always block for a multiplexer that
triggers when 'a', 'b' or 'sel' changes */

always @(a or b or sel)

Locate the event control immediately after the always keyword. Do not use the
posedge or negedge keywords in the event expression; they imply edge-sensi-
tive sequential logic.

Example: Multiplexer

See also Comma-separated Sensitivity List, on page 296.
module mux (out, a, b, sel);
output out;

input a, b, sel;
reg out;

always @(a or b or sel)

begin
if (sel)
out = a;
else
out = b;
end
endmodule
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 339

Verilog Language Support Combinational Logic

Continuous Assignments for Combinational Logic

Use continuous assignments to model combinational logic. To create a
continuous assignment:

1. Declare the assigned signal as a wire using the syntax:
wire [msb:Isb] result_signal ;

2. Specify your assignment with the assigh keyword, and give the
expression (value) to assign.

assign result_signal = expression ;

or ...

Combine the wire declaration and assignment into one statement:
wire [msb:Isb] result_signal = expression ;

Each time a signal on the right side of the equal sign (=) changes value, the
expression re-evaluates, and the result is assigned to the signal on the left
side of the equal sign. You can use any of the built-in operators to create the
expression.

The bus range [msb : Isb] is only necessary if your signal is a bus (more than
one bit wide).

All outputs and inouts to modules default to wires; therefore the wire declara-
tion is redundant for outputs and inouts and assign result_signal = expression is
sufficient.

Example: Bit-wise AND

module bitand (out, a, b);

output [3:0] out;

input [3:0] a, b;

/* This wire declaration is not required because "out" is an
output in the port list */

wire [3:0] out;

assign out = a & b;

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
340 January 2014

Combinational Logic

Verilog Language Support

Example: 8-bit Adder

module adder 8 (cout, sum, a, b, cin);
output cout;

output [7:0] sum;

input cin;

input [7:0] a, b;

assign {cout, sum} = a - b - cin;
endmodule

Signed Multipliers

A signed multiplier is inferred whenever you multiply sighed numbers in
Verilog 2001 or VHDL. However, Verilog 95 does not support signed data
types. If your Verilog code does not use the Verilog 2001 standard, you can

implement a signed multiplier in the following way:

module smul4 (a, b, clk, result);
input [3:0]a;

input [3:0]Db;

input clk;

output [7:0]result;

reg [3:0]inputa;

reg [3:0]inputb;

reg [7:0]out, result;

always @(inputa or inputb)
begin

out = {{4{inputa(3]}},inputa} * {{4{inputb[3]}}, inputb};

end

always @(posedge clk)

begin
inputa = a;
inputb = b;
result = out;

end

endmodule

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Copyright © 2013 Synopsys, Inc.
341

Verilog Language Support Sequential Logic

Sequential Logic

Sequential logic is hardware that has an internal state or memory. The state
elements are either flip-flops that update on the active edge of a clock signal
or level-sensitive latches that update during the active level of a clock signal.

Because of the internal state, the output values might depend not only on the
current input values, but also on input values at previous times. A state
machine is sequential logic where the updated state values depend on the
previous state values. There are standard ways of modeling state machines in
Verilog. Most hardware is a mixture of combinational and sequential logic.

You create sequential logic with always blocks and/or continuous assign-
ments.

Sequential Logic Examples

The following sequential logic synthesis examples are included in the install-
Directory /examples/verilog/common_rtl/sequentl directory:

¢ Flip-flops and level-sensitive latches
¢ Counters (up, down, and up/down)
* Register file

* Shift registers

¢ State machines

For additional information on synthesizing flip-flops and latches, see these
topics:

* Flip-flops Using always Blocks, on page 343
* Level-sensitive Latches, on page 344

* Sets and Resets, on page 347

¢ SRL Inference, on page 351

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
342 January 2014

Sequential Logic Verilog Language Support

Flip-flops Using always Blocks

To create flip-flops/registers, assign values to the signals in an always block,
and specify the active clock edge in the event expression.

always Block Template

always @(event expression)
begin

// Procedural statements
end

The always block must have one event control (@(event_expression)) immedi-
ately after the always keyword that specifies the clock signal transitions that
trigger the always block to execute.

Syntax
always @ (edgeKeyword clockName)

where edgeKeyword is posedge (for positive-edge triggered) or negedge (for
negative-edge triggered).

Example
always @(posedge clk)

Assignments to Signals in always Blocks
When assigning signals in an always block:

* Explicitly declare, as a reg or integer, any signal you assign inside an
always block.

* Any signal assigned within an edge-triggered always block will be imple-
mented as a register; for instance, signal g in the following example.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 343

Verilog Language Support Sequential Logic

Example

module dff or (g, a, b, clk);

output g;

input a, b, clk;

reg q; // Declared as reg, since assigned in always block

always @(posedge clk)

begin

g <=a | b;
end
endmodule

In this example, the result of a | b connects to the data input of a flip-flop, and
the q signal connects to the q output of the flip-flop.

Level-sensitive Latches

The preferred method of modeling level-sensitive latches in Verilog is to use
continuous assignment statements.

Example

module latchorl (g, a, b, clk);
output g;
input a, b, clk;

assign g = clk ? (a | b) : qg;
endmodule

Whenever clk, a, or b change, the expression on the right side re-evaluates. If
your clk becomes true (active, logic 1), a | b is assigned to the q output. When
the clk changes and becomes false (deactivated), q is assigned to q (holds the
last value of q). If a or b changes and clk is already active, the new value a | b
is assigned to q.

Although it is simpler to specify level-sensitive latches using continuous
assignment statements, you can create level-sensitive latches from always
blocks. Use an always block and follow these guidelines for event expression
and assignments.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
344 January 2014

Sequential Logic Verilog Language Support

always Block Template

always@ (event expression)
begin // Procedural statements
end

Whenever the assignment to a signal is incompletely defined, the event
expression specifies the clock signal and the signals that feed into the data
input of the level-sensitive latch.

Syntax
always @ (clockName or signall or signal2 ...)

Example
always @(clk or data)
begin
if (clk)
g <= data;
end

The always block must have exactly one event control (@(event_expression)) in
it, and must be located immediately after the always keyword.

Assignments to Signals in always Blocks

You must explicitly declare as reg or integer any signal you assign inside an
always block.

Any incompletely-defined signal that is assigned within a level-triggered
always block will be implemented as a latch.

Whenever level-sensitive latches are generated from an always block, the tool
issues a warning message, so that you can verify if a given level-sensitive
latch is really what you intended. (If you model a level-sensitive latch using
continuous assignment then no warning message is issued.)

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 345

Verilog Language Support

Sequential Logic

Example: Creating Level-sensitive Latches You Want

module latchor2 (g, a, b, clk);

output g;
input a, b, clk;
reg g;
always @(clk or a or b)
begin
if (clk)

g <=a | b;
end
endmodule

If clk, a, or b change, and clk is a logic 1, then set q equal to a|b.

What to do when clk is a logic zero is not specified (there is no else in the if
statement), so when clk is a logic 0, the last value assigned is maintained
(there is an implicit g=q). The synthesis tool correctly recognizes this as a
level-sensitive latch, and creates a level-sensitive latch in your design. The
tool issues a warning message when you compile this module (after examina-
tion, you may choose to ignore this message).

Example: Creating Unwanted Level-sensitive Latches

module mux4tol (out,

output out;

input a, b, c, d;
input [1:0] sel;
reg out;

sel) ;

always @(sel or a or b or ¢ or d)

begin
case (sel)
2'd0: out = a;
2'dl: out = b;
2'd3: out = d
endcase
end
endmodule

Copyright © 2013 Synopsys, Inc.
346

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Sequential Logic Verilog Language Support

In the above example, the sel case value 2'd2 was intentionally omitted.
Accordingly, out is not updated when the select line has the value 2'd2, and a
level-sensitive latch must be added to hold the last value of out under this
condition. The tool issues a warning message when you compile this module,
and there can be mismatches between RTL simulation and post-synthesis
simulation. You can avoid generating level-sensitive latches by adding the
missing case in the case statement; using a “default” case in the case state-
ment; or using the Verilog full_case directive.

Sets and Resets

A set signal is an input to a flip-flop that, when activated, sets the state of the
flip-flop to a logic one. Asynchronous sets take place independent of the
clock, whereas synchronous sets only occur on an active clock edge.

A reset signal is an input to a flip-flop that, when activated, sets the state of
the flip-flop to a logic zero. Asynchronous resets take place independent of
the clock, whereas synchronous resets take place only at an active clock
edge.

Asynchronous Sets and Resets

Asynchronous sets and resets are independent of the clock. When active,
they set flip-flop outputs to one or zero (respectively), without requiring an
active clock edge. Therefore, list them in the event control of the always block,
so that they trigger the always block to execute, and so that you can take the
appropriate action when they become active.

Event Control Syntax

always @ (edgeKeyword clockSignal or edgeKeyword resetSignal or
edgeKeyword setSignal)

EdgeKeyword is posedge for active-high set or reset (or positive-edge triggered
clock) or negedge for active-low set or reset (or negative-edge triggered clockj.

You can list the signals in any order.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 347

Verilog Language Support Sequential Logic

Example: Event Control

// Asynchronous, active-high set (rising-edge clock)
always @(posedge clk or posedge set)

// Asynchronous, active-low reset (rising-edge clock)
always @(posedge clk or negedge reset)

// Asynchronous, active-low set and active-high reset
// (rising-edge clock)
always @(posedge clk or negedge set or posedge reset)

Example: always Block Template with Asynchronous, Active-high reset, set

always @(posedge clk or posedge set or posedge reset)
begin
if (reset) begin

/* Set the outputs to zero */
end else if (set) begin

/* Set the outputs to one */
end else begin

/* Clocked logic */
end
end

Example: flip-flop with Asynchronous, Active-high reset and set

module dffl (g, gb, d, clk, set, reset);

input d, clk, set, reset;

output g, dgb;

// Declare g and gb as reg because assigned inside always

reg q, gb;
always @(posedge clk or posedge set or posedge reset)
begin
if (reset) begin
q <= 0;
gb <= 1;
end else if (set) begin
q<=1;
gb <= 0;

end else begin

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
348 January 2014

Sequential Logic Verilog Language Support

g <= d;
gb <= ~d;
end
end
endmodule

For simple, single variable flip-flops, the following template can be used.
always @(posedge clk or posedge set or posedge reset)

g = reset ? 1'b0 : set ? 1'bl : d;

Synchronous Sets and Resets

Synchronous sets and resets set flip-flop outputs to logic 1 or O (respectively)
on an active clock edge.

Do not list the set and reset signal names in the event expression of an always
block so they do not trigger the always block to execute upon changing.
Instead, trigger the always block on the active clock edge, and check the reset
and set inside the always block first.

RTL View Primitives

The Verilog compiler can detect and extract the following flip-flops with
synchronous sets and resets and display them in the RTL schematic view:

¢ sdffr — flip-flop with synchronous reset

¢ sdffs — flip-flop with synchronous set

¢ sdffrs — flip-flop with both synchronous set and reset

* gsdffpat — vectored flip-flop with synchronous set/reset pattern
* sdffre — enabled flip-flop with synchronous reset

¢ sdffse — enabled flip-flop with synchronous set

* sdffpate — enabled, vectored flip-flop with synchronous set/reset pattern

You can check the name (type) of any primitive by placing the mouse pointer
over it in the RTL view: a tooltip displays the name. The following figure
shows flip-flops with synchronous sets and resets.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 349

Verilog Language Support Sequential Logic

B

[d ==] e
q_fi

resck 'II

clk

v oo

i

qb_fi qh

Event Control Syntax
always @ (edgeKeyword clockName)

In the syntax line, edgeKeyword is posedge for a positive-edge triggered clock or
negedge for a negative-edge triggered clock.

Example: Event Control

// Positive edge triggered
always @(posedge clk)

// Negative edge triggered
always @(negedge clk)

Example: always Block Template with Synchronous, Active-high reset, set

always @(posedge clk)
begin
if (reset) begin
/* Set the outputs to zero */
end else if (set) begin
/* Set the outputs to one */
end else begin
/* Clocked logic */
end
end

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
350 January 2014

Sequential Logic Verilog Language Support

Example: D Flip-flop with Synchronous, Active-high set, reset

module dff2 (g, gb, d, clk, set, reset);
input d, clk, set, reset;

output g, gb;

reg q, gb;

always @(posedge clk)
begin
if (reset) begin
g <= 0;
agb <= 1;
end else if (set) begin
q <= 1;
gb <= 0;
end else begin
g <= d;
gb <= ~d;
end
end
endmodule

SRL Inference

Sequential elements can be mapped into SRLs using an initialization assign-
ment in the Verilog code. You can now infer SRLs with initialization values.
Enable the System Verilog option on the Verilog tab of the Implementation Options
dialog box before you run synthesis.

This is an example of a SRL with no resets. It has four 4-bit wide registers
and a 4-bit wide read address. Registers shift when the write enable is 1.

module test srl(clk, enable, dataIn, result, addr);
input clk, enable;

input [3:0] dataln;

input [3:0] addr;

output [3:0] result;

reg [3:0] regBank[3:0]='{4'h0,4'h1,4'h2,4'h3};
integer i;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 351

Verilog Language Support

Sequential Logic

Copyright © 2013 Synopsys, Inc.
352

always @(posedge clk) begin
if (enable == 1) begin
for (i=3; 1>0; i=i-1) begin
regBank [1] <= regBank[i-1];
end
regBank [0] <= dataln;
end
end

assign result = regBank [addr];
endmodule

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Verilog State Machines Verilog Language Support

Verilog State Machines

This section describes Verilog state machines: guidelines for using them,
defining state values, and dealing with asynchrony. The topics include:

* State Machine Guidelines, on page 353
* State Values, on page 355

* Asynchronous State Machines, on page 356

State Machine Guidelines

A finite state machine (FSM) is hardware that advances from state to state at
a clock edge.

The synthesis tool works best with synchronous state machines. You
typically write a fully synchronous design and avoid asynchronous paths
such as paths through the asynchronous reset of a register. See Asynchro-
nous State Machines, on page 356, for information about asynchronous state
machines.

* The state machine must have a synchronous or asynchronous reset, to
be inferred. State machines must have an asynchronous or synchro-
nous reset to set the hardware to a valid state after power-up, and to
reset your hardware during operation (asynchronous resets are avail-
able freely in most FPGA architectures).

* You can define state machines using multiple event controls in an always
block only if the event control expressions are identical (for example,
@(posedge clk)). These state machines are known as implicit state
machines. However it is better to use the explicit style described here
and shown in Example - FSM Coding Style, on page 354.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 353

Verilog Language Support Verilog State Machines

Separate the sequential from the combinational always block statements.
Besides making it easier to read, it makes what is being registered very
obvious. It also gives better control over the type of register element
used.

Represent states with defined labels or enumerated types.

Use a case statement in an always block to check the current state at the
clock edge, advance to the next state, then set the output values. You
can use if statements in an always block, but stay with case statements,
for consistency.

Always use a default assignment as the last assignment in your case
statement and set the state variable to 'bx.

Set encoding style with the syn_encoding directive. This attribute
overrides the default encoding assigned during compilation. The default
encoding is determined by the number of states where a non-default
encoding is implemented if it produces better results. See Values for
syn_enum_encoding, on page 52 for a list of default and other encod-
ings. When you specify a particular encoding style with syn_encoding,
that value is used during the mapping stage to determine encoding
style.

object /*synthesis syn_encoding="sequential"*/,
See syn_encoding, on page 43, for details about the syntax and values.

One-hot implementations are not always the best choice for state
machines, even in FPGAs and CPLDs. For example, one-hot state
machines might result in larger implementations, which can cause
fitting problems. An example in an FPGA where one-hot implementation
can be detrimental is a state machine that drives a large decoder, gener-
ating many output signals. In a 16-state state machine, for instance, the
output decoder logic might reference sixteen signals in a one-hot imple-
mentation, but only four signals in a sequential representation.

Example — FSM Coding Style

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
354

January 2014

Verilog State Machines Verilog Language Support

default: state = 'bx;

Assigning 'bX to the state variable (a “don't care” for synthesis) tells the tool
that you have specified all the used states in your case statement. Any
remaining states are not used, and the synthesis tool can remove unneces-
sary decoding and gates associated with the unused states. You do not have
to add any special, non-Verilog directives.

If you set the state to a used state for the default case (for example, default state
=statel), the tool generates the same logic as if you assign 'bx, but there will be
pre- and post-synthesis simulation mismatches until you reset the state
machine. These mismatches occur because all inputs are unknown at start
up on the simulator. You therefore go immediately into the default case,
which sets the state variable to statel. When you power up the hardware, it
can be in a used state, such as state2, and then advance to a state other than
statel. Post-synthesis simulation behaves more like hardware with respect to
initialization.

State Values

In Verilog, you must give explicit state values for states. You do this using
parameter or "define statements. It is recommended that you use parameter, for
the following reasons:

* The ‘define is applied globally whereas parameter definitions are local.
With global "define definitions, you cannot reuse common state names
that you might want to use in multiple designs, like RESET, IDLE, READY,
READ, WRITE, ERROR and DONE. Local definitions make it easier to reuse
certain state names in multiple FSM designs. If you work around this
restriction by using ‘undef and then redefining them with “define in the
new FSM modules, it makes it difficult to probe the internal values of
FSM state buses from a testbench and compare them to state names.

* The tool only displays state names in the FSM Viewer if they are defined
using parameter.

Example 1: Using Parameters for State Values

parameter statel = 2'hl, state2 = 2'h2;

current state = state2; // Setting current state to 2'h2

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 355

Verilog Language Support Verilog State Machines

Example 2: Using “define for State Values

“define statel 2'hl
“define state2 2'h2
current state = “state2; // Setting current state to 2'h2

Asynchronous State Machines

Avoid defining asynchronous state machines in Verilog. An asynchronous
state machine has states, but no clearly defined clock, and has combina-
tional loops.

Do not use tools to design asynchronous state machines; the synthesis tool
might remove your hazard-suppressing logic when it performs logic optimiza-
tion, causing your asynchronous state machines to work incorrectly.

The synthesis tool displays a “Found combinational loop” warning message
for an asynchronous state machine when it detects combinational loops in
continuous assignment statements, always blocks, and built-in gate-primitive
logic.

To create asynchronous state machines, do one of the following:

* To use Verilog, make a netlist of technology primitives from your target
library. Any instantiated technology primitives are left in the netlist, and
not removed during optimization.

* Use a schematic editor (and not Verilog) for the asynchronous state
machine part of your design.

The following asynchronous state machine examples generate warning
messages.

Example — Asynchronous FSM with Continuous Assignment

Example — Asynchronous FSM with an always Block

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
356 January 2014

Instantiating Black Boxes in Verilog Verilog Language Support

Instantiating Black Boxes in Verilog

Black boxes are modules with just the interface specified; internal informa-
tion is ignored by the software. Black boxes can be used to directly instan-
tiate:

* Technology-vendor primitives and macros (including I/Os).

* User-designed macros whose functionality was defined in a schematic
editor, or another input source. (When the place-and-route tool can
merge design netlists from different sources.)

Black boxes are specified with the syn_black_box directive. If the macro is an
I/0, use black_box_pad_pin=1 on the external pad pin. The input, output, and
delay through a black box is specified with special black box timing directives
(see syn_black_box, on page 37).

For most of the technology-vendor architectures, macro libraries are provided
(in installDirectory/lib /technology /family.v) that predefine the black boxes for their
primitives and macros (including I/Os).

Verilog simulators require a functional description of the internals of a black
box. To ensure that the functional description is ignored and treated as a
black box, use the translate_off and translate_on directives. See
translate_off/translate_on, on page 180 for information on the translate_off and
translate_on directives.

If the black box has tristate outputs, you must define these outputs with a
black_box_tri_pins directive (see black box_tri_pins, on page 22).

For information on how to instantiate black boxes and technology-vendor
I/Os, see Defining Black Boxes for Synthesis, on page 294 of the User Guide.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 357

Verilog Language Support PREP Verilog Benchmarks

PREP Verilog Benchmarks

PREP (Programmable Electronics Performance) Corporation distributes
benchmark results that show how FPGA vendors compare with each other in
terms of device performance and area. The following PREP benchmarks are
included in the installDirectory /examples/verilog/common_rtl/prep:

e PREP Benchmark 1, Data Path (prepl.v)

* PREP Benchmark 2, Timer/Counter (prep2.v)

* PREP Benchmark 3, Small State Machine (prep3.v)

* PREP Benchmark 4, Large State Machine (prep4.v)

¢ PREP Benchmark 5, Arithmetic Circuit (prep5.v)

¢ PREP Benchmark 6, 16-Bit Accumulator (prep6.v)

* PREP Benchmark 7, 16-Bit Counter (prep7.v)

* PREP Benchmark 8, 16-Bit Pre-scaled Counter (prep8.v)
* PREP Benchmark 9, Memory Map (prep9.v)

The source code for the benchmarks can be used for design examples for
synthesis or for doing your own FPGA vendor comparisons.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
358 January 2014

Hierarchical or Structural Verilog Designs Verilog Language Support

Hierarchical or Structural Verilog Designs

This section describes the creation and use of hierarchical Verilog designs:
* Using Hierarchical Verilog Designs, on page 359
* Creating a Hierarchical Verilog Design, on page 359
* synthesis Macro, on page 361

* text Macro, on page 362

Using Hierarchical Verilog Designs

The software accepts and processes hierarchical Verilog designs. You create
hierarchy by instantiating a module or a built-in gate primitive within
another module.

The signals connect across the hierarchical boundaries through the port list,
and can either be listed by position (the same order that you declare them in
the lower-level module), or by name (where you specify the name of the lower-
level signals to connect to).

Connecting by name minimizes errors, and can be especially advantageous
when the instantiated module has many ports.

Creating a Hierarchical Verilog Design
To create a hierarchical design:
1. Create modules.

2. Instantiate the modules within other modules. (When you instantiate
modules inside of others, the ones that you have instantiated are
sometimes called “lower-level modules” to distinguish them from the
“top-level” module that is not inside of another module.)

3. Connect signals in the port list together across the hierarchy either “by
position” or “by name” (see the examples, below).

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 359

Verilog Language Support Hierarchical or Structural Verilog Designs

Example: Creating Modules (Interfaces Shown)

module mux(out, a, b, sel); // mux
output [7:0] out;

input [7:0] a, b;

input sel;

// mux functionality

endmodule

module reg8(q, data, clk, rst); // Eight-bit register
output [7:0] q;

input [7:0] data;

input clk, rst;

// Eight-bit register functionality

endmodule

module rotate(q, data, clk, r 1, rst); // Rotates bits or loads
output [7:0] q;

input [7:0] data;

input clk, r 1, rst;

// When r 1 is high, it rotates; if low, it loads data

// Rotate functionality

endmodule

Example: Top-level Module with Ports Connected by Position

module topl(g, a, b, sel, r 1, clk, rst);
output [7:0] q;

input [7:0] a, b;

input sel, r 1, clk, rst;

wire [7:0] mux out, reg out;

// The order of the listed signals here will match

// the order of the signals in the mux module declaration.
mux mux 1 (mux out, a, b, sel);

reg8 reg8 1 (reg out, mux out, clk, rst);

rotate rotate 1 (g, reg out, clk, r 1, rst);

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
360 January 2014

Hierarchical or Structural Verilog Designs Verilog Language Support

Example: Top-level Module with Ports Connected by Name

module top2(g, a, b, sel, r 1, clk, rst);
output [7:0] q;

input [7:0] a, b;

input sel, r 1, clk, rst;

wire [7:0] mux out, reg out;

/* The syntax to connect a signal "by name" is:
.<lower level signal name>(<local signal name>)

*/

mux mux 1 (.out(mux out), .a(a), .b(b), .sel(sel));

/* Ports connected "by name" can be in any order */
)4 34

reg8 reg8 1 (.clk(clk), .data(mux out), .g(reg out), .rst(rst));
rotate rotate 1 (.gq(q), .data(reg out), .clk(clk),

.r 1(r 1), .rst(rst));
endmodule

synthesis Macro

Use this text macro along with the Verilog ‘ifdef compiler directive to condi-
tionally exclude part of your Verilog code from being synthesized. The most
common use of the synthesis macro is to avoid synthesizing stimulus that only
has meaning for logic simulation.

The synthesis macro is defined so that the statement ‘ifdef synthesis is true. The
statements in the ‘ifdef branch are compiled; the stimulus statements in the
“else branch are ignored.

Note: Because Verilog simulators do not recognize a synthesis macro,
the compiler for your simulator will use the stimulus in the “else
branch.

In the following example, an AND gate is used for synthesis because the tool
recognizes the synthesis macro to be defined (as true); the assign c =a & b branch
is taken. During simulation, an OR gate is used instead, because the
simulator does not recognize the synthesis macro to be defined; the assign
c=a|b branch is taken.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 361

Verilog Language Support Hierarchical or Structural Verilog Designs

Note: A macro in Verilog has a nonzero value only if it is defined.

module top (a,b,c);
input a,b;
output c;
“ifdef synthesis
assign ¢ = a & b;
“else
assign ¢ = a | b;
“endif
endmodule

text Macro

The directive define creates a macro for text substitution. The compiler substi-
tutes the text of the macro for the string macroName. A text macro is defined
using arguments that can be customized for each individual use.

The syntax for a text macro definition is as follows.
textMacroDefinition ::= define textMacroName macroText
textMacroName ::= textMacroldentifier[(formalArgumentList)]
formalArgumentList ::= formalArgumentldentifier {, formalArgumentldentifier}

When formal arguments are used to define a text macro, the scope of the
formal argument is extended to the end of the macro text. You can use a
formal argument in the same manner as an identifier.

A text macro with one or more arguments is expanded by replacing each
formal argument with the actual argument expression.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
362 January 2014

Hierarchical or Structural Verilog Designs

Verilog Language Support

Example 1
“define MIN(pl, p2) (pl)<(p2)?(pl):
module examplel(il, i2, o);
input i1, i2;
output o;
reg o;
always @(il, i2) begin
o = "MIN(il, i2);
end
endmodule
Example 2
“define SQR OF MAX(al, a2) ("MAX(al,

“define MAX(plT r2)

module example2(il, i2, o);
input i1, i2;

output o;

reg o;

always @(il, i2) begin

o =
end
endmodule

“SQR OF MAX(il, 12);

Example 3

Include File ppm_top_ports_def.inc
//ppm_top ports def.inc

a2))*("MAX (al, a2))

(pl) < (p2)? (pl) : (p2)

// Single source definition for module ports and signals

// of PPM TOP.
// Input

“DEF DOT “DEF_IN([7:0]) in testl “DEF PORT (in testl)
“DEF DOT “DEF_IN([7:0]) in test2 “DEF PORT (in test2)

// In/Out

// “DEF_DOT “DEF_INOUT([7:0]) io busl “DEF_PORT (io busl)

// Output
"DEF_DOT "DEF_OUT([7:0]) out_test2

Synplify Pro for Microsemi Edition Reference Manual
January 2014

“DEF_END
“DEF_END

“DEF_END

"DEF_PORT (out_test2)

Copyright © 2013 Synopsys, Inc.
363

Verilog Language Support Hierarchical or Structural Verilog Designs

// No DEF _END here...

“undef DEF_ IN
“undef DEF INOUT
“undef DEF_OUT
“undef DEF_END
“undef DEF DOT
“undef DEF_ PORT

Verilog File top.v
// top.v

“define INC TYPE 1
module ppm_ top (
“ifdef INC TYPE

// Inc file Port def...
“define DEF IN(argl) /* argl */
“define DEF_INOUT (argl) /* argl */
“define DEF OUT (argl) /* argl */
“define DEF END ,
“define DEF DOT /* nothing */
“define DEF PORT (argl) /* argl */

“include "ppm top ports def.inc"
“else
// Non-Inc file Port def, above defines should expand to
// what is below...
/* nothing */ /* [7:0] */ in testl /* in testl */ ,
/* nothing */ /* [7:0] */ in test2 /* in test2 */ ,

// In/Out
// DEF_DOT “DEF INOUT ([7:0]) io busl “DEF_PORT (io busl)
“DEF_END

// Output
/* nothing */ /* [7:0] */ out test2 /* out test2 */
// No DEF END here...
“endif

)i

“ifdef INC TYPE
// Inc file Signal type def...
“define DEF IN(argl) input argl

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
364 January 2014

Hierarchical or Structural Verilog Designs Verilog Language Support

“define DEF INOUT (argl) inout argl
“define DEF OUT (argl) output argl
“define DEF END ;

“define DEF DOT /* nothing */
“define DEF PORT (argl) /* argl */

“include "ppm top ports def.inc"
“else
// Non-Inc file Signal type def, defines should expand to
// what is below. ..
/* nothing */ input [7:0] in testl /* in testl */ ;
/* nothing */ input [7:0] in test2 /* in test2 */ ;

// In/Out
// DEF_DOT “DEF_INOUT([7:0]) io busl “DEF PORT (io busl) “DEF_END

// Output
/* nothing */ output [7:0] out test2 /* out test2) */
// No DEF_END here...

“endif
; /* Because of the 'No DEF END here...' in line of the include
file. */
assign out test2 = (in testl & in test2);
endmodule
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 365

Verilog Language Support Verilog Attribute and Directive Syntax

Verilog Attribute and Directive Syntax

Verilog attributes and directives allow you to associate information with your
design to control the way it is analyzed, compiled, and mapped.

e Attributes direct the way your design is optimized and mapped during
synthesis.

* Directives control the way your design is analyzed prior to mapping.
They must therefore be included directly in your source code; they
cannot be specified in a constraint file like attributes.

Verilog does not have predefined attributes or directives for synthesis. To
define directives or attributes in Verilog, attach them to the appropriate
objects in the source code as comments. You can use either of the following
comment styles:

* Regular line comments

* Block or C-style comments

Each specification begins with the keyword synthesis. The directive or attribute
value is either a string, placed within double quotes, or a Boolean integer (O
or 1). Directives, attributes, and their values are-case sensitive and are
usually in lower case.

Attribute Syntax and Examples using Verilog Line Comments
Here is the syntax using a regular Verilog comment:
/I synthesis directive | attribute [= "value"]
This example shows how to use the syn_hier attribute:
// synthesis syn hier = "firm"
This example shows the parallel_case directive:
// synthesis parallel case

This directive forces a multiplexed structure in Verilog designs. It is implicitly
true whenever you use it, which is why there is no associated value.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
366 January 2014

Verilog Attribute and Directive Syntax Verilog Language Support

Attribute Syntax and Examples Using Verilog C-Style Comments

Here is the syntax for specifying attributes and directives with the C-style
block comment:

/* synthesis directive | attribute [= "value"] */
This example shows the syn_hier attribute specified with a C-style comment:
/* synthesis syn hier = "firm" */

The following are some other rules for using C-style comments to define attri-
butes:

¢ Ifyou use C-style comments, you must place the comment after the
object declaration and before the semicolon of the statement. For
example:

module bl box(out, in) /* synthesis syn black box */ ;

* To specify more than one directive or attribute for a given design object,
place them within the same comment, separated by a space. Do not use
commas as separators. Here is an example where the syn_preserve and
syn_state_machine directives are specified in a single comment:

module radhard dffrs(qg,d,c,s,r)
/* synthesis syn preserve=1l syn state machine=0 */;

* To make source code more readable, you can split long block comment
lines by inserting a backslash character (\) followed immediately by a
newline character (carriage return). A line split this way is still read as a
single line; the backslash causes the newline following it to be ignored.
You can split a comment line this way any number of times. However,
note these exceptions:

— The first split cannot occur before the first attribute or directive

specification.
— A given attribute or directive specification cannot be split before its
equal sign (=).
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 367

Verilog Language Support Verilog Attribute and Directive Syntax

Take this block comment specification for example:
/* synthesis syn probe=1 xc_loc="P20,P21,P22,P23,P24,P25,P26,P27" */;

You cannot split the line before you specify the first attribute, syn probe.
You cannot split the line before either of the equal signs (syn probe= or
xc_loc=). You can split it anywhere within the string value
"pP20,P21,P22,P23,P24,P25,P26,P27".

Attribute Examples Using Verilog 2001 Parenthetical Comments

Here is the syntax for specifying attributes and directives as Verilog 2001
parenthetical comments:

(* directive |attribute [= "value"] *)

Verilog 2001 parenthetical comments can be applied to:
* individual objects
* multiple objects

¢ individual objects within a module definition

The following example shows two syn_keep attributes specified as parenthet-
ical comments:

module examplel (outl, out2, clk, inl, in2);
output outl, out2;

input clk;

input inl, in2;

wire and out;

(* syn keep=1 *) wire keepl;
(* syn keep=1 *) wire keep2;
reg outl, out2;

assign and out=inlé&in2;
assign keepl=and out;

assign keep2=and out;

always @(posedge clk)begin;
outl<=keepl;
out2<=keep2;

end

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
368 January 2014

Verilog Attribute and Directive Syntax Verilog Language Support

For the above example, a single parenthetical comment could be added
directly to the reg statement to apply the syn_keep attribute to both outl and

out2:

(* syn keep=1 *) reg outl, out2;

The following rules apply when using parenthetical comments to define attri-
butes:

Always place the comment before the design object (and terminating
semicolon). For example:

(* syn black box *) module bl box(out, in);

To specify more than one directive or attribute for a given object, place
the attributes within the same parenthetical comment, separated by a
space (do not use commas as separators). The following example shows
the syn_preserve and syn_state_machine directives applied in a single
parenthetical comment:

(* syn preserve=1l syn state machine=0 *)
module radhard dffrs(q,d,c,s,r);

Parenthetical comments can be applied to individual objects within a
module definition. For example,

module example2 (outl, (*syn preserve=1l*) out2, clk, inl, in2);
applies a syn_preserve attribute to out2, and

module example2 ((*syn preserve=1*) outl,
(*syn preserve=1*) out2, clk, inl, in2);

applies a syn_preserve attribute to both outl and out2

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 369

Verilog Language Support Verilog Attribute and Directive Syntax

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
370 January 2014

SYNOPSYs

erating Innovation

CHAPTER 9

SystemVerilog Language Support

This chapter describes support for the SystemVerilog standard in the
Synopsys FPGA synthesis tools. For information on the Verilog standard, see
Chapter 8, Verilog Language Support. The following describe SystemVerilog-
specific support:

Synplify Pro for Microsemi Edition Reference Manual

Feature Summary, on page 372

Unsized Literals, on page 377

Data Types, on page 377

Arrays, on page 385

Data Declarations, on page 389

Operators and Expressions, on page 396
Procedural Statements and Control Flow, on page 407
Processes, on page 411

Tasks and Functions, on page 416

Hierarchy, on page 420

Interface, on page 428

System Tasks and System Functions, on page 436
Generate Statement, on page 438

Assertions, on page 444

Keyword Support, on page 448

January 2014

Copyright © 2013 Synopsys, Inc.

371

SystemVerilog Language Support Feature Summary

Feature Summary

SystemVerilog is an IEEE (P1800) standard with extensions to the IEEE
Std.1364-2001 Verilog standard. The extensions integrate features from C,
C++, VHDL, OVA, and PSL. The following table summarizes the SystemVer-
ilog features currently supported in the Synopsys FPGA Verilog compilers.
See SystemVerilog Limitations, on page 375 for a list of limitations.

Feature Brief Description

Unsized Literals Specification of unsized literals as
single-bit values without a base
specifier.

Data Types Data types that are a hybrid of both

« Typedefs Verilog and C including:

+ Enumerated Types » User-defined types that allow you

to create new type definitions from
existing types
i i * Variables and nets defined with a
» Static Casting specific set of named values

» Structure data type to represent
collections of variables referenced
as a single name

¢ Struct Construct
¢ Union Construct

e Data type collections sharing the
same memory location

¢ Conversion of one data type to
another data type.

Arrays Packed, unpacked, and multi-
e Arrays dimensional arrays of structures.

* Arrays of Structures

Data Declarations Data declarations including
e Constants constant, variable, net, and

« Variables parameter data types.

* Nets
e Data Types in Parameters
* Type Parameters

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
372 January 2014

Feature Summary

SystemVerilog Language Support

Feature

Operators and Expressions

Procedural Statements and Control Flow

Operators

Aggregate Expressions

Streaming Operator

Set Membership Operator

Set Membership Case Inside Operator
Type Operator

Do-While Loops

For Loops

Unnamed Blocks

Block Name on end Keyword
Unique and Priority Modifiers

Processes

always_comb
always_latch
always_ff

Tasks and Functions

Implicit Statement Group
Formal Arguments
endtask /endfunction Names

Hierarchy

Compilation Units
Packages

Port Connection Constructs
Extern Module

Interface

Interface Construct
Modports

System Tasks and System Functions

$bits System Function
Array Querying Functions

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Brief Description

C assignment operators and special
bit-wise assignment operators.

Procedural statements including
variable declarations and block
functions.

Specialized procedural blocks that
reduce ambiguity and indicate the
intent.

Information on implicit grouping for
multiple statements, passing formal
arguments, and naming end

statements for functions and tasks.

Permits sharing of language-defined
data types, user-defined types,
parameters, constants, function
definitions, and task definitions
among one or more compilation
units, modules, or interfaces (pkgs)

Interface data type to represent port
lists and port connection lists as
single name.

Queries to returns number of bits
required to hold an expression as a
bit stream or array.

Copyright © 2013 Synopsys, Inc.
373

SystemVerilog Language Support Feature Summary

Feature Brief Description

Generate Statement: Conditional Generate Generate-loop, generate-conditional,

Constructs or generate-case statements with
defparams, parameters, and
function and task declarations.

Conditional if-generate and case-
generate constructs

Assertions: SVA System Functions SystemVerilog assertion support.
Keyword Support Supported and unsupported
keywords.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
374 January 2014

Feature Summary SystemVerilog Language Support

SystemVerilog Limitations

The following SystemVerilog limitations are present in the current release.

Interface
* An array of interfaces cannot be used as a module port.
* An interface cannot have a multi-dimensional port.

* Access of array type elements outside of the interface are not supported.
For example:

interface ff if (input logic din, input [7:0] DHAinl,
input [7:0] DHAin2, output logic dout) ;
logic [1:0] [1:0] [1:0] DHAout intf;

always comb
DHAout intf = DHAinl + DHAin2;

modport write (input din, output dout) ;
endinterface: ff if

ff if ff if top(.*);

DHAout = ff if top.DHAout intf;

* Modport definitions within a Generate block are not supported. For
example:

interface myintf if (input logic [7:0] a , input logic [7:0] b,
output logic [7:0] outl, output logic [7:0] out2);

generate
begin: x
genvar 1i;

for (i = 0;1 <= 7;i=1+1)
begin : u
modport myinst (input .ma(a[i]), input .mb(b[il),
output .moutl (outl[i]) , output .mout2 (out2[i])) ;
end
end
endgenerate
endinterface

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 375

SystemVerilog Language Support Feature Summary

Compilation Unit and Package

* Write access to the variable defined in package/compilation unit is not
supported. For example:

package MyPack;

typedef struct packed {
int r;
longint g;
byte b;

} MyStruct ;

MyStruct StructMyStruct;
endpackage: MyPack

import MyPack: :*;
module top (

always@ (posedge clk)
StructMyStruct <= '{default:254};

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
376 January 2014

Unsized Literals SystemVerilog Language Support

Unsized Literals

SystemVerilog allows you to specify unsized literals without a base specifier
(auto-fill literals) as single-bit values with a preceding apostrophe ('). All bits
of the unsized value are set to the value of the specified bit.

'0, '1l, 'X, 'x, 'Z, 'z // sets all bits to this value

In other words, this feature allows you to fill a register, wire, or any other data
types with 0, 1, X, or Z in simple format.

Verilog Example SystemVerilog equivalent

a=4Dbl111; a="1;

Data Types

SystemVerilog makes a clear distinction between an object and its data type.
A data type is a set of values, or a set of operations that can be performed on
those values. Data types can be used to declare data objects.

SystemVerilog offers the following data types, which represent a hybrid of
both Verilog and C:

Data Type Description
shortint 2-state, SystemVerilog data type, 16-bit signed integer
int 2-state, SystemVerilog data type, 32-bit signed integer
longint 2-state, SystemVerilog data type, 64-bit signed integer
byte 2-state, SystemVerilog data type, 8-bit signed integer or
ASCII character
bit 2-state, SystemVerilog data type, user-defined vector size
logic 4-state, SystemVerilog data type, user-defined vector size
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 377

SystemVerilog Language Support Data Types

Data types are characterized as either of the following:
* 4-state (4-valued) data types that can hold 1, 0, X, and Z values
¢ 2-state (2-valued) data types that can hold 1 and 0 values

The following apply when using data types:

* The data types byte, shortint, int, integer and longint default to signed; data
types bit, reg, and logic default to unsigned, as do arrays of these types.

* The signed keyword is part of Verilog. The unsigned keyword can be used
to change the default behavior of signed data types.

* The Verilog compiler does not generate an error even if a 2-state data
type is assigned X or Z. It treats it as a “don't care” and issues a warning.

* Do not use the syn_keep directive on nets with SystemVerilog data types.
When you use data types such as bit, logic, longint, or shortint, the
synthesis software might not be aware of the bit sizes on the LHS and
RHS for the net. For example:

bit x;
shortint y;

assign y =x;

In this case, bit defaults to a 1-bit width and includes a shortint of 16-bit
width. If syn_keep is applied on y, the software does not use the other 15
bits.

Typedefs

You can create your own names for type definitions that you use frequently in
your code. SystemVerilog adds the ability to define new net and variable user-
defined names for existing types using the typedef keyword.

Example — Simple typedef Variable Assignment

Example — Using Multiple typedef Assignments

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
378 January 2014

Data Types SystemVerilog Language Support

Enumerated Types

The synthesis tools support SystemVerilog enumerated types in accordance
with SV LRM section: 4.10; enumerated methods are not supported.

The enumerated types feature allows variables and nets to be defined with a
specific set of named values. This capability is particularly useful in state-
machine implementation where the states of the state machine can be
verbally represented

Data Types

Enumerated types have a base data type which, by default, is int (a 2-state,
32-bit value). By default, the first label in the enumerated list has a logic
value of O, and each subsequent label is incremented by one.

For example, a variable that has three legal states:
enum {WAITE, LOAD, READY} State ;

The first label in the enumerated list has a logic value of O and each subse-
quent label is incremented by one. In the example above, State is an int type
and WAITE, LOAD And READY have 32-bit int values. WAITE is O, LOAD is 1, and
READY is 2.

You can specify an explicit base type to allow enumerated types to more
specifically model hardware. For example, two enumerated variables with
one-hot values:

enum logic [2:0] {WAITE=3'b001, LOAD=3'b010,READY=3'b100} State;

Specifying Ranges

SystemVerilog enumerated types also allow you to specify ranges that are
automatically elaborated. Types can be specified as outlined in the following
table.

Syntax Description

name Associates the next consecutive number with the specified name.
name =C Associates the constant C to the specified name.

name[N] Generates N named constants in this sequence: name0, namel,...,

nameN-1. N must be a positive integral number.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 379

SystemVerilog Language Support Data Types

Syntax Description

name[N] =C Optionally assigns a constant to the generated named constants to
associate that constant with the first generated named constant.
Subsequent generated named constants are associated with
consecutive values. N must be a positive integral number.

name[N:M] Creates a sequence of named constants, starting with nameN and
incrementing or decrementing until it reaches named constant
nameM. N and M are non-negative integral numbers.

name[N:M] = C Optionally assigns a constant to the generated named constants to
associate that constant with the first generated named constants.
Subsequent generated named constants are associated
consecutive values. N and M must be positive integral numbers.

The following example declares enumerated variable vr, which creates the
enumerated named constants registerO and registerl, which are assigned the
values 1 and 2, respectively. Next, it creates the enumerated named constants
register2, register3, and register4 and assigns them the values 10, 11, and 12.

enum { register([2] = 1, register[2:4] = 10 } vr;

State-Machine Example

The following is an example state-machine design in SystemVerilog.

Example — State-machine Design

Type Casting Using Enumerated Types
By using enumerated types, you can define a type. For example:
typedef enum { red,green,blue,yellow,white,black } Colors;

The above definition assigns a unique number to each of the color identifiers
and creates the new data type Colors. This new type can then be used to
create variables of that type.

Valid assignment would be:

Colors c;

C = green;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
380 January 2014

Data Types SystemVerilog Language Support

Enumerated Types in Expressions

Elements of enumerated types can be used in numerical expressions. The
value used in the expression is the value specified with the numerical value.
For example:

typedef enum { red,green,blue,yellow,white,black } Colors;
integer a,b;

a = blue *3 // 6 is assigned to a

b = yellow + green; // 4 is assigned to b

Struct Construct

SystemVerilog adds several enhancements to Verilog for representing large
amounts of data. In SystemVerilog, the Verilog array constructs are extended
both in how data can be represented and for operations on arrays. A struc-
ture data type has been defined as a means to represent collections of data
types. These data types can be either standard data types (such as int, logic, or
bit) or, they can be user-defined types (using SystemVerilog typedef). Struc-
tures allow multiple signals, of various data types, to be bundled together and
referenced by a single name.

Structures are defined under section 4.11 of IEEE Std 1800-2005 (IEEE
Standard for SystemVerilog).

In the example structure floating_pt_num below, both characteristic and
mantissa are 32-bit values of type bit.

struct {
bit [31:0] characteristic;
bit [31:0] mantissa;

} floating pt num;

Alternately, the structure could be written as:

typedef struct {
bit [31:0] characteristic;
bit [31:0] mantissa;

} flpt;

flpt floating pt num;

In the above sequence, a type flpt is defined using typedef which is then used to
declare the variable floating_pt_num.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 381

SystemVerilog Language Support Data Types

Assigning a value to one or more fields of a structure is straight-forward.
floating pt num.characteristic = 32'h1234 5678;
floating pt num.mantissa = 32'h0000_0010;

As mentioned, a structure can be defined with fields that are themselves
other structures.

typedef struct {
flpt x;
flpt y;

} coordinate;

Packed Struct

Various other unique features of SystemVerilog data types can also be
applied to structures. By default, the members of a structure are unpacked,
which allows the Synopsys FPGA tools to store structure members as
independent objects. It is also possible to pack a structure in memory without
gaps between its bit fields. This capability can be useful for fast access of data
during simulation and possibly result in a smaller footprint of your simula-
tion binary.

To pack a structure in memory, use the packed keyword in the definition of
the structure:

typedef struct packed {
bit [31:0] characteristic;
bit [31:0] mantissa;

} flpt;

An advantage of using packed structures is that one or more bits from such a
structure can be selected as if the structure was a packed array. For
instance, flpt[47:32] in the above declaration is the same as character-
istic[15:0].

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
382 January 2014

Data Types SystemVerilog Language Support

Struct members are selected using the .name syntax as shown in the following
two code segments.

// segment 1
typedef struct {

bit [7:0] opcode;

bit [23:0] addr;
} instruction; // named structure type
instruction IR; // define variable
IR.opcode = 1; //set field in IR.

// segment 2
struct {
int x,y;

} pi
p.x = 1;

Union Construct

A union is a collection of different data types similar to structure with the
exception that members of the union share the same memory location. At any
given time, you can write to any one member of the union which can then be
read by the same member or a different member of that union.

Union is broadly classified as:
¢ Packed Union

* Unpacked Union

Currently, only packed unions are supported.

Packed Union

A packed union can only have members that are of the packed type (packed
structure, packed array of logic, bit, int, etc.). All members of a packed union
must be of equal size.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 383

SystemVerilog Language Support Data Types

Syntax
Union packed

{

member1;
member2;
} unionName;

Unpacked Union

The members of an unpacked union can include both packed and unpacked
types (packed/unpacked structures, arrays of packed/unpacked logic, bit,
int, etc.) with no restrictions as to the size of the union members.

Syntax
Union

{

memberl;
member2;
} unionName;

Example 1 — Basic Packed Union (logical operation)
Example 2 — Basic Packed Union (arithmetic operation)
Example 3 — Nested Packed Union

Example 4 — Array of packed Union

Limitations

The SystemVerilog compiler does not support the following union constructs:
* unpacked union
* tagged packed union

* tagged unpacked union

Currently, support is limited to packed unions, arrays of packed unions, and
nested packed unions.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
384 January 2014

Arrays SystemVerilog Language Support

Static Casting

Static casting allows one data type to be converted to another data type. The
static casting operator is used to change the data type, the size, or the sign:

* Type casting — a predefined data type is used as a castingType to change
the data type.

* Size casting — a positive decimal number is used as a castingType to
change the number of data bits.

* Sign casting — signed /unsigned are used to change the sign of data type.

* Bit-stream casting — type casting that is applied to unpacked arrays and
structs. During bit-stream casting, both the left and right sides of the
equation must be the same size. Arithmetic operations cannot be
combined with static casting operations as is in the case of singular data

types.

Syntax

castingType ' (castingExpression)
Example — Type Casting of Singular Data Types
Example — Type Casting of Aggregate Data Types
Example — Bit-stream Casting
Example — Size Casting

Example — Sign Casting

Arrays

Topics in this section include:
* Arrays, below

* Arrays of Structures, on page 388

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 385

SystemVerilog Language Support Arrays

Arrays

SystemVerilog uses the term packed array to refer to the dimensions declared
before the object name (same as Verilog vector width). The term unpacked
array refers to the dimensions declared after the object name (same as
Verilog array dimensions). For example:

reg [7:0] fool; //packed array
reg foo2 [7:0]; //unpacked array

A packed array is guaranteed to be represented as a contiguous set of bits
and, therefore, can be conveniently accessed as array elements. While
unpacked is not guaranteed to work so, but in terms of hardware, both would
be treated or bit-blasted into a single dimension.

module testl (input [3:0] data, output [3:0] dout);
//example on packed array four-bit wide.

assign dout = data;
endmodule

module test2 (input data [3:0], output dout [3:0]);
//unpacked array of 1 bit by 4 depth;

assign dout = data;
endmodule

Multi-dimensional packed arrays unify and extend Verilog's notion of regis-
ters and memories:

reg [1:0][2:0] my var[32];

Classical Verilog permitted only one dimension to be declared to the left of the
variable name. SystemVerilog permits any number of such packed dimen-
sions. A variable of packed array type maps 1:1 onto an integer arithmetic
quantity. In the example above, each element of my_var can be used in expres-
sions as a six-bit integer. The dimensions to the right of the name (32 in this
case) are referred to as unpacked dimensions. As in Verilog-2001, any
number of unpacked dimensions is permitted.

The general rule for multi-dimensional packed array is as follows:

reg/wire [matrix,:0] .. [matrix,:0] [depth:0] [width:0] temp;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
386 January 2014

Arrays SystemVerilog Language Support

The general rule for multi-dimensional unpacked array is as follows:

reg/wire templ [matrix,:0].. [matrix,:0] [depth:0]; //single bit wide
reg/wire [widthg,:0] temp2 [matrix,:0].. [matrix,:0] [depth:0]; //
width, bit wide

The general rule for multi-dimensional array, mix of packed/unpacked, is as
follows:

reg/wire [widthy,:0] temp3 [matrix:0].. [depth:0];
reg/wire [depth:0] [width:0] temp4 [matrix,:0].. [matrix,:0]

For example, in a multi-dimensional declaration, the dimensions declared
following the type and before the name vary more rapidly than the dimen-
sions following the name.

Multi-dimensional arrays can be used as ports of the module.

The following items are now supported for multi-dimensional arrays:
1. Assignment of a whole multi-dimensional array to another.
2. Access (reading) of an entire multi-dimensional array.

3. Assignment of an index (representing a complete dimension) of a multi-
dimensional array to another.

4. Access (reading) of an index of a multi-dimensional array.

5. Assignment of a slice of a multi-dimensional array.

6. Access of a slice of a multi-dimensional array.

7. Access of a variable part-select of a multi-dimensional array.

In addition, wire declarations are supported for any packed or unpacked data
type. This support includes multi-dimensional enum and struct data types in
input port declarations (see Nets, on page 390 for more information).

Packed arrays are supported with the access/store mechanisms listed above.
Packed arrays can also be used as ports and arguments to functions and tasks.
The standard multi-dimensional access of packed arrays is supported.

Unpacked array support is the same as packed array supported stated in
items one through seven above.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 387

SystemVerilog Language Support Arrays

Example — Multi-dimensional Packed Array with Whole Assignment
Example — Multi-dimensional Packed Array with Partial Assignment
Example — Multi-dimensional Packed Array with Arithmetic Ops

Example — Packed/Unpacked Array with Partial Assignment

Arrays of Structures

SystemVerilog supports multi-dimensional arrays of structures which can be
used in many applications to manipulate complex data structures. A multi-
dimensional array of structure is a structured array of more than one dimen-
sion. The structure can be either packed or unpacked and the array of this
structure can be either packed or unpacked or a combination of packed and
unpacked. As a result, there are many combinations that define a multi-
dimensional array of structure.

A multi-dimensional array of structure can be declared as either anonymous
type (inline) or by using a typedef (user-defined data type).

Some applications where multi-dimensional arrays of structures can be used
are where multi-channeled interfaces are required such as packet processing,
dot-product of floating point numbers, or image processing.

E%(run}ﬂres sli'r|1té ;/rg)lggs*onal Array of Packed and Unpacked

Examg#e — Multi-dimensional Array of UnPacked Structures Using
typed

xam M]U|tl -dimensional Array of Packed Structures Using
non mous

anmg#e — Multi-dimensional Array of Packed Structures Using
yped

Array Querying Functions

SystemVerilog provides system functions that return information about a
particular dimension of an array. For information on this function, see Array
Querying Functions, on page 437.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
388 January 2014

Data Declarations SystemVerilog Language Support

Data Declarations

There are several data declarations in SystemVerilog: literals, parameters,
constants, variables, nets, and attributes. The following are described here:

* Constants, on page 389,

* Variables, on page 389

¢ Nets, on page 390

¢ Data Types in Parameters, on page 391

¢ Type Parameters, on page 391

Constants

Constants are named data variables, which never change. A typical example
for declaring a constant is as follows:

const a = 10;
const logic [3:0] load = 4'bl111;
const reg [7:0] loadl = 8'hOf, dataone = '1;
The Verilog compiler generates an error if constant is assigned a value.

const shortint a = 10;
assign a = 'l; // This is illegal

Variables

Variables can be declared two ways:

Method 1 Method 2

shortint a, b; var logic [15:0] a;

logic [1:0] c, d; vara,b;// equivalent var logic a, b
var [1:0] ¢, d; // equivalent var logic [1:0] c, d
input var shortint datainl,datain2;
output var logic [15:0] dataoutl,dataout2;

Method 2 uses the keyword var to preface the variable. In this type of declara-
tion, a data type is optional. If the data type is not specified, logic is inferred.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 389

SystemVerilog Language Support Data Declarations

Typical module declaration:

module test0l (input var shortint datainl,datain2,
output var logic [15:0] dataoutl,dataout2);

A variable can be initialized as follows:

var a = 1'bl;

Nets

Nets are typically declared using the wire keyword. Any 4-state data type can
be used to declare a net. When using wire with struct and union constructs,
each member of the construct must be a 4-state data type.

Syntax

wire 4stateDataType identifierName ;

Example — Logic Type Defined as a Wire Type

module top (
input wire logic [1:0] dinl,din2 , // logic defined as wire
output logic [1:0] dout);
assign dout = dinl + din2;

endmodule

Example — struct Defined as a Wire Type

typedef struct { logic [4:1] a;
} MyStruct;

module top (
input wire MyStruct [1:0] din [1:0] [1:0], // structure
// defined as wire
output wire MyStruct [1:0] dout [1:0] [1:0]); // structure
// defined as wire
assign dout = din;
endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
390 January 2014

Data Declarations SystemVerilog Language Support

Restrictions

Using wire with a 2-state data type (for example, int or bit) results in the
following error message:

CG1205 | Net data types must be 4-state values

A lexical restriction also applies to a net or port declaration in that the net
type keyword wire cannot be followed by reg.

Data Types in Parameters

In SystemVerilog with different data types being introduced, the parameter
can be of any data type (i.e., language-defined data type, user-defined data
type, and packed /unpacked arrays and structures). By default, parameter is
the int data type.
Syntax

parameter dataType varaibleName = value
In the above syntax, dataType is a language-defined data type, user-defined

data type, or a packed/unpacked structure or array.

Example — Parameter is of Type longint
Example — Parameter is of Type enum
Example — Parameter is of Type structure

Example — Parameter is of Type longint Unpacked Array

Type Parameters

SystemVerilog includes the ability for a parameter to also specify a data type.
This capability allows modules or instances to have data whose type is set for
each instance — these type parameters can have different values for each of
their instances.

Note: Overriding a type parameter with a defparam statement is illegal.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 391

SystemVerilog Language Support Data Declarations

Syntax
parameter type typeldentifierName = dataType;
localparam type typeldentifierName = dataType;

In the above syntax, dataType is either a language-defined data type or a
user-defined data type.

Example — Type Parameter of Language-Defined Data Type

//Compilation Unit
module top
#(
parameter type PTYPE = shortint,
parameter type PTYPE1l = logic[3:2] [4:1] //parameter is of
//2D logic type
)
(
//Input Ports
input PTYPE dinl def,
input PTYPEl dinl oride,

//Output Ports
output PTYPE doutl_def,
output PTYPE1l doutl oride

)i

sub ul def //Default data type

(
.dinl (dinl def),
.doutl (doutl def)
)i

sub #

(
.PTYPE (PTYPEl) //Parameter type is override by 2D Logic

)
u2_ oride
(
.dinl (dinl oride),
.doutl (doutl oride)
)i

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
392 January 2014

Data Declarations SystemVerilog Language Support

//Sub Module
module sub

#(

parameter type PTYPE = shortint //parameter is of shortint type

)
(
//Input Ports

input PTYPE dinl,
//Output Ports

output PTYPE doutl
)i

always comb
begin

doutl = dinl ;
end
endmodule

Example — Type Parameter of User-Defined Data Type

//Compilation Unit
typedef logic [0:7]Logic 1DUnpack[2:1];
typedef struct {
byte R;
int B;
logic[0:7]1G;
} Struct dt;

module top

#(
parameter type PTYPE = Logic_1DUnpack,
parameter type PTYPEl = Struct dt

)

(

//Input Ports

input PTYPE1 dinl oride,
//Output Ports
output PTYPE1 doutl oride
)
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 393

SystemVerilog Language Support Data Declarations

sub #
(.PTYPE (PTYPE1l) //Parameter type is override by a structure type
L2_oride
(.dinl (dinl oride),
.doutl (doutl oride)
) ;

endmodule

//Sub Module
module sub
#(
parameter type PTYPE = Logic 1DUnpack // Parameter 1D
// logic Unpacked data type
)
(
//Input Ports
input PTYPE dinl,
//Output Ports
output PTYPE doutl
)

always comb

begin
doutl.R = dinl.R;
doutl.B = dinl.B ;
doutl.G = dinl.G ;

end

endmodule

Example — Type Local Parameter

//Compilation Unit
module sub

#(

parameter type PTYPEL
parameter type PTYPE2
)

shortint, //Parameter is of shortint type
longint //Parameter is of longint type

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
394 January 2014

Data Declarations SystemVerilog Language Support

(
//Input Ports

input PTYPEl dinl,
//Output Ports

output PTYPE2 doutl
)i

//Localparam type definitation
localparam type SHORTINT LPARAM = PTYPEIL;
SHORTINT LPARAM sigl;

assign sigl = dinl;

assign doutl = dinl * sigl;

endmodule

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 395

SystemVerilog Language Support

Operators and Expressions

Operators and Expressions

Topics in this section include:

Operators, below

Aggregate Expressions, on page 398

Streaming Operator, on page 399

Set Membership Operator, on page 400

Set Membership Case Inside Operator, on page 401

Type Operator, on page 404

Operators

SystemVerilog includes the C assignment operators and special bit-wise
assignment operators:

+=, -5, *:, /:, %:, &:, |:, /\:1 <<=, >>=, K<<=, >>>=

An assignment operator is semantically equivalent to a blocking assignment
with the exception that the expression is only evaluated once.

Operator Example

A += 2;
B -= B;
C *= B;
D /= C;
E %= D;
F &= E;
G |= F;
H *= G;
I <<= H;

Copyright © 2013 Synopsys, Inc.
396

Same as
A=A +
B =B
C=0C=*
D=D/
E=ES%
F=F&
G =G |
H=H
I =1

2;

_A’-

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Operators and Expressions SystemVerilog Language Support

Operator Example Same as

Jd >>= I; Jd=dJd >>1I;
K <<<=J; K =K <<< J;
L >>>=K; L =L >>>K;

In addition, SystemVerilog also has the increment/decrement operators i++,

i--, ++i, and --i.
Operator Example Same as
At++; A=A+1;
A--; A=A-1;
++A; Increment first and then use A
--A; Decrement first and then use A

In the following code segment, outl gets rl and out?2 gets the twice-decre-
mented value of outl:

always @(*)

begin
outl = rl--;
out2 = --rl;
end
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 397

SystemVerilog Language Support Operators and Expressions

Aggregate Expressions

Aggregate expressions (aggregate pattern assignments) are primarily used to
initialize and assign default values to unpacked arrays and structures.

Syntax

SystemVerilog aggregate expressions are constructed from braces; an
apostrophe prefixes the opening (left) brace.

{ listofValues }

In the syntax, listofValues is a comma-separated list. SystemVerilog also
provides a mechanism to initialize all of the elements of an unpacked array by
specifying a default value within the braces using the following syntax:

"{ default: value }
"{ data type:value }
{ index:value }

The aggregate (pattern) assignment can be used to initialize any of the
following.

* a 2-dimensional unpacked array under a reset condition (see Initializing
Unpacked Array Under Reset Condition example).

¢ all the elements of a 2-dimensional unpacked array to a default value
using the default keyword under a reset condition (see Initializing
Unpacked Array to Default Value example).

* a specific data type using the keyword for type instead of default (see
Initializing Specific Data Type example).

Aggregate (pattern) assignment can also be specified in a package (see Aggre-
gate Assignment in Package example) and in a compilation unit (see Aggre-
gate Assignment in Compilation Unit example).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
398 January 2014

Operators and Expressions SystemVerilog Language Support

Example — Initializing Unpacked Array Under Reset Condition
Example — Initializing Unpacked Array to Default Value
Example — Initializing Specific Data Type

Example — Aggregate Assignment in Package

Example — Aggregate Assignment in Compilation Unit

Streaming Operator

The streaming operator (>> or <<) packs the bit-stream type to a particular
sequence of bits in a user-specified order. Bit-stream types can be any
integral, packed or unpacked type or structure. The streaming operator can
be used on either the left or right side of the expression.

The streaming operator determines the order of bits in the output data
stream:

* The left-to-right operator (>>) arranges the output data bits in the same
order as the input bit stream

* The right-to-left operator (<<) arranges the output data bits in reverse
order from the input bit stream
Syntax

streamingExpression ::= { streamOperator [sliceSize] streamConcatenation }
streamOperator ::= >> | <<
sliceSize ::= dataType | constantExpression
streamConcatenation ::= {streamExpression {, streamExpression} }

streamExpression ::= arrayRangeExpression

When an optional sliceSize value is included, the stream is broken up into the
slice-size segments prior to performing the specified streaming operation. By
default, the sliceSize value is 1.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 399

SystemVerilog Language Support Operators and Expressions

Usage
The streaming operator is used to:
* Reverse the entire data stream

* Bit-stream from one data type to other

When the slice size is larger than the data stream, the stream is left-justified
and zero-filled on the right. If the data stream is larger than the left side
variable, an error is reported.

Example — Packed type inputs/outputs with RHS operator
Example — Unpacked type inputs/outputs with RHS operator
Example — Packed type inputs/outputs with LHS operator
Example — Slice-size streaming with RHS operator

Example — Slice-size streaming with LHS slice operation

Set Membership Operator

The set membership operator, also referred to as the inside operator, returns
the value TRUE when the expression value (i.e., the LHS of the operator) is
present in the value list of the RHS operator. If the expression value is not
present in the RHS operator, returns FALSE.

Syntax
(expressionValue) inside {listofValues}
expressionValue ::= singularExpression

listofValues ::= rangeofValues, expressions, arrayofAggregateTypes

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
400 January 2014

Operators and Expressions SystemVerilog Language Support

Example — Inside operator with dynamically changing input at LHS
oE)(eraE)r | p Wi y ically ging inpu

Example — Inside operator with expression at LHS operator

Eis?gn&l)%%tlg%lde operator with dynamically changing input at LHS and

Example — Inside operator with array of parameter at LHS operator

Set Membership Case Inside Operator

With the case inside operator, a case expression is compared to each case item.
Also, when using this operator, the case items can include an open range.
The comparison returns TRUE when the case expression matches a case
item, otherwise it returns FALSE.

Syntax

[unique|priority] case (caseExpression) inside
(caseltem) : statement ;
(caseltem) : statement ;

[default : statement ;]
endcase

In the above syntax, caseltem can be:
* alist of constants
* an open range

* a combination of a list of constants and an open range

The case inside operator supports the following optional modifiers:

* unigue — each caseltem is unique and there are no overlapping caseltems.
If there is an overlapping caseltem, a warning is issued.

* priority — the case statement is prioritized and all possible legal cases are
covered by the case statement. If the caseExpression fails to match any
of the caseltems, a warning is issued.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 401

SystemVerilog Language Support

Operators and Expressions

Example — Case Inside
module top# (

parameter byte pl[2:1][4:1] = '{'{0,2,4,6},

//Input
(input logic([4:1]sel,a,b,
//Output

output logic[3:1] q);

always comb begin
case (sel) inside
8,p1[1]1,10,12,14:q <= a;
pll21,9,11,13,15:q <= b;
endcase
end
endmodule

Example — Unique Case Inside
module top# (

{1,3,5,7}})

parameter byte pl([2:1][4:1] = '{'{15,14,13,12},'{0,1,2,3}})

//Input

(input logic[4:1]sell,sel2,
input byte a,b,

//Output
output byte g) ;

generate begin
always@ (*) begin
unique case (sell”sel2) inside
pl : g = a+b;
[4:7],13,14,15 : g = a * b;
[9:12],8 : g = a*b;
endcase
end
end
endgenerate
endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
402

January 2014

Operators and Expressions SystemVerilog Language Support

Example — Priority Case Inside
typedef enum logic[4:1] {s[0:15]} EnumDt;

module top (
input logic reset,
input logic clock,
input logic x,
input logic[2:1] v,
output logic[3:1] op);
EnumDt state;

always@ (posedge reset or posedge clock)

begin
if (reset == 1'bl)
begin

op <= 3'b000;
state <= s0;
end
else
begin
priority case (state) inside
[s0:82],812 : begin
if (x == 1'b0 && y == 1'b0)
begin
state <= s3;
op <= 3'b001;
end
else
begin
state <= s82;
op <= 3'b000;
end
end
[s3:85] : begin
if(x == 1'bl && y== 1'b0)
begin
state <= s87;
op <= 3'b010;
end
else
begin
state <= s89;
op <= 3'bl10;
end
end
[s6:58],s813 : begin

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 403

SystemVerilog Language Support Operators and Expressions

if(x == 1'b0 && vy== 1'bl)
begin
state <= sl1;
op <= 3'b011;
end
else if (x == 1'b0 && y == 1'bl)
begin
state <= s4;
op <= 3'b010;
end
end
[s9:s811] : begin
if(x == 1'bl && y== 1'bl)
begin
state <= 85;
op <= 3'b1l00;
end
else if (x == 1'b0 && y == 1'bl)
begin
state <= s0;
op <= 3'blll;
end
end
default : begin
state <= sl;
op <= 3'bll1l;
end
endcase
end
end
endmodule

Type Operator

SystemVerilog provides a type operator as a way of referencing the data type of
a variable or an expression.

Syntax
type(dataType | expression)
dataType — a user-defined data type or language-defined data type

expression — any expression, variable, or port

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
404 January 2014

Operators and Expressions SystemVerilog Language Support

An expression inside the type operator results in a self-determined type of
expression; the expression is not evaluated. Also the expression cannot
contain any hierarchical references.

Data Declaration

The type operator can be used while declaring signals, variables, or ports of a
module/interface or a member of that interface.

Example — Using Type Operator to Declare Input/Output Ports

typedef logic signed[4:1]logicdt;
// Module top
module top (
input type (logicdt) di,
output type (logicdt) doutl);
type (logicdt) sig;
var type(logicdt) sigl;
assign sig = di;
assign sigl= dil+1'bil;
assign doutl= sig + sigl;
endmodule

Data Type Declaration

Defining of the user-defined data type can have the type operator, wherein a
variable or another user-defined data type can be directly referenced while
defining a data type using the type operator. The data type can be defined in
the compilation unit, package, or inside the module or interface.

Example — Using Type Operator to Declare Unpacked Data Type

typedef logic[4:1] logicdt;
typedef type (logicdt)Unpackdt[2:1];

module top(
input Unpackdt di,
output Unpackdt doutl) ;

assign doutl[2] = di1[2];
assign doutl[1l] = di[1];
endmodule
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 405

SystemVerilog Language Support Operators and Expressions

Type Casting

The type operator can be used to directly reference the data type of a variable
or port, or can be user-defined and used in type casting to convert either
signed to unsigned or unsigned to signed.

Example — Using Type Operator to Reference Data Type
typedef logic [20:0]dt;
//Module top
module top (
input byte di,d2,
output int unsigned doutl) ;
assign doutl = type(dt)'(dl * d2);
endmodule

Defining Type Parameter/Local Parameter

The type operator can be used when defining a Type parameter to define the
data type. The definition can be overridden based on user requirements.

Example — Using Type Operator to Declare Parameter Type Value

// Module top
module top(
input byte al,
input byte a2,
output shortint doutl);
parameter type dtype = type(al);
dtype sigl;
assign sigl = al;
assign doutl = ~sigl;
endmodule

Comparison and Case Comparison

The type operator can be used to compare two types when evaluating a condi-
tion or a case statement.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
406 January 2014

Procedural Statements and Control Flow SystemVerilog Language Support

Example — Using Type Operator in a Comparison

// Module top

module top (
input byte di,
input shortint d2,
output shortint doutl);

always comb begin
if (type(dl) == type(d2))
doutl = di;
else
doutl = d2;
end
endmodule

Limitations

The type operator is not supported on complex expressions (for example
type(d1*d2)).

Procedural Statements and Control Flow

Topics in this section include
* Do-While Loops, below
¢ For Loops, on page 408
* Unnamed Blocks, on page 409
* Block Name on end Keyword, on page 409
* Unique and Priority Modifiers, on page 409

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 407

SystemVerilog Language Support Procedural Statements and Control Flow

Do-While Loops

The while statement executes a loop for as long as the loop-control test is true.
The control value is tested at the beginning of each pass through the loop.
However, a while loop does not execute at all if the test on the control value is
false the first time the loop is encountered. This top-testing behavior can
require extra coding prior to beginning the while loop, to ensure that any
output variables of the loop are consistent.

SystemVerilog enhances the for loop and adds a do-while loop, the same as in
C. The control on the do-while loop is tested at the end of each pass through
the loop (instead of at the beginning). This implies that each time the loop is
encountered in the execution flow, the loop statements are executed at least
once.

Because the statements within a do-while loop are going to execute at least
once, all the logic for setting the outputs of the loop can be placed inside the
loop. This bottom-testing behavior can simplify the coding of while loops,
making the code more concise and more intuitive.

Example — Simple Do-while Loop
Example — Do-while with If Else Statement

Example — Do-while with Case Statement

For Loops

SystemVerilog simplifies declaring local variables for use in for loops. The
declaration of the for loop variable can be made within the for loop. This elimi-
nates the need to define several variables at the module level, or to define
local variables within named begin...end blocks as shown in the following
example.

Example — Simple for Loop

A variable defined as in the example above, is local to the loop. References to
the variable name within the loop see the local variable, however, reference to
the same variable outside the loop encounters an error. This type of variable
is created and initialized when the for loop is invoked, and destroyed when the
loop exits.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
408 January 2014

Procedural Statements and Control Flow SystemVerilog Language Support

SystemVerilog also enhances for loops by allowing more than one initial
assignment statement. Multiple initial or step assignments are separated by
commas as shown in the following example.

Example — For Loop with Two Variables

Unnamed Blocks

SystemVerilog allows local variables to be declared in unnamed blocks.

Example — Local Variable in Unnamed Block

Block Name on end Keyword

SystemVerilog allows a block name to be defined after the end keyword when
the name matches the one defined on the corresponding begin keyword. This
means, you can name the start and end of a begin statement for a block. The
additional name does not affect the block semantics, but does serve to
enhance code readability by documenting the statement group that is being
completed.

Example — Including Block Name with end Keyword

Unigue and Priority Modifiers

SystemVerilog adds unique and priority modifiers to use in case statements. The
Verilog full_case and parallel_case statements are located inside of comments
and are ignored by the Verilog simulator. For synthesis, full_case and
parallel_case directives instruct the tool to take certain actions or perform
certain optimizations that are unknown to the simulator.

To prevent discrepancies when using full_case and parallel_case directives and
to ensure that the simulator has the same understanding of them as the
synthesis tool, use the priority or unigue modifier in the case statement. The
priority and unigue keywords are recognized by all tools, including the Verilog
simulators, allowing all tools to have the same information about the design.

The following table shows how to substitute the SystemVerilog unique and
priority modifiers for Verilog full_case and parallel_case directives for synthesis.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 409

SystemVerilog Language Support

Procedural Statements and Control Flow

Verilog using full_case, parallel_case
case (...)

endcase

case (...) //full case

endcase

case (...) //parallel case

endcase

case (...) //full case
parallel case

endcase

Example — Unique Case

Example — Priority Case

Copyright © 2013 Synopsys, Inc.
410

SystemVerilog using unique/priority
case modifiers

case (...)

endcase

priority case (...)

endcase
unique case (...)
default
endcase

unique case (...)

endcase

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Processes SystemVerilog Language Support

Processes

In Verilog, an “if” statement with a missing “else” condition infers an uninten-
tional latch element, for which the Synopsys FPGA compiler currently gener-
ates a warning. Many commercially available compilers do not generate any
warning, causing a serious mismatch between intention and inference.
SystemVerilog adds three specialized procedural blocks that reduce
ambiguity and clearly indicate the intent:

* always_comb, on page 411
¢ always_latch, on page 413
* always_ff, on page 414

Use them instead of the Verilog general purpose always procedural block to
indicate design intent and aid in the inference of identical logic across
synthesis, simulation, and formal verification tools.

always _comb

The SystemVerilog always_comb process block models combinational logic,
and the logic inferred from the always_comb process must be combinational
logic. The Synopsys FPGA compiler warns you if the behavior does not repre-
sent combinational logic.

The semantics of an always_comb block are different from a normal always
block in these ways:

¢ It is illegal to declare a sensitivity list in tandem with an always_comb
block.

¢ Analways_comb statement cannot contain any block, timing, or event
controls and fork, join, or wait statements.

Note the following about the always _comb block:

¢ There is an inferred sensitivity list that includes all the variables from
the RHS of all assignments within the always_comb block and variables
used to control or select assignments See Examples of Sensitivity to LHS
and RHS of Assignments, on page 413.

* The variables on the LHS of the expression should not be written by any
other processes.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 411

SystemVerilog Language Support Processes

* The always_comb block is guaranteed to be triggered once at time zero
after the initial block is executed.

¢ always_comb is sensitive to changes within the contents of a function and
not just the function arguments, unlike the always@)(*) construct of
Verilog 2001.

Example — always_comb Block

Invalid Use of always_comb Block
The following code segments show use of the construct that are NOT VALID.

always _comb @(a or b) //Wrong. Sensitivity list is inferred not
//declared

begin
foo;

end

always comb
begin

@clk out <=in; //Wrong to use trigger within this always block
end

always_comb

begin
fork //Wrong to use fork-join within this always block
out <=in;
join

end

always comb
begin
if (en)mem[waddr] <=data; //Wrong to use trigger conditions
//within this block
end

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
412 January 2014

Processes SystemVerilog Language Support

Examples of Sensitivity to LHS and RHS of Assignments

In the following code segment, sensitivity only to the LHS of assignments
causes problems.

always @(y)

if (sel)
y= al;
else
y= al;

In the following code segment, sensitivity only to the RHS of assignments
causes problems.

always @(a0, al)

if (sel)
y= al;
else
y= al;

In the following code segment, sensitivity to the RHS of assignments and
variables used in control logic for assignments produces correct results.

always @(a0, al, sel)

if (sel)
y= al;
else
= al;

always_latch

The SystemVerilog always_latch process models latched logic, and the logic
inferred from the always_latch process must only be latches (of any kind). The
Synopsys FPGA compiler warns you if the behavior does not follow the intent.

Note the following:

* It isillegal for always_latch statements to contain a sensitivity list, any
block, timing, or event controls, and fork, join, or wait statements.

* The sensitivity list of an always_latch process is automatically inferred by
the compiler and the inferring rules are similar to the always_comb
process (see always_comb, on page 411).

Example — always_latch Block

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 413

SystemVerilog Language Support Processes

Invalid Use of always_latch Block
The following code segments show use of the construct that are NOT VALID.

always latch
begin
if (en)
treg<=1;
else
treg<=0; //Wrong to use fully specified if statement
end

always_latch
begin
@(clk)out <=in; //Wrong to use trigger events within this
//always block
end

always_ff

The SystemVerilog always_ff process block models sequential logic that is
triggered by clocks. The compiler warns you if the behavior does not repre-
sent the intent. The always_ff process has the following restrictions:

* An always_ff block must contain only one event control and no blocking
timing controls.

* Variables on the left side of assignments within an always_ff block must
not be written to by any other process.

Example — always_ff Block

Invalid Use of always_ff Block
The following code segments show use of the construct that are NOT VALID.

always ff @(posedge clk or negedge rst)
begin
if (rst)
treg<=in; //Illegal; wrong polarity for rst in the
//sensitivity list and the if statement
end

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
414 January 2014

Processes SystemVerilog Language Support

always ff
begin

@ (posedgerst) treg<=0;

@ (posedgeclk) treg<=in; //Illegal; two event controls
end

always ff @(posedge clk or posedge rst)
begin
treg<=0; //Illegal; not clear which trigger is to be
// considered clk or rst
end

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 415

SystemVerilog Language Support Tasks and Functions

Tasks and Functions

Support for task and function calls includes the following:
¢ Implicit Statement Group
* Formal Arguments, on page 416

* endtask /endfunction Names, on page 419

Implicit Statement Group

Multiple statements in the task or function definition do not need to be placed
within a begin...end block. Multiple statements are implicitly grouped,
executed sequentially as if they are enclosed in a begin...end block.
/* Statement grouping */
function int incr2 (int a);
incr2 = a + 1;
incr2 = incr2 + 1;
endfunction

Formal Arguments

This section includes information on passing formal arguments when calling
functions or tasks. Topics include:

* Passing Arguments by Name
¢ Default Direction and Type
* Default Values

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
416 January 2014

Tasks and Functions SystemVerilog Language Support

Passing Arguments by Name

When a task or function is called, SystemVerilog allows for argument values to
be passed to the task/function using formal argument names; order of the
formal arguments is not important. As in instantiations in Verilog, named
argument values can be passed in any order, and are explicitly passed
through to the specified formal argument. The syntax for the named
argument passing is the same as Verilog’s syntax for named port connections
to a module instance. For example:

/* General functions */

function [1:0] inc(input [1:0] a);
inc = a + 1;

endfunction

function [1:0] sel(input [1:0] a, b, input s);
sel = s ? a : b;

endfunction

/* Tests named connections on function calls */
assign z0 = inc(.a(a));
assign z2 = sel(.b(b), .s(s), .a(a));

Default Direction and Type

In SystemVerilog, input is the default direction for the task/function declaration.
Until a formal argument direction is declared, all arguments are assumed to
be inputs. Once a direction is declared, subsequent arguments will be the
declared direction, the same as in Verilog.

The default data type for task/function arguments is logic, unless explicitly
declared as another variable type. (In Verilog, each formal argument of a
task/function is assumed to be reg). For example:

/* Tests default direction of argument */
function int incrl (int a);

incrl = a + 1;
endfunction

In this case, the direction for a is input even though this is not explicitly
defined.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 417

SystemVerilog Language Support Tasks and Functions

Default Values

SystemVerilog allows an optional default value to be defined for each formal
argument of a task or function. The default value is specified using a syntax
similar to setting the initial value of a variable. For example:

function int testa(int a = 0, int b, int ¢ = 1);
testa = a + b + ¢;
endfunction

task testb(int a = 0, int b, int ¢ = 1, output int d);
d=a+Db+ c;
endtask

When a task/function is called, it is not necessary to pass a value to the
arguments that have default argument values. If nothing is passed to the
task/function for that argument position, the default value is used. Specifying
default argument values allows a task/function definition to be used in multiple
ways. Verilog requires that a task/function call have the exact same number of
argument expressions as the number of formal arguments. SystemVerilog
allows the task/function call to have fewer argument expressions than the
number of formal arguments. A task/function call must pass a value to an
argument, if the formal definition of the argument does not have a default
value. Consider the following examples:

/* functions With positional associations and missing arguments */
assign a = testa(,5); /* Same as testa(0,5,1) */

assign b = testa(2,5); /* Same as testa(2,5,1) */

assign ¢ = testa(,5,); /* Same as testa(0,5,1) */

assign d = testa(,5,7); /* Same as testa(0,5,7) */

assign e = testa(l,5,2); /* Same as testa(l,5,2) */

/* functions With named associations and missing arguments */
assign k testa(.b(5)); /* Same as testa(0,5,1) */

assign 1 = testa(.a(2),.b(5)); /* Same as testa(2,5,1) */
assign m = testa(.b(5)); /* Same as testa(0,5,1) */

assign n = testa(.b(5),.c(7)); /* Same as testa(0,5,7) */
assign o = testa(.a(l),.b(5),.c(2)); /* Same as testa(l,5,2) */

In general, tasks are not supported outside the scope of a procedural block
(even in previous versions). This is primarily due to the difference between
tasks and function.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
418 January 2014

Tasks and Functions SystemVerilog Language Support

Here are some task examples using default values:

always @(*)

begin

/* tasks With named associations and missing arguments */
testb(.b(5),.d(f)); /* Same as testb(0,5,1) */

testb (. a(2), b(5),.d(g)); /* Same as testb(2,5,1) */
testb(.b(5),.d()); /* Same as testb(0,5,1) */
testb(.b(5),.c(7),.d(/* Same as testb(0,5,7) */
testb(.a(l),.b(5),.c(2),.d(j)); /* Same as testb(1l,5,2) */

/* tasks With positional associations and missing arguments */
testb(,5,,p); /* Same as testb(0,5,1) */
testb (2, 5,,q ; /* Same as testb(2,5,1) */
testb(,5,,r); /* Same as testb(0,5,1) */
testb(,5,7,s) /* Same as testb(0,5,7) */
(1,5,2, t ; /* Same as testb(1,5,2) */

endtask /endfunction Names

SystemVerilog allows a name to be specified with the endtask or endfunction
keyword. The syntax is:

endtask : taskName
endfunction : functionName

The space before and after the colon is optional. The name specified must be
the same as the name of the corresponding task or function as shown in the
following example.

/* Function w/ statement grouping, also has an endfunction label */

function int incr3 (int a);
incr3 = a + 1;
incr3 = incr3 + 1;
incr3 = incr3 + 1;
endfunction : incr3

/* Test with a task - also has an endtask label */
task taskl;
input [1:0] inl,in2,in3,in4;
output [1:0] outl,out2;
outl = inl | in2;
out2 = in3 & in4;
endtask : taskl

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 419

SystemVerilog Language Support

Hierarchy

/* Test with a task - some default values */
task task2(

input [1:0] inl=2'b01,in2= 2'b10,in3 = 2'bll,in4 = 2'bll,

output [1:0] outl = 2'b1l0,o0ut2);

out2 = in3 & in4;
endtask : task2

/* Tests default values for arguments */

function int dfltO0(input int a = 0, b = 1);
dflt0 = a + b;

endfunction

/* Call to function with default direction */

assign zl = incrl(3);
assign z3 = incr2(3);
assign z4 = incr3(3);

assign z9 = dflto();
(

assign z10 = dflto(.a(7), .b());
always @(*)
begin
taskl(.inl(inl), .out2(z6), .in2(in2), .outl(z5),
.in3(in3), .in4(in4));

taskl (in5, in6é, in7, in8, z7, z8);
task2 (in5, iné, in7, in8, =zl1l, z12);

task2 (in5, iné6, , , zl13, zl4);
task2(.outl(z15), .inl(in5), .in2(in6), .out2(zl6),
.in3 (in7), .in4(in8));
task2 (.out2(z18), .in2(in6), .inl(in5), .in3(),
.outl(zl7), .in4());
end

Hierarchy

Topics in this section include:
* Compilation Units, below
* Packages, on page 423
* Port Connection Constructs, on page 424

* Extern Module, on page 427

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
420

January 2014

Hierarchy SystemVerilog Language Support

Compilation Units

Compilation units allow declarations to be made outside of a package,
module, or interface boundary. These units are visible to all modules that are
compiled at the same time.

A compilation unit’s scope exists only for the source files that are compiled at
the same time; each time a source file is compiled, a compilation unit scope is
created that is unique to only that compilation.

Syntax
/I$unit definitions
declarations;
/[End of $unit

module ();

endmodule

In the above syntax, declarations can be variables, nets, constants, user-
defined data types, tasks, or functions

Usage

Compilation units can be used to declare variables and nets, constants, user-
defined data types, tasks, and functions as noted in the following examples.

A variable can be defined within a module as well as within a compilation
unit. To reference the variable from the compilation unit, use the
$unit::variableName syntax. To resolve the scope of a declaration, local declara-
tions must be searched first followed by the declarations in the compilation
unit scope.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 421

SystemVerilog Language Support Hierarchy

Example — Compilation Unit Variable Declaration

Example — Compilation Unit Net Declaration

Example — Compilation Unit Constant Declaration

Example — Compilation Unit User-defined Datatype Declaration
Example — Compilation Unit Task Declaration

Example — Compilation Unit Function Declaration

Example — Compilation Unit Access

Example — Compilation Unit Scope Resolution

To use the compilation unit for modules defined in multiple files, enable the

Multiple File Compilation Unit check box on the Verilog tab of the Implementation
Options dialog box as shown below.

verilog

Top Level Module: Compiler Directives and Parameters

[Parameter Name Value

verilog Language

Vierilog 2001
System Verilog

Extract Parameters

I[LI_'JI_I_']

Push Tristates
Compiler Directives: e.g. SIZE=8
[allow Duplicate Modules []

B s

You can also enable this compiler directive by including the following Tcl
command in your project (prj) file:

set option -multi file compilation unit 1

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
422 January 2014

Hierarchy SystemVerilog Language Support

Limitations

Compilation unit elements can only be accessed or read, and cannot appear
between module and endmodule statements.

Packages

Packages permit the sharing of language-defined data types, typedef user-
defined types, parameters, constants, function definitions, and task defini-
tions among one or more compilation units, modules, or interfaces. The
concept of packages is leveraged from the VHDL language.

Syntax

SystemVerilog packages are defined between the keywords package and
endpackage.

package packageldentifier;
packageltems
endpackage : packageldentifier

Packageltems includes user-defined data types, parameter declarations,
constant declarations, task declarations, function declarations, and import
statements from other packages. To resolve the scope of any declaration, the
local declarations are always searched before declarations in packages.

Referencing Package Items
As noted in the following examples, package items can be referenced by:

¢ Direct reference using a scope resolution operator (::). The scope resolu-
tion operator allows referencing a package by the package name and
then selecting a specific package item.

* Importing specific package items using an import statement to import
specific package items into a module.

* Importing package items using a wildcard (*) instead of naming a
specific package item.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 423

SystemVerilog Language Support Hierarchy

Example — Direct Reference Using Scope Resolution Operator (::)
Example — Importing Specific Package Iltems

Example — Wildcard (*) Import Package Items

Example — User-defined Data Types (typedef)

Example — Parameter Declarations

Example — Constant Declarations

Example — Task Declarations

Example — Function Declarations

Example — import Statements from Other Packages

Example — Scope Resolution

Limitations

The variables declared in packages can only be accessed or read; package
variables cannot be written between a module statement and its end module
statement.

Port Connection Constructs

Instantiating modules with a large number of ports is unnecessarily verbose
and error-prone in Verilog. The SystemVerilog .name and “.*” constructs
extend the 1364 Verilog feature of allowing named port connections on
instantiations, to implicitly instantiate ports.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
424 January 2014

Hierarchy SystemVerilog Language Support

.name Connection

The SystemVerilog .name connection is semantically equivalent to a Verilog
named port connection of type .port_identifier(hame). Use the .name construct
when the name and size of an instance port are the same as those on the
module. This construct eliminates the requirement to list a port name twice
when both the port name and signal name are the same and their sizes are
the same as shown below:

module myand (input [2:0] inl, in2, output [2:0] out);
endmodule

module foo (...ports...)

wire [2:0] inl, out;

wire [7:0] tmp;

wire [7:0] in2 = tmp;
myand mandl (.inl, .out, .in2(tmp[2:0]1)); // valid

Note: SystemVerilog .name connection is currently not supported for
mixed-language designs.

Restrictions to the .name feature are the same as the restrictions for named
associations in Verilog. In addition, the following restrictions apply:

* Named associations and positional associations cannot be mixed:
myand mand2 (.inl, out, tmp[2:0]);

* Sizes must match in mixed named and positional associations. The
example below is not valid because of the size mismatch on in2.

myand mand3 (.inl, .out, .in2);

* The identifier referred by the .name must not create an implicit declara-
tion, regardless of the compiler directive ‘default_nettype.

* You cannot use the .name connection to create an implicit cast.

* Currently, the .name port connection is not supported for mixed HDL
source code.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 425

SystemVerilog Language Support Hierarchy

* Connection

« %

The SystemVerilog “.*” connection is semantically identical to the default
.name connection for every port in the instantiated module. Use this connec-
tion to implicitly instantiate ports when the instance port names and sizes
match the connecting module’s variable port names and sizes. The implicit .*
port connection syntax connects all other ports on the instantiated
module.Using the .* connection facilitates the easy instantiation of modules
with a large number of ports and wrappers around IP blocks.

The ".*" connection can be freely mixed with .name and .port_identifier(name) type
connections. However, it is illegal to have more than one ".*" expression per
instantiation.

The use of ".*" facilitates easy instantiation of modules with a large number of
ports and wrappers around IP blocks as shown in the code segment below:

module myand (input [2:0] inl, in2, output [2:0] out);
endmodule
module foo (...ports...)

wire [2:0] inl, in2, out;
wire [7:0] tmp;

myand andl(.*); // Correct usage, connect inl, in2, out
myand and2(.inl, .*) // Correct usage, connect in2 and out
myand and3 (.inl (tmp[2:0]1), .*); // Correct Usage, connect
// in2 and out
myand and5(.inl, .in2, .out, .*); //Correct Usage, ignore the .*

« %

Note: SystemVerilog “.*” connection is currently not supported for
mixed-language designs.

Restrictions to the .* feature are the same as the restrictions for the .name
feature. See .name Connection, on page 425. In addition, the following
restrictions apply:

* Named associations and positional associations cannot be mixed. For
example

myand and4 (inl, .¥*);

is illegal (named and positional connections cannot be mixed)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
426 January 2014

Hierarchy SystemVerilog Language Support

* Named associations where there is a mismatch of variable sizes or
names generate an error.

* You can only use the .* once per instantiation, although you can mix the
.* connection with .name and .port_identifier(name) type connections.

* Ifyou use a .* construction but all remaining ports are explicitly
connected, the compiler ignores the .* construct.

* Currently, the .* port connection is not supported for mixed HDL source
code.

Extern Module

SystemVerilog simplifies the compilation process by allowing you to specify a
prototype of the module being instantiated. The prototype is defined using the
extern keyword, followed by the declaration of the module and its ports. Either
the Verilog-1995 or the Verilog-2001 style of module declaration can be used
for the prototype.

The extern module declaration can be made in any module, at any level of the
design hierarchy. The declaration is only visible within the scope in which it
is defined. Support is limited to declaring extern module outside the module.

Syntax

extern module moduleName (direction portl, direction portVector port2,
direction port3);

Example 1 — Extern Module Instantiation
Example 2 — Extern Module Reference

Limitations

An extern module declaration is not supported within a module.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 427

SystemVerilog Language Support Interface

Interface

Topics in this section include:
* Interface Construct, below
* Modports, on page 435

¢ Limitations and Non-Supported Features, on page 435

Interface Construct

SystemVerilog includes enhancements to Verilog for representing port lists
and port connection lists characterized by name repetition with a single name
to reduce code size and simplify maintenance. The interface and modport struc-
tures in SystemVerilog perform this function. The interface construct includes
all of the characteristics of a module with the exception of module instantia-
tion; support for interface definitions is the same as the current support for
module definitions. Interfaces can be instantiated and connected to client
modules using generates.

Interface Definition: Internal Logic and Hierarchical Structure

Per the SystemVerilog standard, an interface definition can contain any logic
that a module can contain with the exception that interfaces cannot contain
module instantiations. An interface definition can contain instantiations of
other interfaces. Like modules, interface port declaration lists can include
interface-type ports. Synthesis support for interface logic is the same as the
current support for modules.

Port Declarations and Port Connections for Interfaces

Per the SystemVerilog standard, interface port declaration and port connec-
tion syntax/semantics are identical to those of modules.

Interface Member Types

The following interface member types are visible to interface clients:
* 4-State var types: reg, logic, integer
e 2-State var types: bit, byte, shortint, int, longint

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
428 January 2014

Interface SystemVerilog Language Support

* Net types: wire, wire-OR, and wire-AND
®* Scalars and 1-dimensional packed arrays of above types
* Multi-dimensional packed and unpacked arrays of above types

* SystemVerilog struct types

Interface Member Access

The members of an interface instance can be accessed using the syntax:
interfaceRef.interfaceMemberName

In the above syntax, interfaceRef is either:

* the name of an interface-type port of the module/interface containing
the member access

* the name of an interface instance that is instantiated directly within the
module/interface containing the member access.

Note that reference to interface members using full hierarchical naming is not
supported and that only the limited form described above for instances at the
current level of hierarchy is supported.

Access to an interface instance by clients at lower levels of the design
hierarchy is achieved by connecting the interface instance to a compatible
interface-type port of a client instance and connecting this port to other
compatible interface-type ports down the hierarchy as required. This
chaining of interface ports can be done to an arbitrary depth. Note that inter-
face instances can be accessed only by clients residing at the same or lower
levels of the design hierarchy.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 429

SystemVerilog Language Support Interface

Interface-Type Ports

Interface-type ports are supported as described in the SystemVerilog
standard, and generic interface ports are supported. A modport qualifier can
appear in either a port declaration or a port connection as described in the
SystemVerilog standard. Interface-type ports:

* can appear in either module or interface port declarations
* can be used to access individual interface items using “.” syntax:
interfacePortname.interfaceMemberName

* can be connected directly to compatible interface ports of module/inter-
face instances

Interface/Module Hierarchy

Interfaces can be instantiated within either module or interface definitions.
See Interface Member Access, on page 429 for additional details on hierar-
chical interface port connections.

Interface Functions and Tasks

Import-only functions and tasks (using import keyword in modport) are
supported.

Element Access Outside the Interface

Interface can have a collection of variables or nets, and this collection can be
of a language-defined data type, user-defined data type, or array of language
and user-defined data type. All of these variables can be accessed outside the
interface.

The following example illustrates accessing a 2-dimensional structure type
defined within the interface that is being accessed from another module.

Example — Accessing a 2-dimensional Structure
typedef struct

{
byte stil;
}StructlD Dt [1:0] [1:0];

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
430 January 2014

Interface SystemVerilog Language Support

//Interface Definition
interface intf (
input bit clk,
input bit rst
)i

StructlD Dt il; //2D - Structure type
modport MP(input i1, input clk,input rst); //Modport Definition
endinterface

//Subl Module definition
module subl (
intf INTF1, //Interface
input int dil
)i

assign INTF1.i1[1][1].stl = di1[7:0];

assign INTF1.11[1][0].stl = d1[15:8];
assign INTF1.1i1[0] [1].stl = d1[23:16];
assign INTF1.i1[0] [0].stl = d1[31:24];

endmodule

//Sub2 Module definition

module sub2 (
intf.MP IntfMp, //Modport Interface
output byte dout [3:0]

)

always ffe@(posedge IntfMp.clk)

begin
if (IntfMp.rst)
begin
dout <= '{default:'l};
end
else begin
dout [3] <= IntfMp.il[1] [1].stl;
dout [2] <= IntfMp.il[1] [0].st1;
dout [1] <= IntfMp.il[0] [1].stl;
dout [0] <= IntfMp.il[0] [0].stl;
end
end
endmodule
//Top Module definition
module top (
input bit clk,
input bit rst,
input int di,
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 431

SystemVerilog Language Support

Interface

output byte dout [3:0]
)
intf intul(.clk(clk), .rst(rst));
subl sublul (.INTF1 (intul), .d1(dl));
sub2 sub2ul (.IntfMp (intul.MP), .dout (dout)) ;
endmodule

Nested Interface

With the nested interface feature, nesting of interface is possible by either
instantiating one interface in another or by using one interface as a port in
another interface. Generic interface is not supported for nested interface;
array of interface when using interface as a port also is not supported.

The following example illustrates the use of a nested interface. In the

example, one interface is instantiated within another interface and this top-

level interface is used in the modules.

Example — Nested Interface

//intfl Interface definition
interface intfil;

byte i11;

byte i12;
endinterface

//IntfTop Top Interface definition

interface IntfTop;
intfl intfl ul(); //Interface instantiated
shortint i21;

endinterface

//Subl Module definition
module subl (
input byte di,
input byte d2,
IntfTop intfN1
)
assign intfN1l.intfl ul.ill

dl; //Nested interface being accessed

assign intfN1l.intfl ul.il2 = d2; //Nested interface being accessed

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
432

January 2014

Interface SystemVerilog Language Support

//Sub2 Module definition
module sub?2 (
IntfTop intfN2
)i
assign intfN2.i21 = intfN2.intfl ul.ill + intfN2.intfl ul.il2;
//Nested
//interface being accessed
endmodule

//Sub3 Module definition
module sub3 (

IntfTop intfN3,

output shortint dout
)i
assign dout = intfN3.i21;
endmodule

//Top Module definition
module top(
input byte di,
input byte d2,
output shortint dout
)i
IntfTop IntfTopUl() ;
subl sublU1(.d1(dl), .d2(d2), .intfN1 (IntfTopUl)) ;
sub2 sub2U1l (.intfN2 (IntfTopUl)) ;
sub3 sub3Ul(.intfN3 (IntfTopUl), .dout (dout)) ;
endmodule

Arrays of Interface Instances

In Verilog, multiple instances of the same module can be created using the
array of instances concept. This same concept is extended for the interface
construct in SystemVerilog to allow multiple instances of the same interface
to be created during component instantiation or during port declaration.
These arrays of interface instances and slices of interface instance arrays can
be passed as connections to arrays of module instances across modules.

The following example illustrates the use of array of interface instance both
during component instantiation and during port declaration.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 433

SystemVerilog Language Support Interface

Example — Array of Interface During Port Declaration

//intf Interface Definition
interface intf;

byte i1;
endinterface

//Subl Module definition
module subl (
intf IntfArrl [3:0], //Array of interface during port
declaration
input byte di1[3:0]
)i

assign IntfArrl[0].il1 = d1[0];
assign IntfArrl[1].i1 = di[1];
assign IntfArrl[2].i1 = di[2];
assign IntfArrl[3].il1 = d1([3];

endmodule

//Sub2 Module definition
module sub2 (
intf IntfArr2[3:0], //Array of interface during port
declaration
output byte dout [3:0]
)i

assign dout [0] = IntfArr2[0].1i1;
assign dout[1l] = IntfArr2[1].il;
assign dout[2] = IntfArr2[2].il;
assign dout [3] = IntfArr2[3].il;

endmodule

//Top module definition
module top(
input byte d1[3:0],
output byte dout [3:0]
)i
intf intful[3:0] (); //Array of interface instances
subl sublul (intful,dl);
sub2 sub2ul (intful,dout) ;
endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
434 January 2014

Interface SystemVerilog Language Support

Modports

Modport expressions are supported, and modport selection can be done in
either the port declaration of a client module or in the port connection of a
client module instance.

If a modport is associated with an interface port or instance through a client
module, the module can only access the interface members enumerated in
the modport. However, per the SystemVerilog standard, a client module is not
constrained to use a modport, in which case it can access any interface
members.

Modport Keywords

The input, output, inout, and import access modes are parsed without errors. The
signal direction for input, output, and inout is ignored during synthesis, and the
correct signal polarity is inferred from how the interface signal is used within
the client module. The signal polarity keywords are ignored because the
precise semantics are currently not well-defined in the SystemVerilog
standard, and simulator support has yet to be standardized.

Example — Instantiating an interface Construct

Limitations and Non-Supported Features

The following restrictions apply when using interface/modport structures:
* Declaring interface within another interface is not supported
* Direction information in modports has no effect on synthesis.

* Exported (export keyword) interface functions and tasks are not
supported.

* Virtual interfaces are not supported.
¢ Full hierarchical naming of interface members is not supported.

* Modports defined within generate statements are not supported.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 435

SystemVerilog Language Support System Tasks and System Functions

System Tasks and System Functions

Topics in this section include:
* $bits System Function, below

* Array Querying Functions, on page 437

$bits System Function

SystemVerilog supports a $bits system function which returns the number of
bits required to hold an expression as a bit stream. The syntax is:

$hits(datatype)
$bits(expression)

In the above syntax, datatype can be any language-defined data type (reg,
wire, integer, logic, bit, int, longint, or shortint) or user-defined datatype (typedef,
struct, or enum) and expression can be any value including packed and
unpacked arrays.

The $bits system function is synthesizable and can be used with any of the
following applications:

* Port Declaration
* Variable Declaration
¢ Constant Definition

¢ Function Definition

System tasks and system functions are described in Section 22 of IEEE Std
1800-2005 (IEEE Standard for SystemVerilog); $bits is described in Section
22.3.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
436 January 2014

System Tasks and System Functions SystemVerilog Language Support

Example — $bits System Function
Example — $bits System Function within a Function

Limitations

The $bits system function is not supported under the following conditions:

¢ Passing an interface member as an argument to the $bits function is not
supported. In the example

parameter logic[2:0] din = $bits(ff_if 0.din);

interface instance ff_if_0.din is one of the ports of the modport. To avoid the
limitation, use the actual value as the argument in place of the interface
member.

* $bits cannot be used within a module instantiation:

module Top

(output foo) ;

Intf intf () ;

Foo #(.PARAM(Sbits(intf.i))) Foo (.foo) ;
endmodule : Top

¢ $hits is not supported with params/localparams:

localparam int WIDTH = $bits(ramif.port0 out) ;

Array Querying Functions

SystemVerilog provides system functions that return information about a
particular dimension of an array.

Syntax

arrayQuery (arrayldentifier[,dimensionExpression]);
arrayQuery (dataTypeName[,dimensionExpression));
$dimensions | $unpacked_dimensions (arrayldentifier | dataTypeName)

In the above syntax, arrayQuery is one of the following array querying
functions:

* Sleft - returns the left bound (MSB) of the dimension.
* $right - returns the right bound (LSB) of the dimension.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 437

SystemVerilog Language Support Generate Statement

* S$low — returns the lowest value of the left and right bound dimension.
* $high — returns the highest value of the left and right bound dimension.
* $size — returns the number of elements in a given dimension.

* Sincrement — returns a value "1" when the left bound is greater than or
equal to the right bound, else it returns a value "-1".

In the third syntax example, $dimensions returns the total number of packed
and unpacked dimensions in a given array, and $unpacked_dimensions returns
the total number of unpacked dimensions in a given array. The variable
dimensionExpression, by default, is "1". The order of dimension expression
increases from left to right for both unpacked and packed dimensions,
starting with the unpacked dimension for a given array.

%@gwa%e_%/ IaeArray Querying Function $left and $right Used on Packed

Eﬁ%@&g&aﬁé‘gﬁ% %lljpeéying Function $low and $high Used on

Ef(xedpﬁr% Array Querying Function $size and $increment Used on a

B AR Rt AN R R Y2ed SR Red ARy ons and

Example 5 — Array Querying Function with Data Type as Input

Generate Statement

The synthesis tools support the Verilog 2005 generate statement, which
conforms to the Verilog 2005 LRM. The tools also support defparam, parameter,
and function and task declarations within generate statements. The naming
scheme for registers and instances is also enhanced to include closer correla-
tion to specified generate symbolic hierarchies. Generated data types have
unique identifier names and can be referenced hierarchically. Generate state-
ments are created using one of the following three methods: generate-loop,
generate-conditional, or generate-case.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
438 January 2014

Generate Statement SystemVerilog Language Support

Note: The generate statement is a Verilog 2005 feature; to use this state-
ment with the FPGA synthesis tools, you must enable System-
Verilog for your project.

Example 1 — Shift Register Using generate-for
Example 2 — Accessing Variables Declared in a generate-if

Example 3 — Accessing Variables Declared in a generate-case

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 439

SystemVerilog Language Support Generate Statement

Limitations

The following generate statement functions are not currently supported:
¢ Defparam support for generate instances
* Hierarchical access for interface

* Hierarchical access of function/task defined within a generate block

Note: Whenever the generate statement contains symbolic hierarchies
separated by a hierarchy separator (.), the instance name
includes the (\) character before this hierarchy separator (.).

Conditional Generate Constructs

The if-generate and case-generate conditional generate constructs allow the
selection of, at most, one generate block from a set of alternative generate
blocks based on constant expressions evaluated during elaboration. The
generate and endgenerate keywords are optional.

Generate blocks in conditional generate constructs can be either named or
unnamed and can consist of only a single item. It is not necessary to enclose
the blocks with begin and end keywords; the block is still a generate block
and, like all generate blocks, comprises a separate scope and a new level of
hierarchy when it is instantiated. The if-generate and case-generate constructs
can be combined to form a complex generate scheme.

Note: Conditional generate constructs are a Verilog 2005 feature; to
use these constructs with the FPGA synthesis tools, you must
enable SystemVerilog for your project.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
440 January 2014

Generate Statement SystemVerilog Language Support

Example 1 — Conditional Generate: if-generate

// test.v

module test

(parameter width = 8,
sel = 2)

(input clk,

input [width-1:0] din,
output [width-1:0] doutl,
output [width-1:0] dout2);

if(sel == 1)
begin:sh
reg [width-1:0] sh r;

always ff @ (posedge clk)
sh r <= din;
end
else
begin:sh
reg [width-1:0] sh rl;
reg [width-1:0] sh r2;

always ff @ (posedge clk)
begin

sh rl <= din;

sh r2 <= sh ril;

end
end
assign doutl = sh.sh ril;
assign dout2 = sh.sh r2;

endmodule

Example 2 — Conditional Generate: case-generate

// top.v

module top

(parameter mod sel = 3,
mod sel2 = 3,

widthl = 8

1

width2 = 16)

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 441

SystemVerilog Language Support

Generate Statement

Copyright © 2013 Synopsys, Inc.
442

(input [widthl-1:0] al,
input [widthl-1:0] bil,
output [widthl-1:0] c1,
input [width2-1:0] a2,
input [width2-1:0] b2,
output [width2-1:0] c2);

case (mod_sel)
0:
begin:ul
my or ul(.a(al),.b(bl),.c(cl)
end

begin:ul
my and u2(.a(a2),.b((b2),.c(c2)
end
default:
begin:ul
my or ul(.a(al),.b(bl),.c(cl)
end
endcase

case (mod_sel2)

0:
begin:u3
my or u3(.a(al),.b(bl),.c(cl)
end
1:
begin:u4
my and u4(.a(a2),.b((b2),.c(c2)
end
default:
begin:def
my and u2(.a(a2),.b(b2),.c(c2)
end
endcase
endmodule
// my and.v

module my and

(parameter width2 16)

(input [width2-1:0] a,
input [width2-1:0] Db,
output [width2-1:0] c
)i

)

)

) ;

) ;

)

)i

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Generate Statement SystemVerilog Language Support

assign ¢ = a & b;
endmodule

// my or.v
module my or
(parameter width = 8)

(input [width-1:0] a,
input [width-1:0] Db,
output [width-1:0] ¢);

assign ¢ = a | b;
endmodule

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 443

SystemVerilog Language Support

Assertions

Assertions

The parsing of SystemVerilog Assertions (SVA) is supported as outlined in the

following table.

Assertion Construct
Immediate assertions

Concurrent
assertions

Boolean expressions

Sequence

Declaring sequences

Sequence operations

Manipulating data in
a sequence

Calling subroutines
on sequence match

System functions

Declaring properties

Multiclock support

Clock resolutions

Copyright © 2013 Synopsys, Inc.

Support Level
Supported

Partially
Supported, Ignored

Partially
Supported, Ignored

Supported, ignored

Partially
Supported, Ignored

Partially
Supported, Ignored

Partially
Supported, Ignored

Partially
Supported, Ignored

Partially Supported

Partially
Supported, Ignored

Not Supported

Partially
Supported, Ignored

Comment

Multiclock properties are not
supported

In the boolean expressions, $rose
function having a clocking event is not
supported.

Sequence with ports declared in global
space is not supported

All variations of first_match, within
and intersect in a sequence is not
supported.

More than one assignment in the
parenthesis is not supported.

Calling of more than one tasks is not
supported

System functions $onehot, $onehotl,
and $countones supported; $isunknown
not supported

Declaring of properties in a package
and properties with ports declared in
global space are not supported

Default clocking is not supported

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Assertions SystemVerilog Language Support

Assertion Construct Support Level Comment

Binding properties to Not Supported
scopes or instances

Expect statement Not Supported
Clocking blocks and Not Supported
concurrent
assertions

SVA System Functions

SystemVerilog assertion support includes the $onehot, $onehot0, and
$countones system functions. These functions check for specific characteris-
tics on a particular signal and return a single-bit value.

* $onehot returns true when only one bit of the expression is true.

* $onehot0 returns true when no more than one bit of the expression is
high (either one bit high or no bits are high).

* S$countones returns true when the number of ones in a given expression
matches a predefined value.

Syntax
$onehot (expression)
$onehotO (expression)

$countones (expression)

Example 1 — System Function within if Statement

The following example shows a $onehot/$onehot0 function used inside an if
statement and ternary operator.

module top
(
//Input
input byte di,
input byte d2,
input shortint d3,

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 445

SystemVerilog Language Support

Assertions

//Output
output byte doutl,
output byte dout2
) ;
byte sigl;
assign sigl = dl + d2;

//Use of Sonehot
always comb begin
if ($Sonehot (sigl))
doutl = d3([7:0];
else
doutl = d3[15:8];
end

byte sig2;
assign sig2 = d1 * d42;
//Use of $onehotO

assign dout2 = SonehotO(sig2)? d3[7:0] : d3[15:8];

endmodule

Example 2 — System Function with Expression

The following example includes an expression, which is evaluated to a single-
bit value, as an argument to a system function.

module top
(
//Input
input byte di,
input byte d2,
input shortint d3,
//Output
output byte doutl,
output byte dout2
)i

//Use of S$Sonehot with Expression inside onehot function

always@*
begin

if ($onehot ((d1 == d2)

doutl = d3([7:0];
else

doutl = d3[15:8];

end

Copyright © 2013 Synopsys, Inc.
446

? d1[3:0] : di1[7:4]))

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Assertions SystemVerilog Language Support

//Use of $onehot0 with AND operation inside onehot function
assign dout2 = $onehot0(dl & d2)? d3[7:0] : d3[15:8];

endmodule

Example 3 — Ones Count

In the following example, a 4-bit count is checked for two and only two bits
set to 1 which, when present, returns true.

module top (
input clk,
input rst,
input byte di,
output byte dout
)i
logic[3:0] count;

always ffe@(posedge clk)begin

if (rst)
count <= '0;
else
count <= count + 1'bl;
end
assign dout = Scountones (count) == 3'd2 ? dl : ~di;
endmodule
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 447

SystemVerilog Language Support

Keyword Support

Keyword Support

This table lists supported SystemVerilog keywords in the Synopsys FPGA

synthesis tools:

always_comb
assume*
break

const
endchecker*
endsequence*
final*

inside

let*

packed
property*
shortint
timeprecision*

unique

always_ff
automatic
byte
continue
endclocking*
enum
function
int

logic
package
restrict*
struct
timeunit*

void

always_latch
bind*
checker*
cover*
endinterface
expect*
global*
interface
longint
parameter
return

task

typedef

within*

assert*

bit
clocking*

do
endproperty*
extern
import
intersect*
modport
priority
sequence*
throughout*

union

* Reserved keywords for SystemVerilog assertion parsing; cannot be used as
identifiers or object names

Copyright © 2013 Synopsys, Inc.
448

Synplify Pro for Microsemi Edition Reference Manual

January 2014

SYNoPSYS

zcelerating Innovation

CHAPTER 10

VHDL Language Support

This chapter discusses how you can use the VHDL language to create HDL
source code for the synthesis tool:

¢ Language Constructs, on page 450

* VHDL Language Constructs, on page 452

¢ VHDL Implicit Data-type Defaults, on page 485

¢ VHDL Synthesis Guidelines, on page 490

* Sets and Resets, on page 504

* VHDL State Machines, on page 508

* Hierarchical Design Creation in VHDL, on page 517
* Configuration Specification and Declaration, on page 521
* Scalable Designs, on page 546

¢ Instantiating Black Boxes in VHDL, on page 552

* VHDL Attribute and Directive Syntax, on page 554
* VHDL Synthesis Examples, on page 556

* PREP VHDL Benchmarks, on page 558

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 449

VHDL Language Support Language Constructs

Language Constructs

This section generally describes how the synthesis tool relates to different
VHDL language constructs. The topics include:

¢ Supported VHDL Language Constructs, on page 450

¢ Unsupported VHDL Language Constructs, on page 451

* Partially-supported VHDL Language Constructs, on page 452
¢ Ignored VHDL Language Constructs, on page 452

Supported VHDL Language Constructs

The following is a compact list of language constructs that are supported.
* Entity, architecture, and package design units
* Function and procedure subprograms

e All IEEE library packages, including:
— std_logic_1164
— std_logic_unsigned
— std_logic_signed
— std_logic_arith
— numeric_std and numeric_bit

— standard library package (std)
¢ In, out, inout, buffer, linkage ports
* Signals, constants, and variables
* Aliases
* Integer, physical, and enumeration data types; subtypes of these
* Arrays of scalars and records
* Record data types
* File types

e All operators (-, -, *, /, **, mod, rem, abs, not, =, /=, <, <=, >, >=, and, or, nand,
nor, xor, xnor, sll, srl, sla, sra, rol, ror, &)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
450 January 2014

Language Constructs VHDL Language Support

Note: With the ** operator, arguments are compiler constants. When
the left operand is 2, the right operand can be a variable.

* Sequential statements: signal and variable assignment, wait, if, case, loop,
for, while, return, null, function, and procedure call

* Concurrent statements: signal assignment, process, block, generate (for
and if), component instantiation, function, and procedure call

* Component declarations and four methods of component instantiations
* Configuration specification and declaration

* Generics; attributes; overloading

* Next and exit looping control constructs

* Predefined attributes: tbase, tleft, tright, thigh, tlow, t'succ, tpred, t'val, t'pos,
tleftof, t'rightof, integerimage, a'left, a'right, a'high, a'low, arange, a'reverse_range,
a'length, a'ascending, s'stable, s'event

* Unconstrained ports in entities

* Global signals declared in packages

Unsupported VHDL Language Constructs

If any of these constructs are found, an error message is reported and the
synthesis run is cancelled.

* Register and bus kind signals
* Guarded blocks
* Expanded (hierarchical) names

* User-defined resolution functions. The synthesis tool only supports the
resolution functions for std_logic and std_logic_vector.

* Slices with range indices that do not evaluate to constants

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 451

VHDL Language Support VHDL Language Constructs

Partially-supported VHDL Language Constructs

When one of the following constructs in encountered, compilation continues,
but will subsequently error out if logic must be generated for the construct.

* real data types (real data expressions are supported in VHDL-2008 IEEE
float_pkg.vhd) — real data types are supported as constant declarations or
as constants used in expressions as long as no floating point logic must
be generated

* access types

¢ null arrays — null arrays are allowed as operands in concatenation
expressions

Ignored VHDL Language Constructs

The synthesis tool ignores the following constructs in your design. If found,
the tool parses and ignores the construct (provided that no logic is required to
be synthesized) and continues with the synthesis run.

¢ disconnect
®* report
* initial values on inout ports

* assert on ports and signals

VHDL Language Constructs

This section describes the synthesis language support that the synthesis tool
provides for each VHDL construct. The language information is taken from
the most recent VHDL Language Reference Manual (Revision ANSI/IEEE Std
1076-1993). The section names match those from the LRM, for easy refer-
ence.

¢ Data Types
* Declaring and Assigning Objects in VHDL
* VHDL Dynamic Range Assignments

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
452 January 2014

VHDL Language Constructs VHDL Language Support

* Signals and Ports

* Variables

¢ VHDL Constants

¢ Libraries and Packages

¢ Operators

¢ VHDL Process

* Common Sequential Statements
* Concurrent Signal Assignments
* Resource Sharing

¢ Combinational Logic

* Sequential Logic

* Component Instantiation in VHDL
* VHDL Selected Name Support

* User-defined Function Support

* Demand Loading

Data Types

Predefined Enumeration Types

Enumeration types have a fixed set of unique values. The two predefined data
types — bit and Boolean, as well as the std_logic type defined in the
std_logic_1164 package are the types that represent hardware values. You can
declare signals and variables (and constants) that are vectors (arrays) of these
types by using the types bit_vector, and std_logic_vector. You typically use
std_logic and std_logic_vector, because they are highly flexible for synthesis and
simulation.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 453

VHDL Language Support

VHDL Language Constructs

std_logic Values

'U' (uninitialized)

X' (forcing unknown)
'0' (forcing logic 0)

'1" (forcing logic 1)

'Z' (high impedance)
'W' (weak unknown)
'L' (weak logic 0)

'H' (weak logic 1)

"' (don't care)

bit Values
IOI
o

boolean Values
false

true

Treated by the synthesis tool as...
don't care

don't care

logic O

logic 1

high impedance

don't care

logic O

logic 1

don't care

Treated by the synthesis tool a...
logic O
logic 1

Treated by the synthesis tool as...
logic O
logic 1

User-defined Enumeration Types

You can create your own enumerated types. This is common for state
machines because it allows you to work with named values rather than
individual bits or bit vectors.

Syntax

type type_name is (value_list) ;

Copyright © 2013 Synopsys, Inc.

Synplify Pro for Microsemi Edition Reference Manual
January 2014

VHDL Language Constructs VHDL Language Support

Examples

type states is (state0, statel, state2, state3);
type traffic light state is (red, yellow, green);

Integers

An integer is a predefined VHDL type that has 32 bits. When you declare an
object as an integer, restrict the range of values to those you are using. This
results in a minimum number of bits for implementation and on ports.

Data Types for Signed and Unsigned Arithmetic

For signed arithmetic, you have the following choices:

Use the std_logic_vector data type defined in the std_logic_1164 package,
and the package std_logic_signed.

Use the signed data type, and signed arithmetic defined in the package
std_logic_arith.

Use an integer subrange (for example: signal mysig: integer range -8 to 7). If
the range includes negative numbers, the synthesis tool uses a two’s-
complement bit vector of minimum width to represent it (four bits in this
example). Using integers limits you to a 32-bit range of values, and is
typically only used to represent small buses. Integers are most
commonly used for indexes.

Use the signed data type from the numeric_std or numeric_bit packages.

For unsigned arithmetic, you have the following choices:

Use the std_logic_vector data type defined in the std_logic_1164 package and
the package std_logic_unsigned.

Use the unsigned data type and unsigned arithmetic defined in the
package std_logic_arith.

Use an integer subrange (for example: signal mysig: integer range 0 to 15). If
the integers are restricted to positive values, the synthesis tool uses an
unsigned bit vector of minimum width to represent it (four bits in this
example). Using integers limits you to a 32-bit range of values, and is
typically only used to represent small buses (integers are most
commonly used for indexes).

Use the unsigned data type from the numeric_std or numeric_bit packages.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 455

VHDL Language Support VHDL Language Constructs

Declaring and Assigning Objects in VHDL

VHDL objects (object classes) include signals (and ports), variables, and
constants. The synthesis tool does not support the file object class.

Naming Objects

VHDL is case insensitive. A VHDL name (identifier) must start with a letter
and can be followed by any number of letters, numbers, or underscores ().
Underscores cannot be the first or last character in a name and cannot be
used twice in a row. No special characters such as '$', '?', ', '-', or 'I', can be
used as part of a VHDL identifier.

Syntax
object_class object_name : data_type [:= initial_value] ;
In the above syntax:
e object_class is a signal, variable, or constant.
* object_name is the name (the identifier) of the object.

¢ data_type can be any predefined data type (such as bit or std_logic_vector) or
user-defined data type.

Assignment Operators

<= Signal assignment operator.

:= Variable assignment and initial value operator.

VHDL Dynamic Range Assignments

The tools support VHDL assignments with dynamic ranges, which are
defined as follows:

A(b downto c) <= D(e downto f);

A and D are constrained variables or signals, and b, ¢, e, and f are constants
(generics) or variables. Dynamic range assignments can be used for RHS,
LHS, or both.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
456 January 2014

VHDL Language Constructs VHDL Language Support

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity test is
port (data out: out std logic vector (63 downto 0);
data in: in std logic vector (63 downto 0);
selector: in NATURAL range 0 to 7);
end test;

architecture rtl of test is
begin
data out((selector*8)+7 downto (selector*8))
<= data_in((selector*8)+7 downto (selector*8));
end rtl;

Currently, the following limitations apply to dynamic range assignments:
* There is no support for procedures.

* There is no support for selected signal assignment; i.e., with expression
Select.

* There is no support for use with concatenation operators.

Null Ranges

A null range is a range that specifies an empty subset of values. A range
specified as m to nis a null range when m is greater than n, and a range
specified as n downto m is a null range when n is less than m.

Support for null ranges allows ports with negative ranges to be compiled
successfully. During compilation, any port declared with a null range and its
related logic are removed by the compiler.

In the following example, port a_inl (-1 to 0) is a null range and is subsequently
removed by the compiler.

-- top.vhd
library ieee;
use ieee.std logic 1164.all;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 457

VHDL Language Support VHDL Language Constructs

entity top is
generic (width : integer := 0);
port (a_inl : in std logic_ vector (width -1 downto 0);
b inl : in std logic vector (3 downto 0);
c outl : out std logic vector (3 downto 0));
end top;

architecture struct of top is
component sub is
port (a_inl : in std logic vector (width -1 downto 0);
b inl : in std logic vector (3 downto 0);
c outl : out std logic_vector (3 downto 0));
end component ;

begin
UUT : sub port map (a_inl => a inl, b _inl => b inil,
c outl => c outl);
end struct;

-- sub.vhd
library ieee;
use ieee.std logic 1164.all;

entity sub is
generic (width : integer := 0);
port (a_inl : in std logic vector (width -1 downto 0);
b inl : in std logic vector (3 downto 0);
c outl : out std logic_vector (3 downto 0));
end sub;

architecture rtl of sub is
begin

c outl <= not (b _inl & a_inl);
end rtl;

Signals and Ports

In VHDL, the port list of the entity lists the I/O signals for the design. Ports of
mode in can be read from, but not assigned (written) to. Ports of mode out can
be assigned to, but not read from. Ports of mode inout are bidirectional and
can be read from and assigned to. Ports of mode buffer are like inout ports but
can have only one internal driver on them.

Internal signals are declared in the architecture declarative area and can be
read from or assigned to anywhere within the architecture.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
458 January 2014

VHDL Language Constructs VHDL Language Support

Examples
signal my sigl : std logic; -- Holds a single std logic bit
begin -- An architecture statement area
my sigl <= 'l'; -- Assign a constant value '1'

-- My sig2 is a 4-bit integer

signal my sig2 : integer range 0 to 15;
begin -- An architecture statement area
my sig2 <= 12;

-- My sig vecl holds 8 bits of std logic, indexed from 0 to 7
signal my sig vecl : std logic vector (0 to 7) ;
begin -- An architecture statement area

-- Simple signal assignment with a literal value
my sig vecl <= "01001000";

-- 16 bits of std logic, indexed from 15 down to 0
signal my sig vec2 : std logic vector (15 downto 0) ;
begin -- An architecture statement area

-- Simple signal assignment with a vector value
my sig vec2 <= "0111110010000101";

-- Assigning with a hex value FFFF
my sig vec2 <= X"FFFF";

-- Use package Std Logic Signed
signal my sig vec3 : signed (3 downto 0);
begin -- An architecture statement area

-- Assigning a signed value, negative 7
my sig vec3 <= "1111";

-- Use package Std Logic Unsigned
signal my sig vec4 : unsigned (3 downto 0);
begin -- An architecture statement area

-- Assigning an unsigned value of 15
my sig vec4 <= "1111";

-- Declare an enumerated type, a signal of that type, and
-- then make an valid assignment to the signal
type states is (stateO, statel, state2, statel);
signal current state : states;
begin -- An architecture statement area
current state <= state2;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 459

VHDL Language Support VHDL Language Constructs

-- Declare an array type, a signal of that type, and
-- then make a valid assignment to the signal

type array type is array (1 downto 0) of
std logic_vector (7 downto 0);
signal my sig: array type;
begin -- An architecture statement area
my sig <= ("10101010","01010101");

Variables

VHDL variables are declared within a process or subprogram and then used
internally. Generally, variables are not visible outside the process or subpro-
gram where they are declared unless passed as a parameter to another

subprogram.
Example
process (clk) -- What follows is the process declaration area
variable my varl : std logic := '0'; -- Initial value '0'
begin -- What follows is the process statement area
my varl := '1l';

end process;

Example

process (clk, reset)
-- Set the initial value of the variable to hex FF

variable my var2 : std logic vector (1 to 8) := X"FF";
begin
-- my var2 is assigned the octal value 44

my var2 := 0"44";

end process;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
460 January 2014

VHDL Language Constructs VHDL Language Support

VHDL Constants

VHDL constants are declared in any declarative region and can be used
within that region. The value of a constant cannot be changed.

Example

package my constants is
constant num bits : integer := 8;

-- Other package declarations

end my constants;

Libraries and Packages

When you want to synthesize a design in VHDL, include the HDL files in the
source files list of your synthesis tool project. Often your VHDL design will
have more than one source file. List all the source files in the order you want
them compiled; the files at the top of the list are compiled first.

Compiling Design Units into Libraries

All design units in VHDL, including your entities and packages are compiled
into libraries. A library is a special directory of entities, architectures and/or
packages. You compile source files into libraries by adding them to the source
file list. In VHDL, the library you are compiling has the default name work. All
entities and packages in your source files are automatically compiled into
work. You can keep source files anywhere on your disk, even though you add
them to libraries. You can have as many libraries as are needed.

1. To add a file to a library, select the file in the Project view.

The library structure is maintained in the Project view. The name of the
library where a file belongs appears on the same line as the filename,
and directly in front of it.

2. Choose Project -> Set Library from the menu bar, then type the library
name. You can add any number of files to a library.

3. If you want to use a design unit that you compiled into a library (one
that is no longer in the default work library), you must use a library clause
in the VHDL source code to reference it.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 461

VHDL Language Support

VHDL Language Constructs

For example, if you add a source file for the entity ram16x8 to library

my_rams, and instantiate the 16x8 RAM in the design called top_level, you

must add library my_rams; just before defining top_level.

Predefined Packages

The synthesis tool supports the two standard libraries, std and ieee, that
contain packages containing commonly used definitions of data types,

functions, and procedures. These libraries and their packages are built in to
the synthesis tool, so you do not compile them. The predefined packages are

described in the following table.

Library Package

std standard

ieee std_logic_1164

ieee numeric_bit

ieee numeric_std

ieee std_logic_arith

ieee std_logic_signed
ieee std_logic_unsigned

Copyright © 2013 Synopsys, Inc.
462

Description

Defines the basic VHDL types
including bit and bit_vector

Defines the 9-value std_logic and
std_logic_vector types

Defines numeric types and arithmetic
functions. The base type is BIT.

Defines arithmetic operations on types
defined in std_logic_1164

Defines the signed and unsigned
types, and arithmetic operations for
the signed and unsigned types

Defines signed arithmetic for std_logic
and std_logic_vector

Defines unsigned arithmetic for
std_logic and std_logic_vector

Synplify Pro for Microsemi Edition Reference Manual
January 2014

VHDL Language Constructs VHDL Language Support

The synthesis tools also have vendor-specific built-in macro libraries for
components like gates, counters, flip-flops, and I/Os. The libraries are
located in installDirectory/lib/vendorName. Use the built-in macro libraries to
instantiate vendor macros directly into the VHDL designs and forward-
annotate them to the output netlist. Refer to the appropriate vendor support
chapter for more information.

Additionally, the synthesis tool library contains an attributes package of
built-in attributes and timing constraints (installDirectory/lib/vhd/synattr.vhd)
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

If you want the addition operator (+) to take two std_ulogic or std_ulogic_vector as
inputs, you need the function defined in the std_logic_arith package (the
cdn_arith.vhd file in installDirectory/lib/vhd/). Add this file to the project. To
successfully compile, the VHDL file that uses the addition operator on these
input types must have include the following statement:

use work.std logic arith.all;

Accessing Packages

To gain access to a package include a library clause in your VHDL source code
to specify the library the package is contained in, and a use clause to specify
the name of the package. The library and use clauses must be included
immediately before the design unit (entity or architecture) that uses the
package definitions.

Syntax

library library_name ;
use library_name.package_name.all ;

To access the data types, functions and procedures declared in std_logic_1164,
std_logic_arith, std_logic_signed, or std_logic_unsigned, you need a library ieee clause
and a use clause for each of the packages you want to use.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 463

VHDL Language Support VHDL Language Constructs

Example
library ieee;
use ieee.std logic 1164.all ;
use ieee.std logic signed.all ;

-- Other code

Library and Package Rules

To access the standard package, no library or use clause is required. The
standard package is predefined (built-in) in VHDL, and contains the basic
data types of bit, bit_vector, Boolean, integer, real, character, string, and others
along with the operators and functions that work on them.

If you create your own package and compile it into the work library to access
its definitions, you still need a use clause before the entity using them, but
not a library clause (because work is the default library.)

To access packages other than those in work and std, you must provide a library
and use clause for each package as shown in the following example of
creating a resource library.

-- Compile this in library mylib
library ieee;
use ieee.std logic 1164.all;

package my constants is
constant max: std logic vector (3 downto 0):="1111";

end package;

-- Compile this in library work
library ieee, mylib;

use ieee.std logic_1164.all;
use mylib.my constants.all;

entity compare is
port (a: in std logic vector (3 downto 0);
z: out std logic);
end compare;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
464 January 2014

VHDL Language Constructs VHDL Language Support

architecture rtl of compare is
begin

z <= '1l' when (a = max) else '0';
end rtl;

The rising_edge and falling_edge functions are defined in the std_logic 1164
package. If you use these functions, your clock signal must be declared as

type std_logic.

Instantiating Components in a Design

No library or use clause is required to instantiate components (entities and
their associated architectures) compiled in the default work library. The files
containing the components must be listed in the source files list before any
files that instantiate them.

To instantiate components from the built-in technology-vendor macro
libraries, you must include the appropriate use and library clauses in your
source code. Refer to the section for your vendor for more information.

To create a separate resource library to hold your components, put all the
entities and architectures in one source file, and assign that source file the
library components in the synthesis tool Project view. To access the compo-
nents from your source code, put the clause library components; before the
designs that instantiate them. There is no need for a use clause. The project
file (prj) must include both the files that create the package components and
the source file that accesses them.

Operators

The synthesis tool supports the creation of expressions using all predefined
VHDL operators:

Arithmetic Description

Operator
- Addition
- Subtraction
* Multiplication
/ Division
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 465

VHDL Language Support

Arithmetic
Operator

*%

mod

rem

Relational
Operator

Logical
Operator

and
or
nand
nor
Xor
xXnor

not

Copyright © 2013 Synopsys, Inc.
466

Description

Exponentiation (supported for compile-time constants and
when left operand is 2; right operand can be a variable)

Modulus

Remainder

Description

Equal (if either operand has a bit with an 'X' or 'Z' value, the result
is 'X))

Not equal (if either operand has a bit with an 'X' or 'Z' value, the
result is 'X')

Less than (if, because of unknown bits in the operands, the
relation is ambiguous, then the result is the unknown value 'X)

Less than or equal to (if, because of unknown bits in the operands,
the relation is ambiguous, then the result is the unknown value 'X')

Greater than (if, because of unknown bits in the operands, the
relation is ambiguous, then the result is the unknown value 'X')

Greater than or equal to (if, because of unknown bits in the
operands, the relation is ambiguous, then the result is the
unknown value 'X')

Description

and
or
nand
nor
Xor
Xnor

not (takes only one operand)

VHDL Language Constructs

Synplify Pro for Microsemi Edition Reference Manual
January 2014

VHDL Language Constructs VHDL Language Support

Shift Description

Operator

sll shift left logical — logically shifted left by R index positions

sil shift right logical — logically shifted right by R index
positions

sla shift left arithmetic — arithmetically shifted left by R index
positions

sra shift right arithmetic — arithmetically shifted right by R
index positions

rol rotate left logical — rotated left by R index positions

ror rotate right logical — rotated right by R index positions

Misc. Description

Operator

- identity

- negation

& concatenation

Note: Initially, X's are treated as “don’t-cares”, but they are eventually
converted to O's or 1's in a way that minimizes hardware.

Large Time Resolution

The support of predefined physical time types includes the expanded range
from -2147483647 to +2147483647 with units ranging from femtoseconds,
and secondary units ranging up to an hour. Predefined physical time types
allow selection of a wide number range representative of time type.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 467

VHDL Language Support VHDL Language Constructs

Example 1 — Using Large Time Values in Comparisons

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric std.all;

use ieee.std logic unsigned.all;

entity test is
generic (INTERVAL1l : time := 1000 fs ;
INTERVAL2 : time := 1 ps;
INTERVAL3 : time 1000 ps;
INTERVAIL4 : time := 1 ns

a : in std logic vector (3 downto 0);
b : in std logic_vector (3 downto 0);
¢ : out std logic vector (3 downto 0) ;
d 0)

out std logic vector (3 downto

end test;

architecture RTL of test is

begin
c <= (a and b) when (INTERVAL1 = INTERVAL2) else
(a or b);
d <= (a xor b) when (INTERVAL3 /= INTERVAL4) else
(a nand Db) ;
end RTL;

Example 2 — Using Large Time Values in Constant Calculations

library ieee;
use ieee.std logic 1164.all;

entity test is
generic (Interval : time := 20 ns;
CLK_PERIOD : time := 8 ns);

port (en : in std logic;
a : in std logic vector (10 downto 0);
b : in std logic vector (10 downto O0) ;
a_in : in std logic vector (7 downto O0);
b in : in std logic vector (7 downto 0) ;
dummyOut : out std logic vector (7 downto 0);
outl : out std logic_vector (10 downto 0));

end entity;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
468 January 2014

VHDL Language Constructs VHDL Language Support

architecture behv of test is

constant my time : positive := (Interval / 2 ns);
constant CLK PERIOD PS : real := real (CLK PERIOD / 1 ns);
constant RESULT : positive := integer (CLK PERIOD PS) ;

signal dummy : std logic_ vector (RESULT-1 downto 0);
signal temp : std logic vector (my time downto O0);
begin
process (a, b)
begin
temp <= a and b;
outl <= temp;
end process;
dummy <= (others => '0') when en = '1l' else
(a_in or b_in);
dummyOut <= dummy;
end behv;

VHDL Process

The VHDL keyword process introduces a block of logic that is triggered to
execute when one or more signals change value. Use processes to model
combinational and sequential logic.

process Template to Model Combinational Logic

<optional label> : process (<sensitivity lists)

-- Declare local variables, data types,
-- and other local declarations here

begin
-- Sequential statements go here, including:
-- signal and variable assignments
-- if and case statements
-- while and for loops
-- function and procedure calls
end process <optional labels;

Sensitivity List

The sensitivity list specifies the signal transitions that trigger the process to
execute. This is analogous to specifying the inputs to logic on a schematic by
drawing wires to gate inputs. If there is more than one signal, separate the
names with commas.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 469

VHDL Language Support VHDL Language Constructs

A warning is issued when a signal is not in the sensitivity list but is used in
the process, or when the signal is in the sensitivity list but not used by the
process.

Syntax
process (signall, signal2, ...);

A process can have only one sensitivity list, located immediately after the
keyword process, or one or more wait statements. If there are one or more wait
statements, one of these wait statements must be either the first or last state-
ment in the process.

List all signals feeding into the combinational logic (all signals that affect
signals assigned inside the process) in the sensitivity list. If you forget to list
all signals, the synthesis tool generates the desired hardware, and reports a
warning message that you are not triggering the process every time the
hardware is changing its outputs, and therefore your pre- and post-synthesis
simulation results might not match.

Any signals assigned in the process must either be outputs specified in the
port list of the entity or declared as signals in the architecture declarative
area.

Any variables assigned in the process are local and must be declared in the
process declarative area.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
470 January 2014

VHDL Language Constructs VHDL Language Support

Note: Make sure all signals assigned in a combinational process are
explicitly assigned values each time the process executes. Other-
wise, the synthesis tool must insert level-sensitive latches in your
design, in order to hold the last value for the paths that don't
assign values (if, for example, you have combinational loops in
your design). This usually represents coding error, so the
synthesis tool issues a warning message that level-sensitive
latches are being inserted into the design because of combina-
tional loops. You will get an error message if you have combina-
tional loops in your design that are not recognized as level-sensi-
tive latches.

Common Sequential Statements

This section describes the if-then-else and case statements.
if-then-else Statement

Syntax

if condition1 then
sequential_statement(s)
[elsif condition2 then
sequential_statement(s)]
[else
sequential_statement(s)]
end if ;

The else and elsif clauses are optional.

Example

library ieee;
use ieee.std logic 1164.all;

entity mux is
port (output signal : out std logic;
a, b, sel : in std logic);
end mux;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 471

VHDL Language Support VHDL Language Constructs

architecture if mux of mux is
begin
process (sel, a, b)
begin
if sel = '1' then
output_ signal <= a;
elsif sel = '0' then
output signal <= b;
else
output signal <= 'X';
end if;
end process ;
end if mux;

case Statement

Syntax

case expression is
when choicel => sequential_statement(s)
when choice2 => sequential _statement(s)

-- Other case choices

when choiceN => sequential_statement(s)
end case;

Note: VHDL requires that the expression match one of the given
choices. To create a default, have the final choice be when others =>
sequential_statement(s) or null. (Null means not to do anything.)

Example

library ieee;
use ieee.std logic 1164.all;

entity mux is
port (output signal : out std logic;
a, b, sel : in std logic);
end mux;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
472 January 2014

VHDL Language Constructs VHDL Language Support

architecture case mux of mux is
begin
process (sel, a, b)
begin
case sel is
when '1' =>
output signal <= a;
when '0' =>
output_signal <= b;
when others =>
output signal <= 'X';
end case;
end process;
end case mux;

Note: To test the condition of matching a bit vector, such as "0-11",
that contains one or more don’t-care bits, do not use the equality
relational operator (5). Instead, use the std_match function (in the
ieee.numeric_std package), which succeeds (evaluates to true) when-
ever all of the explicit constant bits (0 or 1) of the vector are
matched, regardless of the values of the bits in the don’t-care (-)
positions. For example, use the condition std match(a, "0-11")
to test for a vector with the first bit unset (0) and the third and
fourth bits set (1).

Concurrent Signal Assignments
There are three types of concurrent signal assignments in VHDL.
* Simple
* Selected (with-select-when)

* Conditional (when-else)

Use the concurrent signal assignment to model combinational logic. Put the
concurrent signal assignment in the architecture body. You can any number
of statements to describe your hardware implementation. Because all state-
ments are concurrently active, the order you place them in the architecture
body is not significant.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 473

VHDL Language Support VHDL Language Constructs

Re-evaluation of Signal Assignments

Every time any signal on the right side of the assignment operator (<=)
changes value (including signals used in the expressions, values, choices, or
conditions), the assignment statement is re-evaluated, and the result is
assigned to the signal on the left side of the assignment operator. You can use
any of the predefined operators to create the assigned value.

Simple Signal Assignments

Syntax
signal <= expression ;

Example

architecture simple example of simple is
begin

c <= a nand b ;
end simple example;

Selected Signhal Assignments

Syntax

with expression select
signal <= valuel when choicel ,
value2 when choice?2 ,

valueN when choiceN ;

Example

library ieee;
use ieee.std logic 1164.all;
entity mux is
port (output signal : out std logic;
a, b, sel : in std logic);
end mux;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

474

January 2014

VHDL Language Constructs

VHDL Language Support

architecture with select when of mux is
begin
with sel select
output signal <= a when '1',
b when '0',
'X'" when others;
end with select when;

Conditional Signal Assignments

Syntax
signal <= valuel when conditionl else
value2 when condition2 else
valueN-1 when conditionN-1 else
valueN ;

Example

library ieee;
use ieee.std logic 1164.all;

entity mux is
port (output signal: out std logic;
a, b, sel: in std logic);
end mux;

architecture when else mux of mux is

begin

output _signal <= a when sel = '1' else
b when sel = '0' else
IXI ;

end when else mux;

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Copyright © 2013 Synopsys, Inc.
475

VHDL Language Support VHDL Language Constructs

Note: To test the condition of matching a bit vector, such as "0-11",
that contains one or more don’t-care bits, do not use the equality
relational operator (=). Instead, use the std_match function (in the
ieee.numeric_std package), which succeeds (evaluates to true) when-
ever all of the explicit constant bits (0 or 1) of the vector are
matched, regardless of the values of the bits in the don’t-care (-)
positions. For example, use the condition std match(a, "0-11")
to test for a vector with the first bit unset (0) and the third and
fourth bits set (1).

Resource Sharing

When you have mutually exclusive operators in a case statement, the
synthesis tool shares resources for the operators in the case statements. For
example, automatic sharing of operator resources includes adders, subtrac-
tors, incrementors, decrementors, and multipliers.

Combinational Logic

Combinational logic is hardware with output values based on some function
of the current input values. There is no clock and no saved states. Most
hardware is a mixture of combinational and sequential logic.

Create combinational logic with concurrent signal assignments and/or
processes.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
476 January 2014

VHDL Language Constructs VHDL Language Support

Sequential Logic

Sequential logic is hardware that has an internal state or memory. The state
elements are either flip-flops that update on the active edge of a clock signal,
or level-sensitive latches, that update during the active level of a clock signal.

Because of the internal state, the output values might depend not only on the
current input values, but also on input values at previous times. State
machines are made of sequential logic where the updated state values
depend on the previous state values. There are standard ways of modeling
state machines in VHDL. Most hardware is a mixture of combinational and
sequential logic.

Create sequential logic with processes and/or concurrent signal assign-
ments.

Component Instantiation in VHDL

A structural description of a design is made up of component instantiations
that describe the subsystems of the design and their signal interconnects.
The synthesis tool supports four major methods of component instantiation:

* Simple component instantiation (described below)
* Selected component instantiation
¢ Direct entity instantiation

* Configurations described in Configuration Specification, on page 521

Simple Component Instantiation

In this method, a component is first declared either in the declaration region
of the architecture, or in a package of (typically) component declarations, and
then instantiated in the statement region of the architecture. By default, the
synthesis process binds a named entity (and architecture) in the working
library to all component instances that specify a component declaration with
the same name.

Syntax

label : [component] declaration_name
[generic map (actual_genericl, actual_generic2, ...)]
[port map (portl, port2,...)];

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 477

VHDL Language Support VHDL Language Constructs

The use of the reserved word component is optional in component instantia-
tions.

Example: VHDL 1987

architecture struct of hier add is
component add
generic (size : natural) ;
port (a : in bit vector (3 downto 0);
b : in bit vector (3 downto 0);
result : out bit vector (3 downto 0));
end component ;

begin
-- Simple component instantiation
addl: add
generic map(size => 4)
port map(a => ain,
b => bin,
result => q);

-- Other code

Example: VHDL 1993

architecture struct of hier add is
component add
generic (size : natural) ;
port (a : in bit vector (3 downto 0);
b : in bit vector (3 downto 0) ;
result : out bit vector (3 downto 0));
end component;

begin
-- Simple component instantiation
addl: component add -- Component keyword new in 1993
generic map(size => 4)
port map(a => ain,
b => bin,
result => q);

-- Other code

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
478 January 2014

VHDL Language Constructs VHDL Language Support

Note: If no entity is found in the working library named the same as the
declared component, all instances of the declared component are
mapped to a black box and the error message “Unbound compo-
nent mapped to black box” is issued.

VHDL Selected Name Support

Selected Name Support (SNS) is provided in VHDL for constants, operators,
and functions in library packages. SNS eliminates ambiguity in a design
referencing elements with the same names, but that have unique function-
ality when the design uses the elements with the same name defined in
multiple packages. By specifying the library, package, and specific element
(constant, operator, or function), SNS designates the specific constant,
operator, or function used. This section discusses all facets of SNS. Complete
VHDL examples are included to assist you in understanding how to use SNS
effectively.

Constants

SNS lets you designate the constant to use from multiple library packages. To
incorporate a constant into a design, specify the library, package, and
constant. Using this feature eliminates ambiguity when multiple library
packages have identical names for constants and are used in an entity-archi-
tecture pair.

The following example has two library packages available to the design
constants. Each library package has a constant defined by the name C1 and
each has a different value. SNS is used to specify the constant (see
work.PACKAGE.C1 in the constants example below).

-- CONSTANTS PACKAGE1
library IEEE;
use IEEE.std logic 1164.all;
package PACKAGEl is
constant Cl: std logic vector := "10001010";
end PACKAGE]L;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 479

VHDL Language Support VHDL Language Constructs

-- CONSTANTS PACKAGE2
library IEEE;
use IEEE.std logic_1164.all;
package PACKAGE2 is
constant Cl: std logic vector := "10110110";
end PACKAGE2;

-- CONSTANTS EXAMPLE

library IEEE;

use IEEE.std logic 1164.all;

use IEEE.std logic arith.all;
use IEEE.std logic_unsigned.all;

entity CONSTANTS is
generic (num bits : integer := 8) ;
port (a,b: in std logic_vector (num bits -1 downto 0);
outl, out2: out std logic vector (num bits -1 downto 0)
)
end CONSTANTS;

architecture RTL of CONSTANTS is
begin
outl <= a - work.PACKAGEl.Cl; -Example of specifying SNS
out2 <= b - work.PACKAGE2.Cl; -Example of specifying SNS
end RTL;

In the above design, outputs outl and out2 use two C1 constants from two
different packages. Although each output uses a constant named C1, the
constants are not equivalent. For outl, the constant C1 is from PACKAGEL. For
out2, the constant C1 is from PACKAGE2. For example:

outl <= a - work.PACKAGEl.Cl; is equivalentto outl <= a - "10001010";
whereas:
out2 <= b - work.PACKAGE2.Cl; isequivalentto out2 <= b - "10110110";

The constants have different values in different packages. SNS specifies the
package and eliminates ambiguity within the design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
480 January 2014

VHDL Language Constructs VHDL Language Support

Functions and Operators

Functions and operators in VHDL library packages customarily have overlap-
ping naming conventions. For example, the add operator in the IEEE
standard library exists in both the std_logic_signed and std_logic_unsigned
packages. Depending upon the add operator used, different values result.
Defining only one of the IEEE library packages is a straightforward solution
to eliminate ambiguity, but applying this solution is not always possible. A
design requiring both std_logic_signed and std_logic_unsigned package elements
must use SNS to eliminate ambiguity.

Functions

In the following example, multiple IEEE packages are declared in a 256x8
RAM design. Both std_logic_signed and std_logic_unsigned packages are included.
In the RAM definition, the signal address_in is converted from type
std_logic_vector to type integer using the CONV_INTEGER function, but which
CONV_INTEGER function will be called? SNS determines the function to use.
The RAM definition clearly declares the std_logic_unsigned package as the
source for the CONV_INTEGER function.

library IEEE;

use IEEE.std logic_1164.all;

use IEEE.std logic unsigned.all;
use IEEE.std logic_arith.all;
use IEEE.std logic signed.all;
use IEEE.numeric std.all;

entity FUNCTIONS is
port (address : in std logic vector (7 downto 0) ;
data in : in std logic vector (7 downto 0) ;
data out : out std logic vector (7 downto 0);
we : in std logic;
clk : in std logic);

end FUNCTIONS;

architecture RTL of FUNCTIONS is

type mem type is array (255 downto 0) of
std logic_vector (7 downto 0);

signal mem: mem type;

signal address in: std logic vector (7 downto 0);

begin

data out <= mem(IEEE.std logic_unsigned.CONV_INTEGER (address in)) ;
process (clk)
begin

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 481

VHDL Language Support VHDL Language Constructs

if rising edge(clk) then
if (we = '1') then
mem (IEEE.std logic unsigned.CONV_INTEGER (address in))
<= data in;
end if;
address_in <= address;
end if;
end process;
end RTL;

Operators

In this example, comparator functions from the IEEE std_logic_sighed and
std_logic_unsigned library packages are used. Depending upon the comparator
called, a signed or an unsigned comparison results. In the assigned outputs
below, the opl and op2 functions show the valid SNS syntax for operator
implementation.

library IEEE;

use IEEE.std logic_1164.std logic_vector;
use IEEE.std logic signed.">";

use IEEE.std logic unsigned.">";

entity OPERATORS is
port (inl :std logic vector (1
in2 :std logic_vector(l
in3 :std logic_vector(l to
(1
)

NN NN

in4 :std logic_vector
opl,op2 :out boolean
end OPERATORS;

~.

7

architecture RTL of OPERATORS is
begin
process (inl, in2, in3, in4)
begin

--Example of specifying SNS
opl <= IEEE.std logic_ signed.">"(inl,in2) ;

--Example of specifying SNS
op2 <= IEEE.std logic_unsigned.">" (in3, in4) ;
end process;
end RTL;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
482 January 2014

VHDL Language Constructs VHDL Language Support

User-defined Function Support

SNS is not limited to predefined standard IEEE packages and packages
supported by the synthesis tool; SNS also supports user-defined packages.
You can create library packages that access constants, operators, and
functions in the same manner as the packages supported by IEEE or the
synthesis tool.

The following example incorporates two user-defined packages in the design.
Each package includes a function named func. In PACKAGEL, func is an XOR
gate, whereas in PACKAGE2, func is an AND gate. Depending on the package
called, func results in either an XOR or an AND gate. The function call uses
SNS to distinguish the function that is called.

-- USER DEFINED PACKAGEI1
library IEEE;
use IEEE.std logic 1164.all;
package PACKAGEL is
function func(a,b: in std logic) return std logic;
end PACKAGE];

package body PACKAGEl is
function func(a,b: in std logic) return std logic is
begin
return(a xor b);
end func;
end PACKAGEL;

-- USER DEFINED PACKAGEZ2
library IEEE;
use IEEE.std logic 1164.all;

package PACKAGE2 is
function func(a,b: in std logic) return std logic;
end PACKAGE2;

package body PACKAGE2 is
function func(a,b: in std logic) return std logic is
begin
return(a and b) ;
end func;
end PACKAGE2;

-- USER DEFINED FUNCTION EXAMPLE
library IEEE;
use IEEE.std logic 1164.all;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 483

VHDL Language Support VHDL Language Constructs

entity USER DEFINED FUNCTION is
port (in0: in std logic;
inl: in std logic;
out0: out std logic;
outl: out std logic);
end USER DEFINED FUNCTION;

architecture RTL of USER DEFINED FUNCTION is
begin
out0 <= work.PACKAGEl.func (in0, inl);
outl <= work.PACKAGE2.func (in0, inl);
end RTL;

Demand Loading

In the previous section, the user-defined function example successfully uses
SNS to determine the func function to implement. However, neither PACKAGE1
nor PACKAGE?2 was declared as a use package clause (for example,
work.PACKAGEL.all;). How could func have been executed without a use package
declaration? A feature of SNS is demand loading: this loads the necessary
package without explicit use declarations. Demand loading lets you create
designs using SNS without use package declarations, which supports all
necessary constants, operators, and functions.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
484 January 2014

VHDL Implicit Data-type Defaults VHDL Language Support

VHDL Implicit Data-type Defaults

Type default propagation avoids potential simulation mismatches that are the
result of differences in behavior with how initial values for registers are
treated in the synthesis tools and how they are treated in the simulation
tools.

With implicit data-type defaults, when there is no explicit initial-value decla-
ration for a signal being registered, the VHDL compiler passes an init value
through a syn_init property to the mapper, and the mapper then propagates
the value to the respective register. Compiler requirements are based on
specific data types. These requirements can be broadly grouped based on the
different data types available in the VHDL language.

Implicit data-type defaults are enabled on the VHDL panel of the Implementation
Options dialog box or through a -supporttypedflt argument to a set_option
command.

Top Level Entity:

[]

Push Tristates

[] synthesis On/Off Implemented as Translate On/joff
[] vHOL 2008

Implicit Initial Value Support

[| Beta Features for YHOL

To illustrate the use of implicit data-type defaults, consider the following
example.

library ieee;
use ieee.std logic 1164.all;

entity top is
port (clk:in std logic;
a : in integer range 1 to 8;
b : out integer range 1 to 8§;
d : out positive range 1 to 7);
end entity top;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 485

VHDL Language Support VHDL Implicit Data-type Defaults

architecture rtl of top is
signal al,a2 : integer range 1 to 8 ;
gsignal a3,a4 : positive range 1 to 7;

begin
al <= a ;
a3 <= a ;
b <= a2 ;
d <= a4 ;
process (clk)
begin
if (rising edge (clk))then
az <= al ;
a4 <= a3 ;
end if;
end process;
end rtl;

In the above example, two signals (a2 and a4) with different type default
values are registered. Without implicit data-type defaults, if the values of the
signals being registered are not the same, the compiler merges the redundant
logic into a single register as shown in the figure below.

D[30] Q@]

a2[3:0]

Enabling implicit data-type defaults prevents certain compiler and mapper
optimizations to preserve both registers as shown in the following figure.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
486 January 2014

VHDL Implicit Data-type Defaults VHDL Language Support

[k = Q)
.= DR0] QRO]
a4[2:0]
- » }
ﬁ—ﬂ*—r DBEO] QB
a2[3:0]

Example — Impact on Integer Ranges

The default value for the integer type when a range is specified is the
minimum value of the range specified, and size is the upper limit of that
range. With implicit data-type defaults, the compiler is required to propagate
the minimum value of the range as the init value to the mapper. Consider the
following example:

library ieee;
use ieee.std logic_1164.all;

entity top is
port (clk,set:in std logic;
a : in integer range -6 to 8;
b : out integer range -6 to 8);
end entity top;

architecture rtl of top is
signal al,a2: integer range -6 to 8;
begin
al <= a ;
process (clk, set)
begin
if (rising edge(clk))then

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 487

VHDL Language Support VHDL Implicit Data-type Defaults

if set = '1l' then
a2 <= a;
else
a2 <= al ;
end if;
end if;
end process;
b <= a2;
end rtl;

In the example,
signal al, a2: integer range -6 to 8§;

the default value is -6 (FA in 2’s complement) and the range is -6 to 8. With a
total of 15 values, the size of the range can be represented in four bits.

Example — Impact on RAM Inferencing

When inferencing a RAM with implicit data-type defaults, the compiler propa-
gates the type default values as init values for each RAM location. The
mapper must check if the block RAMs of the selected technology support
initial values and then determine if the compiler-propagated init values are to
be considered. If the mapper chooses to ignore the init values, a warning is
issued stating that the init values are being ignored. Consider the following
VHDL design:

library ieee;

use ieee.std logic_1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity top is
port (clk : in std logic;
addr : in std logic vector (6 downto 0) ;
din : in positive;
wen : in std logic;
dout : out positive);
end top;

architecture behavioral of top is

-- RAM

type tram is array (0 to 127) of positive ;

signal ram : tram ;

begin

-- Contents of RAM has initial value =1
process (clk)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
488 January 2014

VHDL Implicit Data-type Defaults VHDL Language Support

begin
if clk'event and clk = 'l' then
if wen = '1' then
ram(conv_integer (addr)) <= din sig;
end if;
dout <= ram(conv_integer (addr)) ;
end if;
end process;
end behavioral;

In the above example:
* The type of signal al is bit_vector

* The default value for type integer is 1 when no range is specified

Accordingly, a value of x00000001 is propagated by the compiler to the mapper
with a syn_init property.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 489

VHDL Language Support VHDL Synthesis Guidelines

VHDL Synthesis Guidelines

This section provides guidelines for synthesis using VHDL. The following
topics are covered:

* General Synthesis Guidelines, on page 490

* VHDL Language Guidelines, on page 491

* Model Template, on page 492

* Constraint Files for VHDL Designs, on page 493

* Creating Flip-flops and Registers Using VHDL Processes, on page 494
¢ Clock Edges, on page 496

* Defining an Event Outside a Process, on page 497

* Using a WAIT Statement Inside a Process, on page 497

* Level-sensitive Latches Using Concurrent Signal Assignments, on
page 498

¢ Level-sensitive Latches Using VHDL Processes, on page 499
¢ Signed mod Support for Constant Operands, on page 502
* Sets and Resets, on page 504

General Synthesis Guidelines

Some general guidelines are presented here to help you synthesize your
VHDL design.

e Top-level entity and architecture. The synthesis tool chooses the top-
level entity and architecture — the last architecture for the last entity in
the last file compiled. Entity selection can be overridden from the VHDL
panel of the Implementation Options dialog box. Files are compiled in the
order they appear — from top to bottom in the Project view source files
list.

* Simulate your design before synthesis because it exposes logic errors.
Logic errors that are not caught are passed through the synthesis tool,
and the synthesized results will contain the same logic errors.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
490 January 2014

VHDL Synthesis Guidelines VHDL Language Support

* Simulate your design after placement and routing. Have the place-and-
route tool generate a post placement and routing (timing-accurate)
simulation netlist, and do a final simulation before programming your
devices.

* Avoid asynchronous state machines. To use the synthesis tool for
asynchronous state machines, make a netlist of technology primitives
from your target library.

* For modeling level-sensitive latches, it is simplest to use concurrent
signal assignments.

VHDL Language Guidelines

This section discusses VHDL language guidelines.

Processes
* A process must have either a sensitivity list or one wait statement.

* Each sequential process can be triggered from exactly one clock and
only one edge of clock (and optional sets and resets).

* Avoid combinational loops in processes. Make sure all signals assigned
in a combinational process are explicitly assigned values every time the
process executes; otherwise, the synthesis tool needs to insert level-
sensitive latches in your design to hold the last value for the paths that
do not assign values. This might represent a mistake on your part, so
the synthesis tool issues a warning message that level-sensitive latches
are being inserted into your design. You will get an warning message if
you have combinational loops in your design that are not recognized as
level-sensitive latches (for example, if you have an asynchronous state
machine).

Assignments

* Assigning an X' or -' to a signal is interpreted as a “don't care”, so the
synthesis tool creates the hardware that is the most efficient design.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 491

VHDL Language Support VHDL Synthesis Guidelines

Data Types

* Integers are 32-bit quantities. If you declare a port as an integer data
type, specify a range (for example, my_input: in integer range 0 to 7). Other-
wise, your synthesis result file will contain a 32-bit port.

* Enumeration types are represented as a vector of bits. The encoding can
be sequential, gray, or one hot. You can manually choose the encoding
for ports with an enumeration type.

Model Template

You can place any number of concurrent statements (signal assignments,
processes, component instantiations, and generate statements) in your archi-
tecture body as shown in the following example. The order of these state-
ments within the architecture is not significant, as all can execute concur-
rently.

* The statements between the begin and the end in a process execute
sequentially, in the order you type them from top to bottom.

* You can add comments in VHDL by proceeding your comment text with
two dashes “-”. Any text from the dashes to the end of the line is treated
as a comment, and ignored by the synthesis tool.

-- List libraries/packages that contain definitions you use
library <library names> ;
use <library names>.<package name>.all ;

-- The entity describes the interface for your design.
entity <entity name> is
generic (<define interface constants heres>)
port (<port list information goes heres>)
end <entity names> ;

1

7

-- The architecture describes the functionality (implementation)
-- of your design
architecture <architecture name> of <entity name> is

-- Architecture declaration region.
-- Declare internal signals, data types, and subprograms here

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
492 January 2014

VHDL Synthesis Guidelines VHDL Language Support

-- If you will create hierarchy by instantiating a
-- component (which is just another architecture), then
-- declare its interface here with a component declaration;
component <entity name instantiated below>

port (<port list information as defined in the entity>) ;
end component ;

begin -- Architecture body, describes functionality

-- Use concurrent statements here to describe the functionality
-- of your design. The most common concurrent statements are the
-- concurrent signal assignment, process, and component

-- Iinstantiation.

-- Concurrent signal assignment (simple form) :
<result signal name> <= <expression> ;

-- Process:
process <sensitivity lists)
-- Declare local variables, data types,
-- and other local declarations here
begin
-- Sequential statements go here, including:
-- signal and variable assignments
-- i1f and case statements
-- while and for loops
-- function and procedure calls
end process;

-- Component instantiation

<instance name> : <entity name>
generic map (<override values here >)
port map (<port lists) ;

end <architecture name> ;

Constraint Files for VHDL Designs

In previous versions of the software, all object names output by the compiler
were converted to lower case. This means that any constraints files created by
dragging from the RTL view or through the SCOPE UI contained object names
using only lower case. Case is preserved on design object names. If you use
mixed-case names in your VHDL source, for constraints to be applied
correctly, you must manually update any older constraint files or re-create
constraints in the SCOPE editor.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 493

VHDL Language Support VHDL Synthesis Guidelines

Creating Flip-flops and Registers Using VHDL Processes

It is easy to create flip-flops and registers using a process in your
VHDL design.

process Template

process (<sensitivity lists)
begin

<sequential statement (s) >
end;

To create a flip-flop:

1. List your clock signal in the sensitivity list. Recall that if the value of any
signal listed in the sensitivity list changes, the process is triggered, and
executes. For example,

process (clk)

2. Check for rising_edge or falling_edge as the first statement inside the
process. For example,

process (clk)
begin
if rising edge(clk) then
<sequential statement (s)>

or

process (clk)
begin
if falling edge(clk) then
<sequential statement (s)>

Alternatively, you could use an if clk'event and clk ='1' then statement to test
for a rising edge (or if clk'event and clk ='0' then for a falling edge). Although
these statements work, for clarity and consistency, use the rising_edge
and falling_edge functions from the VHDL 1993 standard.

3. Set your flip-flop output to a value, with no delay, if the clock edge
occurred. For example, q<=d ;.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
494 January 2014

VHDL Synthesis Guidelines VHDL Language Support

Complete Example

library ieee;
use ieee.std logic 1164.all;

entity dff or is
port (a, b, clk: in std logic;
g: out std logic);

end dff or;

architecture sensitivity list of dff or is

begin
process (clk) -- Clock name is in sensitivity list
begin

if rising edge(clk) then
g <= a or b;
end if;
end process;
end sensitivity list ;

In this example, if clk has an event on it, the process is triggered and starts
executing. The first statement (the if statement) then checks to see if a rising
edge has occurred for clk. If the if statement evaluates to true, there was a
rising edge on clk and the g output is set to the value of a or b. If the clk
changes from 1 to 0, the process is triggered and the if statement executes,
but it evaluates to false and the g output is not updated. This is the function-
ality of a flip-flop, and synthesis correctly recognizes it as such and connects
the result of the a or b expression to the data input of a D-type flip-flop and
the g signal to the gq output of the flip-flop.

Note: The signals you set inside the process will drive the data inputs
of D-type flip-flops.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 495

VHDL Language Support VHDL Synthesis Guidelines

Clock Edges

There are many ways to correctly represent clock edges within a process
including those shown here.

The typical rising clock edge representation is:
rising edge (clk)
Other supported rising clock edge representations are:

clk = '1' and clk'event
clk'last value = '0' and clk'event
clk'event and clk /= '0'

The typical falling clock edge representation is:
falling edge (clk)
Other supported falling clock edge representations are:

clk = '0' and clk'event
clk'last value = 'l' and clk'event
clk'event and clk /= '1"'

Incorrect or Unsupported Representations for Clock Edges

Rising clock edge:

clk = '1!
clk and clk'event -- Because clk is not a Boolean

Falling clock edge:

clk = '0!

not clk and clk'event -- Because clk is not a Boolean
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
496 January 2014

VHDL Synthesis Guidelines VHDL Language Support

Defining an Event Outside a Process

The 'event attribute can be used outside of a process block. For example, the
process block

process (clk,d)

begin
if (clk='1l' and clk'event) then
g <= d;
end if;

end process;

can be replaced by including the following line outside of the process state-
ment:

g <= d when (clk='1l' and clk'event) ;

Using a WAIT Statement Inside a Process

The synthesis tool supports a wait statement inside a process to create flip-
flops, instead of using a sensitivity list.

Example

library ieee;
use ieee.std logic 1164.all;

entity dff or is
port (a, b, clk: in std logic;
g: out std logic);

end dff or;

architecture wait_statement of dff or is

begin
process -- Notice the absence of a sensitivity list.
begin

-- The process waits here until the condition becomes true
wait until rising edge(clk) ;
g <= a or b;
end process;
end wait statement;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 497

VHDL Language Support VHDL Synthesis Guidelines

Rules for Using wait Statements Inside a Process

¢ [Itisillegal in VHDL to have a process with a wait statement and a sensi-
tivity list.

¢ The wait statement must either be the first or the last statement of the
process.

Clock Edge Representation in wait Statements
The typical rising clock edge representation is:

wailt until rising edge(clk);
Other supported rising clock edge representations are:

wait until clk = '1l' and clk'event
wait until clk'last value = '0' and clk'event
wait until clk'event and clk /= '0!'

The typical falling clock edge representation is:
wait until falling edge (clk)
Other supported falling clock edge representations are:

wait until clk = '0' and clk'event
wait until clk'last value = 'l' and clk'event
wait until clk'event and clk /= '1!'

Level-sensitive Latches Using Concurrent Signal Assignments

To model level-sensitive latches in VHDL, use a concurrent signal assignment
statement with the conditional signal assignment form (also known as when-
else).

Syntax

signal <= valuel when conditionl else
value2 when condition2 else
valueN-1 when conditionN-1 else
valueN ;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
498 January 2014

VHDL Synthesis Guidelines VHDL Language Support

Example

In VHDL, you are not allowed to read the value of ports of mode out inside of
an architecture that it was declared for. Ports of mode buffer can be read from
and written to, but must have no more than one driver for the port in the
architecture. In the following port statement example, q is defined as mode
buffer.

library ieee;
use ieee.std logic_1164.all;

entity latchorl is
port (a, b, clk : in std logic;
-- g has mode buffer so it can be read inside architecture
g: buffer std logic);
end latchorl;

architecture behave of latchorl is
begin

g <= a or b when clk = 'l' else qg;
end behave;

Whenever clk, a, or b changes, the expression on the right side re-evaluates. If
clk becomes true (active, logic 1), the value of a or b is assigned to the q
output. When the clk changes and becomes false (deactivated), q is assigned
to g (holds the last value of). If a or b changes, and clk is already active, the
new value of a or b is assigned to g.

Level-sensitive Latches Using VHDL Processes

Although it is simpler to specify level-sensitive latches using concurrent
signal assignment statements, you can create level-sensitive latches with
VHDL processes. Follow the guidelines given here for the sensitivity list and
assignments.

process Template

process (<sensitivity lists>)
begin

<sequential statement (s)>
end process;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 499

VHDL Language Support VHDL Synthesis Guidelines

Sensitivity List

The sensitivity list specifies the clock signal, and the signals that feed into the
data input of the level-sensitive latch. The sensitivity list must be located
immediately after the process keyword.

Syntax
process (clock_name, signall, signal2, ...)

Example

process (clk, data)

process Template for a Level-sensitive Latch

process (<clock, data signals ... > ...)
begin
if (<clocks> = <active value>)
<signals> <= <expression involving data signals> ;
end if;
end process ;

All data signals assigned in this manner become logic into data inputs of
level-sensitive latches.

Whenever level-sensitive latches are generated from a process, the synthesis
tool issues a warning message so that you can verify if level-sensitive latches
are really what you intended. Often a thorough simulation of your architec-
ture will reveal mistakes in coding style that can cause the creation of level-
sensitive latches during synthesis.

Example: Creating Level-sensitive Latches that You Want

library ieee;
use ieee.std logic 1164.all;

entity latchor2 is
port (a, b, clk : in std logic ;
g: out std logic);
end latchor2;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
500 January 2014

VHDL Synthesis Guidelines VHDL Language Support

architecture behave of latchor2 is
begin
process (clk, a, b)
begin
if clk = '1' then
g <= a or b;
end if;
end process ;
end behave;

If there is an event (change in value) on either clk, a or b, and clk is a logic 1,
set qtoaorb.

What to do when clk is a logic 0 is not specified (there is no else), so when clk is
a logic zero, the last value assigned is maintained (there is an implicit g=q).
The synthesis tool correctly recognizes this as a level-sensitive latch, and
creates a level-sensitive latch in your design. It will issue a warning message
when you compile this architecture, but after examination, this warning
message can safely be ignored.

Example: Creating Unwanted Level-sensitive Latches

This design demonstrates the level-sensitive latch warning caused by a
missed assignment in the when two => case. The message generated is:

"Latch generated from process for signal odd, probably caused by a
missing assignment in an if or case statement".

This information will help you find a functional error even before simulation.

library ieee;
use ieee.std logic 1164.all;

entity mistake is
port (inp: in std logic vector (1 downto 0);
outp: out std logic vector (3 downto 0);
even, odd: out std logic);
end mistake;

architecture behave of mistake is

constant zero: std logic vector (1 downto 0):= "00";
constant one: std logic vector (1 downto 0):= "O1";
constant two: std logic vector (1 downto 0):= "10";
constant three: std logic vector (1 downto 0):= "11";
begin
process (inp)
begin
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 501

VHDL Language Support VHDL Synthesis Guidelines

case inp is

when zero =>
outp <= "0001";
even <= '1';
odd <= '0';

when one =>
outp <= "0010";
even <= '0';
odd <= '1';

when two =>
outp <= "0100";
even <= '1"';

-- Notice that assignment to odd is mistakenly commented out next.

-- odd <= '0';
when three =>
outp <= "1000";
even <= '0';
odd <= '1';
end case;
end process;
end behave;

Signed mod Support for Constant Operands

The synthesis tool supports signed mod for constant operands. Additionally,
division operators (/, rem, mod), where the operands are compile-time
constants and greater than 32 bits, are supported.

Example of using signed mod operator with constant operands

LIBRARY ieee; USE ieee.std logic 1164 .ALL;
LIBRARY ieee; USE ieee.numeric_std.all;

ENTITY divmod IS
PORT (tstvec: out gigned(7 DOWNTO 0)) ;
END divmod;

ARCHITECTURE structure OF divmod IS

CONSTANT NOMINATOR : signed (7 DOWNTO 0) := "10000001";
CONSTANT DENOMINATOR : signed (7 DOWNTO 0) := "00000011";
CONSTANT RESULT : signed (7 DOWNTO 0) := NOMINATOR mod
DENOMINATOR;
BEGIN

tstvec <= result;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
502 January 2014

VHDL Synthesis Guidelines VHDL Language Support

END ARCHITECTURE structure;
Example of a signed division with a constant right operand.

LIBRARY ieee ; USE ieee.std logic 1164 .ALL;
LIBRARY ieee ; USE ieee.numeric std.all;

ENTITY divmod IS
PORT (tstvec: out signed(7 DOWNTO 0)) ;
END divmod;

ARCHITECTURE structure OF divmod IS

CONSTANT NOMINATOR : signed(7 DOWNTO 0) := "11111001";
CONSTANT DENOMINATOR : signed(7 DOWNTO 0) := "00000011";
CONSTANT RESULT : signed (7 DOWNTO 0) := NOMINATOR /
DENOMINATOCR ;
BEGIN

tstvec <= result;
END ARCHITECTURE structure;
An example where the operands are greater than 32 bits

LIBRARY ieee; USE ieee.std logic 1164 .ALL;
LIBRARY ieee; USE ieee.numeric_std.all;

ENTITY divmod IS
PORT (tstvec: out unsigned(33 DOWNTO 0));
END divmod;

ARCHITECTURE structure OF divmod IS
CONSTANT NOMINATOR : unsigned (33 DOWNTO 0)
"1000000000000000000000000000000000";
CONSTANT DENOMINATOR : unsigned(32 DOWNTO 0) :=
"000000000000000000000000000000011";
CONSTANT RESULT : unsigned (33 DOWNTO 0)

DENOMINATOR;

BEGIN
tstvec <= result;

END ARCHITECTURE structure;

NOMINATOR /

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 503

VHDL Language Support Sets and Resets

Sets and Resets

This section describes VHDL sets and resets, both asynchronous and
synchronous. A set signal is an input to a flip-flop that, when activated, sets
the state of the flip-flop to a logic one. A reset signal is an input to a flip-flop
that, when activated, sets the state of the flip-flop to a logic zero.

The topics include:
* Asynchronous Sets and Resets, on page 504

* Synchronous Sets and Resets, on page 505

Asynchronous Sets and Resets

By definition, asynchronous sets and resets are independent of the clock and
do not require an active clock edge. Therefore, you must include the set and
reset signals in the sensitivity list of your process so they trigger the process
to execute.

Sensitivity List

The sensitivity list is a list of signals (including ports) that, when there is an
event (change in value), triggers the process to execute.

Syntax
process (clk_name, set_signal_name, reset_signal_name)

The signals are listed in any order, separated by commas.

Example: process Template with Asynchronous, Active-high reset, set

process (clk, reset, set)
begin
if reset = '1l' then
-- Reset the outputs to zero.
elsif set = '1l' then
-- Set the outputs to one.
elsif rising edge(clk) then -- Rising clock edge clock
-- Clocked logic goes here.
end if;
end process;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
504 January 2014

Sets and Resets VHDL Language Support

Example: D Flip-flop with Asynchronous, Active-high reset, set

library ieee;
use ieee.std logic 1164.all;

entity dffl is
port (data, clk, reset, set : in std logic;
grs: out std logic) ;

end dffl;
architecture async set reset of dffl is
begin
setreset: process(clk, reset, set)
begin
if reset = '1l' then
grs <= '0';
elsif set = '1' then
grs <= '1';

elsif rising edge(clk) then
grs <= data;
end if;
end process setreset;
end async set reset;

Synchronous Sets and Resets

Synchronous sets and resets set flip-flop outputs to logic '1' or 'O’ respectively
on an active clock edge.

Do not list the set and reset signal names in the sensitivity list of a process so
they will not trigger the process to execute upon changing. Instead, trigger
the process when the clock signal changes, and check the reset and set as
the first statements.

RTL View Primitives

The VHDL compiler can detect and extract the following flip-flops with
synchronous sets and resets and display them in the RTL schematic view:

¢ sdffr — f lip-flop with synchronous reset

¢ sdffs — flip-flop with synchronous set

¢ sdffrs — flip-flop with both synchronous set and reset

* gsdffpat — vectored flip-flop with synchronous set/reset pattern

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 505

VHDL Language Support Sets and Resets

¢ sdffre — enabled flip-flop with synchronous reset
¢ sdffse — enabled flip-flop with synchronous set

¢ sdffpate — enabled, vectored flip-flop with synchronous set/reset pattern

You can check the name (type) of any primitive by placing the mouse pointer
over it in the RTL view: a tooltip displays the name.

W

wpona

q_f
resek q

Ik

|y
1
I_‘-—-._
[k ==

qb & qb

Sensitivity List

The sensitivity list is a list of signals (including ports) that, when there is an
event (change in value), triggers the process to execute.

Syntax
process (clk_signal_name)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
506 January 2014

Sets and Resets VHDL Language Support

Example: process Template with Synchronous, Active-high reset, set

process (clk)

begin
if rising edge(clk) then
if reset = '1l' then
-- Set the outputs to '0'.
elsif set = '1' then
-- Set the outputs to '1'.
else
-- Clocked logic goes here.
end if ;
end if ;

end process;

Example: D Flip-flop with Synchronous, Active-high reset, set

library ieee;
use ieee.std logic 1164.all;

entity dff2 is
port (data, clk, reset, set : in std logic;
grs: out std logic) ;

end dff2;
architecture sync_set reset of dff2 is
begin
setreset: process (clk)
begin
if rising edge(clk) then
if reset = '1l' then
grs <= '0';
elsif set = '1' then
grs <= '1';
else
grs <= data;
end if;
end if;

end process setreset;
end sync_set reset;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 507

VHDL Language Support VHDL State Machines

VHDL State Machines

This section describes VHDL state machines: guidelines for using them,
defining state values with enumerated types, and dealing with asynchrony.
The topics include:

¢ State Machine Guidelines, on page 508

* Using Enumerated Types for State Values, on page 513

* Simulation Tips When Using Enumerated Types, on page 513
¢ Asynchronous State Machines in VHDL, on page 515

State Machine Guidelines

A finite state machine (FSM) is hardware that advances from state to state at
a clock edge.

The synthesis tool works best with synchronous state machines. You
typically write a fully synchronous design, avoiding asynchronous paths such
as paths through the asynchronous reset of a register. See Asynchronous
State Machines in VHDL, on page 515 for information about asynchronous
state machines.

The following are guidelines for coding FSMs:

¢ The state machine must have a synchronous or asynchronous reset, to
be inferred. State machines must have an asynchronous or synchro-
nous reset to set the hardware to a valid state after power-up, and to
reset your hardware during operation (asynchronous resets are avail-
able freely in most FPGA architectures).

* The synthesis tool does not infer implicit state machines that are created
using multiple wait statements in a process.

* Separate the sequential process statements from the combinational ones.
Besides making it easier to read, it makes what is being registered very
obvious. It also gives better control over the type of register element
used.

* Represent states with defined labels or enumerated types.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
508 January 2014

VHDL State Machines VHDL Language Support

* Use a case statement in a process to check the current state at the clock
edge, advance to the next state, and set the output values. You can also
use if-then-else statements.

* Assign default values to outputs derived from the FSM before the case
statement. This helps prevent the generation of unwanted latches and
makes it easier to read because there is less clutter from rarely used
signals.

* Ifyou do not have case statements for all possible combinations of the
selector, use a when others assignment as the last assignment in your
case statement and set the state vector to some valid state. If your state
vector is not an enumerated type, set the value to X. Assign the state to
X in the default clause of the case statement, to avoid mismatches
between pre- and post-synthesis simulations. See Example: Default
Assignment, on page 512.

* If a state machine defined in the code feeds sequential elements in a
different clock domain, some encoding values can cause metastability.
By default, the synthesis tools choose the optimal encoding value based
on the number of states in the state machine. This can introduce
additional decode logic that could cause metastability when it feeds
sequential elements in a different clock domain. To prevent this insta-
bility, use syn_encoding = "original" to guide the synthesis tool for these
cases.

* Override the default encoding style with the syn_encoding attribute. The
default encoding is determined by the number of states, where a non-
default encoding is implemented if it produces better results. See
syn_encoding Values, on page 43 for a list of default and other encod-
ings. When you specify a particular encoding style with syn_encoding,
that value is used during the mapping stage to determine encoding

style.

attribute syn encoding : string;
attribute syn encoding of <typename> : type is "sequential";

See syn_encoding, on page 43, for details about the syntax and values.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 509

VHDL Language Support VHDL State Machines

One-hot implementations are not always the best choice for state
machines, even in FPGAs and CPLDs. For example, one-hot state
machines might result in higher speeds in CPLDs, but could cause
fitting problems because of the larger number of global signals. An
example in an FPGA with ineffective one-hot implementation is a state
machine that drives a large decoder, generating many output signals. In
a 16-state state machine, for example, the output decoder logic might
reference sixteen signals in a one-hot implementation, but only four
signals in an encoded representation.

In general, do not use the directive syn_enum_encoding to set the encoding
style. Use syn_encoding instead. The value of syn_enum_encoding is used by
the compiler to interpret the enumerated data types but is ignored by
the mapper when the state machine is actually implemented.

The directive syn_enum_encoding affects the final circuit only when you
have turned off the FSM Compiler. Therefore, if you are not using FSM
Compiler or the syn_state_machine attribute, which use syn_encoding, you
can use syn_enum_encoding to set the encoding style. See How Attributes
and Directives are Specified, on page 4, for details about the syntax and
values.

* Implement user-defined enumeration encoding, beyond the one-hot, gray,
and sequential styles. Use the directive syn_enum_encoding to set the state
encoding. See Example: FSM User-Defined Encoding, on page 511.

Example: FSM Coding Style

architecture behave of test is
type state value is (deflt, idle, read, write);
signal state, next state: state value;
begin
-- Figure out the next state
process (clk, rst)
begin
if rst = '0' then
state <= idle;
elsif rising edge(clk) then
state <= next state;
end if;
end process;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
510 January 2014

VHDL State Machines VHDL Language Support

process (state, enable, data in)
begin
data out <= '0';
-- Catch missing assignments to next state
next state <= idle;
statel0 <= '0';
statel <= '0';
state2 <= '0';
case state is
when idle =>
if enable = '1' then
state0 <= 'l' ;data out <= data in(0);
next state <= read;
else next state <= idle;
end if;
when read =>
if enable = '1' then
statel <= 'l'; data out <= data in(1);
next state <= write;
else next state <= read;
end if;
when deflt =>
if enable = '1' then
state2 <= 'l' ;data out <= data_ in(2);
next state <= idle;
else next state <= write;
end if;
when others => next state <= deflt;
end case;
end process;
end behave;

Example: FSM User-Defined Encoding

library ieee;
use ieee.std logic 1164.all;

entity shift enum is
port (clk, rst : bit;
O : out std logic vector (2 downto 0));

end shift_enum;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
511

January 2014

VHDL Language Support VHDL State Machines

architecture behave of shift enum is

type state type is (S0, S1, S2);

attribute syn enum encoding: string;

attribute syn enum encoding of state type : type is "001 010 101";
signal machine : state type;

begin
process (clk, rst)
begin
if rst = '1' then
machine <= S0;
elsif clk = '1' and clk'event then
case machine is
when SO => machine <= S1;
when S1 => machine <= S2;
when S2 => machine <= S0;
end case;
end if;

end process;

with machine select
O <= "001" when SO,
"010" when S1,
"101" when S2;
end behave;

Example: Default Assignment

The second others keyword in the following example pads (covers) all the bits.
In this way, you need not remember the exact number of X’s needed for the
state variable or output signal.

when others =>
state := (others => 'X') ;

Assigning X to the state variable (a “don’t care” for synthesis) tells the
synthesis tool that you have specified all the used states in your case state-
ment, and any unnecessary decoding and gates related to other cases can
therefore be removed. You do not have to add any special, non-VHDL direc-
tives.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
512 January 2014

VHDL State Machines VHDL Language Support

If you set the state to a used state for the when others case (for example: when
others => state <= delft), the synthesis tool generates the same logic as if you
assign X, but there will be pre- and post-synthesis simulation mismatches
until you reset the state machine. These mismatches occur because all
inputs are unknown at start up on the simulator. You therefore go immedi-
ately into the when others case, which sets the state variable to statel. When
you power up the hardware, it can be in a used state, such as state2, and then
advance to a state other than statel. Post-synthesis simulation behaves more
like hardware with respect to initialization.

Using Enumerated Types for State Values

Generally, you represent states in VHDL with a user-defined enumerated

type.

Syntax

type type_name is (statel name, state2_name, ..., stateN_name) ;

Example
type states is (stl, st2, st3, st4, st5, sté6, st7, st8);
begin
-- The statement region of a process or subprogram.
next state := st2 ;

-- Setting the next state to st2

Simulation Tips When Using Enumerated Types

You want initialization in simulation to mimic the behavior of hardware when
it powers up. Therefore, do not initialize your state machine to a known state
during simulation, because the hardware will not be in a known state when it
powers up.

Creating an Extra Initialization State

If you use an enumerated type for your state vector, create an extra initializa-
tion state in your type definition (for example, stateX), and place it first in the
list, as shown in the example below.

type state is (stateX, statel, state2, state3, state4d);

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 513

VHDL Language Support VHDL State Machines

In VHDL, the default initial value for an enumerated type is the leftmost value
in the type definition (in this example, stateX). When you begin the simulation,
you will be in this initial (simulation only) state.

Detecting Reset Problems

In your state machine case statement, create an entry for staying in stateX
when you get in stateX. For example:

when stateX => next state := stateX;

Look for your design entering stateX. This means that your design is not reset-
ting properly.

Note: The synthesis tool does not create hardware to represent this
initialization state (stateX). It is removed during optimization.

Detecting Forgotten Assignment to the Next State

Assign your next state value to stateX immediately before your state machine
case statement.

Example

next state := stateX;
case (current state) is

when state3 =>

if (foo = '1') then
next state := state2;
end if;
end case;
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

514 January 2014

VHDL State Machines VHDL Language Support

Asynchronous State Machines in VHDL

Avoid defining asynchronous state machines in VHDL. An asynchronous

state machine has states, but no clearly defined clock, and has combina-
tional loops. However, if you must use asynchronous state machines, you
can do one of the following:

* Create a netlist of the technology primitives from the target library for
your technology vendor. Any instantiated primitives that are left in the
netlist are not removed during optimization.

* Use a schematic editor for the asynchronous state machine part of your
design.

Do not use the synthesis tool to design asynchronous state machines; the
tool might remove your hazard-suppressing logic when it performs logic
optimization, causing your asynchronous state machine to work incorrectly.

The synthesis tool displays a “found combinational loop” warning message for
an asynchronous FSM when it detects combinational loops in continuous
assignment statements, processes and built-in gate-primitive logic.

Asynchronous State Machines that Generate Error Messages

In this example, both asyncl and async2 will generate combinational loop
errors, because of the recursive definition for output.

library ieee;
use ieee.std logic 1164.all;

entity async is
-- output is a buffer mode so that it can be read
port (output : buffer std logic ;
g, d : in std logic) ;
end async ;

-- Asynchronous FSM from concurrent assignment statement
architecture asyncl of async is

begin
-- Combinational loop error, due to recursive output definition.
output <= (((((g and d) or (not g)) and output) or d) and
output) ;
end asyncl;
Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 515

VHDL Language Support VHDL State Machines

-- Asynchronous FSM created within a process
architecture async2 of async is
begin
process (g, d, output)
begin
-- Combinational loop error, due to recursive output definition.
output <= (((((g and d) or (not g)) and output) or d) and
output) ;
end process;
end async2;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
516 January 2014

Hierarchical Design Creation in VHDL VHDL Language Support

Hierarchical Design Creation in VHDL

Creating hierarchy is similar to creating a schematic. You place available
parts from a library onto a schematic sheet and connect them.

To create a hierarchical design in VHDL, you instantiate one design unit
inside of another. In VHDL, the design units you instantiate are called
components. Before you can instantiate a component, you must declare it
(step 2, below).

The basic steps for creating a hierarchical VHDL design are:

1. Write the design units (entities and architectures) for the parts you wish
to instantiate.

2. Declare the components (entity interfaces) you will instantiate.

3. Instantiate the components, and connect (map) the signals (including
top-level ports) to the formal ports of the components to wire them up.

Step 1 — Write Entities and Architectures
Write entities and architectures for the design units to instantiate.

library ieee;
use ieee.std logic_1164.all;

entity muxhier is
port (outvec: out std logic_vector (7 downto 0);
a vec, b vec: in std logic vector (7 downto 0);
sel: in std logic);
end muxhier;

architecture mux design of muxhier is
begin

-- <mux functionality>

end mux design;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 517

VHDL Language Support Hierarchical Design Creation in VHDL

library ieee;
use ieee.std logic 1164.all;

entity reg8 is
port (g: buffer std logic vector (7 downto 0);
data: in std logic_vector (7 downto 0);
clk, rst: in std logic);
end reg8;

architecture reg8 design of reg8 is -- 8-bit register
begin

-- <8-bit register functionality>

end reg8 design;

library ieee;
use ieee.std logic 1164.all;

entity rotate is
port (g: buffer std logic vector (7 downto O0);
data: in std logic_vector (7 downto 0);
clk, rst, r 1: in std logic);
end rotate;

architecture rotate design of rotate is

begin

-- Rotates bits or loads

-- When r 1 is high, it rotates; if low, it loads data
-- <Rotation functionalitys

end rotate design;

Step 2 — Declare the Components

Components are declared in the declarative region of the architecture with a
component declaration statement.

The component declaration syntax is:

component entity_name
port (port_list) ;
end component ;

The entity_name and port_list of the component must match exactly that of the
entity you will be instantiating.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
518 January 2014

Hierarchical Design Creation in VHDL VHDL Language Support

Example

architecture structural of top_level design is
-- Component declarations are placed here in the
-- declarative region of the architecture.

component muxhier -- Component declaration for mux
port (outvec: out std logic vector (7 downto 0);
a vec, b vec: in std logic vector (7 downto 0);
sel: in std logic);
end component ;

component reg8 -- Component declaration for reg8
port (g: out std logic vector (7 downto 0);
data: in std logic_vector (7 downto 0);
clk, rst: in std logic);
end component ;

component rotate -- Component declaration for rotate
port (qg: buffer std logic vector (7 downto O0);

data: in std logic vector (7 downto 0);
clk, rst, r 1: in std logic);

end component ;

begin

-- The structural description goes here.

end structural;

Step 3 — Instantiate the Components
Use the following syntax to instantiate your components:

unique_instance_name : component_name
[generic map (override_generic_values)]
port map (port_connections) ;

You can connect signals either with positional mapping (the same order
declared in the entity) or with named mapping (where you specify the names
of the lower-level signals to connect). Connecting by name minimizes errors,
and especially advantageous when the component has many ports. To use
configuration specification and declaration, refer to Configuration Specifica-
tion and Declaration, on page 521.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 519

VHDL Language Support Hierarchical Design Creation in VHDL

Example

library ieee;
use ieee.std logic 1164.all;

entity top level is
port (g: buffer std logic vector (7 downto 0);
a, b: in std logic vector (7 downto O0);
sel, r 1, clk, rst: in std logic);
end top_ level;

architecture structural of top level is

-- The component declarations shown in Step 2 go here.
-- Declare the internal signals here

signal mux out, reg out: std logic vector (7 downto 0);

begin

-- The structural description goes here.

-- Instantiate a mux, name it instl, and wire it up.

-- Map (connect) the ports of the mux using positional association.
instl: muxhier port map (mux out, a, b, sel);

-- Instantiate a rotate, name it inst2, and map its ports.
inst2: rotate port map (q, reg out, clk, r 1, rst);

-- Instantiate a reg8, name it inst3, and wire it up.
-- reg8 is connected with named association.
-- The port connections can be given in any order.
-- Notice that the actual (local) signal names are on
-- the right of the '=>' mapping operators, and the
-- formal signal names from the component
-- declaration are on the left.
inst3: reg8 port map (

clk => clk,

data => mux_out,

g => reg_out,

rst => rst);

end structural;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
520 January 2014

Configuration Specification and Declaration VHDL Language Support

Configuration Specification and Declaration

A configuration declaration or specification can be used to define binding
information of component instantiations to design entities (entity-architec-
ture pairs) in a hierarchical design. After the structure of one level of a design
has been fully described using components and component instantiations, a
designer must describe the hierarchical implementation of each component.

A configuration declaration or specification can also be used to define binding
information of design entities (entity-architecture pairs) that are compiled in
different libraries.

This section discusses usage models of the configuration declaration state-
ment supported by the synthesis tool. The following topics are covered:

* Configuration Specification, on page 521
* Configuration Declaration, on page 525

* VHDL Configuration Statement Enhancement, on page 531

Component declarations and component specifications are not required for a
component instantiation where the component name is the same as the
entity name. In this case, the entity and its last architecture denote the
default binding. In direct-entity instantiations, the binding information is
available as the entity is specified, and the architecture is optionally specified.
Configuration declaration and/or configuration specification are required
when the component name does not match the entity name. If configurations
are not used in this case, VHDL simulators give error messages, and the
synthesis tool creates a black box and continues synthesis.

Configuration Specification

A configuration specification associates binding information with component
labels that represent instances of a given component declaration. A configu-
ration specification is used to bind a component instance to a design entity,
and to specify the mapping between the local generics and ports of the
component instance and the formal generics and ports of the entity. Option-
ally, a configuration specification can bind an entity to one of its architec-
tures. The synthesis tool supports a subset of configuration specification
commonly used in RTL synthesis; this section discusses that support.

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014 521

VHDL Language Support Configuration Specification and Declaration

The following Backus-Naur Form (BNF) grammar is supported (VHDL-93
LRM pp.73-79):

configuration_specification ::=
for component_specification binding_indication ;
component_specification ::=
instantiation_list : component_name
instantiation_list ::=
instantiation_label {, instantiation_label } | others | all
binding_indication ::=[use entity_aspect]
[generic_map_aspect]
[port_map_aspect]
entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name

o) architecture_identifier
component_specification entity_name

for L1: XOR_GATE use entity work.XOR_ GATE (behavior) ;

T entity_aspect
instantiation_label

component_name

binding_indication

for others: AND GATE use entity work.AND GATE (structure) ;
for all: XOR GATE use entity work.XOR GATE;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
522 January 2014

Configuration Specification and Declaration

VHDL Language Support

Example: Configuration Specification

In the following example, two architectures (

RTL and structural) are defined

for an adder. There are two instantiations of an adder in design top. A config-
uration statement defines the adder architecture to use for each instantia-

tion.

library IEEE;
use IEEE.std logic_1164.all;

entity adder is
port (a : in std logic;
b : in std logic;
cin : in std logic;
s : out std logic;
cout : out std logic);
end adder;

library IEEE;
use IEEE.std logic unsigned.all;

architecture rtl of adder is

signal tmp : std logic_vector (1 downto 0) ;

begin
tmp <= ('0' & a) - b - cin;
s <= tmp(0);
cout <= tmp (1) ;

end rtl;

architecture structural of adder is

begin
S <= a Xor b xor cin;
cout <= ((not a) and b and cin)

or (a and b and (not cin)) or
end structural;

library IEEE;
use IEEE.std logic 1164.all;

entity top is
port (a : in std logic vector (1
b : in std logic vector (1l
c : 1in std logic;
cout : out std logic;

or (a and (not b) and cin)
(a and b and cin) ;

downto 0) ;
downto 0) ;

sum : out std logic vector (1l downto 0));

end top;

Synplify Pro for Microsemi Edition Reference Manual
January 2014

Copyright © 2013 Synopsys, Inc.
523

VHDL Language Support Configuration Specification and Declaration

architecture top a of top is
component myadder
port (a : in std logic;
b : in std logic;
cin : in std logic;
s : out std logic;
cout : out std logic) ;
end component ;

signal carry : std logic;
for sl : myadder use entity work.adder (structural) ;
for rl : myadder use entity work.adder (rtl) ;
begin
gl : myadder port map (a(0), b(0), ¢, sum(0), carry);
rl : myadder port map (a(l), b(l), carry, sum(l), cout);
end top a;

Results

for sl : myadder use entity work.adder (structural); end for;

/

/
adder(s%otural] i adder(rtl) _
a[1:0] i T . [E s —m T
b[1:0] i il cout) afte cout cout
[c = cin

r

51 /4

for rl : myadder use entity woré(;dder(rtl); end for;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
524 January 2014

Configuration Specification and Declaration VHDL Language Support

Unsupported Constructs for Configuration Specification

The following configuration specification construct is not supported by the
synthesis tool. An appropriate message is issued in the log file when this
construct is used.

* The VHDL-93 LRM defines entity_aspect in the binding indication as:
entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name | open

The synthesis tool supports entity name and configuration_name in the
entity_aspect of a binding indication. The tool does not yet support the
open construct.

Configuration Declaration

Configuration declaration specifies binding information of component instan-
tiations to design entities (entity-architecture pairs) in a hierarchical design.
Configuration declaration can bind component instantiations in an architec-
ture, in either a block statement, a for...generate statement, or an if...generate
statement. It is also possible to bind different entity-architecture pairs to
different indices of a for...generate statement.

The synthesis tool supports a subset of configuration declaration commonly
used in RTL synthesis. The following Backus-Naur Form (BNF) grammar is
supported (VHDL-93 LRM pp.11-17):

configuration_declaration ::=
configuration identifier of entity_name is
block_configuration
end [configuration] [configuration_simple_name] ;
block_configuration ::=
for block_specification
{ configuration_item }

end for ;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 525

VHDL Language Support Configuration Specification and Declaration

block_specification ::=

achitecture_name | block_statement_label |
generate_statement_label [(index_specification)]

index_specification ::=

discrete_range | static_expression
configuration_item ::=

block_configuration | component_configuration
component_configuration ::=

for component_specification
[binding_indication ;]
[block_configuration]
end for ;

The BNF grammar for component_specification and binding_indication is described
in Configuration Specification, on page 521.

Configuration Declaration within a Hierarchy

The following example shows a configuration declaration describing the
binding in a 3-level hierarchy, for...generate statement labeled labell, within
block statement blkl in architecture arch_gen3. Each architecture implementa-
tion of an instance of my_andl is determined in the configuration declaration
and depends on the index value of the instance in the for...generate statement.

entity andl is
port (a,b: in bit ; o: out bit);
end;

architecture and archl of andl is
begin

o <= a and b;
end;

architecture and arch2 of andl is

begin
o0 <= a and b;
end;
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
526 January 2014

Configuration Specification and Declaration VHDL Language Support

architecture and arch3 of andl is
begin

o <= a and b;
end;

library WORK; use WORK.all;
entity gen3 config is
port(a,b: in bit vector (0 to 7);
res: out bit vector (0 to 7));
end;

library WORK; use WORK.all;
architecture arch gen3 of gen3 config is
component my andl port(a,b: in bit ; o: out bit); end component;

begin
labell: for 1 in 0 to 7 generate
blkl: block
begin
al: my andl port map(a(i),b(i),res(i));
end block;
end generate;
end;

library work;
configuration config gen3 config of gen3 config is
for arch gen3 -- ARCHITECTURE block configuration "for
-- block specification"
for labell (0 to 3) --GENERATE block config "for
-- block specification"
for blkl -- BLOCK block configuration "for
-- block specification"”
-- {configuration item}
for al : my andl -- component configuration
-- Component specification "for idList : compName"
use entity work.andl (and archl); --
binding indication
end for; -- al component configuration
end for; -- blkl BLOCK block configuration
end for; -- labell GENERATE block configuration
for labell (4) -- GENERATE block configuration "for
-- block specification"
for blkl
for al : my andl
use entity work.andl (and arch3) ;
end for;
end for;
end for;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 527

VHDL Language Support Configuration Specification and Declaration

for labell (5 to 7)
for blkl
for al : my andl
use entity work.andl (and arch2) ;
end for;
end for;
end for;
end for; -- ARCHITECTURE block configuration
end config gen3 config;

Selection with Configuration Declaration

In the following example, two architectures (RTL and structural) are defined
for an adder. There are two instantiations of an adder in design top. A config-
uration declaration defines the adder architecture to use for each instantia-
tion. This example is similar to the configuration specification example.

library IEEE;
use IEEE.std logic 1164.all;

entity adder is
port (a : in std logic;
b : in std logic;
cin : in std logic;
s : out std logic;
cout : out std logic);
end adder;

library IEEE;
use IEEE.std logic unsigned.all;

architecture rtl of adder is
signal tmp : std logic vector (1l downto 0) ;

begin
tmp <= ('0' & a) - b - cin;
s <= tmp(0) ;
cout <= tmp (1) ;

end rtl;

architecture structural of adder is

begin
S <= a Xor b xor cin;
cout <= ((not a) and b and cin) or (a and (not b) and cin) or

(a and b and (not cin)) or (a and b and cin);
end structural;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
528 January 2014

Configuration Specification and Declaration VHDL Language Support

library IEEE;
use IEEE.std logic 1164.all;

entity top is
port (a : in std logic vector(l downto 0);
b : in std logic_vector (1 downto 0);
¢ : in std logic;
cout : out std logic;
sum : out std logic vector(l downto 0));
end top;

architecture top a of top is
component myadder
port (a : in std logic;
b : in std logic;
cin : in std logic;
s : out std logic;
cout : out std logic);
end component ;

signal carry : std logic;
begin

sl : myadder port map (a(0), b(0), c, sum(0), carry);

rl : myadder port map (a(l), b(l), carry, sum(l), cout);
end top_a;

library work;
configuration config top of top is -- configuration declaration
for top a -- block configuration "for block specification'
-- component configuration
for sl: myadder -- component specification
use entity work.adder (structural); -- binding indication
end for; -- component configuration
-- component configuration
for rl: myadder -- component specification
use entity work.adder (rtl); -- binding indication
end for; -- component configuration
end for; -- block configuration
end config top;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 529

VHDL Language Support Configuration Specification and Declaration

Results

for g1 : myadder use entity work.adder (structural); end for;

/

aclder(struy(ral) 1 aadder[rtl))
[a[1:0] : a J-]-—1 . :
[b[T:0] E:D] il | 1y coust' ___M___ Ein cout —=—] lcont —

[c == cin
51 /H

for rl : myadder use entity work.adder (rtl); end for;

Direct Instantiation of Entities Using Configuration

In this method, a configured entity (i.e., an entity with a configuration decla-
ration) is directly instantiated by writing a component instantiation state-
ment that directly names the configuration.

Syntax

label : configuration configurationName
[generic map (actualGenericl, actualGeneric2, ...) |
[port map (portl, port2, ...) | ;

Example — Direct Instantiation Using Configuration Declaration

Unsupported Constructs for Configuration Declaration

The following are the configuration declaration constructs that are not
supported by the synthesis tool. Appropriate messages are displayed in the
log file if these constructs are used.

1. The VHDL-93 LRM defines the configuration declaration as:

configuration_declaration ::=

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
530 January 2014

Configuration Specification and Declaration VHDL Language Support

configuration identifier of entity_name is
configuration_declarative_part
block_configuration

end [configuration] [configuration_simple_name] ;

configuration_declarative_part ::= { configuration_declarative_item }
configuration_declarative_item ::=
use_clause | attribute_specification | group_declaration

The synthesis tool does not support the configuration_declarative_part. It
parses the use_clause and attribute_specification without any warning
message. The group_declaration is not supported and an error message is
issued.

2. VHDL-93 LRM defines entity aspect in the binding indication as:
entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name | open

block_configuration ::=

for block_specification
{use_clause }
{ configuration_item }
end for ;

The synthesis tool does not support use_clause in block_configuration. This
construct is parsed and ignored.

VHDL Configuration Statement Enhancement

This section highlights the VHDL configuration statement support and
handling component declarations with corresponding entity descriptions.
Topics include:

* Generic mapping, on page 532
* Port Mapping, on page 533
* Mapping Multiple Entity Names to the Same Component, on page 534

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 531

VHDL Language Support Configuration Specification and Declaration

* Generics Assigned to Configurations, on page 535
* Arithmetic Operators and Functions in Generic Maps, on page 539

* Ports in Component Declarations, on page 541

Generic mapping

Generics and ports can have different names and sizes at the entity and
component levels. You use the configuration statement to bind them together
with a configuration specification or a configuration declaration. The binding
priority follows this order:

* Configuration specification
¢ Component specification
¢ Component declaration

library ieee;
use ieee.std logic_1164.all;

entity test is
generic (rangel : integer := 11);
port (a, al : in std logic vector(rangel - 1 downto 0)
b, bl : in std logic vector(rangel - 1 downto 0)
¢, cl : out std logic vector(rangel - 1 downto 0
end test;

1

))i

architecture test a of test is
component submodulel is
generic (size : integer := 6);
port (a : in std logic vector(size -1 downto 0)
b : in std logic vector(size -1 downto 0)
c : out std logic vector(size -1 downto 0
end component;

7

))i

for all : submodulel

use entity work.subl (rtl)

generic map (size => rangel) ;

begin
UUT1 : submodulel generic map (size => 4)
port map (a => a,b => b,c => ¢);

end test _a;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
532 January 2014

Configuration Specification and Declaration VHDL Language Support

If you define the following generic map for subl, it takes priority:

entity subl is
generic(size: integer:=1);
port (a: in std logic vector(size -1 downto 0);
b : in std logic vector(size -1 downto 0);
c : out std logic vector(size -1 downto 0);
end subl;

Port Mapping

See Generic mapping, on page 532 for information about using the configura-
tion statement and binding priority.

library ieee;
use ieee.std logic 1164.all;

entity test is
generic (rangel : integer := 1);
port (ta, tal : in std logic vector(rangel - 1 downto 0)
tb, tbl : in std logic vector(rangel - 1 downto 0)
tc, tcl : out std logic vector(rangel - 1 downto 0
end test;

7

))i

architecture test a of test is
component submodulel
generic (my sizel : integer := 6; my size2 : integer := 6);
port (d : in std logic vector (my sizel -1 downto 0)
e : in std logic vector (my sizel -1 downto 0)
f : out std logic vector(my size2 -1 downto 0
end component ;

7

))i

for UUT1 : submodulel

use entity workl.subl (rtl)

generic map (sizel => my sizel, size2 => my size2)
port map (a =>d, b => e, ¢ => £f);

begin

UUT1 : submodulel generic map (my sizel => 1, my size2 => 1)
port map (d => ta, e => tb,f => tc);

end test_a;

If you define the following port map for subl, it overrides the previous
definition:

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 533

VHDL Language Support Configuration Specification and Declaration

entity subl is
generic(sizel: integer:=6; size2:integer:=6) ;
port (a: in std logic vector (sizel -1 downto 0);
b : in std logic vector (sizel -1 downto 0);
¢ : out std logic vector (size2 -1 downto 0);
end subl:

Mapping Multiple Entity Names to the Same Component

When a single component has multiple entities, you can use the configuration
statement and the for label clause to bind them. The following is an example:

entity test is
generic (rangel : integer := 1);
port (ta, tal : in std logic vector(rangel - 1 downto 0)
tb, tbl : in std logic vector(rangel - 1 downto 0)
tc, tcl : out std logic vector(rangel - 1 downto 0
end test;

7

)) i

architecture test a of test is
component submodule
generic (my sizel : integer := 6; my size2 : integer := 6);
port (d,e : in std logic_vector (my sizel -1 downto 0);
f : out std logic vector(my size2 -1 downto 0));
end component;

begin
UUT1 : submodule generic map (1, 1)
port map (d => ta, e => tb, £ => tc);
UUT2 : submodule generic map (1, 1) port map
(d => tal, e => tbl, £ => tcl)
end test_a;

configuration my config of test is
for test_a
for UUT1 : submodule
use entity work.subl (rtl)
generic map (my sizel, my size2)
port map (d, e, f);
end for;
for others : submodule
use entity work.sub2 (rtl)
generic map (my sizel, my size2)
port map (d, e, f);
end for;
end for;
end my config;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
534 January 2014

Configuration Specification and Declaration

VHDL Language Support

Synplify Pro for Microsemi Edition Reference Manual
January 2014

You can map multiple entities to the same component, as shown here:

entity subl is
generic(sizel: integer:=6; size2:integer:=6) ;
port (a: in std logic vector (sizel -1 downto 0);
b : in std logic vector (sizel -1 downto 0);
c : out std logic vector (size2 -1 downto 0);
end subl:

entity sub2 is
generic (widthl: integer; width2:integer) ;
port (al: in std logic vector(widthl -1 downto O0);
bl : in std logic vector (widthl -1 downto O0);
cl : out std logic vector (width2 -1 downto 0);
end subl:

Generics Assigned to Configurations

Generics can be assigned to configurations instead of entities.

Entities can contain more generics than their associated component declara-
tions. Any additional generics on the entities must have default values to be
able to synthesize.

Entities can also contain fewer generics than their associated component
declarations. The extra generics on the component have no affect on the
implementation of the entity.

Following are some examples.

Examplel

Configuration conf_modulel contains a generic map on configuration conf_c.
The component declaration for submodulel does not have the generic
use_extraSYN_ff, however, the entity has it.

library ieee;
use IEEE.std logic_1164.all;

entity submodulel is
generic (width : integer := 16;
use_extraSYN ff : boolean := false);
port (clk : in std logic;
b : in std logic vector(width - 1 downto 0);
c : out std logic vector(width - 1 downto 0));
end submodulel;

Copyright © 2013 Synopsys, Inc.
535

VHDL Language Support Configuration Specification and Declaration

architecture rtl of submodulel is
signal d : std logic vector(width - 1 downto 0);

begin
no resynch : if use extraSYN ff = false generate
d <= b;

end generate no_resynch;

resynch : if use extraSYN ff = true generate
process (clk)

begin
if falling edge(clk) then
d <= b;
end if;

end process;
end generate resynch;

process (clk)
begin
if rising edge(clk) then
c <= d;
end if;
end process;
end rtl;

configuration conf c of submodulel is
for rtl
end for;

end configuration conf c;

library ieee;
use ieee.std logic 1164.all;

entity modulel is
generic (width: integer := 16);
port (clk : in std logic;
b : in std logic_vector (width - 1 downto 0);
c : out std logic vector(width - 1 downto 0));
end modulel;

architecture rtl of modulel is
component submodulel
generic (width: integer := 8);
port (clk : in std logic;
b : in std logic vector (width - 1 downto 0);
c : out std logic vector(width - 1 downto 0));
end component ;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
536 January 2014

Configuration Specification and Declaration VHDL Language Support

begin

UUT2 : submodulel port map (clk => clk,
b => Db,
c =>c);

end rtl;

library ieee;
configuration conf modulel of modulel is
for rtl
for UUT2 : submodulel
use configuration conf c generic map(width => 16,
use extraSYN ff => true);
end for;
end for;
end configuration conf modulel;

Example2

The component declaration for modl has the generic size, which is not in the
entity. A component declaration can have more generics than the entity,
however, extra component generics have no affect on the entity’s implementa-
tion.

library ieee;
use ieee.std logic 1164.all;

entity modulel is
generic (width: integer := 16;
use extraSYN ff : boolean := false);
port (clk : in std logic;
b : in std logic_vector (width - 1 downto 0);
c : out std logic vector(width - 1 downto 0));
end modulel;

architecture rtl of modulel is
signal d : std logic vector (width - 1 downto 0);
begin
no resynch : if use extraSYN ff = false generate
d <= b ;
end generate no_resynch;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 537

VHDL Language Support Configuration Specification and Declaration

resynch : if use extraSYN ff = true generate -- insert pipeline
-- registers
process (clk)
begin
if falling edge(clk) then
d <= b;
end if;
end process;
end generate resynch;

process (clk)
begin
if rising edge(clk) then
c <= d;
end if;
end process;
end rtl;

configuration modulel c of modulel is
for rtl
end for;

end modulel c;

library ieee;
use leee.std logic_1164.all;

entity test is
port (clk : in std logic;
tb : in std logic vector(7 downto 0);
tc : out std logic vector(7 downto 0));
end test;

architecture test a of test is
component modl

generic (width: integer := 16;
use extraSYN ff: boolean := false;
gsize : integer := 8);

port (clk : in std logic;
b : in std logic vector (width - 1 downto 0);
¢ : out std logic_vector(width - 1 downto 0));
end component ;

begin
UUT1 : modl generic map (width => 18)
port map (clk => clk,
b => tb,
c => tc);
end test a;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
538 January 2014

Configuration Specification and Declaration VHDL Language Support

Configuration test c of test is
for test_a
for UUT1 : modl
use configuration modulel c
generic map (width => 8, use extraSYN ff => true);
end for;
end for;
end test c;

Arithmetic Operators and Functions in Generic Maps

Arithmetic operators and functions can be used in generic maps. Following is
an example.

Example

library ieee;
use ieee.std logic_1164.all;
use ieee.std logic arith.all;

entity sub is
generic (width : integer:= 16);
port (clk : in std logic;
a : in std logic _vector (width - 1 downto 0);
y : out std logic vector (width - 1 downto 0));
end sub;

architecture rtll of sub is
begin

process (clk, a)

begin

if (clk '1' and clk'event) then
y <=

@

end if;
end process;
end rtll;

architecture rtl2 of sub is
begin y <= a;
end rtl2;

configuration sub c of sub is
for rtll end for;
end sub c;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.
January 2014 539

VHDL Language Support

Configuration Specification and Declaration

Copyright © 2013 Synopsys, Inc.
540

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;

entity test is
generic (mcu depth : integer:=1;
mcu width : integer:=16);
port (clk : in std logic;
a : in std logic_vector
((mcu_depth*mcu width) -1 downto 0) ;
y : out std logic vector
((mcu_depth*mcu_width) -1downto 0)) ;
end test;

architecture RTL of test is

constant CWIDTH : integer := 2;

constant size : unsigned := "100";

component sub generic (width : integer);

port (clk : in std logic;

a : in std logic vector (CWIDTH - 1 downto 0);
y : out std logic vector (CWIDTH - 1 downto 0)

end component ;

begin i _sub : sub
generic map (width => CWIDTH) port map (clk => clk,

a => a,
Yy =>VY)i
end RTL;

library ieee;
use ieee.std logic arith.all;

configuration test c of test is
for RTL
for i sub : sub use
configuration sub c

)

generic map (width => (CWIDTH ** (conv_integer (size))));

end for;
end for;
end test c;

Synplify Pro for Microsemi Edition Reference Manual

January 2014

Configuration Specification and Declaration VHDL Language Support

Ports in Component Declarations

Entities can contain more or fewer ports than their associated component
declarations. Following are some examples.

Examplel

library ieee;
use ieee.std logic 1164.all;

entity modulel is
generic (width: integer := 16; use extraSYN ff : boolean :=
false) ;
port (clk : in std logic;
b : in std logic_vector (width - 1 downto 0);

a : out integer range 0 to 15; --extra output port
on entity
e : out integer range 0 to 15; -- extra output port

on entity
c : out std logic vector(width - 1 downto 0));
end modulel;

architecture rtl of modulel is

signal d : std logic vector(width - 1 downto 0);

begin

e <= width;

a <= width;

no resynch : if use extraSYN ff = false generate
d <= b ;

end generate no_resynch;

resynch : if use extraSYN ff = true generate
process (clk)

begin
if falling edge(clk) then
d <= b;
end if;

end process;
end generate resynch;

process (clk)
begin
if rising edge(clk) then
c <= d;
end if;
end process;
end rtl;

Synplify Pro for Microsemi Edition Reference Manual Copyright © 2013 Synopsys, Inc.

January 2014

541

VHDL Language Support Configuration Specification and Declaration

configuration modulel c¢ of modulel is
for rtl

end for;

end modulel c;

library ieee;
use ieee.std logic 1164.all;

entity test is
port (clk : in std logic;
tb : in std logic vector(7 downto 0);
tc : out std logic vector(7 downto 0));
end test;

architecture test a of test is
component modl
generic (width: integer := 16);
port (clk : in std logic;
b : in std logic_vector (width - 1 downto 0);
¢ : out std logic vector(width - 1 downto 0));
end component;

begin
UUT1 : modl generic map (width => 18)
port map (clk => clk,
b => tb,
c => tc);
end test _a;

Configuration test c of test is
for test_a
for UUT1 : modl
use configuration modulel c
generic map (width => 8, use extraSYN ff => true);
end for;
end for;
end test c;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
542 January 2014

Configuration Specification and Declaration

VHDL Language Support

module1

a[3:0] —73:[]]

In the figure above, the entity modulel has extra ports a and e that are not
defined in the corresponding component declaration modl. The additional

ports are not connected during synthesis.

Example2

LIBRARY ieee;
USE ieee.std logic 1164 .ALL;

ENTITY subl IS

GENERIC (
sizel integer := 11;
size2 integer := 12);
PORT (r : IN std logic vector(sizel -1 DOWNTO 0)
s : IN std logic vector(sizel -1 DOWNTO O0)
t : OUT std logic_vector(size2 -1 DOWNTO 0
END subl;

ARCHITECTURE rtl OF subl IS
BEGIN

t <= r AND s;
END ARCHITECTURE rtl;

LIBRARY ieee;
USE ieee.std logic 1164 .ALL;

ENTITY test IS
GENERIC (rangel
PORT (taOl

integer := 12);

END test;

Synplify Pro for Microsemi Edition Reference Manual
January 2014

IN std logic vector(rangel - 1 DOWNTO 0)
tb0 : IN std logic vector(rangel - 1 DOWNTO 0)
tcO : OUT std logic_vector (rangel - 1 DOWNTO 0

7

))i

I

))i

Copyright