Next-Generation Packaging Technology for Space FPGAs

Microsemi Space Forum Russia – November 2013

Raymond Kuang
Director of Packaging Engineering, SoC Products Group
Agenda

- CCGA (ceramic column grid array) package as the platform for Space

- Requirement from Hi-Rel community for flip-chip in Space
 - Class “Y”

- Microsemi flip-chip CCGA for Space
 - Packaging road map
 - CCGA package construction for hermetically seal with Space features
 - Package design to meet electrical performance
 - Test chip package qualification plan and status
 - Thermal management in Space

- Summary
Packaging Platform for Space-Column Grid Array Solution

\[\sigma_{\text{max}} \approx \frac{1.5 \cdot (\alpha_1 \cdot \Delta T_1 - \alpha_2 \cdot \Delta T_2) \cdot (S \cdot E \cdot d)}{L^2} \]

- \(\Delta T_1 \): temperature change of board
- \(\Delta T_2 \): temperature change of component
- \(\alpha_1 \): CTE of the board
- \(\alpha_2 \): CTE of the component
- \(S \): distance from neutral point (DNP)
- \(E \): modulus of elasticity of column
- \(d \): diameter of column
- \(L \): standoff height of column
Solder Columns Configurations

- Three basic types of solder columns
 - Wire column
 - High-lead wire with Sn63-Pb37 fillets
 - Solder column interposer
 - High-lead solder held in array with additional ceramic substrate
 - Reinforced solder column
 - High-lead wire core with spiral wrapped copper ribbon attached with Sn63-Pb37 fillets

Note: Reinforced columns show a significant performance advantage in comparison to other types of solder columns. See board level testing data result.

High-lead solid wire core
---Sn20-Pb80 or Sn15-Pb85
Tin plated copper ribbon
Hot solder coating
---Sn63-Pb37
Board Level Reliability Comparison

Results (from Six-Sigma)

All parts ceramic with 1.27mm pitch
625 I/O (pkg size 32mm)

BGA vs Wire Columns

Reinforced Columns

<table>
<thead>
<tr>
<th>T-Cycle Comparison</th>
<th>BAGS vs Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of T-Cycles</td>
<td>10c TO +125c</td>
</tr>
<tr>
<td>Cumulative Percent</td>
<td></td>
</tr>
<tr>
<td>Failures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 1</th>
<th>P=2, A=RRX-S</th>
<th>F=16</th>
<th>S=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β1=6.08, η1=92.68, ρ=0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 2</th>
<th>P=2, A=RRX-S</th>
<th>F=17</th>
<th>S=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β2=6.54, η2=1715.35, ρ=0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data 3</th>
<th>P=2, A=RRX-S</th>
<th>F=16</th>
<th>S=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>β3=7.89, η3=3612.64, ρ=0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2013 Microsemi Corporation. COMPANY PROPRIETARY
Board level Testing (-55°C to 105°C) on Microsemi Current CCGAs

Lognormal Probability Distribution of Cumulative Fails vs. Temperature Cycles

- CG1152/1272 90Pb/10Sn
 - No. 1 = 878
- CG1152/1272 80Pb/20Sn
 - No. 1 = 1212
- CG624 80Pb/20Sn
 - No. 1 = 1246
- CG624 90Pb/10Sn
 - No. 1 = 1246

Lognormal Probability of Cumulative Fails vs. thermal cycles----up to 2313 cycles
Coffin Mason Relation

Lognormal Probability Distribution of Cumulative Fails vs. Temperature Cycles

\[
A. F. = \left(\frac{\Delta T_t}{\Delta T_f} \right) \left(\frac{DNP_t}{DNP_f} \right)^{1.9} \times \frac{1}{3} \left(\frac{F_f}{F_t} \right) \exp \left[1414 \left(\frac{1}{T_{max}} - \frac{1}{T_{maxf}} \right) \right]
\]

Where:
- \(N_f \) = Field Cycles
- \(N_t \) = Test Cycles
- \(\Delta T_t \) = Test Cycle Temperature Range
- \(\Delta T_f \) = Field Cycle Temperature Range
- \(DNP_t \) = Test Distance to Neutral Point
- \(DNP_f \) = Field Distance to Neutral Point
- \(F_t \) = Field Cycle Frequency
- \(F_f \) = Test Cycle Frequency
- \(T_{max} \) = Maximum Field Temperature
- \(T_{maxf} \) = Maximum Field Temperature

Test Conditions:

<table>
<thead>
<tr>
<th>Temp. Range</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55</td>
<td></td>
</tr>
</tbody>
</table>

\[
160 = \Delta T_t, \ \Delta \text{Temp for Test}
\]

\[
12 = F_t, \ \text{cycles/day for Test}
\]

\[
378 = T_{max}, \ \text{Max Temp for Test}
\]

\[
21.5 \text{mm} = \text{DNP for Test for CG624}^{**}
\]

\[
22.6 \text{mm} = \text{DNP for Test for CG1152}
\]

\[
22.7 \text{mm} = \text{DNP for test for CG1272}
\]

** Note:
Distance of corner pin to the center point of the package (neutral point)

Used to related temperature cycle result to field condition.
CCGA Field Life Projection for Typical Satellite Applications

Based on Temperature cycling Data—for 80Pb/20Sn re-enforce column

<table>
<thead>
<tr>
<th>Field Cycles (CPD)</th>
<th>Field Temp Range</th>
<th>Field Delta Temp</th>
<th>DNP (mm)</th>
<th>Field Max Temp (°C)</th>
<th>N.01 Test Cycles</th>
<th>Acceleration Factor</th>
<th>Projected Cycles</th>
<th>YEARS OF LIFE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG624</td>
<td>18</td>
<td>20 to 45</td>
<td>25.00</td>
<td>21.5</td>
<td>45.0</td>
<td>2,313</td>
<td>78.88</td>
<td>182,445.8</td>
</tr>
<tr>
<td>CG1152</td>
<td>18</td>
<td>20 to 45</td>
<td>25.00</td>
<td>22.6</td>
<td>45.0</td>
<td>1,212</td>
<td>78.88</td>
<td>95,600.7</td>
</tr>
<tr>
<td>CG1272</td>
<td>18</td>
<td>20 to 45</td>
<td>25.00</td>
<td>22.7</td>
<td>45.0</td>
<td>1,534</td>
<td>78.88</td>
<td>120,999.5</td>
</tr>
<tr>
<td>CG624</td>
<td>12</td>
<td>70 to 85</td>
<td>15.00</td>
<td>21.5</td>
<td>85.0</td>
<td>2,313</td>
<td>110.67</td>
<td>255,970.0</td>
</tr>
<tr>
<td>CG1152</td>
<td>12</td>
<td>70 to 85</td>
<td>15.00</td>
<td>22.6</td>
<td>85.0</td>
<td>1,212</td>
<td>110.67</td>
<td>134,126.9</td>
</tr>
<tr>
<td>CG1272</td>
<td>12</td>
<td>70 to 85</td>
<td>15.00</td>
<td>22.7</td>
<td>85.0</td>
<td>1,534</td>
<td>110.67</td>
<td>169,761.3</td>
</tr>
</tbody>
</table>
Summary of CCGA from Current RTAXS Family, Plan for Next-Generation Space Products

- Extended qualification data on wire bond version of CCGA (ceramic column grid array)

- Successful introduction of CCGA, and widely adapted by end customers for Space applications. Various flight programs have been used or in the planning stage to use CCGA packages

- Building on the current successful introduction of CCGA for Space, Microsemi is taking on to introduce flip-chip CCGA for Space
 - What are the requirement and expectation from Hi-Rel community?
Space Challenges for Complex Non-hermetic Packages

- Vacuum:
 - Outgassing, offgassing, property deterioration
- Foreign Object Debris (FOD)
 - From the package threat to the system, or a threat to the package
- Shock and vibration
 - During launch, deployments and operation
- Thermal cycling
 - Usually small range; high number of cycles in Low Earth Orbit (LEO)
- Thermal management
 - Only conduction and radiation transfer heat
- Thousands of interconnects
 - Opportunities for opens, intermittent - possibly latent
- Low volume assembly
 - Limited automation, lots of rework
- Long life
 - Costs for space are high, make the most of the investment
- Novel hardware
 - Lots of “one offs”
- Rigorous test and inspection
 - To try to find the latent threats to reliability

Note: this slide is from July 2011 JC13 meeting on Non-hermetic for Space
Hermeticity

- NASA prefers hermetic packages for critical applications
- Hermeticity is measureable, assuring package integrity
- Only 3 tests provide assurance for hermetic package integrity:
 - Hermeticity – nothing bad can get in
 - Residual or Internal gas analysis – nothing bad is inside
 - Particle Impact Noise Detection – no FOD inside

- NON-HERMETIC PACKAGE INTEGRITY IS HARD TO ASSESS - NO 3 BASIC TESTS
- Non-hermetic packages expose materials’ interfaces that are locked away in hermetic ones

Note: this slide is from July 2011 JC13 meeting on Non-hermetic for Space
Hi-Rel Ceramic Packaging Roadmap

Mature Packages

- **PGA**
 - 132 – 391 Pins
- **CQFP**
 - 84 – 352 Leads
- **CCGA**
 - 624 – 1272 Columns

Future Packages

- **CC256**
 - Chip Carrier
- **Hermetically seal Flip-Chip CCGA**
 - 1432 to 2000+ Columns

2008 to 2010

2011 to 2014
Microsemi Approach: Flip-Chip Package Hermetically Lid Seal and Target to V Flow

- Package size estimated: 42.5x42.5mm, 1657 balls. Target 11 to 13 layers of ceramic, with seam seal for hermetically seal. Note: dimension is not finalized
- Target to meet class V (hermetically seal), better than Class Y (non-hermetic)

- Kovar Lid
- Thermal adhesive between die and seal lid passed RGA(<5000PPM) and NASA outgas spec
- Under fill –passed RGA (<500PPM) and outgas data to NASA spec
- Decoupling Capacitors (BMC) placed inside cavity
Test Chip: Flip-Chip Daisy Chain Test Chip

- **Silicon Die**
 - 23 mm X 23 mm
 - 200 um pitch
 - High lead bump: 5Sn/95Pb
 - 12992 Bumps (Daisy Chain)
 - 90 - 100 um bump height
 - With separate pads for wafer probing

- **Ceramic Package**
 - 40 mm X 40 mm
 - 100 um bump pad
 - 1.0 mm Column Pitch
 - 0.8 mm Solder Pad
 - 1509 Solder Columns, 0.51 mm Ø
 - *Note: final package will be in 42.5mm SQ*

- **Capacitors**
 - BMC

^Note: Test Chip package tooled up: 40x40mm, 1509 balls, with 1.0mm pitch, the final package for flight parts will be in 42.5x42.5mm 1657 columns pins^
Test Chip: Flip-Chip Daisy Chain Status for V Flow

- **Current status for hermetically seal Flip-Chip**
 - Assembly process optimization has been finalized with under fill material and process parameters
 - Both underfill material and TIM material passed RGA(<5000PPM) and NASA outgas requirements
 - On track to build the daisy chain lots to complete group D tests under class V flow end of 2013

Assembled unit with seam seal process Kovar lid

CSAM checking flip-chip under-fill

Cross section of C4 flip-chip bumps
Package Design Aspect: SerDes RX & TX Design

- Co-axial ground via placement for all Rx and TX pairs
- Opening of the ground plane is optimized to reduce capacitance
- All Rx and Tx signals sandwiched between ground planes
A cooling plate is normally attached between two boards within a system (box)

Prefer no cooling plate attached to the top lid of the flip-chip CCGA (concerns on component reliability from vibration during launch stage)

Since there is no air in space (vacuum condition), most of the heat from the junction can only be dissipated through the board

The package’s thermal resistance from junction-to-board (θ_{JB}) is the thermal parameter we can use to estimate the maximum power the product can handle
Heat Flow in Vacuum – Junction to Board

- Heat flow in a vacuum condition is through radiation and conduction which is from the die surface to the package, to the solder columns, to the PCB.

\[\Theta_{JB} = \frac{T_J - T_B}{Q_{JB}} = 1.78 \, ^\circ\text{C/W} \quad \text{...} \quad P = Q_{JB} \]

Typical heat flow in air environment

Kovar Lid
TIM (thermal interface material)
Silicon / bumps / underfill
Decoupling Capacitors
High Pb Solder Columns

PCB Temperature @ 60 °C – 70 °C – 80 °C
Test Chip Package Thermal Simulation Hermetic Version

- **Silicon Die**
 - 23 mm X 23 mm
 - 200 um pitch,
 - 12992 bumps
 - 100 um bump height

- **Ceramic Package**
 - 40 mm X 40 mm
 - 1.0 mm pitch,
 - 1509 solder columns
 - 0.51 mm Ø, 2.21 mm height

- **Kovar lid**
 - (40x40mm, CG1509)
Simulation Result For Test Chip Package: Hermetic

- Junction to Board Thermal Resistance
 - $\theta_{JB} = 1.78 \, \text{C/W}$
Power Estimated Calculation For Test Chip Package

- Estimate $\Theta_{JB} = 1.78 \, ^\circ\text{C/W}$ for CG1509

<table>
<thead>
<tr>
<th>Θ_{JB} ($^\circ\text{C/W}$)</th>
<th>T_J ($^\circ\text{C}$)</th>
<th>T_B ($^\circ\text{C}$)</th>
<th>P (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.78</td>
<td>125</td>
<td>60</td>
<td>36.5</td>
</tr>
<tr>
<td>1.78</td>
<td>115</td>
<td>60</td>
<td>30.9</td>
</tr>
<tr>
<td>1.78</td>
<td>105</td>
<td>60</td>
<td>25.3</td>
</tr>
<tr>
<td>1.78</td>
<td>95</td>
<td>60</td>
<td>19.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Θ_{JB} ($^\circ\text{C/W}$)</th>
<th>T_J ($^\circ\text{C}$)</th>
<th>T_B ($^\circ\text{C}$)</th>
<th>P (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.78</td>
<td>125</td>
<td>80</td>
<td>25.3</td>
</tr>
<tr>
<td>1.78</td>
<td>115</td>
<td>80</td>
<td>19.7</td>
</tr>
<tr>
<td>1.78</td>
<td>105</td>
<td>80</td>
<td>14.0</td>
</tr>
<tr>
<td>1.78</td>
<td>95</td>
<td>80</td>
<td>8.4</td>
</tr>
</tbody>
</table>

- T_B is the temperature measured by a thermocouple, placed 1.0 mm away from the package edge
Potential Other Methods: Heat Flow in Vacuum – Junction to Case

- Heat flow in a vacuum condition is through radiation and conduction which is from the die surface to the silicon, to the heatsink or to the PCB

\[\Theta_{JC} = (T_J - T_C) / Q_{JC} = \text{estimated} \ 0.5 \, ^\circ\text{C/W} \cdots P = Q_{JC} \]

- In this configuration, end users can attach some type of cooling plate on the top of the lid and connect it to a cooling system.
- For a conservative operating condition of \((T_j=95^\circ\text{C} \text{ and } T_b=70^\circ\text{C})\), Delta T is: \(25^\circ\text{C}, \ P=25 \, ^\circ\text{C}/ \ 0.5 \, (^\circ\text{C/W})=50\,\text{W range}\)
Summary

- CCGA (column grid array package) continues to be the platform for the new generation RT device for Space
- Flip-Chip (with eutectic solder bump) as interconnect technology
- Target hermetically seal packages with V flow
- Package design optimizing performance and minimize noise
- Heat dissipation in Space has been considered during design phase
- Test chip package has been tooled up to optimize flip-chip assembly processes, and to test to meet class V flow specifications. Final daisy chain package (which almost the same as to the final product) will be ready by Q4 2013
Thank You