

Tim Frost

Symmetricom, Inc., May 2013

Agenda

- Introduction to Precision Time Protocol (PTP)
 - PTP Messages
 - Impairments to Packet Timing
 - Timing Support Elements (boundary and transparent clocks)
 - PTP Profiles
- PTP Telecom Profile for Frequency (G.8265.1)
 - Objectives and Design Features
 - Source Traceability
 - Multicast vs. Unicast messages
 - Rate of Timing Messages
 - Master Selection and Protection
- PTP Telecom Profiles for Time and Phase
 - "Full Timing Support" (G.8275.1)
 - "Partial Timing Support" (G.8275.2)

Introduction to Precision Time Protocol (PTP)

What is the Precision Time Protocol (PTP)?

- Protocol for distributing precise time and frequency over packet networks
- Defined in IEEE Standard 1588
 - First version (2002) targeted LAN applications
 - Second version (2008) expanded applicability to cover telecommunications networks
 - Third version now under discussion
- Time is carried in "event messages" transmitted from a Grandmaster Clock to a Slave Clock and vice versa
- Runs over Ethernet and/or IP networks
- Commonly referred to as:
 - PTP (Precision Time Protocol) or PTP v.2
 - IEEE1588-2008 or IEEE1588 v.2

Precision Time Protocol (PTP)

• PTP defines an exchange of timed messages over a packet network

- Each "event message" flow (sync, delay_req)
 is a packet timing signal
- Master frequency determined by comparison of timestamps in the event message flows
 - e.g. comparison of t₁ to t₂ over multiple sync messages, or t₃ to t₄ in delay_req messages
- Time offset calculation requires all four timestamps:
 - Slave time offset = $\frac{(t_1 t_2) + (t_4 t_3)}{2}$
 - assumes symmetrical delays
 (i.e. the forward path delay is equal to the
 reverse path delay)
- Time offset error = $\frac{\text{fwd. delay} \text{rev. delay}}{2}$

Packet Timing Impairments

Boundary Clock

- A router or switch that contains an embedded PTP slave and PTP master, linked to the same local clock
- The PTP slave terminates the PTP traffic from the PTP Grandmaster, and synchronizes its local clock to the GM
- This local clock is used in turn to drive a new PTP master function

"End to End" Transparent Clocks

- Measures time of packet arrival and packet departure
- Adds the difference (known as "residence time") to a correction field in the packet header
- At the slave, the value of the correction field represents the total delay in each of the switches along the route

"Peer to Peer" Transparent Clocks

- Peer to peer messages measure the round trip link delay
- Link delay and residence time added to the correction field
- At the slave, the value of the correction field represents the total delay from master to slave
- Doesn't require delay_request/response messages

What is a PTP Profile?

- What is a profile?
 - Profiles were introduced in IEEE1588-2008, to allow other standards bodies to tailor PTP to particular applications
 - Profiles contain a defined combination of options and attribute values, aimed at supporting a given application
 - Allows inter-operability between equipment designed for that purpose
- PTP Telecom Profile for Frequency (G.8265.1) published Oct. 2010
 - Supports frequency synchronization over telecoms networks
 - Main use-case is the synchronization of cellular basestations

The G.8265.1 PTP Telecom Profile enables the deployment of PTP-based frequency synchronization by telecoms operators

PTP Telecom Profiles for Time/Phase

- ITU working on two new PTP Telecom Profiles:
 - G.8275.1 "Full Timing Support"
 - G.8275.2 "Partial Timing Support"
- Both profiles target accurate time/phase distribution
 - G.8275.1 is aimed at new build networks
 - Requires boundary clocks at every node in the network
 - G.8275.2 is aimed at operation over existing networks
 - Permits boundary or transparent clocks, but not required
 - Boundary clocks placed at strategic locations to reduce noise
- Main target use case is the time/phase requirements of mobile cellular TDD and LTE-A systems
 - Target accuracy is time synchronization to within 1.5μs

The PTP Telecom Profile for Frequency (G.8265.1)

Prime Objectives

- To permit the distribution of frequency using PTP over existing managed, wide-area, packet-based telecoms networks
- To allow interoperability with existing synchronization networks (such as SyncE and SDH)
- To define message rates and parameter values consistent with frequency distribution to the required performance for telecom applications
- To allow the synchronization network to be designed and configured in a fixed arrangement
- To enable protection schemes to be constructed in accordance with standard telecom network practices

Key design decisions

- No on-path support, (e.g. boundary and transparent clocks), because these are not generally available in existing networks
- IPv4 was adopted as the network layer due to its ubiquity, rather than operation over Ethernet or other lower-layer protocols
- The PTP **Announce** message was adapted to carry the Quality Level (QL) indications defined in G.781, for continuity with SONET/SDH and SyncE synchronization status messaging.
- Unicast transmission was adopted over multicast, since it could be guaranteed to work over wide-area telecoms networks
- BMCA (Best Master Clock Algorithm) was replaced by static provisioning, allowing the synchronization flow to be planned, rather than dynamically adjusting itself

Source Traceability

- Encodes QL values in the clockClass field of the Announce message
 - Provides end-to-end traceability of the reference source along the synchronization chain
 - Informs the slave clock (and subsequent devices) of the quality of the timing source
 - Allows the timing chain to be managed in a similar way to existing synchronization networks

Multicast vs. Unicast

- Unicast facilitates the use of distributed masters
 - Each master-slave communication path becomes a separate PTP domain
 - Allows easier planning of the synchronization network
 - Redundancy strategy can be carefully managed
- Unicast packets propagate uniformly through the network
 - Multicast requires packet replication at each switch or router
 - Replication process adds variable delay
- Multicast harder to provision for network operators
 - Upstream multicast often not supported in telecom networks

Unicast Registration

- Master only provides Unicast service
 - No multicast announce messages sent
- Slave is manually configured with the IP address of one or more masters
- Slave requests Master to provide unicast service at a specified rate
 - Requests *Announce* service first, to verify quality of the master
 - If within capacity limits, Master responds with service grant acknowledgements
 - Slave requests *Sync* and *Delay_Request* service only if master quality is sufficient
- Grants are limited duration
 - Requests must be periodically repeated
 - Frees up master resources if slave fails

Rate of Timing Messages

- The rate of timing messages required is dependent on several factors
 - Amount of noise in the network
 - Local oscillator stability
 - Efficiency of clock servo algorithm
- The Telecom Profile defines the range of message rates Masters and Slaves should support

Message rates	Minimum	Maximum	Default
Announce	1 msg. every 16s	8 messages/s	1 msg. every 2s
Sync	1 msg. every 16s	128 messages/s	Not defined
Delay_Request	1 msg. every 16s	128 messages/s	Not defined

- It is not expected that a slave will achieve the required performance at all message rates
 - Slave must request the message rates needed to maintain performance

Packet Timing Signal Fail

- Profile defines three types of signal failure:
 - PTSF-lossAnnounce, where the PTP Slave is no longer receiving
 Announce messages from the GM
 - This means there is no traceability information for that master
 - Slave should switch to an alternative GM after a suitable timeout period
 - PTSF-lossSync, where the PTP Slave is no longer receiving timing messages from the GM (i.e. Sync or Delay_Response messages)
 - This means there is no timing information for that master
 - Slave should switch to an alternative GM after a suitable timeout period
 - PTSF-unusable, where the PTP Slave is receiving timing messages from the GM, but is unable to recover the clock frequency
 - This means there is no recoverable timing information for that master
 - Action is undefined

Master Selection and Protection

- Telecom slave clock consists of several logical protocol instances, each communicating with a different grandmaster
- Selection process follows G.781 selection rules:
 - Availability, Traceability, Priority

Additional Protection Functions

- Non-reversion function
 - Disables automatic reversion to original master after fault has been rectified
- Wait-to-Restore Time
 - Defines the waiting period before switching back to the original highest priority master, once the failure condition has been rectified
- Forced traceability
 - If the PTP GM is connected to a reference by a signal with no SSM QL value, the input can be manually "forced" to a suitable value
- Output QL Hold-Off
 - Defines a waiting period following a change of QL in the incoming PTP clockClass before forwarding to downstream equipment
 - Allows time for synchronization to a new reference
- Output Squelch
 - Output clock signal of a PTP slave should be "squelched" in case of holdover
 - Only applies to signals that do not carry a QL value (e.g. a 2.048MHz unframed timing signal)

The PTP Telecom Profiles for Time and Phase

Reference Points for Packet Timing (G.8271)

- A: Time accuracy and stability at output of PRTC (defined in G.8272)
- B: Packet timing interface at output of PTP GM
- C: Packet timing interface at input to PTP Slave (defined in G.8271.1)
- D: Time accuracy and stability to end application (defined in G.8271.1)
- E: End application requirements (e.g. air interface time/frequency spec.)

G.8275.1 "Full Timing Support" Profile

- Uses a boundary clock at every node in the chain between PTP Grandmaster and PTP Slave
 - Reduces time error accumulation through the network
 - Boundary clocks defined with a filter bandwidth of 0.1Hz
- Recommends the use of Synchronous Ethernet to syntonize each boundary clock to a stable frequency
- Defines Sync and Delay_Request message rate of 16 messages/s
- Operates over a Layer 2 Ethernet network
 - Uses the Ethernet addresses identified in IEEE1588-2008 Annex F
 - Support of unicast IP has been proposed but not agreed (yet?)
- Supports multiple active grandmasters for redundancy

Hypothetical Reference Model

Time Error Budget (G.8271.1)

Component Recommendations

- G.8271: Time and Phase Synchronization Aspects of Packet Networks
 - General aspects and concepts
 - Requirement categories (based on external standards, e.g. 3GPP)
- G.8271.1: Network Limits for Time Synchronization in Packet Networks
 - Network performance limits at packet interfaces
- G.8272: Primary Reference Time Clock (PRTC) Specification
 - Basic requirement: 100ns accuracy to UTC
 - Jitter/wander based on PRC specification (G.811)
- G.8273.2: Telecom Boundary Clock (T-BC) Specification
 - Transfer function and model
 - Noise generation and tolerance
- G.8275: Architecture for Time/Phase Distribution
 - Placement of boundary clocks and protection strategies
- G.8275.1: Precision Time Protocol (PTP) Telecom Profile for Time/Phase Synchronization
 - PTP Profile based on use of boundary clocks at every node

G.8275.2 "Partial Timing Support" Profile

- Why a second time/phase profile?
 - Some service providers need to operate time/phase synchronisation over existing networks
 - Reduces barriers to entry into LTE-A systems; don't need to build an entirely new network
 - Allows operation over 3rd party network providers (given appropriate quality guarantees)
- Result: "Partial Timing Support Profile"
 - New ITU work item requested by four large service providers
 - Expected to be published in 2014

- Operates over existing switches and routers, using unicast IP
- Uses boundary or transparent clocks where necessary to "clean up" time signal as it passes through the network
- Supports multiple active grandmasters for redundancy

For Further Reading

White Paper:

"Synchronization for Next Generation Networks – The PTP Telecom Profile", Symmetricom White Paper, April 2012

Primary References:

- "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", IEEE Std.
 1588™-2008, 24 July 2008
- "Precision Time Protocol Telecom Profile for Frequency Synchronization", ITU-T Recommendation G.8265.1, October 2010

Background Reading:

- "Synchronization Layer Functions", ITU-T Recommendation G.781, August 2008
- "Definitions and terminology for synchronization in packet networks", ITU-T Recommendation G.8260, August 2010
- "Timing and synchronization Aspects in Packet Networks", ITU-T Recommendation G.8261, April 2008
- "Architecture and Requirements for Packet-Based Frequency Delivery", ITU-T Recommendation G.8265, October 2010
- "Time and Phase Synchronization Aspects of Packet Networks", ITU-T Recommendation G.8271, February 2012
- "Timing characteristics of Primary Reference Time Clocks (PRTC)", ITU-T Recommendation G.8272, November 2012

Under Development:

- "Network Limits for Time Synchronization in Packet Networks", ITU-T Draft Recommendation G.8271.1 (exp. Sep. 2013)
- "Timing characteristics of Telecom Boundary Clocks (T-BC)", ITU-T Draft Recommendation G.8273.2 (exp. Sep. 2013)
- "Architecture for Time/Phase Distribution", ITU-T Draft Recommendation G.8275 (exp. Sep. 2013)
- "Precision Time Protocol (PTP) Telecom Profile for Time/Phase Synchronization using Full Timing Support", ITU-T Draft Recommendation G.8275.1 (exp. Sep. 2013)
- "Precision Time Protocol (PTP) Telecom Profile for Time/Phase Synchronization using Partial Timing Support", ITU-T Draft Recommendation G.8275.2 (exp. 2014)

Thank You

Tim Frost

Principal Technologist, Symmetricom, Inc.

Email: tfrost@symmetricom.com

Symmetricom, Inc.

2300 Orchard Parkway San Jose, CA 95131-1017 Tel: +1 408-428-7907

Fax: +1 408-428-6960

www.symmetricom.com