
Synphony Model Compiler
User Guide
Microsemi Edition I-2013.09M

October 2013

http://solvnet.synopsys.com

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
2 October 2013

Copyright Notice and Proprietary Information

Copyright © 2013 Synopsys, Inc. All rights reserved. This software and
documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance
with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the
license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of __ and its
employees. This is copy number __________.”

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 3

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, CoMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
4 October 2013

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
October 2013

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 5

Contents

Chapter 1: Getting Started

About The Synphony Model Compiler Tool . 18
About the Software . 18
Synphony Model Compiler and MATLAB . 19

Synphony Model Compiler Design Flows . 20
Synphony Model Compiler FPGA Design Flow . 20
Design Requirements for RTL Generation . 22
FPGA Design Flow Procedure . 23

Finding Information . 26

Getting Help . 26

Chapter 2: SMC Blocks: Abs to Host Interface

Blocks — By Library . 28
Communications . 29
Control Logic . 30
CORDIC . 30
DSP Basics . 31
Filtering . 31
Floating Point Functions . 32
Math Functions . 33
Memories . 34
Ports & Subsystems . 35
Signal Operations . 36
Sources . 37
Transforms . 38

Blocks — Alphabetical List . 39

SMC Abs . 42

SMC Accumulator . 44

SMC Add . 48

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
6 October 2013

SMC Binary Logic . 53

SMC Black Box . 56

SMC Block Deinterleaver . 62

SMC Block Interleaver . 64

SMC CIC . 66

SMC CIC2 . 70

SMC Commutator . 77

SMC Comparator . 84

SMC Concat . 86

SMC Configurable FFT/IFFT . 88

SMC Constant . 94

SMC Convert . 98

SMC Convolutional Deinterleaver . 104

SMC Convolutional Encoder . 106

SMC Convolutional Interleaver . 109

SMC CORDIC Exp . 111

SMC CORDIC Log . 113

SMC CORDIC Polar . 115

SMC CORDIC Rotator . 117

SMC CORDIC SinCos . 124

SMC CORDIC Sqrt . 126

SMC CORDIC2 . 127

SMC Counter . 131

SMC CRC Generator . 138

SMC DDS . 143

SMC DDS2 . 149

SMC Decommutator . 163

SMC Delay . 169

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 7

SMC Demux . 171

SMC Depuncture . 173

SMC Differentiator . 176

SMC Divider . 179

SMC DivMod . 183

SMC Downsample . 191

SMC Edge Detector . 197

SMC Extract . 200

SMC FDATool . 203

SMC FFT . 204

SMC FFT2 . 211

SMC FIFO . 220

SMC FIR . 226

SMC FIR Engine . 235

SMC FIR Rate Converter . 241

SMC FIR2 . 246

SMC Flow Control Buffer . 275

SMC FP Add . 286

SMC FP Compare . 290

SMC FP Constant . 292

SMC Fixed to FP . 295

SMC FP Fused Mult Add . 298

SMC FP Mult . 301

SMC FP Port In . 303

SMC FP Port Out . 306

SMC FP to Fixed . 309

SMC Gain . 311

SMC Gold Sequence Generator . 315

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
8 October 2013

SMC HLS Subsystem . 319

SMC Host Interface . 326

Chapter 3: SMC Blocks: IIR to Viterbi Decoder

SMC IIR . 340

SMC In . 345

SMC Integrator . 346

SMC Inverter . 350

SMC Leading Zero Counter . 352

SMC Log . 354

SMC M Control . 356

SMC Matrix Mult . 360

SMC Mealy State Machine . 364

SMC MinMax . 367

SMC Moore State Machine . 369

SMC Moving Average Filter . 372

SMC Mult . 378

SMC Mux . 381

SMC Negate . 386

SMC Out . 388

SMC Parallel FIR . 389

SMC Parallel to Serial . 392

SMC Permutation . 394

SMC PN Sequence Generator . 396

SMC Port In . 399

SMC Port Out . 403

SMC Pow . 405

SMC Pulse Generator . 409

SMC Puncture . 412

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 9

SMC RAM . 414

SMC Ramp . 419

SMC Random . 422

SMC Recast . 424

SMC Reed-Solomon Decoder . 428

SMC Reed-Solomon Encoder . 435

SMC Register . 441

SMC Reshape . 443

SMC RFIR . 448

SMC ROM . 453

SMC RTL Encapsulation . 456

SMC Sample and Hold . 465

SMC Saturate . 467

SMC Sequence . 470

SMC Serial to Parallel . 473

SMC Shift Register . 476

SMC Shifter . 484

SMC SHLSTool . 486
SHLSTool Toolbox Interface . 487

Implementation Options Dialog Box . 490

SMC Sign . 507

SMC Signal Update . 509

SMC SinCos . 513

SMC SinCos2 . 516

SMC Single Clock Downsample . 526

SMC Single Clock Upsample . 529

SMC Smart Black Box . 532

SMC Sqrt . 539

SMC Subsystem . 543

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
10 October 2013

SMC Sum of Products . 544

SMC Switch . 548

SMC SynCoSimTool . 550

SMC SynFixPtTool . 554

SMC Test Vector Capture . 556

SMC Upsample . 557

SMC Vector Concat . 561

SMC Vector Expand . 567

SMC Vector Extract . 570

SMC Vector Split . 572

SMC Viterbi Decoder . 574

Common Parameters . 583
Output Format Options . 583
Overflow Saturation Options . 585
Underflow Rounding Options . 585
Special Variables . 588

Chapter 4: SMC Functions

shls_bitrev . 590

shls_convert . 592

shlsdemo . 594

shlsdoc . 596

shlslib . 597

shlsroot . 599

shlstool . 600

shlsver . 602

syn_get_coefs . 604

syn_get_datatype . 605

syn_get_dspstartup . 606

syn_get_wordlength . 608

syn_read_hex . 610

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 11

syn_set_atm . 612
Timing Engine Configuration Dialog Box . 612

syn_set_dspstartup . 614

syn_set_portcapture . 615

syn_set_portregister . 616

syn_unlink . 617

syn_write_wave . 618

Chapter 5: Constraints

HLS Constraints File . 620

Synphony Model Compiler Constraints . 622
add_register_and_balance_parallel_paths . 622
areabased_fir_arch_selection_atm Constraint . 623
fir_architecture Constraint . 623
multi_cycle_path Constraint . 624
pattern_annotation Constraint . 626
retime_across_blackbox . 627
retiming_scale_factor Constraint . 628
shls_retiming_lock Constraint . 628

Multicycle Path Constraints . 632
Specifying Multicycle Path Constraints . 632
Automatically Inferring Multicycle Path Constraints . 633

Forward-Annotation . 636

Chapter 6: Synthesizing the Design

Configuring Synphony Model Compiler . 638
Configuring Settings for Simulink Simulation . 638
Configuring SMC Timing Modes for FPGAs . 638
Setting Default Display Modes . 640

Basic Procedures . 641
Starting a Synphony Model Compiler Design . 641
Working with Synphony Model Compiler Blocks . 642

Setting Options for an Implementation . 644
Setting up Implementations . 644
Resolving Read/Write Conflicts in FPGA RAMs . 647
Including Comments in the Generated RTL . 649
Keeping Signal Names in Generated RTL . 650

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
12 October 2013

Using Constraints . 653

Using Retiming . 655
Optimizing with Retiming . 655
Using Automatic Gate-level Retiming . 660

Using Folding . 662
Optimizing with Folding . 662
Using Pattern Folding . 665
Using Annotations for Folding . 668

Optimizing with Multichannelization . 674

Running Synthesis with SHLSTool . 677

Synthesizing with a Host Interface Block . 678

Chapter 7: Underlying DSP Fundamentals

Clock Domains . 682

Resets in the SMC Tool . 683
Global and Local Resets . 683
Synchronous and Asynchronous Resets . 684
Reset Implementation in RTL Code . 685
Resets and RTL Testbenches . 686

Clock and Reset Management . 686
Clock_reset Module Interface . 688
Reset Functionality with the Clock_reset Module . 689
Clock Functionality with the Clock_reset Module . 689
Clock/Reset Circuitry Files . 690
Clock_reset Module Limitations . 690
Log File Messages for the Clock_reset Module . 691

Data Types . 695
Fixed-Point and Floating-Point Representation . 695
Synphony Model Compiler Data Type Implementation 696
Fixed-Point Data Type . 696
Data Type Casting: Setting the Output Data Type . 697
Matrix Data Types . 698

CORDIC Algorithms . 701
CORDIC Definitions . 702
Unified CORDIC Applications . 711

Multi-Rate Design . 717
Sample Rate Terminology . 717

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 13

Clock Generation and Clock Reset . 721
Polyphase Filtering . 724

Hierarchy Preservation . 728

Subsystem Consolidation . 729

Block Consolidation . 730

Constant Propagation . 731

RAMs . 733
RAM Definitions . 733
RAM Access Control . 736
Port Use in Different RAM Configurations . 737

Bus Protocols . 738
AXI4-Lite Protocol . 738
APB Protocol . 743
AVLON-MM Protocol . 745
Generic Interface Protocol . 748

Chapter 8: Designing with the SMC Tool

Defining Clocks and Resets . 754
Specifying a clock_reset Module . 755
Defining Reset Signals . 758

Designing Filters . 760
Implementing FIR Filters with the FIR2 Block . 760
Implementing FIR Filters with the FIR Block . 764
Implementing Polyphase FIR Filters . 767
Defining FIR Filter Coefficients with FDATool . 768
Implementing IIR Filters . 769
Defining IIR Filter Coefficients with FDATool . 771

Working with Vectors . 773
Creating Vector Signals . 773
Using Math Operations on Vector Signals . 774

Specifying ROM Data with syn_read_hex . 776

Using Black Boxes and Third-Party IP . 777
Integrating Black Boxes in the Design . 777
Setting Black Box Parameters . 780
Configuring a Black Box - Example . 782
Using Optimizations with Black Boxes . 784

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
14 October 2013

Managing Subsystems and Hierarchy . 786
Using the HLS Subsystem Block . 786
Using the Synphony Subsystem Block . 792
Tagging Subsystems with FPGA Synthesis Attributes 796

Chapter 9: Working with Custom Blocks

Primitives and Custom Blocks . 800

Design Flow for Building Custom Blocks . 804

Set up a Custom Library . 805

Create a Custom Block . 806

Define Basic Content for Custom Blocks . 812

Define Content for Parameterized Blocks . 816

Define Content for Reconfigurable Blocks . 820

Designing with Custom Blocks . 823

Maintaining Custom Libraries . 824
Maintaining Independent Custom Libraries . 824
Converting Custom Libraries . 825

The MySign M-Generator . 826

Chapter 10: Analyzing and Verifying the Design

Using Quantization Analysis Tools . 832
Specifying Fixed-Point Options . 832
Validating Algorithms with the Fixed-Point Toolbox . 834
Using Plots . 835

Using Smart Black Boxes for Cosimulation . 837
Incorporating Smart Black Boxes in the Design . 837
Configuring the Cosimulation Interface . 839
Creating Smart Black Box Configuration Files . 841
About Cosimulation with ModelSim . 842

Simulating HLS Subsystem Blocks . 844

Viewing Simulink Signals in a Waveform Viewer . 846

Chapter 11: Working with SMC Output

Checking the Log File . 850

Verifying the RTL with a Test Bench . 853

Working with the Output for FPGA Designs . 856

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 15

Chapter 12: Using M Code Blocks

Using M Code Blocks . 858
Using M Code Blocks in SMC Designs . 858
Coding for Synthesis with M Code Blocks . 860

M Coding Style . 862
Ports and Timing . 862
M Code Block Data Types . 864
Combinatorial Logic . 868
Persistent Variables . 869
Memories . 869
State Machines . 870
Counters . 878
MATLAB Function that Evaluates to a Constant . 880
User-Defined Functions for M Code Blocks . 880
Overridable Parameters . 881

Using Persistent Variables . 883
M Code for Persistent Variables . 883
Precision Bounds for Persistent Variables . 885
Access-Update Sequence for Persistent Variables . 888
Conditional Assignments to Persistent Variables . 890

M Code Examples . 892
Hardware-Aware M Code . 892
Quantization of Constants . 893

M Language Support for M Code Blocks . 893
Keywords, Variables, Functions, and Structures . 894
Operator Support . 894
Built-In Function Support . 895
SMC Functions for M Code Blocks . 898
M Language Limitations . 898

Chapter 13: Working with C Output

Design Flow for Working with C Output . 902

Generating C Output Data . 903
Generating C Output . 903
Generating Output Data Files for C Output . 905

Verifying C Output Against RTL . 905

LO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
16 October 2013

Simulating C Output . 906
Simulating C Output with GCC . 906
Simulating C Output in Microsoft Visual Studio 2010 . 906

Supported APIs for C Output . 913
CEvent . 913
int CModelDeleteEvent . 915
REGISTER_DESIGN . 915
void * CModelCreateInstance . 916
int CModelDeleteInstance . 917
int CModelSetInput . 918
char * CModelGetOutput . 919
int CModelEvalNext . 920
CModelGetErrMsg() . 921
int CSimGetLicense() . 923
int CSimReleaseLicense() . 924

C Model API Usage . 925

Using C Output in Simulink . 927
Using C Output to Speed up Simulink Simulations . 927
Generating the Simulink C Output Wrapper . 928

Using C Output with SystemC . 932

Using C Output with Verilog-C Interfaces . 933
Simulating C Output with Verilog-C Interfaces . 933
Verilog-C Interface Wrappers . 934
Verilog-C Interface Wrapper Example . 936
Verilog-C Interface Wrapper System Tasks . 938

Appendix A: Blockset Summary

SMC Block Summary . 946

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 17

C H A P T E R 1

Getting Started

The following topics provide a general introduction to the Synphony Model
Compiler software:

• About The Synphony Model Compiler Tool, on page 18

• Synphony Model Compiler Design Flows, on page 20

• Finding Information, on page 26

• Getting Help, on page 26

LO

 Getting Started About The Synphony Model Compiler Tool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
18 October 2013

About The Synphony Model Compiler Tool
This section briefly discusses the following topics:

• About the Software, on page 18

• Synphony Model Compiler and MATLAB, on page 19

About the Software

The Synphony product is a high-level tool for hardware DSP design. It is an
add-on to the Simulink® product from The MathWorks®, and provides the
designer with an automated path from high-level design and simulation to an
architecturally-optimized, synthesizable, system-level HDL implementation.
This tool provides performance and productivity benefits for designers who
are implementing DSP circuits into FPGA devices. The software achieves
significantly higher performance than alternative solutions and provides the
designer with a mechanism to evaluate high-level area/performance
trade-offs. The output is synthesizable HDL code ready for use with the
Synopsys® Synplify Pro® synthesis software.

The software consists of the following components:

• A Simulink blockset

• An automated mechanism to produce a bit-exact, optimized HDL imple-
mentation when a Simulink model is created using this blockset

• An automated mechanism to capture test vectors during Simulink
simulation

• Automatic HDL test bench generation to verify bit accuracy

Value for DSP Algorithm Designers

Using FPGAs for DSP design is a complex task, and the Synphony Model
Compiler software makes it easy to maximize the optimizations possible with
this design flow. For DSP algorithm designers implementing in FPGAs, the
Synphony Model Compiler software does the following:

• Provides a familiar working environment. The Synphony Model Compiler
tool plugs into the familiar Simulink and MATLAB environment, so the
DSP algorithm designer need not learn a new tool or methodology.

About The Synphony Model Compiler Tool Getting Started

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 19

• Automates the design flow by smoothly transitioning from the high-level
arithmetic Simulink abstractions to the Synopsys FPGA synthesis tools,
with which it is tightly integrated. It eliminates the need for the
algorithm designer to learn about physical issues that affect the design.

• Is the only tool that offers a vendor-independent solution for a DSP
FPGA implementation. The designer can experiment with different FPGA
vendor technologies.

• Includes proprietary optimizations that improve area and performance.

Value for Hardware Engineers

For the hardware engineer, the Synphony Model Compiler software does the
following:

• Eliminates costly iterations normally required to accurately translate the
DSP algorithms, because it generates the necessary RTL code. It elimi-
nates the extra cycles normally required to generate RTL that captures
the algorithmic intent of the designer and also accounts for physical
issues.

• Makes the hardware engineer’s job easier with built-in optimizations
that account for hardware considerations. The Synphony Model
Compiler tool does DSP-level optimizations (z-domain) using implemen-
tation-level constraints like target technology and timing.

• Generates an optional testbench, which can be extremely useful in
verifying bit accuracy.

Synphony Model Compiler and MATLAB

It is assumed that you have valid licenses for the appropriate versions of the
MATLAB® and Simulink software from MathWorks and that you are familiar
with these products. For FPGA targets, the use model assumes that the
Synphony Model Compiler output will be synthesized with the Synplify Pro
product from Synopsys, so the designer must have this product and be
familiar with its use.

LO

 Getting Started Synphony Model Compiler Design Flows

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
20 October 2013

Synphony Model Compiler Design Flows
This section contains a flow description and a step-by-step procedure.

• Synphony Model Compiler FPGA Design Flow, on page 20

• Design Requirements for RTL Generation, on page 22

• FPGA Design Flow Procedure, on page 23

Synphony Model Compiler FPGA Design Flow

The following figure summarizes the flow for creating an FPGA design, gener-
ating RTL code, synthesis, and verification. For more details, see the proce-
dure in FPGA Design Flow Procedure, on page 23. To step through an
example using the tool for an FPGA design, refer to the training materials
packaged with the tool.

Synphony Model Compiler Design Flows Getting Started

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 21

Stage 1: Design Entry and Simulation

For this first stage of the flow, use the Simulink software and the Synphony
Model Compiler blockset to compose the design. You can use other Simulink
blocksets for simulation and debugging, but the software only generates RTL

Source File
Constraint File

Test Bench

Stage 1: Design Entry

Stage 2: Design Optimization
and RTL Generation

Stage 3: Logic Synthesis, Verification,
and Place and Route

and Simulation

Project File

Design algorithm with
Synphony blocks

Simulate and verify design
in Simulink

Select target and
architectural optimizations

Run synthesis for FPGAs
and optimize

Verify

Run Synplify Pro/Premier
logic synthesis

Place and route

SYNPHONY FPGA DESIGN FLOW

SHLSTool Toolbox

LO

 Getting Started Synphony Model Compiler Design Flows

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
22 October 2013

code for blocks from the Synphony blockset. Simulate and verify the design at
least once with Simulink to ensure correct functionality. For additional
details about the flow, see FPGA Design Flow Procedure, on page 23.

Stage 2: Design Optimization and RTL Generation

The strengths of the Synphony Model Compiler software are optimization and
RTL generation. To do this, add the SHLSTool block to the design.

Set system-level optimization settings and the target technology with the
SHLSTool block. Use the same block to generate RTL code. The optimizations
are targeted towards the FPGA design. For details of the flow, see FPGA
Design Flow Procedure, on page 23. The software generates RTL code and an
optional test bench.

Stage 3: Logic Synthesis, Verification, and Place-and-Route

For this stage, you use synthesis, verification, and place-and-route tools. If
you generated a test bench, run it in a VHDL simulator to verify the bit-exact-
ness of the generated VHDL code with respect to the Simulink model. Use the
RTL code for logic synthesis with the Synplify Pro software. After synthesis,
verify the post-synthesis VHDL code generated by the synthesis software
against the Synphony Model Compiler test bench. Then, use the synthesized
netlist as input to the place-and-route tool of the FPGA vendor. For additional
details about the flow, see FPGA Design Flow Procedure, on page 23.

Design Requirements for RTL Generation

To generate RTL, you must follow these rules:

• The design must be bound by the Synphony Model Compiler Port In and
Port Out blocks. You must define your design boundaries with Synphony
Model Compiler Port In and Port Out blocks. If you do not do this, the
Synphony Model Compiler tool cannot determine the ports for the RTL
description. The generated RTL will not be correct.

• All the blocks that need to be synthesized into RTL must be from the
Synphony Model Compiler blockset.

• Do not use the following characters in port, block, subsystem, or signal
names in the Simulink model. If you do, the tool might not generate RTL
code successfully.

Synphony Model Compiler Design Flows Getting Started

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 23

• Data types that are propagated through any of the Synphony blocks
must have a word length that is greater than or equal to the fraction
length.

FPGA Design Flow Procedure

The following procedure describes the steps required to follow the design flow
(Synphony Model Compiler FPGA Design Flow, on page 20):

1. Start MATLAB and make sure you are in your design directory. Click the
Simulink icon and open Simulink.

2. Set up the design.

– Open a model window. For details, see Starting a Synphony Model
Compiler Design, on page 641.

– Configure the tool settings and specify the timing mode, as described
in Configuring Synphony Model Compiler, on page 638.

& Ampersand ! Exclamation mark

' Apostrophe ` Grave accent

* Asterisk - Minus

\ Backslash # Number sign

^ Caret % Percent

: Colon + Plus

, Comma ? Question mark

{Curly bracket, open ; Semicolon

} Curly bracket, close ~ Tilde

$ Dollar sign

LO

 Getting Started Synphony Model Compiler Design Flows

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
24 October 2013

– Build your circuit with Synphony Model Compiler blocks. For details,
see Working with Synphony Model Compiler Blocks, on page 642.

3. Verify the design in Simulink.

– Set simulation parameters and simulate the design using the
commands on the Simulate menu. For details, consult the Simulink
documentation.

– Use a Simulink simulation with scaled double precision.

– Impose quantization on the design enabling fixed-point data type
associations.

– Verify the bit-accurate design with a Simulink simulation.

4. Set up the implementation for RTL generation.

– Make sure your design follows the requirements described in Design
Requirements for RTL Generation, on page 22.

– In the Simulink window, click Synphony Blockset, and add the SHLSTool
block to the design. One instance of this block controls the whole
design.

– Double-click the SHLSTool block in the model window to open the
Synphony Model Compiler toolbox.

– Set up the implementation and the options for it, as described in
Setting up Implementations, on page 644.

– Click OK in the Implementation Options dialog box.

5. Click Run in the Synphony Model Compiler window to generate RTL code
and output files for the optimized design.

The software generates RTL code for the Synphony Model Compiler
block components in the design. It does not generate RTL code for other
blocks.

Synphony Model Compiler Design Flows Getting Started

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 25

6. Run logic synthesis, verify, and place-and-route your design. For details
about these tasks, consult the documentation for these tools.

– Start the Synplify Pro or Synplify Premier software and use the source
code, constraint, and project files generated in the previous step as
input to synthesize your design. If you want to target a different
family or device, you can reset that in the synthesis tool when you
run synthesis.

– Compare the test bench to post-synthesis gate-level simulation to
verify results.

– Place and route the design, using the tool appropriate to your design
and vendor.

LO

 Getting Started Finding Information

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
26 October 2013

Finding Information
The following table shows you where to find information:

Getting Help
The Synphony Model Compiler software includes documentation, which you
can access in the following ways:

• For a printed copy, go to the MATLAB help (Help->Product Help) and select
Synphony Model Compiler in the Contents tab of the Help system. Scroll down
and open the PDF document (Release Notes or User Guide) you need.
You can print out the PDF documents.

• For online help, open the Contents tab of the Help Navigator, scroll to
Synphony Model Compiler, and select the topic you want.

• For context-sensitive online help about blocks in the Simulink library
browser, click a block to see a one-line description displayed. Right-click
on a block and select Help to display information about the block.

• For context-sensitive online help about blocks in the Simulink model
window, right-click on the block and select Help. This displays informa-
tion about the block.

• For context-sensitive online help on a dialog box, click the Help button.

For... See...

Procedures and tips on using the tool Synthesizing the Design

Descriptions of individual Synphony Model
Compiler blocks

Blocks — By Library
Blocks — Alphabetical List

Descriptions of command line functions SMC Functions

Help Getting Help

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 27

C H A P T E R 2

SMC Blocks: Abs to Host Interface

This chapter describes the Synphony Model Compiler blocks and the
Synphony Model Compiler custom blocks, categorizing them by library and
alphabetically. See the following:

• Blocks — By Library, on page 28

• Blocks — Alphabetical List, on page 39

Note the following:

• The Synphony Model Compiler library includes some toolboxes at the
top level: SynCoSimTool, SHLSTool and SynFixPtTool. They are documented
along with the other blocks.

• Some Synphony Model Compiler blocks are classified as custom blocks.
For details, and a list of the custom blocks, see Primitives and Custom
Blocks, on page 800.

• Some blocks are specialized blocks, and the icons reflect the difference.
For example, Black Box, M Control, and the port and subsystem blocks.

• The appendix Blockset Summary, on page 945, contains a quick refer-
ence list of parameters like saturation and word length for different
blocks.

LO

 SMC Blocks: Abs to Host Interface Blocks — By Library

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
28 October 2013

Blocks — By Library
The Synphony Model Compiler blockset is organized into the block libraries
described in the following table. You can access the libraries from the
Simulink Library Browser. For an alphabetical list of individual blocks, see
Blocks — Alphabetical List, on page 39).

Communications Contains blocks specific to the communications industry.

Control Logic Contains blocks that implement logic for controlling datapaths.

CORDIC Contains blocks for specialized CORDIC math operations.

DSP Basics Contains fundamental blocks used for most DSP functions.

Filtering Contains blocks for designing and implementing filters.

Floating Point
Functions

Contains blocks that perform various floating point
computations of math functions.

Math Functions Contains blocks for specialized math operations.

Memories Contains blocks for memory structures like RAMs and FIFOs.

Ports &
Subsystems

Contains port and black box blocks.

Signal Operations Contains blocks for the manipulation of signals.

Sources Contains blocks that generate constants and counters.

Transforms Contains blocks for transforms that are important to DSP
operations.

SMC
SynCoSimTool

Specialized toolbox that manages the cosimulation interface
between the smart black boxes in the design and ModelSim.

SMC SHLSTool Specialized toolbox that controls the generation of RTL for
synthesis. The toolbox lets you set options in the
Implementation Options dialog box, described in
Implementation Options Dialog Box, on page 490.

SMC
SynFixPtTool

Specialized toolbox that opens the Simulink fixed point
interface.

Blocks — By Library SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 29

Communications

This library contains specialized blocks used for DSP designs in the commu-
nications industry.

SMC Block
Deinterleaver

Reshuffles a fixed number of interleaved input symbols
to obtain the original sequence.

SMC Block Interleaver Shuffles a fixed number of input symbols to a new
permutation.

SMC Convolutional
Deinterleaver

Reshuffles streaming input symbols according a to a
predefined mapping scheme.

SMC Convolutional
Encoder

Corrects feed-forward errors using k/n convolutional
codes.

SMC Convolutional
Interleaver

Shuffles streaming input symbols to a new permutation,
using a predefined mapping scheme.

SMC CRC Generator Generates CRC bits and appends them to the input data
frames.

SMC Depuncture Removes user-specified symbols from the input data
stream and replaces them with zeroes.

SMC Gold Sequence
Generator

Generates a Gold sequence, with specified polynomials u
and v, o
f period N = 2n - 1, called a preferred pair.

SMC PN Sequence
Generator

Generates a sequence of pseudorandom (PN) binary
numbers using a linear-feedback shift register (LFSR).

SMC Puncture Removes user-specified bits from the input data stream.

SMC Reed-Solomon
Decoder

Decodes the encoded signal using Reed-Solomon
error-correcting codes.

SMC Reed-Solomon
Encoder

Generates an encoded signal, using Reed-Solomon
codes.

SMC Viterbi Decoder Decodes convolutionally encoded input data.

LO

 SMC Blocks: Abs to Host Interface Blocks — By Library

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
30 October 2013

Control Logic

This library contains blocks that provide control logic for outputs.

CORDIC

This library contains blocks for specialized CORDIC math operations.

SMC M Control Uses an M file to define a function for complex control logic.

SMC Mealy State
Machine

Provides control logic where the output depends on the input
and an internal state vector.

SMC Moore State
Machine

Provides control logic where the output depends on the
current state.

SMC CORDIC Exp Calculates the natural exponent of the input using the
CORDIC algorithm.

SMC CORDIC Log Calculates the natural logarithm of the input using the
CORDIC algorithm.

SMC CORDIC Polar Calculates √(x2+y2) and atan(y/x) where x and y are the
inputs.

SMC CORDIC Rotator Implements a fully pipelined CORDIC rotator.

SMC CORDIC SinCos Implements a sine and/or cosine generator circuit using a
fully parallel CORDIC algorithm in rotation mode.

SMC CORDIC Sqrt Calculates the square root of the input using the CORDIC
algorithm.

SMC CORDIC2 Implements a circular CORDIC (Coordinate Digital
Rotation Computer).

Blocks — By Library SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 31

DSP Basics

This library contains blocks for basic DSP operations.

Filtering

This library contains blocks for designing and implementing filters.

SMC Add Implements a full-precision signed adder or subtractor.

SMC Delay Delays the input by the specified number of sample clock
cycles.

SMC Gain Implements a constant gain to the input.

SMC CIC Custom block that implements a CIC filter.

SMC CIC2 Implements a CIC filter with additional enhancements
compared to the CIC block.

SMC Differentiator Custom block that performs a discrete time differentiation
of the input signal.

SMC FDATool Opens the Simulink FDATool interface.

SMC FIR Implements a finite impulse response (FIR) filter.

SMC FIR2 Implements fixed and reloadable coefficient FIR filters,
including polyphase filters, multichannel filters, and
symmetric coefficient filters.

SMC FIR Engine Implements a finite impulse response (FIR) filter that uses
the coefficients as vector input.

SMC FIR Rate
Converter

Implements a polyphase FIR filter.

SMC IIR Implements an infinite impulse response (IIR) filter.

LO

 SMC Blocks: Abs to Host Interface Blocks — By Library

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
32 October 2013

Floating Point Functions

This library contains blocks that perform various floating point computations
of math functions.

SMC Integrator Performs a discrete time integration of the input signal.

SMC Moving Average
Filter

Implements a hardware efficient moving average filter.

SMC Parallel FIR Implements a parallel input FIR filter.

SMC RFIR Custom block that implements a reloadable finite impulse
response FIR filter.

SMC FP Add Adds or subtracts two floating point values.

SMC FP Compare Compares two floating point numbers and returns 1 if the
selected condition holds true. Otherwise, 0 is returned.

SMC FP Constant Sets a constant value for a specified floating point
representation as the output.

SMC FP Fused Mult
Add

Performs various multiply-add operations on three/four
inputs.

SMC FP Port In Converts Simulink double to SMC floating point format.
Can be used instead of SMC Port In to define the RTL
generation boundary of floating point designs.

SMC FP Port Out Converts SMC floating point format to Simulink double.
Can be used instead of SMC Port Out to define the RTL
generation boundary of floating point designs.

SMC FP to Fixed Converts an input SMC floating point format to a signed
fixed point format for the specified word length and
fraction length.

SMC Fixed to FP Converts a fixed point input to the SMC floating point
format with the specified representation.

SMC FP Mult Multiplies two floating point values.

Blocks — By Library SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 33

Math Functions

This library contains blocks for specialized math operations.

SMC Abs Calculates the absolute value of the scalar input.

SMC Accumulator Implements an accumulator with optional reset and
enable.

SMC Add Implements a full-precision signed multi-input adder.
Selected inputs can be configured for addition or
subtraction.

SMC Binary Logic Calculates bitwise binary logic functions on the inputs.

SMC Comparator Implements a programmable comparator.

SMC Divider Calculates the fixed-point fractional division of two
inputs, A and B.

SMC DivMod Calculates the integer division and/or modulo function of
two inputs, A and B.

SMC Gain Implements a constant gain to the input.

SMC Log Calculates the natural logarithm of the input.

SMC Matrix Mult Implements matrix multiplication of a two-input matrix
signal.

SMC MinMax Custom block that calculates the minimum, maximum, or
minimum and maximum of two inputs.

SMC Mult Implements a full-precision multiplier.

SMC Negate Computes the two’s complement (arithmetic negation) of a
signed input.

SMC Pow Raises a value to the power of another value.

SMC Shifter Performs a variable left or right shift on the input signal.

SMC Sign Custom block that provides the 2-bit sign value (+1 or -1)
for the input.

SMC SinCos Calculates sin(2πf) or cos(2πf) for the input.

LO

 SMC Blocks: Abs to Host Interface Blocks — By Library

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
34 October 2013

Memories

This library contains blocks for memory structures like RAMs and FIFOs.

SMC SinCos2 Creates sin and cos waveforms based on the input phase
and amplitude values.

SMC Sqrt Calculates the square root of the input.

SMC Sum of Products Multiplies inputs with gain values and calculates the sum
of the computed products to provide a scalar output.

SMC Delay Delays the input by the specified number of sample clock
cycles.

SMC FIFO Implements a synchronous FIFO (First in First Out)
memory queue.

SMC Flow Control
Buffer

Provides forward or backward flow control.

SMC Permutation Shuffles the incoming data according to a specified
permutation vector.

SMC RAM Implements a memory function through a storage array
that has read and write access through ports.

SMC Register Inserts a delay.

SMC ROM Models a read-only memory (ROM) with a latency of one
sample.

SMC Shift Register Implements a delay line with dynamic or static access to
intermediate taps.

Blocks — By Library SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 35

Ports & Subsystems

This library contains port and black box blocks.

SMC Black Box Provides a way to embed other blocks.

SMC HLS Subsystem Lets you add a previously designed Synphony model to
the current design and set implementation settings for it.

SMC Host Interface Provides an interface to the host processor using a
simpler bus protocol to configure the design.

SMC In Provides a way to add an in port to a subsystem

SMC Out Provides a way to add an out port to a subsystem

SMC Port In Defines the input boundaries for the DSP design to be
implemented in RTL.

SMC Port Out Defines the output boundaries for the DSP design to be
implemented in RTL.

SMC RTL
Encapsulation

Embeds and simulates RTL blocks inside their Simulink
model without the need of external RTL simulators or
special Simulink features.

SMC Smart Black Box Lets you embed third-party IP in a Synphony Model
Compiler design.

SMC Subsystem Allows you to add a subsystem to a Synphony Model
Compiler design.

SMC Test Vector
Capture

Toggles between setting or resetting Port In and Port Out
Capture Test Vector mode for all Synphony Model
Compiler ports

LO

 SMC Blocks: Abs to Host Interface Blocks — By Library

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
36 October 2013

Signal Operations

This library contains blocks for the management of signals.

SMC Commutator Sequentially switches the data from multiple input ports to a
single output port, increasing the data rate of each output
port accordingly.

SMC Concat Concatenates the bits of up to 32 input signals.

SMC Convert Changes the word size and data type of the input. You can
apply a constant before the new word size and data type is
casted.

SMC Decommutator Sequentially switches the data at the input port to multiple
output ports, reducing the data rate of each output port
accordingly.

SMC Demux Implements a de-multiplexer of up to 2048 outputs with a
latency of one sample.

SMC Downsample Decreases the sample rate of the input by removing samples.

SMC Edge Detector Outputs a unity amplitude pulse of one sample period to a
synchronous transition from high to low or low to high.

SMC Extract Extracts specified bits from the input signal.

SMC Leading Zero
Counter

Computes the number of leading zeros for an unsigned
input.

SMC Mux Implements a multiplexer of up to 2048 inputs.

SMC Parallel to
Serial

Implements a data packet splitter that divides the parallel
data word at the input into small serial data packets in the
order specified.

SMC Recast Custom block that provides a value, based on the requested
data type cast at the output and maintaining the same bits
as provided at the input.

SMC Reshape Changes the dimensionality of the input signal.

SMC Sample and
Hold

Samples and holds the input signal.

Blocks — By Library SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 37

Sources

This library contains blocks that generate constants and counters.

SMC Saturate Saturates the input signal to the values specified in the
positive and negative saturation value fields.

SMC Serial to
Parallel

Implements a data packet combiner that collects serial data
packets at the input and merges them into a parallel data
word at the output.

SMC Signal Update Updates the specified elements of a vector or matrix input
signal using a given update signal.

SMC Single Clock
Downsample

Provides variable rate and single clock downsample
operations.

SMC Single Clock
Upsample

Provides variable rate and single clock upsample operations.

SMC Switch Routes the signal through input or data port based on signal
in the control port.

SMC Upsample Increases the sample rate of the input by inserting zeroes.

SMC Vector Concat Constructs vectors by bundling up to 2048 inputs together.

SMC Vector Expand Converts scalar input to vector output.

SMC Vector Extract Extracts selected ports for the output.

SMC Vector Split Implements a de-multiplexer of up to 2048 outputs.

SMC Constant Implements a source with a constant value.

SMC Counter Implements a resettable modulo counter with enable.

SMC DDS Custom block that creates a direct digital synthesizer with
sin and cos waves based on frequency, phase settings,
and modulations.

LO

 SMC Blocks: Abs to Host Interface Blocks — By Library

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
38 October 2013

Transforms

This library contains blocks for transforms that are important to DSP opera-
tions.

SMC DDS2 Creates a direct digital synthesizer with sin and cos
waveforms based on frequency, phase settings, and
modulations. This block provides additional functionality
and QoR improvements compared with the DDS block.

SMC Pulse Generator Generates a single pulse.

SMC Ramp Custom block that creates a ramp based on increments
derived from a port or parameter

SMC Random Custom block that creates a random integer of the
requested word length.

SMC Sequence Custom block that repeats a sequence of specified data

SMC Configurable
FFT/IFFT

Implements a fully pipelined Fast Fourier Transform (FFT) or
Inverse Fast Fourier Transform (IFFT).

SMC FFT Implements a fully pipelined Fast Fourier Transform.

SMC FFT2 Implements Fast Fourier Transform that supports both
serial and parallel inputs.

Blocks — Alphabetical List SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 39

Blocks — Alphabetical List
This list includes the toolboxes, as well as the blocks and custom blocks:

SMC Abs, on page 42 SMC Accumulator, on page 44

SMC Add, on page 48 SMC Binary Logic, on page 53

SMC Black Box, on page 56 SMC Block Deinterleaver, on page 62

SMC Block Interleaver, on page 64 SMC CIC, on page 66

SMC CIC2, on page 70 SMC Commutator, on page 77

SMC Comparator, on page 84 SMC Concat, on page 86

SMC Configurable FFT/IFFT, on
page 88

SMC Constant, on page 94

SMC Convert, on page 98 SMC Convolutional Deinterleaver, on
page 104

SMC Convolutional Encoder, on
page 106

SMC Convolutional Interleaver, on
page 109

SMC CORDIC Exp, on page 111 SMC CORDIC Log, on page 113

SMC CORDIC Polar, on page 115 SMC CORDIC Rotator, on page 117

SMC CORDIC SinCos, on page 124 SMC CORDIC Sqrt, on page 126

SMC CORDIC2, on page 127 SMC Counter, on page 131

SMC CRC Generator, on page 138 SMC DDS, on page 143

SMC DDS2, on page 149 SMC Decommutator, on page 163

SMC Delay, on page 169 SMC Demux, on page 171

SMC Depuncture, on page 173 SMC Differentiator, on page 176

SMC Divider, on page 179 SMC DivMod, on page 183

SMC Downsample, on page 191 SMC Edge Detector, on page 197

SMC Extract, on page 200 SMC FDATool, on page 203

SMC FFT, on page 204 SMC FFT2, on page 211

SMC FIFO, on page 220 SMC FIR, on page 226

LO

 SMC Blocks: Abs to Host Interface Blocks — Alphabetical List

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
40 October 2013

SMC FIR Engine, on page 235 SMC FIR2, on page 246

SMC FIR Rate Converter, on page 241 SMC Flow Control Buffer, on page 275

SMC FP Add, on page 286 SMC FP Compare, on page 290

SMC FP Constant, on page 292 SMC Fixed to FP, on page 295

SMC FP Fused Mult Add, on page 298 SMC FP Mult, on page 301

SMC FP Port In, on page 303 SMC FP Port Out, on page 306

SMC FP to Fixed, on page 309 SMC Gain, on page 311

SMC Gold Sequence Generator, on
page 315

SMC HLS Subsystem, on page 319

SMC Host Interface, on page 326 SMC IIR, on page 340

SMC In, on page 345 SMC Integrator, on page 346

SMC Inverter, on page 350 SMC Leading Zero Counter, on
page 352

SMC Log, on page 354 SMC M Control, on page 356

SMC Mealy State Machine, on
page 364

SMC Matrix Mult, on page 360

SMC Moore State Machine, on
page 369

SMC MinMax, on page 367

SMC Mult, on page 378 SMC Moving Average Filter, on
page 372

SMC Negate, on page 386 SMC Mux, on page 381

SMC Parallel FIR, on page 389 SMC Out, on page 388

SMC Permutation, on page 394 SMC Parallel to Serial, on page 392

SMC Port In, on page 399 SMC PN Sequence Generator, on
page 396

SMC Pow, on page 405 SMC Port Out, on page 403

SMC Puncture, on page 412 SMC Pulse Generator, on page 409

SMC Ramp, on page 419 SMC RAM, on page 414

SMC Recast, on page 424 SMC Random, on page 422

Blocks — Alphabetical List SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 41

SMC Reed-Solomon Encoder, on
page 435

SMC Reed-Solomon Decoder, on
page 428

SMC Reshape, on page 443 SMC Register, on page 441

SMC ROM, on page 453 SMC RFIR, on page 448

SMC Sample and Hold, on page 465 SMC RTL Encapsulation, on page 456

SMC Sequence, on page 470 SMC Saturate, on page 467

SMC Shift Register, on page 476 SMC Serial to Parallel, on page 473

SMC SHLSTool, on page 486 SMC Shifter, on page 484

SMC Signal Update, on page 509 SMC Sign, on page 507

SMC SinCos2, on page 516 SMC SinCos, on page 513

SMC Single Clock Upsample, on
page 529

SMC Single Clock Downsample, on
page 526

SMC Sqrt, on page 539 SMC Smart Black Box, on page 532

SMC Sum of Products, on page 544 SMC Subsystem, on page 543

SMC SynCoSimTool, on page 550 SMC Switch, on page 548

SMC Test Vector Capture, on page 556 SMC SynFixPtTool, on page 554

SMC Vector Concat, on page 561 SMC Upsample, on page 557

SMC Vector Extract, on page 570 SMC Vector Expand, on page 567

SMC Viterbi Decoder, on page 574 SMC Vector Split, on page 572

LO

 SMC Blocks: Abs to Host Interface SMC Abs

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
42 October 2013

SMC Abs
Calculates the absolute value of the scalar or vector input.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Abs block calculates the absolute value of the
vector or scalar input. The output has the same signal dimension as the
input, with each channel being the absolute value of the corresponding input
channel.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Abs SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 43

Abs Parameters

For descriptions of the parameters, see the following:

The default output format for the Abs block is Automatic, where the tool keeps
the input word length and fraction length with unsigned output. Thus, there
is no lost bit for negative extremes, because there is no overflow or underflow.

If you use Specify to specify the output format of the block, and the integer
length and/or fraction length you specify is less than the input values, the
output is wrapped (no saturation) for overflow and/or truncated (no
rounding) for underflow.

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: Abs to Host Interface SMC Accumulator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
44 October 2013

SMC Accumulator
Implements an accumulator with optional reset and enable.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Accumulator block implements an adder or
subtractor-based accumulator with optional reset and enable ports.

y[n]=x[n-1]+y[n-1]
H(z)=z/(1-z)

Automatic Scalar Expansion

If the data input is a vector, and if one of the reset or enable ports is scalar,
the reset and enable ports are expanded according to the size of the data
input vector.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block provides the result of the accumulating register.

SMC Accumulator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 45

Accumulator Parameters

Operation

Configures the operation of the block. You can select from the following:

– + =

– - =

LO

 SMC Blocks: Abs to Host Interface SMC Accumulator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
46 October 2013

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Reset port

When enabled, the block is implemented with a reset port.

Enable port

When enabled, the block is implemented with an enable pin.

Overflow port

When enabled, the block is implemented with an output pin (ovf) for
monitoring overflows.

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

– Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

– Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.

Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

SMC Accumulator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 47

port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

LO

 SMC Blocks: Abs to Host Interface SMC Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
48 October 2013

SMC Add
Implements both signed single-input and multi-input adders. Selected inputs
can be configured for addition or subtraction.

Library

Synphony Model Compiler DSP Basics and Synphony Model Compiler Math
Functions

Description

The Synphony Model Compiler Add block implements a signed single-input or
multi-input adder, whose inputs can be configured for addition or subtrac-
tion. The Add block can have up to 256 input ports. The inputs can be vector-
ized to a maximum size of 2048 for single-input adder (in sum of elements
mode) and multi-input adder implementations.

Automatic Scalar Expansion

If enabled when the block has a mixture of scalar inputs and matrix or vector
inputs, the tool expands the scalar inputs to the size of the vectors or
matrices. The vector or matrix inputs must have the same size. You cannot
have a combination of vector and matrix inputs.

In sum of elements mode, the elements of the input vector/matrix signal are
summed up to a scalar. In multi-input adder mode, if the input signals are
vectors/matrices, the corresponding elements of the input vectors/matrices
are summed to give a vector/matrix output of the same size as the inputs.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

SMC Add SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 49

Latency

This block has no latency.

Add Parameters

Operation

Configures the operation of the multi-input adder. Specify a + or - for
each input to the block; the number of inputs is determined by the
number of + or - signs. The default is ++.

LO

 SMC Blocks: Abs to Host Interface SMC Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
50 October 2013

The + or - signs correspond to the adding or subtraction of the corre-
sponding input port. For example, if you specify ++-, the block is imple-
mented with three inputs. The output of the block is calculated as Input1
+ Input2 -Input3. The inputs and the operation symbol on the block icon
reflect the operation choices you made. For example:

If your design has a single input port feeding in the vector or matrix
signal and if you set Operation to +, the output is the sum of the vector or
matrix elements. If you set Operation to -, the output is the negative value
of the sum of the vector or matrix elements.

If your design has a single input port feeding a matrix signal and if you
set Operation to + when Sum of Rows is enabled, the output is a vector
whose size matches the number of columns in the input signal. Each
element of the output vector is a sum of all the rows of that particular
column of the input signal.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

In the following example, all the adders have Output Format set to
Automatic. The input of the first adder is 0, because it goes through a
Constant block, and the input data type is sfix2. The other input is
through a port, with a data type of sfix29_en5. When this model is
updated, all the adders have an output of sfix2, because that is the data
type of the first input.

Output format Output Format, on page 583.
There is an exception to the general description
provided in Output Format, on page 583. If the
output format is set to Automatic for an Add block, the
data type of the first input is propagated to the
output. The figure below illustrates the behavior.

Output word length Output Word Length, on page 584.

Output fraction length Output Fraction Length, on page 584.

Output data type Output Data Type, on page 584.

++ Operation ++- Operation-- Operation + Operation

SMC Add SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 51

Output saturate on overflow, Output round on underflow

Determine how overflow and underflow are treated. These options are
available if Output Format is set to Automatic or Specify. You can get overflow
when Output Format is set to Automatic, because in this case the output
data type for the Add block is inherited from the first input of the adder,
so overflow can occur at the output.

Output saturate on
overflow

When enabled, saturates the overflow; when disabled,
wraps the overflow. See Overflow Saturation Options,
on page 585 for details.

Output round on
underflow

See Underflow Rounding Options, on page 585 for
details about the rounding options available.

LO

 SMC Blocks: Abs to Host Interface SMC Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
52 October 2013

Sum of Rows

When enabled, the sum of all rows for each column in input matrix can
be obtained at the output. The output is a vector whose size equals the
number of columns in the input matrix. When this is enabled, you can
only have a single input adder with + operation.

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

– Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

– Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.

Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output
port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

SMC Binary Logic SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 53

SMC Binary Logic
Calculates bitwise binary logic functions on both scalar and vector inputs.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Binary Logic block implements bitwise binary logic
functions. The input value is TRUE (1) if it is nonzero and FALSE (0) if it is
zero.

If the block is fed by vector inputs, they must be the same size. In vectorized
mode, the tool handles each input channel independently and calculates the
corresponding output channel according to the specified expression, treating
it as if a single Binary Logic block is replicated for each input channel.

Automatic Scalar Expansion

If the block has some scalar inputs and other vector inputs, the tool expands
the scalar inputs to the size of the vectors. The vector inputs must be the
same size.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

LO

 SMC Blocks: Abs to Host Interface SMC Binary Logic

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
54 October 2013

Binary Logic Parameters

Expression

Specifies the logic operation performed by the block. For information
about rules for the operation, see Rules for Expressions, on page 55. The
operation can be any of the following:

– Binary operations

– Unary operations

Operator Description

& AND implements an AND operation, where the output is TRUE if all
inputs are TRUE.

| OR implements an OR operation, where the output is TRUE if at
least one input is TRUE. This is the default.

^ XOR implements an XOR operation, where the output is TRUE if
an odd number of inputs are TRUE.

~& NAND implements a NAND operation, where the output is TRUE if
at least one input is FALSE.

~| NOR implements a NOR operation, where the output is TRUE if no
inputs are TRUE. Remember that ~| is not equal to |~.

~^, ^~ XNOR implements an XNOR operation.

Operator Description

~ Not

SMC Binary Logic SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 55

– Reduction operations that do bitwise operations on a single operand
to produce a single-bit output

Rules for Expressions

Follow these guidelines when you specify the binary logic operations:

• The inputs must be integers of the same size. You cannot use signed
and unsigned integers together. If you do, you can get unexpected
outputs, because the sign bit accepted as the part of the number.

• The expression must not start with an underscore (_).

• Precedence for the operators is from left to right.

• The operands for each binary operation must be the same size. For
example, with the a&b expression, a and b must have same word length.

• Curly brackets {} are the expand operators. Operands inside curly
brackets must be 1 bit wide, and they are expanded to the size of next
expression.

Take {a}&b for example, where a is 1 bit and b is 8 bits. The expression
takes a and expands it to 8 bits by adding the LSB value to the expanded
bits. It then ands it with the operand b.

• The number of inputs is limited to 32.

&a = 0|1

|a

^a

~&a

~|a

~^a

LO

 SMC Blocks: Abs to Host Interface SMC Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
56 October 2013

SMC Black Box
Allows you to embed other blocks or IP in a Synphony Model Compiler design.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Black Box block implements a black box, which
allows you to embed other blocks in a Synphony Model Compiler design. For
the purposes of simulation with Simulink, the black box is transparent;
however, for RTL generation, the contents of the block will just be a black
box. See the <install_dir> \mathworks\toolbox\Synopsys\Synhls\demos\examples direc-
tory for an example.

Use this block for IP for which you do not have access to the RTL code. If you
have access to the RTL code, use the Smart Black Box block (SMC Smart Black
Box, on page 532) instead. For details about using a black box in your design,
see Using Black Boxes and Third-Party IP, on page 777.

The Black Box consists of just an input and an output, to which you can add
other blocks:

The Black Box supports vector inputs. If the input is a vector, the Input port in
the black box is duplicated and connected to the signal coming outside the
black box. Output vectors are handled in the same way.

SMC Black Box SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 57

In the design shown above, the Port In block is the input to the x port of the
Black Box block. In the HDL, the top-level input ports Port_In_e3, Port_In_e2,
Port_In_e1, and Port_In_e0 are connected to the duplicated input ports x_e0,
x_e1, x_e2, and x_e3, which are inside the black box.

Latency

Latency is determined by the contents of the black box.

LO

 SMC Blocks: Abs to Host Interface SMC Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
58 October 2013

Black Box Parameters

For information about setting these parameters, see Setting Black Box
Parameters, on page 780. The following are explanations of these parameters:

SMC Black Box SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 59

Global Reset

When enabled, the tool adds a single reset port to the instantiated black
box and ties this port to the global reset in the RTL generated after DSP
synthesis. It also makes the Format Reset option available, where you
specify the global reset.

Global Enable

When enabled, the tool adds an enable port for each clock domain of the
black box. The enable ports are tied to the global enable ports in the RTL
generated after DSP synthesis. It also makes the Format Enable option
available, where you can specify the global enables.

Black Box Definition

Determines the mode used to define the black box.

– Single HDL File specifies that the black box definition is in a single
Verilog or VHDL file (.v or .vhd). Selecting this option makes the HDL
File and Entity/Model Name options available, where you can specify
additional parameters.

– Single EDIF File specifies that the black box definition is in a single
EDIF file. Selecting this option makes the EDIF File, Simulation File, and
Entity/Model Name options available, where you specify additional
parameters.

– Import File List specifies that the black box definition is in multiple HDL
and EDIF files. Selecting this option makes the Black Box File LIst and
Entity/Model Name options available.

– Undefined specifies that there is no black box definition available, as
when the black box is defined in some other black box block.
Selecting this option makes the Entity/Model Name option available.

HDL File

Specifies the absolute path to the single HDL file that defines the black
box; for example, C:\mypath\blackbox.v. This option is only available when
you set Black Box Definition to Single HDL File. The file you specify is added to
the project file and the simulator .do files.

Copy HDL File to Implementation Directory

When enabled, copies the HDL file specified in HDL File to the implemen-
tation directory. This options is only available when you set Black Box
Definition to Single HDL File.

LO

 SMC Blocks: Abs to Host Interface SMC Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
60 October 2013

EDIF File

Specifies the absolute path to the single EDIF file (.edf or .edif) that
defines the black box. This option is only available when you set Black
Box Definition to Single EDIF File. The file you specify is added to the project
file.

Simulation File

Specifies the absolute path to an HDL file that contains the behavioral
simulation model for the black box defined in the EDIF file. This option
is only available when you set Black Box Definition to Single EDIF File. The
behavioral model can be a Verilog or VHDL file (.v or .vhd). The specified
file is added to the simulator .do files.

Black Box File List

Specifies the absolute path to a single text file that lists all the Verilog,
VHDL, and EDIF files that define the black box. This option is only avail-
able when Black Box Definition is set to Import File List.

The list must contain absolute paths to the files. Valid file extensions for
black box definition files in the list file are .v, .vhd, .edf, and .edif. For
example, if your black box is defined in three files called bb1.v, bb2.v and
bb3.vhd, create and save a text file (bblist.txt) that contains the absolute
paths to the black box definition files:

C:\mypath\bb1.v
C:\mypath\bb2.v
C:\mypath\bb3.vhd

Specify the path to the text file (C:\mypath\bblist.txt) in the Black Box File
List field. All listed files are added to the project file. The Verilog and
VHDL files are also added to the simulator .do files.

Entity/Model Name

Specifies the top-most entity or model for the black box in the RTL. The
name you specify becomes the instance name for the black box and the
name of the instantiated entity or model.

You can specify a variable entity or model name in this field using the
synStrEval function. If you have a variable called MyVariable with the value
MySampleEntityName, you can instantiate MySampleEntityName as the name
for the top-level entity or model in the RTL by entering the following in
this field:

synStrEval(MyVariable)

SMC Black Box SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 61

Format Clock

When enabled, the Clock Names option becomes available and lets you
specify black box clock names. If it is disabled, the tool uses the
Synphony Model Compiler convention for clock names, where the fastest
clock is clk, and reduced frequency clocks are clkDivN.

Clock Names

Specifies clock names for the black box if you do not want to use the
Synphony Model Compiler convention. This field becomes available
when you select Format Clock. Type in the clock names, starting with the
fastest clock, and using colons as separators. For example, if you have
two clocks, clk_sg and clk_2_sg, type clk_sg:clk_2_sg in this field.

Format Enable

When enabled, the Enable Names option becomes available and lets you
specify black box enable names. If it is disabled, the tool uses the
Synphony Model Compiler convention for enable names, where the
fastest domain enable signal is GlobalEnable1, and N-reduced enable
signals are GlobalEnableN.

Enable Names

Specifies enable names for the black box if you do not want to use the
Synphony Model Compiler convention. This field becomes available
when you select Format Enable. Type in the enable names, starting with
the time domain, and using colons as separators. For example, if you
have two enables, ce_sg and ce_2_sg, type ce_sg:ce_2_sg in this field.

Format Reset

When enabled, the Reset Name option becomes available and lets you
specify a name for the black box reset. If it is disabled, the tool uses the
Synphony Model Compiler reset name, which is GlobalResetSel.

Reset Name

Specifies the reset name for the black box if you do not want to use the
Synphony Model Compiler convention. This field becomes available
when you select Format Reset. For example, if you have a reset called grst,
type grst in this field.

LO

 SMC Blocks: Abs to Host Interface SMC Block Deinterleaver

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
62 October 2013

SMC Block Deinterleaver
Shuffles a fixed number of interleaved input symbols to obtain the original
sequence.

Library

Synphony Model Compiler Communications

Description

This block shuffles a fixed number of input symbols according to the
mapping you define to get the original sequence. This is a custom block; for
information about custom blocks, see Primitives and Custom Blocks, on
page 800.

The following figure shows the internals of this block:

Icon Annotations

Note Specifies that the block is a deinterleaver.

Latency Is equal to the number of input symbols - 1.

SMC Block Deinterleaver SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 63

Block Deinterleaver Parameters

Symbol ordering vector

Specifies the order for deinterleaving the input symbols. It operates on
frames with a fixed number of symbols and shuffles them back to the
original permutation, using all the symbols without missing any, and
using each symbol only once.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

LO

 SMC Blocks: Abs to Host Interface SMC Block Interleaver

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
64 October 2013

SMC Block Interleaver
Shuffles a fixed number of input symbols to a new permutation.

Library

Synphony Model Compiler Communications

Description

This block shuffles a fixed number of input symbols to a new permutation,
according to the mapping you define. This is a custom block; for information
about custom blocks, see Primitives and Custom Blocks, on page 800.

The following figure shows the internals of this block:

Icon Annotations

Note Specifies that the block is a interleaver.

Latency Varies with the number of input symbols.

SMC Block Interleaver SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 65

Block Interleaver Parameters

Symbol ordering vector

Specifies the order for interleaving the input symbols. It operates on
frames with a fixed number of symbols and shuffles them, using all the
symbols without missing any, and using each symbol only once.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

LO

 SMC Blocks: Abs to Host Interface SMC CIC

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
66 October 2013

SMC CIC
Implements a CIC filter by applying cascaded integrator-comb (CIC) filtering
on the input signal.

Library

Synphony Model Compiler Filtering

Description

This is a custom block (see Primitives and Custom Blocks, on page 800 for a
definition) that implements a CIC filter by applying cascaded integrator-comb
filtering on the input signal. Cascaded Integrator-Comb filters are a type of
linear phase FIR filter, and have a comb section and an integrator section.
You can use this filter in either interpolating (upsample) or decimating
(downsample) mode.

The SMC library also includes another CIC block, CIC2, with additional
features. See SMC CIC2, on page 70 for a description of this block.

Automatic Scalar Expansion

If the data input is a vector and the reset or enable port is scalar, the tool
expands the scalar reset or enable port to the size of the data input vector.
The reset and enable can be either vector or scalar.

Latency

This block has no latency. In releases prior to 2.6, the CIC block had a
latency of 1.

SMC CIC SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 67

CIC Parameters

Filter Type

Determines the type of filter. The next figure shows how the filters are
implemented, without resets and enables.

– Decimator uses downsampling mode and implements a CIC filter that
performs a sample rate decrease on an input signal.

LO

 SMC Blocks: Abs to Host Interface SMC CIC

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
68 October 2013

– Interpolator uses upsampling mode and implements a CIC filter that
performs a sample rate increase on an input signal.

Differential Delay (M)

Specifies the differential delay of the comb portion of the filter. Inter-
nally, the CIC filter uses differentiators, and the value of this parameter
is passed to all differentiators in the CIC filter.

Upsample/Downsample Rate

Determines the interpolation or decimation rate for the filter, depending
on the mode you selected in Filter Type.

Number of Stages

Specifies the number of filter stages. The CIC filter uses differentiators
and integrators internally, and this number equals the number of differ-
entiator/integrator pairs in the CIC filter.

InterpolatorDecimator

SMC CIC SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 69

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output round towards nearest on underflow

Determine how overflow and underflow are treated. These options are
available when Output format is set to Specify.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

Output saturate
on overflow

Saturates the overflow when the option is enabled and
wraps the overflow when it is disabled. See Overflow
Saturation Options, on page 585 for details.

Output round
towards nearest
on underflow

Uses the Nearest or Floor (Truncate) algorithms to round
the underflow; see Underflow Rounding Options, on
page 585 for descriptions of the algorithms.

LO

 SMC Blocks: Abs to Host Interface SMC CIC2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
70 October 2013

SMC CIC2
Implements a CIC filter by applying cascaded integrator-comb (CIC) filtering
on the input signal.

Library

Synphony Model Compiler Filtering

Description

The CIC2 custom block implements a CIC filter by applying cascaded
integrator-comb filtering on the input signal. Cascaded integrator-comb
filters are a type of linear phase FIR filter, with a comb section and an
integrator section. You can use this filter in either interpolating (upsample) or
decimating (downsample) mode.

The CIC2 block offers many enhancements over the CIC block, such as
enhanced flow control and mulichannel support. It also supports folding
across differentiators or channels of the differentiator stages in decimation
mode, and supports enabled datapath designs with either a partial clock
frequency change or single clock operation for enabled inputs or outputs.

This block also supports a variable decimation factor and non-recursive
decimation architectures. Currently, the tool only supports power of two
decimation factors for non-recursive decimation.

SMC CIC2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 71

CIC2 Flow Control

The following flow control ports are always available for the CIC2 block:

For a multichannel operation, flow control ports are scalar and the same flow
control signal applies to all channels.

Icon Annotations

ssync The ssync (source sync) input can be forced high to reset the integrator
stages to zero.

srdyi The srdyi (source ready) input port can qualify whether the input data in the
current sample period is valid. An invalid input sample is indicated by
srdyi going low. The presence of srdyi allows for interpolation without
changing the clock rate by the corresponding amount.

srdyo The srdyo (source ready) output port can qualify whether the current output
sample is valid. An invalid output sample is indicated by srdyo going low.
The presence of srdyo allows for decimation without changing the clock
rate by the corresponding amount.

Top The green annotations specify the following information:
• Decimation factor
• Clock ratio
• Number of channels,
• Number of stages

LO

 SMC Blocks: Abs to Host Interface SMC CIC2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
72 October 2013

CIC2 Parameters

Main Tab
This tab sets parameters for filter type, decimation factor, differential delay,
number of stages, input word length, number of channels, and clock ratio.

SMC CIC2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 73

Filter Type

Determines the type of filter.

Decimation/Interpolation Factor

Determines the interpolation or decimation rate for the filter, depending
on the implementation you selected for Filter Type.

Decimator Uses downsampling mode and implements a CIC filter that
decimates the input signal. Decimators can be implemented
with a full sample rate change. They can also be implemented
with either a partial sample rate change or a single rate mode
by specifying the appropriate Clock Ratio.

Interpolator Uses upsampling mode and implements a CIC filter that
interpolates the input signal. Interpolators can be implemented
with a full sample rate change. They can also be implemented
with either a partial sample rate change or a single rate mode
by specifying the appropriate Clock Ratio.

Variable Rate
Decimator

Implements a CIC filter where you can use the the ratei input
port to program the decimation factor. With this option, the tool
sets Clock Ratio internally to 1, and you cannot specify the
Folding and Pipelined implementation options on the Hardware tab.
This option uses a variable shift operation at the output, which
may cause the maximum speed that can be achieved to be
significantly lower.

Non-recursive
Decimator

Implements a power of two CIC decimator by using only
feed-forward addition operations, thus avoiding large
wordlength growth in the feedback integrator sections. You can
program the log2(decimation factor) through a ratei input port. The
decimation rates are all integer powers of two. With this option,
the tool sets Clock Ratio internally to 1 and disables the Folding
and Pipelined implementation options on the Hardware tab.

Filter Type Option Description

Decimator /
Interpolator

Sets the decimation rate or interpolation rate for the filter

Variable Rate
Decimator

Sets the maximum decimation rate for the filter.

Non-recursive
decimator

Sets the decimation rate to log2(Maximum Decimation Factor).

LO

 SMC Blocks: Abs to Host Interface SMC CIC2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
74 October 2013

Differential Delay (M)

Specifies the differential delay of the comb portion of the filter. Inter-
nally, the CIC filter uses differentiators, and the value of this parameter
is passed to all differentiators in the CIC filter. This option is not avail-
able if you selected a non-recursive decimator in Filter Type.

Number of Stages

Specifies the number of filter stages. The CIC filter uses differentiators
and integrators internally, and this number equals the number of differ-
entiator/integrator pairs in the CIC filter.

Input Word Length

Specifies the word length of the input samples.

Number of Channels

Specifies the number of channels implemented for the CIC filter. The
input x must be a vector, for which its size is equal to the number of
channels. The output sample y is scalar if decimators are selected for the
fold across channel option. Otherwise, the size of the vector is same as
the input.

Clock Ratio (Input/Output Clock Frequency)

Specifies the ratio of the input to output clock frequencies for the
decimator and output to input clock frequencies for the interpolator.
This value must be an integer factor of the interpolation/decimation
factor. If the decimation factor is 16, then the values for the clock ratio
can be 1, 2, 4, 8, 16.

SMC CIC2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 75

Hardware Tab
This tab sets parameters for pipelined implementation, folding, and serial
input.

LO

 SMC Blocks: Abs to Host Interface SMC CIC2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
76 October 2013

Pipelined Implementation

Valid only in decimation mode. Specifies whether the tool inserts
pipeline stages after every differentiator/integrator. This option is not
available if you selected a variable rate decimator or non-recursive
decimator in Filter Type.

Folding

Valid for decimators only, but it is not available for variable rate
decimator or non-recursive decimator implementations. You can specify
these folding options:

– None

– Fold across differentiators
This option is available only when the clock ratio is greater than
ceil(number of stages/2). In this case, a folding factor of the clock ratio is
applied that folds the differentiators into a single MAC (multiply
accumulate).

– Across channels
This option folds across channels for the differentiator bank.

Serial Input

This option is only available when you specify folding across channels
and clock rate=1. The input x must be a scalar input of the commutated
channels that results in a single clock implementation.

Non-recursive Decimator architecture

Specifies how decimation by two stages in a non-recursive architecture
is to be implemented.

The MCM options is more resource-efficient for designs with a large value
for Number of stages, while Cascaded Adder yields more resource-efficient
hardware when Number of Stages is small.

MCM Each stage is implemented as a transpose MCM filter.

Cascaded
Adder

Each stage is implemented as a cascaded chain of (1+z-1) z-1
stages.

SMC Commutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 77

SMC Commutator
Sequentially switches the data from multiple input ports to a single output
port, increasing the data rate of each output port accordingly (time division
multiplexing). The Commutator block provides optional flow control, multi-
channel, and single-clock multi-rate support.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Commutator block sequentially switches the data
from multiple input ports to a single output port. In order to sequentially
multiplex input data without missing a sample, the output data rate is
increased by a factor of the number of input ports. This block is a custom
block (see Primitives and Custom Blocks, on page 800 for a definition).

Icon Annotation

The icon for this block displays the following information:

Top Annotation Shows the number of input ports to be multiplexed to a single
output port.

Latency Annotation Zero latency.

LO

 SMC Blocks: Abs to Host Interface SMC Commutator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
78 October 2013

Commutator Parameters

Number of channels

Specifies the number of channels processed. The format of the input
data depends on the Input format parameters described in the sections:
Scalar Input Format, on page 79, Vector Input Format, on page 80, and
Matrix Input Format, on page 82.

Number of phases

Specifies the number of inputs or phases (per channel) from which data
is multiplexed to the output. The format of the input data depends on
the Input format parameters described in the sections: Scalar Input
Format, on page 79, Vector Input Format, on page 80, and Matrix Input
Format, on page 82.

SMC Commutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 79

Output format, Output word length, Output fraction length, and Output data type

For descriptions of these parameters, see the following:

srdyi/srdyo ports

When enabled, the block provides forward flow control. srdyi (Source
Ready Input) indicates that the current input data is valid. srdyo (Source
Ready Output) is used to chain the Commutator block to other flow control
blocks. When Single clock is enabled, these ports are required.

Single clock

When enabled, the block does not introduce a new sample time on the
output. It creates a single-clock multi-rate implementation instead.

For Single clock mode, the inputs are provided in the fast domain and the
srdyi/srdyo ports are required. srdyi cannot be active more than 1 of N
samples, where N is the number of inputs (per channel). If this require-
ment is not met, the behavior is undefined. srdyo is pulse stretched by N
samples; this indicates the output is valid.

Scalar Input Format
The way the Commutator block accepts input data depends on how many
channels are required and the state of the Vector input and Matrix input
parameters. See Vector Input Format, on page 80 and Matrix Input
Format, on page 82. Scalar input is only available when the Vector input
option is disabled.

Each input is a separate port to the block. x1…xN are the inputs to the
first channel, x1+N…x2N are the inputs to the second channel, and
x1+(C-1)*N…xC*N are the inputs to the last channel.

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: Abs to Host Interface SMC Commutator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
80 October 2013

Example of a 3-phase, 2-channel scalar input:

Vector Input Format

Port Input Channel

x1 1 1

x2 2 1

x3 3 1

x4 1 2

x5 2 2

x6 3 2

SMC Commutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 81

Vector input

When enabled, the block accepts a single vector input for all data. The
Vector order parameter determines the format of the input data.

Vector order

Vector input must be enabled and Matrix input disabled for this option to be
available. A single port and the data is provided as a vector of length
N*C, where N is the number of phases and C is the number of channels.
The Vector order parameter determines the order of elements in the vector.

Example of a 2-phase, 3-channel, phase first vector input:

Example of a 2-phase, 3-channel, channel first vector input:

Vector order Description

Phase First 1st phase e1...eC
2nd phase e1+C...eC+C
Nth phase e1+(N-1)*C...eN*C

Channel First 1st channel e1...eN
2nd channel e1+N...e2N
Cth channel e1+(C-1)*N...eC*N

Element Phase Channel

1 1 1

2 1 2

3 1 2

4 2 1

5 2 2

6 2 3

Element Phase Channel

1 1 1

2 2 1

3 1 2

LO

 SMC Blocks: Abs to Host Interface SMC Commutator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
82 October 2013

Matrix Input Format

Matrix input

When enabled, the block accepts a single matrix input for all data. The
Matrix order parameter determines the format of the input data. Vector input
must be enabled for this option to be available.

4 2 2

5 1 3

6 2 3

Element Phase Channel

SMC Commutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 83

Matrix order

Matrix input must be enabled for this option to be available. A single input
port and the data is provided as a matrix. The Matrix order parameter
determines the dimension of the matrix.

Matrix order Description

Phases x Channels NxC matrix, where N is the number of phases and
C is the number of channels

Channels x Phases CxN matrix, where C is the number of channels and
N is the number of phases

LO

 SMC Blocks: Abs to Host Interface SMC Comparator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
84 October 2013

SMC Comparator
Implements a programmable comparator.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Comparator block implements a comparator by
comparing two signals and returning a single bit.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

Comparator Parameters

SMC Comparator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 85

Operator

Determines the type of comparison to be performed on the two buses:

– a==b

– a!=b

– a<b

– a<=b

– a>b

– a>=b This is the default.

Compare with constant

When enabled, it compares a with the constant specified in Compare with,
instead of b. Enabling this option makes the Compare with option avail-
able.

Compare with

Defines the constant to be used for comparison with a. This option
becomes available only when Compare with constant is enabled. The defined
constant is displayed on the block icon without being quantized, but
while performing the specified operation it is first quantized to the input
data type.

LO

 SMC Blocks: Abs to Host Interface SMC Concat

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
86 October 2013

SMC Concat
Concatenates the bits of up to 32 input signals.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Concat block concatenates the bits of up to 32
input signals. This block converts the inputs to unsigned integers, by
ignoring the binary point and maintaining the bit representation of the word.
The output is an unsigned integer with the word length equal to the sum of
the input word lengths. The software takes the bits of the hi input and makes
them the most significant bits of the output. The bits of the lo input become
the least significant bits of the output

If the block has vector inputs, each vector element is concatenated with the
corresponding one. Vector inputs must be the same size.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Concat SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 87

Concat Parameters

Number of inputs

Specifies the number of input signals to be concatenated. The maximum
number of input signals you can specify is 32. If you set the number of
inputs to 1, the output is the stored integer bit representation of the
input as an unsigned ufix value.

Output format, Output word length, Output fraction length, and Output data type

The output data format can be fully specified for this block. For descrip-
tions of the following parameters, refer to this table:

Word length Output Word Length, on page 584

Fraction length Output Fraction Length, on page 584

Data type Output Data Type, on page 584

LO

 SMC Blocks: Abs to Host Interface SMC Configurable FFT/IFFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
88 October 2013

SMC Configurable FFT/IFFT
Implements a fully pipelined Fast Fourier Transform (FFT) or Inverse Fast
Fourier Transform (IFFT).

Library

Synphony Model Compiler Transforms

Description

The Configurable FFT/IFFT block implements a fully pipelined Fast Fourier
Transform (FFT) or Inverse Fast Fourier Transform (IFFT) based on whether
inv port is low or high respectively. When it is used to perform the block-wise
FFT of a streaming signal, you only require to reset the first block.

SMC Configurable FFT/IFFT SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 89

Latency

Latency is a complex function of frame size and output order:

Transform Size Latency (Bit-reversed Output) Latency (Natural Order Output

16 19 36

32 38 71

64 70 135

128 137 266

256 265 522

512 524 1037

1024 1036 2061

2048 2063 4112

4096 4111 8208

8192 8210 16403

16384 16402 32787

32768 32789 65558

65536 65557 131094

LO

 SMC Blocks: Abs to Host Interface SMC Configurable FFT/IFFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
90 October 2013

Configurable FFT/IFFT Parameters

Transform Size

Sets the size of the FFT/IFFT block. For sizes of integer power 4, the software
uses the Radix-4 algorithm. For other sizes, the software uses a Radix-2 stage,
followed by Radix-4 stages.

SMC Configurable FFT/IFFT SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 91

Scaling

Specifies whether the FFT/IFFT is to be scaled. Scaling is applied after the
butterfly stages to prevent bit growth from the beginning. Floor rounding
(truncation) is used for the scaled data. See Underflow Rounding Options, on
page 585 for details.

N is the FFT/IFFT size. The following three options are available for scaling:

– Scale by 1/N divides the DFT summation by N.

– Scale by 1/Sqrt (N) divides the DFT summation by the square root of N.

– No scaling does not scale the FFT.

Twiddle factor fraction length

Determines the precision of the Configurable FFT/IFFT block by setting the
fraction length for a twiddle factor, in bits. The specified value must be an
integer between 1 and 50. Increasing the value of Twiddle factor fraction length
increases precision. You can also specify the twiddle factor in terms of the
variables syn_inp_wl and syn_inp_fl.

Data path format

Determines data path format. You can set one of these options:

– Automatic sets the data path format to the one that uses the maximum
input and output fractions, and the smallest bit width that
guarantees no overflow.

– Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation after twiddle factor multiplications.

– Specify uses the user-defined data type to determine the cast for
internal calculations. For this block, data path casting is done at the
input, after the twiddle factor multiplications, and at the block
output. Overflow only occurs at the points where data casting is
done. The rest of the calculations are overflow-free, regardless of the
specified data type.

Data path word length

Determines the word length of the data path in bits. It is only available when
you set Data path format to Specify. You can also specify the word length in terms
of the variables syn_inp_wl, syn_inp_fl, syn_coef_wl, and syn_coef_fl.

LO

 SMC Blocks: Abs to Host Interface SMC Configurable FFT/IFFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
92 October 2013

Data path fraction length

Sets the fraction length of the data path in bits. It is only available when you
set Data Path Format to Specify. You can also specify the fraction length in terms
of the variables syn_inp_wl, syn_inp_fl, syn_coef_wl, and syn_coef_fl.

Data path saturate on overflow

Determines how data path overflow is treated. When enabled, the option
saturates the overflow. When disabled, it wraps the overflow. See Overflow
Saturation Options, on page 585 for details. This option is only available
when you set Data path format to Specify.

Data path rounding

Determines how underflow in the data path is rounded. See Underflow
Rounding Options, on page 585 for details. This option becomes available
when Data path format is set to Automatic or Specify.

Output Order

Sets the output order for the block. This option determines the latency of the
block; see Latency, on page 89 for a table of values.

– Natural is the default. It sets the output order of the FFT results to the
natural order.

– Bit-reversed sets the pipelined FFT results to bit-reversed order.

Output format, Output word length, Output fraction length, and Output Data
type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584. You can also specify
word length in terms of variables syn_inp_wl, syn_inp_fl,
syn_coef_wl, and syn_coef_fl. See Special Variables, on
page 588, for details on these variables.

Output fraction length Output Fraction Length, on page 584. You can also specify
fraction length in terms of variables syn_inp_wl, syn_inp_fl,
syn_coef_wl, and syn_coef_fl. See Special Variables, on
page 588, for details on these variables.

Output data type Output Data Type, on page 584

SMC Configurable FFT/IFFT SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 93

Output saturate on overflow, Output rounding type

Determines how output overflow and underflow are treated. These options
are only available when you set Output Format to Specify.

Reset port

When enabled, it creates a local reset (rst) for the FFT block, clearing the
pipeline. The reset is active high.

When disabled, the block outputs invalid data for the depth of the pipeline.

Enable port

When enabled, it creates an enable (en) port, which provides control over the
Enable status of the block; however, you cannot use folding optimizations, as
it leads to verification mismatches.

When disabled, the software does not create an en port and the FFT operation
is always enabled.

Ready port

When enabled, this option outputs a ready pulse (rdy), and valid FFT data
streams to the clock after the validity is asserted. A typical use of this pin is to
feed the ready pin of a forward FFT to the reset pin of an inverse FFT. When
disabled, the tool does not create a ready pin.

Valid port

When enabled, this option creates an active high signal (vld) that frames the
valid output data. A typical use of this pin is to feed the valid pin of a forward
FFT to the enable pin of an inverse FFT. When disabled, the tool does not
create a valid pin.

Output saturate on overflow When enabled it saturates the overflow; when
disabled, it wraps the overflow. See Overflow
Saturation Options, on page 585 for details.

Output round on underflow Uses the specified algorithm to round the underflow;
see Underflow Rounding Options, on page 585 for
descriptions of the algorithms.

LO

 SMC Blocks: Abs to Host Interface SMC Constant

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
94 October 2013

SMC Constant
Sets a constant value of a specified data type as the output.

Library

Synphony Model Compiler Sources

Description

The Synphony Model Compiler Constant block sets the output of the block to a
constant value of a specified data type.

The value is cast to the specifications of the data format, and also displayed
in the icon of the instance. The sample period of the constant is usually
inherited through back inheritance from the rest of the design, but you can
use the parameters to force the sample period.

Icon Annotation

The icon for this block displays the following information:

Top Annotation Displays the constant value. If you enter an expression or a
variable, you can use this annotation to identify the
constant.

Latency Annotation There is no latency, and the block drives the same value
independent of the global reset or enable.

SMC Constant SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 95

Constant Parameters

Constant value

Sets the value to be driven (the output value of the block). For vectorized
output, specify a row or column vector. For matrix output, specify a
matrix value. Each value corresponds to a different channel.

Constant fraction length and Constant data type

The output data format must be fully specified for this block. See the
following for details:

Constant round towards nearest on underflow

Determines how the underflow for the constant is treated. Enable the
option to round the underflow using the Nearest algorithm, and disable it
to round the overflow with the Floor (truncate) algorithms. See Underflow
Rounding Options, on page 585 for details.

Constant fraction length Output Fraction Length, on page 584

Constant data type Output Data Type, on page 584

LO

 SMC Blocks: Abs to Host Interface SMC Constant

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
96 October 2013

Sample Time

Sets the sample time. Use -1 to inherit.

Constant Block Examples

The following examples show the Constant block and the value of the green
annotation at the top of this block.

Example 1
The first example shows the importance of truncating versus rounding.
The note shows a value outside the range of the given data format.
Rounding will set the LSB anyway:

Example 2
The second example shows the convenience of the note when you use
variables or built-in constants. Further, in this test case, the sample
period can only be derived if specified in at least one of the constant
blocks.

SMC Constant SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 97

Example 3
This third example illustrates how the notes can reveal a quantization
issue, when the note is different from the quantized value.

Diagnostics

Warning: value can not be represented with selected data type.

LO

 SMC Blocks: Abs to Host Interface SMC Convert

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
98 October 2013

SMC Convert
Changes the word size and data type of the input. You can apply a constant
shift before the new word size and data type are cast.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Convert block changes the word size and data type
of the input. Most Synphony Model Compiler blocks have an option to provide
a built-in cast on the output. This block explicitly casts a signal, with an
optional shift. You can apply the constant shift before the word size and data
type change.

The quantization of a signal is determined by the quantization propagated
from input signals. Each block in the Synphony Model Compiler blockset
calculates the quantization of the outputs based on block-specific rules and
the quantization on the inputs. You can also manage the quantization of a
signal directly with a block cast operation inside the block, or by putting the
Convert block (Synphony Model Compiler Signal Operations library) at the output
of the block.

SMC Convert SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 99

Binary Point Examples

The position of the binary point determines how fixed-point numbers are
interpreted. The binary point is the means by which fixed-point numbers are
scaled. The following table shows how the binary point position affects the
five-bit binary number 10110, using signed and unsigned arithmetic:

The following table contains an example of input values and results:

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Icon Annotations

Latency

This block has no latency.

Signed (two's complement) arithmetic Unsigned arithmetic

10110. -24 + 22 + 2 = -10 24 + 22 + 2 = 22

10.110 -2 + 2-1 +2-2 = -1.25 2 + 2-1 + 2-2 = 2.75

1.0110 -20 + 2-2 + 2-3 = -0.625 20 + 2-2 + 2-3 = 1.375

A Convert block with these input parameters... Gives you these results...

A sfix5_0 signed input 10110 to the Convert block
(word length = 5, fraction length = 0)

Input 10110. (-10)

A left shift over 3 bits Shift 10.110

A cast towards a sfix4_2 signed output (word length is
4, fraction length is 2)

Output 10.110

Note (green) Specifies the number and direction of shift bits, if any.

Rounding (red) Specifies the algorithm used for rounding.

LO

 SMC Blocks: Abs to Host Interface SMC Convert

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
100 October 2013

Convert Parameters

Pre-shift

The direction of the optional shift. The value can be one of the following:

– none. This is the default. It keeps the value of the input data intact.

– << does a left shift. Setting this value makes the Number of shift bits
parameter available.

– >> does a right shift. Setting this value makes the Number of shift bits
parameter available.

SMC Convert SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 101

Number of shift bits

This parameter indicates the number of bits the input has to be shifted
and only becomes available when you set Pre-shift to << or >>. For a right
shift, the value of the most significant bit (MSB) is shifted in by the
number of bits specified. For a left shift, zero is shifted in on the least
significant bit (LSB) side.

You can also specify the number of shift bits in terms of one of these
variables: syn_inp_wl, syn_inp_fl, or syn_inp_dt. If Inherit port is enabled, you
can also use the syn_inh_wl, syn_inh_fl, or syn_inh_dt variables. See Special
Variables, on page 588 for information about them.

Output format, Output word length, and Output fraction length

For descriptions of these parameters, see the following:

Output Data Type

Determines the data type for the output.

Output format Output Format, on page 583

Output word
length

Output Word Length, on page 584.
You can also specify it in terms of the syn_inp_wl, syn_inp_fl, and
syn_inp_dt variables. If Inherit port is enabled, you can also use
the syn_inh_wl, syn_inh_fl, and syn_inh_dt variables. The
variables are described in Special Variables, on page 588.

Output
fraction
length

Output Fraction Length, on page 584.
You can also specify it in terms of the variables syn_inp_wl,
syn_inp_fl, and syn_inp_dt. If Inherit port is enabled, you can
also use the syn_inh_wl, syn_inh_fl, and syn_inh_dt variables.
The variables are described in Special Variables, on
page 588.

Signed See Output Data Type, on page 584 for details.

Unsigned See Output Data Type, on page 584 for details.

Preserve Preserves the input data type. If the input is signed, the output is
also signed. If the input is unsigned, the output is also unsigned.

Inherit Inherits the input data type from the inherit port. This option is
only available when you enable Inherit port. See Inherit port, on
page 102 for information about this port.

LO

 SMC Blocks: Abs to Host Interface SMC Convert

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
102 October 2013

Output saturate on overflow, Output round on underflow

Determine how output overflow and underflow are treated. These
options are available when you set Output Format to Automatic or Specify.

The symbol on the block icon reflects the saturation and rounding
choices you make. For example:

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

– Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

– Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.

Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output

Output saturate
on overflow

Saturates the overflow when the option is enabled and wraps
the overflow when it is disabled. See Overflow Saturation
Options, on page 585 for details.

Output round on
underflow

See Underflow Rounding Options, on page 585 for details
about the rounding options available.

Saturation off,
Convergent rounding

Saturation on,
Floor rounding

SMC Convert SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 103

port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

LO

 SMC Blocks: Abs to Host Interface SMC Convolutional Deinterleaver

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
104 October 2013

SMC Convolutional Deinterleaver
Reshuffles streaming input symbols according a to a predefined mapping
scheme.

Library

Synphony Model Compiler Communications

Description

This block reshuffles a fixed number of input symbols according to the
mapping you define. This is a custom block; for information about custom
blocks, see Primitives and Custom Blocks, on page 800.

The following figure shows the internal modeling of this block:

Icon Annotations

Note Specifies that the block is a deinterleaver.

Latency Depends on the number of inputs.

SMC Convolutional Deinterleaver SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 105

Convolutional Deinterleaver Parameters

Delay vector

Specifies the mapping scheme for the input symbols. It operates on
streaming symbols and uses the order specified here, starting at the
vector specified in Reset Vector.

Reset vector

Specifies the vector to be used for initialization.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

LO

 SMC Blocks: Abs to Host Interface SMC Convolutional Encoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
106 October 2013

SMC Convolutional Encoder
Performs feed-forward convolutional encoding using k/n convolutional codes,
with optional reset and enable ports.

Library

Synphony Model Compiler Communications

Description

The Synphony Model Compiler Convolutional Encoder is a custom block (see Primi-
tives and Custom Blocks, on page 800 for a definition) that encodes the input
data stream with k/n convolutional codes, where k is the number of input bits
and n is the number of output bits. It includes optional reset and enable
ports.

SMC Convolutional Encoder SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 107

The following shows how this custom block is implemented:

Icon Annotation

The icon for this block displays the following information:

Note Is Code Rate - Constraint Lengths (e.g. 1/2 code rate with K=3
constraint length)

Latency This block has no latency.

LO

 SMC Blocks: Abs to Host Interface SMC Convolutional Encoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
108 October 2013

Convolutional Encoder Parameters

Constraint length array

Determines the 1xk vector which holds the constraint length values for
each input.

Generator polynomial matrix

Sets the kxn matrix that specifies the input contributions for each
output. The values of the generator polynomial should be specified in
the octal number system.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift registers.

SMC Convolutional Interleaver SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 109

SMC Convolutional Interleaver
Shuffles streaming input symbols to a new permutation, using a predefined
mapping scheme.

Library

Synphony Model Compiler Communications

Description

This block shuffles streaming input symbols according to the mapping you
define. This is a custom block; for information about custom blocks, see
Primitives and Custom Blocks, on page 800.

The following figure shows the internals of this block:

Icon Annotations

Note Specifies that the block is an interleaver.

Latency Varies with the number of input symbols.

LO

 SMC Blocks: Abs to Host Interface SMC Convolutional Interleaver

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
110 October 2013

Convolutional Interleaver Parameters

Delay vector

Specifies the order for shuffling the input symbols. It operates on
streaming symbols and uses the order specified here, starting at the
vector specified in Reset Vector.

Reset vector

Specifies the vector to be used for initialization.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The
enable port is connected to the enable signal of the internal shift regis-
ters.

SMC CORDIC Exp SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 111

SMC CORDIC Exp
Calculates the natural exponent of the input using a CORDIC algorithm.

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC Exp block uses a CORDIC algorithm to
calculate the natural exponent of the input. See CORDIC Algorithms, on
page 701 for a description of the algorithms.

The result from this block is output in the form of a mantissa and an
exponent, where x=mant*2exp. The mantissa is a fraction, with the most signifi-
cant bit of the mantissa to the left of the binary point. The exponent is an
integer. The number of iterations is equal to the word length of the mantissa.

Icon Annotations

The icon for this block displays the following information:

Latency Annotation Latency is based on accuracy. It is equal to the number
of mantissa bits + 2.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Exp

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
112 October 2013

CORDIC Exp Parameters

Mantissa word length

Number of bits requested for the mantissa fraction.

Exponent word length

Number of bits requested for the exponent integer.

SMC CORDIC Log SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 113

SMC CORDIC Log
Calculates the natural logarithm of the input using a CORDIC algorithm.

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC Log block calculates the natural logarithm
of the input, using a CORDIC algorithm. See CORDIC Algorithms, on
page 701 for a description of CORDIC algorithms. The number of iterations is
equal to output word length.

Icon Annotations

The icon for this block displays the following information:

Latency Annotation The latency of the block is based on the number of
iterations. It is equal to the output word length + 4.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Log

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
114 October 2013

CORDIC Log Parameters

For descriptions of the parameters, see the following:

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

SMC CORDIC Polar SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 115

SMC CORDIC Polar
Performs rectangular-to-polar conversion. It calculates√(x2+y2) and atan(y/x)
where x and y are inputs.

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC Polar block uses the CORDIC algorithm to
perform rectangular-to-polar conversions. See CORDIC Algorithms, on
page 701 for a description of the algorithms. The CORDIC algorithm is used
for computation, and the implementation is fully pipelined.

When y=0, the value of CORDIC phase goes back and forth between -0.5 and
0.5 for the values of x<0. This is because of numerical instability in the
CORDIC algorithm, as 0.5 and -0.5 correspond to the same angle (-pi, pi). If this
causes a problem in the application, use a mux as a workaround. This
enables the output to be 0.5 or -0.5 when x<0 and y=0.

Icon Annotations

The icon for this block displays the following information:

Latency Annotation The latency of the block is based on the number of
iterations. It is equal to the number of iterations + 2.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Polar

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
116 October 2013

CORDIC Polar Parameters

Operation

Determines the kind of rectangular-to-polar operation to be performed.

– Magnitude & Phase calculates√(x2+y2) and atan(y/x) where x and y are
inputs.

– Magnitude calculates √(x2+y2) where x and y are the inputs.

– Phase calculates atan(y/x) where x and y are scalar inputs.

Number of iterations

This field defines the number of cascaded rotator stages, and affects
precision. It is recommended that you set the number of iterations to be
equal or close to the input word length. The number of iterations affects
the latency of the block, as described in Icon Annotations, on page 115.

Output word length

Determines the total word length for the fixed point data type.

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 117

SMC CORDIC Rotator
Implements a fully pipelined CORDIC rotator.

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC Rotator block implements a fully pipelined
CORDIC engine using the CORDIC algorithm in either rotation or vectoring
mode. Use this building block to elegantly compute a variety of functions.
This block is intended for advanced users, and requires familiarity with
CORDIC architecture. See CORDIC Algorithms, on page 701 for a description
of CORDIC algorithms.

CORDIC algorithms are designed to rotate vectors in a plane, through a set of
shift-add operations. CORDIC functions can be hardware-efficient because
they do not need a multiplier, but they require latency to execute the CORDIC
iterations.

Circular, Linear, and Hyperbolic Coordinate Systems

The Synphony Model Compiler tool supports circular, linear and hyperbolic
coordinate systems. For additional background information about the
algorithms, see CORDIC Algorithms, on page 701.

The Synphony blocks do not apply any techniques to modify the range of the
inputs, like quadrant folding or pre-shift, because these techniques are
specific to the application or function to be implemented with the block. You
must use the block with external manipulation to ensure the desired conver-
gence range.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Rotator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
118 October 2013

Circular and hyperbolic systems are executed with pseudo-rotations, and the
block does not apply gain compensation in any of the stages. This means that
the block exposes the typical CORDIC gain associated with CORDIC
equations, and you must externally compensate for the gain, if this is
required. Linear systems do not have a gain associated with the equations, so
there is no need for compensation.

To ensure convergence, hyperbolic systems require some of the iterations in
the CORDIC algorithm to be repeated. TheSynphony Model Compiler Rotator block
does this automatically.

X’[n] = iterate(Xi - m . Yi . di . 2^-i)
Y’[n] = iterate(Yi + Xi . di . 2^-i)
Z’[n] = iterate(Zi - di . ei)

Convergence Range

Circular Linear Hyperbolic

x |y/x|>5.74 for x<0 |y/x|<1 |y/x|<.81

y

z [-1.7433,1.7433]/2π=[-.2775,.22775]]-1,1[[-1.1182,1.1182]

Gain

Number of iterations Circular Linear Hyperbolic

1 1.4142 1 .8660

2 1.5811 1 .8358

3 1.6298 1 .8319

4 1.6425 1 .8303

5 1.6457 1 .8287

6 1.6465 1 .8283

7 1.6467 1 .8282

8 1.6467 1 .8282

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 119

X0=X[n]
Y0=Y[n]
Z0=Z[n]

Icon Annotations

The icon for this block displays the following information:

CORDIC Rotator Parameters

Note Reflects the selected coordinate system:
• CIR

Circular. This is the default. The rotation unit is tan-12-i.
• LIN

Linear. The rotation unit is 2-i.

• HYP
Hyperbolic. The rotation unit is atan-12-i.

Image Reflects the selected mode:
• z’->0

Rotation mode (iterating to make z’ 0)
• y’->0

Vectoring mode (iterating to make y’ 0)

Latency Latency is equal to the number of iterations selected.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Rotator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
120 October 2013

m

Determines the coordinate system used by the block. For further details
about coordinate systems, see Circular, Linear, and Hyperbolic Coordi-
nate Systems, on page 117.

– 1 specifies a circular (trigonometric) coordinate system. The z input
represents a circular coordinate (angle) expressed in normalized
radians. The fraction [-1,1] corresponds to [-π,π[; however the rotator
only converges for inputs in the range of [-.2775,.2775], which
corresponds to [-1.743,1.743] radians or [-99.9,99.9] degrees. The vector
rotation over a circle will have a CORDIC gain.

– 0 specifies a linear coordinate system. The z input represents a linear
coordinate (angle) expressed as a normalized radius. The fraction
[-1,1] corresponds to [y-x:y+x] and \y/x\<1 is required for the rotator to
converge. The vector rotates on a line through the first coordinate.

– -1 specifies a hyperbolic coordinate system. The z input presents a
hyperbolic coordinate that must be in the range [-1,1] for the rotator to
converge. The vector rotates on a hyperbole, and will have a CORDIC
gain.

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 121

Mode

Determines the rotation mode.

– Rotation applies a rotation Z (Z’=0) on the given vector coordinates (X,Y),
and calculates the resulting vector coordinates (X’,Y’).

– Vectoring rotates the vector (X,Y) to the X-axis (Y’=0), and calculates the
required angle (Z’) to do this.

Number of iterations

Specifies the number of CORDIC rotations to be executed.

Data Format

The data formats for rotation and vectoring modes are as follows:

• The data format for x’ and y’ has a fraction length of max(FL(x),FL(y)). The
integer portion is also the maximum of both respective inputs. The data
type is always signed.

• The data format for z’ has the same WL and FL as z, but the data type is
always signed.

Examples

The following examples illustrate the convergence check for vectoring mode in
the three coordinate systems.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Rotator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
122 October 2013

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 123

Circular For x=-1 and 0<=y<=10 Convergence is (y’=0) for |y/x|>5.74.

Linear For x=1 and -5<=y<=5 Convergence is (y’=0) for |y/x|<1.

Hyperbolic For x=1 and -5<=y<=5 Convergence is (y’=0) for |y/x|<.81.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC SinCos

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
124 October 2013

SMC CORDIC SinCos
Implements a sine and/or cosine generator circuit using a fully parallel
CORDIC algorithm in rotation mode.

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC SinCos block implements a sine and/or
cosine generator circuit using a fully parallel CORDIC algorithm in rotation
mode. (See CORDIC Algorithms, on page 701 for a description of the
algorithms.) It calculates sin(2πf) and/or cos(2πf) where f is an input. The
implementation is fully pipelined. The output is signed, with the fraction
length being two less than the total word length requested. This allows
coverage of the full output range of possible values ([-1 1]).

Icon Annotations

The icon for this block displays the following information:

Latency Annotation The latency of the block is equal to the number of CORDIC
rotations + 2.

SMC CORDIC SinCos SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 125

CORDIC SinCos Parameters

Function

You can select one of the following:

– sin&cos

– sin

– cos

Number of iterations

Defines the number of cascaded rotator stages, and affects precision. It
is recommended that you set the number of iterations equal or close to
output word length.

Output word length

The output is signed, with fraction bits being two less than the total
word length.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC Sqrt

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
126 October 2013

SMC CORDIC Sqrt
Calculates the square root of the input using the CORDIC algorithm.

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC Sqrt block calculates the square root of the
input using a fully pipelined CORDIC algorithm for the implementation. See
CORDIC Algorithms, on page 701 for a description of the algorithms.

The output word length is half of the input word length, and the number of
output fraction bits is half of the number of input fraction bits. For odd input
word length and input fraction bit values, the output word length and
number of fraction bits are rounded upwards. For example, if the input word
length is 9 and the number of input fraction bits is 3, then the output word
length is 5 and the number of output fraction bits is 2. The number of
cascaded rotators is the same as the output word length. The output words
length affects the latency of the block.

Icon Annotations

The icon for this block displays the following information:

Latency
Annotation

The latency of the block is equal to the output word length
(OWL) + 4.

SMC CORDIC2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 127

SMC CORDIC2
Implements a circular CORDIC (Coordinate Digital Rotation Computer).

Library

Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC2 is a custom block that creates a circular
CORDIC implementation. See CORDIC Algorithms, on page 701 for a descrip-
tion of the CORDIC algorithms. CORDIC algorithms are designed to rotate
vectors with a set of shift-add operations in a plane. Because CORDIC
functions do not need a multiplier, they can be hardware-efficient, but there
is extra latency to execute the CORDIC iterations.

The SMC CORDIC2 output is scaled by the gain inherent with any CORDIC
operation. You must scale the x and y (or mag) outputs by approximately
0.602 to compensate for the CORDIC gain. The phase (z) inputs and outputs
in CORDIC2 are all modulo 2pi and scaled by 2pi, where 2pi*angle represents
the actual value of the angle in radians.

The word length of the input coordinates (x, y) and z must be promoted by 1.
To correctly promote the word length, use a Convert block by specifying
syn_inp_wl+1 and syn_inp_fl for the word length. The data type for the input
coordinates must be set to cast to signed, because that is what the CORDIC2
block expects.

CORDIC2 provides the following enhancements compared to SMC CORDIC:

• Configures the number of pipeline stages for the mask from 0 (full
combinational implementation) to any positive integer.

• Configures the rounding mode for x, y, and angle outputs computed for
each stage from the mask allowing speed vs. accuracy trade off.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
128 October 2013

• Supports flow control.

• Supports both one and four quadrant operations.

• Supports dynamic vectoring and rotation mode.

• Supports the enabled data path folded structure.

• Provides multichannel support.

CORDIC2 Flow Control

The CORDIC2 block provides the following optional flow control ports:

For a multichannel operation, the flow control signals are serial and apply for
all the channels.

Latency

For Streaming mode, the latency of CORDIC2 is equal to the latency parameter
value you entered for the mask. For Enabled data path folded mode, the latency
is equal to (number of iterations + 2).

srdyi The srdyi (source ready) input port determines whether the input data in
the current sample period is valid. An invalid input sample is indicated by
srdyi going low. For Enabled data path folded mode, you must keep srdyi low for
at least (number of iterations-1) the number of clock cycles between two
srdyi HIGH events.

srdyo The srdyo (source ready) output port determines whether the current
output sample is valid. An invalid output sample is indicated by srdyo going
low.

SMC CORDIC2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 129

CORDIC2 Parameters

Architecture
Specifies how the CORDIC block is implemented:

– Streaming implements each iteration as a separate stage in the
pipeline, that takes input from the previous stage and feeds the
output to the next stage in the pipeline. The maximum effective
throughput can be achieved at a cost of .

– Enabled data path folded reuses one stage to implement all the iterations,
resulting in a folded iteration structure. This mode requires that
srdyi/srdyo always be available, since the CORDIC only processes one
valid input every number of iterations clock cycles. Throughput can
be reduced effectively, at the most once every number of iterations
clock cycles. However, the entire CORDIC is implemented with only
three adders.

LO

 SMC Blocks: Abs to Host Interface SMC CORDIC2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
130 October 2013

Stage output rounding mode
Specifies the rounding mode for x, y and angle (z) at the output of each
iteration stage. Select one of the following options: Floor(Truncate), Nearest,
Convergent, Fix, Ceil, or Round.

Latency
Specifies the latency for the CORDIC, which is made available only with
the Streaming architecture. The pipeline registers that account for the
latency are distributed uniformly among the iteration stages to optimize
timing performance.

Functions
Specifies the operation to be implemented for the CORDIC:

– Vectoring implements mag(x’) = sqrt(x2+y2), y’=0, phase(z’) = arg(x+jy)+z.

– Rotation implements x’ = x*cos(z)-y*sin(z), y’=y*cos(z)+x*sin(z), z’=0.

– Dynamic performs vectoring or rotation dynamically at runtime.

– For vectoring, feed a one (1) to the veci port.

– For rotation, feed a zero (0) to the veci port.

Veco is the delayed version of veci for chaining multiple CORDICs.

Four quadrant operation
Specifies whether to implement the default of one quadrant CORDIC or
use wrapper logic to implement a four quadrant rotation for vectoring.

srdyi/srdyo port
Specifies that flow control ports are available when you select the
Streaming architecture.

Number of channels
Specifies the number of channels implemented for the CORDIC. All data
inputs must be vectors of a width equal to the number of channels.

SMC Counter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 131

SMC Counter
Implements a configurable counter with enable and reset.

Library

Synphony Model Compiler Sources

Description

The Synphony Model Compiler Counter block implements a configurable counter
with enable and reset, and provides looping control for many algorithms. It has
the following:

• Optional ports: load, up, reset, and enable

• Operations: counting up, down, and programmable

• Initial and terminal values for the count

• Cast on the output for sizing

D Q

D Q

+ / -

cnt
ld

din

up

en

rst

cnt

+

-

Basic Counter Operation

Counter with Optional Ports

1

1

1

LO

 SMC Blocks: Abs to Host Interface SMC Counter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
132 October 2013

Constant Propagation

This block supports constant propagation (Constant Propagation, on page 731).

Automatic Scalar Expansion

Any of the inputs to the block can be a vector input. If one of the inputs is a
vector, the tool expands the others to the size of the vector input.

Icon Annotations

The icon for this block displays the following information:

Top Annotation This annotation shows the limit at which the counter is reset

Latency
Annotation

The latency of the block is only relevant if there is an input:
din port with the load operation. The load inherently enforces
a latency of 1.

SMC Counter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 133

Counter Parameters

Reset Port

When enabled, it creates a synchronous reset (rst) port, which provides a
local block reset. Specify the value of the reset with the Initial Value option,
or leave the default of 0. When disabled, the software does not create a
rst port, and the content of the block is determined solely by the count
operation.

Enable Port

When this option is enabled, it creates an enable (en) port, which
provides control over the Enable status of the block. If this option is
disabled, the software does not create an en port and the counter block
is always enabled.

LO

 SMC Blocks: Abs to Host Interface SMC Counter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
134 October 2013

Load Port

When enabled, the software creates an ld port and a din port. The
synchronous ld port loads the block with the value of the input port, din.

When disabled, the software does not create the ld and din ports. The
content of the register is determined by either the count or reset opera-
tions.

The Load Pin, Reset Pin, and Enable Pin priorities are shown in the following
table:

Counter Type

Determines the type of counter.

– Up/Down implements an up/down counter and creates an up port. The
direction of the count is determined by the value driven on the up
port.

– Up hard codes an up counter, and does not create an up port.

– Down hard codes a down counter, and does not create an up port.

Reset Enable Load Function

0 0 0 Disabled; maintain output

0 0 1 Disabled; maintain output

0 1 0 Enabled; increment/decrement output. Default if you
do not enable any optional pins.

0 1 1 Load; din to output

1 0 0 Reset; output initial value

1 0 1 Reset; output initial value

1 1 0 Reset; output initial value

1 1 1 Reset; output initial value

Up Pin Value Function

0 Count down

1 Count up

SMC Counter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 135

Initial Value

Sets the starting point for the counter block after any reset, including a
Terminal Value reset, described below. The default value is 0.

Limit Count

When enabled, it displays the Terminal Value option, which forces a reset
when the counter reaches that value.

When disabled, it executes a free-running counter which is a bare
configuration (shown in the following figure). You can further manipu-
lated this counter with the Load Pin and Reset Pin options.

Rdy Port

Creates a rdy port when it is enabled. When enabled, the ready is
asserted when the output reaches the limit count.

Terminal Value

Resets the counter when it reaches the specified value; it resets the
count to the Initial Value. The default terminal value is 127. To use this
option, you must enable Limit Count.

LO

 SMC Blocks: Abs to Host Interface SMC Counter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
136 October 2013

Output Data Format

Determines data type and word length. Unlike other Synopsys blocks,
the data type is not propagated from an input but derived from other
block parameters. You can set this option to Automatic or Specify.

T < I I <T

UP

DOWN

Initial Value Terminal Value

SMC Counter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 137

– Automatic
The software derives the data type from a combination of the initial
value, terminal value, and the port din. The Automatic option calculates
the smallest data type that accommodates all the values above. This
option is only available when the Load Pin option is enabled and no
terminal value is specified. The data type and word length are
determined as follows:

– Specify
The Word Length and Data Type options become available.

Output word length

Specifies the output word length.

Output Data Type

Specifies whether the output is signed or unsigned.

– signed specifies Two’s complement signed representation, and sets the
sign bit to the MSB. This format specifies that an n-bit binary number
be interpreted as a value in the range [-2(n-1), (2(n-1))-1]. Numbers
with their most significant bit equal to 1 indicate a negative value,
which is obtained by subtracting 2n from the unsigned value of the
number. For example, if a is a signed 3-bit binary number, a=110
means 6 - 23= -2.

– unsigned specifies that an n-bit binary number be interpreted as a
value in the range [0, (2n)-1]. If a is an unsigned 3-bit binary number,
a=110 means 1*22 + 1*21 + 0*20 = 6.

Data type Is signed if either the initial or terminal value is negative, or if the
input port is signed.
Is unsigned if both the initial and terminal values are positive, or
if the input port is unsigned.
The data type values are as follows, where N is a finite word
length:
Unsigned: (2(N) -1)
Signed: -2(N-1) to (2(N-1) -1)

Word
length

Is based on the smallest power that accommodates the initial and
terminal values and the port din, and varies with the data type.

LO

 SMC Blocks: Abs to Host Interface SMC CRC Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
138 October 2013

SMC CRC Generator
Generates CRC bits according to the generator polynomial parameter and
appends them to the input data frames in the encoder mode and decodes the
received data frames in the decoder mode and asserts the error signal if
necessary.

Library

Synphony Model Compiler Communications

Description

The CRC Generator generates CRC bits according to the generator polynomial
parameter and appends them to the input data frames in the encoder mode.
It decodes the received data frames in the decoder mode and asserts the error
signal if necessary. As the generator polynomial is a primitive polynomial, the
constant and the leading terms in the polynomial must be 1.

This block is a custom block (see Primitives and Custom Blocks for a defini-
tion). The following figure shows the internal modeling:

SMC CRC Generator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 139

The behavior of the block is as follows:

Input data must be enc_len bits long, where enc_len = msg_len + crc_len and
the crc_len bits are all 0s.

Output data depends on the selected mode of operation, which are Data and
CRC or CRC only. Based on the selected operation mode the output is either
the input data with the computed CRC bits appended or just the CRC bits.

The enable signal stalls the entire datapath when deasserted. The ready
signal synchronizes downstream data to follow the behavior of the enable
signal.

Consecutive frames of data may be fed into the CRC block continuously. The
enable signal frames the input data and the ready signal frames the output
data.

The sequence of operations in the Encoder Mode are as follows:

1. The input signal is accepted while enable is asserted.

2. The serial data is input, MSB first.

3. After the minimum required latency, the ready signal, which is
conditioned by the enable signal, is asserted and the calculated result is
output as serial bits, MSB first.

LO

 SMC Blocks: Abs to Host Interface SMC CRC Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
140 October 2013

4. The ready signal is deasserted when the reset port is asserted for one or
more samples.

The sequence of operations in the Decoder Mode are as follows:

1. The input signal is accepted while enable is asserted.

2. The serial data is input, MSB first.

3. After the minimum required latency, the ready signal is asserted
(conditioned by the enable signal) and the calculated result is output as
serial bits, MSB first. If there are errors, the error signal is asserted
during the period when the CRC is present on the output.

4. The ready and error signals are deasserted when the reset port is
asserted for one or more samples.

Initialization

When you need to load the initial value, input the initial value as serial data,
MSB first, on the initial value port. The block looks for a rising edge on load
enable and begins shifting N data values coincident with the load enable and
continues for a total of N active states. N is the length of the CRC and the
generator polynomial determines it. The active state is one when the enable
port is asserted (if there is no enable port, then the block is always active).

Latency

This block of N-1, where N is the length of the shift register.

SMC CRC Generator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 141

CRC Generator Parameters

Mode

Specifies whether you want to run the block as a CRC encoder or decoder.

Message Length

Specifies the length of the message in bits.

Generator polynomial

Represent the shift register connections.

You can specify the Generator polynomial parameter using either:

• A binary vector that lists the coefficients of the polynomial in descending
order of powers. The first and last entries must be 1. Note that the

LO

 SMC Blocks: Abs to Host Interface SMC CRC Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
142 October 2013

length of this vector is one more than the degree of the generator polyno-
mial and the entry is one if there is a connection tap for the corre-
sponding power; otherwise, 0.

• A vector containing the exponents of z for the non-zero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 1 0 0 0 0 0 1] and [7 6 0] represent the same polynomial, p(z)
= z7 + z6 + 1.

Initial States

Specifies the initial values of the registers. It is a binary vector and must
satisfy the following criteria:

– The length of the initial states vector must equal the degree of the
generator polynomial.

– At least one element of the initial states vector must be 1 in order to
generate a non-zero sequence.

Initial states port

When enabled, initial state for of the shift register is provided through the
init_d port instead of the Initial States mask parameter.

Reset port

When enabled, the block is implemented with a reset pin. The reset port is
connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable port
is connected to the enable signal of the internal shift register.

SMC DDS SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 143

SMC DDS
Creates sin and cos waves based on frequency and phase settings and
modulations.

Library

Synphony Model Compiler Sources

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) creates a direct digital synthesizer (DDS) by generating
discrete-time sin and cos waveforms using a phase accumulator and
waveform generator. Phase accumulation accepts frequency and phase
inputs and optional frequency and modulation inputs. You can specify
accuracy independently for the frequency precision, waveform phase preci-
sion, and waveform amplitude precision. You can also choose to flatten
spurious noise components caused by phase quantization by selecting phase
dithering.

The following figure shows a version of this block with all options enabled.
The components vary depending on the options you choose, and the block
icon reflects the choices made.

LO

 SMC Blocks: Abs to Host Interface SMC DDS

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
144 October 2013

The SMC blockset also includes the DDS2 block, with improved functionality.
See SMC DDS2, on page 149 for a description of this block and the differ-
ences between the two.

Latency

The latency of the DDS block is determined as follows:

• If there is a LUT, the latency is 1.

• If there is a CORDIC waveform mag, the latency is equal to precision + 2.

SMC DDS SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 145

DDS Parameters

LO

 SMC Blocks: Abs to Host Interface SMC DDS

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
146 October 2013

Function

Specifies the function that the DDS block calculates. You can choose
one of the following:

– sin

– cos

– sin&cos

Method

Specifies the method used to generate the waveforms:

– LUT uses a lookup table containing the DDS output values to
generate the waveforms.

– CORDIC uses CORDIC algorithms to generate the waveforms.

Frequency Mode

Determines how to set the frequency in units of normalized frequency.
These values are cast into the format specified in Waveform Frequency
Precision.

– Constant sets the frequency to the hard-coded value specified in
Frequency Value.

– Port sets the frequency dynamically to the frequency of the input port.

Frequency Value

Sets a constant value for the frequency in units of normalized frequency.

Frequency Modulation Mode

Specifies how to set the frequency modulation.

– None does not modulate the frequency.

– Constant uses the hard-coded value set in Frequency Modulation Value to
modulate the frequency.

– Port uses the frequency dynamically set by the input port to modulate
the frequency.

Frequency Modulation Value

Sets the value for frequency modulation when Frequency Modulation Mode
is set to Constant. It specifies an offset in units of normalized frequency

SMC DDS SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 147

that is added to the frequency and input to the phase accumulator. The
value is cast into the data width specified in Waveform Frequency Precision.

Phase Modulation Mode

Specifies how to set phase modulation.

– None does not do any phase modulation.

– Constant uses the hard-coded value set in Phase Modulation Value for
phase modulation.

– Port uses the frequency dynamically set by the input port for phase
modulation.

Phase Modulation Value

Sets the value for phase modulation when Phase Modulation Mode is set to
Constant. It specifies the phase offset constant, in units normalized to
2*pi. The phase offset is added to the output of the phase accumulator.
The value is cast into the data width specified by Waveform Phase Precision.

Phase Dither

Determines whether you improve the DDS spurious free dynamic range
by using phase dithering. When you enable this option, the software
spreads the spurs through the available bandwidth to prevent phase
error from being introduced by the quantizer. The tool adds the
dithering sequence before quantization, and then uses the quantized
value to index into the sine/cosine lookup table or CORDIC algorithm,
so that the phase-space is mapped to time.

When disabled, the tool does not dither the signal.

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Waveform Frequency Precision

Specifies the frequency resolution of the DDS block, normalized to the
sample frequency. For example, a value of 1/1000 will give you a resolu-
tion of 1 Hz at a 1KHz sample rate or 10Hz at 10KHz sample rate.

LO

 SMC Blocks: Abs to Host Interface SMC DDS

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
148 October 2013

Waveform Phrase Precision

Specifies the input phase precision of the waveform generator, normal-
ized to 2*pi.

Waveform Magnitude Precision

Specifies the bits used for the quantization of the waveform output.

Sample Time

Determines sample time. Use -1 to inherit. This option is not available if
you specify reset or enable ports.

.5

Waveform Frequency Precision

Waveform Phase Precision

Waveform Magnitude Precision

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 149

SMC DDS2
Creates sin and cos waveforms based on frequency, phase settings, and
modulations, with more functionality than the DDS block.

Library

Synphony Model Compiler Sources

Description

The DDS2 block creates a direct digital synthesizer (DDS) by generating
discrete-time sin and cos waveforms using a phase accumulator and
waveform generator. Phase accumulation accepts frequency and phase
inputs and optional frequency and modulation inputs. You can specify
accuracy independently for the frequency precision, waveform phase preci-
sion, and waveform amplitude precision. You can also choose to flatten
spurious noise components caused by phase quantization by selecting phase
dithering.

Differences Between the DDS2 and DDS Blocks

The DDS2 block provides additional functionality and has better QoR than the
DDS block.

• The DDS2 block provides significant area and performance improve-
ments compared with the DDS block, especially for high-performance
and multichannel designs. For details, see DDS2 Multichannel Designs,
on page 150.

• The DDS2 block offers additional functionality:

– You can specify the target SFDR; the precision required to achieve the
target SFDR is automatically calculated by the DDS2 block.

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
150 October 2013

– This block supports signed frequency and phase input, so that it can
be used as frequency modulator.

– It incorporates a LUT compression mode, which uses an additional
complex multiplier. This significantly reduces the lookup table size:
for a phase word length of 20 bits, LUT size is reduced from 2^20 to
3*2^10 (1M to 3K).

• The DDS2 block supports forward flow control through the optional srdyi,
ssync, and srdyo ports. This eliminates the local reset and local enable
ports that are on the DDS block. The new flow control mechanism is
more flexible and easier to integrate than the previous DDS methodology.
For details, see DDS2 Flow Control, on page 151.

DDS2 Multichannel Designs

To generate a multichannel DDS, you must set the number of channels to be
greater than 1, and enable the Fold across channel option. The phase dither
generation logic and Sin-Cos generation block (CORDIC-based or LUT-based)
are shared across all the channels. When Fold across channel is enabled, the
output is multiplexed by the folding factor you specify. For example:

If you specify 8 channels and a folding factor of 4, the output vector size will
be 2. The first element of the vector has outputs for channels [1, 2, 3, 4],
time-multiplexed in the same order; and the second element has the outputs
[5, 6, 7, 8], similarly time-multiplexed. The output sample time is 1/4th of the
sample time value provided on the mask parameter or input ports.

For multichannel designs, the dimensions of the ssync or srdyi ports must be
the same as the number of channels. If the same ssync or srdyi input is
provided to all channels, you must connect a Vector Expand block that expands
the dimensions of the ssync or srdyi ports to match the number of channels.

Note the effects of mode settings (Frequency, Frequency Modulation and Phase
Modulation) on the implementation of multichannel designs:

Mode Other Settings Description

Constant Constant dimension: 1
Number of channels: >1

The tool automatically performs scalar
expansion. This means that the same
value will be applied to all the
channels.

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 151

DDS2 Flow Control

DDS2 supports forward flow control though the optional srdyi and ssync input
port and the output srdyo port. The following table describes the ports:

For multiple channels, you can provide independent srdyi and ssync ports for
each channel, by specifying a vector equal to the number of channels. When
the Fold across channel option is enabled, the srdyo is multiplexed like the
sin/cos output and is synchronous to the output. The sample time is the
same as the srdyo output.

The following timing diagram illustrates the flow control operation:

Constant Constant dimension: >1,
but < number of channels

The other channels are provided with 0
inputs.

Constant Constant dimension:
> number of channels

The tool prunes the size of the constant
to equal the number of channels.

Port Input dimension must be
the same as the number of
channels

The tool matches inputs to the
channels.

srdyi Informs the DDS2 block about the phase accumulator clock cycle. It does
not progress to the next phase value unless srdyi is held high. When srdyi
goes low, the srdyo goes low after #DDS2 Latency number of clock cycles,
denoting that the corresponding output is invalid. You can use the srdyi
mechanism to intermittently stall the DDS2 output and ensure there is no
phase discontinuity on restart.

ssync Re-initializes the phase accumulator. This means that you can start the
phase accumulator again from the initial phase modulation value you
specified, or 0 if it was not provided. However, ssync does not reset the DDS2
pipeline and the phase values that were in the processing pipeline when you
applied the ssync will continue to be processed. When ssync goes high, the
srdyo goes low after # DDS2 Latency number of clock cycles, since there is a
glitch of one clock cycle for every cycle that ssync is high.
When the Latch inputs only on ssync option is enabled, the frequency,
frequency modulation, or phase modulation port values will be registered
only when ssync is high; otherwise any change in the port is ignored. If the
corresponding value is provided as a constant on the mask parameter, ssync
has no effect as well.

srdyo Is the corresponding output port for srdyi and ssync.

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
152 October 2013

Icon Annotations

The icon for this block displays the following information:

DDS2 Parameters

The parameters for this block are displayed on four tabs: Main Tab, on
page 152, Optional Ports Tab, on page 157, Data Types Tab, on page 158,
and Hardware Tab, on page 160.

Main Tab
This tab displays general settings.

Top Annotation The green annotation specifies the type of sin-cos generation,
the folding factor, and the number of channels.

Latency Annotation The red annotation at the bottom of the block specifies the
latency value.

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 153

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
154 October 2013

Function

Specifies the function that the DDS2 block calculates. You can choose
one of the following:

– sin

– cos

– sin&cos

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 155

Method

Specifies the method used to generate the waveforms:

– LUT uses a lookup table containing the DDS output values to
generate the waveforms. When you select this option, LUT-specific
options become available on the Hardware tab.

– CORDIC uses CORDIC algorithms to generate the waveforms. When
you select this option, CORDIC options become available on the
Hardware tab.

Frequency Mode

Determines how to set the frequency in units of normalized frequency.
These values are cast into the format specified in Waveform Frequency
Precision.

– Constant sets the frequency to the hard-coded value specified in
Frequency Value.

– Port sets the frequency dynamically to the frequency of the input port.

For additional information about mode settings in multichannel designs,
see DDS2 Multichannel Designs, on page 150.

Frequency Value

Sets a constant value for the frequency in units of normalized frequency.
This option requires that Frequency Mode be set to Constant.

Frequency Modulation Mode

Specifies how to set the frequency modulation.

– None does not modulate the frequency.

– Constant uses the hard-coded value, which is set in Frequency Modulation
Value to modulate the frequency.

– Port uses the frequency dynamically set by the input port to modulate
the frequency.

For additional information about mode settings in multichannel designs,
see DDS2 Multichannel Designs, on page 150.

Frequency Modulation Value

Sets the value for frequency modulation when Frequency Modulation Mode
is set to Constant. It specifies an offset in units of normalized frequency,

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
156 October 2013

which is added to the frequency and input to the phase accumulator.
The value is cast into the data width specified in Waveform Frequency Preci-
sion. This option requires that Frequency Modulation Mode be set to Constant.

Phase Modulation Mode

Specifies how to set phase modulation.

– None does not do any phase modulation.

– Constant uses the hard-coded value set in Phase Modulation Value for
phase modulation.

– Port uses the frequency dynamically set by the input port for phase
modulation.

For additional information about mode settings in multichannel designs,
see DDS2 Multichannel Designs, on page 150.

Phase Modulation Value

Sets the value for phase modulation when Phase Modulation Mode is set to
Constant. It specifies the phase offset constant, in units normalized to
2*pi. The phase offset is added to the output of the phase accumulator.
The value is cast into the data width specified by Waveform Phase Word
Length. This option requires that Phase Modulation Mode be set to Constant.

Phase Dither

Determines whether you improve the DDS spurious free dynamic range
by using phase dithering. When you enable this option, the software
spreads the spurs through the available bandwidth to prevent phase
error from being introduced by the quantizer. The tool adds the
dithering sequence before quantization, and then uses the quantized
value to index into the sine/cosine lookup table or CORDIC algorithm,
so that the phase-space is mapped to time.

When disabled, the tool does not dither the signal.

Phase Dither Bits

When Phase Dither is enabled, you can determine how the precision of the
dither output is computed.

– Automatic lets the tool automatically compute the difference between
the waveform frequency word length and the waveform phase word
length whose value can range between 2 and 19.

– Specify lets you choose the phase dither word length.

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 157

Phase Dither Word Length

If Phase Dither Bits is set to Specify, you can set the word length for the
dither generator output. When you specify a dither word length that is
outside the range [2, 19], the tool automatically sets the word length to 2
and 19 respectively.

For both automatic and specify Phase Dither Bits modes, if the tool needs
to limit the value to 2 or 19:

– The waveform phase word length value you specified may be ignored
and the value is automatically set to frequency word length -2 or
frequency word length -19.

– Unless setting this value leads to a zero or negative value of the phase
word length, in which case the value you specified is retained.

Number of Channels

Specifies the number of output channels required.

Optional Ports Tab
The ports on this tab provide flow controls for the block. See DDS2 Flow
Control, on page 151 for additional information about these ports.

ssync port

When enabled, the block includes the ssync input port. When enabled, it
also makes the corresponding srdyo output port available.

srdyi port

When enabled, the block includes the srdyi input port. When enabled, it
also makes the corresponding srdyo output port available.

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
158 October 2013

srdyo port

When this option is enabled, the srdyo output port available for the
block. If either the ssync or srdyi port is enabled, the srdyo port is always
available at the output.

Latch inputs only on ssync

When enabled, the tool accepts and registers the input at the frequency,
phase modulation, or frequency modulation port only when ssync is
high.

This option becomes available when ssync port is enabled and Frequency
mode, Frequency modulation mode, or Phase modulation mode (on the Main tab)
is set to port.

Data Types Tab

Compute word length from SFDR

Determines whether to let the tool automatically compute word length
from the SFDR value or allow you to specify the waveform phase word
length. When this option is enabled, only the SFDR parameter is avail-
able on the mask. Otherwise when disabled, the Waveform phase word
length parameter is available on the mask.

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 159

SFDR

Specifies the Spurious Free Dynamic Range (SFDR) that is expected at
the output. This option does not guarantee that the specified SFDR
value will be met at the output; you must also specify an appropriate
frequency word length and output word length value to get the appro-
priate SFDR at the output. The tool only uses the SFDR value to
compute the waveform phase word length with the following formula:

 Waveform Phase Word Length = ceil(SFDR/6)

Waveform frequency word length

Specifies the word length of the frequency, either as a constant or for the
port. This value also specifies the resolution of the phase increment in
the DDS, so this value can be computed as described below.

Assume that fs is the sampling rate and f is the frequency needed for the
output to be generated. The frequency word length must be greater than
or equal to –ceil(log2(f/fs)) to prevent any SFDR degradation. However, the
phase increment value may not be full precision; this is possible only
when f/fs is a power of 2.

Waveform phase word length

Specifies the word length of the phase accumulator output. If the
desired phase precision for the accumulator in radians is phi, then set
the value to –ceil(log(pi/(2*pi))). The phase word length exponentially
affects the size of the sin-cos lookup table, but does not affect the
number of CORDIC stages or CORDIC latency.

Waveform amplitude word length

Specifies the bits used for quantization of the waveform output.

Input data type

Determines whether the input is signed or unsigned, when at least one
of the inputs is available through a port.

If all the inputs are constant, the tool automatically determines this. If
the input data type is set to signed and some of the input constants are
unsigned, the tool automatically promotes the constant as signed. If the
input data type is unsigned but one of the input constants is signed, the
tool automatically promotes the data type of input ports as signed.

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
160 October 2013

Hardware Tab
This tab displays different options, according to what you selected for the
Method option (Main tab):

Fold across channels

When enabled, specifies that channels are time division multiplexed.
This option requires that the number of channels be greater than 1, and
makes the Folding factor and sample time options available.

The folding options apply to both the LUT and CORDIC methods for the
DDS2 block.

Folding Factor

Specifies the time division multiplexing factor across channels. This
option requires that Fold across channels be enabled.

The number of channels must be an integer multiple of the folding
factor. Otherwise, the tool performs zero padding at the input to
increase the number of channels to be a multiple of the folding factor.
The zeros are not removed at the output.

LUT

CORDIC

SMC DDS2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 161

Sample Time

Specifies sample time. Use -1 to inherit. This option is unavailable if you
specify any option that results in an input port being available.

Pipeline sin-cos LUT

(LUT Method)

When this option is enabled, the tool internally uses a fully pipelined
optimized quarter-wave LUT architecture that significantly increases the
maximum achievable clock frequency. Turn on this option for optimal
FPGA mapping, unless the DDS2 block is used in a feedback path such
as a Costas loop.

This option automatically becomes available when Fold across channels
option is enabled and LUT is selected as the Method on the Main tab.

Split phase LUT compression

(LUT Method)

When enabled, the tool reduces the LUT size from 2^phaseWL to
3*2^(phaseWL/2), at the cost of an extra complex multiplier. Use this
option to lower block RAM utilization when you have large phase word
lengths.

This option is available when LUT is selected as the Method on the Main
tab.

If Pipeline sin-cos LUT and Split phase LUT compression are both enabled,
additional target options become available.

Target device

(LUT Method)

Selects an FPGA target for which the generated RTL is optimized.

This option is available when LUT is selected as the Method on the Main
tab, and both Pipeline sin-cos LUT and Split phase LUT compression are
enabled.

Optimization Target

(LUT Method)

Specifies whether the generated RTL is optimized for Speed or for Area.

LO

 SMC Blocks: Abs to Host Interface SMC DDS2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
162 October 2013

This option is available when LUT is selected as the Method on the Main
tab, and both Pipeline sin-cos LUT and Split phase LUT compression are
enabled.

CORDIC parameters

(CORDIC Method)

Specifes hardware options when you set CORDIC as the Method on the
Main tab.

– Automatic
The tool automatically selects the optimal options depending on the
other parameters.

– Specify
Additional options become available where you can set individual
options.

Number of Stages

(CORDIC Method)

Specifies the number of stages in the CORDIC DDS2 block. This option is
available when CORDIC is selected as the Method on the Main tab, and
CORDIC parameters is set to Specify.

CORDIC Latency

(CORDIC Method)

Sets the latency of the CORDIC DDS2 block. This option is available
when CORDIC is selected as the Method on the Main tab, and CORDIC
parameters is set to Specify.

Stage output Rounding

(CORDIC Method)

Sets the rounding mode to use on the x, y, and angle output of each stage
of the CORDIC DDS2 block. This option is available when CORDIC is
selected as the Method on the Main tab, and CORDIC parameters is set to
Specify.

You can set this option to Floor(Truncate),Nearest, Convergent, Fix, Ceil, or
Round. See Underflow Rounding Options, on page 585 for descriptions of
the algorithms.

SMC Decommutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 163

SMC Decommutator
Sequentially switches the data at the input port to multiple output ports,
reducing the data rate of each output port accordingly (time division demulti-
plexing). The Decommutator block provides optional flow control, multichannel,
and single-clock multi-rate support.

Library

Synphony Model Compiler Signal Operations

Description

This block is a time division demultiplexer that sequentially switches the data
at the input port to multiple output ports. Each output port data rate is
reduced by a factor of the number of output ports. Data at the output ports
have the same format as the input.

This block is a custom block (see Primitives and Custom Blocks, on page 800
for a definition).

Icon Annotation

The icon for this block displays the following information:

Top Annotation The annotation at the top of the block indicates the number
of output ports demultiplexed from a single input port.

Latency Annotation One sample latency with respect to the output sample
domain for multi-clock mode. Zero latency for single-clock
mode.

LO

 SMC Blocks: Abs to Host Interface SMC Decommutator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
164 October 2013

Decommutator Parameters

Number of channels

Specifies the number of channels processed. The format of the output
data depends on the Output format parameters described in the sections:
Scalar Output Format, on page 165, Vector Output Format, on
page 166, and Matrix Output Format, on page 168.

Number of phases

Specifies the number of outputs or phases (per channel) from which
data is demultiplexed to the output. The format of the output data
depends on the Output format parameters described in the sections: Scalar
Output Format, on page 165, Vector Output Format, on page 166, and
Matrix Output Format, on page 168.

srdyi/srdyo ports

When enabled, the block provides forward flow control. srdyi (Source
Ready Input) indicates that the current input data is valid. srdyo (Source

SMC Decommutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 165

Ready Output) is used to chain the Decommutator block to other flow
control blocks.

Single clock

When enabled, the block does not introduce a new sample time on the
output. It creates a single-clock multi-rate implementation instead.

For Single clock mode, the outputs are provided in the fast domain.

Scalar Output Format
The Decommutator block can provide data to the output depending on
how many channels are required and the state of the Vector Output and
Matrix Output parameters. See Vector Output Format, on page 166 and
Matrix Output Format, on page 168. Scalar output is only available
when the Vector output option is disabled.

Each output is a separate port to the block. y1…yN are the outputs to the
first channel, y1+N…y2N are the outputs to the second channel, and
y1+(C-1)*N…yC*N are the outputs to the last channel.

Example of a 3-phase, 2-channel scalar output:

Port Input Channel

y1 1 1

y2 2 1

y3 3 1

y4 1 2

y5 2 2

y6 3 2

LO

 SMC Blocks: Abs to Host Interface SMC Decommutator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
166 October 2013

Vector Output Format

Vector output

When enabled, the block provides a single vector output for all data. The
Vector order parameter determines the format of the output data.

Vector order

Vector output must be enabled and Matrix output disabled for this option to
be available. A single port and the data is provided as a vector of length
N*C, where N is the number of phases and C is the number of channels.
The Vector order parameter determines the order of elements in the vector.

SMC Decommutator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 167

Example of a 2-phase, 3-channel, phase first vector output:

Example of a 2-phase, 3-channel, channel first vector output:

Vector order Description

Phase First 1st phase e1...eC
2nd phase e1+C...eC+C
Nth phase e1+(N-1)*C...eN*C

Channel First 1st channel e1...eN
2nd channel e1+N...e2N
Cth channel e1+(C-1)*N...eC*N

Element Phase Channel

1 1 1

2 1 2

3 1 2

4 2 1

5 2 2

6 2 3

Element Phase Channel

1 1 1

2 2 1

3 1 2

4 2 2

5 1 3

6 2 3

LO

 SMC Blocks: Abs to Host Interface SMC Decommutator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
168 October 2013

Matrix Output Format

Matrix output

When enabled, the block provides a single matrix output for all data.
The Matrix order parameter determines the format of the output data.
Vector output must be enabled for this option to be available.

Matrix order

Matrix output must be enabled for this option to be available. A single
output port and the data is provided as a matrix. The Matrix order param-
eter determines the dimension of the matrix.

Matrix order Description

Phases x Channels NxC matrix, where N is the number of phases and
C is the number of channels

Channels x Phases CxN matrix, where C is the number of channels and
N is the number of phases

SMC Delay SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 169

SMC Delay
Delays the input by the specified number of sample clock cycles.

Library

Synphony Model Compiler DSP Basics, Synphony Model Compiler Memories

Description

The Synphony Model Compiler Delay block delays the input by a specified number
of sample clock cycles. Initial values in the delay line are zero. You can also
use the Register block (SMC Register, on page 441) to specify a delay, but it is
recommended that you use the Delay block wherever possible.

shls_retiming_lock Constraint

You can specify whether retiming affects Delay blocks by setting the
shls_retiming_lock constraint. See shls_retiming_lock Constraint, on page 628
for details.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

There is no extra latency for this block; its latency is determined by its
functionality.

LO

 SMC Blocks: Abs to Host Interface SMC Delay

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
170 October 2013

Delay Parameters

Delay

Sets the number of sample clock cycles by which the signal is delayed.

SMC Demux SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 171

SMC Demux
Implements a de-multiplexer of up to 2048 outputs.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Demux block is a de-multiplexer of up to 2048
outputs. The sel input determines which of the outputs gets the value of the d
data input. This value becomes available on the output, and is retained until
overwritten.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

LO

 SMC Blocks: Abs to Host Interface SMC Demux

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
172 October 2013

Demux Parameters

Number of outputs

Determines the number of outputs required. You can specify up to 2048
outputs.

Hold unselected outputs

When enabled, the non-selected output holds the previous value on the
output.

If the option is disabled, non-selected outputs drive a zero.

SMC Depuncture SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 173

SMC Depuncture
Removes specified bits from the input data stream and replaces them with
zeroes.

Library

Synphony Model Compiler Communications

Description

Using the puncture matrix you specify, the Depuncture block inserts zeroes in
the locations you specify. The output rate is the same as input sample rate.

This block is a custom block. (See Primitives and Custom Blocks, on
page 800 for a definition.) The following figure shows how the block is
modeled:

Icon Annotations

The icon for this block displays the following information:

Top annotation The green annotation shows the puncture pattern set for the
block.

Latency This block has no latency.

LO

 SMC Blocks: Abs to Host Interface SMC Depuncture

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
174 October 2013

Depuncture Parameters

Puncture matrix

Determines the pattern of bits to be inserted into the input data stream.
It assumes a punctured input with the bit width equal to the number of
ones in the puncture matrix. It creates the output signal by inserting bit
zeros in every location where the puncture matrix specifies a 0. Each
row of the puncture matrix operates on a different bit in the input data
word with the last row corresponding to the LSB of the input data word.

Each 0 indicates a bit to be inserted. For example, an input of UFix_2_0
and a puncture matrix of [1 0 1] results in the insertion of a 0 bit into the
input stream and a 3-bit punctured output of UFix_3_0.

You can feed the output of the Puncture block directly to the Depuncture
block with no extra blocks between. You must use the same puncture
matrix for both blocks to ensure proper decoding.

Symbol bit width

Specifies the width for the symbol bit. The default symbol bit width for
the block is 1. If you specify a symbol bit width that is greater than 1,
the block operates on symbols of the specified bit length. This is usually
the case for soft decoded symbols.

SMC Depuncture SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 175

Append erasure signature

When this option is enabled, the block inserts the puncturing status in
the output stream. For punctured symbols, it appends bit 0 to the MSB,
and for non-punctured symbols, it appends bit 1 to the MSB.

LO

 SMC Blocks: Abs to Host Interface SMC Differentiator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
176 October 2013

SMC Differentiator
Performs a discrete time differentiation of the input signal.

Library

Synphony Model Compiler Filtering

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) performs a discrete time differentiation of the input signal.

Automatic Scalar Expansion

If the data input is a vector and the reset or enable port is scalar, the tool
expands the scalar reset or enable port to the size of the data input vector.
The reset and enable can be either vector or scalar.

Latency

This block has no latency.

SMC Differentiator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 177

Differentiator Parameters

Differential Delay (M)

This block uses a shift register block internally, and the Differential Delay
parameter sets the latency of the shift register block.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: Abs to Host Interface SMC Differentiator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
178 October 2013

Output saturate on overflow, Output round towards nearest on underflow

Determine how overflow and underflow are treated. The options are only
available when Output format is set to Specify. For descriptions of these
parameters, see the following:

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Output saturate on
overflow

Saturates or wraps the overflow; see Overflow
Saturation Options, on page 585 for details.

Output round towards
nearest on underflow

Uses the Nearest or Floor (Truncate) algorithms to
round the underflow; see Underflow Rounding
Options, on page 585 for descriptions of the
algorithms.

SMC Divider SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 179

SMC Divider
Calculates the fixed-point fractional division of two inputs, A and B.

Library

Synphony Model Compiler Math Functions

Description

The block takes two scalar or vector inputs with fractional parts and performs
fixed-point fractional division on them. The block only supports real inputs,
not complex inputs. In Reciprocal mode, the block takes a single input and
outputs the reciprocal of that input.

Constant Propagation

This block propagates constants as described in Constant Propagation, on
page 731.

Icon Annotations

The icon for this block displays the following information:

Input and Output
Annotations

The input and output annotations reflect the mode set:
Normal or Reciprocal. See Division mode, on page 180 for
descriptions of the modes and icons.

Latency Annotation There is no latency introduced by this block.

LO

 SMC Blocks: Abs to Host Interface SMC Divider

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
180 October 2013

Divider Parameters

Division mode

Determines the operating mode for the block. The icon reflects the
selected operating mode.

– Normal (default)
The block takes two inputs (numerator/dividend,
denominator/divisor) and produces a single division output
(quotient/result) as follows, where e is error due to finite precision
and is not output:

N = Q*D + e

SMC Divider SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 181

– Reciprocal
The block takes a single input and returns the reciprocal of the input
(1/input).

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

You can also specify output word length and output fraction length with
the following variables that specify data type information for the block
inputs:

Output format You can only set this option to Specify. See Output
Format, on page 583 for details.

Output word length Output Word Length, on page 584. You can also
specify word length in terms of the variables listed
below.

Output fraction length Output Fraction Length, on page 584. You can also
specify word length in terms of the variables listed
below.

Output data type Output Data Type, on page 584

syn_num_wl Word length of the numerator input

syn_num_fl Fraction length of the numerator input

syn_num_dt Numerator input sign: 1 - signed input; 0 - unsigned input

syn_den_wl Word length of the denominator input

syn_den_fl Fraction length of the denominator input

syn_den_dt Denominator input sign: 1 - signed input; 0 - unsigned input

LO

 SMC Blocks: Abs to Host Interface SMC Divider

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
182 October 2013

Output saturate on overflow, Output round towards nearest on underflow

Determine how overflow and underflow are treated. The options are only
available when Output format is set to Specify. For descriptions of these
parameters, see the following:

Division by zero error output port

When enabled, creates an error output port that indicates a division by
zero operation. During Simulink simulation, if the block receives 0 as
the denominator, it outputs high through this port. The block icon
reflects the port if you enable this option:

Output saturate on
overflow

Saturates or wraps the overflow; see Overflow
Saturation Options, on page 585 for details.

Output round towards
nearest on underflow

Uses the Nearest or Floor (Truncate) algorithms to
round the underflow; see Underflow Rounding
Options, on page 585 for descriptions of the
algorithms.

SMC DivMod SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 183

SMC DivMod
Calculates the integer division and/or modulo function of two inputs, A and
B.

Library

Synphony Model Compiler Math Functions

Description

This block calculates the integer division and/or modulo function of two
inputs, A and B. The block also supports F-division. The divide and modulo
functions provide the relationship stated by the division and modulus
algorithm: given two integers A and B, with B not equal to 0, there are unique
integers Q and R such that

For a detailed discussion of division algorithms, see Overview of Division
Algorithms, on page 188. Computer languages are notoriously inconsistent in
their implementation of mod for negative numbers. Synphony currently uses
T-division, which is described more fully in Division algorithm, on page 185.

The block supports vector inputs. If there are vector inputs, division and
modulus algorithms are applied for each corresponding vector element.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

LO

 SMC Blocks: Abs to Host Interface SMC DivMod

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
184 October 2013

Icon Annotations

The icon for this block displays the following information:

DivMod Parameters

Top Annotation The green annotation at the top of the block indicates the
division algorithm being used for the operation:
T = truncate
F = floor

Latency Annotation There is no latency introduced by this block. However, it can
significantly slow down performance for large divisors, and
you might require retiming through extra latency to get
reasonable performance in the design.

SMC DivMod SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 185

Division algorithm

Specifies the division algorithm to be used. You can select either Truncate
or Floor. The behavior varies, based on the setting of the Ignore fractional
parts of the inputs option:

– With Ignore fractional parts of the inputs enabled (default):

If the inputs of the DivMod block are not integers, the tool ignores the
fraction and executes the operation on the value of the integer portion
of the signals.

For the exception value B=0, the division Q becomes the largest
negative number for a negative dividend, zero for a zero dividend and
the largest positive number for a positive dividend. The modulus R is
always equal to A, satisfying A=Q*B+R.

– With Ignore fractional parts of the inputs disabled:

Truncate Uses T-division, which truncates any fraction of the quotient.
This is the same as rounding towards zero.
This behavior matches the MATLAB fix(A/B) and rem(A,B)
functionality. The algorithm satisfies A = Q*B + R equality, where
A*R >= 0 (if nonzero, A and R have the same sign.) See T-Division,
F-Division, and E-Division, on page 189 for details.

Floor Uses F-division, where the quotient is rounded towards minus
infinity.
This matches the MATLAB floor(A/B) and mod(A,B) functionality.
The algorithm satisfies A = Q*B + R equality, where B*R >= 0 (if
nonzero, B and R have the same sign.) See T-Division,
F-Division, and E-Division, on page 189 for details.

Truncate Uses T-division, which truncates any fraction of the quotient.
This is the same as rounding towards zero. See T-Division,
F-Division, and E-Division, on page 189 for details.
This operation matches this MATLAB functionality:
rem()->mod (a%b) block output.

Floor Uses F-division, where the quotient is rounded towards minus
infinity. See T-Division, F-Division, and E-Division, on page 189
for details.
This operation matches this MATLAB functionality:
mod() -> mod(a%b) output of the block.

LO

 SMC Blocks: Abs to Host Interface SMC DivMod

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
186 October 2013

Operation

Allows you to set the mode of operation, where only the ports that are
needed are made available.

– div sets the mode where only the division output port is required.

– mod sets the mode where only the modulus output port is required.

– div&mod sets the mode where both the division and modulo output
ports are required.

Ignore fractional part of the inputs

Lets you use fractional inputs or ignore them. For details on how the
setting affects the division operation, see the description for Division
algorithm, on page 185.

– Enabled (default):
Executes the operation on just the integer part of the input, ignoring
the fractional part. This mode is compatible with older versions of the
tool. If you open an older design, the blocks automatically have this
setting enabled, and you do not have to update your library.

– Disabled:
Takes the fractional part of the input signals into account when it
executes the operation. When you use this setting, the blocks will not
be backwards-compatible with older libraries that do not have this
functionality.

Example

Consider the following sweep:

SMC DivMod SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 187

The result of the F-division and corresponding mod implemented by
Synphony shows the truncation of the fractions:

Notice the behavior when the divisor is zero:

LO

 SMC Blocks: Abs to Host Interface SMC DivMod

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
188 October 2013

Overview of Division Algorithms

This section starts with basic definitions, and then discusses different
approaches to division. It also provides examples of different kinds of division
results.

Division Definitions
In the following discussion, the integer Q is the quotient, R is the modulus, B
is the divisor, and A is the dividend.

SMC DivMod SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 189

However, the value of the modulo function depends on the definition of the
division1:

There is also a modulo-centric approach to this problem2:

T-Division, F-Division, and E-Division
T-division or truncate division is an ISO standard and used in modern processors.
Hence the ANSI C functions “/” and “%” tend to be implemented with
T-division. The MATLAB rem function is based on the T-division. The following
properties hold:

F-division or floor division is described and promoted by Knuth3. The MATLAB
mod function is based on F-division.

E-division or Euclidean division has the following mathematical advantages:

1. Daan Leijen. Division and Modulus for Computer Scientists. University of
Utrecht, 2001.
2. Raymond T. Boute. The Euclidean Definition of the Functions div and mod.
In ACM Transactions on Programming Languages and Systems (TOPLAS),
14(2):127-144, New York, NY, USA, April 1992. ACM press.
3. Donald E Knuth. The Art of Computer Programming, Vol 1, Fundamental
Algorithms. Addison-Wesley, 1972.

LO

 SMC Blocks: Abs to Host Interface SMC DivMod

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
190 October 2013

Example: Division Algorithm Variations
The differences between some common division algorithms are best illus-
trated through an example:

Diagnostics

You see the following warning message when one or both of the DivMod block
inputs has a fractional part:

Warning: block 'test/DivMod': Fractional type fed into Integer division. Fraction bits will
be ignored

You see the following warning message when the denominator of the DivMod
block has a zero value:

Warning: block 'test/DivMod': Division by zero!

A,B) (QT,RT) (QF,RF) (QR,RR) (QC,RC) (QE,RE)

(+13,+2) (+6,+1) (+6,+1) (+7,-1) (+7,-1) (+6,+1)

(+13,-2) (-6,+1) (-7,-1) (-7,+1) (-6,+1) (-6,+1)

(-13,+2) (-6,-1) (-7,+1) (-7,+1) (-6,-1) (-7,+1)

(-13,-2) (+6,-1) (+6,-1) (+7,+1) (+7,+1) (+7,+1)

SMC Downsample SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 191

SMC Downsample
Decreases the sample rate of the input by removing samples.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Downsample block decreases (downsamples) the
sample rate of the input by removing samples. If M is the specified downsam-
pling rate, for every M samples at the input, the software keeps 1 sample at
the output. This means that the sample rate at the output is the input
sample rate divided by the downsampling rate M. The kept sample can be one
of the samples of M which is specified by the sample offset.

This figure shows the corresponding signal manipulation for a downsample
rate of 4 and a sample offset of 3, along with the downsample implementation
clock and signal dependencies:

LO

 SMC Blocks: Abs to Host Interface SMC Downsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
192 October 2013

The following figure shows a practical simulation result for the implementa-
tion:

The software uses a delay at the input (based on the input sample rate),
followed by a standard downsample operation, where it keeps the first sample
of every input frame (M samples), and discards the other (M-1) samples from
the input frame.

For information about using the Downsample block in multi-rate designs, see
Multi-Rate Design, on page 717.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

SMC Downsample SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 193

Latency

The latency of the Downsample block is determined by the offset:

Downsample Parameters

This block has two tabs, Parameters and Flow control.

Parameters Tab
Set general downsampling parameters on this tab.

Downsample rate

Specifies the value by which the input sample rate is divided to get the
output sample rate.

Sample offset

Specifies the sample offset. For a description and a discussion of sample
rates, see Multi-Rate Design, on page 717.

Offset Latency

0 0

All other cases Downsample rate - sample offset at the input

LO

 SMC Blocks: Abs to Host Interface SMC Downsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
194 October 2013

Sync Mode

Specifies the synchronization mode for the output. When the clock
counter reaches the position you specify in this options, the synchro-
nized output produces 1. You can choose one of the following modes:

Refer to the waveforms shown in Downsample Timing Waveforms, on
page 195 for additional information about these modes.

Flow Control Tab
This tab covers flow control.

Forward flow control

Determines forward flow control. When enabled, creates two extra ports:
srdyi (source ready in) and srdyo (source ready out). With forward flow
control, the downsampling operation is controlled by the preceding
block through the srdyi signal. Based on this signal, input data is downs-
ampled and the output signal srdyo is asserted.

In forward flow control, data input is considered to be valid only when
input signal srdyi is asserted. If the downsampling factor is M, one of the
M valid input samples is placed on the dout output bus. At the same
time, the output signal srdyo is asserted.

See Downsample with Forward Flow Control Enabled, on page 196 for a
timing waveform.

Mode Description

No Sync There is no synchronized output.

When Output
Changes

The sync output produces 1 pulse for every sample taken.

Aligned with
Offset

The sync output is synchronized with the offset.

Right before
Offset

The sync output is synchronized with one sample before the
offset

SMC Downsample SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 195

Downsample Timing Waveforms

The following figures show timing waveforms for the Downsample block. For all
the examples shown, the downsampling factor is 3, and the sample offset is
1.

Sync Mode = When Output Changes

Sync Mode = Aligned with Offset

Sync Mode = Right Before Offset

LO

 SMC Blocks: Abs to Host Interface SMC Downsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
196 October 2013

Downsample with Forward Flow Control Enabled

SMC Edge Detector SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 197

SMC Edge Detector
Outputs a unity amplitude pulse of one sample period in response to a
synchronous transition from high to low or low to high.

Library

Synphony Model Compiler Signal Operations

Description

The Edge Detector block outputs a unity amplitude pulse for one sample period
in response to a synchronous transition from high to low or low to high. This
block detects edges by comparing the input state at the previous and the
current sampling instances. Transition types are:

– Rising

– Falling

– Either

If transition type is either rising or falling, the initial condition is chosen to be
low and high respectively.

If the transition type is either, specify the desired initial condition as low or
high.

A pulse is always generated at the first sampling period if:

– The Edge type is set to Rising and the first input state is high OR

– The Edge type is set to Falling and the first input state is low OR

– The Edge type is set to Either and the initial condition and the first
input state are different.

LO

 SMC Blocks: Abs to Host Interface SMC Edge Detector

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
198 October 2013

This block is a custom block (see Primitives and Custom Blocks, on page 800,
for a definition). The following figure shows the internal modeling when edge
type is falling:

Latency

This block has no latency.

Edge Detector Parameters

Edge type

Specifies whether the edge type is Rising, Falling or Either. A unit amplitude pulse
of one sample width is generated only if:

– The Edge type is Rising and the input state is low for the previous
sampling instance and is high for the current instance.

– The Edge type is Falling and the input state is high for the previous
sampling instance and is low for the current instance.

SMC Edge Detector SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 199

– The Edge type is Either and the input state is different for the previous
sampling instance and the current instance.

Initial Condition

This option is available when Edge type is selected as Either. You can specify
the previous state as high or low for the first sampling instance.

LO

 SMC Blocks: Abs to Host Interface SMC Extract

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
200 October 2013

SMC Extract
Extracts specified bits from the input signal.

Library

Synphony Model Compiler Signal Operations

Description

The Extract block extracts specified bits from the input signal. The output is
unsigned, but you can recast the output using the Recast block (SMC Recast,
on page 424).

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Icon Annotations

The icon for this block displays the following information:

Top Annotation The green annotation at the top of the block specifies the bit
vector for extraction. See Extract Vector, on page 201 for
more detail.

Latency Annotation There is no latency introduced by this block.

SMC Extract SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 201

Extract Parameters

Extract Vector

Specifies the bit vector to extract from the incoming signal. You cannot
extract bit indices greater than the input word length. You cannot
extract negative bit indices. The output data type depends on the size of
the extract vector.

You can also specify the following in this field:

– syn_inp_wl == input wordlength

– syn_inp_fl == input fraction length

– syn_inp_dt == input data type (1 if signed))

For example:

To generate multiple outputs for the Extract block, specify a cell array,
where n extract vectors results in n outputs. The extract vectors do not
have to be the same. Specify the cell array using the { } operator, and use
square brackets [] to indicate the extract vectors for each output. The
following example shows the syntax for a group of n vectors:

{[] [] ... []}

0:syn_inp_wl-1 Recovers whole signal

[0:syn_inp_fl-1] Recovers fraction bits

syn_inp_wl-1:-2: 0 Recovers even bits in back order

syn_inp_dt * 3 + 2: “secret formula J”

LO

 SMC Blocks: Abs to Host Interface SMC Extract

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
202 October 2013

In the following design, separate1 and separate2 have multiple outputs,
because their bit vectors have been defined as {[syn_inp_fl:syn_inp_wl-1]
[0:syn_inp_fl-1]} and {[11 12 13] [6:1:10] [0:1:5]} respectively:

{[11 12 13] [6:1:10] [0:1:5]}

{[syn_inp_fl:syn_inp_wl-1] [0:syn_inp_fl-1]}

SMC FDATool SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 203

SMC FDATool
Opens the Simulink FDATool interface.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler FDATool block opens the Simulink FDATool inter-
face where you can design, analyze, and implement floating-point FIR and IIR
filters.

The Synphony Model Compiler blockset includes an IIR and various FIR
blocks, but this block provides an interface to the FDATool software, which is
part of the MATLAB® Signal Processing Toolbox. The Synphony Model
Compiler FDATool block will not function properly unless the Signal
Processing toolbox is installed. The Simulink FDATool provides a powerful
graphical interface for defining digital filters. Through this block, you can use
the Simulink FDATool interface to define an FDATool object, and then store it
as part of the Synphony Model Compiler model.

For procedural information about using this block, see Defining FIR Filter
Coefficients with FDATool, on page 768.

LO

 SMC Blocks: Abs to Host Interface SMC FFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
204 October 2013

SMC FFT
Implements a fully pipelined Fast Fourier Transform (FFT).

Library

Synphony Model Compiler Transforms

Description

The Synphony Model Compiler FFT block implements a fully pipelined Fast
Fourier Transform. When it is used to perform the block-wise FFT of a
streaming signal, you only require a reset for the first block.

Automatic Scalar Expansion

If the input to the FFT block is a vector, both the real and imaginary inputs
must be vectors. The reset and enable can be either vector or scalar. If the
reset or enable is scalar, the tool expands it to the size the real or imaginary
vector inputs.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

Latency is a complex function of frame size and output order:

SMC FFT SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 205

Transform Size Latency (Bit-reversed Output) Latency (Natural Order Output)

16 19 36

32 38 71

64 70 135

128 137 266

256 265 522

512 524 1037

1024 1036 2061

2048 2063 4112

4096 4111 8208

8192 8210 16403

16384 16402 32787

32768 32789 65558

65536 65557 131094

LO

 SMC Blocks: Abs to Host Interface SMC FFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
206 October 2013

FFT Parameters

SMC FFT SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 207

Transform Size

Sets the size of the FFT block. For sizes which are an integer power of 4,
the software uses the Radix-4 algorithm. For other sizes, the software
uses a Radix-2 stage, followed by Radix-4 stages.

Transform Direction

Sets the operation direction for the block.

– Inverse sets the transform direction to inverse.

– Forward is the default, and sets the transform direction forward.

Real FFT

Enable this option for FFTs with non-complex inputs.When enabled, the
imaginary input port disappears and internally it feeds 0 as imaginary
input. Using this option results in some advantages:

– Reduced memory consumption in baseline and multi-channel mode
for natural orders

– Reduced memory consumption in folded modes for natural orders.

– Reduced memory consumption in baseline and multi-channel mode
for bit reversed orders

– Fewer multipliers for odd power-of-2 FFT in baseline and
multi-channel mode. e.g. 128 pt FFT uses 12 multipliers, a 128 pt
real FFT uses 10 multipliers.

Scaling

Specifies whether or not the FFT is to be scaled. Scaling is applied after
the butterfly stages to prevent bit growth from the beginning. Floor
rounding (truncation) is used for the scaled data. See Underflow
Rounding Options, on page 585 for details.

N is the FFT size.

– Scale by 1/N divides the DFT summation by N.

– Scale by 1/Sqrt (N) divides the DFT summation by the square root of N.

– No scaling does not scale the FFT.

Twiddle Factor Fraction Length

Determines the precision of the FFT block by setting the fraction length
for a twiddle factor, in bits. The specified value must be an integer

LO

 SMC Blocks: Abs to Host Interface SMC FFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
208 October 2013

between 1 and 50. To increase precision, increase the fraction length for
the twiddle factor. You can also specify the twiddle factor in terms of the
the variables syn_inp_wl and syn_inp_fl.

Data Path Format

Determines data path format. You can set one of these options:

– Automatic sets the data path format to one that uses the maximum of
input and output fractions, and the smallest bit width that
guarantees no overflow.

– Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation after twiddle factor multiplications.

– Specify uses the user-defined data type to determine the cast for
internal calculations. For this block, data path casting is done at the
input, after the twiddle factor multiplications, and at the block
output. Overflow only occurs at the points where data casting is
done. The rest of the calculations are overflow-free, regardless of the
specified data type.

Data Path Word Length

Determines the word length of the data path in bits. It only becomes
available when you set Data Path Format to Specify. You can also specify
the word length in terms of the variables syn_inp_wl, syn_inp_fl,
syn_coef_wl, and syn_coef_fl.

Data Path Fraction Length

Sets the fraction length of the data path in bits. It only becomes avail-
able when you set Data Path Format to Specify. You can also specify the
fraction length in terms of the variables syn_inp_wl, syn_inp_fl, yn_coef_wl,
and syn_coef_fl.

Data path saturate on overflow

Determines how data path overflow is treated. Enable the option to
saturate the overflow, and disable it to wrap the overflow. See Overflow
Saturation Options, on page 585 for details. This option is only available
when you set Data Path Format to Specify.

Data path rounding

Determines how underflow in the data path is rounded. See Underflow
Rounding Options, on page 585 for details. This option becomes avail-
able when Data path format is set to Automatic or Specify.

SMC FFT SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 209

Output Order

Sets the output order for the block. This option determines the latency of
the block; see Latency, on page 204 for a table of values.

– Natural is the default. It sets the output order of the FFT results to the
natural order.

– Bit-reversed sets the pipelined FFT results to bit-reversed order.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output rounding type

Determine how output overflow and underflow are treated. The options
are only available when you set Output Format to Specify.

Output format Output Format, on page 583

Output word length Output Word Length, on page 584. You can
also specify word length in terms of variables
syn_inp_wl, syn_inp_fl, syn_coef_wl, and
syn_coef_fl. These variables are described in
Special Variables, on page 588.

Output fraction length Output Fraction Length, on page 584. You
can also specify fraction length in terms of
variables syn_inp_wl, syn_inp_fl, syn_coef_wl,
and syn_coef_fl. These variables are
described in Special Variables, on page 588.

Output data type Output Data Type, on page 584

Output saturate
on overflow

When enabled, saturates the overflow; when disabled, wraps
the overflow. See Overflow Saturation Options, on page 585
for details. The saturation option you specify is applied
separately at the output, after the data path saturation
option you specified in Data path saturate on overflow.

Output rounding
type

See Underflow Rounding Options, on page 585 for details
about the rounding options available. The rounding option is
applied separately to the output, after the data path rounding
option you specified in Data path rounding.

LO

 SMC Blocks: Abs to Host Interface SMC FFT

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
210 October 2013

Reset port

When enabled, it creates a local reset (rst) for the FFT block, clearing the
pipeline. The reset is active high. If you disable this option, the block
outputs non-valid data for the depth of the pipeline.

Enable port

When enabled, it creates an enable (en) port, which provides control over
the Enable status of the block. If you enable this pin, you cannot use
folding optimizations, because it leads to verification mismatches.

If this option is disabled, the software does not create an en port and the
FFT operation is always enabled.

Ready port

When enabled, this option outputs a ready pulse (rdy), and valid FFT
data streams out on the clock after the valid is asserted. A typical use of
this pin is to feed the ready pin of a forward FFT to the reset pin of an
inverse FFT. When disabled, the tool does not create a ready pin.

Valid port

When enabled, this option creates an active high signal (vld) that frames
the valid output data. A typical use of this pin is to feed the valid pin of a
forward FFT to the enable pin of an inverse FFT. If this option is
disabled, the tool does not create a valid pin.

SMC FFT2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 211

SMC FFT2
Implements a Fast Fourier Transform that supports both serial and parallel
inputs.

Library

Synphony Model Compiler Transforms

Description

The FFT2 block is a high-speed Radix2 DIF streaming FFT block. This block
provides additional functionality and better results than the FFT block. Key
features include the following:

• Parallel processing of 1, 2, 4, 8, 16, or 32 input samples
This yields very high throughput for FFT designs, which is required by
many spectral monitoring applications. For example, you can use this
block to implement a 1024-point block with 32 parallel inputs, that runs
at 300 MHz on the FPGA and can process 9.6 GSamples/sec.

• Variable transform length, from 2*number of parallel inputs to 64K

• Multichannel FFT operations
See Multichannel FFT, on page 212 for details.

• Easy interface to common interface protocols through flow control
See FFT2 Flow Control, on page 213 for details.

• Optimized area and performance for the target device

LO

 SMC Blocks: Abs to Host Interface SMC FFT2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
212 October 2013

Multichannel FFT

For a multichannelized operation, set the number of parallel inputs to 1 and
the multiplexed channel parameter to a value greater than 1. With multiple
channels, the FFT2 block uses a faster clock to share the twiddle factor gener-
ation and multiplication logic for each butterfly. This results in significant
area savings over the instantiation of multiple independent FFTs.

Transform Length and Input/Output Data Formats

To configure transform length at runtime, disable the Constant Transform Length
option. Transform length is now configured at runtime through the len
(length) port. The transform length values can range from twice the number
of parallel inputs to the maximum transform size specified.

When runtime reconfiguration of transform length is not required, enable
Constant Transform Length. This setting offers significant area and timing
benefits. When this option is enabled, the ssynci and ssynco port are available,
and you must specify the input to the length port as follows:

ceil(log2(actual transform length))

Also, the nominal latency does not change for the block even if the len input
has changed. Configure the input vector x as follows:

<number of channels / number of parallel inputs of I > < Same number of Q >

For example, if you specify 4 parallel inputs, you must provide the x vector in
the form {I0,I1,I2,I3, Q0,Q1,Q2,Q3}. Use the same format when the number of
parallel inputs is 1 and the multiplexed channels specified is greater than 1.

The y output also uses this format. All inputs except the x input must be
dimension 1. For DIF FFT operations, the input is always in-order, while the
output is bit-reversed order. The y_index can provide the index for the output
value that is its real location in the current frame. Therefore, bit-reverse
ordering is easily done at the output, using a ping-pong memory, the y_index
as the write address, and an up counter as the read address.

Transform sizes must be an integer power of 2 up to a maximum of 2**16.

SMC FFT2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 213

For a serial input FFT2 block, the output is in bit-reversed order. For a
parallel input FFT2, the tool uses the following calculation. For an FFT2 block
with transform length N and K complex parallel inputs, the output is a 2K
vector. The first K outputs are the real components and the next K outputs
will be the imaginary components of the FFT.

Within each component, an output value of (bitreverse floor(i/k) + p) is available
at time instance I, and this is the pth element of this output vector:
0 <= I < N/K, 0 <=p<=K.

Bit Growth Handling

Each butterfly in the FFT2 block incorporates automatic bit growth, where the
output word length is one more than the input word length. The fraction
length remains the same, and simple truncation occurs after twiddle factor
multiplication.

The output word length can be ceil(log2(Maximum transform length)) greater than
the input word length. As the output is also unscaled, this can result in an
equivalent gain of 1/sqrt(actual length) compared to the theoretical value. When
the actual length value available through the len port is less than the
maximum transform length, the ceil(log2(Maximum transform length/actual length)
number of bits from the most significant output can safely be removed
without the danger of wrapping.

Depending on the input word length for each butterfly, the twiddle factor
multiplication circuit is derived automatically and optimized for the bit width
needed in the DSP macro capabilities of the target device. If the word length
exceeds the maximum input word length of the target DSP, the tool automat-
ically splits the inputs for optimal DSP mapping.

FFT2 Flow Control

The FFT2 block provides forward flow control through the srdyi and ssynci
input ports and the srdyo, ssynco, and sofo output ports. Descriptions about
these ports for variable-length FFT are provided below:

srdyi Indicates whether the current input sample is valid input for the frame.

ssynci Indicates when a new value for the transform length can be loaded.

LO

 SMC Blocks: Abs to Host Interface SMC FFT2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
214 October 2013

An invalid input is denoted by srdyi going low. srdyo going low denotes that the
corresponding output is invalid. When Constant option length is disabled, the
ssynci input is active high to indicate when a new value for the transform
length can be loaded into the block. ssynci can also reset the frame counter for
constant length FFTs.

The srdyi input can go down at any point in the frame, but ssynci must be
asserted after the current frame is provided in full at the input and before the
next input frame starts. This allows the len input to change for every FFT
frame that is processed. If ssynci is asserted in the middle of a frame, the
input frame counter resets immediately and a new frame starts processing
from the next cycle, with the new length value loaded. The current frame in
the pipeline is only partially processed, and the output has invalid values.

For variable length FFT, assert ssynci at the beginning of every frame only
when you want to change the transform length. If not, the internal frame
counter automatically flags the start of the next frame. The length can only be
changed between frame1 and frame2 after all the data of frame1 is provided, and
before any frame2 data is available. This means there must be a 1-cycle gap
between frame1 and frame2, if the length needs to change.

Invalid output is denoted by srdyo going low. Since FFT is an intrinsically
framed operation, srdyo may not go low after srdyi goes low plus latency,
although the average number of clock cycles that srdyi and srdyo are high will
be the same over time to maintain throughput. sofo designates the clock cycle
when the first valid output for the current frame is available. ssynco is the
delayed version of the ssynci input, which can be used as a ssynci input for a
cascaded FFT2 operation. Note that the ssynco is available only after ssynci has
been applied, while sofo becomes available at the beginning of every frame.

For constant transform length, the ssynci port is optional. If selected, assert
the ssynci port to synchronize the FFT operation to an external sync event.
There is no need to assert ssynci for a normal streaming operation; assert it
only if the sync event causes a timing change between frames. Asserting
ssynci interrupts the processing of the input data. Data processing resumes

srdyo Is the current output sample for the frame.

ssynco Is the delayed version of the ssynci input

sofo Designates the clock cycle when the first valid output for the current frame
is available.

SMC FFT2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 215

on the first cycle in which srdyi is asserted after ssynci was deasserted. So if
ssynci is unnecessarily asserted when there is no timing change, it will unnec-
essarily disrupt the operation of the FFT.

The following timing diagram illustrates the flow control operation:

Icon Annotations

The icon for this block displays the latency value, in red.

Latency

Latency is calculated as shown below, where processing pipeline delay
depends on the input word length and the target device:

maximum transform length/number of parallel inputs + processing pipeline + 1 delay
through butterflies

The actual latency of the FFT2 block is also affected by ssynci and srdyi, as
shown below:

<annotated latency > + <number of clock cycles ssynci is high> +
<number of clock cycles srdyi is low>

FFT2 Parameters

The FFT2 block parameters are available on various tabs.

LO

 SMC Blocks: Abs to Host Interface SMC FFT2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
216 October 2013

Main Tab

Maximum Transform Length

Specifies the maximum transform length of the FFT operation. The value
must be an integer power of 2, with a maximum of 2**16. The minimum
value is max (4, 2*number of parallel inputs). See Transform Length and
Input/Output Data Formats, on page 212 for additional information.

Constant Transform Length

Specifies whether to configure the transform length at runtime. When
enabled, the len and ssynci ports are not available. See Transform Length
and Input/Output Data Formats, on page 212 for more information.

Number of Parallel Inputs

Specifies the number of parallel inputs to the FFT2 block. Valid values
are 1, 2, 4, 8, 16, 32. The input vector size must be twice the value
specified for this option. Effective throughput is calculated as follows:

SMC FFT2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 217

clock frequency* number of parallel inputs

Number of Channels

Specifies the number of channels for the FFT operation. Set a positive
integer value. This option is available only when the number of parallel
inputs is equal to 1.

If the number of channels is greater than 1, the Fold Across Channel option
on the Hardware tab lets you specify whether the twiddle factor multi-
pliers should be reused across channels.

Datapath Tab

Input Word Length

Specifies the word length for the input. If you specify a word length that
is less than the actual input word length, the block continues to
function properly, but you may lose some optimizations.

Twiddle Factor Word Length

Specifies the word length of the twiddle factor, where the fraction length
is set to 2 less than the word length. The maximum value allowed is 18.

Butterfly bit growth

Determines the word length of the butterfly output.

LO

 SMC Blocks: Abs to Host Interface SMC FFT2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
218 October 2013

– Automatic
The word length of each butterfly output is one more than the input.
The tool adjusts the decimal point position according to the output
scaling factor you select.

– None
The word length of each butterfly output is the same as the input, so
that the final output word length is the same as the input.

Twiddle-factor output rounding mode

Specifies the rounding algorithm to use after each twiddle factor multi-
plication: Floor(Truncate), Nearest, Convergent, Fix, Ceil, Round. See Underflow
Rounding Options, on page 585 for descriptions.

Output Scaling

Specifies the output scaling factor.

– None
The output is not scaled.

– 1/N
The output is scaled by 1/N. For 1/N scaling in case of variable
transform length, N denotes the actual transform length available
through the len port

– 1/sqrt(N)
This option is only available for constant transform length.

Hardware Tab

SMC FFT2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 219

Optimization target

Specifies whether the generated RTL is optimized for speed or area.
Setting this option to Area can result in lower latency and register count,
but the tradeoff is lower speed.

Target Device

Specifies the target device for the FFT2 block.

Fold across Channels

For multi-channel FFTs, specifies whether to reuse twiddle factor multi-
pliers across channels in each butterfly.

Optional PortsTab

ssynci/ssynco Port

Specifies whether the block includes ssynci and ssynco input and output
ports, respectively. This option is only available when Constant transform
length is enabled. If Constant transform length is disabled, this option
becomes unavailable because the ssynci and ssynco ports are always
present. See FFT2 Flow Control, on page 213 for additional information
about these ports.

LO

 SMC Blocks: Abs to Host Interface SMC FIFO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
220 October 2013

SMC FIFO
Implements a single-rate or multirate FIFO (First in First Out) memory
queue.

Library

Synphony Model Compiler Memories

Description

The Synphony Model Compiler FIFO block implements a single-rate or
multi-rate FIFO memory queue. FIFOs are usually used to buffer input and
output signals at both the transmit and receive ends of a digital system. For
example, in a communication system a transmitter may send data in bursts
faster than the receiver can handle it. Such a system requires FIFO buffers
that can accept short bursts of high-speed data and then allow the data to be
read out as needed. In addition the signals in the data stream burst remain
in order, so that the first word entered into the buffer is the first word read
out from the buffer. A device that performs these operations is called a first
in-first out buffer of FIFO. The advantage of using the FIFO block is that it
decouples the reader and writer, so that the two operations do not have to
operate in lock step.

The tool implements the FIFO block as either a single-rate or multi-rate FIFO,
based on the data rates of the read enable and write enable ports. If the two
ports have different rates, the tool implements a multi-rate FIFO in the RTL.
If the rates are the same, it implements a single-rate FIFO.

When the we (write enable) input is 1, the FIFO stores the value from the din
port to the next available empty memory location in the FIFO. When the re
(read enable) input is 1 the FIFO reads the next value to the dout port from a
memory location, in the order the FIFO was written.

SMC FIFO SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 221

When the FIFO is completely empty, the FIFO sets the empty output to 1, and
ignores any read attempts.

The count output indicates the number of items in the FIFO queue. You can
use the count output to implement buffer management algorithms.

Automatic Scalar Expansion

If the data input is a vector and the reset, read enable, or write enable port is
scalar, the tool expands the scalar reset or enable port to the size of the data
input vector. The reset and enables can be either vector or scalar.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Icon Annotations

The icon for this block displays the following information:

Note (green) Indicates the number of words that can be stored in the FIFO.

Latency (red) The latency for this block is 1.

LO

 SMC Blocks: Abs to Host Interface SMC FIFO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
222 October 2013

FIFO Parameters

FIFO Depth

Determines the number of words that can be stored in the FIFO. The
width of the words is determined by the driver of the din port.

Reset Port

When enabled, it creates a synchronous reset pin on the FIFO. The icon
changes to reflect the pin. Enable this option for single-rate FIFOs only.

Counter output

When enabled, it creates a synchronous count port on the FIFO. The
icon changes to reflect this. Enable this option for single-rate FIFOs
only.

Read and write clocks are asynchronously related

When enabled, it indicates an asynchronous clock relationship between
the FIFO read and write clocks. When enabled, the retiming algorithm
treats the block as an asynchronous FIFO, and does not retime and
move registers across the block.

SMC FIFO SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 223

First Word Fall Through mode

When disabled, the FIFO uses the standard procedure for reading and
writing. This means that when the we (write enable) pin is high and the
FIFO is not full, input data is written to the FIFO. When the re (read
enable) pin is asserted and the block is not empty, data is read from the
FIFO and driven to the output. The output is obtained in the next cycle,
so there is a one-cycle read latency.

When enabled, the tool uses First Word Fall Through (FWFT) read mode.
FWFT is a read mode that gets rid of the typical one-cycle read latency
and drives the first word written to the FIFO to the output without
waiting for a read operation. At every read operation, the tool reads the
next word from the FIFO, as long as it is available.

See the waveforms in FIFO Operation in FWFT Mode, on page 224 for
additional information.

FIFO Timing Waveforms

The timing waveforms describe FIFO operation in both normal and FWFT
modes.

Normal FIFO Operation
The following timing waveforms represent normal FIFO operation. The FIFO
is a single-rate FIFO with a depth of 4, and FWFT mode disabled.

• Write Operation

This waveform shows how data is written to the FIFO according to the
we signal, and how the operation affects the full, empty, and count signals.
This figure assumes that the FIFO is initially empty.

• Read Operation

LO

 SMC Blocks: Abs to Host Interface SMC FIFO

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
224 October 2013

This waveform assumes that four words (11, 12, 13, and 14) are already
written to the FIFO and that it is full. The waveform shows how data is
read from the FIFO according to the re signal and how the operation
affects the full, empty, and count signals.

• Overall Operation

This waveform shows how data is written to and read from the FIFO. It
assumes that the FIFO is empty initially.

FIFO Operation in FWFT Mode
The following timing waveforms represent FIFO operation when FWFT mode
is enabled. The FIFO is a single-rate FIFO with a depth of 4.

• Write Operation

This waveform shows how data is written to the FIFO according to the
we signal, and how the operation affects the full, empty, and count signals.
This figure assumes that the FIFO is initially empty. Note that in FWFT
mode, the FIFO becomes full when five words are written, even though
the specified depth is four. The effective depth is always one more than
specified in FWFT mode

SMC FIFO SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 225

• Read Operation

This waveform assumes that five words (11, 12, 13, 14, and 15) are
already written to the FIFO and that it is full. No further words are
written to the FIFO. The waveform shows how data is read from the
FIFO according to the re signal and how the operation affects the full,
empty, and count signals.

• Overall Operation

This waveform shows how data is written to and read from the FIFO. It
assumes that the FIFO is empty initially.

LO

 SMC Blocks: Abs to Host Interface SMC FIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
226 October 2013

SMC FIR
Implements a finite impulse response (FIR) filter.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler FIR block implements a finite impulse response
filter, using either a Transposed Form FIR or a Direct Form FIR or a MCM
Form FIR for the maximum hardware performance. Typically, this results in
better area and timing. You define filter coefficients with either a coefficient
vector or a coefficient matrix, according to the application. The coefficients
can be extracted from an FDATool instance with the syn_get_coefs command.

To implement polyphase FIRs, use the FIR Rate Converter custom block, as
described in Implementing Polyphase FIR Filters, on page 767. To implement
adaptive or reloadable FIRs, use the RFIR custom block, which is described in
SMC RFIR, on page 448.

Automatic Scalar Expansion

If the data input is a vector and the reset or enable port is scalar, the tool
expands the scalar reset or enable port to the size of the data input vector.
The reset and enable can be either vector or scalar.

FIR Architecture

The tool automatically selects an FIR architecture for each implementation.
The optimal configuration meets timing and minimizes area. The tool selects
it based on factors like the target device, sample rates, Advanced Timing
Mode (ATM), and system-wide optimization settings, like retiming, folding,
and multi-channelization. You can also override automatic architecture

SMC FIR SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 227

selection by using a constraint to specify the architecture you want. The
selected micro-architecture for the FIR block is printed in the log file as shown
below:

@N: <FIR architecture> architecture is selected for the FIR
block <block name>

The effect of some of the factors that affect architecture selection is described
here:

• Advanced Timing Mode

For Microsemi devices, the Synphony Model Compiler tool typically
implements MCM form FIRs for baseline implementations.

When ATM is enabled (SMC SHLSTool, on page 486), the Synphony
Model Compiler tool explores various micro-architectures for each
implementation before selecting an architecture. It considers the direct
form, transposed form and MCM form micro-architectures, explores
ripple-carry or carry-save adder as options for the adder tree, and finally
chooses a micro-architecture that meets timing and minimizes area.

It does this simultaneously with other operations it would normally do
when ATM is not enabled, like exploiting positive and negative
symmetric coefficients and optimizations for values of zero, powers of 2,
or shifted versions of other coefficients. The tool also considers retiming
and pipelining.

If you enable Advanced Timing mode, the tool also uses the area
estimates from Synplify Pro synthesis. If you do not want to use the area
estimates, disable this behavior with the areabased_fir_arch_selection_atm
constraint (areabased_fir_arch_selection_atm Constraint, on page 623).

• Architecture Constraint

You can specify a particular architecture using the fir_architecture
constraint. See fir_architecture Constraint, on page 623 for the syntax.
When you use this constraint, the tool uses the specified architecture.

• Folding

If you enabled the Folding option, the tool always uses the transpose archi-
tecture, regardless of what you specified.

LO

 SMC Blocks: Abs to Host Interface SMC FIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
228 October 2013

Constraints for FIR Architecture

There are two Tcl constraints you can specify for FIR architecture,
fir_architecture and areabased_fir_arch_selection_atm. For details about these
constraints, refer to fir_architecture Constraint, on page 623 and
areabased_fir_arch_selection_atm Constraint, on page 623.

Icon Annotations

The icon for this block displays the following information:

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Top Annotation The green annotation at the top indicates the number of taps.

Latency Annotation There is no latency introduced by this block.

SMC FIR SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 229

FIR Parameters

LO

 SMC Blocks: Abs to Host Interface SMC FIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
230 October 2013

Coefficients

Specifies the filter coefficients. Provide a vector or matrix with the filter
coefficients. You can also enter the syn_get_coefs function here to extract
the coefficients from an FDATool instance. See Defining FIR Filter Coeffi-
cients with FDATool, on page 768 for information about extracting
coefficients, and syn_get_coefs, on page 604 for the function syntax. If
you define the coefficients as a matrix or vector, there are various possi-
bilities for the sizes of input and coefficient signals:

– The coefficient array is a row vector (dim:1xN) and the input is a
one-dimensional signal. This is regular operation.

– The coefficient array is a row vector (dim:1xN) and the input is an
M-dimensional signal. This results in multiple channels, each
operating with the same set of coefficients. The same coefficient array
vector is applied to each dimension of the M-dimensional input
signal.

– The coefficient array is a matrix (dim:MxN) and the input is an
M-dimensional signal. This results in multiple channels, each
operating with a different set of coefficients. Each row of the
parameter matrix is applied to a different signal dimension in the
m-dimensional input signal.

Coefficient fraction length

Specifies the fraction length for the coefficient. You can type the value
in, or specify it in terms of the syn_inp_wl, syn_inp_fl, and syn_inp_dt
variables, which are described in Special Variables, on page 588.

The tool selects the coefficient word length automatically. The word
length is the smallest length possible for the value, and varies depending
on whether the value is signed or unsigned.

Coefficient rounding

Determines how the coefficient value is rounded. See Underflow
Rounding Options, on page 585 for details.

Show impact of coefficient quantization

When you enable this option, the spectrum window displays the coeffi-
cients with and without quantization, so you can compare them.

SMC FIR SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 231

Data path quantization rule

Determines the format for data path quantization:

– Automatic sets the data path format to one that uses the maximum of
input and output fractions, and the smallest bit width that
guarantees no overflow.

– Algorithmic Full Precision uses the smallest bit width that guarantees no
overflow, and no truncation is used internally.

– Specify uses the user-defined data type to cast the adder and
multiplier outputs. It makes the Data Path Word Length and Data Path
Fraction Length options available.

Data path word length

Determines the word length of the data path in bits. It only becomes
available when you set Data path quantization rule to Specify. You can type
the value in or specify it in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt,
syn_coef_wl, syn_coef_fl, and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Data path fraction length

Sets the fraction length of the data path in bits. It only becomes avail-
able when you set Data path quantization rule to Specify. You can type the
value in or specify it in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt,
syn_coef_wl, and syn_coef_fl variables, which are described in Special
Variables, on page 588.

Data path saturate on overflow

Determines how data path overflow is treated. Enable the option to
saturate the overflow, and disable it to wrap the overflow. See Overflow
Saturation Options, on page 585 for details.

LO

 SMC Blocks: Abs to Host Interface SMC FIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
232 October 2013

The following figure shows where the datapath saturation and rounding
options are applied:

Data path rounding

Determines how underflow in the data path is rounded. See Underflow
Rounding Options, on page 585 for details. This option is not available if
Data path quantization rule is set to Algorithmic Full Precision.

Output quantization rule

Determines the format for output quantization:

– Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation is used internally.

– Specify uses the data type (specified in Output Format) internally to store
adder and multiplier outputs. It makes the Output Word Length, Output
Fraction Length, Output saturate on overflow, and Output rounding options
available.

Direct Form FIR Transposed/MCM Form FIR

Sat/Rnd

+

Sat/Rnd Sat/Rnd Sat/Rnd

+++

Sat/Rnd Sat/Rnd Sat/Rnd Sat/Rnd

SMC FIR SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 233

Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output rounding

Determine how output overflow and underflow are treated. These
options become available when you set Output quantization rule to Specify.

Output word
length

Output Word Length, on page 584
You can also specify word length in terms of the syn_inp_wl,
syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl, and
syn_guard_bit variables, which are described in Special
Variables, on page 588.

Output fraction
length

Output Fraction Length, on page 584
You can also specify fraction length in terms of the
syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl,
and syn_guard_bit variables, which are described in Special
Variables, on page 588.

Output data type Output Data Type, on page 584

Output saturate
on overflow

When enabled, saturates the overflow; when disabled, wraps
the overflow. See Overflow Saturation Options, on page 585
for details.

Output rounding See Underflow Rounding Options, on page 585 for details
about the rounding options available.

LO

 SMC Blocks: Abs to Host Interface SMC FIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
234 October 2013

The following figure shows where the output saturation and rounding
options are applied, after the data path saturation and rounding
options:

Reset Port

When enabled, the FIR is implemented with a reset pin. The block icon
reflects the change.

Enable Port

When enabled, the FIR is implemented with an enable pin. The block
icon reflects the change.

Direct Form FIR Transposed/MCM Form FIR

Sat/Rnd

+

Sat/Rnd Sat/Rnd Sat/Rnd Sat/Rnd

+

Sat/Rnd Sat/Rnd Sat/Rnd

++

Sat/Rnd

Sat/Rnd

SMC FIR Engine SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 235

SMC FIR Engine
Implements an FIR filter using coefficients that are input as vectors.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler FIR Engine block implements a variable-coefficient
direct-form finite impulse response filter. The inputs to the block are

• The input signal to be filtered.

• Filter coefficients that are fed to the block packed in a vector. This input
is asynchronous or directly fed to the multipliers.

• Optional reset input.

• Optional enable input.

• Optional output for the stored inputs in a vector signal equal to the filter
tap length

The following shows a sample diagram for a 3-tap FIR engine.

LO

 SMC Blocks: Abs to Host Interface SMC FIR Engine

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
236 October 2013

Folding
In order to use FIR Engine in a folded design, each instance should be able to
receive 2 latencies.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block does not introduce any latency.

SMC FIR Engine SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 237

FIR Engine Parameters

Data Path Format

Determines data path format. You can set one of these options:

– Automatic sets the data path format to one that uses the maximum of
input and output fractions, and the smallest bit width that
guarantees no overflow.

LO

 SMC Blocks: Abs to Host Interface SMC FIR Engine

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
238 October 2013

– Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation is used internally.

– Specify uses the user-defined data type to cast the adder and
multiplier outputs. It makes the Data Path Word Length and Data Path
Fraction Length options available.

Data Path Word Length

Determines the word length of the data path in bits. It only becomes
available when you set Data Path Format to Specify. You can type the value
or specify it in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl,
syn_coef_fl, syn_coef_dt, and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Data path fraction length

Sets the fraction length of the data path in bits. It only becomes avail-
able when you set Data path format to Specify. You can type the value or
specify it in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl,
syn_coef_fl, syn_coef_dt, and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Data path saturate on overflow

Determines how data path overflow is treated. Enable the option to
saturate the overflow, and disable it to wrap the overflow. See Overflow
Saturation Options, on page 585 for details.

The following figure shows where the datapath saturation and rounding
options are applied:

Sat/Rnd

+

Sat/Rnd Sat/Rnd Sat/Rnd

SMC FIR Engine SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 239

Data path rounding

Determines how underflow in the data path is rounded. See Underflow
Rounding Options, on page 585 for details. This option is not available if
Data path format is set to Full Precision.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output rounding

Determine how output overflow and underflow are treated. The options
become available when you set Output format to Specify.

Output format Output Format, on page 583

Output word
length

Output Word Length, on page 584
You can also specify word length in terms of the syn_inp_wl,
syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl, syn_coef_dt,
and syn_guard_bit variables, which are described in Special
Variables, on page 588.

Output fraction
length

Output Fraction Length, on page 584
You can also specify fraction length in terms of the
syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl,
syn_coef_dt, and syn_guard_bit variables, which are described
in Special Variables, on page 588.

Output data type Output Data Type, on page 584

Output saturate
on overflow

When enabled, saturates the overflow; when disabled, wraps
the overflow. See Overflow Saturation Options, on page 585
for details.

Output rounding See Underflow Rounding Options, on page 585 for details
about the rounding options available.

LO

 SMC Blocks: Abs to Host Interface SMC FIR Engine

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
240 October 2013

The following figure shows where the output saturation and rounding
options are applied, after the data path saturation and rounding
options:

Reset Port

When enabled, the FIR is implemented with a reset input. The block icon
reflects the change. The reset pin only affects the internal shift register
of the direct-form FIR implementation. If the input x[0] and the coeffi-
cients of the filter are non-zero, you might see a non-zero output from
the combinatorial path from the input to the filter output.

Enable Port

When enabled, the FIR is implemented with an enable input. The block
icon reflects the change. The enable input only affects the internal shift
register of the direct-form FIR implementation. The output of the filter
may change as the data input and/or coefficients change.

Vector Output Port

When enabled, the FIR Engine represents the taps of the internal shift
register as a vector output signal (xv), with the first element of the output
vector being equal to the input. The block icon reflects the change.

Sat/Rnd

+

Sat/Rnd Sat/Rnd Sat/Rnd

Sat/Rnd

SMC FIR Rate Converter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 241

SMC FIR Rate Converter
Implements a polyphase FIR filter by inserting upsamplers and downsam-
plers.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler FIR Rate Converter is a custom block that imple-
ments a polyphase filter, by using upsample and downsample blocks with the
FIR block to implement interpolators, decimators, and resamplers. See Primi-
tives and Custom Blocks, on page 800 for information about custom blocks.

You can use the FIR block to implement polyphase decimators and interpola-
tors: see Implementing Polyphase FIR Filters, on page 767 for details. This
block supports vector input.

Latency

This block has zero latency.

LO

 SMC Blocks: Abs to Host Interface SMC FIR Rate Converter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
242 October 2013

FIR Rate Converter Parameters

Filter Type

Specifies the type of polyphase filter to be implemented.

– Interpolator applies an Upsample block before an FIR to implement the
polyphase filter.

SMC FIR Rate Converter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 243

– Decimator inserts a Downsample block after an FIR to implement the
polyphase filter.

– Resampler inserts an Upsample block before and a Downsample block
after an FIR to implement the polyphase filter.

Upsample rate

Specifies the value by which the input sample rate is multiplied to get
the output sample rate. This option is only available when Filter Type is
set to Interpolator or Resampler.

Downsample rate

Specifies the value by which the input sample rate is divided to get the
output sample rate. This option is only available when Filter Type is set to
Decimator or Resampler.

Coefficients

Specifies the filter coefficients. Provide a vector with the filter coeffi-
cients. You can also enter the syn_get_coefs command here to extract the
coefficients from an FDATool instance. See Defining FIR Filter Coefficients
with FDATool, on page 768 for information about extracting coefficients,
and syn_get_coefs, on page 604 for details of the function syntax.

Coefficient fraction length

Specifies the fraction length for the coefficient. You can also specify the
fraction length in terms of the syn_inp_wl, syn_inp_fl, and syn_inp_dt
variables, which are described in Special Variables, on page 588.

Coefficient rounding

Determines how the coefficient value is rounded. See Underflow
Rounding Options, on page 585 for details.

LO

 SMC Blocks: Abs to Host Interface SMC FIR Rate Converter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
244 October 2013

Show impact of coefficient quantization

When enabled, the spectrum window displays the coefficients with and
without quantization.

Data path quantization rule

Determines how the data path is quantized. You can set one of these
options:

– Automatic sets the data path format to one that uses the maximum of
input and output fractions, and the smallest bit width that
guarantees no overflow.

– Algorithmic Full Precision uses the smallest bit width that guarantees no
overflow, and no truncation is used internally.

– Specify uses the user-defined data type to cast adder and multiplier
outputs for internal calculations. It makes the Data Path Word Length
and Data Path Fraction Length options available.

Data Path Word Length

Determines the word length of the data path in bits. It only becomes
available when you set Data path quantization rule to Specify. You can type
the value or specify it in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt,
syn_coef_wl, syn_coef_fl, and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Data path fraction length

Sets the fraction length of the data path in bits. It only becomes avail-
able when you set Data path quantization rule to Specify. You can type the
value or specify it in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt,
syn_coef_wl, and syn_coef_fl variables, which are described in Special
Variables, on page 588.

Data path saturation on overflow

Determines how data path overflow is treated. See Overflow Saturation
Options, on page 585 for details. This option is only available when you
set Data path quantization rule to Specify.

Data path rounding

Determines how data path underflow is treated. See Underflow
Rounding Options, on page 585 for details. This option is only available
when you set Data path quantization rule to Automatic or Specify.

SMC FIR Rate Converter SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 245

Output Parameters

For descriptions of these parameters, see the following:

Output saturation on overflow

Determines how output overflow is treated. See Overflow Saturation
Options, on page 585 for details. This option is only available when you
set Output quantization rule to Specify.

Output rounding

Determines how output underflow is treated. See Underflow Rounding
Options, on page 585 for details. This option is only available when you
set Output quantization rule to Specify.

Output quantization rule

Determines the format for output quantization:

– Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation is used internally.

– Specify uses the data type (specified in Output Format) internally to store
adder and multiplier outputs. It makes the Output Word Length, Output
Fraction Length, Output saturate on overflow, and Output rounding options
available.

Output
quantization rule

Output Format, on page 583

Output word
length

Output Word Length, on page 584
You can also specify word length in terms of the syn_inp_wl,
syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl, and
syn_guard_bit variables, which are described in Special
Variables, on page 588.

Output fraction
length

Output Fraction Length, on page 584
You can also specify fraction length in terms of the
syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl, and
syn_guard_bit variables, which are described in Special
Variables, on page 588.

Output data type Output Data Type, on page 584

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
246 October 2013

SMC FIR2
Implements fixed and reloadable coefficient FIR filter blocks, including
polyphase filters, multichannel filters, and symmetric coefficient filters.

Library

Synphony Model Compiler Filtering

Description

The SMC FIR2 block is a custom block that lets you generate highly parame-
trizable FIR filters. It includes the functionality of the FIR, FIR Engine, and FIR
Rate Converter blocks. It also supports multichannel filtering. The architec-
tures are described in FIR2 Architectures, on page 246.

See FIR2 Functional Overview, on page 246 for more information.

FIR2 Functional Overview
For a baseline single phase FIR (all the oversampling factors on the Hardware
tab are set to 1), you can add a tap delay line as an optional output. For
polyphase decimator FIRs, you can add individual phases as optional output.

You can use the FIR2 block to design a wide range of filters. For details, see
Implementing FIR Filters with the FIR2 Block, on page 760.

FIR2 Architectures
The FIR2 block allows you to choose from several different filter architectures
to generate optimal RTL for area-efficient, high-performance filters that map
efficiently to your selected hardware target. Supported architectures include
the following:

• Systolic form, for high speed filters

• Direct, Transpose and Systolic architectures with reloadable coefficients

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 247

You specify the kind of architecture to implement with the FIR Architecture
option (FIR architecture, on page 266). You can choose to implement
single-phase FIRs, polyphase decimators, or polyphase interpolators, using
the Polyphase filter type option (Polyphase filter type, on page 257).

You can control the level of parallelism used to implement the filter with the
oversampling options on the Hardware tab. Use them to control the level of
sharing implemented. You can choose between fully parallel, fully serial, and
intermediate implementations. You can also use these options to specify the
sharing of resources across the channels of a multichannel filter or polyphase
filter bank.

Constant Coefficient and Reloadable Coefficient Filters
You can use the FIR2 block as a constant coefficient filter as well as a reload-
able filter. The Reloadable Coefficients option specifies the kind of filter to imple-
ment (Reloadable coefficients, on page 250).

• For constant coefficients, the tool infers the tap length of the filter from
the number of columns in a specified matrix. You can extract the coeffi-
cients from an FDATool instance using the syn_get_coefs command.

The tool also infers the number of coefficient sets from which to select
the coefficients, based on the number of rows divided by the number of
channels specified. If the number of available coefficient sets is more
than 1, the tool automatically provides a port to specify the selected
coefficient set number. This allows you to select from a fixed set of coeffi-
cients with optimized implementation at runtime.

The SMC tool also uses the specified coefficients to infer whether the
filter structure should be symmetric, antisymmetric or half band. See
Main Tab, on page 249 for descriptions of the parameters to specify
constant coefficient filters.

• For reloadable coefficient filters, the coefficients are fed through an
input port, and all the parameters must be explicitly specified. See
Reloadable coefficients, on page 250 for descriptions of the parameters
for specifying constant coefficient filters.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
248 October 2013

Icon Annotations

The icon for this block displays the following information:

FIR2 Parameters

The interface consists of multiple tabs where you can specify the parameters
you need.

Top
Annotation

The green annotations at the top indicate the number of taps, the
hardware oversampling factor, the number of channels, and the
decimation/interpolation factor for polyphase filters.

Bottom
Annotation

The red annotation at the bottom of the icon indicates the latency.
Latency values for polyphase decimators only reflect the latency of the
summed output. If both summed outputs and individual phase
options are selected, the latency annotation only reflects the summed
output latency.
This latency annotation does not display in the following cases:
• If the load_coef or srdyi port options are enabled
• If a polyphase decimator with the individual phase option is

specified

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 249

Main Tab
This tab sets parameters for coefficients, especially fixed and reloadable
coefficients. The available options vary, depending on whether you select
constant or reloadable coefficients (Reloadable coefficients option).

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
250 October 2013

Reloadable coefficients

Determines the kind of filter implemented and also determines what
other options are available. See Constant Coefficient and Reloadable
Coefficient Filters, on page 247 for a description of these filters and how
they differ.

– When disabled, the tool implements a filter with fixed coefficients.
You enter the coefficients using parameters like Coefficient. This is
different from specifying reloadable coefficient filters, where you use a
coefficient input port.

– When enabled, the tool implements an FIR with reloadable
coefficients. It creates a vector port w for the coefficient input. The

Constant Coefficients

Reloadable Coefficients

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 251

coefficient input is not latched anywhere within the filter, and any
updates to the coefficient vector immediately affect the filter output.

Coefficients

Constant coefficient filters only (Reloadable coefficients disabled).

Specifies the filter coefficients for a constant coefficient FIR. You must
enter all the coefficients, not just the unique set, because the tool
automatically determines if the filter is symmetric, antisymmetric, or
half band from the input coefficient matrix you provide. The tool also
infers the number of taps from the coefficient matrix.

There are three ways to specify coefficients in this field:

– As a vector.

– As a matrix. The number of matrix rows divided by the number of
channels denotes the number of selectable FIR coefficient sets, and
the number of columns denotes the number of taps.

– With the syn_get_coefs function, which extracts the coefficients from
an FDATool instance. See Defining FIR Filter Coefficients with
FDATool, on page 768 for information about extracting coefficients,
and syn_get_coefs, on page 604 for the function syntax.

You must provide the expanded coefficient set, because the tool infers
the filter structure from the input coefficient.

Coefficient fraction length

Constant coefficient filters only (Reloadable coefficients disabled).

Specifies the fraction length for the coefficient in a fixed coefficient FIR.
The tool selects the coefficient word length automatically. The word
length is the smallest length possible for the coefficient with the largest
magnitude.

Show impact of coefficient quantization

Constant coefficient filters only (Reloadable coefficients disabled).

When enabled, it opens a magnitude spectrum window. This is only
available for a single row of coefficients. The window lets you graphically
compare the effect of quantization on the frequency response of the fixed
coefficient FIR, as it displays the spectrum both with and without
quantization.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
252 October 2013

Number of channels

Reloadable and constant coefficient filters

Specifies the number of channels in the FIR2 core. If you specify more
than one channel, the tool implements a multichannel filter. For multi-
channel filters, the coefficient input port must be specified as a matrix,
where the matrix size is the number of channels x number of coefficients.

For multichannel constant coefficient filters, note the following behavior:

– If you provide a coefficient matrix (Number of channels x Number of taps)
with only one row, the tool replicates the coefficient across all
channels.

– If you specify fewer rows in the coefficient matrix than the number of
channels, the tool pads the remaining channels with all zero
coefficients.

– If you specify more rows in the matrix than the number of channels,
the tool, after necessary zero padding, infers that multiple sets of
coefficients have been provided, with the first Number of channel rows
belonging to the first set, and so on. The tool creates an additional
port called coef_sel, which allows you to specify which of the
coefficients sets to use at runtime. The valid input values to coef_sel is

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 253

0..number of sets -1, where number of sets is computed as ceil(coef matrix
rows/number of channels).

Serial data I/O

Reloadable and constant coefficient filters

Lets you provide the inputs and obtain the outputs in a time-multi-
plexed serial fashion, so as to avoid expensive muxes and demuxes at
the inputs and outputs. When enabled, the I/O data vector size is equal
to Number of channels / Hardware oversampling factor across channels (Number of
channels, on page 252 and Hardware oversampling factor across
channels, on page 268).

For reloadable coefficient filters where the Serial coefficient option is
enabled, the setting of this option affects the dimensions of the w port.
In this case, the tool implements a scalar w port if Serial data I/O is on; if it
is off, it implements a vector w port with the vector size equal to the
number of channels.

This option is available when Number of channels is more than 1, Polyphase
filter type is set to None (Polyphase filter type, on page 257), folding across
channels is feasible, and the number of channels is an integer multiple
of Hardware oversampling factor across channels.

Number of taps

Reloadable coefficient filters only (Reloadable coefficients enabled).

Specifies the total number of taps before accounting for symmetry or
half band coefficients in the filter.

Coefficient symmetry

Reloadable coefficient filters only (Reloadable coefficients enabled).

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
254 October 2013

You can set three options for coefficient symmetry:

Half Band Filter

Reloadable coefficient filters only (Reloadable coefficients enabled).

When enabled, implements a standard half band filter. This option is
only available if Number of taps is set to an odd value and Coefficient
symmetry is set to Symmetric or Antisymmetric. If these conditions are met,
the coefficient for the centre tap is always 0.5 and the coefficient for
every alternate tap is zero.

If you enable this option, ensure that the w port ha a matrix input of this
size: Number of channels x ceil(Number of taps -1)/4.

Replicate coefficients for all channels

Reloadable coefficient filters only (Reloadable coefficients enabled).

Specifies whether the same coefficient must be applied to all channels.
When enabled, the input to the w port is a vector whose size varies:

None Specifies no coefficient symmetry. The input to the w port is
the Number of taps x Number of channels.

Symmetric Specifies symmetric coefficients. The input to the w port must
be a matrix of this size: Number of channels x ceil(Number of taps
/2).
The vector input w is reversed and appended to the original
coefficient vector to create a symmetric coefficient set. If the
value in Number of taps is odd, the tool does not replicate the
last element of the vector input w.

Antisymmetric Specifies antisymmetric coefficients. The input to the w port
must be a matrix of this size: Number of channels x ceil(Number of
taps /2).
The vector input w is negated, reversed, and appended to the
original coefficient vector to create an antisymmetric
coefficient set. If the Number of taps value is odd, the tool does
not negate and replicate the last element of the vector input w.

Option Setting Input Vector Size for Port w

Coefficient symmetry: None Number of taps

Coefficient symmetry: Symmetric/Antisymmetric ceil (Number of taps / 2)

Half band enabled ceil (Number of taps -1) / 4

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 255

Serial coefficients

Reloadable coefficient filters only (Reloadable coefficients enabled).

Lets you provide the coefficient set for the w input port serially.

– If this option is disabled, you must provide the entire coefficient set
as a matrix, which means that all coefficients are available in parallel.
If the load_coef port is available (load_coef/srdyo, on page 264), the
tool latches all coefficients internally when ssync is high. If the ssync
port is not available, the tool does not latch coefficients internally,
and any update to the w port is automatically propagated to the filter.

– When this option is enabled, specify the coefficients for the w port in
the same sequence as the taps, with the coefficient for the most
recent tap provided first. Note that for serial coefficients, the load_coef
and srdyo ports are always available. The coefficients must be
consecutive; that is, load_coef must be continuously high for the
required number of clock cycles. When this option is enabled, the
dimension and the sample rate of the x and w inputs are the same.

You cannot enable this option for certain architectures. See
Limitations to Serial Coefficient, on page 256 for a description.

When enabled, the block stores the coefficients as appropriate for
subsequent filtering. The effect of various settings is described below:

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
256 October 2013

Limitations to Serial Coefficient
The Serial coefficients option (Serial coefficients, on page 255) and the load_coef
port option (load_coef/srdyo, on page 264) are only available for the following
FIR architectures:

• Single-phase baseline asymmetric direct FIR

• Single-phase baseline asymmetric systolic FIR

• Single-phase baseline asymmetric transpose FIR targeting Microsemi
SmartFusion2 devices

• Polyphase decimation asymmetric systolic FIR, with fold across phases,
and folding factor equal to the number of phases

• Single-phase fold-across-channel systolic asymmetric FIR, with folding
factor = number of channels

• Single-phase folded asymmetric systolic FIR

Option Settings Description

Serial coefficients on The block loads new coefficients when load_coef goes high,
and continues to load them until all coefficients are received.
In subsequent clock cycles, if load_coef goes high again, a
new load operation starts. srdyo stays low until the required
coefficients are loaded, regardless of the state of srdyi.
When targeting Microsemi SmartFusion2 devices, the
load_coef signal is required to be a pulse. This is unlike other
cases, when a long impulse is needed of length equal to the
number of taps. During this period, any input data is
ignored.

Serial coefficients on
Hardware oversampling
across channels =1
Serial data I/O off
Replicate coefficients
for all channels off

The w input vector size is equal to the number of channels.
The coefficients must be provided (load_coef remains high)
over Number of taps clock cycles.
Note that the Serial coefficients option is not available with the
symmetric, antisymmetric, or halfband coefficient options.

Serial coefficients on
Hardware oversampling
across channels =
Number of channels
Serial data I/O on

The w input is fully serialized. The vector input size is 1 and
the number of clock cycles required to load the coefficients is
multiplied by the number of channels. The coefficients are
loaded in this sequence: <tap1 _ channel 1 …n, tap2_channel
1…n, ...>.

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 257

Polyphase Tab
Specify options for polyphase filter architecture on this tab.

Polyphase filter type

Determines the filter architecture:

Decimation factor/Interpolation factor

Specifies the number of phases in the polyphase FIR.

Either the Decimation factor or Interpolation factor option becomes available,
to match the Polyphase filter type setting.

If you specify a factor greater than 1, the tool creates a polyphase filter
bank with appropriate resource sharing across the filter bank or within
each filter, depending on the hardware oversampling factors specified on
the Hardware tab.

None Implements a single phase FIR. If this option is selected, no
other options are available on this tab.

Decimation Implements a polyphase decimator filter.

Interpolation Implements a polyphase interpolator filter.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
258 October 2013

Polyphase outputs

The outputs vary, depending on the kind of polyphase filter chosen:

– Decimation

When you select a polyphase decimator implementation, the FIR is
decomposed into a number of parallel FIRs, or phases. This option
specifies how the separate phase outputs are concatenated:

If the Number of channels is set to greater than 1 for a polyphase
decimator, the individual phase output is a matrix where the number
of rows equals Number of channels, and the number of columns equals
the number of phases specified in Decimation factor.

– Interpolation

If you select a polyphase interpolation filter implementation, there is
only one type of output available. The tool obtains this output by
serializing the output of all the phases in the filter.

Individual phase output

Determines whether individual phase outputs are time-multiplexed.
This option is only relevant when the Polyphase outputs is set to Individual
Phases or Both for a decimator. You have two choices:

Individual
Phases

Each phase of the polyphase FIR is available separately, with all
the phase outputs serialized using a commutator.

Summed
Output

The output is the scalar sum of phase outputs.

Both Both individual phases (ph) and summed output (y) are available.

Serial Each phase of the polyphase FIR is time-multiplexed and
available serially at the input sample rate.

Parallel Phase outputs are available as a vector at the decimated sample
rate.

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 259

Data Types Tab
Set word length and data type options for various outputs on this tab.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
260 October 2013

Data path quantization rule

Sets the datapath format to one of the following choices:

– Full Precision
The software does not truncate after adding the partial products.

– Specify
Lets you specify word length and data type for pre-adder output,
multiplier output, partial sum outputs, and final outputs.

Pre-adder format

The pre-adder options only apply when the filter coefficient structure is
symmetric, In other cases they are ignored. This option sets the adder
output format to one of the following choices:

– Full Precision
The software does not truncate after adding inputs corresponding to
symmetric taps.

– Specify
Sets the adder output word length, fraction length, and other
parameters as specified in the corresponding options:

Multiplier format

Sets the multiplier output format to one of the following choices:

– Full Precision
The software does not truncate after multiplying the tap delay
outputs with the filter coefficients.

Option Description

Pre-adder word length FIR2 Word length, on page 262

Pre-adder fraction length FIR2 Fraction Length, on page 262

Pre-adder data type FIR2 Data Type, on page 262

Pre-adder saturate on overflow FIR2 Saturate on Overflow, on page 262

Pre-adder shift bits FIR2 shift bits, on page 263

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 261

– Specify
Sets the multiplier output word length, fraction length, and data type
as specified in the corresponding options:

Sum format

Sets the partial sum output format to one of the following choices:

– Full Precision
The software does not truncate after adding a pair of partial products.

– Specify
Sets the sum output word length, fraction length, data type, shift bit,
overflow, and underflow, as specified in the corresponding options.

Output format

Lets you specify the output format. There are two choices:

– Full Precision
The output is not truncated.

Option Description

Multiplier word length FIR2 Word length, on page 262

Multiplier fraction length FIR2 Fraction Length, on page 262

Multiplier data type FIR2 Data Type, on page 262

Multiplier saturate on overflow FIR2 Saturate on Overflow, on page 262

Multiplier round on underflow FIR2 Round on Underflow, on page 263

Multiplier shift bits FIR2 shift bits, on page 263

Option Description

Sum word length FIR2 Word length, on page 262

Sum fraction length FIR2 Fraction Length, on page 262

Sum data type FIR2 Data Type, on page 262

Sum saturate on overflow FIR2 Saturate on Overflow, on page 262

Sum round on underflow FIR2 Round on Underflow, on page 263

Sum shift bits FIR2 shift bits, on page 263

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
262 October 2013

– Specify
The final output is truncated according to the parameters you specify
for the following options:

FIR2 Word length

Determines the word length of the data path in bits. For details, see
Output Word Length, on page 584.

You can also specify it in terms of the syn_inp_wl and syn_inp_fl variables.
The variables are described in Special Variables, on page 588.

FIR2 Fraction Length

Sets the fraction length of the data path in bits. For details, see Output
Fraction Length, on page 584.

You can also specify it in terms of the variables syn_inp_wl and syn_inp_fl
variables. The variables are described in Special Variables, on page 588.

FIR2 Data Type

Sets the data type for the output. See Output Data Type, on page 584 for
descriptions of the data types.

FIR2 Saturate on Overflow

Determines how data path overflow is treated. Enable the option to
saturate the overflow, and disable it to wrap the overflow. See Overflow
Saturation Options, on page 585 for details. The symbol on the block
icon reflects the saturation choice you make.

Option Description

Output word length FIR2 Word length, on page 262

Output fraction length FIR2 Fraction Length, on page 262

Output data type FIR2 Data Type, on page 262

Output saturate on overflow FIR2 Saturate on Overflow, on page 262

Output round on underflow FIR2 Round on Underflow, on page 263

Output shift bits FIR2 shift bits, on page 263

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 263

FIR2 Round on Underflow

Uses the specified algorithm to round the underflow; see Underflow
Rounding Options, on page 585 for descriptions of the algorithms. The
symbol on the block icon reflects the rounding choices you make.

FIR2 shift bits

Indicates the number of bits by which the input has to be shifted. For a
right shift, the value of the most significant bit (MSB) is shifted in by the
number of bits specified. For a left shift, specify a negative number. For
left shifts, the zero is shifted in on the least significant bit (LSB) side.

Optional Ports Tab
Set output tap options on this tab. Microsemi SmartFusion2 devices have
additional ports, which are described in Microsemi Output Ports, on
page 271.

Taps Output

Provides an optional output of the tap delay line, as a vector for single
channel filters and as a matrix for multichannel filters. For the matrix
output, the number of rows is equal to Number of channels, and number of
columns is equal to Number of taps. This option is only available for single-
phase baseline filters (Hardware oversampling factors = 1, Polyphase type
= None).

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
264 October 2013

srdyi/srdyo ports

When enabled, inserts an srdyi (Source ready in) port and a corre-
sponding srdyo (Source ready out) port for the block. You can only
specify this option for the architectures listed in Limitations to Serial
Coefficient, on page 256.

Use the srdyi input to denote data inputs that are invalid and should not
be processed through the tap delay line. The srdyo port indicates which
output samples are invalid. It follows srdyi with the FIR latency.

You must provide inputs to these ports independently on a per-channel
basis. Both srdyi and srdyo are vectors whose size is equal to the number
of channels. To specify the same srdyi across all channels, connect a
Vector Expand block at the input. If the Serial data I/O option is on, both srdyi
and srdyo are serialized in the same fashion as the data.

When this option is not enabled, the tool processes all data inputs
through the tap delay line.

This option is available for the following configurations/architectures:

– Single-phase baseline asymmetric FIR

– Polyphase decimation asymmetric systolic FIR, with fold across
phases, and folding factor equal to the number of phases

– Single-phase fold-across-channel systolic symmetric FIR with the
limitation of the same srdyi signal for all channels

– Single-phase folded asymmetric systolic FIR

load_coef/srdyo

When enabled, inserts a load_coef port and a corresponding srdyo port for
the block. The tool adds extra registers at the w input, as described
below:

You can only specify this option for the architectures listed in Limita-
tions to Serial Coefficient, on page 256.

Reloadable
Coefficients

If Serial coefficients is off, the tool inserts an extra register at
the w input. The block only loads new coefficient values for w
when load_coef is high.

Constant
Coefficients

If the coef_sel port is available, the tool adds an extra register
at the coef_sel input, and only loads new values when
load_coef is high.

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 265

For both fixed and reloadable coefficients, the corresponding srdyo
output determines which outputs are valid. In the clock cycles where
load_coef is high, srdyi is neglected and srdyo goes low for the same
number of cycles after FIR2 latency.

The following figure shows an interface timing diagram for the block
signals:

If the option is not enabled, the coefficients provided at the w port are
not registered internally and the coefficient update is immediate and not
controlled.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
266 October 2013

Hardware Tab
Specify options for FIR architecture and hardware oversampling factors on
this tab. This tab also includes some device-specific options.

FIR architecture

Determines the FIR architecture. See FIR Architecture, on page 226 for
general information about FIR architectures. For target-specific informa-
tion about architectures, see Microsemi SmartFusion2 Options, on
page 269.

You can set one of these architecture implementations:

– Direct

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 267

– Transpose
This is only supported for baseline single-phase and polyphase FIRs.

– Systolic

Target Device

The Target Device option on the Hardware tab of the SMC FIR2 block, lets
you select a target vendor-specific FPGA for the best performance and
optimization. Choose one of the following options:

– Microsemi SmartFusion2
See Microsemi SmartFusion2 Options, on page 269 for information
about device-specific options.

–
Default

The generic Default option supports all architectures. If a particular FIR
architecture/configuration is not supported for the selected target archi-
tecture, the tool uses the hardware corresponding to the Default option.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
268 October 2013

Hardware oversampling factor within phases/filters

Specifies a hardware oversampling factor within a phase or filter, which
helps determine the frequency by which the processing clock can be
multiplied with regard to the input sample rate. See FIR2 Hardware
Oversampling Factors, on page 268 for additional information.

Hardware oversampling factor across phases

Specifies a hardware oversampling factor across phases, which helps
determine the frequency by which the processing clock can be multi-
plied with regard to the input sample rate. See FIR2 Hardware Oversam-
pling Factors, on page 268 for additional information.

Hardware oversampling factor across channels

Specifies a hardware oversampling factor across channels, which helps
determine the frequency by which the processing clock can be multi-
plied with regard to the input sample rate. See FIR2 Hardware Oversam-
pling Factors, on page 268 for additional information.

Register output

When enabled, implements a register at the output of the FIR filter.
Enable this option if RTL generation fails with a message about an infea-
sible path from the FIR2 block to the next block.

FIR2 Hardware Oversampling Factors

The hardware oversampling factors on the Hardware tab of the FIR2 block
define the factor by which the frequency of the processing clock can be multi-
plied with regard to the input sample rate. This allows the tool to correspond-
ingly reduce the number of multipliers by folded the filters.

By default, folding infers block RAMs for tap memories. If you do not want to
implement a folded filter using block RAMs for FPGAs, you must explicitly
specify this for your Synplify Pro or Synplify Premier synthesis run using the
syn_ramstyle constraint.

The following table lists implementations for certain folding factor settings:

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 269

If more than one of the factors is greater than 1, the tool only retains the
folding factor with the maximum value, and resets the others to 1. If the
folding factor does not exactly divide the corresponding dimension, the tool
adds zero padding to allow folding.

Microsemi SmartFusion2 Options
Microsemi SmartFusion2 Architectures

The following configurations or architectures are supported for the Microsemi
SmartFusion2 device.

Hardware Oversampling Setting Resulting Implementation

All hardware oversampling
factors = 1

Baseline or non-folded implementation

Within phases/filters > 1 Single phase filters = Folded within the taps
Polyphase decimator/interpolator = Folded
within each phase.

Across phases > 1 For polyphase decimators/interpolators, folds
across phases.

Across channels >1 For single phase multichannel filters, folds
across channels.

No. Architecture Settings

1 Systolic asymmetric baseline • Coefficient symmetry - None
(or non-symmetric constant coefficients)

• Polyphase filter type - None
• FIR architecture - Systolic

2 Systolic symmetric baseline • Coefficient symmetry - Symmetric or
Antisymmetric
(or symmetric/antisemmetric constant
coefficients)

• Polyphase filter type - None
• FIR architecture - Systolic

3 Transpose asymmetric baseline • Coefficient symmetry - None
(or non-symmetric constant coefficients)

• Polyphase filter type - None
• FIR architecture - Transpose

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
270 October 2013

Microsemi SmartFusion2 Hardware Options

The Hardware tab displays the following additional options for this target:

SmartFusion2 DSP Column Length

Specifies the number of Mathblocks (MACCs) in a row. The embedded
MACCs for SmartFusion2 devices are arranged in rows across the fabric.
The number of rows and column length for each row (number of MACC
per row) varies depending on the device. See the SmartFusion2 SoC
FPGA Fabric User's Guide for the Mathblock (MACC) resources available
for a particular device.

Number of column crossing registers

Specifies the number of registers inserted between two columns.

Input data word length

Specifies the word length of the input data. Internally, the FIR engine is
limited to a word length of 44. If you select word lengths and number of
taps that exceed the internal bit-growth upper limit of 44-bits, then FIR2
issues a warning and the accuracy of results may not be desired.

Coefficient word length

Specifies the word length of the input coefficients and internally is used
to calculate the bit-growth when Reloadable coefficients is selected. This
option is not available for Constant Coefficients, since it is automatically
calculated based on the coefficient entered and faction length.

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 271

Microsemi Output Ports

The tool includes the following additional output ports for Microsemi
SmartFusion2:

Krdyo [Output]

When you select Serial Coefficients for the Microsemi SmartFusion2 archi-
tecture, the krdyo port becomes available. This port determines whether
input data is ignored during the period that serial coefficients are loaded
into the FIR engine. Valid input data is indicated by one (1), where valid
output data is generated for that input. Invalid input data is indicated
by zero (0), when the input data is ignored by the FIR engine.

Transients [Output]

When you select Serial Coefficients for the Microsemi SmartFusion2 archi-
tecture, the transients port becomes available. This port determines
whether invalid output data is generated during the period that serial
coefficients are loaded into the FIR engine. A transient (invalid output
data) is indicated by one (1), when the output data is ignored by the FIR
engine.

FIR2 Limitations and Workarounds

The FIR2 functionality has some limitations. They are described below, along
with suggestions to work around the problem.

• srdyi/srdyo Ports, on page 271

• Serial Coefficients, on page 272

• Other Coefficient Issues, on page 273

srdyi/srdyo Ports
These are some limitations to specifying srdyi/srdyo ports for the FIR2 block:

• The tool does not support srdyi/srdyo ports for systolic self-folded FIRs
when the Hardware oversampling factor within filters < Number of taps / Hardware
oversampling factor within filters.

Workaround:
Decompose the impulse response in sections of size fofa*fofa. Use the
decomposed sections for parallel FIR2 instances, with a register of delay

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
272 October 2013

fofa*fofa and enabled by srdyi between two consecutive instances. Add the
output of the FIR2 instances.

• The tool only supports srdyi/srdyo for summed output in polyphase FIRs
with hardware oversampling factor across phases = number of phases.
You cannot use these ports if you specify polyphase output to be
Individual Phase or Both.

Workaround:
Split the phases outside the FIR2 instance and then use the multi-
channel FIR with hardware oversampling factor = number of channels =
number of phases in the original FIR description.

Serial Coefficients
The following describe some issues with serial coefficients:

• For serial coefficients in systolic self-folded FIRs, from the second coeffi-
cient load event onwards, when load_coef goes high again (to signal the
start of a new load), the sample that comes in the clock cycle immedi-
ately prior to load_coef going high is filtered with the new coefficients,
instead of the old coefficients.

Workaround:
Design the overall system so that it can tolerate the loss of one sample
just prior to loading a new set of coefficients.

• For serial coefficients in polyphase FIRs with oversampling factor across
phases = number of phases, from the second coefficient load event
onwards, when load_coef goes high again (to signal the start of a new
load), the sample that comes in the clock cycle immediately prior to
load_coef going high is filtered with the new coefficients, instead of the
old coefficients.

Workaround:
Design the overall system so that it can tolerate the loss of one sample
just prior to loading a new set of coefficients.

• For serial coefficients in MAC FIRs, from the second coefficient load
event onwards, when load_coef goes high again (to signal the start of a
new load), the sample that comes in the clock cycle immediately prior to
load_coef going high is filtered with the new coefficients, instead of the
old coefficients.

SMC FIR2 SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 273

Workaround:
Design the overall system so that it can tolerate the loss of one sample
just prior to loading a new set of coefficients.

• The SMC tool does not support serial coefficients are not supported for
systolic self-folded FIRs if the number of taps is not an integer multiple
of the hardware oversampling factor within phases/filters.

Workaround:
Increase the number of taps, to ensure that this relation is achieved.
Then feed zeros serially for the corresponding coefficients.

• The tool does not support serial coefficients for polyphase FIRs if the
number of taps is not an integer multiple of the number of phases.

Workaround:
Increase the number of taps to ensure that this relation is achieved.
Then feed zeros serially for the corresponding coefficients.

• For polyphase decimation FIRs with hardware oversampling factor
across phases = number of phases, and the serial coefficient option
enabled, the number of valid input samples between the de-assertion of
load_coef (indicating the end of a serial coefficient load operation) and its
re-assertion (indicating the start of the next serial coefficient load opera-
tion) must be an integer multiple of the number of phases. If not, the
filter does not perform as expected.

Other Coefficient Issues
The following describe miscellaneous issues:

• For all architectures other than baseline direct FIRs, if coef_sel is
changed (for selectable coefficient set) or a new set of coefficients are
applied for parallel reloadable coefficients, either with or without
load_coef input, the next few samples will be invalid for a length equal to
taps/fofa within filters or phases. However srdyo does NOT go low to
indicate that those samples are invalid.

Workaround:
Account for the invalid samples outside the FIR2 instance. The number
of clock cycles between the changing of coef_sel or the input coefficient
set and the output is a function of the processing pipeline latency and is
not same as the annotated latency of the FIR. Derived this value through
simulation.

LO

 SMC Blocks: Abs to Host Interface SMC FIR2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
274 October 2013

• The tool supports different srdyi sequences in different channels for
multichannel filters with fold across channels. However the load_coef,
input must be the same for all the channels even though its port dimen-
sion is the same as srdyi.

Workaround:
Generate a scalar sequence for load_coef and pass it through a Vector
Expand block before connecting it to the load_coef input.

SMC Flow Control Buffer SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 275

SMC Flow Control Buffer
Provides forward and backward flow control for bursty data streams.

Library

Synphony Model Compiler Memories

Description

The Synphony Model Compiler Flow Control Buffer is a custom block that provides
forward and backward flow control to manage multiple streams of data and
account for worst-case stalls.

• When forward control is enabled, the block uses the srdyi and srdyo input
and output signals. It stores the data in the buffer based on input signal
srdyi. Data in the buffer is always driven to the output, whenever it is
available. The srdyo indicates availability of the data to be read by
downstream logic.

• When backward flow control is enabled, the block uses the krdyi and
krdyo signals. The block stores the input data as long as the threshold is
not reached. It reads the data from the buffer according to the krdyi input
signal. The krdyo output signal indicates the availability of space in the
buffer so upstream logic can write to it.

Block Signals
The following figure and table describe the optional signals you can define for
this block to control data flow. All control signals are synchronous one-bit
scalar signals. The srdyi and srdyo signals control forward flow and the krdyi
and krdyo signals control backward flow. The sofi/sofo and eofi/eofo signals are
frame delimiter signals that go along with the data in the buffer and are
independent of flow control.

LO

 SMC Blocks: Abs to Host Interface SMC Flow Control Buffer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
276 October 2013

srdyi Source ready in
Input signal that enables the buffer write operation. If it is not defined,
the buffer write is always enabled. If the buffer has no space, input data
is not stored in the buffer.

srdyo Source ready out
Output signal that is asserted only when the buffer has data to be read.

krdyi Sink ready in
Input signal that triggers the reading of data from the buffer.

krdyo Sink ready out
Output signal that is asserted when the buffer is not full.

sofi Start of frame in
Input signal that should be asserted for the first word of each frame.

sofo Start of frame out
Output signal that is asserted when a word with sofi asserted is read from
the buffer. It is up to you to generate the appropriate sofi signal.

eofi End of frame in
Input signal that should be asserted for the last word of each frame.

eofo End of frame out
Output signal that is asserted when a word with eofi asserted is read from
the buffer. It is your responsibility to generate the appropriate eofi signal.

SMC Flow Control Buffer SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 277

Flow Control Buffer Operating Modes

The operating mode for the Flow Control Buffer block is based on the input and
output dimensions. The mode is automatically inferred from these dimen-
sions. Currently, the tool supports the following operating modes:

• Scalar - Scalar Operating Mode

This mode of operation is based on scalar input (din) and output (dout).
For this mode, the din sample rate must be the same as srdyi. The dout
sample rate is determined by the sample rate of the krdyi input signal.

• Scalar - Vector Operating Mode

This mode of operation is based on scalar input (din) and vector output
(dout). The input is stacked into a vector, according to the specified
output vector width. The output sample rate is the input rate divided by
the vector width.

The din, srdyi, and krdyo signals come in the higher sample rate domain
and the dout, srdyo and krdyi signals come in the lower sample rate
domain. Make sure that the din sample rate is the same as that of srdyi,
and that the krdyi sample rate is equal to the srdyi sample rate divided by
the output vector width.

The sofi/sofo and eofi/eofo signals are not available for this mode.

• Scalar - Matrix Operating Mode

This mode of operation is based on scalar input (din) and matrix output
(dout). Based on the output dimensions, the input is stacked into a
vector and then converted to a matrix. The matrix is given out on dout
when srdyo is asserted. The output sample rate is equal to the input rate
divided by the number of elements desired in the output.

The din, srdyi, and krdyo signals come in the higher sample rate domain
and the dout, srdyo and krdyi signals come in the lower sample rate
domain. Make sure that the din sample rate is the same as that of srdyi,
and that the krdyi sample rate is equal to the srdyi sample rate divided by
the number of elements of output.

The sofi/sofo and eofi/eofo signals are not available for this mode.

• Vector - Vector Operating Mode

This mode is based on vector data input and output. The input and
output vectors must be the same width. A separate buffer is instantiated

LO

 SMC Blocks: Abs to Host Interface SMC Flow Control Buffer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
278 October 2013

for each element of the input vector. Each buffer is controlled by the
same control signals.

For this mode, the din sample rate must be the same as srdyi. The dout
sample rate is determined by the krdyi sample rate.

• Vector - Scalar Operating Mode

This mode of operation is based on vector input (din) and scalar output
(dout). In this mode of operation, input vector is scalarized. This scalar is
given out on dout with srdyo asserted. The output sample rate is equal to
the input sample rate multiplied by the number of elements in the input.

The din, srdyi and krdyo signals come in the lower sample rate domain and
the dout, srdyo and krdyi signals come in the higher sample rate domain.
Make sure that the din sample rate is the same as that of srdyi, and that
the krdyi sample rate is equal to the srdyi sample rate multiplied by the
number of elements in the input.

The sofi/sofo and eofi/eofo are not available for this mode.

• Matrix - Matrix Operating Mode

This mode is based on matrix input and output. The input and output
matrices must have the same dimensions. A separate buffer is instanti-
ated for each element of the input matrix. Each buffer is controlled by
the same control signals.

For this mode, the din sample rate must be the same as that of srdyi. The
dout sample rate is determined by the sample rate of the krdyi input
signal.

• Matrix - Scalar Operating Mode

This mode of operation is based on matrix input (din) and scalar output
(dout). In this mode, the input vector is scalarized in a row-wise manner.
This scalar is given out on dout with srdyo asserted. The output sample
rate is equal to the input sample rate multiplied by the number of
elements in the input.

The din, srdyi and krdyo signals come in the lower sample rate domain and
the dout, srdyo and krdyi signals come in the higher sample rate domain.
Make sure that the din sample rate is the same as that of srdyi, and that
the krdyi sample rate is equal to the srdyi sample rate multiplied by the
number of elements in the input.

The sofi/sofo and eofi/eofo are not available for this mode.

SMC Flow Control Buffer SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 279

Icon Annotation

Flow Control Buffer Parameters

Input Dimensions

Specifies the input dimensions. You can specify the dimensions as a
single integer or as a pair of integer values:

Top annotation Buffer depth

Input Dimensions Input

Scalar input (1) Scalar input

Input vector width (integer) Vector input

Matrix [m,n], where m and n are the number of rows and
columns, respectively.

Matrix input

LO

 SMC Blocks: Abs to Host Interface SMC Flow Control Buffer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
280 October 2013

The tool uses the input and output dimensions to determine the
operating mode. See Flow Control Buffer Operating Modes, on page 277.

Output Dimensions

Specifies the output dimensions, either as a single integer or as a pair of
integer values.

The software uses the output dimensions along with the input dimen-
sions to determine the operating mode. See Flow Control Buffer
Operating Modes, on page 277 for details.

Buffer Depth

Specifies the number of samples that can be stored in the buffer. It
represents the extra buffering space required. Indirectly, the buffer
depth determines the depth of the FIFO block instantiated inside the
custom Flow Control Buffer block.

If only one type of flow control is enabled, buffering is not necessary.
These scenarios include the following:

– When forward flow control is enabled, the upstream block can send
data to the buffer with its corresponding srdyi signal and then passes
this data to the downstream block using its corresponding srdyo
signal. Nothing gets stored in the buffer, so the downstream block is
always available and ready to accept this data. This is true even when
scalar to vector conversions occur. The buffer only needs to send the
aggregate number of scalars to vectors with the correct srdyo signal.

– When backward flow control is enabled, the downstream block can
notify the buffer that it is not ready to accept data with its krdyi signal
and then passes this signal to the upstream block with it krdyo signal.
The upstream block must not send data to the downstream block
when it is not ready and be available to send data when the
downstream block is ready to accept it.

Output Dimensions Output

Scalar output (1) Scalar output

Output vector width Vector output

Matrix [m,n], where m and n are the number
of rows and columns, respectively.

Matrix output

-1 Inherit dimensions from input

SMC Flow Control Buffer SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 281

Buffering only occurs when both types of flow controls are enabled.

– If both types of flow control are enabled, the forward flow control
signals are used to write data into the buffer and communicate the
availability of data to downstream logic, and the backward flow
control signals are used to read data from the buffer and indicate
when the buffer is available for more data to be written to it.

The custom block implementation varies, according to the block param-
eters you set. The following figure shows the implementation with all the
flow control signals enabled:

The Flow Control Buffer block can be used to combine serial input or split the
input, as with the Serial-to-Parallel and Parallel-to-Serial blocks. The difference is
that the Serial-to-Parallel and Parallel-to-Serial blocks work with bit concatenation
and bit extraction, and are used for bit level serialization and parallelization,
while the Flow Control Buffer block is used to serialize and parallelize any data
samples with control.

Forward Flow Control (srdyi, srdyo)

When enabled, specifies forward flow control for the block. The tool adds
the srdyi and srdyo signals to the block, for input and output respectively.
When the srdyi signal is asserted, input data is written to the FIFO. The
srdyo signal is asserted when data is available to be read.

If the option is disabled, the tool does not add the srdyi and srdyo signals
to the block, and buffer write is always enabled.

You must enable at least one type of flow control.

LO

 SMC Blocks: Abs to Host Interface SMC Flow Control Buffer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
282 October 2013

Backward Flow Control (krdyi, krdyo)

When enabled, specifies backward flow control for the block. The tool
adds the krdyi and krdyo signals to the block, for input and output respec-
tively. When the krdyi signal is asserted, data is read from the FIFO. The
output krdyo signal is deasserted when there is no more space in the
buffer to write data.

If the option is disabled, the tool does not add the krdyi and krdyo signals
to the block, and the buffer is always enabled.

You must enable at least one type of flow control.

Start of Frame (sofi, sofo)

When this option is enabled, the tool adds the sofi and sofo start of frame
signals to the block. These signals are optional signals. When it is
disabled, the start-of-frame signals are not added to the block.

The sofi signal does not control the state of the buffer. The output sofo
signal is asserted when data with sofi asserted is read from the buffer.

End of Frame (eofi, eofo)

When enabled, specifies the end of the frame and adds the eofi and eofo
signals to the block. These signals are optional signals. The eofi signal
does not control the state of the buffer. The output eofo signal is asserted
when data with eofi asserted is read from the buffer.

Flow Control Buffer Waveforms

The following timing waveforms illustrate different modes of operation and
flow controls with the Flow Control Buffer block.

Scalar - Scalar Mode with Forward and Backward Flow Control

Input dimensions 1

Output dimensions 1

Buffer depth 4

Forward flow control On

Backward flow control On

SMC Flow Control Buffer SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 283

Scalar - Vector Mode with Forward Flow Control

Scalar - Vector Mode with Forward and Backward Flow Control

Input dimensions 1

Output dimensions 3

Forward flow control On

Backward flow control Off

Input dimensions 1

Output dimensions 3

Buffer depth 4

Forward flow control On

Backward flow control On

LO

 SMC Blocks: Abs to Host Interface SMC Flow Control Buffer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
284 October 2013

Vector - Scalar Mode with Forward Flow Control

Vector - Scalar Mode with Forward and Backward Flow Control

Input dimensions 3

Output dimensions 1

Forward flow control On

Backward flow control Off

Input dimensions 3

Output dimensions 1

Buffer depth 4

Forward flow control On

Backward flow control On

SMC Flow Control Buffer SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 285

LO

 SMC Blocks: Abs to Host Interface SMC FP Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
286 October 2013

SMC FP Add
Adds or subtracts two floating point values.

Library

Synphony Model Compiler Floating Point Functions.

Description

This block adds or subtracts two floating point values. The representations
are the same for the input and output floating points. You can also use this
block to perform dynamic addition or subtraction with the addsub option.

Floating Point Input and Output Formats

For all SMC floating point computation blocks, the format of the floating point
input or output is always an unsigned integer of length N bit, where

N = 1 + Length of the Exponent Field + Length of the Fraction
(Mantissa) field

These fields are arranged in the order shown below. The length of the
exponent and mantissa fields specify the floating point representation.

Sign Exponent Mantissa (Fraction)

1 Bit Exponent Length Fraction Length

MSB LSB

SMC FP Add SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 287

For example, the floating point representation is described for the following:

A quantity X with SMC floating point format can be represented as follows:

sign(X)*fraction(X)*2exponent(X)

The floating point representation is determined by the following conditions:

• Sign(X) is 1 if X<0. Otherwise, it is 0.

• Fraction(X) is represented as 1.Y, where (.) is the binary fraction point.
Note that for the representation of the mantissa, only the binary form of
Y is used with the MSB denoting the position of 2-1.

• Exponent(X) is represented as unsigned number biased by

2exponent word length -1 -1, with a range of 0 to 2exponent word length -1

Additionally, the following optional signals are available for the input/output:

For all SMC floating point computations, convergent rounding generates
results for rounding the mantissa as defined by the Matlab function
convergent(x).

Latency

The FP Add block has a latency of 9.

IEEE Single
Precision Floating
Point

If the exponent length is 8 bits and the mantissa length is 23
bits, this implies that an SMC floating point input or output
has a datatype of uint32 on the Simulink diagram.

IEEE Double
Precision Floating
Point

If the exponent length is 11 bits and the fraction length is 52
bits, this implies that an SMC floating point input or output
has a datatype of uint64 on the Simulink diagram.

inexact This signal goes high whenever the corresponding floating point
representation is approximate. This means that the mantissa value
was rounded to fit into the given format.

overflow This signal goes high when the biased exponent value in a floating
point representation is greater than the maximum value that can be
expressed with the number of bits assigned to the exponent.

underflow This signal goes high even when the biased exponent value goes to
zero. The mantissa cannot be represented by a number greater than
or equal to 1.0.

LO

 SMC Blocks: Abs to Host Interface SMC FP Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
288 October 2013

FP Add Parameters

Width of Exponent

Number of bits allocated for the exponent.

Width of Fraction

Number of bits allocated for the fraction (mantissa).

Inexact/Underflow/Overflow Ports

When enabled, the inexact, underflow, and overflow ports are available
for each floating point number at the input/output.

SMC FP Add SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 289

Operation

Selects one of the following operations:

add Adds the two inputs.

sub Subtracts the two inputs.

addsub Performs dynamic addition or subtraction for the two inputs. The
operation performed depends on the value of the addsub input:
• 0 - The inputs are added.
• 1 - The second input is subtracted from the first.

LO

 SMC Blocks: Abs to Host Interface SMC FP Compare

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
290 October 2013

SMC FP Compare
Compares two floating point numbers and returns 1 if the selected condition
holds true. Otherwise, returns 0.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP Compare block compares two floating point
numbers and returns 1 if the selected condition holds true. Otherwise, 0 is
returned.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

Latency

The FP Compare block has no latency

SMC FP Compare SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 291

FP Compare Parameters

Width of Exponent

Number of bits allocated for the component.

Width of Fraction

Number of bits allocated for the fraction (mantissa).

Comparison Operation

The following comparison operations are available: =,!=, <, <=, >, >=

LO

 SMC Blocks: Abs to Host Interface SMC FP Constant

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
292 October 2013

SMC FP Constant
Sets a constant value of the specified floating point representation as the
output.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP Constant block sets a constant value of the
specified floating point representation as the output.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

Latency

This block has no latency.

SMC FP Constant SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 293

FP Constant Parameters

Constant

The value of the constant applied to the specified floating point repre-
sentation provided for the output.

Width of Exponent

Number of bits allocated for the exponent.

Width of Fraction

Number of bits allocated for the fraction (mantissa).

LO

 SMC Blocks: Abs to Host Interface SMC FP Constant

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
294 October 2013

Sample Time (use -1 to inherit)

The sample time of the output. When specified as -1, this means that
sample time is inherited from the rest of the model. Any other legal value
must be greater than zero.

SMC Fixed to FP SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 295

SMC Fixed to FP
Converts a Fixed Point format to SMC Floating Point format with the specified
representation.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler Fixed to FP block converts a Fixed Point format to
SMC Floating Point format with the specified representation.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

Latency

This block has no latency.

LO

 SMC Blocks: Abs to Host Interface SMC Fixed to FP

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
296 October 2013

Fixed to FP Parameters

Word Length (Fixed Point)

Word length for the fixed point input.

Fraction Length (Fixed Point)

Fraction length for the fixed point input.

Width of Exponent (Floating Point)

Number of bits allocated to the exponent for the floating point output.

Width of Fraction (Floating Point)

Number of bits allocated to the fraction for the floating point output.

SMC Fixed to FP SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 297

Inexact/Underflow/Overflow Ports

When enabled, the inexact, underflow, and overflow ports are available
for each floating point number at the input/output.

LO

 SMC Blocks: Abs to Host Interface SMC FP Fused Mult Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
298 October 2013

SMC FP Fused Mult Add
Performs various multiply-add operations on three or four inputs.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP Fused Mult Add block performs fused Mult Add
operations on three/four inputs. You can select the operation from the mask
parameter. Using the FP Fused Mult Add block can provide substantial area
savings compared with the individual FP Mult or FP Add blocks, but this block
may cost higher approximation errors.The floating point representations are
the same for the input and output floating points. Multiple FP Fused Mult Add
blocks can be combined to perform floating point dot product operation. You
can use two FP Fused Mult Add blocks to perform floating point for complex
multiplications.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

Latency

This FP Fused Mult Add block has a latency of 14 for a*b+-c, a*b+-c*d and 11 for
the other operations.

SMC FP Fused Mult Add SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 299

FP Fused Mult Add Parameters

Width of Exponent

Specifies the number of bits to allocate for the exponent.

Width of Fraction

Specifies the number of bits to allocate for the fraction (mantissa).

LO

 SMC Blocks: Abs to Host Interface SMC FP Fused Mult Add

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
300 October 2013

Operation

Lets you to select one of the following operations:

Optimization Target

Specifies the target device for the FP Fused Mult Add block.

(a+b)*(c-d)

(a-b)*(c-d)

(a-b)*(c+d)

(a+b)*(c+d)

a*(b-c)

a*(b+c)

a*b+-c*d Both add and sub outputs are available in parallel.

a*b+-c Both add and sub outputs are available in parallel.

SMC FP Mult SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 301

SMC FP Mult
Multiplies two floating point values.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP Mult block multiplies two floating point values.
The input and output floating point representations are the same.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

Latency

The Floating Point Mult block has a latency of 6.

LO

 SMC Blocks: Abs to Host Interface SMC FP Mult

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
302 October 2013

FP Mult Parameters

Width of Exponent

Number of bits allocated for the exponent.

Width of Fraction

Number of bits allocated for the fraction (mantissa).

Inexact/Underflow/Overflow Ports

When enabled, the inexact, underflow, and overflow ports are available
for each floating point number at the input/output.

Optimization Target

Specifies the target device for the FP Mult block.

SMC FP Port In SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 303

SMC FP Port In
Converts the format from Simulink double to SMC floating point.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP Port In block converts Simulink double to SMC
floating point format. You can use this block instead of SMC Port In to define
the RTL generation boundary of floating point designs.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

RTL Generation

The RTL generated for FP Port In is a module that has the same name as the FP
Port In instance. The block ports are determined by the setting of the
Inexact/Underflow/Overflow parameter, which creates additional ports when this
parameter is enabled. When performing RTL integration, make sure that
FP_prt_In instanceName_porty is the top-level port.

Latency

This FP Port In block has a latency of 1, if the register input is selected. Other-
wise, the latency is 0.

LO

 SMC Blocks: Abs to Host Interface SMC FP Port In

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
304 October 2013

FP Port In Parameters

Width of Exponent

Number of bits allocated for the exponent.

Width of Fraction

Number of bits allocated for the fraction (mantissa).

Sample Time (use -1 to inherit)

The sample time of the output. When specified as -1, this means that
sample time is inherited from the rest of the model. Any other legal value
must be greater than zero.

SMC FP Port In SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 305

Capture Test Vectors for RTL Testbench

When enabled, each input captures the test vectors on the sample clock
and saves them in a file. The software can use this file when it generates
RTL to create stimuli for the RTL design. The .dat files for the test
vectors are stored in the modelFileDir/test_vectors directory.

Register Input

When enabled, the input is registered. With registered input, the block
has a latency of 1. The registers are generated with an attached syn_keep
directive that instructs the synthesis tools not to move these registers
during retiming.

Inexact/Underflow/Overflow Ports

Determines whether inexact, underflow, and overflow ports are created
for each floating point number at the input and output.

– When the option is disabled, the module has only one data input
(port x) and one output y. The y output is connected to the rest of the
design. When performing RTL integration, make sure that FP_prt_In
instanceName_porty is the top-level port.

– If the option is enabled, the tool creates corresponding 1-bit input
and output ports as shown here:

Input Port Names Output Port Names

portinex

portufl

portofl

inexact

underflow

overflow

LO

 SMC Blocks: Abs to Host Interface SMC FP Port Out

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
306 October 2013

SMC FP Port Out
Converts SMC floating point format to Simulink double.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP Port Out block converts SMC floating point
format to Simulink double. You can use this block instead of SMC Port Out to
define the RTL generation boundary of floating point designs.

Latency

This Float Point Out block has a latency of 1, if the register output is selected.
Otherwise, the latency is 0.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

RTL Generation

The RTL generated for FP Port Out is a module that has the same name as
the FP Port Out instance. This module will only have one data output (portx)
and one input x. The x input is connected to the rest of the design. When
performing RTL integration, make sure that the FP_Port_Out
instanceName_portx is the top-level output port.

SMC FP Port Out SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 307

FP Port Out Parameters

Width of Exponent

Number of bits allocated for the exponent.

Width of Fraction

Number of bits allocated for the fraction (mantissa).

Capture Test Vectors for RTL Testbench

When enabled, each input captures the test vectors on the sample clock
and saves them in a file. The software can use this file when it generates
RTL to create stimuli for the RTL design. The .dat files for the test
vectors are stored in the modelFileDir/test_vectors directory.

LO

 SMC Blocks: Abs to Host Interface SMC FP Port Out

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
308 October 2013

Register Output

When enabled, the output is registered. With registered output, the
block has a latency of 1. The registers are generated with an attached
syn_keep directive that instructs the synthesis tools not to move these
registers during retiming.

SMC FP to Fixed SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 309

SMC FP to Fixed
Converts an input SMC Floating Point format to a signed Fixed Point format
with the specified word length and fraction length.

Library

Synphony Model Compiler Floating Point Functions.

Description

The Synphony Model Compiler FP to Fixed block converts an input SMC Floating
Point format to a signed Fixed Point format with the specified word length and
fraction length.

Floating Point Formats

For information about SMC floating point input and output formats, see
Floating Point Input and Output Formats, on page 286.

Latency

This block has no latency.

LO

 SMC Blocks: Abs to Host Interface SMC FP to Fixed

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
310 October 2013

FP to Fixed Parameters

Word Length (Fixed Point)

Word length for the fixed point output.

Fraction Length (Fixed Point)

Fraction length for the fixed point output.

Width of Exponent (Floating Point)

Number of bits allocated to the exponent for the floating point input.

Width of Fraction (Floating Point)

Number of bits allocated to the fraction for the floating point input.

SMC Gain SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 311

SMC Gain
Implements a constant gain to the input.

Library

Synphony Model Compiler DSP Basics and Synphony Model Compiler Math
Functions

Description

The Synphony Model Compiler Gain block provides a constant gain by multiplying
the input by the specified gain factor. For trivial gain values, the software
does the following optimizations:

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

0 Output is connected to 0

1 Output is connected to input

2±n Output is shifted left/right by n (n being an integer)

LO

 SMC Blocks: Abs to Host Interface SMC Gain

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
312 October 2013

Gain Parameters

Gain

Specifies the factor by which the input is multiplied to implement the gain.
If the input to the block is a vector or matrix, you can specify the gain value
as a column or row vector/matrix, with different gain factors for each

SMC Gain SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 313

channel. The value you enter in this field must either be a scalar or have the
same dimensions as the input.

Gain fraction length

Specifies the accuracy of the fraction requested for the coefficient value.
The software infers the total word length of the coefficient automatically
inferred from the value.

Gain data type

Determines the data type for the gain value (specified in the Gain option)
for the block. You can set it to signed or unsigned.

Gain round towards nearest on underflow

Determines how the underflow for the gain is treated. Enable the option
to round the underflow using the Nearest algorithm, and disable it to
round the overflow with the Floor (truncate) algorithms. See Underflow
Rounding Options, on page 585 for details.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output round on underflow

Determine how overflow and underflow are treated. These options are
only available when Output format is set to Specify.

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

Output saturate on
overflow

When enabled it saturates the overflow; when
disabled, it wraps the overflow. See Overflow
Saturation Options, on page 585 for details.

Output round on
underflow

Uses the specified algorithm to round the
underflow; see Underflow Rounding Options, on
page 585 for descriptions of the algorithms.

LO

 SMC Blocks: Abs to Host Interface SMC Gain

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
314 October 2013

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

– Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

– Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.

Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output
port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

SMC Gold Sequence Generator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 315

SMC Gold Sequence Generator
Generates a Gold sequence with specified polynomials u and v, of period N =
2n - 1, called a preferred pair.

Library

Synphony Model Compiler Communications

Description

The Gold Sequence Generator block generates a Gold sequence. The Gold
sequence is an XOR between two maximal length PN sequences (see SMC
Gold Sequence Generator, on page 315)with specified polynomials u and v, of
period N = 2n - 1, called a preferred pair. The set of gold sequences for a given
pair of component PN sequences (u,v) defined as

where,

• T represents cyclical left shift of the corresponding component sequence
by one place,

• represents element-wise XOR operation of two vectors of same
length. Note that G(u,v) contains N + 2 sequences of period N.

The Gold Sequence Generator block outputs one of these sequences according to
the initial states (1) and (2) parameters. This block is a custom block (see Primi-
tives and Custom Blocks, on page 800 for definition).

LO

 SMC Blocks: Abs to Host Interface SMC Gold Sequence Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
316 October 2013

The following figure shows the internal modeling:

Latency

This block has no latency.

SMC Gold Sequence Generator SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 317

Gold Sequence Generator Parameters

Preferred polynomial (1)

Represents the generator polynomial used for constructing the first preferred
pair of PN sequences (u). See Generator polynomial, on page 141 for details.

Preferred polynomial (2)

Represents the generator polynomial used for constructing the second
preferred pair of PN sequences (v). See Generator polynomial, on page 141 for
details.

LO

 SMC Blocks: Abs to Host Interface SMC Gold Sequence Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
318 October 2013

Initial States (1)

Represents the Initial states, on page 398 used for constructing the first
preferred pair of PN sequences (u).

Initial States (2)

Represents the Initial states, on page 398 used for constructing the second
preferred pair of PN sequences (v).

Reset Port

When enabled, the block is implemented with a reset pin. The reset port is
connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable port
is connected to the enable signal of the internal shift register.

Sample Time

Determines sample time. Use -1 to inherit. This option is not available if you
specify reset or enable ports.

SMC HLS Subsystem SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 319

SMC HLS Subsystem
Lets you add a previously designed Synphony model to the current design
and set implementation settings for it.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler HLS Subsystem block lets the designer instantiate a
model that has already been designed. The tool synthesizes the block using
the original model. For simulation, it copies the contents of the HLS Subsystem
block and uses the copy for simulation.

LO

 SMC Blocks: Abs to Host Interface SMC HLS Subsystem

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
320 October 2013

The HLS Subsystem block is intended to be used in a bottom-up design flow,
where you implement independent modules and optimize them separately,
and then assemble them at the top level. For information about using the
block, see Using the HLS Subsystem Block, on page 786.

The shls.log file documents details of the HLS Subsystem blocks used in the
design. For more information about this and the file structure the tool uses
when you include HLS Subsystem blocks, see Using the HLS Subsystem Block,
on page 786.

Tool Simulation Process for HLS Subsystem Blocks

The tool uses the imported subsystem model file as the simulation model of
the subsystem. For information about simulating the block design, see
Simulating HLS Subsystem Blocks, on page 844. The tool goes through the
following steps when it simulates the block:

1. If Lock HLS Subsystem button is disabled, the tool automatically imports
the subsystem model file as follows:

– It loads the subsystem model file and compiles it to evaluate all
parameter values. It copies each block to under the subsystem, and
replaces parameter specifications with local variables for the
subsystem to preserve actual values.

– The tool converts the subsystem Port In and Port Out blocks to
subsystem ports. It also adds From and GoTo blocks if the subsystem
has Port In and Port Out blocks that are not at the top level.
Additionally, it inserts Convert blocks after the subsystem input ports
to enforce the data types specified at the Port In blocks.

– HLS Subsystem modules must have registered I/Os. The tool inserts
Delay blocks at inputs and outputs to account for I/O registers.

2. If Lock HLS Subsystem button is enabled, the tool preserves the existing
simulation model, and does not regenerate the subsystem block.

3. For multichannelization, see Vectorize scalar ports for multichannelized
subsystems, on page 324. When multichannelization optimization is
used for a reference subsystem, the tool instantiates a copy of the
subsystem for each channel to simulate the behavior.

4. The tool compares the data type and rate of each HLS Subsystem I/O port
to the data type and the rate of the associated port in the subsystem
model and then propagates the data types and rates.

SMC HLS Subsystem SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 321

It generates an error if it cannot find the model file. If there is a
mismatch between data types or data rates of the subsystem ports and
the top-level signals, the tool stops simulation and issues an error
message.

5. It then continues with the rest of the simulation process as usual.

Tool Synthesis Process for HLS Subsystem Blocks

When RTL is generated at the top level, the tool goes through the following
steps to synthesize the subsystem:

1. Updates the model and compiles it.

2. Runs simulation as described in Tool Simulation Process for HLS
Subsystem Blocks, on page 320. The tool uses the imported subsystem
model file as the simulation model of the subsystem.

The optimization parameters set for the subsystems are considered part
of the behavior of the top level. For example, the number of channels or
the latency of the subsystem is reflected in the top-level simulation.

3. Checks that top-level and subsystem parameters for synthesis match in
the active subsystem implementation.

If there is a mismatch the synthesis parameters of the top level override
the parameters of the subsystem, and you see a warning message in the
synthesis log file.

4. Generates RTL for the subsystems.

– If Lock HLS Subsystem was disabled, the process generates RTL for each
HLS Subsystem. For each HLS Subsystem, the tool uses the subsystem
model file to generate RTL.

– If Lock HLS Subsystem was enabled, the tool does not regenerate RTL
for each HLS Subsystem, but uses the RTL generated previously.

5. Generates RTL for the top level.

6. Generates a test bench for the top level if you selected that option. The
tool uses the do files generated for the HLS Subsystem as input in this
process.

LO

 SMC Blocks: Abs to Host Interface SMC HLS Subsystem

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
322 October 2013

Limitations to Using the HLS Subsystem Block

Currently there are some limitation to using the HLS Subsystem block:

• An HLS Subsystem block cannot contain another HLS Subsystem block; in
other words, you cannot have nested HLS Subsystem blocks.

• Subsystem models cannot contain black boxes, but you can have black
boxes at the top level.

• Subsystem models cannot contain Viterbi blocks, but you can have Viterbi
blocks at the top level.

• The tool does not support folding, retiming, and multichannelization at
the top level when you have HLS Subsystem blocks in the design.

Latency

The latency of this block is determined by the subsystem design, and the
optimizations specified for it.

HLS Subsystem Parameters

SMC HLS Subsystem SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 323

Lock HLS Subsystem

Determines whether RTL is regenerated for the block when you run
synthesis on the top-level design:

– If Lock HLS Subsystem is disabled, the tool generates RTL for each HLS
Subsystem block. It uses the subsystem model file to generate RTL for
each HLS Subsystem block. It first generates RTL for the subsystem,
using the specified model file as the top level. It then instantiates this
RTL in the top-level RTL.

– If Lock HLS Subsystem is checked, the tool does not regenerate RTL for
each HLS Subsystem, but uses the RTL information for the block
generated from the previous top-level synthesis run. Use this option
when your subsystem design is not going to change. This option
speeds up runtime. Do not use this option unless you have run
top-level synthesis and generated RTL for the subsystem at least once
before.

Enable Fast Simulation

Determines whether a C-model is used to simulate the block.

– When the option is disabled, the tool uses the Simulink model of the
HLS Subsystem block for simulation.

– When it is enabled, the tool uses the C-model and S-function wrapper
of the subsystem for simulation instead of the Simulink model.
Although the generation of the C-model can take some time,
especially for large subsystems, the model only needs to be generated
once. This means that checking Enable Fast Simulation can speed up
runtime, because the C-model does not have to be regenerated. Each
HLS Subsystem block for which fast simulation is enabled consumes a
C output license.

In both cases, the tool instantiates a subsystem block under the HLS
Subsystem block hierarchy called HLSSimModel, which is used exclusively
for simulation. The generation of the HLSSimModel information varies
with the setting you choose:

LO

 SMC Blocks: Abs to Host Interface SMC HLS Subsystem

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
324 October 2013

See Simulating HLS Subsystem Blocks, on page 844 for a step-by-step
procedure.

Reference Synphony Model File

Specifies the model file (.mdl) that describes the behavior of the
subsystem. The tool uses the parameters from the specified implemen-
tation for the model. Use the Browse button if needed to locate the imple-
mentation. You can specify relative or absolute paths in this field.

Reference Implementation Directory

Specifies which implementation to use for the specified model file by
indicating the appropriate implementation directory. Use the Browse...
button if needed to locate the directory. You can specify relative paths in
this field.

Vectorize scalar ports for multichannelized subsystems

Determines how scalar ports are implemented for multichannelized
subsystems:

Without Fast Simulation Fast Simulation Mode

Copies all blocks in the HLS Subsystem
model file to the HLS Subsystem block.

Uses the C-model, which is
instantiated in HLSSimModel.

Converts subsystem Port In and Port Out
blocks to subsystem ports. Adds From and
Go To blocks if the ports are not at the top
level of the subsystem.

Adds Convert blocks after the subsystem
input ports to enforce the data types and
sample time.

The S-function wrapper
implements the data type and
sample time consistency
checks.

Adds delay for registered input and output
ports.

Included in C-model.

Adds implementation latency to the output
as delay.

Included in C-model.

For multichannel implementations,
replicates HLSSimModel, according to the
number of channels required.

C-model includes ports for each
of the channels.

SMC HLS Subsystem SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 325

– When enabled, displays the input or output scalar ports for
multichannel reference implementations as vector signals on the HLS
Subsystem block. Each vector element represents one channel data.
This option does not affect vector/matrix ports.

– When disabled, all scalar ports for each channel are populated as
separate ports.

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
326 October 2013

SMC Host Interface
Provides a slave interface to simpler bus protocols that let you interface with
the host processor and configure the design.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Host Interface provides a slave interface to a simpler interconnect protocol
that lets the design interface with the host processor and load the
memory-mapped configuration registers and parameters required by the
SMC design. For information about using this block in an SMC design, see
Synthesizing with a Host Interface Block, on page 678.

This block supports the following bus protocols in slave mode: AXI4-Lite,
APB, AVALON, and Generic Interface. The bus protocols are described in
detail in Bus Protocols, on page 738. You can enter the memory map and bus
interface information, and the memory map registers are output to the SMC
design at asynchronous sample rates. The block also allows you to add
synchronizers for single-bit memory map elements.

You cannot use workspace variables to specify Host Interface block parameters.

The following schematic illustrates how the block fits into the system at the
next level of abstraction, providing a protocol-specific slave interface module
and storage for memory-mapped configuration data:

SMC Host Interface SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 327

When simulating and synthesizing a model that includes the Host Interface
block, note the following:

• Never register the input and output bus protocol interface signals in the
SMC design. This is because all the protocols have a handshake mecha-
nism which would no longer be compliant with the protocol if the bus
interface signals are delayed. This leads to unexpected results.

• You cannot use multichannelization during synthesis. Multichannel-
izing the block would mean replicated memory-mapped registers with
the same address, which is not supported.

• You cannot use folding. Folding creates registers on the ports and
typically introduces delay on the bus interface signals, which leads to
the failure to meet bus protocol specifications.

• You cannot use retiming, because this optimization tends to create
registers on the bus protocol signal outputs from the Host Interface block.

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
328 October 2013

The registers violate the handshake mechanism between the Host Inter-
face block and the bus master.

• You can use any reset sensitivity and polarity for models that incorpo-
rate the Host Interface block.

Latency

The block does not have a fixed latency for the response to a request from the
initiator, which is either a bus interconnect or a master. The interaction of
the Host Interface block with the initiator is affected by two factors:

• The bus protocol and the handshake mechanism defined by the bus
protocol.

• The current state of the block: whether it is in idle state or currently
processing the previous request of the initiator.

The memory map configuration data is first stored in the bus clock domain.
The block then adds an additional output register, clocked by the destination
clock of the respective memory map elements, before outputting the configu-
ration data to the SMC design. The additional register ia to avoid mismatches
between RTL and Simulink simulations. Simulink has a limitation where it
introduces one additional latency when simulating signals at a rate different
than the rate at which the signal is driven, and the block adds the extra
register to match that behavior. The register is not required for single-bit
memory map elements that are synchronized, because in Simulink, the
signal is driven by the same rate at which it is simulated, because of the
synchronizer flop.

This addition of the extra output register stage makes memory map configu-
rations available to the SMC design on the following rising edge of the desti-
nation clock after the host configures them. For single bit memory map
elements for which you have specified a synchronizer block, the memory map
register bit is available to the SMC design after the synchronizer delay.

SMC Host Interface SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 329

Host Interface Parameters

The block mask has two tabs, Bus Interface Tab, on page 329 and Memory
Map Tab, on page 331.

Bus Interface Tab
The parameters on this tab affect the bus interface.

Bus interface protocol

Specifies the slave protocol you need to implement. The block updates
its bus interface based on the protocol you select. For descriptions of the
four bus protocols available, see the following sections:

– AXI4-Lite Protocol, on page 738

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
330 October 2013

– APB Protocol, on page 743

– Generic Interface Protocol, on page 748

Datawidth

Sets the word size for the bus protocol. Possible values are 8-bit, 16-bit,
32-bit, and 64-bit, but not all protocols support all values. The only choices
for AXI4Lite are 32bit and 64bit. APB does not support 64bit.

Address width

Determines the address bus width. You have two choices:

– Auto
The block automatically calculates the minimum address width
based on the specified base address, data width and the maximum
word address and uses it as the address width. The following formula
is used to calculate the minimum address width:

ceil (log2 (baseaddress + (maximum word address * datawidth/8)))

– Specify

Lets you explicitly specify the address bus width in Specify address
width.

Specify address width

Specifies address bus width when Address Width is set to Specify.

Support write strobe

Determines support for write strobes or byte enables during write trans-
actions.

– When disabled, the block assumes that all the bytes in the data word
are selected for writing.

– When enabled, the block supports byte enables during the write
transactions. The following shows a simulation waveform during
write transaction for AXI4Lite protocol when write strobes are used:

SMC Host Interface SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 331

Memory Map Tab
Lets you set memory mapping configurations in a tabular format.

Import memory map

Loads previously saved memory map data from a csv file or an xml file
that is compatible with IP-XACT.

Save memory map as

Lets you save the memory map data you specified in the table in a csv
file or as an xml file that is compatible with IP-XACT.

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
332 October 2013

Add register / Remove selected register

Adds new memory map elements to or deletes selected elements from
the table.

Base address

Specifies the base address of the slave. A byte-precise address must be
specified, but the address has to be word aligned. If not, the block errors
out without generating the RTL.

Take a case where the data width is 32. As the word size is 4 bytes, the
specified base address must be divisible by 4. This means that the last
two bits of the base address must be zero.

Endianess

Determines how the bytes of the data bus are mapped.

– Little
The data bus bytes are directly mapped to the memory map register
bytes.

– Big
The ith byte of the data bus is mapped to (N-i)th byte of the memory
map registers. N is the number of bytes of the data bus.

Stages in multi-flop synchronizer

Sets the number of flops required for the multi-flop synchronizer. The
option is valid only if Synchronization is checked for a memory map
element.

Register name

Specifies the name of the memory map register. Only alphanumeric
characters and underscores are allowed. The name cannot start with a
number. It must not start or end with an underscore. The name must
not contain consecutive underscores or spaces.

The memory map port name in the Host Interface RTL follows this conven-
tion:

register_name_in|out_eIndex

SMC Host Interface SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 333

The memory map output/input name of the Simulink block is different.
For single-word memory map elements, the block name is specified as:

<register_name>_in|out_e0

For memory map elements where the number of words is greater than 1,
the block name is specified without the index number as shown below.
This is because the Simulink block vectorizes the memory map elements
with number of words greater than 1 and creates a single port.

<register_name>_in|out

Word start address

Specifies a value that is multiplied by the number of bytes in the data
bus to get the byte-precise address of the word. The base address is
added to this value to get the absolute address.

Absolute start address of a register= (word start address) x (number of bytes
in data bus) + (base address)

If the memory map element has multiple words, the absolute address of
the subsequent word is computed by incrementing the word address of
previous word by 1.

For example, consider a 40-tap FIR filter with configurable coefficients
coming from the host processor. If the word start address is 3, data bus
width is 32, and the base address is1024 (this value must be divisible by
number of bytes in the databus i.e. 4), then the absolute addresses are
as follows:

Absolute address of 1st coeff = 3 x 4 + 1024 = 1036
Absolute address of 2st coeff = 4 x 4 + 1024 = 1040
…
…
Absolute address of 40th coeff = 42 x 4 + 1024 = 1192

register_name Specified register name

in Read only access type

out Write only, or read/write access type

index 0, 1, 2 … <number of words in the memory map element - 1>

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
334 October 2013

You can create unused memory map locations in the IP for future
expansion by specifying a word start address the does not consecutively
follow the previous element in the memory, For example, take a 40-tap
FIR filter with configurable coefficients where the number of taps is
expected to go up to 64 taps. In this case, specify the word start address
of the memory map element following the coefficients in the table as
Word start address of the coefficients + 64, instead of Word start address of the
coefficient + 40.

The Host Interface block does not issue errors for write transactions to
unused spaces. For read transactions to unused locations, it responds
with 0 data.

Number of words

Specifies the number of words for the current memory map element. For
example, for a 40-tap FIR filter with configurable coefficients coming
from the host processor, the number of words entered would be 40.

Word length, Fraction Length, and Signed

These data type options for the output of the memory map element are
considered during Simulink simulations. The output port width (or the
input port width in the case of read-only memory map) of the element in
the Host Interface RTL is equal to the specified word length.

The word length must be less than or equal to width of the data bus
(data width). Fractional length must not exceed the word length. The
single-bit memory map elements cannot be signed.

Sample time

Specifies a sample time to be used during Simulink simulations to
update the memory map ports available at the output of the block. Inter-
nally, these memory map registers are driven by the bus clock domain.

Specify -1 in this field to automatically infer the sample time of the bus
interface. If the sample time is different from the bus interface sample
time, no synchronizer stage is inserted in the Host Interface block. For
read-only access memory map elements, you must specify -1 in this
field, because the sample time will be propagated from the SMC design
in this case.

SMC Host Interface SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 335

Dimension

For multiple-word memory map elements, specifies the dimension of
output to be used in the Simulink model. For single-word memory map
elements, its value must be 1.

Enter the dimension in [a b] format, with a being the number of rows and
b the number of columns. The total number of elements (a x b) must be
equal to the value entered in Number of words. The individual word
outputs are arranged in the row-first order in the output.

The following examples illustrate how to specify this value:

– Memory map element infers the coefficient outputs for a 40-tap FIR
filter
Set the dimensions to [1 40] or [40 1], depending on whether the Filter
accepts coefficients as row vectors or column vectors.

– Memory map element infers the coefficient output of a 4 channel FIR
filter with each channel having 10 taps
Set the dimensions to [4 10] or [10 4], depending on how the
multichannel FIR filter accepts coefficient vectors, and whether the
coefficients are arranged in channel-interleaved or non-interleaved
order in the memory map registers in the Host Interface block.

Access type

Defines the access of the host processor or bus interface to the memory
map element.

Read/Write is especially useful for debugging the software. For example, it
would be useful in a scenario where the SMC design assumes a 24-bit
coefficient and the host processor assumes a 32-bit word length for the
coefficient. In this case, this setting enables the software to read back
the FIR coeffs it has written to ensure that the values are not corrupted.

Read only Use this value if the memory map element value is driven by
the SMC design. The tool infers an input port to the Host
Interface block in this case.

Write only Use this setting when the host processor is restricted to
reading the value from the memory map. An output port is
inferred in this case.

Read/Write Specify this setting if the host processor is allowed to read as
well as write to the memory map register. The tool infers an
output port to the Host Interface block in this case.

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
336 October 2013

The Read/Write setting does not incur any more area and timing overhead
than the Write only setting, so use Write only if you explicitly need to restrict
the host processor from reading back the values.

Synchronization

Determines whether memory map outputs that drive the SMC design
are synchronized. You can only enable this option if all of the following
conditions are met:

– Word length must be 1

Typically, the host processor has a configuration methodology that
ensures that the effect of the newly configured data on the IP is fully
controlled by a single memory-mapped bit. Given this, it is sufficient
to synchronize this single bit instead of the entire configuration data.
Some illustrative examples are described below:

Example1: Memory-Mapped Enable Control

The host uses memory-mapped enable to control the data processing
of the SMC design. The following figure shows the interaction
between the Host Interface block and the SMC design in this scenario:

The host de-asserts memory map enable, and then configures the
rest of the configuration data. Finally, the host asserts the memory
map enable bit. It is assumed that the host is aware of the IP clock

SMC Host Interface SMC Blocks: Abs to Host Interface

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 337

frequency so that it waits until the enable bit reaches to the SMC
design before starting configuration.

Example 2: Memory-Mapped Reset Control

The host uses the memory-mapped reset to control the data
processing of the SMC design. The following schematic is similar to
the previous one, except the synchronized bit is used to reset the
design instead of stalling it.

The host first asserts the memory map reset. This bit resets the SMC
design and keeps it in this state. Next the host configures the rest of
the configuration data. Finally, the host de-asserts the memory map
reset bit, which releases the design from reset. The design then starts
processing with the new configuration data.

– Access type must not be Read only

Currently the Host Interface block does not allow the data coming from
the SMC design to be synchronized.

– Sample time must not be -1

If the specified sample time is -1, the tool uses the bus interface
sample time, so synchronization does not make sense.

LO

 SMC Blocks: Abs to Host Interface SMC Host Interface

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
338 October 2013

– Number of words is 1

Currently the Host Interface block does not allow synchronization when
the number of words is greater than 1.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 339

C H A P T E R 3

SMC Blocks: IIR to Viterbi Decoder

This chapter describes the Synphony Model Compiler blocks in alphabetical
order, starting with the In block. The other blocks are described in
Chapter 2, SMC Blocks: Abs to Host Interface.

Refer to the following sections for complete lists of the blocks, and other
block-related information:

• Blocks — By Library, on page 28

• Blocks — Alphabetical List, on page 39

• Primitives and Custom Blocks, on page 800

• Blockset Summary, on page 945

The next block description is for the In block.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC IIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
340 October 2013

SMC IIR
Implements an infinite impulse response (IIR) filter.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler IIR block implements an infinite impulse response
filter, using a Direct Form II Transposed architecture. Typically, this results
in smaller memory utilization.

Currently, the internal data path specification of the IIR is determined by the
input specification. It is recommended that you use some fractional part on
the input port of the IIR. Do not use the output format to change the data
type, because the selected output format tries to increase the resolution of
the output compared to input.

SMC IIR SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 341

Forward and feedback coefficients are defined by coefficient vector or coeffi-
cient matrix parameters, according to the application. The coefficients can be
extracted from an FDATool instance with the syn_get_coefs command. When
you select Automatic for the output data type, the output word length is deter-
mined by adding an estimated amount of guard bits on top of the input word
length.

Matrix and Vector Coefficient Definitions

There are various possibilities for input and coefficient signal sizes:

• Both forward and feedback coefficients are row vectors (dim:1xN) and the
input is a one-dimensional signal. This is normal operation.

• Both forward and feedback coefficients are row vectors (dim:1xN) and the
input is an M-dimensional signal. This results in multiple channels,
each operating with the same set of forward and feedback coefficients.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC IIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
342 October 2013

The same forward and feedback coefficient array vectors are applied to
each dimension of the M-dimensional input signal.

• Both forward and feedback coefficients are matrices (dim:MxN) and the
input is an M-dimensional signal. This results in multiple channels,
each operating with a different set of forward and feedback coefficients.
Each row of the forward and feedback parameter matrices are applied to
a different signal dimension in the m-dimensional input signal.[o5]

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

IIR Parameters

SMC IIR SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 343

Coefficients (forward)

Specifies the forward coefficients in one of these ways:

– Type in a vector with the filter coefficients. See Matrix and Vector
Coefficient Definitions, on page 341.

– If the input to IIR is vectorized, either type in a matrix with each row
specifying forward IIR coefficients for the corresponding channels, or
type in a vector as usual for creating identical IIR channels. When the
coefficients are defined in a matrix, the number of rows must be
equal to the input vector size. See Matrix and Vector Coefficient
Definitions, on page 341 for additional details.

– Alternatively, type the syn_get_coefs command in this field to extract
the coefficients from an FDATool instance. If you are using this
method, the filter structure must be converted to a single section. For
information about using the FDATool to convert the structure to a
single section and extract coefficients, see Defining FIR Filter
Coefficients with FDATool, on page 768. See syn_get_coefs, on
page 604 for details of the function syntax.

Coefficients (feedback)

Specifies the feedback coefficients in one of the following ways:

– Type in a row vector with the filter coefficients. The first element of
the feedback vector must be 1. If it is any other value, the software
scales the vector so that the first element is 1. Do not set the first
element to 0, as it can result in unexpected behavior.

– If the input to IIR is vectorized, either type in a matrix with each row
specifying feedback IIR coefficients for the corresponding channel, or
type in a vector as usual for creating identical IIR channels. When the
coefficients are defined in a matrix, the number of rows must equal
the input vector size. See Matrix and Vector Coefficient Definitions,
on page 341 for additional details.

– Alternatively, type the syn_get_coefs command in this field to extract
the coefficients from an FDATool instance. For more information about
this command, check the references listed for Coefficients (forward),
on page 343.

Coefficient fraction length

Specifies the fraction length for the coefficient.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC IIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
344 October 2013

Coefficient round towards nearest on underflow

Determines how the underflow for the coefficient is treated. Enable the
option to round the underflow using the Nearest algorithm, and disable it
to round the overflow with the Floor (truncate) algorithms. See Overflow
Saturation Options, on page 585 for details.

Show impact of coefficient quantization

When enabled, the spectrum window displays the coefficients with and
without quantization.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output rounding

Determine how overflow and underflow are treated. For descriptions of
these parameters, see the following:

Output format Output Format, on page 583.
Do not use the output format to change
the data type. See Description, on
page 340 for details.

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

Output
saturate on
overflow

Saturates (option enabled) or wraps (option disabled) the
overflow. See Overflow Saturation Options, on page 585

Output
rounding

Uses the specified algorithm to round the underflow; see
Underflow Rounding Options, on page 585.

SMC In SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 345

SMC In
Allows you to add an in port to a subsystem to a Synphony Model Compiler
design.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler In block provides an in port for a subsystem added
to a Synphony Model Compiler design. For details about this block, refer to
the Simulink documentation for the Inport block in the Simulink Ports & Subsys-
tems library.

Latency

This block has no latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Integrator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
346 October 2013

SMC Integrator
Performs a discrete time integration of the input signal.

Library

Synphony Model Compiler Filtering

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) performs a discrete time integration of the input signal.

Latency

This block has no latency.

SMC Integrator SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 347

Integrator Parameters

Pole Value

Determines how the block is implemented. The pole value must be
between 0 and 1.

The following figure shows implementations with different pole values. A
value of 0 is implemented as feedthrough without integration. A value of
1 is full integration, where the pole on the unit circle causes instability
for DC frequencies. With a value of .9, you get a leaky integration,
because the pole close to the unit circle causes high gain close to DC
frequencies. With a value of .1, you get a very leaky integration, with
very little distinction between different signal gains.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Integrator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
348 October 2013

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

Pole Value = .9Pole Value = 1

Pole Value = .1

Pole Value = 0

SMC Integrator SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 349

Output saturate on overflow, Output round towards nearest on underflow

Determine how overflow and underflow are treated. These options are
only available when you set Output Format to Specify.

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Output saturate
on overflow

Saturates or wraps the overflow; see Overflow Saturation
Options, on page 585.

Output round
towards
nearest on
underflow

Withe the option enabled, the software uses the Nearest
algorithm to round the underflow; when disabled, it uses
the Floor (Truncate) algorithm. See Underflow Rounding
Options, on page 585 for details.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Inverter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
350 October 2013

SMC Inverter
Calculates the inverse (one’s complement) of the input.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Inverter block calculates the one’s complement of
the input, which is a bitwise inversion of the input. The block supports vector
inputs.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Inverter SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 351

Inverter Parameters

For descriptions of the parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Leading Zero Counter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
352 October 2013

SMC Leading Zero Counter
Computes the number of leading zeros for an unsigned input.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Leading Zero Counter custom block computes the
number of leading zeros for an unsigned input, which is the number of zeros
starting from the MSB before it encounters one. This block is valuable when
it is used in conjunction with a variable shifter to align numbers that always
have a specific number of zeros before the most significant one. This is an
essential computation for floating point and other operations that depend on
number formats. The block can also be used to compute floor(log2(input)). Radix
4 decomposition during the first stage, followed by radix 2 decomposition for
the subsequent stages can reduce the critical path to log2(input wordlength)-1.

Latency

This block has no latency.

SMC Leading Zero Counter SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 353

Leading Zero Counter Parameters

Input Word Length

Specifies the word length for the input.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Log

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
354 October 2013

SMC Log
Calculates the natural logarithm of the input.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Log block calculates the natural logarithm of the
input. This implementation is based on a look-up table, the size of which is
determined by the input fraction length and the output word length.

Latency

The latency of the Log block is 1.

Log Parameters

SMC Log SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 355

Output format, Output word length, and Output fraction length

For descriptions of these parameters, see the following:

Logarithm base

Sets the logarithm used for calculation. You can set it to any of the
following:

– Natural Logarithm

– Base 10

– Base 2

Output format Output Format, on page 583
The output is signed. If the input is a signed data type and the
input is negative, the Log block has a zero output, and you see
a warning in the MATLAB command window.

Output word
length

Output Word Length, on page 584
If Output format is Automatic, the word length is the same as the
input.
If Output format is Specify, the word length is as specified.

Output fraction
length

Output Fraction Length, on page 584
If you set this option to a value greater than 8, the output
accuracy is limited to 8 fraction bits and you see a warning
message about the accuracy in the MATLAB command
window.
If Output format is Automatic, the fraction length is the same as
the input.
If Output format is Specify, the fraction length is as specified.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC M Control

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
356 October 2013

SMC M Control
Provides control logic using an M function.

Library

Synphony Model Compiler Control Logic

Description

The Synphony Model Compiler M Control block provides control logic that is
written as an M function. You can use this block to implement complex
control-intensive functions using the MATLAB M language. For details on
writing the M functions, see Using M Code Blocks, on page 858.

At every simulation tick, the block converts the fixed-point data at the block
inputs to double, executes the M-control function on this double data, and
then converts the output double data to fixed-point again for the rest of the
model. This implementation improves simulation times.

You can use the matrix data type as input and output, and for internal opera-
tions. The M Control block infers and implement matrix operations like matrix
multiplication and transpositions of matrices.

The M Control block treats all one-dimensional arrays as 1xN matrices. A
vector input to the block is considered a 1xN matrix. Similarly, if the output
of the M Control block is a one-dimensional array, it is output as a 1xN matrix.

Latency

Each output of this block can have either no latency or a latency of one.

Latency Description

1 An output referencing one or more state-holding elements inferred from
persistent variables has a latency of one.

0 In all other cases the output has no latency.

SMC M Control SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 357

M Control Parameters

M Function Name

Specifies the name of the M function used to define the control function.
The function name must not be the same as the design name, nor can it
be a reserved MATLAB keyword. For information about writing M
functions for this block, see Using M Code Blocks, on page 858.

Edit Function

Opens a text window with the M function where you can type in or edit a
function.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC M Control

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
358 October 2013

Browse

Lets you browse and search for the M function.

Specify output dimensions

Specifies the dimensions of the output ports.

– When it is disabled, the tool assumes that all output ports are scalar.

– When enabled, you can specify the dimensions in the field provided.
To specify dimensions for multiple output ports, specify them in
output port order, separated by commas. If the number of output
ports does not match the number of dimensions specified, you get an
error message.

The block can calculate the output port dimensions, but the
information needed to do this might not be available early in the flow
when it is required to propagate Simulink dimensions.

If you specify output port dimensions in this option, the block checks
if this matches the dimensions received through propagation. If there
is a mismatch, you get an error message about the mismatch.

M-Function Parameters

Displays the list of overridable parameters defined for the selected M
function. The parameter variable and its value is displayed in each item.
When you override a value with the Change Value button, the original
value is shown in parentheses. For more information about overriding M
function parameters, see Overridable Parameters, on page 881.

SMC M Control SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 359

Change Value

Lets you override the value of the selected parameter in the parameter
list. See Overridable Parameters, on page 881 for details about defining
overridable parameters.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Matrix Mult

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
360 October 2013

SMC Matrix Mult
Performs matrix multiplication of a two-input matrix signal.

Library

Synphony Model Compiler Math Functions

Description

The Matrix Mult block implements a full matrix multiplier. Matrix multiplication
takes the first MxN matrix and the second NxP matrix as input signals and
outputs an MxP product. There is a common dimension to the inputs: the
number of columns of the first input matrix is always equal to the number of
rows in the second input matrix. The inputs can be a [MxN], [1xN], or [Nx1]
matrix. The SMC Mult block also accepts matrix inputs, but its output is an
element by element multiplication of the input matrices, not a matrix multi-
plication.

This block is a custom block, built as shown below. See Primitives and
Custom Blocks, on page 800 for a definition of custom blocks.

Latency

The default latency is 0.

SMC Matrix Mult SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 361

Matrix Mult Parameters

Number of rows in first input (M)

Specifies the number of rows in the first input matrix signal. If the first
input matrix is MxN, M is the number of rows in the first input.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Matrix Mult

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
362 October 2013

Common dimension to both inputs (N)

Specifies the number of columns for the first input or the number of
rows in the second input signal. If the first input matrix is MxN and the
second is NxP, N in the common dimension.

Number of columns in second input (P)

Specifies the number of columns in the second input matrix signal. If
the first input matrix is MxN and the second is NxP, P is the number of
columns in the second input.

Output format

Specifies the precision and bitwidth of the output. The quantization is
applied to all final adder in the Matrix Mult block.

– Full Precision
The output is a full-precision multiply and add operation inferred
from the a and b input formats and propagated through all the
internal operations.

– Specify
Lets you specify various quantization parameters, like output word
length, fraction length, and so on.

Output word length, Output fraction length, Output data type

These options become available when you set Output quantization rule to
Specify. For descriptions of these parameters, see the following:

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

SMC Matrix Mult SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 363

Output saturation on overflow, Output rounding

Determine how overflow and underflow are treated in the pruning of bits
during internal operations. These options become available when Output
format is set to Specify.

Example

See Example: 2-D DCT Using Matrix Data Types, on page 698 for an example
that uses the Matrix Mult block.

Output saturate
on overflow

When enabled, saturates the overflow; when disabled,
wraps the overflow, disable the option. See Overflow
Saturation Options, on page 585 for details.

Output round on
underflow

Uses the specified algorithm to round the underflow; see
Underflow Rounding Options, on page 585 for
descriptions of the algorithms.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Mealy State Machine

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
364 October 2013

SMC Mealy State Machine
Provides control logic where the output depends on the input and an internal
state vector.

Library

Synphony Model Compiler Control Logic

Description

The Synphony Model Compiler Mealy State Machine block provides control logic to
implement a Mealy state machine, where the output is a function of the
present state and the input.

Mealy State Machine Diagram

Deriving Next State and Output Matrices

You configure the block by providing the next state and output matrices,
which are defined by the next state/output table for the state machine. The
rows of the matrices correspond to the current state, and the columns corre-
spond to the input value. For example:

Next
state
logic

Output
logic

State
memory

clk

Input Current state Output

SMC Mealy State Machine SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 365

Latency

This block has no latency.

Mealy State Machine Parameters

Number of output bits

Each output bit is a control bit, calculated by the transformations
defined below.

Current State Input = 0 Input = 1

0 1, 5 5, 0

1 2, 4 0, 0

2 3, 3 1, 0

3 4, 2 2, 0

4 5, 1 3, 0

5 0, 0 4. 0

1 5 5 0

2 0 4 0

3 1 3 0

4 2 2 0

5 3 1 0

0 4 0 0

Next State Matrix Output Matrix

Output
Next State

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Mealy State Machine

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
366 October 2013

Next State Matrix

Defines state transition rules for the state machine. The number of rows
in this matrix is equal to the current state. The number of columns is
equal to the number of possible inputs. An input must be an unsigned
integer between 0 and <number of columns> - 1. For each state-input pair,
Next State Matrix defines what the next state should be.

Output Matrix

This is similar to Input matrix, but it defines the output for each
state-input pair. You must be able to represent the values in the Output
Matrix by the Number of Output Bits parameter.

SMC MinMax SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 367

SMC MinMax
Determines the minimum, maximum, or minimum and maximum of two
inputs.

Library

Synphony Model Compiler Math Functions

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) determines the minimum, maximum, or minimum and maximum
of two inputs.

Latency

This block has no latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC MinMax

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
368 October 2013

Minmax Parameters

Function

Determines which operation is performed on the inputs. The icon
changes to reflect your choice.

– min&max determines the minimum and maximum of the two inputs.

– min specifies the minimum of the two inputs.

– max specifies the maximum of the two inputs.

SMC Moore State Machine SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 369

SMC Moore State Machine
Provides control logic where the outputs depend on the current state.

Library

Synphony Model Compiler Control Logic

Description

The Synphony Model Compiler Moore State Machine block provides control logic
where the output depends on the state variable.

Moore State Machine Diagram

Deriving a Next State Matrix and Output Array

You configure the block by providing the next state matrix and an output
array. They are derived from the next state/output table for the state
machine. The rows of the matrices correspond to the current state, and the
columns correspond to the input value. The output array has only one value,
because the input value does not affect the output.

Next
State
Logic

Output
logic

State
memory

clk

Input Current state Output

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Moore State Machine

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
370 October 2013

For example:

Latency

This block has no latency.

Moore State Machine Parameters

State Input = 0 Input = 1 Output

0 1 5 5

1 2 0 4

2 3 1 3

3 4 2 2

4 5 3 1

5 0 4 0

1 5 5

2 0 4

3 1 3

4 2 2

5 3 1

0 4 0

Next State Matrix Output Matrix

Output
Next State

SMC Moore State Machine SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 371

Number of output bits

Each output bit is a control bit, calculated by the transformations
defined below.

Next State Matrix

Defines state transition rules for the state machine. The number of rows
in this matrix is equal to the number of states. The number of columns
is equal to the number of possible inputs. An input must be an unsigned
integer between 0 and <number of columns> - 1. For each state-input pair,
Next State Matrix defines what the next state should be.

Output Array

This array has only value per state, because the input does not affect the
output (see Deriving a Next State Matrix and Output Array, on
page 369). The values in the array are separated by spaces. You must be
able to represent the Output Array values by the Number of Output Bits
parameter.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Moving Average Filter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
372 October 2013

SMC Moving Average Filter
Implements a hardware-efficient moving average filter.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler Moving Average Filter custom block implements a
moving average filter that computes the sum of the last N input samples, and
is based on a sliding window in a hardware-efficient manner using the recur-
rence relation:

To compute the unscaled mean of N values, set gain to 1/N.

If the number of channels is greater than 1, then the block assumes that
channels are commutated at the input. The output is serial in this case.

SMC Moving Average Filter SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 373

Moving Average Filter Flow Control

The Moving Average Filter block optionally provides the following flow control
ports:

For a multichannel operation, flow control signals are commutated in the
same way as the data.

Block Annotation

Latency

The Moving Average Filter block has a latency of 3 + number of channels.

ssynci The ssynci (source ssync) input can be forced high to reset the internal filter
storage to zero.

ssynco The corresponding output goes to high latency clock cycles after ssynci
goes high. This is used to cascade multiple stages of the moving average
filters.

srdyi The srdyi (source ready) input port qualifies whether the input data in the
current sample period is valid. An invalid input sample is indicated by
srdyi going low.

srdyo The srdyo (source ready) output port qualifies whether the current output
sample is valid. An invalid output sample is indicated by srdyo going low.

Green
annotation

The first number is the length of averaging, and the second the
number of channels

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Moving Average Filter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
374 October 2013

Moving Average Filter Parameters

Main Tab
This tab sets parameters for average length of samples, number of channels,
gain value and fraction length, and available ports.

SMC Moving Average Filter SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 375

Averaging Length

The length for samples of the sliding window from which the sum is
computed.

Number of Channels

Specifies the number of channels for the moving average filter.

Gain Value

Specifies the gains for the input stage.

Gain Fraction Length

Specifies the gains for the fraction length.

srdyi/srdyo Ports

When enabled, adds the srdyi and srdyo ports to the block interface.

ssynci/ssynco Ports

When enabled, adds the ssynci and ssynco ports on the block interface.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Moving Average Filter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
376 October 2013

Data Types Tab
This tab sets parameters for output format, word length, and fraction length.

Output format, Output word length, and Output fraction length

The gain output parameters refer to the data type after the input is
multiplied by the specified gain value. The output format parameters
refer to the data type of the feedback adder and the final output.

SMC Moving Average Filter SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 377

For descriptions of these output parameters, see the following:

Output Data Type

Determines the data type for the output.

Output saturate on overflow, Output round on underflow

Determine how output overflow and underflow are treated. These
options are available when you set Output Format to Automatic or Specify.

Output format Output Format, on page 583

Output word
length

Output Word Length, on page 584.
You can also specify it in terms of the syn_inp_wl, syn_inp_fl, and
syn_inp_dt variables. If Inherit port is enabled, you can also use the
syn_inh_wl, syn_inh_fl, and syn_inh_dt variables. The variables
are described in Special Variables, on page 588.

Output
fraction
length

Output Fraction Length, on page 584.
You can also specify it in terms of the variables syn_inp_wl,
syn_inp_fl, and syn_inp_dt. If Inherit port is enabled, you can also
use the syn_inh_wl, syn_inh_fl, and syn_inh_dt variables. The
variables are described in Special Variables, on page 588.

Signed See Output Data Type, on page 584 for details.

Unsigned See Output Data Type, on page 584 for details.

Preserve Preserves the input data type. If the input is signed, the output is
also signed. If the input is unsigned, the output is also unsigned.

Inherit Inherits the input data type from the inherit port. This option is
only available when you enable Inherit port.

Output saturate
on overflow

Saturates the overflow when the option is enabled and wraps
the overflow when it is disabled. See Overflow Saturation
Options, on page 585 for details.

Output round on
underflow

See Underflow Rounding Options, on page 585 for details
about the rounding options available.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Mult

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
378 October 2013

SMC Mult
Implements a full-precision multiplier.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Mult block implements a full-precision multiplier.
It computes the product of the data on its two input ports, and feeds it to the
output port. The inputs can be of different word lengths, as determined by
their drivers. The output word length is the sum of input word lengths.
Similarly, the output fraction length is the sum of the input fraction lengths.

Automatic Scalar Expansion

If the block has one scalar input and one vector or matrix input, the tool
automatically expands the scalar input to the size of the vector or matrix. You
cannot have a combination of matrix and vector inputs.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Mult SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 379

Mult Parameters

Output format, Output word length, Output fraction length, and Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Mult

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
380 October 2013

Output saturate on overflow, Output round on underflow

Determine how overflow and underflow are treated. These options
become available when Output format is set to Specify.

Inherit port

Determines whether the tool creates an inherit port for the block. This
port does not convey data, but is used to specify the data type. Enabling
this option allows you to do the following:

– Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Recast
Output Variables, on page 427 for information about these variables.

– Use the inherit option to specify the Output data type. See Data Type, on
page 426 for a description of the option.

Inherit sample time

When enabled, inherits the sample period from the input signal.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

Output saturate
on overflow

Enable the option to saturate, and disable it to wrap the
overflow. See Overflow Saturation Options, on page 585
for details.

Output round on
underflow

Uses the specified algorithm to round the underflow; see
Underflow Rounding Options, on page 585 for
descriptions of the algorithms.

SMC Mux SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 381

SMC Mux
Implements a multiplexer of up to 2048 inputs.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Mux block implements a multiplexer of up to 2048
inputs. The sel input determines which of the data inputs gets multiplexed
into the output.

Automatic Scalar Expansion

If the input to the Mux is one row vector, the sel line selects one of the
elements of the vector. The following figure shows the second element of the
input vector selected as output.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Mux

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
382 October 2013

If the Mux input has many vectors, the sel line selects one of the vectors as the
output. The next figure shows the second input vector selected as output.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Mux SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 383

Mux Parameters

Number of inputs

Sets the number of inputs that are multiplexed. You can specify up to
2048 inputs. The inputs do not have to operate at the same sample rate
as long as the sel line operates at the fastest clock (lowest sample time)
of all the clocks entering the block, and the sel clock line is an integer
multiple of any other clock entering the block. When the sel line is set to
an out-of-bounds value, the Mux block outputs the first data line (d0).

If you specify a single input, the tool implements a single input mux. See
Single Input Mode Mux, on page 384 for further information.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Mux

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
384 October 2013

Single Input Mode Mux

When you specify a single input for the multiplexer, the tool implements a
special multiplexer with a single data input and select input. The data input
can be vector or matrix, and the select line must be scalar or vector. The
following examples illustrate different scenarios.

Scalar Select Line and Vector Data Input
If the data input to the mux is vector and the select input is scalar, the sel line
selects one of the elements of the vector. This figure shows the third element
of the input vector selected as output.

Scalar Select Line and Matrix Data Input
If the input to the mux is matrix and select input is scalar, the sel line selects
one of the matrix columns. The following figure shows the third column of the
input matrix selected as output. It shows the mux is equivalent to three
(number of rows in matrix input) independent multiplexers, with the same
select line going to each of them.

SMC Mux SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 385

Vector Select Line and Matrix Data Input
If the input to the mux is matrix and the select input is vector, the nth
element in the sel line selects one of the elements in the nth row of the matrix.
The next figure shows the first element in the sel line (0) selects the first
element in the first row, and the second element in the sel line (2) selects the
third element in the second row, and so on. This example shows the mux is
equivalent to three (number of rows in matrix input) independent multi-
plexers, with an independent select line.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Negate

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
386 October 2013

SMC Negate
Computes the two’s complement (arithmetic negation) of an input.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Negate block takes the two’s complement of a
signed input. For a signed value, this means that it multiplies the input by -1.
This block supports vector input.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Negate SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 387

Negate Parameters

For descriptions of the parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Out

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
388 October 2013

SMC Out
Allows you to add an out port to a subsystem to a Synphony Model Compiler
design.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Out block provides an out port for a subsystem in
a Synphony Model Compiler design. For details about this block, refer to the
Simulink documentation for the Outport block in the Simulink Ports & Subsys-
tems library.

Latency

This block has no latency.

SMC Parallel FIR SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 389

SMC Parallel FIR
Implements a parallel input FIR filter.

Library

Synphony Model Compiler Filtering.

Description

The Synphony Model Compiler Parallel FIR custom block implements high
throughput FIR filters for processing Gsamples/sec. This block can accept N
number of user-specified input values in parallel and produces N output
values for each cycle that delivers throughput of N*sample-rate. For example,
suppose the clock frequency is 400 MHz and the number of parallel inputs is
32, then the filter throughput is 12.8 Gsamples/sec. You must provide the
coefficients for the filter as a vector size equal to the number of taps at the w
input of the block. The parallel FIR cannot internally register or store the
coefficients.

Parallel FIR Flow Control

The Parallel FIR block provides the following optional flow control ports:

Latency

The latency for the Parallel FIR block is annotated on the mask, and depends
on the options you select for the mask as well as the number of taps.

srdyi The srdyi (source ready) input port determines whether the
input data in the current sample period is valid. An invalid
input sample is indicated by srdyi going low.

srdyo The srdyo (source ready) output port determines whether the
current output sample is valid. An invalid output sample is
indicated by srdyo going low.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Parallel FIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
390 October 2013

Parallel FIR Parameters

Number of taps

Specifies the number of taps for the FIR filter. The vector size of the w
input must be equal to the number of taps.

Number of parallel inputs

Number of parallel data inputs. The vector size of the x input must be
equal to the number of parallel inputs.

SMC Parallel FIR SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 391

Architecture

Specifies the FIR architecture. You can select either the Direct or Systolic
option. If you select the Systolic architecture, the coefficient symmetry
options are not available. The filter is always implemented as an
asymmetric filter.

Coefficient symmetry

Use this option only if you select the Direct architecture. You can specify
the type of symmetry for the filter as follows:

– None specifies that symmetry is not inferred and the dimension of the
w port is same as the number of taps.

– Symmetric infers pre-adders in the implemented FIR structure, such
that the second half of the coefficients is same as the first half. For
this option, the w input has a dimension equal to the ceil(Number of
taps/2).

– Antisymmetric infers pre-subtractors in the implemented FIR structure,
such that the second half of the coefficients is the negative of the first
half. For this option, the w input has a dimension equal to the
ceil(Number of taps/2).

Polyphase filter type

The following options are available:

– None implements a single-phase parallel FIR. For this option, the
output dimension is the same as the input dimension.

– Decimator implements a polyphase decimator. The output has the
same clock as the input and the output dimension is equal to
ceil(number of parallel inputs / decimation factor). Decimators support the
following decimation factors:

– Number of parallel inputs / Decimation factor is an integer

– Decimation factor / Number of parallel inputs is an integer

Decimation factor

Specifies the decimation factor for the polyphase decimators.

srdyi/srdyo port

Determines if the flow control ports are available.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Parallel to Serial

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
392 October 2013

SMC Parallel to Serial
Implements a data packet splitter that divides the parallel data word at the
input into small serial data packets in the order specified.

Library

Synphony Model Compiler Signal Operations

Description

The Parallel to Serial block splits parallel input data into serial data packets for
the output. You can specify the number of packets and the order of the
packets at the output. As this block splits each input into multiple packets,
the sampling rate at the output increases.

This block is a custom block. (See Primitives and Custom Blocks, on
page 800 for a definition.) The following figure shows how the block is
modeled:

SMC Parallel to Serial SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 393

Icon Annotations

The icon for this block displays the following information:

Parallel to Serial Parameters

Number of serial output packets for parallel input

Specifies the number of serial output packets. As each input is being
split into multiple packets, the output sampling rate increases.

Packet ordering

Determines the order of the data packets at the output.

– MSB to LSB sets the output order from the most significant to the least
significant bit.

– LSB to MSB sets the output order from the least significant to the most
significant bit.

Data format

This block produces output data as an unsigned integer with word
length equal to packet size. If the most significant packet data is shorter
than the serial packet size, this block 0-extends it from the left. If the
total number of bits spanned by the output serial packets is shorter
than the input word length, the block crops the excess bits at the input.

Latency Zero latency

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Permutation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
394 October 2013

SMC Permutation
Shuffles the incoming data according to a specified permutation vector.

Library

Synphony Model Compiler Memories

Description

The Synphony Model Compiler Permutation block shuffles the incoming data
according to a specified permutation vector, and produces a streaming
output with a delay equal to 1 + <minimum possible delay>. The software sets the
order of the outgoing data stream by presenting a permutation of the
incoming data stream d[i].

When rst is 1, the software clears the buffer and resets the frame boundary.
When it is used to perform blockwise permutation of a streaming signal, rst
must be only applied to the first block. The rdy signal is the rst signal delayed
by the input-to-output latency. You can use the rdy signal for synchronization
and/or latency measurement.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Icon Annotations

The icon for this block displays the following information:

Latency For permutation (P_0 P_1 ... P_n), the latency is max(P_i-i) +2.s

SMC Permutation SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 395

Permutation Parameters

Permutation vector

Resets the order of the incoming data stream samples by presenting a
permutation vector of the data stream slot numbers 0 to N.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC PN Sequence Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
396 October 2013

SMC PN Sequence Generator
Generates a sequence of pseudorandom (PN) binary numbers using a
linear-feedback shift register (LFSR).

Library

Synphony Communications

Description

The PN Sequence Generator block generates a sequence of pseudorandom (PN)
binary numbers using a linear-feedback shift register (LFSR). The Generator
polynomial parameter configures the LFSR.

The PN Sequence Generator block implements LFSR using a simple shift
register generator (SSRG, or Fibonacci) configuration. As the generator
polynomial is a primitive polynomial the constant and the leading terms in
the polynomial must be 1. This block is a custom block (see Primitives and
Custom Blocks, on page 800 for a definition). The following figure shows the
internal modeling:

SMC PN Sequence Generator SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 397

Latency

This block has no latency.

PN Sequence Generator Parameters

Generator polynomial

Represent the shift register connections. Use either of the following to
specify them:

– A binary vector that lists the coefficients of the polynomial in
descending order of powers. The first and last entries must be 1. The
length of this vector is one more than the degree of the generator
polynomial. and the entry is 1 if there is a connection tap for the
corresponding power and zero otherwise.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC PN Sequence Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
398 October 2013

– A vector containing the exponents of z for the nonzero terms of the
polynomial in descending order of powers. The last entry must be 0.

For example, [1 1 0 0 0 0 0 1] and [7 6 0] represent the same polynomial,
p(z) = z7 + z6 + 1.

Initial states

Specifies the initial value of the registers. It is a binary vector and must
satisfy the following criteria:

– The length of the Initial states vector must equal the degree of the
generator polynomial.

– At least one element of the Initial states vector must be 1 in order to
generate a non-zero sequence.

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

With a high reset signal, there are no valid outputs for clock cycles.
Hence, there is a one cycle discontinuity in the output when reset is
applied.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Sample Time

Determines sample time. Use -1 to inherit. This option is not available if
you specify reset or enable ports.

SMC Port In SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 399

SMC Port In
Defines inputs for the DSP design to be implemented in RTL.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Port In block defines an input to the design to be
implemented in RTL. Each input to the subsystem implemented by the
Synphony Model Compiler blockset must be defined with a Port In block. This
block quantizes the input data by the specified sample clock and word preci-
sion. It can also capture data passing through it and store it for the RTL
testbench.

If you have matrix input, the generated RTL includes an input port for each
element of the matrix, using the following standard nomenclature:

<Port_In_Name>_e_<Row_Index>_<Column_Index>

All matrix elements are written to one file in the same order as the ports
defined. For each port, matrix elements are written row-wise.

Do not use this block to define the boundaries of a subsystem. Use the
Synphony Model Compiler In block instead (see SMC In, on page 345).

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Port In

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
400 October 2013

Port In Parameters

Word length

Sets the total width when the software converts the analog input to a
Fixed Point data type.

Fraction length

Determines the position of the binary point when the software converts
the analog input to a Fixed Point data type.

Data type

The data type can be either signed (two’s complement) or unsigned.

– signed specifies Two’s complement signed representation, and sets the
sign bit to the MSB. This format specifies that an n-bit binary number
be interpreted as a value in the range [-2(n-1), (2(n-1))-1]. Numbers
with their most significant bit equal to 1 indicate a negative value,

SMC Port In SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 401

which is obtained by subtracting 2n from the unsigned value of the
number. For example, if a is a signed 3-bit binary number, a=110
means 6 - 23= -2.

– unsigned specifies that an n-bit binary number be interpreted as a
value in the range [0, (2n)-1]. If a is an unsigned 3-bit binary number,
a=110 means 1*22 + 1*21 + 0*20 = 6.

Sample time

Defines the sample period of the input signal.

Capture test vectors

When enabled, each input captures the test vectors on the sample clock
and saves them in a file. The software can then use this file when it
generates RTL to create stimuli for the RTL design. The .dat files for the
test vectors are stored in the <modelFileDir>/test_vectors directory.

Register input

When enabled, registers the input. With registered input, the block has
a latency of 1. The registers are generated with an attached syn_keep
directive, to instruct the Synplify Pro or Synplify Premier synthesis tools
not to move these registers during retiming.

Output saturate on overflow, Output round towards nearest on underflow

Determine how output overflow and underflow are treated.

The following table shows the results of some saturation and rounding
options.

Output saturate
on overflow

When enabled, saturates the overflow; when disabled, wraps
the overflow. See Overflow Saturation Options, on page 585
for details.

Output round
towards nearest
on underflow

If the option is enabled, the tool rounds the output to the
closest upper value which is representable with the data type
defined for the Port In block. If it is disabled, the tool
truncates the output.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Port In

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
402 October 2013

Input Data Output Data

Decimal Binary WL_FL Binary Decimal

Rounding Off
(truncating)
Saturation Off
(wrapping)

2.375 010.011 sfix5_En2 010.01 2.25

128 010000000 sfix8_En0 10000000 -128

Rounding On
Saturation Off

3.875 011.111 sfix5_En2 100.00 -4

-2.875 101.001 sfix5_En2 101.01 -2.75

Rounding Off
Saturation On

128 010000000 sfix8_En0 01111111 127

2.375 010.011 sfix4_En2 01.11 1.75

Rounding On
Saturation On

128.375 010000000.011 sfix9_En1 01111111.1 127.5

3.875 011.111 sfix5_En2 011.11 3.75

SMC Port Out SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 403

SMC Port Out
Defines outputs for the DSP design to be implemented in RTL.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Port Out block defines an output of the design to be
implemented in RTL. Each output to the subsystem implemented by the
Synphony Model Compiler blockset must be defined with a Port Out block. It
can also capture data passing through it and store it for the RTL test bench.

If you have matrix output, the generated RTL includes an output port for
each element of the matrix, using the following standard nomenclature:

<Port_Out_Name>_e_<Row_Index>_<Column_Index>

All matrix elements are written to one file in the same order as the ports
defined. For each port, matrix elements are written row-wise.

Do not use this block to define the boundaries of a subsystem. Use the
Synphony Model Compiler Out block instead (see SMC Out, on page 388).

Latency

If the block output is registered, it has a latency of one sample time.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Port Out

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
404 October 2013

Port Out Parameters

Capture test vectors

When enabled, each output captures the test vectors on the sample
clock and saves them in a file. The software can then use this file when
it generates RTL, to create expected results for the RTL design. The .dat
files for the test vectors are stored in the <modelFileDir>/test_vectors direc-
tory.

Register output

When enabled, registers the output. With registered output, the block
has a latency of 1. The registers are generated with an attached syn_keep
directive, to instruct the Synplify Pro or Synplify Premier synthesis tools
not to move these registers during retiming.

SMC Pow SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 405

SMC Pow
Raises a value to the power of another value.

Library

Synphony Model Compiler Math Functions

Description

The Pow block raises a value to the power of another value.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Modes of Operation

The Pow block has three modes of operation. The block icon reflects the
operation mode.

Variable base
and variable
exponent
ab

The base (a) and exponent (b) of power operation are taken from
the input ports of the block. In this mode, the tool can calculate
integer powers of a fractional number. If the exponent has a
fractional parts, fraction bits are ignored.
a: variable base, can be fractional
b: variable exponent, integer (fraction bits are ignored)

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Pow

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
406 October 2013

Variable base
and constant
exponent
aconstant

The base of power operation (a) is taken from the input port and
the exponent value (constant) is taken from the mask parameters
of the block. In this mode the constant exponent must be an
integer, but base can also take fractional values.
• a: variable base, can be fractional
• constant: constant exponent, integer

Constant base
and variable
exponent
constantb

The exponent of power operation (b) is taken from the input port
and the base value is taken from the mask parameters of the
block. Both the exponent and the base of power operation can be
fractional numbers.
Since the number of output fraction bits can be infinitely long,
the bit width of the output must be specified with the Specify
option.
• constant: constant base, can be fractional
• b: variable exponent, can be fractional

SMC Pow SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 407

Pow Parameters

Constant Base

When enabled, it lets you specify a base value and fraction length. See
Modes of Operation, on page 405 for descriptions of the operating
modes.

Base Value

Specifies the constant base value. This is available when you enable
Constant Base. See Modes of Operation, on page 405 for descriptions of
the operating modes.

Base Fraction Length

Specifies the fraction length for the constant base. This is available
when you enable Constant Base. See Modes of Operation, on page 405 for
descriptions of the operating modes.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Pow

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
408 October 2013

Constant Exponent

When enabled, it lets you specify an exponent value. See Modes of
Operation, on page 405 for descriptions of the operating modes.

Exponent Value

Specifies an exponent value for use by the operation.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

SMC Pulse Generator SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 409

SMC Pulse Generator
Generates a single pulse.

Library

Synphony Sources

Description

The Pulse Generator block generates a single pulse. The generated pulse may
be an impulse or a step (0 to 1 or 1 to 0).

This block is a custom block (see Primitives and Custom Blocks, on page 800
for a definition). The following figure shows the internal modeling when signal
generated is an impulse with use control inputs unchecked:

Latency

This block has zero latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Pulse Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
410 October 2013

Pulse Generator Parameters

Signal generation type

Specifies whether the output signal is an impulse or a unit step (0 to 1) or (1
to 0).

Use control inputs

When enabled, two additional input ports are available to the Pulse Generator
block to perform the following functions:

When both the signals occur simultaneously, the rst signal overrides the
Trigger signal.

Triggers Triggers the signal generation

rst Resets the output to zero till the next trigger arrives.

SMC Pulse Generator SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 411

Impulse width

Specifies the width of the generated impulse in multiples of sample period
when Signal generation type is set to impulse.

Impulse delay

Specifies the delay of the generated impulse in multiples of sample period
when Signal generation type is set to impulse.

Step delay

Determines the delay of the generated impulse in multiples of sample period
when Signal generation type is set to step.

Sample Time

Determines sample time. Use -1 to inherit. This option is not available if you
check Use control inputs.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Puncture

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
412 October 2013

SMC Puncture
Removes user-specified bits from the input data stream.

Library

Synphony Model Compiler Communications

Description

The Puncture block removes the set of bits you specify from the input data
stream. This block is commonly used in conjunction with a convolutional
encoder (SMC Convolutional Encoder, on page 106) to implement punctured
convolutional codes.

This block is a custom block. (See Primitives and Custom Blocks, on
page 800 for a definition.) The following figure shows how the block is
modeled:

Icon Annotations

The icon for this block displays the following information:

Top Annotation The upper annotation shows the puncture pattern set for
the block.

Latency This block has a fixed latency of 1.

SMC Puncture SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 413

Puncture Parameters

Puncture matrix

Determines the pattern of bits to be removed from the input data
stream. Each row of the puncture matrix operates on a different bit in
the input data word with last row corresponding to the LSB of the input
data word.

Each 0 indicates a bit to be removed. For example, an input of UFix_3_0
and a puncture pattern of [1 0 1] results in the center bit being removed
from the LSB of the input stream and a 2-bit punctured output of
UFix_2_0. As no puncture patterns are specified for the remaining bits of
input stream, the output stream does not convey any bit from unspeci-
fied bits of input data word.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RAM

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
414 October 2013

SMC RAM
Stores signals in an array with configurable read and write access ports.

Library

Synphony Memories

Description

The RAM (Random Access Memory) block implements a memory function
through a storage array that has read and write access through ports. The
ports can be configured for read, write, and read/write. For further details
about RAMs, see RAMs, on page 733.

The Synphony Model Compiler tool creates RAM memories that are fully
synchronous, with write-first access mode. For information about data
format, see RAM Data Format, on page 415.

Automatic Scalar Expansion

Each individual RAM input can be either vector or scalar. If one input is
vector, the tool automatically expands the other scalar inputs to the vector
size. If more than one input is a vector, the vectors must be the same size.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

SMC RAM SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 415

RAM Data Format

You must follow these data format rules for a RAM:

• The data type of the address must be an unsigned integer.

• All data inputs must have the same data type.

• The data type of each RAM output must be the data type of the inputs.

• All address input signals must have the same data type.

• Sample times within a port group (i.e. wadr, radr, wdin, we) must be the
same.

RAM Initialization

You must initialize the RAM block. If you do not, you will get warning
messages like the following when you run simulation:

Warning: block 'test_PPF_4x/PPF/RAM_chain/sampleRAM': Content of
address 511 unknown!

To suppress RAM warnings, specify the appropriate command at the
MATLAB command line:

Icon Annotations

The icon for this block displays the following information:

For unknown address warnings warning('off',
'SynHLS:Content_Unknown_RAM');

For warnings about write clashes warning('off', 'SynHLS:Write_Clash_RAM');

Top Annotation The annotation at the top of the RAM instance indicates the
depth of the RAM in words.

Latency Annotation The read and write of the RAM take one cycle (synchronous
function).

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RAM

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
416 October 2013

RAM Parameters

RAM depth

Sets the size of the RAM, in words. This value is annotated on the icon
for this block.

Read ports

Sets the number of read ports. For additional information about the
settings, see Port Use in Different RAM Configurations, on page 737.

Write ports

Sets the number of read ports. For additional information about the
settings, see Port Use in Different RAM Configurations, on page 737.

SMC RAM SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 417

Read/write ports

Sets the number of read ports. For additional information about the
settings, see Port Use in Different RAM Configurations, on page 737.

Core reset

When enabled, it initializes the RAM to all zeroes. When disabled, it does
not initialize the RAM.

Reset port

This option becomes available when you enable Core Reset. When
enabled, the block is implemented with a reset pin.

Enable port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal RAM. When the
enable is low, the RAM output value and contents do not change.

Write access control

Determines the kind of logic for the write signal. You can set it to either
of the following:

– No check

– Write prioritization
See Write Access Control, on page 736 for details.

Read access control

Determines the kind of logic for the read signal.

– Read first
All read/write first operations operate as read-first.

– Read-write port, write first
Read/write first operate in write-first mode, while the read ports are
read-first.

– Cross-port write first
All read and read/write ports operate as write-first. Read ports are
sensitive to all the write ports at the same clock.

See Read Access Control, on page 736 for details.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RAM

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
418 October 2013

Specify initial value (Simulink simulation only)

When enabled, displays the Initial value field, where you can specify an
initial value for the RAM.

Initial value (Simulink simulation only)

Specifies the initial value of the RAM block for Simulink simulation.

If you specify a single scalar value, it applies to all RAM locations. If you
specify a vector initial value, ensure that the number of elements
matches the depth of the RAM.

The initial value specified here is only used for Simulink simulation, and
not in the generated RTL. To initialize RAMs for the generated RTL, you
must explicitly load the initial values, according to the mechanism your
environment supports. If you specify an initial value for simulation here,
you could get warning messages during RTL generation if there are
mismatches between Simulink and RTL simulation results.

SMC Ramp SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 419

SMC Ramp
Creates a ramp, based on increments derived from a port or a parameter.

Library

Synphony Model Compiler Sources

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) generates a ramp signal using an accumulator with input incre-
ment that is determined by the value of the Slope option. The accumulator
value wraps when overflow occurs.

Latency

This block has no latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Ramp

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
420 October 2013

Ramp Parameters

Slope

Determines whether the slope is derived from a port or a constant.

– Constant is a hard-coded slope value which is cast into the number
format that you specify in other options in the dialog box.

– Port lets you specify a slope value dynamically via an input port.
Selecting this option enables you to choose an automatic number
format (Data format) that is inherited from the input port.

Slope value

Determines the rate of change for the generated signal, when you set
Slope to Constant. The default value is 1.

SMC Ramp SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 421

Output data format

Determines the word size and data type of the output. Available options
are determined by the value of Slope.

– Automatic calculates the output based on the input. The Ramp block
uses the same size and type on the output as that driven on the
input. This option is only available when Slope is set to Port.

– Specify lets you specify the size and data type using the Word Length,
Fraction Length, and Data Type parameters.

Output word length, Output fraction length, and Output data type

For descriptions of these parameters, see the following:

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Sample Time

Determines sample time when you set Slope to Constant and Reset Port and
Enable Port are disabled. Use -1 to inherit. This option is not available if
you specify reset or enable ports.

Word length Output Word Length, on page 584

Fraction length Output Fraction Length, on page 584

Data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Random

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
422 October 2013

SMC Random
Creates a random integer of the requested word length.

Library

Synphony Model Compiler Sources

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) creates a random integer of the specified word length.

The following figure shows the internal construction of this block, without
reset or enable ports:

Latency

This block has no latency.

SMC Random SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 423

Random Parameters

Number of bits

Specifies the length of the word, which in turn determines the size of the
random integer. The maximum number of bits you can specify if 19.

Seed

Specifies the initial seed value for the random number generator. The
format is an unsigned integer up to 2^ (Number of Bits).

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Sample Time

Determines sample time. Use -1 to inherit. This option is not available if
you specify reset or enable ports.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Recast

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
424 October 2013

SMC Recast
Generates an output value, based on the requested data type you cast at the
output.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Recast block is a custom block (see Primitives and
Custom Blocks, on page 800 for an explanation) for recasting the output
value. The Recast block casts the input data to the specified output type. The
block truncates or extends MSB bits if the specified output width is different
than the input width. If the output is signed and you select a signed output
data type, the block uses sign extension; otherwise the block extends the
MSBs with zeroes. The Recast block can also use an inherit port. The inher-
ited data format and/or input port data format can be used in arithmetic
expressions when you specify the recast for the output

The following figure shows the internal construction of the Recast block:

Latency

This block has no latency.

SMC Recast SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 425

Recast Parameters

Output word length

Determines the word length of the output in bits. This parameter is used
together with Output fraction length. Given a word length WL, and a fraction
length FL:

– The word bits go from WL-1 to 0

– The fraction bits go from FL-1 to 0

– Bit position WL-1 corresponds to the MSB.

– Bit position 0 corresponds to the LSB.

You can also specify the output word length in terms of the following
variables syn_inp_wl, syn_inp_fl, and syn_inp_dt. If Inherit port is enabled, you
can also use the syn_inh_wl, syn_inh_fl, and syn_inh_dt variables. The
variables are described in Recast Output Variables, on page 427.

If you change the word length, the block recasts the output as follows:

– If you shorten the word length, the block recasts the output by
truncating the most significant bits as needed.

– If you increase the word length, the block extends the most
significant bits as needed.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Recast

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
426 October 2013

Output fraction length

Sets the fraction length of the output in bits. It is used with Output Word
Length, as described above. You can also specify the output fraction
length in terms of the variables syn_inp_wl, syn_inp_fl, and syn_inp_dt. If
Inherit port is enabled, you can also use the syn_inh_wl, syn_inh_fl, and
syn_inh_dt variables. The variables are described in Recast Output
Variables, on page 427.

Data Type

Determines the data type for the output.

– signed specifies Two’s complement signed representation, and sets the
sign bit to the MSB. This format specifies that an n-bit binary number
be interpreted as a value in the range [-2(n-1), (2(n-1))-1]. Numbers
with their most significant bit equal to 1 indicate a negative value,
which is obtained by subtracting 2n from the unsigned value of the
number. For example, if a is a signed 3-bit binary number, a=110
means 6 - 23= -2.

– unsigned specifies that an n-bit binary number be interpreted as a
value in the range [0, (2n)-1]. If a is an unsigned 3-bit binary number,
a=110 means 1*22 + 1*21 + 0*20 = 6.

– preserve preserves the input data type. If the input is signed, the
output is also signed. If the input is unsigned, the output is also
unsigned.

– inherit inherits the input data type from the inherit port. This option is only
available when you enable Inherit port. See Inherit port, on page 426 for
information about this port.

Inherit port

When you enable this option, the tool creates an inherit port. This port
does not convey data, but is used to specify the data type. Enabling this
option allows you to do the following:

– Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Recast
Output Variables, on page 427 for information about these variables.

– Use the inherit option to specify the Output data type. See Data Type, on
page 426 for a description of the option.

SMC Recast SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 427

Recast Output Variables

You can use these variables to specify values for Output word length, Output
fraction length, and Number of shift bits.

For example, if you specify an Output word length of 2*syn_inp_wl, the tool
creates an output word length that is twice the input word length.

Variable Description

syn_inh_dt =1 | 2 Holds the data type for the input data of the inherit port 1
indicates signed input, and 2 indicates unsigned input.

syn_inp_dt =1 | 2 Holds the data type for the input data. 1 indicates signed
input, and 2 indicates unsigned input.

syn_inh_fl Holds the input fraction length of the inherit port

syn_inp_fl Holds the input fraction length

syn_inh_wl Holds the input word length of the inherit port

syn_inp_wl Holds the input word length

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
428 October 2013

SMC Reed-Solomon Decoder
Decodes the encoded signal using Reed-Solomon error-correcting codes.

Library

Synphony Model Compiler Communications

Description

The Synphony Model Compiler Reed-Solomon Decoder decodes the data block
encoded by the Synphony Model Compiler Reed-Solomon Encoder (see SMC
Reed-Solomon Encoder, on page 435). It processes each block and attempts
to correct errors and recover the original data. See Reed-Solomon Coding and
Decoding, on page 436 for more information about Reed-Solomon encoding
and decoding.

The following is an example of the Reed-Solomon Decoder block:

SMC Reed-Solomon Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 429

Input and Output Pins

The following table describes the standard and optional pins on the block.

sofi
Start of frame input

When this pin is enabled, the block assumes start of
frame data at input.

srdyi
Source ready input

When this pin is enabled, the block assumes that a
valid input signal is given.

sofo
Start of frame output

When this pin is enabled, the block marks the start of
frame data at output.

srdyo
Source ready output

When this pin is enabled, the block generates a valid
output signal.

krdyo
Sink ready output

When this pin is enabled, the block is ready to accept
new input data

eofo
End of frame output

This is an optional pin. See Statistics Ready/End of
Frame Output, on page 434 for a description.

eri
Erasure put

This is an optional pin. See Erasure Input, on
page 433 for a description.

symerr
Symbol error output

This is an optional pin. See Symbol Error Output, on
page 433 for a description.

ber
Bit error count output

This is an optional pin. See Bit Error Count Output,
on page 434 for a description.

ser
Symbol error count output

This is an optional pin. See Symbol Error Count
Output, on page 434 for a description.

decfail
Decoder failure output

This is an optional pin. See Decoder Failure Output,
on page 434 for a description.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
430 October 2013

Reed-Solomon Decoder Timing Diagram

The following figures show the Reed-Solomon Decoder block timing:

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

SMC Reed-Solomon Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 431

Latency

The latency for this block is calculated as follows:

Codeword length (N) * 2 - Message length(K) + Bitwidth (m) + 8.

Reed-Solomon Decoder Parameters

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
432 October 2013

Bit width M

Specifies the bits per symbol for the message symbols and the parity
symbols. The Synphony Reed-Solomon Decoder supports short codes
for larger values. For example, you can specify a bitwidth (m) of 4, a
codeword length (N) of 7 and a message length (K) of 3.

Code Word Length N

Specifies the number of symbols in the code. The value you specify
determines the number of parity symbols added:

Codeword length N - Message Length K = Parity

See Reed-Solomon Coding and Decoding, on page 436 for details.

Message Length K

Specifies the number of symbols in the message. The encoder takes the
number of data symbols specified in this field that are of the bit width
specified in Bitwidth M, and adds parity symbols to make a symbol
codeword that is the size specified in Codeword length N. The message
length also determines the number of parity symbols:

Codeword length N - Message Length K = Parity

Specify primitive polynomial

Specifies the primitive polynomial for the Galois field. You can specify it
in either decimal or vector form:

D^4+D^3+1 => [1 1 0 0 1] or 25

Specify generator polynomial

Specifies the polynomial used to generate the codeword. This polynomial
is used for oversampling the data that is encoded. All valid code words
are exactly divisible by the generator polynomial.

DATA PARITY

n

2tk

SMC Reed-Solomon Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 433

You can define the generator polynomial in either of the following ways:

– Specify coefficients for the generator polynomial
Defines the polynomial coefficients as vectors. When you select this
option, the Generator polynomial coefficients field becomes available.

– Specify parameters for the generator polynomial
Specifies the polynomial coefficients using first root and spacing.
When you specify this option, the Starting power and Root spacing fields
become available. For example:
(X-alpha^fr) * (X-alpha^(fr+sp)) * ... * (X-alpha^(fr+(N-K-1)*sp))

Generator polynomial coefficients

Defines the coefficients for the generator polynomial as vectors.

Starting power

Defines the first root when you specify the coefficients for the generator
polynomial using first root and spacing.

Root spacing

Defines root spacing when you specify the coefficients for the generator
polynomial using spacing and first root. Root spacing can be greater or
equal to 1.

Erasure Input

Adds an optional erasure input signal (eri) to the block. The following
figure shows all the optional inputs and outputs to the block.

Symbol Error Output

Adds an optional symbol error output signal (symerr) to the block, which
shows the location and value of the error.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
434 October 2013

Statistics Ready/End of Frame Output

Adds an optional output signal (eofo) for monitoring end of frame or
statistics. This signal is high when statistics are available for the
decoded data.

Bit Error Count Output

Adds an optional output signal (ber) for counting the total number of bit
errors.

Symbol Error Count Output

Adds an optional output signal (ser) for counting the total number of
symbol errors.

Decoder Failure Output

Adds an optional output signal (decfail) for decoder failures, which
signals when the decoded message is not correct.

SMC Reed-Solomon Encoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 435

SMC Reed-Solomon Encoder
Generates an encoded signal, using Reed-Solomon error-correction codes.

Library

Synphony Model Compiler Communications

Description

The Reed-Solomon Encoder takes a block of digital data and adds extra parity
bits for error handling to the data stream before transmitting it over a
communications channel. See Reed-Solomon Coding and Decoding, on
page 436 for more information about Reed-Solomon encoding.

The following is an example of the Reed-Solomon Encoder block:

The number of errors that the Reed-Solomon Encoder block can correct is deter-
mined by the definition of the encoder. This applies to shortened codes too.
For example, the shortened code for RS(255,223) is RS(200,168), but the
number of parity symbols is still 32. Thus, the number of correctable errors is
32/2=16.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Encoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
436 October 2013

You can use the Reed-Solomon commands available in the MATLAB Communi-
cations Toolbox to generate polynomials for your design. You can also use the
MATLAB commands to validate the results from the Synphony Model
Compiler Reed-Solomon blocks.

Reed-Solomon Coding and Decoding

Reed-Solomon coder/decoders (CODECs) are widely used for error detection
and correction in DSP applications that deal with storage, retrieval, and
transmission of data. The Reed-Solomon Encoder takes a block of digital data
and adds extra parity bits to the data stream for error handling, before trans-
mitting the data over a communications channel. The Reed-Solomon Decoder
processes each block, determines if there are any errors, and corrects them if
possible. The errors are transmission or storage errors, like those caused by
noise or interference, or by scratches on a CD. Reed-Solomon codes are
special linear block codes for correcting errors.

The information to be encoded consists of message symbols and the code that
is produced after encoding consists of codewords. Each block of k message
symbols is encoded into a codeword that consists of n message symbols. K is
called the message length, n is called the codeword length, and the code is
called an [n,k] code. A Reed-Solomon code is specified as RS(n,k) with m-bit
symbols.

This means that the encoder takes k data symbols of m bits each and adds
parity symbols to make an n symbol codeword. There are N-K parity symbols
of m bits each. A Reed-Solomon decoder can correct up to t symbols that
contain errors in a codeword, where 2t = n-k. The following diagram shows a
typical Reed-Solomon codeword. Note that the data is left unchanged and the
parity symbols are appended:

R-S Encoder Data sinkData source

Noise/errors

Communications
channel or storage

device
R-S Decoder

DATA PARITY

n

2tk

SMC Reed-Solomon Encoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 437

Reed-Solomon Encoder Timing Diagram

The following figure shows the Reed-Solomon Encoder block timing:

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

The latency of this block is 1 (z ^ -1).

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Encoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
438 October 2013

Reed-Solomon Encoder Parameters

Bit width m

Specifies the bits per symbol for the message symbols and the parity
symbols. The Synphony Model Compiler Reed-Solomon encoder
supports short codes for larger values. For example, you can specify a
bitwidth (m) of 4, a codeword length (N) of 7 and a message length (K) of
3.

SMC Reed-Solomon Encoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 439

Codeword Length N

Specifies the number of symbols in the code. The value you specify
determines the number of parity symbols added:

Codeword length N - Message Length K = Parity

Message Length K

Specifies the number of symbols in the message. The encoder takes the
number of data symbols specified in this field that are of the bit width
specified in Bitwidth M, and adds parity symbols to make a symbol
codeword that is the size specified in Codeword length N. The message
length also determines the number of parity symbols:

Codeword length N - Message Length K = Parity

Specify primitive polynomial

Specifies the primitive polynomial for the Galois field. You can specify it
in either decimal or vector form:

D^4+D^3+1 => [1 1 0 0 1] or 25

Specify generator polynomial

Specifies the polynomial used to generate the codeword. This polynomial
is used for oversampling the data that is encoded. All valid codewords
are exactly divisible by the generator polynomial.

You can define the generator polynomial in either of the following ways:

– Specify coefficients for the generator polynomial lets you specify vectors for
the coefficient of the polynomial. When you select this option, the
Generator polynomial coefficients field becomes available.

– Specify parameters for the generator polynomial lets you specify the
polynomial coefficients using first root and spacing. When you specify
this option, the Starting power and Root spacing fields become available.
For example:
(X-alpha^fr) * (X-alpha^(fr+sp)) * ... * (X-alpha^(fr+(N-K-1)*sp))

Generator polynomial coefficients

Defines the coefficients for the generator polynomial as vectors.

Starting power

Defines the first root when you specify the coefficient for the generator
polynomial using first root and spacing.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reed-Solomon Encoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
440 October 2013

Root spacing

Defines root spacing when you specify the coefficient for the generator
polynomial using spacing and first root. Root spacing can be greater or
equal to 1.

SMC Register SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 441

SMC Register
Inserts a delay, with optional reset and enable ports.

Library

Synphony Model Compiler Memories

Description

The Synphony Model Compiler Register block is a custom block (see Primitives and
Custom Blocks, on page 800 for an explanation) that specifies a delay and
optional enable and reset ports.Use this block when you need to put an
enable or reset on a delay element.

For best results use the Delay block (SMC Delay, on page 169) instead of the
Register block whenever possible, because some retiming optimizations
cannot be implemented with the Register block.

The following figure shows the internal construction of the Register block with
optional reset and enable ports:

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Register

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
442 October 2013

Automatic Scalar Expansion

If the data input is a vector and the reset or enable port is scalar, the tool
expands the scalar reset or enable port to the size of the data input vector.
The reset and enable can be either vector or scalar.

Latency

The latency of this block is determined by the delay you set.

Register Parameters

Delay

Specifies the delay for the block, in nanoseconds.

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

SMC Reshape SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 443

SMC Reshape
Takes an input matrix or vector and changes its dimensions to the specified
values.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Reshape block transforms the dimensions of the
input to the new dimensions you specify. For example, if the input is a 3x4
matrix and you specify output dimensions of [2,6], this block outputs a 2x6
matrix. The tool first flattens the matrix to a vector according to the input
order and then arranges the vector back to a matrix according to the specified
output order. The output dimensions can also be derived from an inherit
port. See Example: 2-D DCT Using Matrix Data Types, on page 698 for an
example that uses the Reshape block to transpose matrix order.

The input and output elements are equal because this block only changes the
dimensions of the input signal; it does not affect the number of elements. The
number of input elements is equal to the product of its dimensions.

This table shows the supported input and the output choices for the block.
Any accepted input can be converted to any of the output choices:

Accepted Input Output Choices

Vector Vector (1-D array)

Row matrix (1xN) Row matrix (1xN)

Column matrix (Mx1) Column matrix (Mx1)

Matrix (MxN) Matrix (MxN) or vector (W) with specified dimensions

Signal with dimensions derived from inherit port

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reshape

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
444 October 2013

Latency

This block has no latency.

Reshape Parameters

SMC Reshape SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 445

Output Dimensions

Specifies the dimensions of the output signal. You have four choices for
the output signal dimensions:

When you set Output Dimensions to Specify, another field becomes available
to set the output dimensions. You can specify the output dimensions in
the following ways:

– A single value [W] or a vector. In either case, it must equal the number
of input signal elements.

– A pair of values [M N], where the product of M and N must equal the
number of input elements.

– Special variables syn_mat_rows or syn_mat_columns where syn_mat_rows
represents the number of rows of the input signal and
syn_mat_columns represents the number of columns of the input
signal.

Input order

Specifies the order in which the input signal is accessed for reshaping.
Input order does not matter when the input is scalar or vector.

– Row First accesses the input by row first. This is the default.

– Column First accesses the input by column first.

1-D Array Output signal is a vector that contains the same number of
elements as the input signal.

Row Matrix Output signal is a matrix consisting of a single row, with the
same number of columns as the number of input signal
elements.

Column
Matrix

Output signal is a matrix consisting of a single column, with the
same number of rows as the number of input signal elements.

Specify Lets you specify the output dimensions in the field that becomes
available. If you specify a single value [W], you get vector output.
If you specify a pair of values [M N], the output is a matrix with M
rows and N columns.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Reshape

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
446 October 2013

Output order

Specifies the order in which the output signal is accessed for reshaping,
when you set Output Dimensions to Specify. Output order does not matter
when the output is scalar or vector.

– Row First uses a row-wise arrangement for the output matrix.

– Column First uses a column-wise arrangement for the output matrix.

Inherit port

Determines whether the tool creates an inherit port. This port does not
convey data.

When enabled, the tool creates an inherit port and inherits the dimen-
sions from the inherit port directly. The output dimensions are the same
as those of the inherit port. When you enable Inherit Port, it overrides any
other dimensions you specified.

Example

The table below shows the output signal values with different parameter
settings, assuming that the input is the following 3x4 matrix:

1 4 7 10

2 5 8 11

3 6 9 12

SMC Reshape SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 447

Parameter Settings Output Signal

Output Dimensions: Specify [2 6]
Input Order: Column First
Output Order: Row First

Output Dimensionality: Specify
[syn_mat_columns syn_mat_rows]
Input Order: Row First
Output Order: Column First

Transpose of input signal

Output Dimensionality: Specify [12]
Input Order: Row First
Output Order: Row First

1 2 3 4 5 6

7 8 9 10 11 12

1 2 3

4 5 6

7 8 9

10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RFIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
448 October 2013

SMC RFIR
Implements a reloadable finite impulse response (FIR) filter with a coefficient
load register.

Library

Synphony Model Compiler Filtering

Description

The Synphony Model Compiler RFIR block is a custom block (see Primitives and
Custom Blocks, on page 800 for an explanation) that implements an FIR filter
with reloadable coefficients. It combines the FIR Engine block with a loadable
coefficient register to allow changes to the filter response by writing different
values into the register. As a custom block, it serves as a reference and a good
starting point for using the FIR Engine block to create reloadable or adaptive
coefficient logic.

You can apply it to programmable filters and adaptive filtering applications.
The following figure shows the internal structure, which uses the FIR Engine
block and custom block methodology to implement your own customized FIR
coefficient update logic.

SMC RFIR SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 449

Latency

This block does not introduce latency, but the coefficient load register intro-
duces a latency of one sample time. The icon annotation shows zero latency.

• Latency from input X to Y is zero (same as FIR Engine).

• Latency from W to Y is 1.

RFIR Parameters

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RFIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
450 October 2013

Data Path Format

Determines data path format. You can set one of these options:

– Automatic sets the data path format to one that uses the maximum of
input and output fractions, and the smallest bit width that
guarantees no overflow.

– Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation is used internally.

– Specify uses the user-defined data type to cast the adder and
multiplier outputs for internal calculations. It makes the Data Path
Word Length and Data Path Fraction Length options available.

Data Path Word Length

Determines the word length of the data path in bits. It only becomes
available when you set Data Path Format to Specify. You can specify it as a
value or in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl,
syn_coef_fl, syn_coef_dt, and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Data Path Fraction Length

Sets the fraction length of the data path in bits. It only becomes avail-
able when you set Data Path Format to Specify. You can specify it as a value
or in terms of the syn_inp_wl, syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl,
syn_coef_dt, and syn_guard_bit variables, which are described in Special
Variables, on page 588.

Data path saturate on overflow

Determines how the data path overflow value is handled. See Overflow
Saturation Options, on page 585 for details.

Data path rounding

Determines how underflow in the data path is rounded. See Underflow
Rounding Options, on page 585 for details. This option is not available if
Data path format is set to Full Precision.

SMC RFIR SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 451

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output rounding

Determine how output overflow and underflow are treated. These
options are only available when Output format is set to Specify.

Reset Port

When enabled, the RFIR is implemented with a reset pin for resetting the
FIR filter. The block icon reflects the change.

Enable Port

When enabled, the RFIR is implemented with an enable pin for enabling
or disabling the filter. The block icon reflects the change.

Coefficient Reset Port

When enabled, the RFIR is implemented with a coefficient reset pin (wrst)
for resetting coefficient registers. The block icon reflects the change. The

Output format Output Format, on page 583

Output word
length

Output Word Length, on page 584
You can specify it as a value or in terms of the syn_inp_wl,
syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl, syn_coef_dt,
and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Output fraction
length

Output Fraction Length, on page 584
You can specify it as a value or in terms of the syn_inp_wl,
syn_inp_fl, syn_inp_dt, syn_coef_wl, syn_coef_fl, syn_coef_dt,
and syn_guard_bit variables, which are described in
Special Variables, on page 588.

Output data type Output Data Type, on page 584

Output saturate
on overflow

When enabled, saturates the overflow; when disabled, wraps
the overflow. See Overflow Saturation Options, on page 585
for details.

Output rounding Specifies the algorithm to use to round the output underflow.
See Underflow Rounding Options, on page 585 for details
of the algorithms.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RFIR

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
452 October 2013

coefficient reset signal is single bit input, connected to the reset signals
of the filter tap size. Enabling this option makes the Coefficient Reset Value
option available.

Coefficient Reset Value

Specify one of these two options for reset values:

– All zeroes

– Specify makes the Coefficient Reset Vector option available. When
specified, the block accepts a cell array of reset values.

Reset values have the same data format and data type as the FIR coeffi-
cients. See FIR Parameters, on page 229 for details.

Coefficient Reset Vector

Specifies vectors for the coefficient reset ports. The reset values are
specified as a cell array.

Coefficient Enable Port

When enabled, the RFIR is implemented with a coefficient enable pin
(wen) for controlling coefficient updates. The block icon reflects the
change. The coefficient enable signal is single-bit input, connected to the
enable signals of the filter tap size.

Data Buffer Output

When enabled, the RFIR is implemented with a data buffer output pin
(xvec) to feed into adaptive logic. The block icon reflects the change. The
data buffer output is a vector output, with a size that is the same as the
specified tap length.

SMC ROM SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 453

SMC ROM
Models a read-only memory (ROM) with a latency of one sample.

Library

Synphony Model Compiler Memories

Description

The Synphony Model Compiler ROM block models a ROM with a latency of one
sample. If the addr input value exceeds the size of the ROM, the output is 0.

Resets on ROM Output Registers

The SMC tool generates ROM blocks with output registers with a reset signal.
However, not all target technologies support this architecture in both
synchronous and asynchronous versions.

Automatic Scalar Expansion

If the address input of the ROM is a vector and the enable port is scalar,
the enable port is expanded according to the size of the address vector.

Latency

This block has a latency of one sample.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC ROM

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
454 October 2013

ROM Parameters

ROM data

Sets the ROM depth and valid input values in one of these ways:

– Type in the ROM vectors. If you enter [10 20] as the vectors, the
software generates a ROM with a depth of 2. The first value is 10 and
the second value is 20.

The block inputs and resulting outputs are shown in this table:

Input Value Output Value

0 10

1 20

Any other integer 0

SMC ROM SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 455

– Use the syn_read_hex function. See syn_read_hex, on page 610 for the
syntax and Specifying ROM Data with syn_read_hex, on page 776 for
information on using this function.

– If the ROM input is vectorized, specify a matrix for the ROM values.
Each row vector contains ROM values for one channel of input. The
number of rows in the matrix must equal the input vector size.

ROM data word length, ROM data fraction length, and ROM data type

For descriptions of these parameters, see the following:

ROM data saturate on overflow, ROM data round towards nearest on underflow

Determine how overflow and underflow are treated. For descriptions of
these parameters, see the following:

Enable port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal ROM. When enable
is low, the output as well as the contents of the ROM does not change. If
Dual Port ROM is selected, both outputs are held at the previous value.

Dual Port ROM

When enabled, the block is implemented with two independent address
and data output ports that share the same ROM data. To use dual-port
ROM, make sure that both address ports have the same data type and
the same sample times.

For most FPGA targets, this kind of ROM maps to a single dual-port
block RAM macro.

ROM data word length Output Word Length, on page 584

ROM data fraction length Output Fraction Length, on page 584

ROM data type Output Data Type, on page 584

ROM data saturate on
overflow

Saturates or wraps the overflow; see
Overflow Saturation Options, on page 585.

ROM data round towards
nearest on underflow

Uses the Nearest or Floor (Truncate) algorithms
to round the underflow; see Underflow
Rounding Options, on page 585.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RTL Encapsulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
456 October 2013

SMC RTL Encapsulation
Lets you embed large third-party IP in a Synphony design and simulate it in
Simulink without using external RTL simulators.

Library

Synphony Ports & Subsystems

Description

The RTL Encapsulation block lets you embed third-party blocks in an SMC
Synphony design, and use fast C-based simulation within the Simulink
environment. It points to the third-party RTL. RTL encapsulation uses
C-model generation technology to provide high-performance, bit-accurate
and cycle-accurate behavior, so this block does not require any special
Simulink features or external simulators. The RTL Encapsulation block is the
preferred method to embed third-party blocks in the SMC tool.

The RTL Encapsulation block is preferred over Smart Black Box, because the
simulations run significantly faster and do not require access to an external
RTL simulator. If you have IP with no access to the RTL code at all, you
cannot use either RTL Encapsulation or Smart Black Box, and you must use the
Black Box block (SMC Black Box, on page 56) instead.

To use this block, place it in the SMC model and point to the RTL files. Use
normal Simulink simulation to verify the model. For the implementation, the
tool instantiates source RTL in the generated RTL output.

Use this tool to easily do the following:

• Integrate your large third-party or legacy RTL IP into your SMC model,
with fast C-based simulation

• Add standard and/or custom interface blocks to your model

• Reduce RTL integration effort in the downstream implementation flow

SMC RTL Encapsulation SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 457

• Add hand-designed control logic blocks, state machines, and/or cycle
accurate blocks to your model

Prerequisites

Before using the RTL Encapsulation block, the compiler must be configured in
MATLAB to compile s-functions. You usually do this during installation with
the setup script. If you did not do it then, type mex -setup in the MATLAB
console to configure the compiler. The Release Notes list compilers supported
for RTL encapsulation.

Latency

The contents of the third-party HDL source determines the latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RTL Encapsulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
458 October 2013

RTL Encapsulation Parameters

RTL Definition

Specifies how the third-party IP is defined, as a single file or multiple
files

– Single HDL file
Specifies the single .v (Verilog) or .vhd (VHDL) file that defines the IP.

SMC RTL Encapsulation SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 459

– Import File List
Specifies the text file that contains a list of the HDL files for the
design. Use this setting if the IP is defined in multiple .v (Verilog) or
.vhd (VHDL) files.

HDL File

Specifies the path to the RTL file. This can be an absolute or relative
path to the model file. This option is only available when RTL definition
parameter is set to Single HDL File.

Import File List

Specifies the path to a text file that lists all the HDL files to be included.
The list must contain paths to the files which are either absolute or
relative to the model file. The definition file extensions in the list must be
.v or .vhd. For example, if your RTL is defined in four files named
myiplib1.vhd (library definition file with myiplib being the library), myip2.v,
myip3.v and myip4.vhd, create and save a text file (myipfilelist.txt) that lists
the paths to the RTL definition files as follows:

-L myiplib C:\myips\ myiplib1.vhd
C:\myips\myip2.v
C:\myips\myip3.v
C:\myips\myip4.vhd

The files are compiled in the order specified.

Entity/Model Name

Specifies the topmost entity or model name for the RTL. This name
becomes the instance name for the RTL Encapsulation block and the name
of the instantiated entity or model.

Include Directories

Specifies the include directories for the Verilog include files.

– Click the Add Path button to browse to the directory and include it.

– Select the directory from the list and click Remove Path to exclude a
directory.

RTL Parameters/Generics

Lets you define or override generics and parameters in the RTL file.

– Parameter Name specifies the parameter you wish to override.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RTL Encapsulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
460 October 2013

– Parameter Type defines the type for the parameter. The supported types
are integer and string.

– Parameter Value specifies a new value for the parameter.

Generate/Edit Port Configuration

Opens a tabular interface where you can generate, view, or edit the port
configuration. Refer to Port Configuration Window for RTL Encapsula-
tion, on page 461 for a description of the interface.

The tool automatically regenerates the port configuration information if
you make changes to the RTL files, any of the other files in the list, the
top module name, or the include directories; or if you use the parameter
overrides.

Encapsulation Status

The current status is printed at the bottom of the dialog box, if you
already have it open. If the block is initialized from the Simulink
window, a progress bar displays the progress.

SMC RTL Encapsulation SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 461

Port Configuration Window for RTL Encapsulation

Only the columns marked with an asterisk (*) are editable. The tool validates
the information entered. If you enter an invalid value, the tool ignores it and
maintains the previous values.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RTL Encapsulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
462 October 2013

If an invalid value is ignored, the tool prints the reason at the bottom of the
configuration window as shown in the following figure:

Input Ports

Name Description

Port Name Specifies the input port name.

Sample Time Specifies the input port sample time in seconds.

Bit Width Specifies the bit width for the input port.

Port Type Specifies the port type. Set it to input, global reset, or global enable. The
tool infers the global reset port if it is asynchronous, but it does not
infer synchronous global resets.
Global reset and global enable are implicit ports for Simulink
simulation and do not appear as ports on the block. For RTL
generation, these ports are connected to global reset and global
enable signals respectively in the SMC generated RTL.

Reset polarity Sets reset polarity. You must specify reset polarity for global reset
ports. The default setting is active high.
If the port is not a global reset, this option does not apply.

SMC RTL Encapsulation SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 463

Output Ports

Clock Ports

For multirate designs, the tool issues an error while editing port information
if the following conditions are not met:

• Each clock must have an associated enable.

• If there is more than one reset in a design, there should be one reset per
clock domain.

Name Description

Port Name Specifies the output port name.

Sample time For multirate designs, you must specify the sample time in seconds.
For single rate designs, set this to Auto. With this setting, the tool
uses the input port sample time as the sample time for the output
ports. Auto is the default setting for single-rate designs.
You can also specify sample time as a workspace variable or an
expression.

Bit Width Specifies the bit width for the output port.

Fraction length The default fraction length is zero. If your design requires a different
sample time for output ports, specify it here.

Signed The default assumes that single-bit ports are unsigned and multi-bit
ports are signed. If you require a different setting, specify it here..

Name Description

Port Name Specifies the output port name.

Sample time Specifies the sample time in seconds.

Associated Enable Select one of the global enable input ports listed here to be the
enable associated with the specified clock. This is mandatory for
multirate designs.

Associated Reset Select one of the global reset input ports listed here to be the reset
associated with the specified clock. This is mandatory for
multirate designs. If there is more than one reset in a design,
there should be one reset per clock domain.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC RTL Encapsulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
464 October 2013

Limitations of the RTL Encapsulation Block

There are some limitations to using the RTL Encapsulation block:

• The RTL cannot have a clock port of a sequential element that is fed by
internally generated clocks or gated clocks.

• The active clock edge must be posedge.

• You cannot use the RTL Encapsulation block inside an HLS Subsystem block.

• The RTL cannot have latches.F

• The RTL cannot have combinational loops.

• The RTL cannot have instantiations of any FPGA device-specific primi-
tives like DCM, RAMB16, or DSP48.

• The RTL cannot have black box modules.

• The RTL cannot be encapsulated if it has an input port with paths to
multiple output ports, some of which are purely combinational and
others registered. This is a Simulink s-function framework limitation. If
you have such a design, the tool issues an error message.

SMC Sample and Hold SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 465

SMC Sample and Hold
Samples and holds the input signal.

Library

Synphony Signal Operations

Description

The Sample and Hold block samples and holds the input signal. A new sample
is loaded into the memory when the enable (en) port is high; otherwise it
retains the old value.

This block is a custom block (see Primitives and Custom Blocks, on page 800
for definition). The following figure shows the internal modeling when delayed
output is not checked:

Latency

This block has a latency of 1 if Delayed Output is checked.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sample and Hold

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
466 October 2013

Sample and Hold Parameters

Latch (buffer) input

When enabled, the Sample and Hold block outputs the input value right from
the clock cycle till the next triggering event occurs. Checking this parameter
enables the block to be used in a loop.

Delayed Output

When enabled, the block adds one cycle of latency from the input to the
output. If a delay can be tolerated in the design, the delayed version will have
better performance in the hardware.

Reset Port

When enabled, the block is implemented with a reset pin. The reset port is
connected to the reset signal of the internal shift register.

SMC Saturate SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 467

SMC Saturate
Saturates the input signal to the values specified in the positive and negative
saturation value fields.

Library

Synphony Signal Operations

Description

The Saturate block saturates the input to the values specified in the positive
and negative saturation value fields.

This block is a custom block (see Primitives and Custom Blocks, on page 800
for a definition). The following figure shows the internal modeling when
saturation mode is constant:

Latency

This block has zero latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Saturate

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
468 October 2013

Saturate Parameters

Saturation mode

Specifies if the positive and negative saturation threshold values of the
input signal are provided as constants through mask parameters, or as
variable through input ports.

Positive saturation value

Specifies the maximum positive value of the input signal beyond which
the input saturates to this set value.

Negative saturation value

Specifies the minimum negative value of the input signal beyond which
the input saturates to this set value.

Gain round towards nearest on underflow

Determines how the underflow for the gain is treated. When enabled, the
option rounds the underflow using Nearest algorithm, When disabled,
the option rounds the overflow with the Floor (truncate) algorithms. See
Underflow Rounding Options, on page 585 for details.

SMC Saturate SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 469

Output Format Parameters

For descriptions of these parameters, see the following:

Output saturate on overflow, Output round on underflow

Determine how overflow and underflow are treated. These options are
only available when Output format is set to Specify.

Output quantization rule Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on
page 584

Output data type Output Data Type, on page 584

Output saturate on overflow When enabled it saturates the
overflow; when disabled, it wraps the
overflow. See Overflow Saturation
Options, on page 585 for details.

Output round on underflow Uses the specified algorithm to round
the underflow; see Underflow
Rounding Options, on page 585 for
descriptions of the algorithms.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sequence

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
470 October 2013

SMC Sequence
Repeats a sequence of specified data.

Library

Synphony Model Compiler Sources

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) repeats a sequence of specified data.

The following figure shows the internal construction of this block, with reset
and enable ports:

Latency

The latency of the Sequence block is 1.

SMC Sequence SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 471

Sequence Parameters

Sequence

Specifies the sequence to be repeated. The data is cast into the number
format specified by the Word Length, Fraction Length, and Data Type options.

Output word length, Output fraction length, and Output data type

For descriptions of these parameters, see the following:

Reset Port

When enabled, the block is implemented with a reset pin. The reset port
is connected to the reset signal of the internal shift register.

Word length Output Word Length, on page 584

Fraction length Output Fraction Length, on page 584

Data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sequence

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
472 October 2013

Enable Port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift register.

Sample Time

Determines sample time. Use -1 to inherit. This option is not available if
you specify reset or enable ports.

SMC Serial to Parallel SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 473

SMC Serial to Parallel
Implements a data packet conbiner that collects serial data packets at the
input and merges them into a parallel data word at the output.

Library

Synphony Model Compiler Signal Operations

Description

The Serial to Parallel block combines serial data packets from the input and
merges them into a parallel word for the output. You can specify the order in
which the serial inputs are combined. As this block combines several input
samples into a word, the sampling rate at the output decreases.

This block is a custom block. (See Primitives and Custom Blocks, on
page 800 for a definition.) The following figure shows how the block is
modeled:

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Serial to Parallel

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
474 October 2013

Icon Annotations

The icon for this block displays the following information:

Serial to Parallel Parameters

Number of input packets for parallel output

Specifies the number of serial output packets. As the block combines
many input packets into one output word, the output sampling rate
decreases.

Packet ordering

Determines how the serial input packets are combined for output.

– MSB to LSB combines the serial input packets from the most
significant to the least significant bit.

Latency One sample latency with respect to the clock domain.

SMC Serial to Parallel SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 475

– LSB to MSB combines the serial input packets from the least
significant to the most significant bit.

Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output saturate on overflow, Output round on underflow

Determine how output overflow and underflow are treated. These
options are only available when Output format is set to Specify.

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

Output saturate
on overflow

When enabled, saturates the overflow; when disabled, wraps
the overflow. See Overflow Saturation Options, on page 585
for details.

Output round on
underflow

Specifies which algorithm is used to round the output
underflow. See Underflow Rounding Options, on page 585
for details of the algorithms.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Shift Register

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
476 October 2013

SMC Shift Register
Implements a delay line with dynamic or static access to intermediate taps.

Library

Synphony Model Compiler Memories

Description

The Synphony Model Compiler Shift Register block implements a static or dynamic
shift register. Many applications use a delay line, and this block offers a
component that can delay a signal by a certain number of samples.

You can also implement a delay line with the Delay block, but the Shift Register
block allows you to tap into the delay line at a fixed or addressable location
and get the output. You can use this for linear feedback shift register applica-
tions like pseudo-random noise generation, stream encryption/decryption
algorithms, and for serial-to-parallel conversion.

Outputs inherit the input data type. Potential inputs must have the same
data type.

Programmable Output Tap

SMC Shift Register SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 477

For vector or matrix input, the tool infers multichannel shift registers.
Separate shift registers are inferred for each element in the input signal.

Automatic Scalar Expansion

If the data input is a vector/matrix and a reset or enable port is scalar, the
reset and enable ports are expanded according to the size of the data
vector/matrix.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Icon Annotations

The icon for this block displays the following information:

Note (green) Indicates the number of delay elements in the shift register.

Latency (red) Indicates the latency of tap location addr with regard to input. For
example: z-(addr+1).

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Shift Register

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
478 October 2013

Shift Register Parameters

Dynamic Access

When this option is enabled, the software implements a single output
that taps into the register (dynamic shift register), and lets you specify
the length of the delay line in Shift Register Length.

When this option is disabled, the software implements a static shift
register, and allows you to set the tap locations in Output Tap Locations and
specify the Output Mode.

Shift Register Length

Sets an integer value that specifies the length of the delay line. This
parameter is only available when Dynamic Access is enabled.

Output Tap Locations

Specifies a vector of integer values. The number of delays for each
output tap location is the corresponding integer value specified plus
one.This parameter is only available when Dynamic Access is disabled.

SMC Shift Register SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 479

Output Mode

Specifies the mode for the output. You can set it to one of the following:

– Normal
All tap outputs are exposed as output ports.

– Merge to vector
For scalar input, the block output is a vector. The first tap of the shift
register becomes the first element of the vector, and the last tap
becomes the last element.

You cannot have vector or matrix input signals in this mode.

– Merge to vector in reverse order
For scalar input, the block output is a vector. The last tap of the shift
register becomes the first element of the vector, and the first tap
becomes the last element.

You cannot have vector or matrix input signals in this mode.

– Merge to matrix/vector
For scalar input, the behavior is the same as with Merge to vector
mode.

For vector input, the block output is a matrix. The number of
columns in the output matrix is the same as the number of elements
in the vector input. The number of rows in the output matrix is equal
to the number of taps in the shift register. Each column is the merged
output of each shift register inferred for each input element. The first
tap of each shift register becomes the element in the first row of each
column and the last tap becomes the element in the last row of each
column.

You cannot have matrix input signals in this mode.

Reset Value

Determines the reset value. You can set this to one of the following:

– All zeros

– Specify lets you specify the reset value in the Reset Vector field that
becomes available.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Shift Register

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
480 October 2013

Reset Vector

This field only becomes available when you set Reset value to Specify. The
number or elements in the reset value vector must be the same as the
register depth.

Reset Port

When enabled, this clears the contents of the delay line. The software
does a local block reset and combines it (OR) with a system reset. If the
target architecture does not provide well-defined power-up behavior, the
software generates an explicit system-level reset for the RTL implemen-
tation.

When disabled, the software uses the implicit system implementation
reset where it is relevant, but does not reset the block implementation.
The contents of the delay line are determined by the shift (Enable) opera-
tion.

The following table summarizes the effects of the Enable and Reset Pin
settings. Note that the Reset Pin setting takes priority.

Enable Port

When enabled, the Enable port controls the delay line and the sample
clock for asynchronous buffering. The Enable pin can be interpreted as a
shift, and the registers can shift with the sample clock. If the option is
disabled, the delay line is always enabled.

The Enable Pin option is used with Reset Pin, as described in the previous
table.

Input Pass-through

When enabled for static shift registers, directly passes the input to the
output of tap 0. This option is only available for static access shift regis-
ters when one of the merge output modes is selected. You cannot use
this in Normal mode.

Enable Pin Reset Pin Functionality Implemented

Off Off No shifting, outputs maintained

Off On Reset delay line to all zeroes

On Off Enable delay line by making the shift register active

On On Reset delay line to all zeroes

SMC Shift Register SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 481

Input pass-through operation is different from normal operation.
Normally, in Merge to Vector mode for example, the first element in the
vector output is the output from the first tap, the second is the output
from the second tap, and so on. If the tap location is 0, output is the
input delayed by one cycle; if the tap location is 1, the output is the
input delayed by two cycles. With this option enabled, the input is
directly passed to the output of tap 0: the output of tap location 0 is the
input, the output of tap location 1 is the input delayed by one cycle, and
so on. This option is useful for creating vectors of the current input
sample and delayed input samples.

Examples of Shift Register Settings and Implementations

The following table shows the settings required for some implementations:

Merge Output Mode Examples

The following examples illustrate the merge output mode.

Merge Output Mode with Scalar Input
The following figure shows a shift register with scalar input. The annotations
shown are with Input pass-through disabled.

Standard Delay Reset = off
Enable = off
Dynamic Access = off
Tap Locations = [0]

Delay z-N Reset = off
Enable = off
Dynamic Access = off
Tap Locations = [N-1]

Static Shift
Register

Reset = off
Enable = off
Dynamic Access = off
Tap Locations = [M-1, N-1]. This corresponds to the M and N
delays from the shift register input

Dynamic Shift
Register

Reset = off
Enable = off
Dynamic Access = on
Length = N

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Shift Register

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
482 October 2013

The table shows the output for different combinations of tap locations mode and
other settings.

Merge Output Mode with Vector Input
The following figure shows a shift register with vector input and a Merge to
matrix/vector output mode. The annotations shown are with Input pass-through
disabled.

Taps Output Mode Input pass-through Output Vector y

[0 2 5] Merge to vector
Merge to matrix/vector

Off [6 4 1]

Merge to vector in reverse order [1 4 6]

Merge to vector
Merge to matrix/vector

On [7 5 2]

Merge to vector in reverse order [2 5 7]

[1 3 5] Merge to vector
Merge to matrix/vector

Off [5 3 1]

Merge to vector in reverse order [1 3 5]

Merge to vector
Merge to matrix/vector

On [6 4 2]

Merge to vector in reverse order [2 4 6]

SMC Shift Register SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 483

The table shows the output for different combinations of tap locations and
input pass-through settings.

Tap locations Input pass-through Output matrix y

[0 2 5] Off

On

[1 3 5] Off

On

6 16

4 14
1 11

7 17
5 15

2 12

5 15

3 13

1 11

6 16

4 14
2 12

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Shifter

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
484 October 2013

SMC Shifter
Performs a variable left or right shift on the input signal.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Shifter block performs a variable left or right shift
on the input signal. The second operand (b) determines the shift amount.
Negative shift values reverse the direction of the shift. Fractions are ignored.
To implement constant shifts, use the SMC Convert block.

The type of architecture is automatically derived from the input type. For the
most optimized solution or if you do not expect negative values, use unsigned
data for the input.

• If the input has signed data and the value is negative, the Shifter block
reverses the shift register and implements a larger shifter.

• If you have an unsigned number at the input, the software implements
an optimized solution and creates a smaller architecture.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

SMC Shifter SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 485

Shifter Parameters

Shift direction

Sets the shift direction.

– << implements a left shift. The software does not do any overflow
checks for left shifts.

– >> implements a right shift.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SHLSTool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
486 October 2013

SMC SHLSTool
Opens the SHLSTool interface where you can set system-level optimizations
and set parameters for generating RTL code.

Library

Synphony Model Compiler, top level library

Description

The SHLSTool toolbox provides an interface where you can specify system-level
optimizations and set parameters for generating RTL code. Users of Synopsys
FPGA synthesis products will find the interface intuitive, as it has the same
look and feel as the synthesis tools. See Running Synthesis with SHLSTool,
on page 677 for information about using this toolbox.

You must have a SHLSTool block in every Simulink® model that contains any
element from the Synphony Model Compiler blockset.

SMC SHLSTool SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 487

SHLSTool Toolbox Interface

The following figure shows the Synphony toolbox interface as it appears
before you create an implementation:

Project ViewModel

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SHLSTool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
488 October 2013

The next figure shows the interface once you have created an implementa-
tion. The interface displays information about the implementation, and the
buttons on the left side are enabled.

Open Model

Opens a dialog box where you can select the model file you want to
open. The current model file appears in the Model field.

Implementation name Technology selectionsModel name Project view

SMC SHLSTool SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 489

New Implementation

Opens a dialog box where you can specify the name for a new implemen-
tation and set other options. See Implementation Options Dialog Box, on
page 490 for details.

Delete Implementation

Deletes the selected implementation.

Edit Implementation

Opens a dialog box where you can set various optimization and
synthesis target options and generate RTL code. See Implementation
Options Dialog Box, on page 490 for details. When you set a target
technology in this box, the results are reflected in the toolbox.

View Log

Opens the log file.

Run

Optimizes the model according to the options you set and generates
VHDL source files, a Synplify Pro project file, a constraint file for
synthesis, and an optional test bench. The files are written to the design
directory.

If you set options and do not click Run, the options are saved for the
selected implementation, but no RTL code or test benches are generated.
You can do this to run a Simulink simulation with the RTL generator
block added to your model.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
490 October 2013

Implementation Options Dialog Box
The Implementation Options dialog box opens when you click the New Implementa-
tion or Edit Implementation buttons in the Synphony Model Compiler toolbox (see
SMC SHLSTool, on page 486). The implementation options vary, depending
on the technology you select.

The following describe the options. See Setting up Implementations, on
page 644 for details about using the options.

• Target Options, on page 491

• RTL Options, on page 492

• Design Options, on page 495

• Clock Reset Options, on page 497

• HLS Optimizations, on page 501

• HLS Constraint Options, on page 505

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 491

Target Options

The options vary according to the technology you select in the Vendor option.

Implementation

Lets you name or rename the implementation.

Vendor

For FPGA designs, select the vendor you want to target. Setting this
option determines the choices available for Technology, Part, Package, and
Speed.

Technology

Selects the technology.

– For FPGA devices, this selects a target technology. The information is
used to generate the project file for synthesis, and for retiming. You
can use the Synplify Pro tool to port the design to other devices that
are not listed here.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
492 October 2013

Part

Selects a target part for the FPGA technology device you selected. You
can port the design to other available parts that are not listed here, by
changing the target part in the Synplify Pro interface.

Package

Selects a target package for the FPGA technology device you selected.
You can port the design to other available packages that are not listed
here, by changing it in the Synplify Pro interface.

Speed

Selects a target speed grade for the FPGA technology device you
selected. You can port the design to other speed grades that are not
listed here, by changing it in the Synplify Pro interface.

When disabled (the default value), the Synopsys FPGA synthesis tools
insert bypass logic to prevent mismatches when the logic specifies
simultaneous reads and writes to the same RAM location.

RTL Options

The following figure shows the RTL Options tab of the Implementation Options
dialog box. Some options are vendor-dependent.

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 493

Generate VHDL

When enabled, this option generates a VHDL design that you can use as
input for synthesis with the Synplify Pro tool. The supported format is
VHDL 93.

Generate Verilog

When enabled, this option generates a Verilog design that you can use
as input for synthesis with the Synplify Pro tool. The supported format is
Verilog 2001.

Generate RTL Test Bench

When enabled, this option creates an HDL test bench for pre-synthesis
functional verification with an HDL simulator. You use the test bench
along with the HDL files created by the RTL Generator and the test
vectors captured during Simulink simulation. The test bench instanti-
ates the top-level module of the design, drives it with input test vectors,
reads the output, and compares it with the output test vectors. The
software handles the extra latency introduced by retiming by treating it
as one of the inputs when it generates the test bench.

For information about using this option, see Verifying the RTL with a
Test Bench, on page 853.

Generate C Code

This option is only available when you enable Generate RTL test bench. To
use this option you must have the appropriate license. If you choose to
generate C code, the tool generates output in C format that you can then
use. See Chapter 13, Working with C Output for details.

Limit the length of names in output RTL

When enabled, sets a limit on the length of names in the output RTL
code generated. This limit applies to the names of entities, modules,
signals and block names coming from blocks, subsystems and signal
names in the Simulink model, when they are written out in RTL.

The shortened name follows this format: <Shortened hierarchy name>_<6
digit value><Shortened block/entity/module/signal name>_<6 digit value>.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
494 October 2013

The tool conforms to these rules:

– When the original identifier string is longer than the value you specify
in Maximum Name Length, and both names (hierarchy name and
block/entity/module/signal name) are longer than the pre-assigned
lengths described below (¾ and ¼ of desired maximum name length
respectively), the tool shortens the names according to the format.

– The tool does not shorten hierarchy and/or block/entity/module
signal names if the name length is less than the three-quarter or
one-quarter of the maximum name length limit, respectively.

– If one of the names does not exceed the limit and is not to be
shortened, the hierarchy or block/entity/module signal name can be
longer than the three-quarter or one-quarter maximum name length
limit.

The name length limit might not affect some cases:

– Some names might still be longer than the limit you set, because of
auto-generated strings added to identifier names like _block, N_, my,
etc. Set a lower maximum name length value to get the desired
output.

– Some auto-generated instances and signals in the RTL
implementation are not affected by this setting; for example,
identifiers not defined in user model. Examples are low level
primitives in some IPs, or the adder in an FIR implementation.

Maximum Name Length

Sets the maximum name length for names in the output RTL. The value
you set here affects how long names are truncated in the output. See

<Shortened
hierarchy name>

Hierarchy information that is included in the RTL name
when the tool generates a flattened RTL for folding. The
hierarchy name is shortened if it is more than
three-quarters of the value you set in Maximum Name
Length.

<6 digit value> 6 digit value appended to shortened identifiers to make
the names unique after shortening.

<Shortened
block/entity/module/
signal name>

Shortened name for the block, entity, module or signal
name. The name is shortened if it exceeds one-quarter of
the value in Maximum Name Length.

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 495

Limit the length of names in output RTL, on page 493 for details. The
minimum value you can set is 32.

Design Options

The following figure shows the Design Options tab of the Implementation Options
dialog box. Use these options to define global resets. See Defining Reset
Signals, on page 758 for a step-by-step procedure.

Generate Global Enable

When enabled, creates an internal global enable signal for the design. No
global enable ports are created for any of the clock domains. The default
setting is disabled.

A global enable signal can be used to stall the design based on user
input. You do not need to enable this option unless you need control of
the global enable signal in your design. The tool achieves better area and
timing if this option is disabled.

Generate Global Reset

This option is currently not available for Microsemi designs.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
496 October 2013

Flip Flop Reset Polarity

Sets the global reset polarity for the design. You can set it to Active High
or Active Low.

Flip Flop Reset Sensitivity

Assigns a global type for the resets in the design.

– Synchronous codes the registered elements with synchronous global
resets.

– Asynchronous codes the registered elements with asynchronous global
resets.

– Automatic assigns the global reset according to the vendor selected.

For details of how the Synphony tool implements resets in the design,
see Synchronous and Asynchronous Resets, on page 684.

Reset Option (Verilog Only)

Creates resets for all registers in Verilog designs.

– Automatic lets the tool decide when to insert resets for registers. Some
registers might not have resets. This is the default for FPGA, and is
the recommended setting for FPGA designs.

– All registers with reset enforces resets for all registers.

Generate Separate Reset per Clock Domain

When enabled, the tool generates separate resets for each clock domain.

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 497

Clock Reset Options

The following figure shows the Clock Reset Options tab of the Implementation
Options dialog box. Use these options to generate a top-level clock_reset module
that contains the input clock and reset information for the design.

Generate Clock-Reset Circuitry

When the option is disabled, only the files that correspond to the
Simulink design are generated. This is the default.

When enabled, a top-level module called clock_reset is inserted in the
top-level Synphony design in addition to the automatically generated
RTL code. See Clock and Reset Management, on page 686 for details.
The tool also generates additional files for the clock_reset module; the files
are listed in Clock/Reset Circuitry Files, on page 690.

If this option is enabled, the log file contains this entry:

@N: Generation of Clock-reset circuitry enabled.

Enabling this option makes other parameters available, like the clocking
scheme.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
498 October 2013

Power On Reset Polarity

Defines the power on reset polarity that is applied to the design exter-
nally (g_porst pin). You can set it to Active High or Active Low. The pin is
assumed to be asynchronous, and you cannot adjust the sensitivity. For
additional information, see Reset Functionality with the Clock_reset
Module, on page 689.

User Reset Polarity

Defines the user reset polarity that is externally applied to the design
(g_urst pin). You can set it Active High or Active Low. For additional informa-
tion, see Reset Functionality with the Clock_reset Module, on page 689.

User Reset Sensitivity

Defines the reset type for the user reset input signal. You can set this to
Synchronous or Asynchronous. For additional information, see Reset
Functionality with the Clock_reset Module, on page 689.

Set of Clock Sources

Specifies the available oscillator frequencies for the design. There must
be a rational ratio between the design clocks and the oscillator
frequency values entered here.

You specify the value as a row or column vector. For example:

If you leave this field blank, the tool looks at the sample rates of the
Simulink design and automatically takes the least common multiple
frequency of clock signals.

It also records it in the log file:

@N: Oscillator source file not specified. Using least common
multiple frequency value.

Single rate designs Enter the frequency with or without square brackets. For
example: [100] or 100.

Multi rate designs Enclose the frequency values in square brackets, and
separate the values with spaces, commas, or semicolons.
To specify 100 MHz, 200 MHz, and 300 MHz, enter one of
the following:
[100 200 300]
[100, 200, 300]
[100; 200; 300]

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 499

See Clock_reset Module Limitations, on page 690 and Log File Messages
for the Clock_reset Module, on page 691 for more information about
limitations to using clock sources and the listing of clock sources in the
log file.

Clocking Scheme

Specifies the clocking strategy for the core design. Set one of the
following:

– Dedicated Clocks assumes that each design clock is supplied to the
design separately. Reset de-assertion is synchronized with the clock,
and the tool generates logic for this de-assertion. You can set
additional option details in Clock Circuit Type. Use this option for 1/N
ratios.

– Enabled Clocks uses a single clock source. Each design clock is fed with
this fast clock and global enable signals are supplied according to the
required clock division ratio. Use this option for 1/N or M/N ratios.

When you set this option for M/N ratios, the tool uses global enable
signals to determine the ratio. In the following example, the
waveforms show a 40 MHz design clock generated from an oscillator

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
500 October 2013

with 100 MHz frequency. Note that GlobalEnable1 is active in two
cycles for every five clk1 cycles.

By default, the tool does not generate logic to synchronize the reset with
the clock when it is deasserted. For de-assertion synchronization, you
must enable Reset Deassertion Synchronization.

See Clock_reset Module Limitations, on page 690 and Log File Messages
for the Clock_reset Module, on page 691 for additional information.

Clock Circuit Type

Determines the logical structure to be used while generating design
clocks from the available oscillator frequencies. It determines the
internal structure of the clock reset module. These options are only
available when you set Clocking Scheme to Dedicated Clocks.

– Synthesizable Dividers uses clock divider logic to generate design clocks
from the oscillator input to the design. Use this to implement 1/N
division ratios. For M/N ratios, set Clocking Scheme to Enabled Clocks.

M/N = 2/5

Synthesizable Dividers Generic PLL

Clock Divider 1

Clock Divider 2

Clock Divider N

osc1

clk2

clk1

clock_reset Module clock_reset Module

|
|
|

clkN

osc1

clk2

clk1

clkN

PLL 1

PLL 2

|
|
|

PLL N

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 501

– Generic PLL uses PLL-like placeholder code to represent common PLL
structures. You must replace these placeholders with the actual PLL
or clock manager logic for the target FPGA.

Reset Deassertion Synchronization

When enabled, it generates logic to synchronize resets with the clock
when resets are deasserted. This option is only available when Clocking
Scheme is set to Enabled Clocks. When disabled, the clocking scheme does
not use reset deassertion synchronization.

HLS Optimizations

The following figure shows the HLS Optimizations tab of the Implementation Options
dialog box.

Folding

Performs time-multiplexed resource sharing during area/speed trade-offs
within a single-channel system. When you enable Folding, it makes a box
available where you can set the folding value, and automatically enables
Pattern Folding and Retiming.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
502 October 2013

The folding value sets a minimum for the number of system clocks per
output sample. 0 disables folding. A positive value sets a minimum that
is used as a guide for the number of system clocks per sample. For infor-
mation about the use of this option, see Optimizing with Folding, on
page 662.

Pattern Folding

When enabled, runs the pattern folding optimization on the design to
identify recurring patterns and share resources. See Using Pattern
Folding, on page 665 for details about pattern folding. The tool reports
the number of distinct patterns it identified in the log file. Enabling this
option also makes the Min Pattern Freq option available.

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 503

Min Pattern Freq

Sets a value for the pattern folding algorithm. The algorithm does not
identify any patterns that occur less frequently than the number you
specify. The default value is 2. You can significantly reduce the compu-
tational complexity of pattern identification by judiciously selecting a
value that allows larger patterns to be identified.

Retiming

Enables retiming. Retiming rearranges delays so as to optimize speed,
while preserving functionality. Retiming cannot move Register block
instances, as explained in Retiming Register and Delay blocks, on
page 659. When retiming is enabled, a box opens where you can set the
number of extra latencies (delays) available for retiming. If you specify
very fast sample rates, retiming can use these extra latencies to meet
the timing requirements.

The default value of 0 retimes the design by moving existing delays. For
details about using this option, see Optimizing with Retiming, on
page 655.

Enabling retiming also enables the Advanced Timing Mode option.

Advanced Timing Mode

Determines which timing mode is used: advanced timing mode or
estimation mode.

– Enable this option to use the advanced timing mode for timing
estimates. Use this mode for optimal results. In this mode, the tool
uses Synplify Pro target-specific timing data to produce more
accurate results. Greater accuracy means better architectural
choices in the RTL. The first run with this option enabled takes longer
than estimation mode. However, subsequent runs are as fast as the
estimation mode, because the tool caches most of the timing
characterization data and does not have to generate it.

– Disable this option to use estimation mode for timing estimates. Use
estimation mode in the early stages of design, as the results are less
accurate. In this mode, the tool uses simpler, latency-based device
characterizations as a basis for optimizations.

The tool defaults to estimation mode if it cannot find Synplify Pro or if
problems occur. The log file reports blocks that met timing, blocks that
did not meet timing, and blocks in timing loops.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
504 October 2013

ATM is recommended for achieving optimal results. Only use estimation
mode for the early stages of the design.

Fixed latency

Adds latency stages. This option is only available when you enable
Retiming. When you specify this mode, the retiming engine retimes the
design and then pads the outputs with the remaining delays so as to
always maintain the specified latency. It adds the number of latency
stages equal to the value you specified for the Retiming option. If you
specify more latency stages than are needed for pipelining, the
remainder of the latency stages pad the I/O.

Multi-channelizing

Generates a multi-channel system from a single-channel specification.
Enabling this option makes a box available where you can set the
number of channels. This number also sets the number of system clocks
per output for each channel. If you set this option to 2, each channel
operates at 2 clocks per sample and 2 channels share each computa-
tional resource. When you use the Multi-channelizing option, you cannot
use Folding, which is an alternative mechanism to trade speed for
resources.

For information about using this option, see Optimizing with Multichan-
nelization, on page 674.

Implementation Options Dialog Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 505

HLS Constraint Options

This figure shows the HLS Constraint Options tab of the Implementation Options
dialog box. Use these options to apply constraints from a constraint file.

Enable Constraint File

Lets you specify or edit a Tcl file that contains constraints to be applied
to the design, For example, you can set shls_retiming_lock constraints and
apply them to the design, as described in HLS Constraints File, on
page 620.

– If it is not checked (default for new designs), the tool does not use a
constraint file when it runs synthesis.

– When enabled, specify the name of the Tcl file to be used in the
associated field. You can use the Browse button to locate the file. The
tool applies the constraints to the design when it synthesizes it. This
setting becomes the default for the design if you previously enabled
this option. The log file reports details about the success or failure of
the application of the specified constraints.

LO

 SMC Blocks: IIR to Viterbi Decoder Implementation Options Dialog Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
506 October 2013

Edit

Lets you edit the contents of the specified Tcl file or create a new one if it
does not exist.

Use ReadWrite Conflict Logic Attribute for RAM

Guides how RAM read-write conflicts are handled during synthesis with
the Synopsys FPGA tools. This option is only available when Vendor is set
to an FPGA target.

When enabled, the software adds the following attribute to the fdc
constraint file generated after DSP synthesis. This attribute specifies
that the FPGA synthesis tool not insert bypass logic to resolve simulta-
neous reads and writes to the same RAM location.

define_global_attribute syn_ramstyle (no_rw_check)

When disabled (the default value), the Synopsys FPGA synthesis tools
insert bypass logic to prevent mismatches when the logic specifies
simultaneous reads and writes to the same RAM location.

SMC Sign SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 507

SMC Sign
Provides the 2-bit sign value (=1 or -1) for the input.

Library

Synphony Model Compiler Math Functions

Description

This custom block (see Primitives and Custom Blocks, on page 800 for a
definition) provides the 2-bit sign value (=1 or -1) for the input.

Latency

This block has no latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sign

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
508 October 2013

Sign Parameters

Zero Detect

Determines what operation to perform when the input is 0. If you enable
the option, a 0 input drives a 0 on the output. If you disable the option,
the software treats the 0 input as a positive number, and outputs +1.

SMC Signal Update SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 509

SMC Signal Update
Updates the specified elements of a vector or matrix input signal using a
given update signal.

Library

Synphony Model Compiler Signal Operations

Description

This block updates a set of elements for input vector/matrix data. The block
uses the following inputs:

• Vector or matrix signal

• Data to be updated – You must use the same dimension as the index
specification for the mask parameters.

The block outputs a vector/matrix signal with same dimension as the input
signal containing the updated data.

Latency

This block has no latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Signal Update

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
510 October 2013

Signal Update Parameters

Number of input dimensions

Specifies that either the input signal has 1 dimension (vector) or 2
dimensions (matrix). The default is 1 (vector).

Index mode

Specifies whether the index to be updated starts from zero (Zero-based) or
one (One-based). The default is One-based.

Indices to be updated – First dimension

Specifies dimension 1 indices to be updated. You must specify the
indices as a vector. For example:

[1 3 5] – Rows 1, 3, and 5

2:6 – Rows 2 through 6

SMC Signal Update SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 511

Indices to be updated – Second dimension

Specifies dimension 2 indices to be updated. You must specify the
indices as a vector. For example:

[2 4 6] – Columns 2, 4, and 6

Use linear indices

Use this option when it is useful to address matrix data using a single
dimension. Linear indices are written column-wise. See the signal
update examples below.

Example 1 – Signal Update Matrix

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Signal Update

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
512 October 2013

Example 2 – Signal Update Matrix Using Linear Indices

SMC SinCos SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 513

SMC SinCos
Calculates A*sin(2πf) or A*cos(2πf) for the input f, where A is the amplitude
parameter.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler SinCos block calculates A*sin(2πf) and/or A*cos(2πf)
for a scalar input. This implementation of sin/cos is based on a look-up
table, the size of which is determined by the input fraction length and output
word length.

This block requires a minimum of four fractional bits at the frequency input
port. It only considers the fraction portion of the input. Given the scaling with
2π on the input, any integer portion corresponds to a full revolution of the
trigonometric function, and therefore can be ignored while calculating the
output value.

To keep the hardware implementation reasonable, the software only
considers up to 18 fraction bits. If the input has more than 18 fraction bits,
only the first 18 determine the value of the output. While determining the
output for a given input, the block refers to a quadrant quantized in a look up
table of size 2n+1, and exploits quarter wave symmetry to produce outputs for
other quadrants, where n is min{16,Input fraction length-2}. This table shows
examples for look up table entries:

Input Corresponding Degrees Sin Cos

1/12 30 0.5 0.866 (sqrt(3)/2)

1/8 45 0.7071 0.7071 (sqrt(2)/2)

1/4 90 1 0

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SinCos

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
514 October 2013

Given the restriction on the input, the output accuracy is limited to 53 bits.
Any request for a larger fraction on the output results in the same accuracy
of 53 bits, zero-extended at the LSB side.

Latency

The latency of the SinCos block is 1.

SinCos Parameters

Function

Selects the operation to be performed:

– sin calculates A*sin(2*π*f) for the input.

– cos calculates A*cos(2*π*f) for the input.

– sin&cos calculates A*sin(2*π *f) &A*cos(2π*f) for the input.

Amplitude

Determines the scaling of the output.

SMC SinCos SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 515

Output Format

Determines the word size and data type of the output. You can select
one of the following settings for the output format:

– Automatic determines the output data format such that the output
fraction length is equal to the input fraction length, and the output
integer length is a minimum, causing no overflow for [A,-A] range.

– Specify determines output data format such that output integer length
is a minimum causing no overflow for [A,-A] range, and the remaining
space from the specified output word length becomes the output
fraction length.

Output word length

Determines the word length of the output in bits.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SinCos2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
516 October 2013

SMC SinCos2
Creates sin and cos waveforms based on the input phase and amplitude
values. The SMC SinCos2 block incorporates additional architectural and
feature optimizations compared with the SMC SinCos block.

Library

Synphony Model Compiler Math Functions

Description

This block creates sin and cos waveforms based on the input phase and
amplitude values. Phase precision, amplitude precision, and output precision
can be specified independently. By selecting phase dithering, you can also
flatten spurious noise components caused by the input phase quantization.

SinCos2 Multichannel Designs

To generate a multichannel SinCos2 block, set the number of channels to be
greater than 1 and enable the Fold across channel option. The phase dither
generation logic and sin-cos generation block, either CORDIC or LUT-based,
are shared across all channels. When Fold across channel is enabled, the output
is multiplexed by the specified folding factor.

For example, suppose you specify 8 channels with a folding factor of 4, then
the output vector size is 2. The first element of the vector outputs channels
[1, 2, 3, 4], time-multiplexed in this order and the second element outputs
channels [5, 6, 7, 8], time-multiplexed similarly. The output sample time is
1/4th the sample time value provided on the mask parameter or input ports.

For multichannel designs, the dimensions of ssync or srdyi ports must be the
same as the number of channels. When the same ssync or srdyi input is
provided to all channels, connect a Vector Expand block that expands the
dimensions of the ssync or srdyi ports to match the number of channels.

SMC SinCos2 SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 517

SinCos2 Flow Control

The SinCos2 block supports forward flow control though the optional srdyi and
ssync input ports and the output srdyo port. The following table describes the
ports:

For multiple channels, you can provide independent srdyi and ssync ports for
each channel by specifying a vector equal to the number of channels. When
the Fold across channel option is enabled, the srdyo is multiplexed like the
sin/cos output and is synchronous to the output. The sample time is the
same as the srdyo output.

The following timing diagram illustrates the flow control operation:

Icon Annotations

The icon for this block displays the following information:

srdyi Qualifies whether or not the input is valid.

ssync When the Latch inputs only on ssync option is enabled, the
input port values are registered only when ssync is high;
otherwise, any change to the port is ignored. If the
corresponding value is a constant on the mask parameter,
ssync is not affected as well.

srdyo Qualifies whether or not the input is valid.

Top
Annotation

The green annotation specifies the type of sin-cos generation, the
folding factor, and the number of channels.

Latency
Annotation

The red annotation at the bottom of the block specifies the latency
value.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SinCos2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
518 October 2013

SinCos2 Parameters

The parameters for this block are displayed on following tabs:

• Main Tab

• Optional Port Tab

• Data Types Tab

• Hardware Tab

Main Tab
The Main dialog box displays general settings.

Function

Specifies the function for which the DDS2 block does calculations.
Choose one of the following functions:

– Sin

SMC SinCos2 SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 519

– Cos

– sin&cos

Method

Specifies the method used to generate the waveforms:

– LUT uses a lookup table containing the DDS output values to
generate the waveforms.

– CORDIC uses CORDIC algorithms to generate the waveforms.

Phase Angle Input

Determines how to set the phase normalized to 2*pi.

– Constant sets the phase to the hard-coded value specified for the Phase
Value.

– Port sets the frequency dynamically to the frequency of the input port.

Phase Value

Sets a constant value for the phase normalized to 2*pi. You must set
Phase Angle Input to Constant, for this option to be available.

Amplitude

Specifies how to set the amplitude for the sin-cos waveform.

– Constant uses the hard-coded value specified for the Amplitude Value.

– Port uses the amplitude value set by the input port to modulate the
frequency.

Phase Dither

Determines whether to improve the DDS spurious free dynamic range,
using phase dithering. When this option is enabled, the software
spreads the spurs through the available bandwidth to prevent phase
error being introduced by the quantizer. The dithering sequence is
added before quantization and uses the quantized value to index into
the sine/cosine lookup table or CORDIC algorithm, mapping the phase
space to time.

When disabled, the tool does not dither the signal.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SinCos2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
520 October 2013

Phase Dither Bits

When Phase Dither is enabled, you can determine how the precision of the
dither output is computed.

– Automatic lets the tool automatically compute the difference between
the waveform frequency word length and the waveform phase word
length, where its value can range between 2 and 19.

– Specify lets you choose the phase dither word length.

Phase Dither Word Length

When Phase Dither Bits is set to Specify, you can set the word length for the
dither generator output. If the dither word length is outside the range of
[2, 19], then the tool automatically sets the word length to 2 and 19,
respectively.

For both the automatic and specify Phase Dither Bits modes, if the tool
needs to limit this value to 2 or 19:

– The value you specified for waveform phase word length may be
ignored and is automatically set to the frequency word length -2 or
frequency word length -19.

– When the value you set leads to a zero or negative value of the phase
word length, then the value you specified is retained.

Number of Channels

Specifies the number of output channels required.

Optional Port Tab
The ports on the Optional Port dialog box provide flow controls for the
block. See DDS2 Flow Control, on page 151 for additional information
about these ports.

SMC SinCos2 SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 521

ssync port

When enabled, the block includes the ssync input port. This also makes
the corresponding srdyo output port available.

srdyi port

When enabled, the block includes the srdyi input port. This also makes
the corresponding srdyo output port available.

srdyo port

When enabled, the srdyo output port is available for the block. If either
the ssync or srdyi port is enabled, then the srdyo port is always available at
the output.

Latch inputs only on ssync

When enabled, the tool accepts and registers the input at the frequency,
phase modulation, or frequency modulation port when ssync is high.
This option becomes available when the ssync port is enabled and at
least one of the inputs is through a port.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SinCos2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
522 October 2013

Data Types Tab

Phase Fraction Length

Specifies the fraction length of the phase. The word length can be
computed from the fraction length when any phase greater than 2*pi is
wrapped around.

Amplitude Fraction Length

Specifies the fraction length of the amplitude. The word length can be
computed from the fraction length if the amplitude input is constant.

Amplitude Word Length

Specifies the word length of the amplitude, only when the amplitude is
available through a port.

Output format, Output word length, and Output fraction length

For a description of the available output formats, output word length,
and output fraction length for this block, see the SMC Convert block
Output format, Output word length, and Output fraction length, on
page 101.

SMC SinCos2 SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 523

Hardware Tab

Fold across channels

When enabled, specifies that channels are time division multiplexed.
This option requires that the number of channels is greater than 1.

Folding Factor

Specifies the time division multiplexing factor across channels. This
option requires that you enable Fold across channels.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SinCos2

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
524 October 2013

The number of channels must be an integer multiple of the folding
factor. Otherwise, the tool performs zero padding at the input to
increase the number of channels to be a multiple of the folding factor.
The zeros are not removed at the output.

Sample Time

Specifies sample time. Use -1 to inherit. If you specify any option that
results in an input port being available, then this option is not available.

Available options vary, depending on whether you choose CORDIC or LUT
as the Method. If LUT is selected, the following options are available.

Pipeliine sin-cos LUT

This option automatically becomes available, when you enable the Fold
across channels option. You must specify LUT as the Method to use this
option. When enabled, the tool internally uses a fully pipelined
optimized Quarter-wave LUT architecture that significantly increases
the maximum achievable clock frequency. Turn on this option to
optimally map the FPGA, unless the DDS2 block is used in a feedback
path such as a Costas loop.

LUT Compression

When enabled, the LUT size reduces from 2^phaseWL to 3*2^(phaseWL/2) at
the cost of an extra complex multiplier. As the phase word length
increases, this becomes a valuable option that lowers the block RAM
utilization on the FPGA. If Pipeline sin-cos LUT and LUT compression mode
are both enabled, the following options are additionally available:

– Target device

Specifies that the generated RTL is optimized for Virtex 5, Virtex 6/7
or Stratix 5.

– Optimization target

Specifies whether the generated RTL is optimized for Speed or Area.

If CORDIC is selected, the following options are available.

CORDIC parameters

If Automatic mode is set for this option, the tool automatically selects the
optimal options depending on the other parameters specified. When this
is set to Specify, following options are additionally available:

– Number of stages

SMC SinCos2 SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 525

Specifies the number of stages in the CORDIC.

– CORDIC Latency

Specifies the latency of the CORDIC.

– Stage output rounding

Specifies the rounding mode to use on the x, y and angle output for
each stage of the CORDIC. The supported options are the following:
Floor(Truncate), Nearest, Convergent, Fix, Ceil, and Round.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Single Clock Downsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
526 October 2013

SMC Single Clock Downsample
Provides variable rate and single clock downsample operations.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Single Clock Downsample custom block complements
the features of the SMC Downsample block with the following functionality:

– Variable rate and variable offset downsample

– Single clock downsample, where sample and hold are at the same
clock as the input

Latency

The block has a latency of 1 to the output sample domain.

Single Clock Downsample Flow Control

The Single Clock Downsample block provides the following optional flow control
ports:

srdyi The srdyi (source ready) input port determines whether the
input data in the current sample period is valid. An invalid
input sample is indicated by srdyi going low.

srdyo The srdyo (source ready) output port determines whether the
current output sample is valid. An invalid output sample is
indicated by srdyo going low.

SMC Single Clock Downsample SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 527

Single Clock Downsample Parameters

Downsampling Type

Specifies whether to perform fixed rate or variable rate downsampling.
For both options, the output is in the same clock domain as the input.

Downsampling Factor

When fixed rate downsampling is selected, you can use this option to
specify the constant downsampling factor.

Offset Port

When variable rate downsampling is selected, determines whether the
offset port is available at the input to dynamically vary the sample offset.

Offset Value

If fixed rate downsampling or variable rate downsampling (when the
Offset Port option is disabled) is selected, then you can specify the
constant sample offset value for performing downsampling.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Single Clock Downsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
528 October 2013

Flow Control

Specifies whether the srdyi/srdyo ports are available on the block inter-
face.

Sync Mode

Specifies the synchronization mode for the output. Do not use this
option when Flow Control is enabled, which is the preferred implementa-
tion. This option is mainly used to provide compatibility for the SMC
Downsample legacy block. When the clock counter reaches the position
you specified with these options, the synchronized output produces 1.
The output synchronization can be one of the following modes:

Mode Description

No Sync The output is not synchronized.

Aligned with Offset The output is synchronized with the offset.

Right before Offset The output is synchronized with one sample
before the offset.

SMC Single Clock Upsample SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 529

SMC Single Clock Upsample
Provides variable rate and single clock upsample operations.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Single Clock Upsample custom block complements
the features of the SMC Upsample block with the following functionality:

– Variable rate and variable offset upsample

– Single clock upsample, where sample and hold are at the same clock
as the input

Latency

This block has no latency.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Single Clock Upsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
530 October 2013

Single Clock Upsample Flow Control

The Single Clock Upsample block provides the following mandatory flow control
ports:

Single Clock Upsample Parameters

srdyi The srdyi (source ready) input port determines whether the
input data in the current sample period is valid. An invalid
input sample is indicated by srdyi going low.
The srdyi cannot be active for more than 1 cycle of every L,
where L is the upsampling rate. Otherwise, the behavior is
undefined for this block.

srdyo The srdyo (source ready) output port determines whether the
current output sample is valid. An invalid output sample is
indicated by srdyo going low.
The srdyo is automatically pulse stretched by L, where L is
the upsampling rate.

SMC Single Clock Upsample SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 531

Upsampling Type

Specifies whether to perform fixed rate or variable rate upsampling. For
both options, the output is in the same clock domain as the input.

Upsampling Rate

When the fixed rate option is selected, you can specify a value that the
input sample rate is multiplied by to get the output sample rate.

For a single clock block, the actual sample rate does not change. The
rate change is identified through the flow control signals, srdyi and srdyo.

– srdyi cannot be active for more than 1 cycle of L, where L is the
upsampling rate. The behavior is undefined if this constraint is not
met for this block.

– srdyo is pulse stretched by L cycles, which indicates the new data rate
for the output of the block.

Hold Input Sample

When enabled, this option holds the input sample. The block copies the
input as the first sample of every output frame (L samples) and holds the
sample value for the other samples in the output frame.

When hold input sample is enabled, sample offsets are not supported.

Sample Offset Port

When variable rate upsampling is selected, determines whether the
offset port is available at the input to dynamically vary the sample offset.

Sample Offset

Specifies the sample offset value for performing upsampling. When the
Sample offset port option is enabled, this option is not available.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Smart Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
532 October 2013

SMC Smart Black Box
Lets you embed third-party IP in a Synphony Model Compiler design and
automatically cosimulate it.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Smart Black Box lets you embed third-party blocks
for which you have access to the RTL code. If you have IP with no access to
the RTL code, use the Black Box block (SMC Black Box, on page 56) instead.

The Smart Black Box requires that you have a license for EDA Simulator Link
MQ® (formerly Link for ModelSim), which is a cosimulation interface between
Simulink and the ModelSim HDL simulator. The cosimulation interface must
be configured using the SynCoSimTool block (SMC SynCoSimTool, on
page 550). Synphony Model Compiler uses EDA Simulator Link MQ to ls and
simulate the embedded RTL-level models. The Simulink simulation is trans-
parent, but the RTL generated by Synphony Model Compiler treats the IP as a
black box. See Using Smart Black Boxes for Cosimulation, on page 837 for
details.

The Smart Black Box block supports vector inputs. The length of the vector
should be specified in the configuration file (see Configuration File For Smart
Black Box, on page 535). The following figure illustrates how vector input and
output are handled in a Smart Black Box block.

SMC Smart Black Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 533

When the input to the Smart Black Box is a vector, the tool demultiplexes the
vector input inside, and than transfers it to the ModelSim HDL Cosimulation
block. It then multiplexes the output of ModelSim HDL Cosimulation block, and
the output of the Smart Black Box again becomes a vector.

Latency

Latency is determined by the contents of the third-party HDL source, plus
one more from the cosimulation infrastructure.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Smart Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
534 October 2013

Smart Black Box Parameters

Smart Black Box Definition

Specifies how the third-party IP is defined. You can choose one of the
following:

– Single HDL file
Use this if the IP is defined in a single .v (Verilog) or .vhd (VHDL) file.
Specify the path and file name in HDL File.

– Import File list
Use this if the IP is defined in multiple .v (Verilog) or .vhd (VHDL)
files. Specify the text file that contains a list of the HDL files in Black
Box File List.

HDL File

Specifies the absolute path to the file that contain the smart black box
definition. This file is added to the logic synthesis project file and to the
simulator .do files. This option is only available when Smart Black Box
Definition is set to Single HDL File.

SMC Smart Black Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 535

HDL File or Black Box File List

Specifies the absolute path to a single text file that lists all the HDL files
that define the smart black box. This option is only available when Smart
Black Box Definition is set to Import File List.

The list must contain absolute paths to the files. The definition file
extensions in the list must be .v or .vhd. For example, if your smart
black box is defined in four files called sbblib1.vhd (library definition file
with sbblib being the library name) and the other files are sbb2.v, sbb3.v
and sbb4.vhd, create and save a text file (sbblist.txt) that lists the
absolute paths to the smart black box definition files as follows:

-L sbblib C:\mypath\sbblib1.vhd
C:\mypath\sbb2.v
C:\mypath\sbb3.v
C:\mypath\sbb4.vhd

Entity/Model Name

Specifies the top-most entity or model name for the smart black box.
This name becomes the instance name for the smart black box and the
name of the instantiated entity or model.

Cosimulation Type

Specifies the tool used for cosimulation. Currently, the only choice is
EDA Simulator Link MQ.

Configuration File

Specifies an.xml configuration file that describes the top-most entity or
model ports, clock properties and global reset and enables. See Creating
Smart Black Box Configuration Files, on page 841 for information about
creating this file, and Configuration File For Smart Black Box, on
page 535 for file format details.

Configuration File For Smart Black Box

The configuration file is an .xml file that contains port, clock, global enable
and global reset information. See the following for syntax details:

• Ports, on page 536

• Clocks, on page 537

• Global Enables, on page 537

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Smart Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
536 October 2013

• Global Resets, on page 537

• Sample Configuration File, on page 538

Ports
The following illustrates how ports are described. Note the following terms:

<Ports>
<Port>

<PortModes>IN</PortModes>
<PortPaths>In_PortName </PortPaths>
<PortWidth>1</PortWidth>

</Port>|
<Port>

<PortModes>OUT</PortModes>
<PortPaths>Out_PortName</PortPaths>
<PortTimes>5e-9</PortTimes>
<PortSigns>Signed</PortSigns>
<PortFracLengths>8</PortFracLengths>
<PortWidth>1</PortWidth>

</Port>
</Ports>

PortModes Specifies port mode, which can be IN or OUT.

PortPaths Contains Port name.

PortTimes Specifies the sampling time of the output port. If PortModes is
IN (input port), this is meaningless and can be discarded.
Otherwise, it must be a number.

PortSigns Specifies the data type of the output port. If PortModes is IN
(input port), this is meaningless and can be discarded. It can
be “Inherit”, “Unsigned” or “Signed”

PortFractionLengths Specifies the data fraction length of the output port. If
PortModes is IN (input port), this is meaningless and can be
discarded.

PortWidth Specifies the width of the port. If the input or output port is a
vector, this specifies the length of the vector.

SMC Smart Black Box SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 537

Clocks
The following shows how the sample clocks are described. The example uses
the following terms:

<Clocks>
<Clock>

<ClockPath>ClockName</ClockPath>
<ClockMode>Rising</ClockMode>
<ClockTime>5e-9</ClockTime>

</Clock>
</Clocks>

Global Enables
The following shows how the global enables are described. The example uses
this term:

<GlobalEnables>
<GlobalEnable>

<GlobalEnablePath>GlobalEnableName</GlobalEnablePath>
</GlobalEnable>

</GlobalEnables>

Global Resets
The following shows how the global enables are described. The example uses
this term:

<GlobalResets>
<GlobalReset>

<GlobalResetPath>GlobalResetName</GlobalResetPath>
</GlobalReset>

</GlobalResets>

ClockPath Clock name.

ClockMode Defines the system clock edge. It can be Falling or Rising.

ClockTime Specifies the system clock period.

GlobalEnablePath Global enable name.

GlobalResetPath Global reset name.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Smart Black Box

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
538 October 2013

Sample Configuration File
<SBBParams>
<Ports>

<Port>
<PortModes>IN</PortModes>
<PortPaths>x_in</PortPaths>
<PortWidth>1</PortWidth>

</Port>
<Port>

<PortModes>OUT</PortModes>
<PortPaths>y</PortPaths>
<PortTimes>5e-9</PortTimes>
<PortSigns>Signed</PortSigns>
<PortFracLengths>0</PortFracLengths>
<PortWidth>1</PortWidth>
</Port>

</Ports>
<Clocks>

<Clock>
<ClockPath>clk</ClockPath>
<ClockMode>Rising</ClockMode>
<ClockTime>5e-9</ClockTime>

</Clock>
</Clocks>
<GlobalEnables>

<GlobalEnable>
<GlobalEnablePath>GlobalEnable1</GlobalEnablePath>

</GlobalEnable>
</GlobalEnables>
<GlobalResets>

<GlobalReset>
<GlobalResetPath>GlobalReset</GlobalResetPath>

</GlobalReset>
</GlobalResets>
</SBBParams>

SMC Sqrt SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 539

SMC Sqrt
Calculates the square root of the input.

Library

Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Sqrt block calculates the square root of the input.
The implementation of the square root is based on a look-up table. See Imple-
mentation Details, on page 540, for more information. This block also
supports vector input.

The output word length is half the input word length, and the output fraction
word length is half the input fraction word length. For odd input word length
and input fraction length values, the output bit and fraction word lengths are
rounded upwards. For signed input, the sign bit is discarded and the input is
treated as unsigned. For a 9-bit signed input with 3 fraction bits, the Sqrt
block sets the output length to 5 and the number of output fraction bits to 2.
The following table illustrates:

Input Parameters Sqrt Block Output

Unsigned
input

Input word length = 9
Input fraction length = 3

Output word length = (9+1)/2+1 = 6
Output fraction length = (3+1)/2 = 2

Signed input Input word length = 9
Input fraction length = 3

Sign bit is discarded and the input is
treated as unsigned
Output word length = (8+1)/2+1 = 5
Output fraction length = (3+1)/2 = 2

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sqrt

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
540 October 2013

Implementation Details

The Synphony Model Compiler software uses normalization to improve preci-
sion. The Synphony Model Compiler implementation of the Sqrt block uses a
look-up-table of 768 entries, containing the square roots of integers from 256
to 1024. The input number is first normalized into this range by left or right
shifts of an even count. Then, the Synphony Model Compiler software
accesses the look-up-table using the integer part of this normalized number
as the index. Finally, it shifts this table lookup result by half the normaliza-
tion shifts.

To take a specific example, an input x is first converted into the form
x=2^(2N)*x_n. The normalized x is 256<=x_n<1024. Then the square root is
calculated as follows: sqrt(x)=2^N*sqrt_table(int(x_n)-256).

This method improves output precision for smaller numbers, because it puts
an upper bound on the percentage error. It also prevents the excessive use of
memory for the computation of square roots of very large numbers. If you
need high-precision square roots of large numbers, use the CORDIC Sqrt block
(SMC CORDIC Sqrt, on page 126).

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has a latency of 1.

SMC Sqrt SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 541

Sqrt Parameters

Output format, Output word length, Output fraction length, and Output data Type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583
If Output format is Automatic, the input sign bit is discarded
and the output is unsigned.
If Output format is Specify, the word length, fraction length,
and data type are as specified.

Output word length Output Word Length, on page 584
Output word length = input word length / 2 + 1

Output fraction
length

Output Fraction Length, on page 584
If the fraction length of the input is odd, the tool adds
another 0-valued fraction bit to the input.
Output fraction length = input fraction length / 2

Output data type Output Data Type, on page 584

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sqrt

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
542 October 2013

Sqrt Block Examples

SMC Subsystem SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 543

SMC Subsystem
Allows you to add a subsystem to a Synphony Model Compiler design.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Subsystem block provides a template for a
subsystem. It consists of an input and an output block, to which you can add
other blocks:

For more information about this block, refer to the Simulink documentation.
For information on using it, refer to Managing Subsystems and Hierarchy, on
page 786.

Latency

The latency of this block is determined by its contents.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sum of Products

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
544 October 2013

SMC Sum of Products
Multiplies inputs with gain values and calculates the sum of the computed
products to provide a scalar output.

Library

Synphony Model Compiler Math Functions

Description

The Sum of Products block multiplies inputs with Gain values and calculates
the sum of the computed products to provide a scalar output. You can specify
Gain values as constants, or provide them through the Gain port. If Gain is
constant, either specify it as a scalar, where the same value is applied to all
inputs, or as a vector, where the dimensions have to be the same as the
number of elements.

This block is a custom block (see Primitives and Custom Blocks, on page 800
for a definition). The following figure shows the internal modeling when Gain
is a constant:

Latency

This block has no latency.

SMC Sum of Products SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 545

Sum of Products Parameters

Gain type

Specifies the mode of entering the gain values. Select one of the following
settings:

– Constant

The gain value is constant, and is defined in the Gain (NX1) parameter.

– Port

The gain value is provided through an input port.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Sum of Products

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
546 October 2013

Gain (NX1)

Specifies the gain value. This field is available only if Gain type is set to
Constant. Specify the value as a scalar if you want the same gain for all the
inputs. Alternatively, specify it as a vector, with the length equal to the length
of the input vector.

Gain fraction length

Specifies the accuracy of the fraction requested for the coefficient value. The
software infers the total word length of the coefficient automatically from the
specified value.

Gain data type

Determines the data type for the gain value (specified in the Gain option) for
the block. You can set it to signed or unsigned value.

Gain round towards nearest on underflow

Determines how the underflow for the gain is treated. When it is enabled, the
tool rounds the underflow using the Nearest algorithm.

When the option is disabled, the tool rounds the overflow with the Floor
(truncate) algorithms. See Underflow Rounding Options, on page 585 for
details.

Output quantization rule, Output word length, Output fraction length, and
Output data type

For descriptions of these parameters, see the following:

Output quantization rule Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on
page 584

Output data type Output Data Type, on page 584

SMC Sum of Products SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 547

Output saturate on overflow, Output round on underflow

Determine how overflow and underflow are treated. These options are only
available when Output format is set to Specify.

Output saturate on overflow When enabled it saturates the
overflow; when disabled, it wraps the
overflow. See Overflow Saturation
Options, on page 585 for details.

Output round on underflow Uses the specified algorithm to round
the underflow; see Underflow
Rounding Options, on page 585 for
descriptions of the algorithms.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Switch

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
548 October 2013

SMC Switch
Pass through input 1 when input 2 satisfies the selected criterion; otherwise,
pass through input 3.

Library

Synphony Signal Operations

Description

The Switch block passes through input 1 when input 2 satisfies the selected
criterion; otherwise, passes through input 3. The inputs are numbered top to
bottom (or left to right). The first and third input ports are data ports, and the
second input port is the control port.

 This block is a custom block (see Primitives and Custom Blocks, on page 800
for a definition). The following figure shows the internal modeling of default
mask parameter values:

Latency

This block has zero latency.

SMC Switch SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 549

Switch Parameters

Criteria for passing first input

Specifies one of the several criteria for passing signal through input port with
respect to control port, and the pass-through criteria are as follows:

– input 2 = threshold

– input 2 ≠ threshold

– input 2 < threshold

– input 2 ≤ threshold

– input 2 > threshold

– input 2 ≥ threshold

Threshold

Specifies the comparison threshold of control port to select either the input or
the data port.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SynCoSimTool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
550 October 2013

SMC SynCoSimTool
Manages communication between smart black boxes and the RTL cosimula-
tion interface.

Library

Synphony Model Compiler, top level library

Description

The SynCoSimTool block controls the interaction between a smart black box
(see SMC Smart Black Box, on page 532) and the RTL simulator. It must be
configured with proper communication parameters. Once it has been config-
ured, communication is established with MATLAB and you can run RTL
cosimulation automatically.

For further information about using this tool and setting up the cosimulation
interface, see Using Smart Black Boxes for Cosimulation, on page 837.

SMC SynCoSimTool SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 551

SynCoSimTool Parameters

Run and Close RTL Cosimulator

Specifies options for running the cosimulator.

– If the box is enabled, the RTL cosimulator runs automatically and
closes when it is done.

– If the box is disabled, the RTL cosimulator runs automatically for the
first Simulink simulation, but it does not close when cosimulation is
complete.

Enabling this option means that the cosimulator starts every run from
an initial state, clearing its state elements. Initialization times could
impact run times. On the other hand, disabling this option means that

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SynCoSimTool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
552 October 2013

the RTL cosimulator is only initialized the first time and continues from
its last state at every subsequent simulation run. Therefore, if the
external RTL source does not depend on initial state values, leave this
box unchecked to get better run times.

Timescales

Lets you specify the timing relationship between Simulink and the RTL
cosimulator. The value you enter and the selected timescale (Tick, fs, ps,
ns, us, ms, or s) correspond to one second in Simulink. With the default
setting, 1 second in Simulink corresponds to 1 s in RTL.

RTL Cosimulator running on this computer

Determines whether the RTL cosimulator is located on the same
computer. Depending on the setting, other options available that deter-
mine the mode of connection. By default, this option is enabled.

Connection Method

Specifies the connection method to the RTL cosimulator. This option is
only available when RTL Cosimulator running on this computer is enabled.

– Socket
Connects Simulink and the RTL cosimulator through the socket
connection specified in Port. This is the default setting.

– Shared Memory
Connects Simulink to the RTL cosimulator using shared memory.
When selected, the RTL cosimulator does not close after a run, even if
Run and Close RTL Cosimulator is enabled.

For additional information, see Configuring the Cosimulation Interface,
on page 839.

Ports

Specifies the socket connection port. The port value you enter is used as
a TCP/IP connection port. The registered port numbers for general use
are from 1024 to 49151. If the design contains one smart black box, the
port value is set to 4449 by default. If there are additional smart black
boxes, the tool starts with 4449 and increments this value by one for
each black box. If there are two smart black boxes, the ports are set to
4449 and 4450, respectively.

SMC SynCoSimTool SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 553

Host Name

Specifies the host name of the computer where the cosimulator is
located. The RTL cosimulator must be running before you start
Simulink.

Apply and create do file

Creates a .do file for simulation. Clicking this button saves all data from
the SynCoSimTool block and creates the appropriate .do file in ../model-
path/synwork. The RTL cosimulator file is called synSBB.

Presimulation Commands

Lets you specify tcl commands to be run before simulation. The
commands you enter are executed on the RTL cosimulator before the
HDL code is simulated. The tcl commands must be written with one
command per line, or must be separated by semi semicolons(;).

Postsimulation Commands

Lets you specify tcl commands to be run after simulation. The
commands you enter are executed after the HDL code is simulated. The
tcl commands must be written with one command per line, or must be
separated by semi semicolons(;).

Create Template Configuration File

Creates a template configuration file based on the options you set. The
file is saved in the ../modelpath directory with SBB block names.You
must manually modify the files with the correct port, clock, global
enable and global reset settings. For information about working with
this file and the file format, see Creating Smart Black Box Configuration
Files, on page 841 and Configuration File For Smart Black Box, on
page 535.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC SynFixPtTool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
554 October 2013

SMC SynFixPtTool
Opens the Simulink Fixed-Point interface.

Library

Synphony Model Compiler, top level library

Description

The Synphony Model Compiler SynFixPtTool toolbox opens the Simulink Fixed-Point
Settings interface where you can conveniently access global data type overrides
and logging settings, the logged data, the automatic scaling script, and the
Plot System interface.

The Fixed-Point Settings GUI is an optional Simulink package, and the
Synphony Model Compiler SynFixPtTool toolbox will not function properly
unless it is installed. Note that the appearance of the Simulink Fixed-Point
Settings interface varies, depending on the MATLAB version you have
installed.

For detailed information about the Simulink interface, type doc fxptdlg at the
MATLAB prompt. For information about using the fixed-point data type, see
Using Quantization Analysis Tools, on page 832.

SMC SynFixPtTool SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 555

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Test Vector Capture

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
556 October 2013

SMC Test Vector Capture
Toggles between setting or resetting Port In and Port Out Capture Test Vector
mode for all Synphony Model Compiler ports.

Library

Synphony Model Compiler Ports & Subsystems

Description

The Synphony Test Vector Capture toggles between setting or resetting Port In and
Port Out Capture Test Vector mode for all Synphony Model Compiler ports. This
block is a custom block (see Primitives and Custom Blocks, on page 800 for a
definition).

Latency

This block has no latency.

Test vector Capture Parameters

There are no user visible parameters for this block. Clicking on the block
changes the state from OFF to ON and vice versa.

This block has no input and output ports and should be instantiated in the
model at the top level diagram.

SMC Upsample SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 557

SMC Upsample
Increases the sample rate of the input by inserting zeroes.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Upsample block upsamples the sample rate of the
input by adding samples. With an upsampling rate L, for every sample at the
input, the software inserts L-1 samples at the output. This means that the
sample rate at the output is the input sample rate multiplied by the upsam-
pling rate, L. From a hardware implementation point of view, the easiest way
to insert zeroes is to clock the input signal with the higher clock, and reset
the flip-flop for the remaining L-1 clock cycles.

This figure shows the corresponding signal manipulation, with implementa-
tion clock and signal dependencies:

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Upsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
558 October 2013

The following figure shows a practical simulation result for the implementa-
tion:

The software uses a delay at the input (based on the input sample rate)
followed by a standard upsample operation, where it copies the input as the
first sample of every output frame (L samples), and inserts L-1 zeroes for the
other samples in the output frame.

For information about using the Upsample block in multi-rate designs, see
Multi-Rate Design, on page 717.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

The latency of the Upsample block is at the output, and is equal to the sample
offset.

SMC Upsample SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 559

Upsample Parameters

Upsampling rate

Specifies the value by which the input sample rate is multiplied to get
the output sample rate.

Hold input sample

When enabled, this option holds the input sample. The software copies
the input as the first sample of every output frame (L samples), and
holds the sample value for the other samples in the output frame.

If disabled, the tool inserts zeroes. It copies the input as the first sample
of every output frame (L samples), and inserts L-1 zeroes for the other
samples in the output frame. When it is unchecked, Sample Offset
becomes available, where you can specify a delay which gets added to
the output.

Sample Offset

Specifies an offset for the sample rate. The delay you specify here gets
added to the output.For a description of sample rates and multi-rate
design, see Multi-Rate Design, on page 717. This option is available
when Hold input sample is disabled.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Upsample

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
560 October 2013

Sync Mode

Specifies the synchronization mode for the output. When the clock
counter reaches the position you specify in this options, the synchro-
nized output produces 1. You can choose one of the following positions:

The following figure show the synchronization output of an Upsample block
with an upsample rate of 4 and a sample offset of 2.

Mode Description

No Sync There is no synchronized output.

When input
changes

The sync output is synchronized with the input and produces
1 when the input changes.

Aligned with
offset

The sync output is synchronized with the offset.

Right before
offset

The sync output is synchronized with one sample before the
offset

SMC Vector Concat SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 561

SMC Vector Concat
Constructs vectors by bundling up to 2048 inputs together.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Vector Concat block provides a concise way of
drawing a Simulink model that performs the same operations on many scalar
data streams in parallel. It constructs vectors by multiplexing up to 2048
inputs. The Vector Concat block multiplexes its inputs to a single data type,
which is represented and interpreted as vectors by the Simulink tool. (See
Signal Dimensions, on page 561 for an explanation of vectors and matrices.)
You can adjust the precision of the data type. You can feed the output to
other blocks, as described in Block Connections, on page 561.

Signal Dimensions
Different blocks accept or output signals of varying dimensions. A
one-dimensional (1-D) signal consists of a stream of one-dimensional arrays
output at a frequency of one array (vector) per simulation time step. A
two-dimensional (2-D) signal consists of a stream of two-dimensional arrays
emitted at a frequency of one 2-D array (matrix) per block sample time.
Generally, the 1-D signals are called vectors and the 2-D signals are called
matrices. Currently, the Synphony Model Compiler tool does not support
matrix signals.

Block Connections
You can use the vectored data output to feed other blocks, like Abs, Accumu-
lator, Add, Comparator, Constant, Counter, Downsample, FFT, FIR, Gain, IIR, Mult, Mux,
Port In, Port Out, RAM, ROM, Shift Register, Shifter, SinCos, and Upsample. The Gain,

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Vector Concat

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
562 October 2013

Constant, FIR, IIR and ROM blocks can have vectorized coefficients represented
as rows of the coefficients. For Gain and Constant, vectorized parameters are
column vectors, with each row element corresponding to one channel. For
FIR and IIR blocks, each row of the coefficient matrices is for the corre-
sponding channel of the vector data.

If you connect the input of a block that does not support vector signals, such
as IIR, to a vector signal, you get a Simulink error like this one:

Error in port widths or dimensions. Output port of
sinewave_irr.mdl/PortIn is a one-dimensional vector with 4
elements.

Any Synphony Model Compiler block that accepts vector signals as input and
output must perform its operation on all elements of its vector inputs at each
simulation time step. The Synphony Model Compiler Verilog or VHDL
hardware description written out for such a block operates on all elements of
the vector inputs in parallel, thus duplicating the block behavior in Simulink.
This is similar in effect to the Synphony multi-channelization feature, but at
a block level. Synphony multi-channelization works globally on the entire
Simulink model to produce a multi-channel hardware implementation. By
using the Synphony Model Compiler Vector Concat block, part of the model can be
single channel (scalar signals), and other parts of the model can have
multi-channel values (different dimensions of vector signals).

Using Simulink Mux-Demux Pairs for Generating Vectors
You can use Simulink Mux and Demux blocks in Synphony Model Compiler
designs to reduce link clutter from the model, group signals into one line,
carry signals to another location and expand them for operations, and aid in
visualization. However, you cannot use the native Simulink Mux and Demux
blocks for vector operations. When you require vector operations, use theSyn-
phony Model Compiler Vector Concat and Split blocks to create and split
vectors.

No Synphony operations allowed

SMC Vector Concat SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 563

Furthermore, Synphony Model Compiler only supports Simulink Mux-Demux
blocks in mux-demux pairs. Having Demux-Mux pairs might create problems
in signal routing and decomposition.

Latency

This block has no latency.

Vector Concat Parameters

Number of inputs

Sets the number of inputs that are to be multiplexed to vectors. You can
specify up to 2048 inputs.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Vector Concat

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
564 October 2013

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Vector Signal Examples

In this example, four signal streams are input simultaneously and the design
requires that you calculate the difference between the current sample and the
previous sample for each of the four input streams. Note that while this
example is implemented using the Vector Concat block, it could also have been
implemented as a single-channel implementation with scalar signals and
converted to a 4 channel implementation with the Multichannelization option.

The example shows the vector signals highlighted with bold lines and also
displays the vector dimensions.

• To turn on this highlighting, select Format->Port/Signal Displays, and enable
the Wide Nonscalar Lines option.

• To display vector dimensions, select Format->Port/Signal Displays, and
enable Signal Dimensions.

The Sine Wave signal source has been configured to provide a vector signal
output. The Port In block inherits the dimensions of this vector signal as do the
other Synphony blocks in the model.

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584

SMC Vector Concat SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 565

The vector signal model above is essentially equivalent to the scalar signal
model shown below, where the sources for the Sine Wave block are configured
to output scalar signals. It is obvious that the vector signal model illustrated
above is much more concise than the scalar signal model.

The following simple example illustrates the use of the Vector Concat and Vector
Split blocks. The scalar outputs of the four Sine Wave sources are vectorized so
that the delay and subtract operations can be concisely described with a
couple of blocks. To illustrate the use of the Vector Split block, the vector signal
is decomposed into 4 scalar signals and driven to 4 individual scalar output
ports.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Vector Concat

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
566 October 2013

SMC Vector Expand SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 567

SMC Vector Expand
Converts scalar or vector input to vector output.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Vector Expand block takes the scalar or vector input
to the block and converts it to vector output. If the input is scalar, the tool
repeats the scalar input to obtain the output vector of the specified size. If the
input is vector, the tool cyclically repeats the input vector to obtain the speci-
fied size for the output vector.

Latency

This block has no latency.

Vector Expand Parameters

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Vector Expand

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
568 October 2013

Expand to

Specifies the output vector size for the block. The output vector size
must be an integral multiple of the input vector size.

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. This port does not convey data.
Use the variable syn_inh_width to specify the output port dimension. See
Special Variables, on page 588 for a description of this variable.

Expand using Inheritance

Lets you specify the output vector dimension. This option only becomes
available when you specify Inherit Port. The default value for this option is
syn_inh_width. You can use it in any regular expression to specify the
output vector dimension, as shown in the following figure:

Vector Expand Examples

This example shows scalar input expanded to vector output of size 3:

SMC Vector Expand SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 569

The next example shows vector input of 3 expanded to vector output of size 6:

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Vector Extract

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
570 October 2013

SMC Vector Extract
Extracts selected ports from input vectors, and outputs up to a maximum of
2048 output ports.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Vector Extract extracts the selected inputs and
outputs, up to 2048 output ports. See SMC Vector Concat, on page 561 for a
more detailed description. and Vector Signal Examples, on page 564 for an
example.

Latency

This block has no latency.

Vector Extract Parameters

SMC Vector Extract SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 571

Selected inputs

Specifies the inputs for extraction. It determines which inputs and the
order in which they are routed to the output. You can specify up to 2048
output ports. Port numbering starts from 1.

The default setting outputs the first and last elements of the input
vector. syn_vecsize is the input length. The number of output ports does
not depend on the size of the input vector, but depends on the length of
the value in this field. You can not extract negative selected input
indices.

Examples

[1 syn_vecsize] Outputs first and last elements of the input vector.

[syn_vecsize : -1 : syn_vecsize
-3]

Outputs the last 4 elements of the vector input in
descending order.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Vector Split

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
572 October 2013

SMC Vector Split
Forms signals from vector inputs.

Library

Synphony Model Compiler Signal Operations

Description

The Synphony Model Compiler Vector Split block is a vector de-multiplexer of up to
2048 outputs. If the number of outputs is less than the vector size, the
vectors are split equally. For example, with an input vector size of 8, the
outputs are split as shown in the following table.

SeeSMC Vector Concat, on page 561 for a more detailed description and
Vector Signal Examples, on page 564 for an example of its use.

Latency

This block has no latency.

No. of Outputs Vector Size of Outputs

8 1,1,1,1,1,1,1,1

4 2,2,2,2

3 3,3,2

SMC Vector Split SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 573

Vector Split Parameters

Number of outputs

Determines the number of outputs required. You can specify up to 2048
outputs.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Viterbi Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
574 October 2013

SMC Viterbi Decoder
Decodes convolutionally encoded input data.

Library

Synphony Model Compiler Communications

Description

The Synphony Model Compiler Viterbi Decoder decodes convolutionally encoded
input data and outputs single bit decoded data.1 It implements a fully
parallel ACS (add-compare-select) operation, suitable for high speed applica-
tions. This block determines the decoded output using RAM-based traceback,
and allows you to monitor the bit error rate (BER) and state metric normaliza-
tion rate. To decode punctured encoded data, you can feed external erasure
signals into the decoder.

The Viterbi Decoder uses a retimed version of the classic ACS unit for speed
optimization with an area cost. It uses a modular normalization technique for
normalization of state metrics. For further details, see the explanation of
state metrics (State Metric Word Length, on page 575) and block parameter
options (Viterbi Decoder Parameters, on page 577).

This block supports code rates from 1/2 up to 1/7. It allows a maximum
constraint length of 8.

Currently, the Viterbi Decoder block can significantly increase DSP synthesis
runtime when larger constraints are specified. As constraint lengths increase,
synthesis times begin to last considerably longer for folded and retimed
designs. For example, with a constraint length of 7, synthesis could take
about an hour.

1. G. David Forney Jr, “The Viterbi Algorithm”, Proceeding IEEE, vol61, pp 268 - 278, March
1973.

SMC Viterbi Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 575

Viterbi Decoder Decoding

The following describe aspects of decoding in more detail:

Puncturing
The Viterbi Decoder block replaces punctured input data with the average of
least confident 0 and 1 metrics. This results in better BER performance
compared to data replacement with alternating least confident 0 and 1
metrics. All internal branch metrics are represented in offset binary format,
whether or not the input data soft data type is offset binary.

State Metric Word Length
State metric word length is chosen to represent twice the dynamic range of
the possible cumulated state metric differences so that the tool can perform
modulo arithmetic or normalization on state metrics. The automatically
computed state metric word length is ceil(log2((M+1).B))+1, where M is the
number of states and B is the maximum branch metric value. This computa-
tion is valid for non-negative branch metrics, like the Viterbi Decoder block.1

Viterbi Decoder Traceback Algorithm
The traceback method uses a RAM based k-pointer even algorithm (with
k=3).2 If you specify an odd value, the algorithm adjusts the traceback depth
to an even value. In this method, there are six RAM banks of length ceil(trace-
back depth/2) which store state transition decisions previously computed by
add-compare-select modules for each state.

The traceback operation starts from state 0 and retrieves a survivor path for
2xceil (traceback depth/2) decisions. The algorithm then assumes the path has
converged into a proper state to start decoding for ceil(traceback depth/2)
decisions. In other words, the algorithm uses the survivor path of 2xceil (trace-
back depth/2) decisions starting from fixed state 0 to decode ceil(traceback depth/2)
of bits. A new traceback starts every at ceil(traceback depth/2) decisions on a new
RAM bank.

1. C. Shung, G. Ungerboeck, P. Siegel, and H. Thapar, “VLSI architectures for metric normal-
ization in the Viterbi algorithm,” in Proc. 1990 Int. Conf Commun. (Atlanta, CA), Apr. 1990,
pp. 1723-1728.
2. Gennady Feygin and P.G. Gulak, ‘Architectural Tradeoffs for Survivor Sequence Memory
Management in Viterbi Decoders’, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL.
41, NO 3. MARCH 19

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Viterbi Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
576 October 2013

There are some current limitations to the traceback algorithm:

• Traceback architecture requires a LIFO buffer for bit order reversal.

• The RAM-based traceback algorithm is fundamentally different from the
register exchange algorithm. Therefore, the BER performance may not
be the same. The register exchange method generates the survivor
sequence for every output bit usually starting from the state with the
best state metric, while the RAM-based traceback algorithm uses the
same survivor sequence for ceil(traceback depth/2) decisions, as described
above.

• The traceback algorithm has a higher latency than a register exchange
algorithm.

• With fixed state decoding (the traceback survivor sequence generation
always starts from state 0), you might get degraded BER performance for
some generator polynomial and constraint length values. See Trellis
Termination, on page 576 for a technique to overcome this limitation.

• The tool does not support a traceback depth of 1. For proper trellis
survivor sequence generation, ceil(traceback depth/2) should be greater or
equal to ceil(contraint length/3).

• The tool does not support generator polynomials as a feedback type. The
traceback architecture assumes feedforward state transitions and
generates decoded output bits according to these assumed state transi-
tions.

Trellis Termination
The Synphony Model Compiler traceback operation always starts from fixed
state 0 to retrieve survivor sequence. This may lead to a loss in BER perfor-
mance when compared to cases that use best state trellis initialization, or
where the survivor sequence has not converged to a proper state after trace-
back depth of decisions have been processed.

One technique to overcome this performance issue is to start and end trellis
with known state values. For each frame or block of data, reset the convolu-
tional encoder before the first input. This ensures that the trellis starts from
state 0. Similarly, you can append N bits to source frame or block data to
force trellis termination at state 0. (N is constraint length – 1, i.e. the number of
registers in the convolutional encoder). These N number of zero bits are
usually called tail bits.

SMC Viterbi Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 577

Icon Annotations

The icon for this block displays the following information:

Viterbi Decoder Parameters

Constraint length

Is the length of the register used in convolutional encoder plus 1. You
must use the same value that was defined for the Convolutional Encoder
block. The number of states used in decoding is 2^(constraint length-1).

Note Indicates the code rate and constraint length. For example,
1/2 K = 3 indicates a 1/2 code rate, with a constraint length of
K=3.

Latency Annotation The latency of the block is
6 x ceil(Traceback depth / 2) + 4

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Viterbi Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
578 October 2013

Generator polynomial

Specifies the code (an octal value) to be used for convolutionally
encoding the input data. You must use the same value that was defined
for the Convolutional Encoder block. The length of the generator polynomial
defines the number of inputs to the Viterbi decoder.

Traceback depth

Specifies the length of the Viterbi trellis used in the traceback operation
to determine the optimal path for a decoded output bit. Traceback depth
is usually as follows:

The traceback method uses a RAM based k-pointer even algorithm (with
k=3). If you specify an odd value, the algorithm adjusts the traceback
depth to an even value. See Viterbi Decoder Traceback Algorithm, on
page 575 for details.

To avoid loss of decoding performance with respect to best state
decisions, use a larger traceback depth.

Decision type

You have two choices:

– Hard decision
The input data is represented by a single bit (0 or 1). The input bit
length is 1.

– Soft decision
The input data is represented by more than one bit. When you select
this option, two other options become available: Number of soft bits and
Input data format, where you can specify the number of input data bits,
and the data input format respectively. The extra bits in
representation allow the decoder to use a confidence measure on the
demodulation operation during channel transmission.

Soft decision coding improves the coding gain with respect to hard
decision coding. See BER Example, on page 582 for the effects of using
soft decision data.

Non-punctured data 5 times the length

Punctured data 10 times the constraint length

SMC Viterbi Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 579

Input data format

Sets the input data format when the Decision type is set to Soft. You can
choose one of the following formats for the input data:

– Sign-magnitude

– Offset binary

– 2’s complement signed integer

The Viterbi decoder assumes antipodal demodulation operation where 0
is transmitted as a positive voltage and 1 is transmitted as a negative
voltage. The following table shows the confidence measures for different
input data formats when the Soft decision type is specified with 3 bits:

Number of soft bits

Specifies the bit length of inputs for Soft decision type. For Hard, the bit
length of inputs is 1.

External depuncturing

When selected, the Viterbi decoder assumes a punctured convolutional
encoder output and applies external depuncturing to the input stream
before decoding.

To define whether incoming input data will be erased (punctured) or not,
the block uses erasure ports. Each input has a corresponding erasure
port with the same port number. An erasure signal of 1 means that the

Confidence
Measure

Offset
Binary

Sign
Magnitude

2’s Complement
Signed Integer

Most confident 1 111 111 100

110 110 101

101 101 110

Least confident 1 100 100 111

Least confident 0 011 000 000

010 001 001

001 010 010

Most confident 0 000 011 011

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Viterbi Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
580 October 2013

input data will be erased. Alternatively, the block uses least confident
measure levels for 0 and 1 for erasure. The Synphony Model Compiler
Depuncture block lets you append erasure signature to output data and
work on soft decision inputs.

See BER Example, on page 582 for an example of the effect of
puncturing.

BER port

When you select this option, the decoded output is re-encoded using the
same decoding parameters (constraint length and generator polynomial)
and compared to the delayed input data. Selecting this option makes the
Number of samples for BER calculation, BER word length, and BER ready port
options available.

The BER output register is reset to 0 after a specified number of samples
for comparison are done. You specify the number of samples in Number of
samples for BER calculation. For Soft decision inputs, the MSB of the input is
used for comparisons (antipodal demodulator operation is assumed).
The BER output word length is specified in BER word length. The BER
output register wraps on overflow.

The BER output can be used to monitor the error rate on the transmis-
sion channel. Together with Normalization Port, the BER port option can be
used to detect and correct synchronization errors in the Viterbi decoder.

SMC Viterbi Decoder SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 581

Number of samples for BER calculation

Specifies the number of comparisons between decoded output and input
for BER monitoring. This is only available when you select BER port.

BER word length

Specifies the length of the output BER register. This option is only avail-
able when you select BER port.

BER ready port

When selected, it creates a BER ready port, which outputs a ready pulse
when the comparisons between input and output data (specified in
Number of samples for BER calculation) are done. This option is only available
when you select BER port.

Normalization port

When enabled, it creates a normalization port for the block. Together
with the BER port, you can use this port to detect and correct Viterbi
decoder synchronization errors.

The Viterbi decoder implementation uses minimum cost for state metric
updates. When there are errors during channel transmission, state
metrics tend to grow slower and there may be overflows in state metric
updates. The normalization port gives an instant rough measure for the
error rate on the channel by outputting the number of normalizations
(overflows) that occurred when state metrics were updated. Low normal-
ization rates can indicate a loss of synchronization. You can then correct
the input data order to synchronize the Viterbi decoder with the input
stream.

You can compare the normalization rates and BER output to
pre-computed threshold values (depending on channel and decoder
parameters) to detect synchronization losses.

Reset port

When enabled, it creates a local reset port for Viterbi decoder. When the
Viterbi decoder is reset, state metrics, traceback trellis stage and BER
register are all reset to their default 0 values.

Enable port

When enabled, it creates an enable port for Viterbi decoder. When the
Viterbi decoder is not enabled, state metrics, traceback trellis stage and
BER register are maintained at their last state.

LO

 SMC Blocks: IIR to Viterbi Decoder SMC Viterbi Decoder

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
582 October 2013

BER Example

The following BER performance plots show the effect of using soft decision
and punctured encoding. The following settings were used:

Constraint length 3

Generator polynomial [7 5] (1/2 mother code rate)

Traceback depth 15

Puncture matrices, 3/4 code rate [1 0 1; 1 1 0]

Puncture matrices, 5/6 code rate [1 0 1 0 1; 1 1 0 1 0]

Puncture matrices, 7/8 code rate [1 1 1 1 0 1 0; 1 0 0 0 1 0 1]

Common Parameters SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 583

Common Parameters
This section describes parameters for defining output data type and handling
overflow and underflow, that are common to many of the Synphony Model
Compiler blocks. The following parameters are defined here:

• Output Format Options, on page 583

• Overflow Saturation Options, on page 585

• Underflow Rounding Options, on page 585

• Special Variables, on page 588

Output Format Options

The following options for specifying the output are described here:

• Output Format, on page 583

• Output Word Length, on page 584

• Output Fraction Length, on page 584

• Output Data Type, on page 584

Output Format

Determines the word size and data type of the output. You can select one of
the following settings for the output format:

• Automatic calculates the output based on the input. The block uses at
least the same size and type on the output as that driven on the input,
and guarantees no overflow.

• Full Precision uses the smallest bit width that guarantees no overflow,
together with full precision fraction length without internal truncation.
For blocks with separate data path specifications like Transform and the
filter blocks, this option directly reflects the specified data path format in
the output.

• Specify lets you specify the size and data by making the Output Word Length,
Output Fraction Length, and Output Data Type parameters available. For
certain blocks, it also lets you specify saturation and rounding options.

LO

 SMC Blocks: IIR to Viterbi Decoder Common Parameters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
584 October 2013

Output Word Length

Determines the word length of the output in bits. It only becomes available
when you set Output Format to Specify. This parameter is used together with
Output Fraction Length. Given a word length WL, and a fraction length FL:

• The word bits go from WL-1 to 0

• The fraction bits go from FL-1 to 0

• Bit position WL-1 corresponds to the MSB.

• Bit position 0 corresponds to the LSB.

Output Fraction Length

Sets the fraction length of the output in bits. It only becomes available when
you set Output Format to Specify. It is used along with Output Word Length, as
described above.

Output Data Type

Determines the data type for the output, and is only available when you set
Output Format to Specify.

• signed specifies Two’s complement signed representation, and sets the
sign bit to the MSB. This format specifies that an n-bit binary number be
interpreted as a value in the range [-2(n-1), (2(n-1))-1]. Numbers with their
most significant bit equal to 1 indicate a negative value, which is
obtained by subtracting 2n from the unsigned value of the number. For
example, if a is a signed 3-bit binary number, a=110 means 6 - 23= -2.

• unsigned specifies that an n-bit binary number be interpreted as a value
in the range [0, (2n)-1]. If a is an unsigned 3-bit binary number, a=110
means 1*22 + 1*21 + 0*20 = 6.

Common Parameters SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 585

Overflow Saturation Options

Determines how the overflow is treated for the block. If the option is enabled,
the output is saturated. When a number exceeds the data-range limit for that
data type, it saturates to the largest number in the data-range limit. If you
disable this option, the tool wraps the overflow.

If the calculated output value is 128 with 8-bit signed integer format (-128,
127), you could get the following results for the block output:

Underflow Rounding Options

Determines how underflow is treated for the block. For different blocks, the
following options are available. Note that Nearest, Convergent, and Round are
very similar; the only difference is in their treatment of cases where there are
two valid values for underflow rounding.

• Floor (Truncate)
Rounds the underflow down to the first valid quantized value. This
operation is equivalent to truncation for both signed and unsigned
values, and there is no hardware cost.

• Nearest
Rounds the underflow to the nearest valid quantized value. If there are
two valid quantized values, it rounds to the larger value. For example,
2.5 with no fractional part can be rounded to 2 or 3, and selecting
Nearest rounds it to 3. This operation is equivalent to adding half of
quantization step and then doing a Floor on the result.

• Convergent
Rounds the underflow to the nearest valid quantized value. If there are
two valid quantized values, it rounds to the even value. For example, 2.5
with no fractional part can be rounded to 2 or 3, and selecting Convergent
rounds it to 2.

• Fix
Rounds the underflow towards zero. For positive values, this is the same
as Floor; for negative values, it is the same as Ceil.

Option Enabled (Saturated) Option Disabled (Wrapped)

127 -128

LO

 SMC Blocks: IIR to Viterbi Decoder Common Parameters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
586 October 2013

• Ceil
Rounds the underflow up to the first valid quantized value.

• Round
Rounds the underflow to the nearest valid quantized value. If there are
two valid quantized values, it rounds up for positive values, and rounds
down for negative values. For example, 2.5 with no fractional part can be
rounded to 2 or 3, and selecting Round rounds it to 3. This operation
functions just like the MATLAB Round operation.

Examples of Rounding with no Fraction Length
The following table shows how the results of applying the different rounding
options, when there is no fraction length specified.

Value Floor Nearest Convergent Fix Ceil Round

-1.75 -2 -2 -2 -1 -1 -2

-1.50 -2 -1 -2 -1 -1 -2

-1.25 -2 -1 -1 -1 -1 -1

-1.00 -1 -1 -1 -1 -1 -1

-0.75 -1 -1 -1 0 0 -1

-0.50 -1 0 0 0 0 -1

-0.25 -1 0 0 0 0 0

0.00 0 0 0 0 0 0

0.25 0 0 0 0 1 0

0.50 0 1 0 0 1 1

0.75 0 1 1 0 1 1

1.00 1 1 1 1 1 1

Common Parameters SMC Blocks: IIR to Viterbi Decoder

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 587

Bitwise Rounding Examples
The following table shows examples of bitwise rounding from sfix7.5 to sfix4.2
and sfix9.4 to sfix6.1.

Decimal Rounding Examples
The following table shows examples of decimal rounding from sfix7.5 to sfix4.2
and sfix9.4 to sfix6.1.

1.25 1 1 1 1 2 1

1.50 1 2 2 1 2 2

1.75 1 2 2 1 2 2

Bitwise Value Floor Nearest Convergent Fix Ceil Round

01.10010 01.10 01.10 01.10 01.10 01.11 01.10

10.01110 10.01 10.10 10.10 10.10 10.10 10.10

01011.1100 01011.1 01100.0 01100.0 01011.1 01100.0 01100.0

11010.0100 11010.0 11010.1 11010.0 11010.1 11010.1 11010.0

Decimal Value Floor Nearest Convergent Fix Ceil Round

1.5625 1.5 1.5 1.5 1.5 1.75 1.5

-1.5625 -1.75 -1.5 -1.5 -1.5 -1.5 -1.5

11.75 11.5 12 12 11.5 12 12

-11.75 -12 -11.5 -12 -11.5 -11.5 -12

Value Floor Nearest Convergent Fix Ceil Round

LO

 SMC Blocks: IIR to Viterbi Decoder Common Parameters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
588 October 2013

Special Variables
You can use the variables described below to specify values for Data path
word length, Data path fraction length, Coefficient fraction length, Output word length,
Output fraction length, Output vector dimension, Number of shift bits, and Inherit Port
when applicable. You can apply any mathematical operation on these
variables. For example, if you specify an Output word length of 2*syn_inp_wl,
the software creates an output word length that is twice the input word
length.

Variable Description

syn_coef_dt =1 | 0 Holds the data type of the coefficients:
1 - signed input
0 - unsigned input

syn_coef_fl Holds the coefficient fraction length.

syn_coef_wl Holds the coefficient word length.

syn_guard_bit Holds the internally calculated bit growth value (for no
overflow) for the selected data path, and output data
formats of the associated filtering block.

syn_inh_dt =1 | 0 Holds the data type of the inherit port:
1 - signed input
0 - unsigned input

syn_inh_fl Holds the fraction length of the inherit port.

syn_inh_width Holds the vector dimension of the inherit port.

syn_inh_wl Holds the word length of the inherit port.

syn_inp_dt =1 | 0 Holds the data type of the input data:
1 - signed input
0 - unsigned input

syn_inp_fl Holds the input fraction length

syn_inp_wl Holds the input word length.

syn_mat_columns Holds the number of matrix columns of the input port.

syn_mat_rows Holds the number of matrix rows of the input port.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 589

C H A P T E R 4

SMC Functions

This chapter describes the Synphony Model Compiler functions in alphabet-
ical order.

shls_bitrev shls_convert shlsdemo

shlsdoc shlslib shlsroot

shlstool shlsver syn_get_coefs

syn_get_datatype syn_get_dspstartup syn_get_wordlength

syn_read_hex syn_set_atm syn_set_dspstartup

syn_set_portcapture syn_set_portregister syn_unlink

syn_write_wave

LO

 SMC Functions shls_bitrev

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
590 October 2013

shls_bitrev
M Control function that reverses the order of bits in an unsigned integer.

Syntax

shls_bitrev (<x>, <w>)

<x> is an unsigned integer for which you want to reverse the order of bits. You
can specify a variable for <x>.

<w> specifies the width in bits of the data <x> to be bit-reversed. This
argument must be a positive, non-zero integer value. The maximum allowed
value for this argument is 52 bits. If you use a variable for <w>, it must
evaluate to a constant at compile time for synthesis.

You must specify the bit width (<w>) for simulation because <x> will be repre-
sented by a double in the M code (even if quantize has been applied) and the
simulation version of shls_bitrev needs to know what bit-width to use when
reversing the bits.

Description

The shls_bitrev function is used by the M Control block. It reverses the order of
bits in an unsigned integer, using the specified word width. Before performing
bit-reversal, the function casts the specified integer to a large, unsigned
integer. It discards any fractional portion of the integer that is to be
bit-reversed. The bit-reversed result is also unsigned.

Errors and Warnings

The following cases result in simulation warnings and errors:

• If <w> is not a non-zero, positive integer value. Note that <w> can be of
type double for simulation, but the value it contains must have a zero
fractional portion (e.g., “3.0” is valid).

• If the value of <w> exceeds 52 bits, because the Synphony software uses
the maximum width limit of 52 bits instead of the actual value of <w>.

• If the <x> value contains a non-zero fractional part. This fractional part is
discarded and the integer portion is bit-reversed.

shls_bitrev SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 591

The following cases result in M-Control synthesis warnings and errors:

• If <w> is not a non-zero, positive integer-valued constant. Note that a
constant of 3.0 does not cause an error because the fractional portion is
zero.

• If the propagated fixed-point type for <x> contains any fractional part.
This fractional part is ignored and only the integer portion to the left of
the binary point is bit-reversed.

• If the fixed-point type for <x> is signed. The software converts <x> to
unsigned and bit-reverses it, producing an unsigned type of width <w>
or 52 bits, whichever is smaller.

• If the type-propagated width for the integer part of <x> (to the left of the
binary point) does not match the value of <w> argument. The tool uses
the value of <w> or 52 bits, whichever is smaller, in the bit-reversal. This
is true regardless of whether <w> is larger or smaller than the
type-propagated width. If <w> is smaller than the propagated width,
some bits will be lost. If <w> is larger than the propagated width, there
will be zero-valued low-order bits in the bit-reversed result.

LO

 SMC Functions shls_convert

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
592 October 2013

shls_convert
Applies the specified quantization rules to the input data.

Syntax

shls_convert (<input_data> [,'format', <output_widths>] [,'<sign_mode>']
[,'<overflow_mode>'] [,'<round_mode>'])

Description

Use this function to directly replace the MATLAB quantize function. Unlike
quantize for which you must define a quantizer object, shls_convert takes its
quantization parameters in a single line.

Syntax Description

You can specify the parameters in any order, as long as input_data is the first
argument to the function, and the format keyword is followed by the output
word length and fraction length row vector.

input_data is the data to be cast and it must be the first argument to the
function. You can set the input data to any of the following:

Scalar shls_convert (1.4, 'format', [7 6], 'ufixed', 'saturate')

Vector shls_convert ([4.4 9.2], 'Format', [33 32], 'wrap',
'nearest')

Matrix shls_convert ([1.8 2.5 3.3; 8.48 7.56 3.299; 5.5 6.6 7.7],
'format', [4 2], 'ceil')

Variable shls_convert (var_a, 'Format', [12 4], 'fixed', 'saturate',
'convergent')

Complex shls_convert (2.1+2.9i, 'Format', [15 3], 'ufixed',
'saturate',

'fix')
shls_convert ([5i 2.4; 2.2 4.3i], 'format', [16 15], 'fixed',

'wrap', 'ceil')
shls_convert ([1+2i; 2+3i; 4+5i], 'format', [8 7],

'saturate', 'convergent')

shls_convert SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 593

format/Format is the keyword for specifying the output data format. It must be
followed by the output data format specification. The first letter of this
keyword can be either lowercase or uppercase.

output_widths is a row vector with its elements being the output word length
and fraction length respectively. If not specified, the default for these parame-
ters is [16 8]. You can set it to either a scalar or a variable:

sign_mode defines the signedness of the output data. It can be either ufixed or
fixed. If you do not specify this parameter, the function uses fixed by default.

overflow_mode determines how overflow at the output is treated. This value
can be overflow or wrap. If this parameter is not specified, wrap is the default.

round_mode determines how underflow at the output is treated. The default is
nearest, but you can set it to any of the following values:

You can specify the arguments for the shls_convert function in any order. The
following are all valid, and define the same quantization operation:

shls_convert (127.4863, 'format', [16 8], 'fixed', 'wrap', 'nearest')
shls_convert (127.4863, 'Format', [16 8], 'wrap', 'nearest', 'fixed')
shls_convert (127.4863, 'wrap', 'format', [16 8], 'nearest')
shls_convert (127.4863, 'nearest', 'wrap', 'format', [16 8])
shls_convert (127.4863, 'fixed', 'wrap', 'nearest')
shls_convert (127.4863, 'nearest')
shls_convert (127.4863)

Scalar shls_convert (1.4, 'format', [16 15], 'fixed', 'wrap')

Variable shls_convert (3.299, 'Format', [out_wl out_fl], 'saturate',
'fix')

round Rounds toward nearest quantized value (symmetric)

floor Truncate

nearest Rounds toward nearest quantized value (asymmetric)

convergent Rounds toward nearest even value

fix Rounds toward zero

ceil Rounds up

LO

 SMC Functions shlsdemo

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
594 October 2013

shlsdemo
Runs the Synphony demos.

Syntax

shlsdemo [('<demo>')]

The <demo> argument specifies a particular demo to run. The argument is
optional and, when included, must be enclosed in single quotes. Any of the
following keywords can be entered for <demo>:

dctexample 2-D Discrete Cosine Transform design

dynFFT FFT example design with reconfigurable transform size

gsm_ddc Digital Down Converter

im_histogram Histogram computation with the Synphony Model
Compiler M Control and RAM blocks

medianfiltering Median filtering, using an image distorted by noise

noisecanceller_lms Noise cancellation with the LMS algorithm

noisecanceller_signdatalms Noise cancellation with the Signed Data LMS algorithm

qam16 QAM 16 modem with a Viterbi decoder black box

qam16withviterbi QAM 16 modem with the Synphony Model Compiler
Viterbi Decoder block

qam16withviterbiwithpunc QAM 16 modem with the Synphony Model Compiler
Viterbi Decoder using 7/8 puncturing

resettableserialtoparallel Resettable serial to parallel example

rsdecexample Reed Solomon decoder design

rsencexample QAM 16 modem with Reed Solomon encoder

smartblackbox Smart black box example

sobelfiltering Sobel filtering example with vector operations

stateflow State flow design with M Control

tut_fir FIR filter

shlsdemo SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 595

Description

The shlsdemo function locates and executes all preparations for the demos
that are bundled with the Synphony Simulink interface. A demo opens a
model window, and manages the MathWorks Help Browser to provide extra
information.

If you specify the function without any arguments, the command opens the
Help browser to the main demo window, from where you can specify a demo.
Alternatively, specify the demo at the command line, as described above.

Examples
shlsdemo

shlsdemo ('qam16')

LO

 SMC Functions shlsdoc

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
596 October 2013

shlsdoc
Shows the documentation for blocks.

Syntax

shlsdoc('<blockName>')

The <blockName> argument must be the exact name of the block and must be
enclosed in single quotes. For example:

shlsdoc('Gain')

Description

The shlsdoc function opens the Help browser with detailed information on the
specified block. You must specify the exact name of the block.

See Also

shlslib, shlsver

shlslib SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 597

shlslib
Manages the Synphony Model Compiler blockset library.

Syntax

shlslib [(['<action>'] [,<version>])]

The <action> argument specifies what to do with the blockset. The argument is
optional and, when included, must be enclosed in single quotes. Any of the
keywords specified below can be entered for <action>. If you do not specify an
argument, the function defaults to open.

The <version> argument specifies which version of the blockset to manage. The
argument is optional and, when included, must be enclosed in single quotes.
If you do not explicitly specify a version, the function uses the latest version.

Older versions are available for converting legacy designs, but these libraries
are not functional.

info Returns information about the blockset, without loading or opening the
blockset. The information reported is [model, version, path].

load Loads the blockset in memory and returns the model, version, and path of
the blockset.

open Opens the blockset in a design window and returns the model, version
and path of the blockset. If you do not specify <action>, the function
defaults to open.

LO

 SMC Functions shlslib

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
598 October 2013

Description

The shlslib function opens the Synphony Model Compiler blockset. Use
<version> if you want to open a particular blockset. The version number for the
current blockset is 8.

Examples
model=shlslib('info');

[model,version]=shlslib('open');

[model,version,path]=shlslib('open',1);

See Also

shlsdemo, shlsdoc, shlsver

To access other information about the Synphony Model Compiler product,
use the following MathWorks commands:

To view the table of contents help SynphonyHLS or help (‘SynphonyHLS’)

To view the Release Notes info SynphonyHLS or info (‘SynphonyHLS’)

To view the online documentation doc SynphonyHLS or doc (‘SynphonyHLS’)

shlsroot SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 599

shlsroot
Returns the location where Synphony was installed.

Syntax

shlsroot

Description

The shlsroot function stores the location of the Synphony Model Compiler
installation directory when you are setting up the Synphony MATLAB inter-
face. It is used as a reference point to find files in the Synphony Model
Compiler tree.

See Also

shlsver

LO

 SMC Functions shlstool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
600 October 2013

shlstool
Manages the Synphony synthesis application.

Syntax

shlstool [('Model', '<modelName>')]

The optional Model argument specifies a design to open in the application and
must be enclosed in single quotes.

Description

The shlstool function opens the Synphony application. It brings up a toolbox
interface where you can set optimization options and generate RTL code.

shlstool SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 601

Examples
shlstool;

shlstool('Model','design');

shlstool('Model','design.mdl');

shlstool('Model','C:\Temp\design.mdl');

LO

 SMC Functions shlsver

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
602 October 2013

shlsver
Displays version information for the current MATLAB, Simulink and
Synphony installations.

Syntax

shlsver [('<mode>')]

The <mode> argument determines the amount of information displayed. The
argument is optional and, when included, must be enclosed in single quotes.
Any of the following keywords can be entered for <mode>.

Description

The shlsver function displays the standard version information for the
Synphony Model Compiler, MATLAB, and Simulink software.

The function returns up to three outputs:

• The software versions

• The version of the Synphony toolbox executable

• The versions of the Synphony blockset executables

Examples
[v,l,b]=shlsver('silent')

[v,l,b]=shlsver

[v,l,b]=shlsver('all')

The output of this function looks like this:

all Displays information about the software version and the blockset
executable builds. It also displays the currently selected simulation and
synthesis licenses.

silent Suppresses the display of results. Use this argument to assign information
to output variables.

shlsver SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 603

v =
Name: 'Synphony'
Version: 'D-2009.12'
Release: '(PRODUCTION)'
Date: '04-Nov-2009'
l =
Expiration: '31-dec-2009'
Id: 'NE577658084841671'
Vendor: 'Microsemi'
Features: 'batch,cout,msynth,csim'
b =
Shlslib: [67x1 struct]
Shlstool: 'synphony_hls.exe Nov 4 2009 08:51:25'

See Also

shlsroot, shlslib

LO

 SMC Functions syn_get_coefs

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
604 October 2013

syn_get_coefs
Gets the filter coefficients from a Synphony FDATool instance.

Syntax

syn_get_coefs [('<instance>'[, '<type>'] [,<indexList>])]

The <instance> argument is the name of the instance in a currently selected
system (model) and corresponds to the name of the FDATool instance where
the filter is specified. The argument is optional and, when used, must be
enclosed in single quotes. The default instance is FDATool.

The <type> argument defines the type of coefficients that are returned. The
argument is optional and, when used, must be enclosed in single quotes.
Either of the following keywords can be entered for <type>:

For an FIR filter, the default type forward gets all the relevant coefficients for
the filter. For an IIR filter, the default type forward returns the forward coeffi-
cients for the filter corresponding to the numerator of the transfer function.
The feedback coefficients must be requested explicitly with the feedback
keyword.

The <indexList> is a row of integers that picks a specific coefficient. If this is not
specified, all coefficients are returned.

The order of the <type> and <indexList> options is not relevant, so you have
some flexibility.

Description

The syn_get_coefs function returns coefficient information from an FDATool
instance. It can return all the forward or feedback coefficients, or one specific
coefficient.

forward Selects the coefficients of the nominator of the filter transfer
function (the default).

feedback Selects the coefficients of the denominator of the filter transfer
function. For FIR functions, this is an empty array.

syn_get_datatype SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 605

Examples

The following examples return the corresponding coefficients from the
numerator of the filter (FIR or IIR) defined by the FDATool instance:

syn_get_coefs

syn_get_coefs('FDATool', 2)

syn_get_coefs('FDATool', [1 3 5])

syn_get_coefs('FDATool', 'forward', 2)

syn_get_coefs('FDATool', 2, 'forward')

syn_get_coefs('FDATool', 1:2:length(syn_get_coefs('FDATool')))‘

syn_get_datatype
Converts a Simulink data type into Synphony information.

Syntax

syn_get_datatype ('<datatype_string>')

The <datatype_string> argument is a string, enclosed in single quotes, that
represents a legal Simulink data type, including floating point overwrite.

Description

Often in custom libraries or other applications, you need to get compiled data
type information from Simulink and convert it into Synphony information like
word length, fraction length, or data type.

Examples
syn_get_datatype('uint13')

[wl fl dt]=syn_get_datatype('sfix13_En3')

LO

 SMC Functions syn_get_dspstartup

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
606 October 2013

syn_get_dspstartup
Checks the Simulink configuration of a system.

Syntax

syn_get_dspstartup [('<system>')]

The <system> argument is optional and, when used, must be enclosed in
single quotes. If you do not specify <system>, the function uses the top of the
current system.

Description

This function takes the system and analyzes the Simulink configuration
settings for it. If the system does not have the optimal configuration of
settings for DSP simulation, the function returns a warning. The function
returns the following values to reflect the status of the configuration settings:

The default settings for new designs can be set with the Simulink dspstartup
command, which sets the default settings to those that are optimal for DSP
designs. It is recommended that you put this command in your MathWorks
startup file. If you check settings with the syn_get_dspstartup function and find
the settings are not optimal, you can enforce the settings with
syn_set_dspstartup (see syn_set_dspstartup, on page 614 for details).

The following table lists the optimal configuration settings. If you specify the
FixedStepDiscrete or VariableStepDiscrete solver, the function honors it. If you
specify any other solver, the function resets it to FixedStepDiscrete. The Fixed-
StepDiscrete setting is recommended for designs that use Simulink source
blocks with continuous sample times, and the VariableStepDiscrete setting is
recommended for multirate designs.

Status Description

0 Recommended configuration

1 Configuration problem

2 Error in reading system configuration

syn_get_dspstartup SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 607

Examples
syn_get_dspstartup

syn_get_dspstartup('topLevel')

Setting Value

Solver FixedStepDiscrete | VariableStepDiscrete

SolverMode SingleTasking

FixedStep Auto

SaveTime Off

SaveOutput Off

AlgebraicLoopMsgError

InvariantConstants On

SignalLogging Off

LO

 SMC Functions syn_get_wordlength

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
608 October 2013

syn_get_wordlength
Calculates the word length required to represent a given set of values.

Syntax
syn_get_wordlength (<value>[, '<option>'])

The <value> argument is required. If you do not specify <value>, the function
runs based on a value of 0.

The <option> argument is optional and, when used, must be enclosed in single
quotes. You can specify multiple options, in any order. The <option>
arguments can affect the value. Any of the following values can be entered for
<option>:

Description

This function returns the word length required to represent the given value
without overflow. Depending on the options, it can return an adjusted value
cast to represent underflow, because some options can affect the underflow.
When <value> is a vector, the syn_get_wordlength function returns the maximum
word length required to represent all elements of <value> for the given options.

fl <floatingLength> Limits the number of fraction bits used to represent the
value, and affects the returned value. If not specified, the
function uses 0.

fixed | ufixed Determines the data type used to represent the value. It
affects the word length required. If not specified, the
function uses the fixed option by default. If you specify a
negative value for a ufixed data type, you get a warning
message. The value is adjusted to preserve the stored
integer.

round | floor |
nearest | fixed| ceil |
convergent

Affects the value because it affects the underflow behavior
to represent the value. If it is not specified, the function
uses the nearest option.

syn_get_wordlength SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 609

Examples
syn_get_wordlength(1)
syn_get_wordlength (3.14)
syn_get_wordlength (pi)
[w,v]=syn_get_wordlength (pi,'ufixed','fl',2,'nearest')
[w,v]=syn_get_wordlength ({exp(1) pi},'fl',4)

LO

 SMC Functions syn_read_hex

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
610 October 2013

syn_read_hex
Reads a file with hex-encoded ROM data and returns a vector.

Syntax

syn_read_hex [(['<filename>'] [, 'checksum'])]

Description

The syn_read_hex function reads a file and scans it for ROM data encoded in
hex format. If you specify a filename, it must be enclosed in single quotes. If
you do not specify a filename, the function searches for a file called rom.hex. If
you specify more than one file, the function only reads the last file specified.
The optional checksum argument causes the function to validate the
checksum for each hex record and, when used, must be enclosed in single
quotes. The syn_read_hex function returns the data as a vector. See Specifying
ROM Data with syn_read_hex, on page 776 for information on using this
function.

Hex Format

A hex record consists of the following:

:LLAAAATT[DD...]CC

The six fields in a hex record are described in this table:

Field Characters Description

: 1 Start code. An ASCII colon, ":".

LL 2 Byte count. The count of the character pairs in the data field.

AAAA 4 Address. The 2-byte address at which the data field is to be
loaded into memory.

syn_read_hex SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 611

Example of Hex-Encoded ROM Data

This is a sample of hex-encoded ROM data:

:01000000AA55
:01000100AB53
:01000200AC51
:01000300AD4F
:01000400AE4D
:00000001FF

You can decompose the first line as follows:

||||||||||| CC->Checksum ('h55=>85)
|||||||||DD->Data ('hAA)
|||||||TT->Record Type (00 : Data Record)
|||AAAA->Address ('h0000=>0)
|LL->Record Length ('h01 =>1 byte)
:->Start Code

Examples of the Function
syn_read_hex

syn_read_hex('checksum')

syn_read_hex('data.hex')

syn_read_hex('data.hex','checksum')

TT 2 Type. This can be 00, 01, 02, or 04.
• 00 - Data record. A record containing data and the 2-byte

address for the data to reside.
• 01 - End-of-file record. A termination record for a file of hex

records. Only one termination record is allowed per file and
it must be the last line of the file. There is no data field.

• 02 - Extended segment address record.
• 04 - Extended linear address record.

DD... 0-2n Data. From 0 to n bytes of executable code, or memory-
loadable data. n is normally 20 hex (32 decimal) or less.

CC 2 Checksum. The function calculates the checksum of the
record by summing the values of hexadecimal digit pairs in the
record, module 256, and taking the two’s complement.

Field Characters Description

LO

 SMC Functions syn_set_atm

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
612 October 2013

syn_set_atm
Allows you to configure Synphony timing modes.

Syntax

syn_set_atm

Description

The syn_set_atm function opens a dialog box that lets you set the timing mode.
See Timing Engine Configuration Dialog Box, on page 612 for details.

Example
syn_set_atm

Timing Engine Configuration Dialog Box

This dialog box lets you configure the timing mode you want to use as a basis
for optimizations. The dialog box opens automatically during installation, but
you can open it at any time by typing syn_set_atm at the MATLAB command
prompt. See Configuring SMC Timing Modes for FPGAs, on page 638 for
details about setting timing modes.

syn_set_atm SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 613

Synplify Pro
Path

Specifies the path to the Synplify Pro executable. You must specify
this path for Advanced Timing Mode, because it uses the Synplify Pro
timing engine.

FPGA
Default Mode

Sets the default timing mode used to calculate timing parameters for
all DSP synthesis runs. You must specify this for FPGA designs.
• Advanced Timing Mode

Uses the Synplify Pro timing engine and target-specific timing data
to produce more accurate results.

• Estimation mode
Uses simpler, latency-based device characterizations as a basis for
optimizations. Estimation mode is faster, but the results are less
accurate.

LO

 SMC Functions syn_set_dspstartup

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
614 October 2013

syn_set_dspstartup
Sets the Simulink configuration for a system.

Syntax

syn_set_dspstartup [('<system>')]

The <system> argument is optional and, when included, must be enclosed in
single quotes. If you do not specify <system> explicitly, the function uses the
top level of the current system.

Description

This function takes the system and forces the Simulink configuration settings
to an optimal configuration for DSP simulation. Before using this command,
check the optimization settings with syn_get_dspstartup. For more information
on configuration settings, see Configuring Settings for Simulink Simulation,
on page 638.

Typically, you set default settings for new designs with the Simulink dspstartup
command, which ensures that the settings are the best for DSP designs. It is
recommended that you put this command in your MathWorks startup file. To
check your current settings, use the syn_get_dspstartup function
(syn_get_dspstartup, on page 606).

Examples
syn_set_dspstartup

syn_set_dspstartup('topLevel')

syn_set_portcapture SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 615

syn_set_portcapture
Lets you determine data capture parameters for the input and/or output
ports.

Syntax

syn_set_portcapture [(['<port_type>'] [,'<capture_status>'])]

The <port_type> argument specifies the kind of port. The argument is optional
and, when included, must be enclosed in single quotes. Any of the following
values can be entered for <port_type>:

The <capture_status> argument specifies the capture parameters for the ports.
The argument is optional and, when included, must be enclosed in single
quotes. Any of the following values can be entered for <capture_status>:

Examples

This example toggles the capture parameters of all ports:

syn_set_portcapture;

The following function clears the capture parameters of all input port:

syn_set_portcapture('in', 'clear');

 This function specifies that all ports capture data:

syn_set_portcapture('set');

all This is default. It applies the capture criteria to all the ports.

in Applies the capture criteria to all input ports

out Applies the capture criteria to all output ports.

toggle This is default. It toggles the capture status for the specified ports.

set Sets all specified ports to capture data.

clear Clears all specified ports so that they do not capture data.

LO

 SMC Functions syn_set_portregister

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
616 October 2013

syn_set_portregister
Determines the register (extra latency) parameters of the input and/or output
ports.

Syntax

syn_set_portregister [(['<port_type>'] [,'<register_status>'])]

The <port_type> argument specifies the kind of port. The argument is optional
and, when included, must be enclosed in single quotes. Any of the following
values can be entered for <port_type>:

The <register_status> argument specifies the latency parameters for the regis-
ters. The argument is optional and, when included, must be enclosed in
single quotes. Any of the following values can be entered for <register_status>:

Examples

This example toggles the register parameters of all ports:

syn_set_portregister;

The following function clears the register input parameters of all input ports:

syn_set_portregister('in', 'clear');

 This function sets register parameters for all ports:

syn_set_portregister('set');

all This is default. It applies the parameters to all the ports.

in Applies the parameters to all input ports

out Applies the parameters to all output ports.

toggle This is default. It toggles the capture status for the specified ports.

set Sets all specified ports to capture data.

clear Clears all specified ports so that they do not capture data.

syn_unlink SMC Functions

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 617

syn_unlink
Unlinks any instance of a Synphony Model Compiler custom block.

Syntax

syn_unlink [('<system>')]

The <system> argument specifies the name of a system or a subsystem. The
argument is optional and, when included, must be enclosed in single quotes.
If you do not provide an argument, the function uses the selected system.

Description

The syn_unlink function goes through the hierarchy, and unlinks any instance
that has a Synphony Model Compiler custom block as a reference. The
function returns the names of all blocks that have been unlinked.

Examples
syn_unlink

syn_unlink('topLevel')

syn_unlink('topLevel/Hierarchy')

LO

 SMC Functions syn_write_wave

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
618 October 2013

syn_write_wave
Writes a Value Change Dump (VCD) file based on a set of Simulink logged
signals.

Syntax

syn_write_wave [(['<system>'])]

The <system> argument specifies the model for which the VCD file is
generated. This optional must be enclosed in single quotes or be a variable
that specifies a string representing the model name; if it is included. When
the argument is not included, the default is gcs that gets the current
Simulink system.

Description

To use syn_write_wave:

1. Enable signal logging for the model. To do this, select Configuration
Parameters->Data Import/Export for the model.

2. Log signals in your model. To do this, right-click on a signal and select
Signal Properties.

3. Run simulation to generate the signal log.

4. Run syn_write_wave.

5. Open the generated VCD file in any waveform viewer of your choice.

For details see, Viewing Simulink Signals in a Waveform Viewer, on page 846.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 619

C H A P T E R 5

Constraints

The following sections describe constraints you specify, constraints that the
tool infers, the constraints file, and forward-annotation:

• HLS Constraints File, on page 620

• Synphony Model Compiler Constraints, on page 622

• Multicycle Path Constraints, on page 632

• Forward-Annotation, on page 636

LO

 Constraints HLS Constraints File

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
620 October 2013

HLS Constraints File

The HLS constraints file is a Tcl file that is used to set implementation
constraints on blocks and subsystems in the model hierarchy. You can use it
to specify constraints for pattern annotation, retiming, or FIR architecture.

If you specify conflicting constraints, the tool uses the lowest-level constraint
in terms of hierarchy, or the most specific constraint.

Each line in the Tcl file consists of a define_attribute command that specifies a
constraint that is applicable to one or more blocks or subsystems. Blank
lines and lines beginning with the hash (#) character are ignored.

For information about adding a constraint file to an implementation, see
Using Constraints, on page 653.

Constraint Command Syntax

This is the general command syntax for the constraints in the file.

define_attribute [-r] [block_name] attribute_name [attribute_parameters]

-r Optional. Applies the constraint to the entire hierarchy inside
a subsystem.

block_name Required only if the constraint is block-specific; otherwise it
applies to the whole model.
Block name or path to the block. It is a hierarchical expression
that matches the hierarchical names of one or more blocks
and subsystems in the model. The expression always begins
with top/, where top is the name of the model, and uses the
forward slash (/) as the hierarchy separator.
For the last character, you can use an asterisk (*) as a
wildcard that matches zero or more characters.
Currently the tool treats the expressions top/SubSystemA/* and
top/SubSystemA as equivalent, but it deprecates the syntax of
the second expression. it is recommended that you update the
existing files to make the trailing wildcard explicit. See
Hierarchical Block Name Examples, on page 621 for
examples.
An expression that names a single block or subsystem
(without wildcards) is same as the expression returned by the
MATLAB gcb command for that block.

HLS Constraints File Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 621

Hierarchical Block Name Examples

The following table shows some examples of block names:

attribute_name Name of the attribute to be applied to the specified blocks. See
pattern_annotation Constraint, on page 626,
shls_retiming_lock Constraint, on page 169, and
Constraints for FIR Architecture, on page 228 for specific
information about individual constraints and their
syntax.

attribute_parameters A string containing parameters specific to the attribute being
applied. If it contains spaces, the string must be enclosed in
quotes.

toplevel/SubsystemA/BlockB Matches the BlockB block inside the SubsystemA
subsystem in the toplevel design.

toplevel/SubsystemA Matches the SubsystemA subsystem in the toplevel
design.

toplevel/SubsystemA/* Treated as equivalent to the previous example.

-r toplevel/SubsystemA Matches the hierarchy inside the SubsystemA
subsystem.

toplevel/SubsystemA/B* Matches all blocks and subsystems whose names start
with B that are immediately inside the SubsystemA
subsystem.

LO

 Constraints Synphony Model Compiler Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
622 October 2013

Synphony Model Compiler Constraints

This section describes the Synphony Model Compiler constraints, in alpha-
betical order. All these constraints can be specified in the HLS constraints
file, and follow the general command syntax conventions described in HLS
Constraints File, on page 620.

• add_register_and_balance_parallel_paths, on page 622

• areabased_fir_arch_selection_atm Constraint, on page 623

• fir_architecture Constraint, on page 623

• multi_cycle_path Constraint, on page 624

• pattern_annotation Constraint, on page 626

• retime_across_blackbox, on page 627

• retiming_scale_factor Constraint, on page 628

• shls_retiming_lock Constraint, on page 628

add_register_and_balance_parallel_paths

Inserts a register in a specified location in the RTL generated by the tool.

define_attribute block_name add_register_and_balance_parallel_paths

This register balancing constraint works for single-rate and multirate
designs. The tool automatically inserts a register after the specified block and
balances all parallel paths in the generated RTL.

For this constraint to work, you must select the Retiming option with a
non-zero latency. During register balancing, the tool does not move the regis-
ters in your design, but uses the additional latencies specified by the Retiming
option to balance the registers. The tool ignores the constraint if you select
Folding or Multichannelization.

block_name The hierarchical block after which you want to insert a
register

Synphony Model Compiler Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 623

To insert registers in multiple locations, specify one Tcl constraint per
location. The tool uses the minimum number of registers possible to satisfy
all the register balancing constraints. If required, the tool reuses additional
registers placed in parallel paths during the retiming of those paths.

areabased_fir_arch_selection_atm Constraint

Disables area-based selection of FIR architecture for the FIR block.

By default, the tool includes area estimates in the calculation if automatic
timing mode is on. You can disable this behavior and disregard area
estimates by specifying the following Tcl constraint:

define_attribute [-r] block_name areabased_fir_arch_selection_atm “disable”

fir_architecture Constraint

Overrides the FIR architecture decision for the baseline implementation by
specifying an architecture for the FIR block.

This constraint is valid only when applied to an FIR block instance. Use the
syntax shown below:

define_attribute [-r] block_name fir_architecture "fir_architecture_name [-notimeout]"

-r block_name Refer to Constraint Command Syntax, on page 620 for
information about the syntax for specifying a block name and
path with define_attribute.
Note that block_name can point to the entire model, a
subsystem, or a specific instance. When applied to an entire
model or subsystem, this constraint only applies to the FIR
blocks within that model or subsystem.

disable Overrides the default and does not take area estimates from the
synthesis tools into account when determining the FIR
architecture.

LO

 Constraints Synphony Model Compiler Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
624 October 2013

multi_cycle_path Constraint

Lets you specify multicycle paths on Subsystem blocks at the Simulink level.

For an n-cycle path, valid output is available once every n cycles. Multicycle
path constraints relax retiming on the Subsystem block, by setting the target
clock period for those paths to <number of cycles> x actual clock period.
This is the syntax for the command:

define_attribute <subsystem_name> multi_cycle_path <cycles>

For details about specifying multicycle path constraints, see Specifying Multi-
cycle Path Constraints, on page 632.

When a multicycle path constraint is applied to a subsystem, all combina-
tional paths between enabled registers that have the same enable signal are
considered multicycle paths. For subsystems, the constraint applies to the
entire hierarchy inside the subsystem. The tool relaxes the constraints on
these paths, and reports the applied constraints in the log file:

@N: MCP <cycles> is applied to the <subsystem_name>.

-r block_name Refer to Constraint Command Syntax, on page 620 for
information about the syntax for specifying a block name and
path with define_attribute.

fir_architecture
_name

Must be either direct, transpose, or mcm. The architecture must be
enclosed in quotes and is case-insensitive.
If Folding is enabled, the tool always uses the transpose
architecture, regardless of which option you specify. A
corresponding warning message is printed in the log file.

-notimeout Only applies to the MCM architecture. It forces MCM architecture
to be selected even if the size and bit-width of the filter are beyond
the usual scope of MCM (up to 200 24-bit coefficients).
Note that using this option might result in a longer runtime.

subsystem_
name

Refer to Constraint Command Syntax, on page 620 for
information about the syntax for specifying a block name and
path with define_attribute.

cycles The number of cycles in the multicycle path. The value must be
greater than 1.

Synphony Model Compiler Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 625

The tool automatically infers multicycle paths in certain situations and you
do not have to explicitly apply a constraint. See Automatically Inferring Multi-
cycle Path Constraints, on page 633 for details.

Multicycle Constraint Limitations
The tool does not apply the constraint in certain circumstances:

• You cannot use the constraint if folding is applied to the top level design.

• The tool ignores a multicycle path inside a multicycle path subsystem if
the path contains rate-changing blocks, the RTL Encapsulation or HLS
Subsystem blocks, or the Black Box or Smart Black Box blocks.

• The input and output registers of the multicycle path must be enabled
by the same enable signal. If they are not, the tool ignores the constraint
and issues this warning message:

@W: Multi-cycle path constraint on sub-system <sub-system name> is
ignored as enabled registers are not connected to the same enable
signal.

Multicycle Constraint Priority
If there is a conflict between multiple constraints, the constraint that is speci-
fied first has priority. All ignored constraints are reported in the log file.

The following describe some constraint scenarios:

• If there are multiple constraints on the same subsystem, the tool honors
the first one specified.

• If you first specified a multicycle constraint on subsystem A, and then
added another on subsystem A/b of A, the tool ignores the constraint on
A/b. If you first specified the multicycle constraint on A/b, the tool ignores
the constraint on A and uses the constraint specified on A/b.

LO

 Constraints Synphony Model Compiler Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
626 October 2013

Forward-Annotation
Multicycle constraints are passed on to the logic synthesis tools. They are
forward-annotated to the Synopsys synthesis tools as follows:

pattern_annotation Constraint

Specifies patterns for folding in the constraints file. Alternatively, you can
specify pattern annotation constraints in the Tag property on Simulink
blocks, as described in Setting Folding Annotations in the Simulink GUI, on
page 668.

This is the Tcl syntax to specify pattern annotation in the constraints file. Use
the same keywords in the Tag property.

define_attribute block_name pattern_annotation "pattern p instance i"

define_attribute[-r]block_name pattern_annotation exclude

Synplify
tools

define_scope_collection <collection> {expand -hier -seq -from <enable net name>}
define_multicycle_path -from <collection > -to $<collection> <no of cycles>

DC set <collection> [get_cells -of_objects [all_fanout -flat -from [get_pins
<enable name>] -endpoints_only]]

set_multicycle_path -from <collection> -to <collection> <cycles>

block_name See Constraint Command Syntax, on page 620 for information
about hierarchical block names and paths.
• List each instance on a separate line with a unique instance

number.
• Do not use the -r recursive argument for folding annotations; you

can only use it with the exclude keyword.
• You can only use wildcards in block names if you are using the

exclude keyword.
• If an annotated instance contains another annotated instance, the

inner instance is ignored.

Synphony Model Compiler Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 627

Examples

define_attribute toplevel/SubsytemA/BlockB pattern_annotation exclude
This excludes BlockB in SubsystemA from folding.

define_attribute toplevel/SubsystemA/SubsystemC pattern_annotation "pattern 0 instance
1"
This marks SubsystemC as an instance numbered 1 for the pattern numbered
0.

define_attribute toplevel/SubsystemA/SubsystemC pattern_annotation "exclude"
This exclude constraint has no effect.

retime_across_blackbox

Overrides the default and enables retiming across the specified black box or
RTL Encapsulation block.

In general, it is not safe to retime across a black box or RTL Encapsulation
block because it may change the functionality of the design. By default, the
tool does not do such retiming.

pattern p
instance i

Overrides the Synphony Model Compiler automatic pattern
detection, and marks instances to be folded. Enclose pattern
instance annotation in quotes to protect the spaces.
The pattern annotation is a case-insensitive string and indicates that
a given subsystem is an instance numbered i of a pattern numbered
p, where i and p have the following requirements:
• i and p are non-negative integers.
• All instances of one pattern must have the same value for p, which

should be different for different patterns.
• Every instance for the same pattern must have a unique value for i.

exclude Marks individual blocks to exclude them from folding. Such blocks
are not considered during plain multiplier folding, and are not
included in patterns. Note that this annotation is currently ignored if
it is applied to a subsystem.
If an instance of a user-annotated pattern includes a block that is
marked for exclusion, all the instances of that pattern are dropped.

LO

 Constraints Synphony Model Compiler Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
628 October 2013

If you specify this constraint, it is up to you to ensure that the design
functionality is not changed. Typically, if the block has a source in it, it is not
safe to retime across it. A source is any logic whose output does not fully
depend on its input values, like a constant, or a counter with an initial value.
For the constraint to take effect, the Retiming option must be enabled.

This is the syntax for the constraint:

define_attribute <RTL Encapsulation or black box name> retime_across_blackbox

retiming_scale_factor Constraint

Accounts for routing delay by specifying a scale factor for how aggressive the
Synphony tool should be during retiming.

The tool multiplies the clock frequencies by the scale factor for retiming. If
you specify a scale factor of 1.5 in a multirate design with two clocks, one 100
MHz and the other 300 MHz, the SMC tool retimes the design using 150 MHz
and 450 MHz respectively as the clock frequencies.

This is the constraint syntax:

define_attribute retiming_scale_factor <scale factor> [forward_annotate]

shls_retiming_lock Constraint

Specifies whether retiming affects Delay blocks. This is the syntax:

define_attribute [-r] {block_name} shls_retiming_lock {lock_only | none}

scale factor A fractional number greater than or less than 1. This value is
written to the log file for reference.

forward_annotate Optional. If it is not specified, the SMC tool passes the original
clock frequencies to the downstream tools. When specified, the
tool also forward-annotates the scale factor to the Synplify
synthesis tools. For example:
define_attribute retiming_scale_factor 1.25

Synphony Model Compiler Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 629

The Synphony Model Compiler tool forward-annotates the constraint to the
logic synthesis tool, unless folding is enabled. In it is enabled, it prints this
warning:

@W: Folding is turned on; retiming lock constraints are not
forward-annotated to Synplify.

If a retiming constraint is applied to a subsystem, the tool applies the
constraint to every delay immediately under that subsystem. In other words,
toplevel/SubsystemA is considered equivalent to the toplevel/SubsystemA/*. The
former behavior is deprecated, and applying a retiming constraint to a
subsystem will have no effect. Update any existing HLS constraints files that
use the previous expression to use the new expression.

The following shows the top level of a simple design called trial, and the inter-
nals of the Subsystem block. Subsytem2 includes two Delay blocks as shown
below, so the design contains Delay blocks at the trial level, the Subsystem
level, and the Subsystem2 level.

-r block_name Refer to HLS Constraints File, on page 620 for information
about the syntax for specifying a block name and path with
define_attribute.

shls_retiming_lock Must be lock_only or none.
• lock_only prevents the Delay block from being moved during

retiming.
• none allows the Delay block to be moved during retiming. It also

removes a previously applied lock.

LO

 Constraints Synphony Model Compiler Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
630 October 2013

Subsystem

trial

Subsystem2

Synphony Model Compiler Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 631

You can define retiming constraints for the Delay blocks at all three levels, as
shown below.

Constraint Applies to... shls.log Results

define_attribute {trial/Delay_abc}
shls_retiming_lock {lock_only}

trial/Delay_abc @N: The retiming constraints
were successfully applied for the
following blocks or hierarchies in
the following order:
Delay_abc : {lock_only}

define_attribute
{trial/Subsystem/*}
shls_retiming_lock {lock_only}

All Delay
blocks under
trial/Subsystem

@N: The retiming constraints
were successfully applied for the
following blocks or hierarchies in
the following order:
Subsystem.Delay_abc1 : {lock_only}
Subsystem.Delay_abc : {lock_only}

define_attribute -r
{trial/Subsystem/*}
shls_retiming_lock {lock_only}

All Delay blocks
under
trial/Subsystem
and lower
hierarchies
recursively

@N: The retiming constraints
were successfully applied for the
following blocks or hierarchies in
the following order:
Subsystem.Subsystem2.Delay1 :
{lock_only}
Subsystem.Subsystem2.Delay : {lock_only}
Subsystem.Delay_abc1 : {lock_only}
Subsystem.Delay_abc : {lock_only}

define_attribute {trial/outDel*}
shls_retiming_lock {lock_only}

All blocks
beginning with
outDel under
trial

@N: The retiming constraints
were successfully applied for the
following blocks or hierarchies in
the following order:
outDelay2 : {lock_only}
outDelay1 : {lock_only}

define_attribute {trial/*}
shls_retiming_lock {lock_only}

All Delay
blocks under
trial

@N: The retiming constraints
were successfully applied for the
following blocks or hierarchies in
the following order:
outDelay2 : {lock_only}
outDelay1 : {lock_only}
Delay_abc : {lock_only}

LO

 Constraints Multicycle Path Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
632 October 2013

Multicycle Path Constraints

You can specify multicycle constraints explicitly, but the Synphony Model
Compiler tool also automatically infers multicycle path constraints in certain
situations. For details, see the following:

• Specifying Multicycle Path Constraints, on page 632

• Automatically Inferring Multicycle Path Constraints, on page 633

Specifying Multicycle Path Constraints

There are two typical cases where you can specify the multicycle constraint
on a subsystem:

• Loops with enabled registers
If you have a loop that fails to meet timing, retiming it will not add extra
latency in the loop. If you already know that the enable signal to the
registers in the loop comes every n clock cycles, you can isolate the loop
in a subsystem, and attach an n-cycle constraint to it. The multicycle
constraint helps to meet timing by relaxing the timing constraint.

• Enabled data paths
If you have a data path where the registers are enabled only once every n
clock cycles, that path does not have to meet timing according to the
clock constraints. If you specify a multicycle constraint on this path, you
might be able to meet timing without inserting any extra latency.

The following procedure shows you how to explicitly specify multicycle path
constraints for a subsystem.

define_attribute {trial/*}
shls_retiming_lock {lock_only}

define_attribute {trial/outDelay1}
shls_retiming_lock {none}

All Delay
blocks under
trial except
outDelay1

@N: The retiming constraints
were successfully applied for the
following blocks or hierarchies in
the following order:
outDelay2 : {lock_only}
outDelay1 : {lock_only}
Delay_abc : {lock_only}
outDelay1 : {none}

Constraint Applies to... shls.log Results

Multicycle Path Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 633

1. Use the SMC library blocks to create your Simulink model design, and
validate it.

2. Specify a multicycle path constraint on the subsystem using a
multi_cycle_path constraint.

All combinational paths between enabled registers that have the same
enable signal are considered multicycle paths. For subsystems, the
constraint applies to the entire hierarchy inside the subsystem. For
example, to apply a constraint of 16 on subsystem xyz in the top level of
Simulink model abc, specify the following constraint:

define_attribute abc/xyz multi_cycle_path 16

Details about this constraint are described in multi_cycle_path
Constraint, on page 624.

3. Ensure that the Tcl constraint file is specified and enabled in
Implementation Options->HLS Constraint Options->Enable Constraint File.

4. Run SMC synthesis to create the implementation of the Simulink model.

Specified multicycle constraints are not applied in some situations,
which are described in Multicycle Constraint Limitations, on page 625.
If multiple constraints cause a conflict, the constraint that is specified
first has priority. All ignored constraints are reported in the log file. See
Multicycle Constraint Priority, on page 625 for details.

The tool forward annotates multicycle constraints in the generated
synthesis scripts, as described in Forward-Annotation, on page 636.

5. Make sure to source the SMC-generated synthesis scripts when you use
the downstream synthesis tools for RTL synthesis.

Automatically Inferring Multicycle Path Constraints

The Synphony Model Compiler tool automatically infers multicycle path
constraints in downsampling and upsampling situations, as described below.

Downsampling and Automatic Inference of Multicycle Paths

Paths from a Downsample block output to the registers that immediately follow
can be designated multicycle paths. Define a multicycle path with the value
set to the downsample rate -1 in either of the following cases:

LO

 Constraints Multicycle Path Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
634 October 2013

• When the sample offset is zero and downsample rate is greater than 2.

• When multichannelization is on, but not defined for multi-rate folding.

The following figure shows a model with a Downsample block with a downs-
ample rate of 5 and an offset of 0, and the corresponding Synplify Pro imple-
mentation.

The dsDelay_block inside Downsample is clocked with clk and Delay1_block is
clocked with clkDiv5. Delay1_block is updated once every fifth clock and the
downsample input data is available at dsDelay_block after the first clock. So,
the path between dsDelay_block and Delay2_block can be treated as a multicycle
path of 4 of the clock domain clk.

When the offset is greater than 0, the delay of the downsample is 1 (in clkdiv5).
A slower clock domain delay is already available inside the downsample, so
the path following the downsample is not a multicycle path.

Simulink Model

Synplify Pro View

Multicycle Path Constraints Constraints

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 635

Upsampling and Automatic Inference of Multicycle Paths

With Upsample blocks, define multicycle path constraints when the sample
offset is greater than zero, and folding and multichannelization are off. In this
case, paths going through the upsampler are considered multicycle paths.
Set the multicycle value to sample offset + 1.

The following figure shows a model with an Upsample block and the corre-
sponding Synplify Pro implementation. The upsampler is implemented as a
multiplexer. The select line of the mux is counter == offset. Delay1_block and the
counter are clocked with clk and Delay2_block is clocked by clkDiv5. The offset is
3. In this case, the Delay2_block data passes the mux in the third clock. This
means that the data1_block register is updated with the data from Delay2_block
in the fourth clk (3+1). Consequently, you can specify a multicycle path
constraint of 4 on the path between Delay2_block and Delay1_block (clock
domain clk).

Simulink Model

Synplify Pro View

LO

 Constraints Forward-Annotation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
636 October 2013

Forward-Annotation

The tool forward-annotates inferred and specified constraints to the Synopsys
logic synthesis tools as follows:

• Clock frequency is forward-annotated.

• Multicycle path constraints are forward-annotated.

The define_scope_collection command in this example creates a
collection of sequential elements in the module instance myI_1 driven
by the enable signal en_1 in to a variable called smc_reg1. The
multicycle constraint specifies a value of 8 on all the paths starting
from and ending at this collection.

define_scope_collection smc_regs1 {expand -hier -seq -from {myI_1.p:en_1}}
set_multicycle_path {8} -from {$smc_regs1} -to {$smc_regs1}

• Path delays are forward-annotated.

• FPGA synthesis attributes attached to subsystems are
forward-annotated. See Tagging Subsystems with FPGA Synthesis Attri-
butes, on page 796 for details.

• The tool converts shls_retiming_lock constraints to Synplify
syn_allow_retiming attributes with a value of 0, and forward-annotates
them.

• The Synplify syn_ramstyle attribute is forward-annotated if you set it in
the SMC Implementation Options dialog box.

• For FPGA targets, the SMC tool sets the Synplify syn_useioff attribute, to
prevent the packing of registers in I/O pads.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 637

C H A P T E R 6

Synthesizing the Design

This chapter contains step-by-step procedures that describe how to set up
the Synphony Model Compiler software and run typical design flow tasks:

• Configuring Synphony Model Compiler, on page 638

• Basic Procedures, on page 641

• Setting Options for an Implementation, on page 644

• Running Synthesis with SHLSTool, on page 677

• Synthesizing with a Host Interface Block, on page 678

The design flow is described in Synphony Model Compiler Design Flows, on
page 20.

LO

 Synthesizing the Design Configuring Synphony Model Compiler

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
638 October 2013

Configuring Synphony Model Compiler
The following describe how to configure settings so that you can use the
Synphony Model Compiler tool effectively:

• Configuring Settings for Simulink Simulation, on page 638

• Configuring SMC Timing Modes for FPGAs, on page 638

• Setting Default Display Modes, on page 640

Configuring Settings for Simulink Simulation

The Simulink simulator can be optimized for discrete-time fixed-point
designs. This improves simulation run time and behavior with the Synphony
Model Compiler blockset.

1. Type syn_set_dspstartup at the MATLAB command line for the optimal
configuration.

This function automatically tunes the settings for the model. It ensures
that you have the best Simulink settings for discrete-time DSP design.
See syn_get_dspstartup, on page 606 for the syntax and the settings.

2. To view the current settings, select Simulation->Configuration Parameters
from the model window. This opens a dialog box where you can view the
current settings.

Configuring SMC Timing Modes for FPGAs

The Synphony Model Compiler tool offers two timing modes for FPGAs:
estimation mode and advanced timing mode. The latter uses Adva3nced
Timing Mode, which produces more accurate results by running the Synplify
Pro timing engine.

1. Make sure you have the Synplify Pro software installed and accessible.

2. To set the default timing mode for all synthesis runs, do the following:

– Open the Timing Engine Configuration dialog box. You can either do this
when the dialog box opens as part of the installation process, or open

Configuring Synphony Model Compiler Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 639

it later, by typing syn_set_atm (syn_set_atm, on page 612) at the
MATLAB command prompt.

– Set FPGA Default Mode to the mode you want to use, either advanced
timing mode or estimation mode. See Timing Engine Configuration
Dialog Box, on page 612 for descriptions of this dialog box.

– If you set the default to Advanced Timing Mode, you must also set Synplify
Pro Path to point to the Synplify Pro executable. This is because
advanced timing mode uses the Synplify Pro timing engine to
estimate timing. The tool defaults to estimation mode if it cannot find
Synplify Pro or if problems occur.

– Click OK.

– When you run DSP synthesis, make sure to enable Retiming and
Advanced Timing Mode in the SHLSTool UI. To use estimation mode,
disable Advanced Timing Mode.

3. To override the default and set the timing mode for the current
implementation, do the following.

– To specify advanced timing mode for the current implementation,
first type syn_set_atm at the MATLAB command prompt. In the dialog
box, specify the path to the Synplify pro executable, and click OK.

– Double-click the SHLSTool toolbox.

LO

 Synthesizing the Design Configuring Synphony Model Compiler

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
640 October 2013

– To use advanced timing mode, enable Retiming and Advanced Timing
Mode in the toolbox UI. To use estimation mode, make sure Advanced
Timing Mode is disabled.

4. Run DSP synthesis.

The tool uses the timing mode you specified to run synthesis. The log file
reports the estimated frequency of the overall design, as calculated by
the ATM engine. If the design does not meet the frequency you
requested, the log file lists possible reasons and solutions for fixing this
deficiency, like the following:

– Blocks that did not meet timing

– Loops that prevent retiming

– Extra latency required to achieve the target frequency

Setting Default Display Modes

When you work with Synphony Model Compiler designs in Simulink, it is
useful to have certain display settings. The following shows you how to
configure the recommended settings.

1. In the Simulink model window, enable the following from the
Format->Port/Signal Display menu:

– Sample Time Colors

– Port Data Types

– Signal Dimensions

Basic Procedures Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 641

Basic Procedures
Synphony Model Compiler runs under the MATLAB and Simulink interface,
and most of what is described here should be familiar to all MATLAB users.

• Starting a Synphony Model Compiler Design, on page 641

• Working with Synphony Model Compiler Blocks, on page 642

For an overview of the design flow, see Synphony Model Compiler Design
Flows, on page 20.

Starting a Synphony Model Compiler Design

The following describes how to start up Synphony Model Compiler and set up
a model window for your design.

1. Start MATLAB and make sure you are in your design directory. Click the
Simulink icon and open Simulink.

2. Set up the model window.

– Open a design or create a new one. For details about the interface,
see the Simulink documentation.

You can now add blocks to your design as described in Working with
Synphony Model Compiler Blocks, on page 642.

For a new
design....

Select File->New->Model or click the icon. An empty model
window opens.

For an existing
design...

Select File->Open and specify the model you want to open.
The model window opens with your design.

LO

 Synthesizing the Design Basic Procedures

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
642 October 2013

Working with Synphony Model Compiler Blocks

This basic procedure shows you how to work with Synphony Model Compiler
blocks in your design.

1. From the Simulink library browser, double-click Synphony Model
Compiler blockset.

The toolbox blocks are at the top level, and the other blocks are
organized into libraries.

2. To add a block, do the following:

– If needed, double-click the library with the block.

– Select the block from the list in the library.

– Drag it into your model window.

3. Build your design.

– Make sure that all design inputs and outputs that you want
implemented in RTL are defined with Port In and Port Out blocks from
the Synphony blockset. A Synphony Model Compiler design must be
bounded by these blocks.

– Build your circuit using the Synphony blockset. The software only
generates RTL for Synphony blocks. You can use Simulink blocks for
analysis and stimuli, but they will not be reflected in the generated
RTL.

Basic Procedures Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 643

– Connect the blocks as required by your design. A quick way to
connect blocks is to select the starting block, press Ctrl, and then
select the block or point to which you want to connect.

– Set block parameters by double-clicking a block in the model window
and setting the options specific to that block in the dialog box that
opens.

– Instantiate the SHLSTool toolbox so that you can run DSP synthesis
and generate RTL for the design. For information about using this
toolbox, see Running Synthesis with SHLSTool, on page 677.

LO

 Synthesizing the Design Setting Options for an Implementation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
644 October 2013

Setting Options for an Implementation
The following describe how to set up an implementation and specify various
options for DSP synthesis. For information about running DSP synthesis or
optimizing results, see Running Synthesis with SHLSTool, on page 677,

• Setting up Implementations, on page 644

• Resolving Read/Write Conflicts in FPGA RAMs, on page 647

• Including Comments in the Generated RTL, on page 649

• Keeping Signal Names in Generated RTL, on page 650

Setting up Implementations

Implementations let you run the same design with different optimizations or
target technologies so that you can evaluate the results.

1. Include the SHLSTool block in your design.

– Add the SHLSTool block to your Simulink schematic design. When you
add a SHLSTool instance anywhere in the hierarchy, it controls the
complete system you have captured, Synphony Model Compiler
optimizations and the generation of RTL code in particular.

– After you have finished your design and verified it, double-click the
SHLSTool block in the schematic. The SHLSTool window opens.

Setting Options for an Implementation Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 645

2. Set up the implementation.

– In this toolbox window, set Model to the appropriate model file, if
necessary. By default, it shows the current file.

– You must create a new implementation if this is the first time you
have opened the Synphony Model Compiler window. To create a new
implementation, click New Implementation, and specify a name for the
implementation in the Implementation Options dialog box. The default
name is <design_name>_impl_1.

– To open an existing implementation, double-click the implementation
name in the Synphony Model Compiler window, and click Edit
Implementation. This opens the Implementation Options dialog box.

LO

 Synthesizing the Design Setting Options for an Implementation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
646 October 2013

3. For an FPGA target, set the following:

– Select the vendor, technology, part, package, and speed you want on
the Target Options tab.

– If you want your design to use registers with only asynchronous
global resets, set Flip Flop Reset Sensitivity to Asynchronous in the Design
Options tab.

– On the HLS Constraint Options tab, specify how you want logic synthesis
to handle possible RAM read/write conflicts. See Resolving
Read/Write Conflicts in FPGA RAMs, on page 647 for details.

4. Set options for generating output files:

– To generate an RTL file in VHDL format, enable Generate VHDL. The
tool supports the VHDL 93 format. See Considerations for Generating
RTL Output Files, on page 647.

– To generate an RTL file in Verilog format, enable Generate Verilog. The
tool supports the Verilog 2001 and Verilog 93 formats. See
Considerations for Generating RTL Output Files, on page 647.

– To generate a testbench, follow the procedure described in Verifying
the RTL with a Test Bench, on page 853.

5. Click OK.

Setting Options for an Implementation Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 647

The Synphony Model Compiler window reflects the technology choices
you made.

You can now run the implementation by clicking the Run button in the
Synphony Model Compiler window. Alternatively, you can set other
optimization and output options before clicking Run. For information
about the optimizations, see Optimizing with Folding, on page 662,
Optimizing with Retiming, on page 655, and Optimizing with Multichan-
nelization, on page 674. For additional information about using the
output files, see Working with the Output for FPGA Designs, on
page 856.

Considerations for Generating RTL Output Files

Here are some considerations for generating RTL output files in Verilog or
VHDL formats. The procedure for generating the files is described in Setting
up Implementations, on page 644.

• Mixed output (Verilog and VHDL)
If you generate both Verilog and VHDL output files, the files are written
into separate subdirectories under the implementation directory: <imple-
mentation>/verilog or <implementation>/vhdl.

• Verilog 2001
The Verilog output files use Verilog 2001 statements including generate
statements, ANSI C-style port declarations, and wild-carded sensitivity
lists. Any simulators you use must be able to handle this format.

• VHDL 93
The VHDL output files use the VHDL 93 format, so any simulators you
use must be able to handle this format.

• Keywords
Make sure that your Simulink design does not use Verilog or VHDL
keywords to name ports and instances.

Resolving Read/Write Conflicts in FPGA RAMs

For FPGA targets, the Synphony Model Compiler software automatically
extracts RAMs from the Synphony Model Compiler blocks in the design and
writes them out to the generated RTL. You can control the way in which the
FPGA logic synthesis tool handles read/write conflicts in the RAM by setting
the Use ReadWrite conflict logic attribute for RAM option.

LO

 Synthesizing the Design Setting Options for an Implementation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
648 October 2013

1. Open the Implementation Options dialog box. See Setting up
Implementations, on page 644 for details.

2. On the Target Options tab, do the following:

– Set the target to an FPGA device.

– To have the FPGA logic synthesis tool insert bypass logic around RAM
instances to resolve conflicts, make sure the Use ReadWrite conflict logic
attribute for RAM option is not checked (the default). When the logic
synthesis tool encounters a mismatch where there is a simultaneous
read and write to the same RAM location, it inserts bypass logic to
handle the conflict.

– If you do not want the FPGA logic synthesis tool to insert bypass logic
to resolve conflicts, enable Use ReadWrite conflict logic attribute for RAM.
The Synphony Model Compiler software sets an attribute in the
output fdc file:

define_global_attribute syn_ramstyle {no_rw_check}

This attribute directs the FPGA synthesis tool not to insert bypass
logic to handle mismatches. Use this setting with caution, if you need
to minimize overhead logic and are sure there are no mismatches.

Setting Options for an Implementation Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 649

Including Comments in the Generated RTL

You can ensure that the Synphony Model Compiler includes any block
comments when it generates the RTL code. Use the following block-tagging
procedure to ensure that any comments that are written to the block in the
Simulink environment are retained in the generated HDL code.

1. To tag a block, use /*<BlockName>*/<Comment to be transferred to HDL>.

This example has the following added to the Adder block:

/*Add*/ And the comment goes to the Adder

The resulting RTL includes the comment:

2. To tag a block which is inside a subsystem from outside the subsystem,
use the following syntax:

Verilog endgenerate
/*Add: And the comment goes to the Adder */
generate
begin: Add_block

wire enab;
wire [16:0] tmpOut;
wire [16:0] tmp_portintoadd_a_0;
wire [16:0] tmp_portintoadd_b_1;

...

VHDL end Block;
-- Add: And the comment goes to the Adder
Add_block: Block

signal enab : std_logic;
signal tmpOut : std_logic_vector (16 downto 0);
signal tmpOutPre : std_logic_vector (16 downto 0);
begin
enab <= GlobalEnable1;

...

LO

 Synthesizing the Design Setting Options for an Implementation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
650 October 2013

/*<Subsystem_name.lower_blockname> */ <Comment to be transferred to HDL>

Note the following about block tagging:

• White spaces, illegal characters and multiline characters are all trans-
ferred to HDL.

• Comments for subsystems and blocks inside the subsystems are also
transferred.

• If you have different comments for the same block, they are all trans-
ferred.

• If you have comments for blocks outside the Synphony boundary, they
are not transferred to the RTL. The log file records this as follows: Cannot
find the comment tagged block:

• If you fold two multipliers and each of them have different comments,
these comments appear in the HDL for the folded multiplier.

• When the Synphony Register block is tagged, the comment is not trans-
ferred to the HDL code if the name of the block is Register. This is
because register is an HDL keyword. To make the comment transfer to
the HDL code, rename the block.

• For FPGA targets, you cannot use block tagging for the following blocks:
Vector Concat, Vector Split, Vector Extract, and Vector Expand.

• If a Delay block is replaced by the retiming algorithm, the comment
attached to this block might not be transferred to the generated RTL.

Keeping Signal Names in Generated RTL

You can ensure that the Synphony Model Compiler software keeps the signal
names from the Simulink environment when it generates RTL.

1. To ensure that the signal names from the Simulink environment are
maintained, make sure to name the signals in the Simulink
environment.

Naming the signals ensures that the names are traced and transferred
to the generated code.

Setting Options for an Implementation Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 651

2. Note the following about signal tracing:

– Do not use numbers, keywords or illegal characters in the signal
name, because the compilers might not accept the code.

– If a name contains a white space, it will be converted to an
underscore.

– The tool does not generate code for a signal or block that cannot
reach the output port. Signals that do not reach the output port
cannot be traced and transferred to the HDL code.

3. Run DSP synthesis.

The Simulink signal names appear in the RTL as follows:

– Signal names inside a subsystem are prefixed by <Subsystemname>_.

– If a signal is vectorized, each vector element is suffixed by _e<number
from zero to vector size>.

– White spaces in the signal name are converted to underscores.

– Signal names are protected during retiming and the folding
optimizations. If a delay is inserted on the signal during retiming, the
signal going to the Delay block retains the original name. The signal
name from the Delay block is named <signalname>_w<delaynumber>.

Example
The following shows a design with named signals and the code that is gener-
ated for it.

The resulting RTL shows that the Simulink signal names (portintoadd_a,
portintoadd_b, and addertooutput in the examples below) are retained as signal
names in the generated HDL code.

LO

 Synthesizing the Design Setting Options for an Implementation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
652 October 2013

Verilog wire [15:0] portintoadd_a /*synthesis syn_keep=1 */;
wire [15:0] portintoadd_b /*synthesis syn_keep=1 */;
wire [15:0] addertooutput /*synthesis syn_keep=1 */;
wire [0:0] GlobalEnableSignal1 /*synthesis syn_keep=1 */;
wire GlobalResetSel;
...

VHDL attribute syn_keep : boolean;
signal portintoadd_a : std_logic_vector (15 downto 0);
attribute syn_keep of portintoadd_a : signal is true;
signal portintoadd_b : std_logic_vector (15 downto 0);
attribute syn_keep of portintoadd_b : signal is true;
signal addertooutput : std_logic_vector (15 downto 0);
attribute syn_keep of addertooutput : signal is true;
signal GlobalEnableSignal1 : std_logic_vector (0 downto 0);
attribute syn_keep of GlobalEnableSignal1 : signal is true;
begin
GlobalEnableSignal1 (0) <= GlobalEnable1;

...

Using Constraints Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 653

Using Constraints
You can specify a Tcl file that contains constraints, using the following proce-
dure.

1. Add the SHLSTool toolbox to your design and double-click the block.

2. Create a constraints file by typing in the constraints directly or through
the GUI as described below:

– Click New Implementation or Edit Implementation to open the Implementation
Options dialog box for your synthesis run.

– Click the HLS Constraint Options tab.

– Click Enable Constraint File, type a name for the file, and click Edit. A
window opens where you can enter the define_attribute constraints. See
HLS Constraints File, on page 620 for information about the file and
the constraint syntax.

3. If you have already created a constraints file, do the following to use the
constraints when you run the tool:

– Click New Implementation or Edit Implementation in the SHLSTool toolbox to
open the Implementation Options dialog box for your synthesis run.

– Click the HLS Constraint Options tab.

– Click Enable Constraint File, and specify the file you want to use.

LO

 Synthesizing the Design Using Constraints

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
654 October 2013

4. Synthesize the design.

The tool applies the constraints you specified when it synthesizes the
design. The log file reports how the constraints were applied, with
messages like the following:

@N:The retiming constraints are successfully applied for the
following blocks or hierarchies in the following order:

Subsytem.Delay_abc : {lock_only}
Subsystem.Delay_abc1 : {lock_only}

@W: “shls_retiming_lock {lock_only}" constraint is already applied
for the Delay_abc1 block.

Using Retiming Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 655

Using Retiming
The following provide more information about using the retiming optimization
effectively:

• Optimizing with Retiming, on page 655

• Using Automatic Gate-level Retiming, on page 660

Optimizing with Retiming

The retiming optimization is described in more detail in the following
sections:

• The Retiming Optimization, on page 655

• Specifying Retiming, on page 657

• Specifying a Scale Factor Constraint for Retiming, on page 658

• Running Retiming Multiple Times, on page 658

• Retiming Register and Delay blocks, on page 659

• Retiming Tight Loops, on page 659

The Retiming Optimization

Retiming is a performance optimization that improves speed by rearranging
delays or adding extra delays if you specified them.

LO

 Synthesizing the Design Using Retiming

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
656 October 2013

Retiming Limitation

Currently, retiming has a limitation: if the ratio between design clocks is
larger than 2e7 in a multirate design, retiming becomes infeasible. When it
encounters this situation, the tool does not generate RTL code but issues the
following error message:

@E: Infeasible clock ratios. Ratios between implementation clock
frequencies must be lower than 2e7.

X

X X

X X

inp

clk clk

C1 C3C2

out

X

X X

X X

inp

clk clk

C1 C3C2

out

clk clkclk

After Retiming

Before Retiming

Pipeline
stage
inserted
by
retiming

Using Retiming Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 657

Specifying Retiming

Use the following procedure to use the retiming optimization in your design:

1. If you want to use advanced timing mode for retiming calculation, make
sure you have selected this timing mode. See Configuring SMC Timing
Modes for FPGAs, on page 638 for details.

2. After setting up the implementation and target technology (see Setting
up Implementations, on page 644), click Retiming in the SHLSTool
window.

3. Set a value in the field that becomes available.

– To retime your design without adding any extra latency to the design,
set the value to 0. The Synphony Model Compiler tool rearranges the
existing delays to improve performance, but does not add any
latency. Retiming with a value of 0 maintains the original latency of
the design.

– To specify extra latency, set a positive value. For example, if you set it
to 3, the Synphony Model Compiler tool has up to 3 extra pipeline
stages available. The tool only uses as many stages as it needs. It
might insert extra latency to meet aggressive timing goals. The
latency of the design increases, depending on the number of pipeline
stages actually used for retiming.

– To specify a fixed amount of latency, enable the Fixed Latency option.
When you enable this mode, the retiming engine retimes the design
and then pads the outputs with the remaining delays so as to always
maintain the specified latency. For example, if you specify more
latency stages than needed for pipelining, the remainder of the
latency stages pad the I/O.

If you have a multirate design, the tool may not insert all the extra
latencies specified from the GUI. In these cases, the tool does not

LO

 Synthesizing the Design Using Retiming

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
658 October 2013

generate RTL, but prints a warning message about the extra latency
being infeasible:

@E: Infeasible latency value for fixed latency operation
 Use <x> or multiples for extra latency value

4. If needed, set retiming constraints on Delay blocks.

See shls_retiming_lock Constraint, on page 169 and Using Constraints,
on page 653 for more information.

5. Set any other optimizations you want, and click Run.

6. Click View Log.

A window displays the log file, which records the specified number of
optional cycles, and the number of cycles actually used to meet timing.
It reports any increase in system latency because of the extra delays.

See Running Retiming Multiple Times, on page 658 for information on
using multiple retiming runs.

Specifying a Scale Factor Constraint for Retiming

You can account for the routing delay between the SMC timing estimate and
the estimates of the logic synthesis tools by using the retiming_scale_factor
constraint to specify how aggressive the Synphony tool should be during
retiming. See retiming_scale_factor Constraint, on page 628 for details.

Running Retiming Multiple Times

The following procedure shows you how to use multiple retiming runs to get
the best results:

1. Enable retiming and set a large retiming value.

2. Run DSP synthesis.

3. Check the shls.log file for the latency value used by the retiming
algorithm to meet timing requirements.

4. Set this retiming value and enable the Fixed Latency option.

5. Rerun DSP synthesis and use the automatically generated RTL of this
DSP synthesis.

Using Retiming Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 659

Retiming Register and Delay blocks

Retiming can move Delay blocks but not Register blocks, because the latter
have reset/enable signals on the registers. These ports make it difficult if not
impossible to ensure functional correctness after retiming. Consider the
following example where register R1 precedes a long combinational path. The
register has an enable port that is driven by an independent input. The
circuit must be retimed to break the combinational path.

If no extra latencies are specified, retiming must use existing latencies. For
this example, R1 must be placed between M1 and M2. But depending on the
state of the enable signal, R1 holds the value of its input for some intervals of
time, and these values are provided as input to the multiplier M1. If R1 is
removed from the input of the multiplier, then it is impossible to preserve the
stream of values produced by M1, thus breaking functional correctness.

The tool therefore excludes the Register block from retiming. However if the
Register block does not have reset/enable ports, the tool treats it like a Delay
block and moves it freely during retiming. You can set a constraint so that a
Delay block is not optimized by retiming (see shls_retiming_lock Constraint,
on page 169) but you cannot set this constraint on a Register block.

Retiming Tight Loops

Retiming does not automatically add delays to tight loops because that
changes the functionality of the design, but you can manually insert delays.

If you enable Retiming and have tight loops, you see a report like the following:

LO

 Synthesizing the Design Using Retiming

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
660 October 2013

TIMING INFORMATION

@W: Estimated system clock frequency does not meet target
frequency.

Following loop prevents retiming to achieve target clock
Gain
Add

ATM estimated clock(s):
Estimated clk: 138.888889 MHz

You can manually insert delays inside the loop as shown in the following
figure to fix the tight loops and generate the results you want:

TIMING INFORMATION

@N: System meets timing requirements.
ATM estimated clock(s):

Estimated clk: 555.555556 MHz

Using Automatic Gate-level Retiming

To further increase performance, you can increase the sample rate for further
gate-level retiming. The following procedure shows you this technique on an
existing design.

1. In the model window, double-click the input port: to open the Function
Block Parameters: Port In dialog box. Increase the sample rate and click OK.

Using Retiming Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 661

2. Select the implementation and run DSP synthesis.

3. Click the Run button to execute the optimization and generate the RTL
again. Click View Log to see the results:

When you check the log file, it shows that extra cycles have been
inserted in the architecture.

4. Start Synplify Pro, and run logic synthesis on the design.
When you examine the architecture with the HDL Analyst tool, you see that
the outputs of the multipliers are double-registered. The first set of regis-
ters after the multiplier migrate inside the multipliers and create two pipe-
line stages. The second set or registers stays at the output of the
multipliers to terminate the second pipeline stage. This optimized architec-
ture improves target performance.

LO

 Synthesizing the Design Using Folding

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
662 October 2013

Using Folding
• Optimizing with Folding, on page 662

• Using Pattern Folding, on page 665

• Using Annotations for Folding, on page 668

Optimizing with Folding

Folding is an area optimization that shares resources. The Synphony Model
Compiler tool folds the algorithm by reusing the same resources over multiple
physical clock cycles. This helps the designer reduce the number of expensive
functions like multipliers that take up a lot of silicon. The Synphony Model
Compiler tool automatically puts in control logic near the multipliers so that
they can be multiplexed.

Using Folding Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 663

When you use the Folding option, you cannot use Multi-channelize, which is an
alternative mechanism to trade speed for resources. When the folding factor
is set to 1 in multirate designs, the tool automatically folds the slow clock
domain to the clock decimation amount.

1. In the Simulink window, double-click the SHLSTool block, and set up the
implementation and target technology (see Setting up Implementations,
on page 644).

2. Click Folding in the SHLSTool window. This automatically enables the
Retiming and Pattern Folding options.

3. Set the Folding, Pattern Folding, and Retiming values:

– For the Folding option, specify a minimum value for the number of
system clocks you want to spend to compute one sample. If your

LO

 Synthesizing the Design Using Folding

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
664 October 2013

design has different sample rates, the Folding value applies to the
fastest rate.

– To identify repeating patterns in the design for resource sharing,
enable Pattern Folding. Then set a value in Min Pattern Freq as a guide, so
that the software can ignore patterns that occur less frequently than
this number. For full descriptions of these options, see SHLSTool
Toolbox Interface, on page 487. For more information about pattern
folding, see Using Pattern Folding, on page 665.

– For Retiming, specify the extra latency you want to add, to be used for
retiming. If you set this value to 0, the tool does not add any extra
latency, but moves the existing delays for retiming. When you specify
extra latency, the tool only uses as many pipeline stages as needed.

4. Set any other optimizations you want.

5. Click Run.

6. Click View Log.

A window displays the log file. The log file reports the actual number of
system clocks used to compute a sample. It also shows the optional
latency specified and the extra latency actually used for retiming. If you
specified pattern-folding, it also reports pattern usage statistics. See
Pattern Usage Reports, on page 673 for details.

Using Folding Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 665

Using Pattern Folding

Pattern folding is an optional preprocessing step for folding, where the tool
identifies and marks repeating patterns in the design, for time-multiplexed
resource sharing when the folding algorithm is run. A pattern, in this context,
is a group of Synphony Model Compiler block instances and the interconnect
between these instances. Rate-changing blocks and I/O blocks are not identi-
fied as part of a pattern.

Benefits of Pattern Folding

One of the key components of folding is time-multiplexed resource sharing.
Each shared resource will have multiplexers at the inputs, which can be
costly in FPGA designs. Excessive multiplexing can increase area significantly
and slow circuit speeds. Pattern folding is an effective mechanism to reduce
the multiplexing overhead, because as the pattern grows larger, the ratio of
the multiplexing overhead gets smaller.

Before Pattern Folding After Pattern Folding

Pattern

LO

 Synthesizing the Design Using Folding

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
666 October 2013

In the following design, folding by 2 results in a multiplexing overhead of 4
multiplexers. Using independent resource-sharing for the multipliers and
adders would require 2 multiplexers for the multiplier inputs and another 2
for the adder inputs, resulting in an overhead total of 4.

However, if you identify the Multiply-And-Accumulate (MAC) pattern in this
design, and resource-share this pattern, you only need two multiplexers (for
the two inputs of the MAC pattern). This reduces the total multiplexing
overhead. The following figure shows the resource-shared MAC pattern. Note
that the delay is now 2, instead of the original value of 1. This is because we
need to multichannelize the shared pattern by the folding factor (which is 2 in
this example) for functional correctness.

Enabling Pattern Folding

Pattern folding is an optional step, so if you want to use it you must enable
Folding and Pattern Folding on the SHLSTool toolbox, and supply a minimum
threshold value for pattern repetition in Min Pattern Freq (see the procedure
described in Optimizing with Folding, on page 662).

Using Folding Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 667

You can also manually identify and annotate patterns for pattern folding as
described in Setting Folding Annotations in the Simulink GUI, on page 668.

Current Limitations of Pattern Folding

Currently, pattern folding has the following limitations:

• Instances with the same pattern must have block parameters and I/O
widths that match perfectly.

• There is a limit on the maximum number of blocks within a pattern.
This is due to computational complexity. Pattern identification starts
with small patterns, and iteratively grows patterns by combining smaller
frequent patterns into larger candidate patterns, and then eliminates
candidate patterns which are not frequently used in the design. If there
is an exponential growth of candidate patterns, the tool terminates
pattern identification.

• Identification of vectorized sections as patterns is limited.

• Estimates of pattern area are rudimentary. (This estimate is used to
determine whether a pattern is large enough to overcome multiplexing
overhead. Patterns that are found to be too small are not considered for
resource sharing.)

LO

 Synthesizing the Design Using Folding

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
668 October 2013

Using Annotations for Folding

You can specify pattern_annotation constraints to guide folding. User-annotated
patterns take precedence over automatic pattern detection. The tool always
honors and folds annotated patterns, even when the minimum pattern
frequency is set to such a high value that no pattern in your design would
satisfy the requirement.

Manually annotating patterns does not preclude the pattern folding engine
from identifying patterns; it still searches for other patterns in your design, in
addition to the ones you annotate. Conversely, you cannot augment pattern
annotation with pattern identification, so you must ensure that you have
considered all instances to get the full benefits of pattern folding.

Setting Folding Annotations in the Simulink GUI

The following procedure shows you how to manually identify patterns that
can be used for pattern folding, using the Simulink Tag property. Alterna-
tively, you can set a pattern_annotation constraint in the Synphony Model
Compiler constraint file, using the syntax described in pattern_annotation
Constraint, on page 626. See HLS Constraints File, on page 620 for information
about this file.

1. Ensure that all blocks that are part of the pattern instances you want to
annotate are identical in the following respects:

– Port enumerations

– Propagated data types (fixed-point, sample rate, signal dimensions)

– Blocks that make up the pattern (incoming data types, block mask
specifications)

– Block interconnections

If the annotated instances of a pattern are not identical, the pattern
folding engine ignores all corresponding annotations and does its own
pattern search. It is recommended that you first create one instance of a
pattern and then create other instances from copies of the original
instance.

2. Make sure that all pattern instances are single rate.

Using Folding Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 669

3. Encapsulate all blocks that are part of pattern instances into Simulink
subsystems. The following figures show a design before and after
encapsulation.

4. Tag each instance that is part of the pattern with a unique
pattern-instance ID combination.

– Right-click the encapsulating subsystem, and select Block Properties.

ORIGINAL DESIGN BEFORE ENCAPSULATION

DESIGN ENCAPSULATED IN TWO
IDENTICAL SUBSYSTEMS

LO

 Synthesizing the Design Using Folding

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
670 October 2013

– In the dialog box that opens, type a unique pattern-instance ID string
in the Tag field. Use natural numbers for the IDs. The following figure
shows unique values set for two identical subsystems.

Using Folding Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 671

Alternatively, you can set pattern-instance IDs from the command
line, as described in step 5, below.

LO

 Synthesizing the Design Using Folding

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
672 October 2013

– If you have other patterns, annotate the pattern instances in the
same way, using unique tags:

5. Alternatively, you can set pattern-instance IDs from the MATLAB
command line by typing this command:

set_param(<path_to_instance_subsystem>, 'Tag', <annotation_string>)

<path_to_instance_subsystem> is the string returned by the MATLAB gcb
command for the subsystem you are identifying for pattern annotation.

<annotation_string> is the unique pattern and instance ID. Remember that
the numbers must be natural numbers.

For example: set_param(myModel/Subsystem1', 'Tag' , 'Pattern 0 Instance 0')

6. To exclude a block from all identified patterns, including the tool pattern
search, do the following:

– Right-click the encapsulating subsystem, and select Block Properties.

– Type Exclude in the Tag field.

Using Folding Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 673

Pattern Usage Reports

The Pattern Usage Statistics section of the Synphony log file summarizes the
statistics for each pattern identified in the user design. For each pattern, it
lists three statistics:

• Number of primitive blocks in the pattern netlist

• Number of times the pattern occurs in the original netlist

• Instantiated number of pattern in the generated RTL (after folding)

LO

 Synthesizing the Design Optimizing with Multichannelization

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
674 October 2013

Here is an example of pattern usage statistics:

PATTERN USAGE STATISTICS

2 distinct patterns are used in the system

Pattern 1

@N: Number of blocks in the pattern: 3
@N: Occurrence in the original netlist: 10
@N: Number of instantiated devices: 2

Pattern 2

@N: Number of blocks in the pattern: 4
@N: Occurrence in the original netlist: 15
@N: Number of instantiated devices: 3

Optimizing with Multichannelization
Multichannelization is another optimization that trades speed for resources.
It helps you minimize hardware by sharing the hardware over multiple
channels. You can use different implementations to explore different channel
widths and analyze multi-thread capacity. Multichannelization and folding
(see Optimizing with Folding, on page 662) are mutually exclusive.

Optimizing with Multichannelization Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 675

1. In the Simulink window, double-click SHLSTool, and set up the
implementation and target technology (see Setting up Implementations,
on page 644).

2. Click Multi-channelize in the SHLSTool window.

3. Set the maximum number of channels in the text box. For example, if
you set it to 3, the tool can create three channels.

Before Multichannelization

After Multichannelization

X X X

clk clk

C1 C3C2

out+ +

=
X X X

clkN

C1 C3C2

outN

+ +

=

out1

clkN clkN clkN

N registers N registers

E

D

E

D

O

N-1

cnt

Modulo-N
Counter

clkN = N x clk

inp1
inp2

inpN

inp

LO

 Synthesizing the Design Optimizing with Multichannelization

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
676 October 2013

4. Set any other optimizations you want, and click Run. When you set
Multi-channelize, you cannot also use Folding.

5. Click View Log. A window displays the log file. The log file reports the
number of system clocks used to compute a sample. It also shows the
number of delays specified and the number of registers actually used for
retiming.

Running Synthesis with SHLSTool Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 677

Running Synthesis with SHLSTool
The SHLSTool toolbox lets you specify different optimizations and generate
RTL code.After setting the implementation and optimization options
described in Running Synthesis with SHLSTool, on page 677, do the following
to run DSP synthesis and generate the output files.

1. Set the optimizations you want, and click Run in the Synphony Model
Compiler window.

The tool runs with the targets you set and generates the output files you
specified. It generates a log file called shls.log after synthesis.

You can only use the Synplify Pro or Synplify Premier tools for FPGA
logic synthesis. Synphony Model Compiler generates the following files
for logic synthesis. The files are in the model directory, under the VHDL
and Verilog subdirectories.

The software also generates a testbench for verification. The files are in
the model directory.

File Description

.prj Project file for synthesis.

.vhd

.v
VHDL/Verilog netlist for synthesis. Each format has a separate
subdirectory under the implementation directory.

.fdc Constraint file for synthesis

..vhd Optional testbench for simulation

LO

 Synthesizing the Design Synthesizing with a Host Interface Block

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
678 October 2013

Synthesizing with a Host Interface Block
The Host Interface block provides a slave interface to a simple interconnect
protocol, which lets the design interface with the host processor and load the
memory-mapped configuration registers required by the SMC design.

1. If you have not already done so, configure the compiler in MATLAB to
compile s-functions.

This is usually done during installation with the setup script. If you did
not do this at that time, run mex -setup in the MATLAB console to
configure the compiler. Check the Release Notes for a list of supported
compilers.

2. Add the SMC Host Interface block to your design.

3. Double-click the Host Interface block and specify the following parameters:

– On the Bus interface tab, specify the bus protocol to use and set the
parameters for the protocol. For details about the bus protocols, see
Bus Protocols, on page 738.

– On the Memory map tab, add as many registers as are needed and
specify the parameters for each one. See SMC Host Interface, on
page 326 for complete descriptions of all the Host Interface block
parameters.

– You can save the settings to a csv file or an IP-XACT-compatible xml
file.

– Click OK.

The tool generates the Verilog RTL files that implement the behavior
specified by the block parameters, and also generates C code for the
block from the RTL implementation. Finally, it creates a Simulink
wrapper that you can use to simulate the behavior of the block imple-
mentation in Simulink.

4. Run high-level synthesis on your entire design, which includes the Host
Interface block.

The SMC tool instantiates the Host Interface block in the final RTL, along
with its connectivity to the SMC design as set up in the Simulink model.
The SMC tool includes the host interface RTL files in the simulation and
synthesis scripts it creates.

Synthesizing with a Host Interface Block Synthesizing the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 679

Take note of the following points when simulating and synthesizing a
model that includes the Host Interface block:

– Never register the input and output bus protocol interface signals in
the SMC design. This is because all the protocols have a handshake
mechanism which would no longer be compliant with the protocol if
the bus interface signals are delayed. This leads to unexpected
results.

– You cannot use multichannelization during synthesis.
Multichannelizing the block would mean replicated memory-mapped
registers with the same address, which is not supported.

– You cannot use folding. Folding creates registers on the ports and
typically introduces delay on the bus interface signals, which leads to
the failure to meet bus protocol specifications.

– You cannot use retiming, because this optimization tends to create
registers on the bus protocol signal outputs from the Host Interface
block. The registers violate the handshake mechanism between the
Host Interface block and the bus master.

– Reset sensitivity and polarity must be asynchronous and active low.
All supported bus protocols mandate this.

LO

 Synthesizing the Design Synthesizing with a Host Interface Block

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
680 October 2013

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 681

C H A P T E R 7

Underlying DSP Fundamentals

This following sections describe how the Synphony Model Compiler software
interprets and handles some basic issues of DSP design:

• Clock Domains, on page 682

• Resets in the SMC Tool, on page 683

• Clock and Reset Management, on page 686

• Data Types, on page 695

• CORDIC Algorithms, on page 701

• Multi-Rate Design, on page 717

• Hierarchy Preservation, on page 728

• Subsystem Consolidation, on page 729

• Block Consolidation, on page 730

• Constant Propagation, on page 731

• RAMs, on page 733

• Bus Protocols, on page 738

LO

 Underlying DSP Fundamentals Clock Domains

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
682 October 2013

Clock Domains
The Synphony Model Compiler tool derives the signal clocks and implementa-
tion clocks required by optimization algorithms automatically from the
Simulink design. The software uses MATLAB sample domains to derive
physical clock domains. Alternatively, you can generate a top-level module
that contains the clock and reset information for the design, as described in
Specifying a clock_reset Module, on page 755.

This section describes how the Synphony Model Compiler tool handles signal
and implementation clocks. The tool automatically derives signal and imple-
mentation clocks.

Derived Signal Clocks

Signal clocks (sample rate) are defined or derived at the Port In and Port Out
blocks, where the sample rate of the signal is specified. The tool uses the
standard notation [<sampleTime.time> <sampleTime.offset>] with the
different notation permutations on the input ports to sample signals. See the
Simulink documentation on Modeling and Simulating Discrete Systems for
details of the permutations.

If the sample definition is inherited (<sampleTime.time> == -1), the sample
rate is propagated from the encapsulating block.

The software treats all ports with the same <sampleTime> as belonging to the
same clock domain. The Upsample and Downsample blocks create separate
sample domains of the design, within a different but related derived clock.

Derived Implementation Clocks

The Synphony Model Compiler optimization algorithms require an implemen-
tation clock (clock period) for each clock domain derived from the design. The
tool automatically derives the clock domains, defined by a set of input port
blocks and the Upsample and Downsample blocks.

Resets in the SMC Tool Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 683

Resets in the SMC Tool
Sequential logic circuitry requires a reset signal to start and/or return to a
known state. The following describe how the Synphony Model Compiler tool
handles resets in the design.

• Global and Local Resets, on page 683

• Synchronous and Asynchronous Resets, on page 684

• Reset Implementation in RTL Code, on page 685

• Resets and RTL Testbenches, on page 686

For step-by-step procedures to define resets, see Defining Clocks and Resets,
on page 754.

Global and Local Resets

The circuitry produced by the Synphony Model Compiler tool has two kinds
of resets that can be used together to bring all the flip flops in the design to a
known state:

• An optional local reset, which is visible at the Simulink level, and is
under the designer’s control. It always executes a synchronous reset.

• A global reset that can be set to either synchronous or asynchronous in
the Design Options tab of the Implementation Options dialog box. If you want
to set the global reset automatically for your target FPGA, set Flip Flop
Reset Sensitivity to Automatic.

You can also set the polarity for the global reset signal in the Flip Flop
Reset Polarity option. See Defining Reset Signals, on page 758 for a step-
by-step procedure.

LO

 Underlying DSP Fundamentals Resets in the SMC Tool

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
684 October 2013

Synchronous and Asynchronous Resets

With a synchronous reset input, circuitry operates only on the positive edge
of the clock and the tool treats the reset input as another, albeit highest
priority, input which clears the flip-flop when asserted. Asynchronous reset
inputs are built into the design of the flip-flop itself and bypass the clock to
clear the output of the flip-flop right away.

The synchronous reset approach adds additional logic (a multiplexer) to the
data path compared to an asynchronous reset. If gate count is an issue, the
asynchronous reset flip-flop is more complex, and any reduction in the
number of gates because of the multiplexer may be offset by the increase in
the number of gates in the flip-flop. With the current die sizes, this reduction
is probably not significant and the decision should be based on other factors
depending on the design.

For FPGA implementations, basic cells support asynchronous resets by
default, and they turn off this feature to implement synchronous resets. For
some architectures, moving from synchronous to asynchronous resets can
mean shaving off a multiplexer from the data path. This leads to higher clock
speeds and reduced consumption of the logic resources on the FPGA. For
example, the Synphony Model Compiler tool reduces logic consumption in
FPGAs that have only asynchronously resettable flip-flops, by using
asynchronous resets instead of synchronous resets. For architectures that
have configurable flip-flops, using asynchronous resets does not result in
reduced resource consumption.

Synchronous ResetAsynchronous Reset

reset

a

clk

D Q
CLK

c

reset

a

clk

D Q
CLK

c

0

10

Resets in the SMC Tool Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 685

Reset Implementation in RTL Code

You can implement asynchronous resets globally in your Synphony Model
Compiler design by setting the option described previously. The resulting RTL
code does not change in function, i.e. all the signals and statements remain
as they were, but the sensitivity list of all process (VHDL) or always (Verilog)
statements includes a reset input along with the clock.

• For synchronous resets, the sensitivity list for the process or always state-
ments contain just the clock signal.

• For asynchronous resets, the statements also contain the reset signal as
a trigger because any change in the reset signal cause the statement to
execute.

VHDL Synchronous Reset Verilog Synchronous Reset

process(clk)
begin
if (rising edge (clk)) then
if (rst=1’) then
out signal <= reset_value;

elsif (en=’1’) then
out signal <= logic(inputs);

endif;
endif;

end process;

always @(posedge clk)
begin
if (rst)
myreg <= reset_value;

else if(en) //enable
myreg <= logic (inputs);

end

VHDL Asynchronous Reset Verilog Asynchronous Reset

process(clk, rst)
begin
if (rst=’1’) then
out signal <= reset_value;

elsif (rising_edge (clk)) then
if (en=’1’) then
out signal <= logic(inputs);

endif;
endif;

end process;

always @(posedge clk or posedge rst)
begin
if (rst)
myreg <= reset_value;

else if(en) //enable
myreg <= logic (inputs);

end

LO

 Underlying DSP Fundamentals Clock and Reset Management

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
686 October 2013

Resets and RTL Testbenches

The testbenches generated by the Synphony tool apply a global reset to the
RTL code once, at the start of the simulation, to bring the RTL simulation to a
known state. This ensures that the Simulink model and the RTL model have
the same initial state.

• For a global synchronous reset, the tool first asserts the reset signal (i.e.
logic 0). Then it forces all clocks in the design to a positive edge transi-
tion, and resets the RTL code synchronously. After a while, the reset is
released (t0), and all the clocks start ticking with their respective periods
after this time, t0.

• For asynchronous resets, the RTL test bench code generated by the
Synphony tool applies a reset with no clock activity. The reset signal is
included in the sensitivity list so that the RTL simulation is reset with
the application of the reset signal in the absence of a positive edge clock
transition. The Simulink model and the RTL testbench functional inputs
are the same, which means that the output results are functionally the
same as those produced with a global synchronous reset option. The
functionality remains unchanged.

Clock and Reset Management
Instead of specifying signal and implementation clocks in the RTL code
directly or implementing clock generation logic around the core design, you
can specify clocks and resets as a top-level module in the Synphony Model
Compiler design. This circuitry not only generates design clocks from the
input oscillators but also generates global reset signals from input reset
signals, using proper timing. The following figure shows the top-level connec-
tions for this structure.

Clock and Reset Management Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 687

For more information, see the following:

• Clock_reset Module Interface, on page 688

• Reset Functionality with the Clock_reset Module, on page 689

• Clock Functionality with the Clock_reset Module, on page 689

• Clock/Reset Circuitry Files, on page 690

• Clock_reset Module Limitations, on page 690

• Log File Messages for the Clock_reset Module, on page 691

For a step-by-step procedure, see Specifying a clock_reset Module, on
page 755.

Core Design
Design Inputs

Design Outputs

clock_reset.v/vhd

design.v/vhd

top_design.v/vhd

Clock/Reset Module

LO

 Underlying DSP Fundamentals Clock and Reset Management

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
688 October 2013

Clock_reset Module Interface

The following shows the signal interface between the clock_reset module and
the core design:

g_porst Power on reset signal. Input to the top-level design. See Reset
Functionality with the Clock_reset Module, on page 689 for
more information.

g_urst User reset signal. Input to the top-level design. See Reset
Functionality with the Clock_reset Module, on page 689 for
more information.

osc1...oscN Oscillator input(s) to the top-level design.

g_enable Top-level global enable input signal. Polarity of the signal is
active high. GlobalEnable signals follow g_enable. When g_enable
is held low, all GlobalEnable signals are held low.

locked PLL locked signal output. Used only for test bench purposes. Left
unconnected in the top-level design.

clk1..clkN Clock outputs of the clock_reset module. Clock signals for each of
the clock domain of the core design.

GlobalEnable1...
GlobalEnableN

Global Enable signals (clock enables) associated with each clock
domain of the core design.

GlobalReset Reset output of the clock_reset module. Global reset input of the
core design.

Core Design

clock_reset.v/vhd design.v/vhd
g_porst

Clock/Reset Module

g_urst

osc1
|

g_enable

locked

clk1

clkN

GlobalEnable1

GlobalEnableN

GlobalReset

|oscN

|
|
|

Clock and Reset Management Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 689

Reset Functionality with the Clock_reset Module

The clock_reset module applies the GlobalReset signal with proper polarity and
timing to the core design according to the input reset signals (g_porst, g_urst).
Note that there can be two reset pins added to the top-level design:

• The power on reset pin, g_porst, which is enabled by default.

• The user reset pin, g_urst, which is optional.

Each of the reset input signals has the same priority, so when the g_porst or
g_urst signal is asserted, the GlobalReset signal is asserted and the core design
is held in reset state. At the same time, the clock generation circuitry inside
the clock_reset module is held at reset state. Because of the synchronization
circuits, the input reset signals must be held asserted for a minimum of two
clock cycles (in terms of the slowest oscillator period input to the design).
When the g_porst/g_urst signal is de-asserted, the clock generation logic inside
the clock_reset module starts functioning. When the clocks become stable, the
GlobalReset signal is de-asserted and the core design also starts functioning.

Clock Functionality with the Clock_reset Module

You can set various options for the clock_reset module from the Clock Reset
Options of the Implementation Options dialog box. For details about these options,
see Clock Reset Options, on page 497.

Clocking
Scheme

• For separate design clocks, set this option to Dedicated Clocking Scheme.
• To use the same clock for each domain in the core design, select Enabled

Clocking Scheme. With this setting, the tool achieves required clock
frequencies by connecting the appropriate clock enable signals.

Clock
Circuit
Type

This defines the internal structure of the clock reset module when it
generates design clocks from the oscillator input to the top-level design.
• Synthesizable Dividers

For synthesizable dividers, the tool uses clock divider logic while
generating design clocks. This clock divider logic can be used for
implementing 1/N division ratios. For M/N ratios, you must use the
Enabled Clocking Scheme.

• Generic PLL
The tool generates design clocks using placeholder code to represent
common PLL structures inside FPGAs. This code should be filled or
changed with the actual PLL or clock manager logic by the user for the
specific FPGA chosen.

LO

 Underlying DSP Fundamentals Clock and Reset Management

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
690 October 2013

Clock/Reset Circuitry Files

When clock-reset circuitry generation is enabled, the following files are
created under implementation folders in addition to the other design files.

Clock_reset Module Limitations

Currently clock reset management feature has the following rules and limita-
tions:

• Because of reset synchronization logic, the external reset signals g_porst
and g_urst must be applied for a minimum of two clock cycles (in terms

Set of
Clock
Sources

This specifies available oscillator frequencies as a row or column vector.
• If this field is left blank, the tool automatically takes the least common

multiple frequency of clock signals by looking at the sample rates of the
Simulink design.

• If a value or values are specified, the tool uses that value as the oscillator
frequency.

New Files Description

clock_reset.v/vhd The HDL file that describes the clock reset
module

top_<model_name>.v/vhd Top-level design file that is a wrapper for the
clock reset module and core design

top_<model_name>.sdc Top-level constraints file

top_<model_name>.prj Top-level synthesis tool project file

top_<model_name>_Test.v/vhd Top-level test bench file that instantiates
top_<model>.v/vhd as the design under test*

top_<model_name>_activehdl.do Top-level Active HDL simulator do file*

top_<model_name>_affirma.do Top-level Affirma simulator do file*

top_<model_name>_modelsim.do Top-level Modelsim simulator do file*

top_<model_name>_vcs.do Top-level VCS MX simulator do file *

* This file is generated when you select Generate RTL test bench.

Clock and Reset Management Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 691

of the slowest oscillator period input to the design) to ensure proper
reset assertion.

• There must be a rational ratio between the design clocks and the oscil-
lator frequency values entered in Set of Clock Sources field. Do not enter
13.45 MHz as the frequency value for a 10 MHz design clock. If you do,
you get a warning message.

• Both the Dedicated Clocks and Enabled Clocking schemes can handle 1/N (N
= integer) clock ratios between design clocks and oscillator frequencies.
For M/N (M,N = integer) clock ratios use Enabled Clocking mode, because
the implementation uses global enable signals to generate M/N ratio.

In the following example, the waveforms are generated for a 40 MHz
design clock from an oscillator with 100 MHz frequency. Note that
GlobalEnable1 is active in two cycles for every five clk1 cycles.

• When you select Enabled Clocking as the clock scheme, you cannot set
Clock Circuit Type. This is because all design clocks are connected to a
common fast clock in enabled clocking, and there no clocks are gener-
ated in this process. Global enable signals are generated accordingly.

Log File Messages for the Clock_reset Module

The Clock Relationships section of the Synphony log file reports the oscillator
sources specified in Set of Clock Sources. The following table shows the log file
clock reporting for a multirate design with three different clock domains of
62.5 MHz, 125 MHz, and 500 MHz:

M/N = 2/5

LO

 Underlying DSP Fundamentals Clock and Reset Management

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
692 October 2013

The Synphony Model Compiler tool can also report notes, errors, and warning
messages for the clock_reset module. The following table lists the messages
and the situation that causes the message to be generated.

No sources are specified The input oscillator frequency used is 500 MHz and the
log file reports the following:
Oscillator Inputs for Clocking Circuitry
--

osc1 500.000000 MHz.

Sources are specified as
[33.3;100;125;500]

The log file reports the following:
Oscillator Inputs for Clocking Circuitry
--

osc1 33.300000 MHz.
osc2 100.000000 MHz.
osc3 125.000000 MHz.
osc4 500.000000 MHz.

Message Cause

@E: Use of rate multiplier clock
implementation requires Enabled
Clocking scheme.

You see this message if you selected Dedicated
clocking as the clocking scheme, but when
there is no simple ration (1/N) between the
design clocks and the oscillator frequencies.
To avoid this message, select Enabled Clocks
as the clocking scheme.

@E: Clock frequency XXX MHz in the
design cannot be generated from the
given oscillator(s).

The design clock frequency is not rationally
related to oscillator frequencies. In most
cases, the design frequency is faster than the
supplied oscillator frequencies.
Make sure that for all sample times in the
design the ratio of the clock frequency to at
least one oscillator frequency is one of the
following:
• An integer reciprocal (results in a regular

clock divider)
• A rational number smaller than 1 (results in

a rate multiplier)

Clock and Reset Management Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 693

@E: Cannot generate clocking
circuitry for Enabled Clocking scheme
with rate multipliers if there are multi-
rate blocks (FIFO, RAM, BLACKBOX)
in the design. You can avoid rate
multipliers by changing oscillator
frequencies.

If you select an enabled clocking scheme, the
tool does not generate RTL for designs that
contain multi-rate blocks (FIFOs, RAMs, black
boxes).

@E: Clock division ratio limit exceeded
in rate multiplier implementation. For
clock division ratios of M/N, the
denominator(N) value cannot be larger
than 1024.

There is a limit of 1024 on the denominator
value (N) in rate multiplier implementations. If
the design frequency is 3 MHz and the
available oscillator frequency is 1025 MHz,
the clock ratio (M/N) is 3/1025. N is therefore
greater than the current limit of 1024.

@N: Generation of Clock-reset
circuitry enabled.

The Generate Clock-Reset Circuitry option was
selected.

@N: Oscillator source file not
specified. Using least common
multiple frequency value.

No clock source was specified.

@W: Rate multipliers were used for
clock synthesis of some clocks.

There is no simple ratio (1/N) between the
design clocks and the oscillator frequencies. A
clock is synthesized from a regular clock
divider if its frequency is a divisor of oscillator
frequencies. Otherwise, you need rate
multipliers if any design clock frequency is
rationally related to and slower than the
oscillator frequencies.

@E: Black box blocks should have
GlobalEnable connections for the
enabled clocking scheme

If you select Enabled Clocking as the clocking
scheme, all Synphony blocks must have their
Global Enable mask parameters selected. If
you have Enabled Clocking selected in a design
with black boxes, the tool checks if the Global
Enable parameter is in place for all Synphony
Black Box blocks. See the following figure.

Message Cause

LO

 Underlying DSP Fundamentals Clock and Reset Management

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
694 October 2013

This figure shows the Global Enable parameter set for a black box:

Data Types Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 695

Data Types
The term data type refers to the way in which a computer represents numbers
in memory. In digital hardware, numbers are stored in binary words. A binary
word is a fixed-length sequence of binary digits (1’s and 0’s). The way in
which hardware components or software functions interpret this sequence of
1’s and 0’s is described by a data type. The data type determines the amount
of storage allocated to a number, the method used to encode the number's
value as a pattern of binary digits, and the operations available for manipu-
lating the type. Different data types have specific advantages in the areas of
precision, dynamic range, performance, and memory usage.

This section describes the following topics:

• Fixed-Point and Floating-Point Representation, on page 695

• Synphony Model Compiler Data Type Implementation, on page 696

• Fixed-Point Data Type, on page 696

• Data Type Casting: Setting the Output Data Type, on page 697

• Matrix Data Types, on page 698

Fixed-Point and Floating-Point Representation

Numbers are represented as either fixed-point or floating-point data types.

• The fixed-point data type is characterized by the word length in bits, the
binary point, and whether it is signed or unsigned. The binary point
position defines the scaling of fixed-point values. A common representa-
tion of a binary fixed-point number (either signed or unsigned) is shown
below.

See Fixed-Point Data Type, on page 696 for additional information.

• Floating-point data types are characterized by a sign bit, a fraction (or
mantissa) field, and an exponent field.

LO

 Underlying DSP Fundamentals Data Types

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
696 October 2013

Synphony Model Compiler Data Type Implementation

The Synphony Model Compiler software uses signed/unsigned fixed-point
representation for the data types, because it offers advantages in terms of
power consumption, size, memory usage, speed, and cost of the final product,
compared to the floating-point representation. Synphony Model Compiler
uses the new fixed-point data type that was added to the Simulink frame-
work. The fixed-point data type is available in the Signal Processing Toolbox
in MATLAB 7 and the DSP blockset in MATLAB 6.5p1.

Fixed-Point Data Type

The fixed-point data type supports integers, fractionals, and generalized
fixed-point numbers. The main difference between these data types is the
location of the binary point:

Simulink supports fixed-point word lengths up to 128 bits.

For information about setting the fixed-point data type in the Synphony tool,
see Using Quantization Analysis Tools, on page 832.

To display the data types of ports in your model, select Port data types from the
Simulink Format menu. The port display for fixed-point signals consists of
three parts: the data type, the number of bits, and the scaling.

Integers The binary point for signed and unsigned values is
assumed to be just to the right of the LSB.

Fractionals The binary point for unsigned fractional values is just to
the left of the MSB, while for signed fractionals the binary
point is just to the right of the MSB.

Generalized fixed-point
numbers

The binary point can be anywhere in the word.

Data Types Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 697

Whenever you start a simulation, enable display of port data types, or refresh
the port data type display, Simulink performs a processing step called data
type propagation. This step determines the data type for signals whose type is
not otherwise specified, and checks that the data types of signals and input
ports do not conflict. If there is a type conflict, Simulink displays an error
dialog that specifies the signal and port whose data types conflict. Simulink
also highlights the signal path that creates the type conflict.

The components of the Synphony Model Compiler blockset always align at
the binary point. The Simulink simulation models and hardware RTL gener-
ated from this automatically take care of any required scaling to make this
happen.

Data Type Casting: Setting the Output Data Type

Data type casting is the last operation that the software performs. Data type
casting occurs when you set a block output data type to cast the output to a
data type that is different from the input data type, or when the output data
type differs from the input data type after an operation. The software
performs data type casting last; the operations follow this order:

• Operation

• Resizing

• Casting

Data type Reflects the value of the block's Output data type parameter, or
the data type that is inherited from the driving block or
through back-propagation.

Number of bits Reflects the value of the block's Output word length parameter,
or the word length that is inherited from the driving block or
through back propagation.

Scaling Reflects the value of the block's Output fraction length parameter,
or the scaling that is inherited from the driving block or
through back propagation.

LO

 Underlying DSP Fundamentals Data Types

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
698 October 2013

Matrix Data Types

Several DSP algorithm applications use two-dimensional processing, where
the natural specification is represented in 2-D matrix arithmetic. Some
examples of this are wireless MIMO, multi-channel filtering, signal trans-
forms, adaptive filtering, and video and image processing. Support for the
matrix data type raises the level of abstraction in capturing such designs. In
addition, matrix notation support helps to compactly represent any scenario
where data can be logically arranged in two dimensions.

The Synphony Model Compiler tool includes matrix support for the most
widely used DSP blocks, like Matrix Mult, Port In, Port Out, Convert, Recast, Reshape,
and so on. For a full list, refer to the table in Appendix A, Blockset Summary.

Example: 2-D DCT Using Matrix Data Types

The following demo design shows how you can use matrix notation to capture
a design at a high level of abstraction. To open the demo design, go to the
MATLAB console and type this command:

shlsdemo('dct2d_usingmmult')

The example shows the 2-D direct cosine transform (DCT) of an 8x8 block is a
two-stage calculation in the SMC tool. The first stage does a matrix multipli-
cation of the DCT coefficient matrix (Constant) and the input matrix (Constant1).
The second stage does a matrix multiplication of the output of the first stage
and the transposed DCT coefficient matrix to obtain the final result. A Matrix
Mult block is used to implement each stage.

Data Types Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 699

The design also shows the Reshape block being used to get the transpose of a
matrix. The transpose is achieved by setting the Input Order and Output Order
block parameters for Reshape, as shown below:

Example: Multichannel Filter Using Matrix Data Types

The following example shows how to use the matrix data type to capture a
design without frame-based processing. It implements a direct form FIR filter,
with 6 taps for a multichannel frame-based input signal. The frame size is 3
and there are 2 channels. Each channel is filtered by same filter with coeffi-
cients from the FDA Tool. You can open the demo for this design by going to
the MATLAB console and typing the following command:

type shlsdemo('framebasedfiltering')

LO

 Underlying DSP Fundamentals Data Types

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
700 October 2013

The tool first converts the frame-based signal into a sample-based signal for
RTL implementation. The sample-based signal is a 3x2 matrix, where each
column of the matrix corresponds to a channel. So in each simulation step
for each channel, there are 3 input samples that must produce 3 output
samples. For this purpose, the design is captured as three parallel processing
units that calculate the outputs for both channels. The tapped delay lines
maintain the past input samples. Additionally, you can fold the pattern (Gain
followed by Add) for area savings.

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 701

CORDIC Algorithms
CORDIC is an acronym for COrdinate Rotation DIgital Computer. CORDIC
algorithms are a set of shift-add algorithms for rotating vectors in a plane.
These algorithms were originally developed to digitally solve real-time naviga-
tion problems, but vector rotation is useful in many DSP applications as well.
CORDIC algorithms offer a hardware-efficient alternative to traditional DSP
design.

Some functions can be computed through vector rotations. In addition to
trivial applications like polar to rectangular conversion and rectangular to
polar conversion, vector rotations can be used for more sophisticated trigono-
metric and other mathematical functions.

The base trigonometric algorithm CORDIC was first described by Volder1.
Andraka also has a good overview2. The extension towards hyperbolic
algorithms was first introduced by Walther3, with a comprehensive overview
by Dawid/Meyer4. For an overview of the Synphony Model Compiler imple-
mentation, see Circular, Linear, and Hyperbolic Coordinate Systems, on
page 117. Synphony Model Compiler provides a unified CORDIC algorithm,
combining the three coordinate systems in a single block.

The following sections explain CORDIC terms and underlying algorithms, and
describe applications of unified CORDIC algorithms.

• CORDIC Definitions, on page 702

• Unified CORDIC Applications, on page 711

1. Jack Volder. Binary computation algorithms for coordinate rotation and function generation. Convair Report IAR-
1 148 Aeroelectrics Group. June 1956.

2. Ray Andraka. A survey of CORDIC algorithms for FPGA. 1998. http://www.andraka.com/files/crdcsrvy.pdf
3. John S. Walther. A unified algorithm for elementary functions/. Spring Joint Computer Conf. 1971 (pp.379-385).
4. Herbert Dawid, Heinrich Meyr. CORDIC Algorithms and Architectures. Digital Signal Processing for Multimedia

Systems, 1999, pp.623-655. http://www.eecs.berkeley.edu/~newton/Classes/EE290sp99/lec-
tures/ee290aSp996_1/cordic_chap24.pdf

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
702 October 2013

CORDIC Definitions

This section describes the following, listed here in alphabetical order:

• CORDIC Algorithm, on page 705

• CORDIC Angle, on page 703

• CORDIC Gain, on page 708

• CORDIC Mode, on page 709

• CORDIC Range, on page 707

• CORDIC Rotation, on page 704

• CORDIC Rotator, on page 706

• Rotation Transform, on page 703

• Unified CORDIC, on page 710

• Vector Rotation, on page 702

Vector Rotation

Vector rotation takes a vector (x,y) and rotates it over an angle ρ to a new
position (x’, y’), while maintaining the magnitude.

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 703

Rotation Transform

A vector rotation can be mathematically expressed with the basic rotation
transform:

When you rearrange this to matrix notation and factor out cos ρ, you get the
following:

CORDIC Angle

Restrict the rotation angle ρ to satisfy (integer i >= 0):

This corresponds to a discrete set of rotation angles within the [−π/4, π/4]
range. The positive angles correspond to δi = 1, and the negative angles corre-
spond to δi = -1.

x' x ρcos⋅ y ρsin⋅–=

y' x ρsin⋅ y ρcos⋅+=

x'

y'
ρ 1 ρtan–

ρtan 1

x

y
cos=

ρitan
1

2i
---- δi2

i–=±=

ρicos ρi–() 1

1 2 2i–+
---------------------- Ki==cos=

x'

y'
Ki

1 δi– 2
i–

δi2
i–

1

x

y
=

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
704 October 2013

CORDIC Rotation

If you drop the Ki factor from the initial rotation equation, the angle is still
pursued, but the magnitude changes by a factor 1/Ki. This is also known as
pseudo-rotation:

Index tan ρi ρi (rad) ρi (deg)

0 1 .785 (π/4) 45.0

1 1/2 .464 26.6

2 1/4 .245 14.0

3 1/8 .124 7.13

4 1/16 .062 3.58

5 1/32 .031 1.79

6 1/64 .016 .90

7 1/128 .008 .45

x'

y'

1 δi2
i––

δi2
i–

1

x

y
=

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 705

The calculations for a pseudo-rotation by a CORDIC angle are reduced to a
shift (division by 2) and add operation.

CORDIC Algorithm

You can obtain an arbitrary rotation angle through a sequence of CORDIC
rotations of successively declining CORDIC angles, with variable rotation
direction. The decision to rotate clockwise δi = 1 or counter clockwise δi = -1
decomposes the desired rotation angle ρ into microrotations ρi:

Index Ki 1/Ki

0 .7071 1.4142

1 .8944 1.1180

2 .9701 1.0308

3 .9981 1.0078

4 .9995 1.0020

5 .9999 1.0005

6 1.0000 1.0001

7 1.0000 1.0000

ρ δi ρi⋅

i 0=

n 1–


z0 0=

zi 1+ zi δi ρi⋅–=

ρ zn=

=

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
706 October 2013

Using the iterative form of this rotation decomposition, there are associated
coordinate transformations (x0,y0) → (xn,yn), which results in the following
iterative formula:

CORDIC Rotator

The CORDIC algorithm is an iterative manipulation of 3 simple equations,
calculating a vector (xi,yi) and an angle accumulator zi. A device capable of
doing so is a CORDIC rotator or CORDIC processor.

Note that the CORDIC algorithm or sequence of CORDIC rotations is
uniquely defined by the sequence δi, which is called the decision vector.

xi 1+

yi 1+

1 δ– i2
i–

δi2
i– 1

xi

yi

=

zi 1+ zi δiρi–=

xi 1+ xi yi δi 2
i–⋅ ⋅–=

yi 1+ yi xi δi 2 i–⋅ ⋅–=

zi 1+ zi δi
1–tan 2 i–⋅ ⋅–=

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 707

CORDIC Range

The range of the CORDIC rotations is determined by continuously rotating in
the same direction. This limits CORDIC rotation to just a little beyond the
first (δi ==1) and last (δi ==-1) quadrant:

The range is approximately [-1.743,1.743] radians, or about [-99.9,99.9]
degrees. Although this clearly goes beyond the range of [-π/2,π/2], practical
applications of CORDIC typically limit the range to [-π/2,π/2] and transform

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
708 October 2013

coordinates outside this boundary to equivalent coordinates in the supported
range. What constitutes equivalency depends on the application or function
calculated with the CORDIC algorithm.

CORDIC Gain

Typically, the sequence of CORDIC rotations is accomplished with CORDIC
pseudo-rotations. This means that the overall rotation provides a gain,
depending on the number of desired rotations:

The local factor Ki and therefore the local pseudo-rotation gain 1/Ki, quickly
goes to 1 with increasing index; the cumulative gain converges to approxi-
mately 1.647.

Index An

0 1.4142

1 1.5811

2 1.6298

3 1.6425

4 1.6457

5 1.6465

6 1.6467

7 1.6467

An 1 2
2i–

+

n

∏=

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 709

CORDIC Mode

The CORDIC rotator can be operated in two different modes, rotation or
vectoring.

Rotation
This mode rotates the input vector by the specified angle ρ, calculating the
resulting coordinates xn and yn. You can do this with the CORDIC Rotator
block by specifying z0=ρ, and drive the decision vector to make the angle
accumulator 0.

When the CORDIC algorithm reaches zn=0, the result is

Vectoring
This mode rotates the input vector to the x-axis and calculates the required
angle ρ. You can do this with the CORDIC Rotator block by driving the decision
vector to make the yn coordinate 0.

When the CORDIC algorithm reaches yn=0, the result is

z0 ρ=

δi 1 zi 0<()–=

δi 1 zi 0≥()=

xn An x0 ρcos y0 ρsin⋅–⋅()=

yn An y0 ρcos x0 ρsin⋅+⋅()–=

zn 0=

y0

δi 1 yi 0>()=

δi 1 yi 0≥()–=

xn An x0
2 y0

2+=

yn 0=

zn z0
1–tan

y0

x0

-----+=

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
710 October 2013

Unified CORDIC

The iteration equations described above are for trigonometric or circular
systems. Similar equations can be derived for hyperbolic systems and linear
systems; they can be unified 3 with an m-factor, defined as shown in the
following table. For a description of the different systems, see Circular,
Linear, and Hyperbolic Coordinate Systems, on page 117.

The iteration index starts at 0 for circular systems, and 1 for linear and
hyperbolic systems. The following table gives you an overview for the different
operation modes. Note that the hyperbolic algorithm only converges if certain
iterations are repeated (i=4,13,40,121,k,3k+1,…). The Synphony CORDIC Rotator
block does this automatically. The gain of .8282 takes this into account.

System m Value

Circular 1

Hyperbolic -1

Linear 0

xi 1+ xi m yi δi 2
i–⋅ ⋅ ⋅–=

yi 1+ yi xi δi 2 i–⋅ ⋅+=

zi 1+ zi δi εi⋅–=

εi 2
1– i–

tan= m 1=

εi 2
1– i–

tanh= m 1–=

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 711

Unified CORDIC Applications

The Unified CORDIC engine can be used to calculate a variety of mathemat-
ical functions. The following examples show how you can manipulate the
engine to calculate the desired function. Note that the convergence criteria
are not discussed.

Rectangular-Polar Conversion

Use the CORDIC engine in vectoring mode, in a circular coordinate system.
Apply the vector coordinates to x and y. Make z = 0.

 Rotation Vectoring

Circular xn= An (x0.cos ρ - y0 . sin ρ)
yn= An (y0.cos ρ + x0 . sin ρ)
zn= 0

yn= 0

Linear xn= x0

yn= y0 + x0 . z0

zn= 0

xn= x0

yn= 0

Hyperbolic xn=An (x0.cosh ρ - y0 . sinh ρ)
yn=An (y0.cosh ρ + x0 . sinh ρ)
zn= 0

yn= 0

An 1
2i–

+

n
∏ 1.647≈=

xn An x0
2

y0
2

+=

zn z0
1–tan

y0

x0
-----+=

An 1
2i–

+

n
∏ 1.647≈=

zn z0

y0

x0
-----+=

An 1 2
2i–

–

n
∏ .8282≈=

xn An x0
2

y0
2

–=

zn z0 h 1–tan
y0

x0
-----+=

An 1 2
2i–

–

n
∏ .8282≈=

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
712 October 2013

Polar-Rectangular Conversion

Use the CORDIC engine in rotation mode, in a circular coordinate system.
Apply the magnitude to x, and make y=0 and z=ρ:

x
x0

An

------=

y
y0

An

------=

z 0=

x' M=

y' 0=

z' ρ=

3 42+ 5=

4
3
---1–tan 2π⁄ .1476=

x M
An

------=

y 0=

z ρ
2π
------=

x' M ρcos=

y' M ρsin=

z' 0=

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 713

Cosine and Sine

Use the CORDIC engine in rotation mode, in a circular coordinate system.
Apply the unit vector to the X-axis and make z=ρ:

Multiplication

Use the CORDIC engine in rotation mode, in a linear coordinate system.
Apply the first operand to x and the second operand to z. Make z=0.

x 1
An

------=

y 0=

z ρ
2π
------=

x' ρcos=

y' ρsin=

z' 0=

π
8
---cos .9239=

π
8
---sin .3827=

x a=

y 0=

z b=

x' a=

y' a b⋅=

z' 0=

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
714 October 2013

This multiplication is similar to a regular shift-add implementation, but there
are more efficient architectures available.

Division

Use the CORDIC engine in rotation mode, in a linear coordinate system.
Apply the vector coordinates to (a,b) and make z=0.

Square Root

Given this formula, if b=1/4, then the formula corresponds to √a. Use the
CORDIC engine in vectoring mode, in a hyperbolic coordinate system. Apply
the vector coordinates (a + .25, a - 25) and make z=0.

Note that the hyperbolic convergence puts a limitation on the input:

x a=

y b=

z 0=

x' a=

y' 0=

z' b
a
---=

a b+()2 a b–()2– 4ab=

x a .25+()
An

---------------------=

y a .25–()
An

---------------------=

z 0=

x' a=

y' 0=

z' ρ=

y
x
--- .81<

CORDIC Algorithms Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 715

The following more elaborate design shows that the CORDIC implementation
of the square root diverges for inputs outside the calculated range [0,1.75].

a 1–() 4⁄
a 1+() 4⁄

----------------------- .81<

a 2.38≤

5 .7071=

LO

 Underlying DSP Fundamentals CORDIC Algorithms

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
716 October 2013

Convergence Transformations

The nature of the CORDIC algorithm poses some limitations on the inputs to
assure convergence. This means that for some applications, the arguments
have to be pre-processed to fall in the supported range, and post-processed to
derive the actual function value for the original input.

Quadrant Folding
To calculate the sine function of an angle ρ, the circular CORDIC methods
only converge in vectoring mode if this angle is within the convergence
domain. Practically, this is done by

• Preprocessing: folding the angle to the supported range [-π/2,π/2]

• Postprocessing: adjusting the sign of the output

Shifting
Hyperbolic CORDIC methods are very sensitive to the input range. Depending
on the function, sometimes shift helps keep the inputs in this range:

• Preprocessing: shift the data by 2n to the desired range

• Postprocessing: shift the output by n to get the result

ρsin π ρ–()sin=
π
2
--- ρ π≤<

z0 π ρ–=

x' xn=

0 ρ π
2
---≤<

x' xn=

z0 ρ=

ρsin ρ π–()sin= π ρ 3π
2

------≤<

z0 ρ π–=

x' xn= x' xn=

z0 ρ 2π–=

ρsin ρ 2π–()sin=
3π
2

------ ρ 2π≤<

a 2n
a

22n
-------=

Multi-Rate Design Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 717

Multi-Rate Design
The sample rate of a signal is determined by the sample rate propagated from
input signals. Every block in the Synphony Model Compiler blockset propa-
gates the sample rate of the driving signal to the output signals. You can
change the sample rate of a signal with the Upsample or Downsample blocks
(Synphony Model Compiler Signal Operations library). You can also use the
Upsample and Downsample blocks in a multirate design that has inputs with
different sample rates.

This section discusses the following:

• Sample Rate Terminology, on page 717

• Clock Generation and Clock Reset, on page 721

• Polyphase Filtering, on page 724

Sample Rate Terminology

The following table defines various terms used in this discussion on sample
rates.

Term Description

Decimation Decrease of sample rate by throwing samples away:

function y = down(x, M, offset)
for k = 1:floor((length(x) - offset)/M)
y(k) = x(M*k + offset);

end;

Delay Register used to move a signal to the next slot in a frame. In the
context of a rate change block, the delay is applied at the clock of
the highest rate, to manage the offset

LO

 Underlying DSP Fundamentals Multi-Rate Design

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
718 October 2013

Frame Collection of samples of a higher rate signal, contained within the
boundary of the rising edges of the rising edge of the lower rate
clock in a a rate changer:

Interpolation Increase of sample rate by inserting extra samples:

function y = up(x, L, offset)
for o= 1:offset

y(o)=0;
end

for k = 1:length(x)
y((k-1)*L+1+offset) = x(k);
for ll=2:L-1

y((k-1)*L+ll+offset) = 0;
end

end;

Latency Difference between the output frame number and input frame
number of a function:
• For any offset in an upsample rate change, the latency is 0.
• For an offset of 0 in a downsample rate change, the latency is 0.
• For any other offset in a downsample rate change, the latency is

1.

Term Description

Multi-Rate Design Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 719

Multirate
Design

Design that uses multiple sample rates

Simulink can introduce clocks with different periods in these ways:
• Source: sample period definition
• Data type conversion: samples a continuous signal
• Upsample/Downsample/Resample blocks

Offset
(downsample
rate change)

Slot required to populate the frame at the lower rate.

Offset
(upsample
rate change)

Slot to be populated in the frame at the higher rate.

Term Description

LO

 Underlying DSP Fundamentals Multi-Rate Design

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
720 October 2013

Phase Delay of the rising edge of a clock, relative to time zero

Simulink supports sample phase for single rate systems, but does
not support this when applying rate changes. The Synphony Model
Compiler tool does not support sample phase for any signal; it
assumes all clocks have phase zero.

Resampling Combination of decimation and interpolation to change the sample
rate with a fractional value.

Sample Period Period of the sample clock

Sample Rate Frequency of the sample clock

Slot Different boundaries defined by the rising edges of the higher rate
clock within a frame defined by a rate changer

Term Description

Multi-Rate Design Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 721

Clock Generation and Clock Reset

The reset (main reset) provides, by definition, a synchronization point for the
complete design. The Synphony Model Compiler tool needs a Time 0 point.
The relative location of this point to the clock reset is important, because of
the following:

• It determines the functionality of simple single-rate functions

• It determines the shared samples of multi-rate functions.

Most clock reset circuitry aligns the rising edges of derived clocks with the
rising edge of the highest clock right after clock reset (or generates a corre-
sponding enable at that location).

Time 0 Reference provided by the first sample in the digital domain.
Without offset, this first sample is maintained through either
decimation or interpolation.

Term Description

LO

 Underlying DSP Fundamentals Multi-Rate Design

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
722 October 2013

Alternatively, you can specify clocks and resets using a clock reset module.
For a detailed description of the module and its limitations, see Clock and
Reset Management, on page 686.

Single-Rate Analysis

For a single-rate system, the main reset pulse just indicates the position of
the first active edge of the clock. To look at the impact of a single-rate
function, consider a 3-tap FIR; The input x[0] is provided at the first rising
edge of a clock after a main reset-pulse. The desired (DSP mathematics)
functionality is captured in the following table:

The desired behavior requires that the DFF elements of the FIR not be
governed by the main reset. There would be a problem at time zero; the DFFs
would also update and destroy the initialization value. This is illustrated in
the next table:

Time

-1 U C1*U 0 C2*U 0 C3*U

0 X[0] C1*X[0] 0 C2*X[0] 0 C3*X[0]

1 X[1] C1*X[1] C1*X[0] C2*X[1]+C
1*X[0]

C2*X[0] C3*X[1]+
C2*X[0]

2 X[2] C1*X[2] C1*X[1] C2*X[2]+C
1*X[1]

C2*X[1]+
C1*X[0]

C3*X[2]+
C2*X[1]+
C1*X[0]

3 X[3] C1*X[3] C1*X[2] C2*X[3]+C
1*X[2]

C2*X[2]+
C1*X[1]

C3*X[3]+
C2*X[2]+
C1*X[1]

Multi-Rate Design Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 723

For single rate designs, it is essential that the design reset makes sure that
the registers do no update at time zero. This means that the design reset
needs to be different from the main reset. The design reset needs to be
delayed by one clock cycle.

Multi-Rate Analysis

For a multi-rate system, assume that the clock reset circuitry generates the
rising edges of all clocks aligned with the first rising edge of the fastest clock
right after clock reset (Time 0). For any clock domain, the first rising edge of
the respective domain can not trigger an update of the design registers (see
Single-Rate Analysis, on page 722). This means that the design reset can be
created in the same way as for single-rate designs:

Time

-1 U C1*U 0 C2*U 0 C3*U

0 X[0] C1*X[0] C1*U C2*X[0]+
C1*U

C2*U C3*X[0]+
C2*U

LO

 Underlying DSP Fundamentals Multi-Rate Design

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
724 October 2013

However, the clock counters must be initialized so that they create a rising
edge after the main reset. This can only happen if the counters are controlled
by the main reset. The following waveforms show the aligned edges after
aligning them with reset, and defining time zero and the beginning of the first
frame:

The combination of a design reset and the clocks shows a typical input for a
Synphony system:

Polyphase Filtering

The use of upsample and downsample rate changers is determined by the
requirements to do polyphase filtering. This section describes downsampling.

In a typical low-pass/downsample rate conversion, the different phases
correspond to the different offset selections possible: the zero offset requires
zero latency, while the other offset is aligned with the next rising edge of the
frame, introducing a latency of one:

Multi-Rate Design Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 725

You can validate this in Simulink, using Simulink primitives.

LO

 Underlying DSP Fundamentals Multi-Rate Design

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
726 October 2013

The Spec block provides a fully specified FIR filter, and is followed by a Downs-
ample block. It is the reference for the decimation functionality. The function-
ality goes through these transformational phases:

• Polyphase Decomposition
The first transformation re-organizes the FIR transfer function. It creates
FIR structures with z-3 delays.

• Polyphase Rate Propagation
The second transformation moves the Downsample block across functions
and delays. This turns the z-3 delays into z-1 delays.

• Polyphase Downsample Offset
The third transformation moves the delays into the downsample blocks
as an offset. This lets you confirm the functionality of offset in the Downs-
ample block.

Multi-Rate Design Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 727

• Polyphase Downsample Offset
The final transformation replaces the downsample blocks by a distrib-
utor (). This allows to confirm the functionality of a distributor: the order
at the outputs 2:N needs to be reversed to hook up to the polyphase
branches. In a distributor, all outputs have a delay, whereas in a
polyphase decimator there is no delay for phase 0. To maintain function-
ality, the 2:N outputs need to be delayed to sync up with the require-
ments for phase 0.

LO

 Underlying DSP Fundamentals Hierarchy Preservation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
728 October 2013

Hierarchy Preservation
If you define subsystems in the Simulink model, the Synphony tool retains
these hierarchy levels, unless you have enabled folding. If you have enabled
folding, the subsystems might be optimized. The following design has two
subsystems defined:

The tool maintains the hierarchy and generates a two-level design, with
Subsystem1 and Subsystem2 instantiated in the top-level RTL. The log file
reports the number of top level-subsystems found:

2 top level subsystems found:
Subsystem1
Subsystem2

Hierarchy preservation works together with subsystem consolidation (see
Subsystem Consolidation, on page 729). If there are duplicates of a
subsystem, only one module/entity is generated.

Subsystem Consolidation Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 729

Subsystem Consolidation
The tool consolidates subsystems in model files if they have the same content
and port order. Subsystems running at different rates are not consolidated.
In the following example, subsystems at1 and at2 have the same content:

The tool consolidates them and generates only one module/entity (at1) and
instantiates it for both subsystems instances:

.
instance1:at1

port map (...);
.
.
instance2:at1

port map (...);
.
.

LO

 Underlying DSP Fundamentals Block Consolidation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
730 October 2013

Block Consolidation
For blocks that are not instantiated from the Synphony Model Compiler
library, the tool consolidates the RTL descriptions of these blocks and imple-
ments only one module for blocks that have the same options and
input/output bit widths. It does not consolidate blocks running at different
rates.

The following design shows two ROM blocks that implement the same
feature.

The tool consolidates the blocks and generates one module/ entity (ROM2),
which it instantiates for both ROMs:

.
instance1:ROM1

port map (...);
.
.
instance2:ROM1

port map (...);
.
.

Constant Propagation Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 731

Constant Propagation
The Synphony Model Compiler tool propagates constant signals through the
design and optimizes away blocks whose outputs are constant during
runtime. The tool replaces the optimized blocks with proper constants in the
generated RTL.

The log file notes which primitive blocks have been optimized away; it does
not list custom blocks that have been optimized away. This is because
custom blocks are first flattened before the constants are propagated.

Constant propagation improves performance with the advanced timing
module (ATM) in the following ways:

• It enables the Synplify Pro synthesis tool to carry out constant optimiza-
tions, because the blocks with constant inputs in the design are queried
with the same constants connected in the RTL. This improves the ATM
estimations for individual blocks.

• It provides the retiming engine with a more realistic design topology, by
removing blocks with constant inputs from the beginning.

• It reduces the ATM execution time by eliminating blocks with constant
inputs from consideration. This means that the advanced timing module
only queries blocks that appear in the generated RTL.

Constant propagation also offers the following advantages:

• It simplifies generated RTL for blocks like M-Control, and thus increases
RTL readability.

• Optimized blocks have constant inputs, and this lets you detect design
errors.

The log file notes primitive blocks that are optimized away. It does not list
custom blocks that are optimized away. Constant propagation affects the
primitive blocks listed in the following table.

LO

 Underlying DSP Fundamentals Constant Propagation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
732 October 2013

Library Block

Communications Reed-Solomon Decoder
Reed-Solomon Encoder

DSP Basics Adder
Gain

Filtering FIR
FIR Engine
IIR

Math Functions Abs
Accumulator
Binary Logic
Comparator
DivMod
Inverter
Mult
Negate
Pow
Shifter
Sqrt

Memories Delay
FIFO
Permutation
RAM
Shift Register

Signal Operations Concat
Convert
Demux
Downsample
Extract
Mux
Upsample

Sources Counter

Transforms FFT

RAMs Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 733

RAMs
This section contains information about RAMs and RAM configurations in the
Synphony Model Compiler software.

• RAM Definitions, on page 733

• RAM Access Control, on page 736

• Port Use in Different RAM Configurations, on page 737

RAM Definitions

This section describes commonly-used terms.

Port

Ports typically control access to a RAM, and combine different signals:
clock (clk), write enable (we), address (addr), write data (din) and read data
(dout). Depending on the actual signals present, the port can be a
read/write port, read port, or write port.

Synchronous RAM/Asynchronous RAM

The write access to a RAM is always clocked (synchronous), so the
overall operation of the RAM is determined by the read access. When
clocked (either address line or data output), the RAM is called synchro-
nous. For unclocked access, the RAM is called asynchronous.

Write Mode

If a read and a write to the RAM core happen to the same location, there
are different strategies:

LO

 Underlying DSP Fundamentals RAMs

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
734 October 2013

Single Port RAM

Read and write access to the RAM go through a single port with a shared
address bus. A Single Port RAM does not allow for a simultaneous read
and write to different locations in the storage array.

Two Port RAM

Read and write access to the RAM go through two ports on the RAM, one
dedicated to read access and one dedicated to write access; the clocks
for read and write are the same (or the read doesn’t use a clock). The
dedicated read and write address allow for a simultaneous read and
write with different locations in the storage array.

(Simple) Dual Port RAM

Read and write access to the RAM go through two ports on the RAM, one
dedicated to read access and one dedicated to write access; the clocks
for read and write are independent.

WRITE-FIRST The result of the read is the data written to that location.

READ-FIRST The result of the read is the old data from that location.

NO-CHANGE The output is held to the previous value.

RAMs Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 735

True Dual Port RAM

Read and write access to the RAM go through two ports on the RAM,
where both ports can be used in either read or write mode; the clocks
can be independent. This allows for the following permutations:

– Two simultaneous reads.

– Two simultaneous writes.

– Simultaneous read and write.

Quad Port RAM

Read and write access to the RAM go through four ports on the RAM,
two dedicated to read access and two dedicated to write access; the
clocks for read and write are independent.

LO

 Underlying DSP Fundamentals RAMs

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
736 October 2013

RAM Access Control

There are potential clashes in the following situations, and you must specify
how the RAM is to be accessed.

• Write operations to the same location
Control this through the write access control mode, as described in
Write Access Control, on page 736.

• Read and write operation to same location
Control this through the read access control mode, as described in Read
Access Control, on page 736.

Write Access Control

You can use the following options to control write operations to the same
location:

Read Access Control

If you have a read and a write to the same RAM location, there are different
strategies. See the following table:

You can specify the following read access control options:

• Read-first
All read an read/write ports operate in read-first mode

No check With this setting, the tool does not check simultaneous write
operations to the same location. The output is undefined for
clash situations.

Write prioritization With this setting, simultaneous write operations to the same
location are resolved through priority encoding (the lower port
number has higher priority). For different read and write port
clock frequencies, the behavior is undefined. If you select this
option for a multirate case like this, the tool does not generate
RTL for the block.

WRITE-FIRST The result of the read is the data written to that location.

READ-FIRST The result of the read is the old data from that location.

RAMs Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 737

• Read-write port write first
All the read ports operate in read-first mode. Read-write ports are
switched to write-first mode, where the corresponding output is equal to
the input data when write enable is high.

• Cross-port write first
All read and read-write ports operate cross-port write first. The output
for a read or read-write port is set to the corresponding data input when
other write port(s) perform writes to the same location. If more than one
write is to be performed, write-prioritization is employed to select a read
value. Therefore this option is only valid for write-prioritization write
access. Note that this mode only considers the write ports at the same
clock as a read port.

RAM Access Message

During Simulink simulation, if the address of a RAM block is read before it is
written, you see the following warning message in the MATLAB command
window:

Warning: block 'test/RAM': Contents of address 93 unknown!

Port Use in Different RAM Configurations

Read Ports Write Ports Read/Write Ports

Single Port 0 0 1

Two Port
(address has same sample rate)

1 1 0

(Simple) Dual Port
(address has different sample rate)

1 1 0

True Dual Port (address can have
different sample rates)

0 0 2

Quad Port read ports share sample
rate; write ports share sample rate)

2 2 0

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
738 October 2013

Bus Protocols
The SMC tool, through the Host Interface block, supports bus protocols that
simplify the configuration of your design. For information about the Host
Interface block and how to use it, see SMC Host Interface, on page 326 and
Synthesizing with a Host Interface Block, on page 678, respectively.

The bus protocols are described here:

• AXI4-Lite Protocol, on page 738

• APB Protocol, on page 743

• AVLON-MM Protocol, on page 745

• Generic Interface Protocol, on page 748

AXI4-Lite Protocol

AMBA AXI4 (Advanced eXtensible Interface 4) is the fourth generation of the
ARM AMBA interface specification. AXI4-Lite is a simplified version of the
AXI4 protocol and is suitable for simpler control register-style interfaces that
do not require the full functionality of the AXI4. The SMC Host Interface block
implements the AXI4-Lite protocol specification as described in the revision D
of the AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite
ACE and ACE-Lite document from ARM.

The AXI4-Lite is a five-channel interface. Each channel is an independent
parallel connection between the source and the slave. Each channel offers a
two-way flow control, using the valid-ready handshake signals. The corre-
sponding interface signals for each channel are shown in the table below,
which is extracted from the protocol specification:

Channels

Global Write Address Write Data Write Response Read Add Read Data

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- -AWADDR WDATA BRESP ARADDR RDATA

- -AWPROT WSTRB - ARPROT RRESP

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 739

The Host Interface block does not implement the functionality of the signal
defined by AWPROT and ARPROT that define the protection type of the trans-
action.

Handshake Process

The slave acts as a sink for the write address, write data, and read address
channels. It acts as a source for the write response and read data channels.
The source of a channel asserts VALID to indicate a transfer on that channel.
The source then waits for the READY from the sink. On the edge following the
READY assertion by the sink, the source disables the VALID and removes the
data from the channel. The transfer occurs on the rising edge of clock, when
both the VALID and READY of that channel are asserted.

The source is not permitted to wait until READY is asserted before asserting
the VALID. Once VALID is asserted, it must remain asserted until the
handshake occurs, at a rising clock edge where VALID and READY are both
asserted. The slave can choose to keep the READY asserted in its IDLE state or
wait for VALID. The SMC Host Interface block does not wait for the VALID before
asserting the READY signal.

Write Transactions

A complete write transaction requires the source to send the write address
and data using the write address and write data channels and for the Host
Interface block to respond back with the result through the write response
channel. The following flow chart indicates the sequence of operations that
takes place in a write transaction.

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
740 October 2013

A snapshot of the simulation waveform for a typical write transaction is
shown below.

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 741

In this simulation, the source initiates the transaction by asserting AWVALID
and WVALID along with the write address 16'h0404 and write data 32'h70518CE4.
As the slave (the Host Interface block) already has AWREADY and WREADY
asserted, the source deasserts AWVALID and VALID on the following rising
edge. The block then takes a few cycles to write the data in to the register that
corresponds to the address (the signal shown in the waveform). The block
then initiates the write response channel by asserting BVALID and driving the
BRESP signal with a value of 0, which indicates that the transaction was
successful. Since the source already has BREADY asserted, the Host Interface
block deasserts BVALID on the following clock cycle. For details refer to the
protocol specs.

Read Transactions

A complete read transaction requires the source to send the read address
using the read address channel, and the Host Interface block to respond back
on the read response channel with the read data and the result of the read
transaction. The following flow chart indicates the sequence of operations
that take place in a read transaction.

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
742 October 2013

A snapshot of the simulation waveform for a typical read transaction is
shown below:

In this simulation, the source initiates the transaction by asserting ARVALID
along with the write address 16'h0404. Since the slave (the Host Interface block)
already has ARREADY asserted, the source deasserts ARVALID on the following

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 743

rising edge. The block then takes few cycles to read the data (32'h70518CE4)
from the register that corresponds to the address (the signal shown in the
waveform). The block then initiates the read data channel by asserting
RVALID, along with the read data on RDATA and the read response on RRESP.
RDATA shows the data available in the register and RRESP indicates a value of
0, which means the transaction was successful). As the source already has
RREADY asserted, the Host Interface block deasserts RVALID on the following
clock cycle.

APB Protocol

APB (Advanced Peripheral Bus) is a part of the AMBA protocol family. APB is
a low-cost interface that is optimized for minimal power consumption and
reduced interface complexity.The Host Interface block implements the protocol
as specified in revision C of the AMBA APB Protocol v2.0 specification from
ARM.

This table lists the bus interface I/O pins for the Host Interface block with the
APB protocol:

Signal Direction Description

paddr Input Address input.

psel Input Select input. Indicates that the slave is selected.

penable Input Enable. Indicates the second or subsequent cycle of the
transaction.

pwrite Input When asserted, indicates a write access. When de-
asserted, indicates a read access.

pwdata Input Write data.

pstrb Input Write strobes. This port is only created when the Support
write strobes option is enabled for the Host Interface block.

pready Output Used by the slave to force the master to hold the
transaction.

prdata Output Reads data from the slave.

pslverr Output Indicates a transaction failure.

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
744 October 2013

The PPROT (protection type) signal defined in the APB specification is not
implemented in the Host Interface block.

Handshake Process

An APB source first selects the APB slave by asserting the PSEL signal of that
slave. The source can then initiate a transaction by asserting PENABLE and
driving the rest of the signal (PWRITE, PWDATA, PADDR, and PSTRB) with their
appropriate values. The source holds the transaction until the slave asserts
PREADY. Once the slave asserts PREADY along with the response data
(PRDATA in case of read transactions, and PSLVERR), the source releases the
transaction on the following edge. If it can accept and respond to the transac-
tion in a single cycle, the slave can keep PREADY asserted by default. Alterna-
tively, it can wait for PENABLE and PSEL from the source before asserting
PREADY.

The Host Interface block does not assert the PREADY signal by default.

APB Transactions

The following flow chart shows how the block responds to APB transaction
requests.

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 745

The following snapshot shows a simulation waveform during a typical write
transfer:

This snapshot shows the simulation waveform during a read transfer:

AVLON-MM Protocol

AVLON-MM is a memory-mapped version of the AVLON interfaces from
Altera. It allows you to easily connect components in an Altera FPGA.

The table lists the Host Interface bus interface signals for the AVLON-MM
protocol. The rest of the signals defined by the AVLON-MM specification are
not implemented in the Host Interface block because they are redundant for a
simple register configuration interface.

Signal Direction Description

address Input Address input.

begintransfer Input Asserted by a source to the slave on the first cycle of each
transfer.

byteenable Input Enables specific byte lanes during transfers, for data
widths greater than 8 bits. This port gets created only
when the Support write strobes option is enabled.

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
746 October 2013

Handshake Process

The AVLON source initiates the transfer by asserting the BEGINTRANSFER
signal. If the slave wants to extend the request, it asserts WAITREQUEST
immediately. The slave can also choose to assert WAITREQUEST without
waiting for BEGINTRANSFER. The source is required to hold the request until
WAITREQUEST is de-asserted.

The Host Interface block asserts WAITREQUEST without waiting for BEGIN-
TRANSFER.

read Input Indicates a read transaction.

readdata Output Reads data output from the slave.

write Input Indicates a write transaction.

writedata Input Data to be written into the slave memory-mapped
location.

waitrequest Output Used by the slave to force the master to hold the
transaction.

Signal Direction Description

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 747

AVLON-MM Transactions

This flow chart shows how the Host Interface block responds to transaction
requests:

AVLON-MM protocol does not define a way for the slave to communicate to
the source if there is any error in the transaction.

The following figure shows the simulation waveform during a write transfer:

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
748 October 2013

This is a snapshot of the simulation waveform during a read transfer:

Generic Interface Protocol

The generic interface for the Host Interface block simplifies the connection of
third-party or custom bus protocols to SMC designs. The generic interface
consists of two independent channels for request and response. Each
channel offers a two-way flow control similar to the valid-ready handshake of
the AXI4Lite protocol described in AXI4-Lite Protocol, on page 738.

The generic interface request channel includes the following bus interface
signals:

Signal Direction Description

maddr Input Address input. Width is defined by the Address width option to
the Host Interface block. See SMC Host Interface, on page 326.

mread Input Single-bit signal that indicates a read transaction.

mwrite Input Single-bit signal that indicates a write transaction.

mdata Input Data to be written during the write transaction. Width is
defined by the Data width option to the Host Interface block.

mwstrb Input Write strobes indicating valid bytes in the data to be written.
This signal exists only if Support write strobes is enabled for the
Host Interface block. Its width is equal to the number of bytes in
the data width. The LSB bit corresponds to the LSB byte of the
data bus, and the MSB bit corresponds to the MSB byte of the
data bus.

saccept Output Single-bit signal that indicates that the slave is ready to accept
transactions on the request channel.

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 749

The generic interface response channel includes these signals:

Handshake Process

The source initiates a transaction on the request channel by driving either
MWRITE or MREAD (for write and read transfers respectively) high along with
appropriate values on the other signals, and waits for SACCEPT to be asserted
by the slave. When the slave asserts SACCEPT, on the following rising edge,
the source releases the request channel by deasserting MWRITE/MREAD. The
slave can then communicate the result of the transaction on the response
channel by asserting SVALID and waiting for MREADY. When the source
asserts MREADY, the following cycle slave can release the response channel
(SVALID = low).

The Host Interface block keeps SACCEPT asserted in its idle state, because it
can accept and process the transaction in a single cycle. The block also
asserts SVALID on the following rising edge after MREAD/MWRITE go high.

Write Transactions

In a write transaction, the source transfers the address and the write data on
the request channel and the slave responds back with the result of the trans-
action on the response channel.

Signal Direction Description

svalid Output Single-bit signal asserted by slave to initiate a response
transaction.

sdata Output Reads data from the slave during read response transaction.
The width is defined by Data width option to the Host Interface
block.

sresp Output Two-bit signal which is the response from the slave indicating
the result of the transaction.
• h'0 -> OK_R: Read transaction finished successfully
• h'1 -> OK_W: Write transaction finished successfully
• h'2 -> SLVERR_R: Slave-generated read access error
• h'3 -> SLVERR_W: Slave generated write access error

mready Input Single-bit signal that indicates that the master is ready to
accept response requests from the slave.

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
750 October 2013

The following sequence explains how the block works in a write transaction.

Read Transaction

In a read transaction, the source transfers the address on the request
channel and the slave responds back with the data and the result of the
transaction on the response channel.

Bus Protocols Underlying DSP Fundamentals

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 751

The following sequence explains how the block works in a read transaction.

LO

 Underlying DSP Fundamentals Bus Protocols

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
752 October 2013

Read and Write Simulation Waveform

This snapshot of the simulation waveform explains both write and read
transactions.

The waveform shows that the source first initiates a write transaction by
asserting MWRITE along with the address (16'h0404) and data (32'h95D41B79).
As the SACCEPT signal of the Host Interface block is already asserted, the
request channel is released on the following rising edge (MWRITE is low,
MADDR and MDATA are released).

The Host Interface block processes the transaction within a cycle and hence it
asserts SVALID in the same rising edge, along with the result of the write
transaction in SRESP. SRESP = 1 indicates a successful write transaction. In
the same rising edge, notice that the block writes the data on the register (the
last signal in the waveform). As MREADY from the source is high, the Host Inter-
face block releases the response channel on the following rising edge.

The source then follows another read transaction from the same address
location. Notice the handshake process that took place on the request and
response channels for the read transaction.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 753

C H A P T E R 8

Designing with the SMC Tool

This chapter describes how to use the Synphony Model Compiler tool to
define specific architectures or design features:

• Defining Clocks and Resets, on page 754

• Designing Filters, on page 760

• Working with Vectors, on page 773

• Using Black Boxes and Third-Party IP, on page 777

• Specifying ROM Data with syn_read_hex, on page 776

• Managing Subsystems and Hierarchy, on page 786

LO

 Designing with the SMC Tool Defining Clocks and Resets

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
754 October 2013

Defining Clocks and Resets
The following figure summarizes how clocks and resets are defined for the
Synphony Model Compiler tool:

See the following for details:

• Specifying a clock_reset Module, on page 755

• Defining Reset Signals, on page 758

• Clock Domains, on page 682, for information about derived clocks

• Resets in the SMC Tool, on page 683, for information about resets

Do not use the following naming conventions for the Port In and Port Out
blocks, to avoid conflicts with port names for inferred clocks:

• The name clk

• Name that begins with ClkDiv

• Name that begins with GlobalReset

• Name that begins with GlobalEnable

For more information, see SMC Port In, on page 399 and SMC Port Out, on
page 403.

Clocks Resets

Defined Clock_reset Module?

Yes Define global resetsUse derived clocks

Use Clock_reset Module Settings

NoNo

Defining Clocks and Resets Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 755

Specifying a clock_reset Module

The following procedure shows you how to define a clock_reset module that
specifies the clocks and resets for your design. This module provides an easy
way to define the inputs. For details about the interface between the module
and the design, see Clock_reset Module Interface, on page 688.

1. Open the Implementation Options dialog box and do the following:

– Go to the Clock Reset Options tab.

– Enable Generate Clock-Reset Circuitry. This ensures that the tool inserts
a clock_reset module in the top-level Synphony Model Compiler design.
The log file reports the creation of the module.

2. Define the clocks.

– Specify the oscillator frequencies in Set of Clock Sources.

LO

 Designing with the SMC Tool Defining Clocks and Resets

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
756 October 2013

– To specify a single clock source, set Clocking Scheme to Enabled Clocks.
The tool feeds each design clock with this fast clock and supplies
global enable signals according to the required clock division ratio. By
default, reset deassertion is not synchronized with the clock, but you
can specify synchronization by enabling Reset Deassertion
Synchronization.

– To specify separate design clocks, set Clocking Scheme to Dedicated
Clocks. With this selection, reset deassertion is automatically
synchronized with the clock, and the tool generates the required
logic. Do not use this clocking scheme for M/N division ratios.

– If you specified separate design clocks, specify the logical structure
for the design clocks in Clock Circuit Type.

For 1/N division ratios, or to use clock divider logic, set this option to
Synthesizable Dividers.

If you want to take advantage of PLLs, set the option to Generic PLL.
When you use this option, you must replace the placeholder code for
PLL structures that this option generates with the actual code
appropriate for the target FPGA.

For additional information about defining the clocks, see Clock and
Reset Management, on page 686.

3. Define the resets. See Clock_reset Module Interface, on page 688 for a
description of the signals.

– To define the g_porst reset signal, set the polarity for the signal in
Power On Reset Polarity. This signal is the power on reset signal for the
design.

– To define the optional g_urst user reset signal, enable User Reset. This
signal is an optional user reset input for the design. Set the polarity

Single rate designs Enter the frequency with or without square brackets. For
example: [100] or 100.

Multi rate designs Enclose the frequency values in square brackets, and
separate the values with spaces, commas, or semicolons.
For example:
[100 200 300]
[100, 200, 300]
[100; 200; 300]

Defining Clocks and Resets Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 757

for the signal in User Reset Polarity. Set the sensitivity for the signal in
User Reset Sensitivity.

The reset signals have the same priority, so when g_porst or g_urst is
asserted, the GlobalReset signal is asserted and the core design is held in
reset state. At the same time, the clock generation circuitry inside the
clock_reset module is in the reset state. Because of the synchronization
circuits, the input reset signals must be held asserted for a minimum of
two clock cycles (in terms of the slowest clock period in the design).
When the g_porst/g_urst signal is deasserted, the clock generation logic
inside the clock_reset module starts functioning. When the clocks become
stable, the GlobalReset signal is deasserted and the core design also
starts functioning.

If you selected a clocking scheme of Dedicated Clocks or Enabled Clocks with
the Reset Deassertion Synchronization option enabled, the tool generates the
logic required to synchronize resets with the clock when the reset is
de-asserted. If you specify Enabled Clocks with the Reset Deassertion
Synchronization option disabled, the tool does not synchronize the resets
or generate the logic.

For information about limits to reset definition, see Clock_reset Module
Limitations, on page 690.

4. Run DSP synthesis.

The tool generates the following structure:

It also generates the corresponding files for the clock-reset circuitry. See
Clock/Reset Circuitry Files, on page 690 for details.

Core Design
Design Inputs

Design Outputs

clock_reset.v/vhd

design.v/vhd

top_design.v/vhd

Clock/Reset Module

LO

 Designing with the SMC Tool Defining Clocks and Resets

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
758 October 2013

Defining Reset Signals

There are two ways to define reset signals for your design: by using a
clock_reset module to define the circuitry, or by specifying global reset options.

1. To define resets in a clock_reset module, set up the module as described
in Specifying a clock_reset Module, on page 755.

If you choose not to create this module, the tool uses the settings in the
Implementation Options dialog box. See the next step for details.

2. To define global reset signals without using the clock_reset module, do
the following:

– Open the Implementation Options dialog box and click Design Options.

– Set the polarity for the signals in Flip Flop Reset Polarity.

– To specify asynchronous or synchronous global reset signals, set Flip
Flop Reset Sensitivity to Asynchronous or Synchronous, respectively. See
Synchronous and Asynchronous Resets, on page 684 for information
about how the tool handles these settings.

Defining Clocks and Resets Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 759

– To automatically select the setting for your target vendor, set Flip Flop
Reset Sensitivity to Automatic.

– For Verilog designs, use Reset Option to specify whether you want all
registers to have resets. The recommended setting for FPGA designs
is Automatic.

3. Complete the rest of the design and run DSP synthesis.

The RTL generated after synthesis includes reset inputs, as described in
Reset Implementation in RTL Code, on page 685. The global resets are
also used to initialize the design for RTL simulation. See Resets and RTL
Testbenches, on page 686 for more information.

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
760 October 2013

Designing Filters
This section shows you how to design FIR and IIR filters with Synphony
Model Compiler. The Synphony Model Compiler FDATool block provides an
interface to the MathWorks Filter Design and Analysis Tool, a part of the
Signal Processing toolbox. The FDATool automatically generates coefficients
for many styles of filters with different characteristics. You can use this tool
to define filter coefficients. Synphony Model Compiler provides a function to
automatically incorporate the coefficients generated by the FDATool.

The following provide more detail:

• Implementing FIR Filters with the FIR2 Block, on page 760

• Implementing FIR Filters with the FIR Block, on page 764

• Implementing Polyphase FIR Filters, on page 767

• Defining FIR Filter Coefficients with FDATool, on page 768

• Implementing IIR Filters, on page 769

• Defining IIR Filter Coefficients with FDATool, on page 771

For some information about using adaptive filters, see the example in Using
Math Operations on Vector Signals, on page 774 and the LMS demo example.

Implementing FIR Filters with the FIR2 Block

The FIR2 block lets you implement a number of different filters, including
fixed coefficient filters, reloadable coefficient filters, single-rate filters,
polyphase decimating filters, polyphase interpolating filters, single-channel
filters, multi-channel filters, symmetric filters, antisymmetric filters, and
half-band filters.

For a detailed description of the FIR2 block, refer to SMC FIR2, on page 246.

1. Add the Synphony Model Compiler FIR2 block to your design.

2. Double-click the block and set the coefficient parameters for your FIR on
the initial tab:

– For a fixed coefficient filter, disable Reloadable coefficients, and enter a
coefficient matrix in the Coefficients parameter.

Designing Filters Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 761

– For a reloadable coefficient filter, enable Reloadable coefficients, and
enter a value in Number of taps. The icon for the block reflects the
addition of a coefficient port, w. You must provide the coefficients as
an input vector or matrix through the w port.

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
762 October 2013

3. Set other parameters, according to the type of filter you want to create.

Designing Filters Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 763

The following table describes the settings for some of these filters:

Filter Type Setting Description

Single rate Polyphase tab-> Polyphase = None.
For a folded implementation with folding within the filter
taps, set Hardware->Hardware oversampling factor within
phases/filters = >1.

Polyphase
decimator

Polyphase tab-> Polyphase = Decimator.
Set a value in Polyphase tab -> Decimation factor.
To fold across phases, set Hardware->Hardware oversampling
factor across phases = >1.

Polyphase
interpolator

Polyphase tab-> Polyphase = Interpolator.
Set a value in Polyphase tab -> Interpolation factor.
To fold across phases, set Hardware->Hardware oversampling
factor across phases = >1.

Multichannel Main tab -> Number of channels = >1.
Specify coefficients as a matrix:
• Reloadable coefficient filters

Define the coefficient input to the w port as a matrix, with
the number of rows equal to Main tab- Number of channels,
and the number of columns equal to Main tab->Number of
taps.

• Constant coefficient filters
Define Main tab->Coefficients as a matrix, with the number of
rows equal to Main tab->Number of channels, and number of
columns equal to number of taps.

To fold across channels, set Hardware->Hardware oversampling
factor across channels = >1.

Symmetric
Antisymmetric
Half band

• Reloadable coefficients
Select the appropriate option from Main tab->Coefficient
Symmetry, or specify unique coefficients through the w port.

• Constant coefficients
Specify the entire coefficient set in Main tab->Coefficients. The
tool automatically infers the appropriate filter.

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
764 October 2013

Implementing FIR Filters with the FIR Block

This procedure shows you how to implement FIR filters with the FIR block,
but it is recommended that you use the FIR2 block, as described in Imple-
menting FIR Filters with the FIR2 Block, on page 760.

1. Add the Synphony Model Compiler FIR block to your design.

2. Define the filter coefficients in one of these ways:

– Double-click the FIR block and specify MATLAB vector variables to
define the coefficients in the Coefficients field.

– Add the Synphony Model Compiler FDATool block and define the filter
coefficients. See Defining FIR Filter Coefficients with FDATool, on
page 768, which describes this procedure in detail.

3. Set FIR block parameters.

– Double-click the FIR block to open the block parameters dialog box.

Designing Filters Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 765

– If you used the FDATool block to define coefficients, set Coefficients to
syn_get_coefs(’FDATool’), making sure to use the correct quote

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
766 October 2013

characters. The syn_get_coefs function imports the coefficients you
defined in step 2.

– Fine tune quantization settings. The FIR block coefficients are
quantized, based on the precision fraction bit length you specify in
Coefficient fraction length. To view the impact of quantization, enable
Show Impact of Quantization in the FIR block parameters dialog box. This
automatically displays the effects of quantization.

– Optionally, set the precision of the internal format in Data path
quantization rule and Output quantization rule.

– Set any other options you want in the dialog box.

– Click OK.

The software implements an FIR filter according to the criteria you
specified.

Designing Filters Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 767

Implementing Polyphase FIR Filters

This procedure shows you how to implement polyphase FIR filters. You can
use this method to implement interpolators, decimators, or resamplers. You
can also implement polyphase decimating filters with the FIR2 block, as
described in Implementing FIR Filters with the FIR2 Block, on page 760.

1. Add the Synphony Model Compiler FIR Rate Converter block to your design.

2. Double-click the block to set the block parameters:

– To implement an interpolator, set Filter type to Interpolator.

– To implement a decimator, set Filter type to Decimator.

– To implement a resampler, set Filter type to Resampler.

For details of the block parameters, see FIR Rate Converter Parameters,
on page 242.

3. Set the other options:

– Set upsample and/or downsample rates.

– Set the coefficients. See Defining FIR Filter Coefficients with FDATool,
on page 768.

– Set the data path and output formats.

4. Click OK.

The software implements a polyphase FIR filter according to the criteria
you specified.

Interpolator

Decimator

Resampler

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
768 October 2013

Defining FIR Filter Coefficients with FDATool

The following describes how to define coefficients for a Synphony Model
Compiler FIR filter.

1. Add an FIR filter block from the Synphony Model Compiler blockset to
your design.

2. Add the Synphony Model Compiler FDATool block. Double-click this
block in the Simulink window.

A window opens with the MathWorks Filter Design and Analysis tool.

3. Specify the filter in the FDATool window

– Set frequency and magnitude specifications for your filter.

– From the FDATool menu bar, select Analysis->Filter Coefficients and verify
the coefficients.

– Close the FDATool window by clicking the X button.

4. In the Simulink schematic window, double-click the filter block.

Designing Filters Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 769

5. Do the following in the parameters dialog box that opens:

– Type the syn_get_coefs function in the Coefficients field. For the
complete syntax, refer to syn_get_coefs, on page 604. The following
table lists some typical ways to specify this function:

– Click OK.

This updates the filter block with the coefficients you defined in the
FDATool window. The tool updates the block icon in the Simulink
schematic window to reflect the new coefficients.

Implementing IIR Filters

This procedure shows you how to implement IIR filters.

1. Add the Synphony Model Compiler IIR block to your design.

2. Define the filter coefficients in one of these ways:

– Double-click the IIR block to open the block parameters dialog box,
and use MATLAB vector variables to define the forward and feedback
coefficients.

– Add the Synphony Model Compiler FDATool block and define the forward
and feedback coefficients. See Defining IIR Filter Coefficients with
FDATool, on page 771, which describes this procedure in detail.

3. Set IIR block parameters.

– If you have not done so, double-click the FIR block to open the block
parameters dialog box.

– If you used the FDATool block to define coefficients, set the two
Coefficients fields to syn_get_coefs(’FDATool’), making sure to use

syn_get_coefs Looks for the default instance
'FDATool'

syn_get_coefs('Spec') Looks for the instance ‘Spec’

syn_get_coefs('Spec',
'forward')

Takes all forward coefficients for
the instance ‘Spec’

syn_get_coefs('Spec',1:4:length
(syn_get_coefs('Spec')))

Picks the polyphase coefficient for
the instance ‘Spec’

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
770 October 2013

the correct quote characters. The syn_get_coefs function imports the
coefficients you defined in step 2.

– Optionally, set the precision of the internal format in Data path format
and Output format.

– Set any other options you want in the dialog box.

– Click OK.

The software implements an IIR filter according to the criteria you speci-
fied.

Designing Filters Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 771

Defining IIR Filter Coefficients with FDATool

The following describes how to define coefficients for a Synphony Model
Compiler IIR filter.

1. Add an IIR filter block from the Synphony Model Compiler blockset to
your design.

2. Add the Synphony Model Compiler FDATool block. Double-click this
block in the Simulink window.

A window opens with the MathWorks Filter Design and Analysis tool.

3. Specify the filter in the FDATool window

– Set frequency and magnitude specifications for your filter.

– From the FDATool menu bar, select Analysis->Filter Coefficients and verify
the coefficients.

4. Convert the filter structure to a single section.

LO

 Designing with the SMC Tool Designing Filters

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
772 October 2013

– Go to the Current Filter Information section of the FDATool window, and
right-click the word Structure.

– Select Convert to Single Section. If the filter design changes, make sure
that the filter structure is still a single section, re-converting if
necessary before attempting to extract its coefficients.

– Close the FDATool window by clicking the X button.

5. In the Simulink schematic window, double-click the filter block.

6. Do the following in the parameters dialog box that opens:

– Type the following in the respective Coefficients fields:
syn_get_coefs(‘<instance>’, ‘forward’) and syn_get_coefs(‘<instance>’,
‘feedback’). If you do not specify an instance name, the function
searches for an instance called FDATool. See syn_get_coefs, on page 604
for the complete syntax for this function.

– Set any other parameters and click OK.

This updates the filter block with the coefficients you defined in the
FDATool window. The tool updates the block icon in the Simulink
schematic window to reflect the new coefficients.

Working with Vectors Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 773

Working with Vectors
Many Synphony Model Compiler blocks accept vector signal inputs and
adjust the operation to process the vector elements. For a quick summary of
vector support and automatic scalar expansion on a per-block basis, see
Blockset Summary, on page 945.

This section describes the following:

• Creating Vector Signals, on page 773

• Using Math Operations on Vector Signals, on page 774

Creating Vector Signals

1. To bring in a vector signal from Simulink, use the Synphony Model
Compiler Port In block.

Similarly, you can use the Port Out block to export vector signals to
Simulink.

2. To create vectors from streaming scalar input, use the Synphony Model
Compiler Decommutator and Shift Register blocks.

3. To merge or manipulate vectors, use the following blocks.

To... Use...

Replicate a scalar input and create vector output Vector Expand

Concatenate vector and scalar inputs to a single vector Vector Concat

Generate scalar data from vector input Vector Extract

Split vector input Vector Split

LO

 Designing with the SMC Tool Working with Vectors

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
774 October 2013

Using Math Operations on Vector Signals

Many blocks from the Synphony Model Compiler Math Functions library
support vectors. For details, see Blockset Summary, on page 945.

Some blocks have special capabilities for vector operation. The following table
highlights them.

Working with Vectors Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 775

Sum the vector elements Use the Add block and specify a single + operation. See
the design example above.

Specify different values for
each gain vector

Use the Gain block and specify a vector for the
coefficients. See the example above.

Specify multichannel FIRs
or IIRs

Use a matrix to specify different coefficients for each
channel in the FIR and IIR implementations. See the
following design example, which shows multichannel
filters with vector inputs.

Specify multichannel
memory

Define a matrix for the ROM block where each row
specifies contents for each element. For vector RAM,
the tool implements a RAM for each element.

Create adaptive filters with
vectors

Use the FIR Engine and Reloadable FIR blocks, and use
vectors to specify the coefficients. For an example, see
the LMS adaptive filter demo.

LO

 Designing with the SMC Tool Specifying ROM Data with syn_read_hex

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
776 October 2013

Specifying ROM Data with syn_read_hex
As an alternative to typing in ROM vectors, you can use the syn_read_hex
function to specify ROM data that is encoded in hex format in a file. Use the
following procedure.

1. Ensure that you have a file with the ROM data in hex format.

2. Add the Synphony ROM block to your design.

3. Double-click the block in the model window to open the Block Parameters:
ROM dialog box.

4. Set the parameters:

– In the ROM vector field, type the following:

syn_read_hex <filename>

See syn_read_hex, on page 610 for the full syntax for this function.

– Set any other parameters needed.

– Click OK.

The function reads the hex-encoded data in the specified ROM file and
converts it into vectors.

Using Black Boxes and Third-Party IP Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 777

Using Black Boxes and Third-Party IP
A black box is a specialized Synphony Model Compiler block that lets you
incorporate foreign IP into your Synphony Model Compiler design. Synphony
Model Compiler offers two black box blocks, a simple black box and a smart
RTL black box. Unlike a smart black box, a simple black box does not have
accessible RTL code. This section describes the implementation of a general
black box using the Black Box block. For information about using smart RTL
black boxes, see Using Smart Black Boxes for Cosimulation, on page 837.

For details about the Black Box block, see SMC Black Box, on page 56. For an
example, see <install_dir>\mathworks\toolbox\‘ Synopsys\demos\ examples. This
section discusses the following:

• Integrating Black Boxes in the Design, on page 777

• Setting Black Box Parameters, on page 780

• Configuring a Black Box - Example, on page 782

• Using Optimizations with Black Boxes, on page 784

Integrating Black Boxes in the Design

By incorporating black boxes into your design you can build designs that
include existing IP in another format, such as RTL or VHDL from a
third-party IP provider. The Synphony Model Compiler Black Box block instanti-
ates a wrapper in the RTL implementation, into which you can plug the RTL
for the foreign IP. It lets you manage the simulation model and the interfaces
of the foreign IP. If you want to simulate accurately with Simulink, you must
provide the underlying simulation model for the IP. You can also use black
boxes to implement a control function in RTL to drive a DSP function in the
Synphony Model Compiler tool.

To incorporate a black box in your design, use the following procedure:

1. Select the Black Box block from the Synphony Model Compiler Ports &
Subsystems library, and add it to your design.

This block provides the interface to the embedded block.

LO

 Designing with the SMC Tool Using Black Boxes and Third-Party IP

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
778 October 2013

2. Double-click the black box, select Mask Parameters, and configure the
black box to match your black box parameters. For an example, see
Configuring a Black Box - Example, on page 782.

3. Complete the internal black box design.

– Right-click the black box and select Look under mask.

– In the new view that opens, add the blocks you need between the
input and output ports provided. See Configuring a Black Box -
Example, on page 782 for an example.

4. Make sure that the embedded system meets the following criteria:

– The input ports must have a fixed point data type. They always
inherit the sample period from Synphony Model Compiler blocks.

– The block must have a discrete sample time.

– The embedded object must connect to each black box output port
through a Synphony Model Compiler Convert block, which adjusts the
data type if needed.

Fixed point outputsFixed point inputs

Embedded system

Using Black Boxes and Third-Party IP Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 779

5. Define the port interface of the embedded object.

– Align the bit positions of the input ports with the driver of these ports.

– Align the bit positions of the output ports with the sinks of these
ports.

– Add hidden signals like clock, reset, and enable, to the instance
ports, based on the sample periods of the signals going in and out of
the block. This is sufficient to cosimulate with Synphony Model
Compiler blocks.

– For complete simulation, you might need to manage the clock, reset
and enable signals explicitly, using the appropriate Simulink sources,
as shown in the following figure.

6. Provide a simulation model that represents the underlying RTL. There
are several ways to do this:

– Use an RTL cosimulation tool like EDA Simulator Link MQ (formerly
Link for ModelSim) or any other RTL simulator interface. For
information about cosimulation, see Using Smart Black Boxes for
Cosimulation, on page 837.

– Contact your IP provider and obtain a Simulink model directly from
them.

– Obtain C models from your IP vendor. You can then port these
models to Simulink S-function models. For details, refer to the
documentation from your IP vendor and Simulink.

LO

 Designing with the SMC Tool Using Black Boxes and Third-Party IP

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
780 October 2013

7. Run Synphony Model Compiler synthesis.

– Set the Synphony Model Compiler optimizations you want for the
design. For details, see Using Optimizations with Black Boxes, on
page 784.

– Synthesize the design and generate RTL.

When you generate RTL for the completed design, it includes an
instance for the black box. The rest of the design is hooked up to the
ports of the black box, with the appropriate connections for global
enables, reset, and black box clocks you specified. Timing arcs stop at
the input ports of the black box and resume from the output of the black
box; they do not include the timing through the black box.

Setting Black Box Parameters

This procedure describes how to set parameters for a black box.

1. Double-click the black box.

The Function Block Parameters: Black Box dialog box opens, where you can
set the parameters.

2. Specify the files that define the black box:

Black box defined in... Specify these options...

Single Verilog or VHDL
file

• Set Black Box Definition to Single HDL File.
• In HDL File, specify the absolute path to the

Verilog/VHDL definition file.
• Specify the name of the top level entity in

Entity/Model Name.

Single EDIF file, as with
soft cores purchased
from a third party

• Set Black Box Definition to Single EDIF File.
• Specify the absolute path to the EDIF definition

file in EDIF File.
• In Simulation File, specify the absolute path to the

simulation behavioral model file (Verilog or
VHDL).

• Specify the name of the top level entity in
Entity/Model Name.

Using Black Boxes and Third-Party IP Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 781

3. Specify a global reset port by doing the following:

– Enable Global Reset. When you write out RTL, the black box has a
global reset port called GlobalResetSel. If you want the port to be called
something else, go to the next step. If you do not want to generate a
global reset port, do not enable the Global Reset option.

– For a global reset port with a name other than the default, enable
Format Reset. Then type the name for the reset port in Reset Name.

Note that the global reset port you specify is not displayed in the
Synphony Model Compiler design. It is only specified in the RTL gener-
ated after Synphony Model Compiler synthesis, and is hooked up to the
global reset for the design.

4. Specify global enables by doing the following:

– Enable Global Enable. When you write out RTL, the black box has
global enable ports with the default Synphony Model Compiler
names. If you want the ports to be called something else, go to the
next step.

– For global enable ports with names other than the default, enable
Format Enable. In Enable Names, type the names of the enable signals,
beginning with the fastest domain enable signal and separating
signals with colons. For example: ce_sg:ce_2_sg.

Note that the global enable ports you specify are not displayed in the
Synphony Model Compiler design. They are only specified in the RTL
generated after Synphony Model Compiler synthesis, and are hooked up
to the appropriate global enables.

Multiple Verilog, VHDL,
or EDIF files

• Create a text file that lists the absolute paths to
each Verilog, VHDL, or EDIF definition file and
behavioral simulation file.

• Set Black Box Definition to Import File List.
• In Black Box File List, specify the absolute path to

the text file you created.
• Specify the name of the top level entity in

Entity/Model Name.

Another black box block,
or one for which you
have no definition

• Set Black Box Definition to Undefined.
• Specify the name of the top level entity in

Entity/Model Name.

Black box defined in... Specify these options...

LO

 Designing with the SMC Tool Using Black Boxes and Third-Party IP

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
782 October 2013

5. To specify clock names other than the default, do the following:

– Enable Format Clock.

– In Clock Names, enter the clock names, beginning with the fastest
clock and separating names with colons. For example: clk_sg:clk_2_sg
specifies two clocks for your black box.

If you do not enable Format Clock, the black box uses the default naming
convention for the clocks, with the fastest clock being clk, and N-reduced
frequency clocks called clkDivN.

Configuring a Black Box - Example

The following procedure illustrates how to configure a black box, using a
Viterbi decoder as an example. For this example, the decoder is defined in a
Verilog file, C:\myblackboxes\viterbidecoder.v.

1. Add the Synphony Model Compiler Black Box to the design and set it up
to match the topmost interface specified. In this case, it is as follows:

module decoder(mclk, rst, valid_in, symbol0, symbol1, symbol2,
symbol3, pattern, filo_out, valid_out);

input mclk, rst, validin;
input[2:0] symbol0, symbol1, symbol2, symbol3;
input[3:0] pattern;
output filoout, validout;

Using Black Boxes and Third-Party IP Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 783

2. Specify the internal design by right-clicking the black box block and
selecting Look under mask. For this example, add Convert blocks to adjust
the output data type and convert ufix4 and ufix3 to ufix1.

3. Configure black box parameters by double-clicking the black box.

A dialog box opens. For detailed information about using various options
on this dialog box, see Setting Black Box Parameters, on page 780. For
this example, set the following parameters:

– Specify the definition file. Leave Black Box Definition set to Single HDL File,
and specify the absolute path to the Verilog file in the HDL File field:
C:\myblackboxes\viterbidecoder.v.

– Specify the top entity. In Entity/Model Name, type decoder.

– Specify the global reset to match the decoder name. Enable Global
Reset and then enable Format Reset. Type rst in Reset Name.

– Specify the clock to match the decoder name. Enable Format Clock and
then type mclk as the clock name in Clock Names.

– Click OK.

LO

 Designing with the SMC Tool Using Black Boxes and Third-Party IP

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
784 October 2013

You have now configured the black box. Note that with this example,
you do not have a simulation model, so the RTL testbench generated
after DSP synthesis will fail simulation. However, you can run RTL
cosimulation, as described in Using Smart Black Boxes for Cosimula-
tion, on page 837.

Using Optimizations with Black Boxes

You can use the retiming, folding, and multichannelization optimizations in
designs with both simple and smart black boxes. Note that the synthesis
optimizations do not apply to the RTL inside the black box. However, the rest
of the design is retimed, folded, or multichannelized, as long as the design
follows the guidelines listed below.

Using Black Boxes and Third-Party IP Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 785

Requirements for Retiming with Black Boxes

You can take advantage of retiming if your black box design meets the criteria
below.

1. Make sure the design is one of the following:

– Single rate black box in a single-rate design

– Single rate black box in multi-rate design

– Multi-rate black box

2. Make sure that the black box has registered inputs and outputs.

This is one of the assumptions that the tool makes for retiming. It
retimes around a black box. It disables retiming into and across black
boxes. If you do not have registered inputs and outputs, the tool gener-
ates sub-optimal retiming results, but maintains functionality.

Requirements for Folding with Black Boxes

The tool can integrate a black box into a folded design if your design is one of
the following:

• A single rate black box in a single rate design

• A single rate black box in a multi-rate design

• A multi-rate black box in a multi-rate design. However in some cases,
the tool might not generate code for multi-rate folded black boxes
because of insufficient latency before or after the black box. If this
happens, insert some extra delays in the design after and/or before the
black box.

Requirements for Multi-channelizing Black Boxes

The Synphony tool can multi-channelize a design containing a black box. The
tool instantiates a black box for each channel.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
786 October 2013

Managing Subsystems and Hierarchy
You can use subsystems to manage data type settings for a group of blocks
collectively. The following procedures show you how to use the Subsystem and
HLS Subsystem blocks. The Subsystem block lets you create hierarchical models
using other blocks. The HLS Subsystem block lets you create a hierarchical
model that uses external models, and which includes high-level optimizations
like retiming, folding, and multichannelization.

• Using the HLS Subsystem Block, on page 786

• Using the Synphony Subsystem Block, on page 792

• Tagging Subsystems with FPGA Synthesis Attributes, on page 796

Using the HLS Subsystem Block

Use the HLS Subsystem block in a bottom-up design flow, where you imple-
ment independent modules and optimize them separately, and then assemble
them at the top level.

For a hierarchical model that uses other blocks, use the Subsystem block or
create a custom block, as described in Using the Synphony Subsystem Block,
on page 792 and Working with Custom Blocks, on page 799.

The following sections describe how to use the HLS Subsystem block:

• Creating an HLS Subsytem Block, on page 786

• Accessing User Variables, on page 792

• Locking HLS Subsystem Blocks, on page 792

Creating an HLS Subsytem Block

This is the basic procedure for creating and using a HLS Subsystem block:

1. Make sure you have followed the prerequisites:

– Specify a compatible C compiler during the setup process. The tool
requires the C compiler to generate the C-model for the block.

– Make sure your design matches the limits described in Limitations to
Using the HLS Subsystem Block, on page 322.

Managing Subsystems and Hierarchy Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 787

2. Create a subsystem.

– Capture the functionality of the subsystem in a Simulink model.

– Create an implementation for the subsystem and, set optimization
options. If you select Retiming as an optimization for the subsystem,
make sure to also select the Fixed Latency option.

– For reference subsystems, register the input and output ports as
shown here:

– Generate RTL for the subsystem and check that the result is what
you need for your design.

The following figure shows a simple subsystem design.

Implementation Reference Subsystem Ports

Baseline
Retiming

Need not be registered.

Folding Must be registered.

Multichannel Input ports of the subsystem must be registered.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
788 October 2013

3. Set up the top-level design.

4. Add the subsystem to the top-level design by doing the following:

– Add an HLS Subsystem block to the top-level design.

– Double-click the block and set parameters for the subsystem. For
details about the block parameters, see SMC HLS Subsystem, on
page 319.

– Set Synphony model file to the mdl file you generated in Step 2. Set
Implementation directory to the implementation you want, that you
created in Step 2.

– If you want to preserve the exact behavior of the subsystem and its
associated RTL as created in Step 1, check Lock HLS Subsystem. If you
do not check Lock HLS Subsystem, the tool treats the subsystem as a
separate Synphony model, and might override some subsystem
implementation parameters with settings from the top level.

– Click OK.

The HLS Subsystem block is added to the top-level design.

5. Repeat the previous steps for each HLS Subsystem block to be added to
the top-level Simulink design.

Managing Subsystems and Hierarchy Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 789

Note that you can set different optimization parameters for each
subsystem, but the synthesization parameters must match the top-level
settings. If there is a mismatch in synthesization settings, the tool uses
the settings from the top level and ignores the subsystem settings.

The following figure shows a top-level two mult-add design that includes
subsystem1 (from Step 1) and subsystem2. The tool annotates the
subsystem model names on each HLS Subsystem block icon. If you
right-click a subsystem block and select Look under mask, you see the
design of the underlying model.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
790 October 2013

If you double-click a subsystem block, you see the parameters for that
block:

At this stage, you see the tool has generated the following directory
structure for your design:

When you generate an implementation, the tool creates a directory called
HLS, with subdirectories for each HLS Subsystem block in the top-level
design, as shown below:

Managing Subsystems and Hierarchy Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 791

6. Set top-level options and synthesize the design.

Note that you cannot currently set any retiming, multichannelization, or
folding optimizations at the top level. If you have blocks at the top level
that you want to optimize, put them in another subsystem (HLS
Subsystem block) and optimize them in that way.

The tool runs through the phases described in Tool Simulation Process
for HLS Subsystem Blocks, on page 320 and Tool Synthesis Process for
HLS Subsystem Blocks, on page 321.

The shls.log file contains a separate section for each HLS subsystem
block. The following is an example:

------------------------------HLS Subsystem2---------------------
@N: Found 4 recognized primitive blocks other than the RTL
Generator.
@N: Advanced timing mode is off.
@N: Subsystem model name: "C:\WORK\HLS_Subsystem\subsystem2.mdl".
@N: Subsystem reference implementation directory:
"C:\WORK\HLS_Subsystem\subsystem2_impl_1".
@N: Subsystem is not locked.
@N: Subsystem latency: 0.

HIERARCHY INFORMATION

Design has no subsystem.

------------------------------HLS Subsystem1---------------------

@N: Found 8 recognized primitive blocks other than the RTL
Generator.
@N: Advanced timing mode is off.
@N: Subsystem model name: "C:\WORK\HLS_Subsystem\subsystem1.mdl".
@N: Subsystem reference implementation directory:
"C:\WORK\HLS_Subsystem\subsystem1_impl_1".
@N: Subsystem is not locked.
@N: Subsystem latency: 0.

HIERARCHY INFORMATION

Design has no subsystem.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
792 October 2013

Accessing User Variables

HLS Subsystem blocks cannot access user variables created in the MATLAB
base workspace. These variables can only be used by the top-level model.

1. Use the PreLoadFcn or InitFcn callbacks of the HLS Subsystem model to
define and use variables specific to the HLS Subsystem block.

These subsystem variables are only visible to the HLS Subsystem block
and cannot be accessed from the MATLAB base workspace.

Locking HLS Subsystem Blocks

When you use a HLS Subsystem block in your design, make sure that you do
one run with it unlocked, so that you can generate RTL for it. If you do not do
this, you can run into situations like the following:

• If you add the HLS Subsystem block to a model, pick a reference model
and reference implementation directory and lock it before clicking OK,
your implementation will have a single input-output block where the
output is connected to the input internally.

• If you simulate the block and lock the subsystem before generating RTL,
you get the following error message:

@E:Missing RTL for locked HLS Subsystem <Subsystem_Name>. RTL
must be generated at least once without the lock.

Using the Synphony Subsystem Block

You use the Subsytem block to create a hierarchical model that uses other
blocks. You can also use a custom block to do this. If you want to create a
hierarchical model that uses external models, you must use the HLS
Subsystem block, as described in Using the HLS Subsystem Block, on
page 786.

The following procedure uses a Subsystem block to manage fixed-point
settings collectively for a group of blocks. For a custom block example that
uses subsystems and hierarchy, see Working with Custom Blocks, on
page 799.

1. Create a subsystem. Creating a subsystem bundles the selected blocks
together and creates an extra level of hierarchy.

Managing Subsystems and Hierarchy Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 793

– Instantiate the Subsystem block from the Ports & Subsystems library and
add the blocks you want to group together.

– Alternatively, draw a box around the blocks you want to group,
right-click, and select Create Subsystem.

The blocks are grouped together and only the Subsystem block appears at
the top level.

If you double-click the subsystem, another window shows you the
internal hierarchy of the subsystem with the individual blocks you
grouped.

2. Set up a mask to manage the fixed-point settings:

– In the schematic window, right-click the subsystem and select Mask
System or Edit Mask to open the Mask editor window.

– Click the Parameters tab, which is relevant for fixed-point conversion.

– Specify variables to manage the fixed-point architecture:

3. Assign values to the variables.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
794 October 2013

– Double-click the subsystem block in the schematic window. The
subsystem hierarchy underneath is no longer revealed, and the
Function Block Parameters: Subsystem dialog box opens.

– Set the parameter values and click OK.

The tool applies these values to the subsystem. You can use any
expression of the variables if you use the Specify option for the output
format of individual blocks.

4. View the model hierarchy.

– In the schematic toolbar, select View->Model Browser Options->Model
Browser. This shows a tree view of the hierarchy.

Managing Subsystems and Hierarchy Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 795

– In the schematic toolbar, select View->Model Browser Options->Show
Masked Subsystems. This adds a Subsystem entry to the left panel, which
allows you to select the masked subsystem in the tree view.

– To view the original design which is in the subsystem, select
Subsystem in the left panel tree view.

5. Set the block parameters to the design variables. You can take
advantage of the mask parameters and automatic data type overwrite to
determine the appropriate settings. Do the following on a per-block
basis:

– In the schematic window for the subsystem, double-click the block to
redisplay the parameters dialog box.

– Set the appropriate options like Word Length, Fraction Length, Coefficient
Length, etc. to the variables you defined in step 2.

– Click OK.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
796 October 2013

6. If you need to control the rate for the subsystem, specify the number of
cycles with a multicycle path constraint on the subsystem:

define_attribute <subsystem> multi_cycle_path <cycles>

Tagging Subsystems with FPGA Synthesis Attributes

The Synphony Model Compiler tool provides an infrastructure that enables
you to apply Synplify Pro or Synplify Premier synthesis pragmas or attributes
by specifying them as block tags in the Simulink mdl. The SMC tool simply
passes on the pragma, but does not validate that it is valid.

There are three scenarios where Synplify synthesis attributes are applied to
SMC designs:

• If the attribute can be applied on a module, you can specify the attribute
through a block tag on a subsystem in your SMC design, as described in
the procedure below.

Managing Subsystems and Hierarchy Designing with the SMC Tool

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 797

• If you tag a Simulink connection wire (signal), the SMC tool automati-
cally adds a syn_keep attribute to the corresponding wire declaration in
the outptu RTL.

• You can use the relevant SMC Tcl command to set retiming on specified
registers, and the SMC tool automatically translates this to the corre-
sponding synthesis retiming attribute.

You can tag Simulink subsystem blocks with Synplify Pro or Synplify Premier
synthesis pragmas or attributes by following these steps:

1. Select a Simulink subsystem block, right-click, and select Block
Properties.

You can only set pragmas on Simulink subsystem blocks because they
become modules in the generated RTL.

You can encapsulate your block in a subsystem. For example, to specify
syn_srlstyle=SRL32 on a shift register, first encapsulate the shift register in
a Simulink subsystem by right-clicking and selecting Create subsystem.
Then specify the attribute as described in step 2 below.

2. Specify the attributes you want in the Tag field using the syntax below.
Separate multiple synthesis primitives with commas.

smc_synplify_synthesis_pragma_module=<FPGA synthesis attribute>

For example:
smc_synplify_synthesis_pragma_module:syn_srlstyle=SRL32

The figure shows the syn_dspstyle attribute set to dsp48. You can specify
any synthesis directive that applies to a module with
smc_synplify_synthesis_pragma_module. See the Synplify documentation for
information about directives that apply to modules.

LO

 Designing with the SMC Tool Managing Subsystems and Hierarchy

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
798 October 2013

3. Validate the implementation in the synthesis tool.

The SMC tool simply passes on the specified attribute, and does not
validate that the pragma is valid. It is up to you to validate all such
pragmas. In particular, the Synplify synthesis tools might map large
shift registers into block RAMs because it is more efficient, and ignore
the syn_srlstyle pragma that was specified on the shift register block.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 799

C H A P T E R 9

Working with Custom Blocks

This tutorial describes how to generate a custom block:

• Primitives and Custom Blocks, on page 800

• Design Flow for Building Custom Blocks, on page 804

• Set up a Custom Library, on page 805

• Create a Custom Block, on page 806

• Define Basic Content for Custom Blocks, on page 812

• Define Content for Parameterized Blocks, on page 816

• Define Content for Reconfigurable Blocks, on page 820

• Designing with Custom Blocks, on page 823

• Maintaining Custom Libraries, on page 824

• The MySign M-Generator, on page 826

LO

 Working with Custom Blocks Primitives and Custom Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
800 October 2013

Primitives and Custom Blocks
The Synphony Model Compiler software includes two kinds of blocks:

• Primitive blocks are basic functions. They can be used to build a custom
block.

• Custom blocks are more complex blocks for custom IP or higher-level
functions. The Synphony Model Compiler tool includes some custom
blocks as part of the blockset. In addition, you can create your own
custom blocks (see Design Flow for Building Custom Blocks, on
page 804). Custom blocks are distinguished from primitive blocks by
their icon; the Synphony Model Compiler custom blocks have a green
Synopsys S logo instead of a red one.

When you right-click on a custom block, you can see its mask parame-
ters. With a primitive block, you cannot see the mask parameters.

There are two advantages to using custom blocks:

• You can generate your own custom IP, or higher-level functions using
the Synphony Model Compiler primitive blocks and other custom
blocks. The Synphony Model Compiler tool will generate RTL for these
blocks as it will for the primitives.

• The Synphony Model Compiler custom blocks can be optimized like the
primitive blocks.

Primitive block with red S logoCustom block with green S logo

Primitives and Custom Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 801

List of Custom Blocks

The following table lists the Synphony Model Compiler custom blocks:

SMC Block
Deinterleaver

Shuffles a fixed number of interleaved input symbols to
obtain the original sequence.

SMC Block Interleaver Shuffles a fixed number of input symbols to a new
permutation.

SMC CIC Implements a CIC filter.

SMC CIC2 Implements a CIC filter with additional enhancements
compared to the CIC block.

SMC Commutator Sequentially switches the data from the specified number
of input ports to a single output port.

SMC Convolutional
Deinterleaver

Reshuffles streaming input symbols according a to a
predefined mapping scheme.

SMC Convolutional
Encoder

Corrects feed-forward errors using k/n convolutional
codes.

SMC Convolutional
Interleaver

Shuffles streaming input symbols to a new permutation,
using a predefined mapping scheme.

SMC CORDIC2 Implements a circular CORDIC (Coordinate Digital
Rotation Computer).

SMC DDS Creates a direct digital synthesizer, with sin and cos
waves based on frequency, phase settings, and
modulations.

SMC DDS2 Creates a direct digital synthesizer with sin and cos waves
based on frequency, phase settings, and modulations.
This block provides additional functionality and QoR
improvements compared with the DDS block.

SMC Decommutator Sequentially switches the data at the input port to
multiple output ports, reducing the data rate of each
output port accordingly.

SMC Depuncture Removes specified bits from the input data stream and
replaces them with zeroes.

SMC Differentiator Performs a discrete time differentiation of the input signal.

SMC Extract Provides an n-bit integer based on the value of the bits
extracted from specified positions at the input.

LO

 Working with Custom Blocks Primitives and Custom Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
802 October 2013

SMC FIR2 Implements fixed and reloadable coefficient FIR filters,
including polyphase filters, multichannel filters, and
symmetric coefficient filters.

SMC FIR Rate
Converter

Implements a polyphase FIR filter.

SMC Integrator Performs a discrete time integration of the input signal.

SMC Leading Zero
Counter

Computes the number of leading zeros for an unsigned
input.

SMC MinMax Calculates the minimum, maximum, or minimum and
maximum of two inputs.

SMC Moving Average
Filter

Implements a hardware efficient moving average filter.

SMC Parallel FIR Implements a parallel input FIR filter.

SMC Parallel to Serial Implements a data packet splitter that divides the parallel
data word at the input into small serial data packets in
the order specified.

SMC Puncture Removes user-specified bits from the input data stream

SMC Pulse Generator Generates a single pulse.

SMC Ramp Creates a ramp based on increments derived from a port
or parameter

SMC Random Creates a random integer of the requested word length

SMC Recast Provides a value, based on the requested data type cast at
the output and maintaining the same bits as provided at
the input

SMC Register Inserts a delay.

SMC RFIR Custom block that implements a reloadable finite impulse
response FIR filter.

SMC Sequence Repeats a sequence of specified data

SMC Serial to Parallel Implements a data packet combiner that collects serial
data packets at the input and merges them into a parallel
data word at the output.

Primitives and Custom Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 803

Library of Custom Block Examples

The tool <install_dir>\mathworks\toolbox\Synopsys\SynphonyHLS\
demos\APPEX directory includes examples of custom blocks. For the most
current set of custom block examples, refer to SolvNet article 030247,
"Synphony Model Compiler Custom Library Examples.“

SMC Sign Provides the 2-bit sign value (+1 or -1) for the input.

SMC Single Clock
Downsample

Provides variable rate and single clock downsample
operations.

SMC Single Clock
Upsample

Provides variable rate and single clock upsample
operations.

LO

 Working with Custom Blocks Design Flow for Building Custom Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
804 October 2013

Design Flow for Building Custom Blocks
This is a mini-tutorial that runs through an example to show you how to
create custom blocks using Synphony Model Compiler blocks. For a defini-
tion of custom blocks, see Primitives and Custom Blocks, on page 800.

The following figure illustrates the steps in the tutorial and shows the
different kinds of custom blocks you can create.

The design flow above is described in the following sections:

• Set up a Custom Library, on page 805

• Create a Custom Block, on page 806

• Define Basic Content for Custom Blocks, on page 812

• Define Content for Parameterized Blocks, on page 816

• Define Content for Reconfigurable Blocks, on page 820

• Designing with Custom Blocks, on page 823

• The MySign M-Generator, on page 826

Define custom block content:

Set up custom library

Create a custom block

Design with custom blocks

* Basic block
* Parameterized block
* Reconfigurable block

Set up a Custom Library Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 805

Set up a Custom Library
The first step is to set up a custom library where you can group your custom
blocks. The following procedure illustrates the steps.

1. Open the Simulink Library Browser, and select File->New->Library. This
opens a schematic window that you use to capture the library elements.

2. In the library schematic window, do the following:

– Double-click in the window. In the resulting text box, type a
description for the custom library you are creating.

– Select File->Save, and name the library shlsclib_tut.mdl. All custom
libraries must be named shlsclib<string>.mdl. Do not name it shlslib, as
this name is reserved for the main Synphony Model Compiler library.

– Save the library file to a location in your Synphony installation
hierarchy.

– If necessary, select Edit->Unlock Library. When you first save or open a
Simulink library, the lock protects it from accidental changes. If you
intend to modify the file, you must unlock the library.

LO

 Working with Custom Blocks Create a Custom Block

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
806 October 2013

3. At the MATLAB prompt, type rehash toolboxcache

This command rescans all the toolbox directories for new files and
updates the MATLAB cache file. You only need to run the rehash
command once. At subsequent sessions you do not need the command,
but can open the library by just typing its name at the MATLAB prompt.
You can now create a custom block as described in Create a Custom
Block, on page 806.

Once you have set up a custom library, you can ensure that you can use
it with different software versions by following the techniques described
in Maintaining Custom Libraries, on page 824.

Create a Custom Block
This step-by-step procedure shows you how to create a subsystem and mask
for a custom MySign block. You mask the block to make it suitable for inclu-
sion in a library. Masking the block ensures that you can treat the block as a
primitive when you use it in your design.

1. After you have created the custom library, create a subsystem for the
custom block.

– Drag a Subsystem block from the Simulink Simulink->Ports & Subsystems
library into the library schematic window. The Subsystem block
provides the starting point for the block.

– Close the Simulink library window.

– In the custom library window, rename the instance by
double-clicking the name and typing a new name; in this case, type
MySign.

Create a Custom Block Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 807

– Position and size the block by typing the following at the MATLAB
command prompt:

set_param('shlsclib_tut/MySign','Position',[100 100 140 140])

This positions the instance at x=100, y=100, and sets the block to a
standard size of 40 x 40 pixels. For positioning, it is a good practice to
put the origins of different blocks on a grid of 100 x 100 pixels. The
Synopsys blocks use a standard size of 40 x 40 pixels for a one input,
one output block. For each additional port, add 20 pixels to the
height. The width can remain 40 pixels unless the port names
necessitate an increase in width. Thus, the standard width is 40
pixels, and the standard height is min(40,20*(max(inputs, outputs))) pixels.

LO

 Working with Custom Blocks Create a Custom Block

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
808 October 2013

2. Right-click MySign and select Mask subsystem from the popup menu. This
opens the Mask editor window, where you can set up the mask.

– On the Icon & Ports tab, set the display to be used for the icon by typing
the commands in the Drawing commands area. You can see a list of
available commands by clicking in the Command field. Consult the
Simulink documentation for syntax details.

Create a Custom Block Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 809

The following table shows the commands specified for the MySign
block. Note that no port labels are defined because they are obvious.

Command Effect

image(imread(fullfile(shlsroot,'mathworks','toolbox',
'Synopsys','SynphonyHLS','icons','synplicity40_fg.jpg')),
center');

Puts the specified logo
image on the icon.

color('black');
disp(txt,'texmode','on');

Sets the color of text in
the txt variable. The
variable itself is defined
on the Initialization tab.

color('green');
text(0.5,1,note, 'texmode','on','horizontalAlignment',

'center', 'verticalAlignment','top');

Defines a placeholder for
a note variable. The note
is defined on the
Initialization tab.

LO

 Working with Custom Blocks Create a Custom Block

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
810 October 2013

3. Select the Parameters tab and define the synBlockType and synLatency
parameters. For the MySign block, do the following:

– Click the Add icon on the left to add a line in the Dialog parameters
area.

– On this line define the synBlockType parameter with Type set to popup
and Evaluate and Tunable disabled. Type custom in the Popups area at
the lower left, and disable Show Parameter.

color('red');
text(0.5,0,z,'texmode','on','horizontalAlignment',

'center','verticalAlignment','bottom');

Defines a placeholder for
the z (latency) variable.
The latency is defined on
the Initialization tab. If the
latency is 0, nothing is
displayed.

Command Effect

Create a Custom Block Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 811

– Add another parameter line to define synLatency, to hold the potential
latency of the block. Disable the Tunable and Show Parameters
checkboxes, as shown in the figure

Setting parameters causes the underlying block schematics to be hidden
from the designer in the Library Browser.

4. Select the Initialization tab and specify the initialization code for the
variables defined on the Icon tab. For the MySign block, do the following:

– In the Initialization commands area, define the txt, note, and z variables
with the following commands:

txt='\pm1';
note='';
z=syn_latency;

– Enable Allow library block to modify its contents.

LO

 Working with Custom Blocks Define Basic Content for Custom Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
812 October 2013

5. Select the Documentation tab, and do the following:

– Fill out Mask description, with a one-line description of the block
functionality; for example, The MySign block provides the 2-bit sign value (+1
or -1) for the block. If you do not have parameters defined, you must fill
out this field to ensure that the block appears as a non-hierarchical
primitive in the Simulink library browser. If your custom block has
parameters, you do not need to fill out the description, but it is a good
practice.

– Type a descriptive name in Mask Type. For example: Synphony HLS
MySign.

6. Save the settings.

– Click OK in the mask editor window.

– Select File->Save in the library window. The icon in the window now
reflects the changes you made.

You can now define the content for the blocks. You can create complex
blocks like parameterized or reconfigurable blocks. For the purposes of
this tutorial, create a basic block first (Define Basic Content for Custom
Blocks, on page 812).

Define Basic Content for Custom Blocks
After creating a custom library and block (see Set up a Custom Library, on
page 805 and Create a Custom Block, on page 806), you still have to define
the contents of the block. The following procedure shows you how to group
Synphony Model Compiler primitives to create a higher-level function (MySign)
as a library component.

1. Make the custom block editable. In the custom library window,
right-click the custom block and select Look under mask.

Define Basic Content for Custom Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 813

A window opens with the initial content of the masked block, which is
one input port and one output port. If you do not use the Look under mask
command, you will not be able to see or edit any content when you
double-click the block because it has been masked.

2. In the window with the block contents, type new port names for the
block. The following figure shows the default names changed to a and
sign(a) for the MySign block.

3. Create the contents of the block using primitives from the Synphony
library or with other Synphony custom blocks.

The following figure shows the MySign block defined with sfix2_En0(+1) on
the output for inputs larger than or equal to 0, and sfix2_En0(-1) for
inputs smaller than 0.

LO

 Working with Custom Blocks Define Basic Content for Custom Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
814 October 2013

4. In the library window, select File->Save to save the contents of the block.

This procedure creates a static block where primitives are grouped
together for a higher-level function. For information about more flexible
blocks, see Define Content for Parameterized Blocks, on page 816 and
Define Content for Reconfigurable Blocks, on page 820.

5. Test the block.

– Create a simple design that uses the block, and save it as MySign_test.

– Double-click the Ramp block and set Initial output to -2^7. Click OK.

– Double-click Port In and set Sample time to 1. Click OK.

– Simulate the design for 2^8 cycles.

Define Basic Content for Custom Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 815

– Check the results. You should see the following:

LO

 Working with Custom Blocks Define Content for Parameterized Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
816 October 2013

Define Content for Parameterized Blocks
Parameterized blocks include parameters in the block mask, which allow you
to fine-tune some options. The following example starts with the MySign block
you created earlier (see Create a Custom Block, on page 806), and adds
parameters for specifying latency and reversing the output.

1. Open the block.

– At the MATLAB prompt, type shlsclib_tut to open the window with the
custom blockset.

– From the library window, select Edit->Unlock Library. This allows you
to edit the blockset.

– Right-click the MySign block and select Edit Mask. This opens the mask
editor.

2. Set mask parameters in the mask editor, as follows:

– Click the Parameters tab and add the syn_out_dly parameter, specifying
it as a text string. This parameter captures the desired latency for the
custom block.

– Add the syn_out_inv parameter, and specify it as a checkbox. This
determines whether the output is inverted.

– Make sure that the Show Parameter option is on for both these
parameters.

– Click OK in the mask editor.

3. Set parameter defaults.

– In the library window, double-click the MySign block to open the Block
Parameters: MySign dialog box. This box shows the parameters you
defined in the previous step.

– Enter 4 for Latency.

– Enable the Invert Output option.

– Click OK.

The changes are made inside the custom blockset, and these settings
are inherited by all instances of the MySign block as defaults.

Define Content for Parameterized Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 817

4. Edit block content to add the blocks required to support
parameterization.

– Right-click the MySign block and select Look under mask. This opens a
window with the contents of the block.

– Add a Delay block after the mux to provide the desired latency.

– Double-click the Delay block. In the Delay field of the dialog box, enter
syn_out_dly. Click OK. This applies the parameterized delay to the
MySign block.

– Add a Gain block after the Delay block to support inversion.

LO

 Working with Custom Blocks Define Content for Parameterized Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
818 October 2013

– Select File->Save and save the changes made to the block.

5. Program the response to the parameters. You need to do this so that the
syn_out_inv parameter determines the gain of the Gain block.

– Go back to the shlsclib_tut window. Right-click the MySign block and
select Edit mask. This opens the mask editor.

– Select the Initialization tab, and edit the code as follows:

%%%%%%
% Plot
%%%%%%
txt='\pm1';
%%%%%%
% Note
%%%%%%
% See Parameterization Section
%%%%%%%%%
% Latency
%%%%%%%%%
set_param(gcb,'synLatency',num2str(syn_out_dly));
z=syn_latency;
%%%%%%%%%%%%%%%%%%
% Parameterization
%%%%%%%%%%%%%%%%%%
gainBlock=[gcb '/Gain'];
switch syn_out_inv

case 0
note='\rightarrow';

Define Content for Parameterized Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 819

set_param(gainBlock,'syn_gain_val','1');
case 1

note='\rightarrow\circ';
set_param(gainBlock,'syn_gain_val','-1');

end

Note that the syn_out_inv parameter controls the note variable to
differentiate the appearance of the MySign block. It is also used in the
Parameterization section to determine the gain of the Gain block. The
syn_out_dly parameter sets the synLatency parameter of the MySign
block.

– Click OK. The icon for the MySign block reflects the changes you made.

6. Test your block.

– Open the design you created in Define Basic Content for Custom
Blocks, on page 812.

– Select Edit->Update diagram to make sure that the design uses the
updated parameterized block. The icon changes to reflect the
parameters.

– Simulate the design.

– Check the results. It should show that the output is inverted and
delayed by 4 samples.

LO

 Working with Custom Blocks Define Content for Reconfigurable Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
820 October 2013

Define Content for Reconfigurable Blocks
A reconfigurable block provides even more flexibility than a parameterized
block (see Define Content for Parameterized Blocks, on page 816), by allowing
different input or output permutations or making the content dependent on
block parameters.

Reconfigurable blocks differ from basic blocks (Define Basic Content for
Custom Blocks, on page 812) and parameterized blocks in the way that they
are implemented. Reconfigurable blocks use the M-generator instead of the
Icon tab on the mask editor to determine the display.

1. Set icon size.

– At the MATLAB prompt, type shlsclib_tut to open the window with the
custom blockset.

– From the library window, select Edit->Unlock Library. This allows you
to edit the blockset.

– At the MATLAB prompt, type the following command, which resizes
the icon width to 60 pixels:

set_param('shlsclib_tut/MySign','Position',[100 100 160 140])

2. Provide an M-generator mask (see The MySign M-Generator, on
page 826 for an example of an M-generator for the MySign block). When
you have an M-generator mask, the tool uses the M-generator to
initialize the icon, instead of the settings on the Icon tab.

– Right-click the MySign block and select Edit Mask.

– On the Icon tab, delete all the drawing commands.

– On the Parameters tab, set the syn_zero_port variable, which
reconfigures the optional zero port. You should have synBlockType,
synLatency and syn_zero_port.

Define Content for Reconfigurable Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 821

– On the Initialization tab, delete all the code and type syn_mysign_init;
This is a call to the M-generator, which is called syn_mysign_init.
See The MySign M-Generator, on page 826 for the code.

– Click OK.

– Select Edit->Save in the library window to save the changes.

3. Put the M-generator in the path. See The MySign M-Generator, on
page 826 for the code.

It is recommended that you put it in the same location as the custom
blockset.

4. Test your block.

– Open the design you created in Define Basic Content for Custom
Blocks, on page 812.

LO

 Working with Custom Blocks Define Content for Reconfigurable Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
822 October 2013

– Select Edit->Update diagram to make sure that the design uses the
updated reconfigurable block and save the design. The icon changes
to reflect the parameters.

– Right-click the block and select Look under Mask. This shows the
contents as determined by the M-generator.

– Simulate the design and check the results. The results show basic
sign detection.

5. Run another test with zero detection.

– Double-click the MySign block to open the Block Parameters dialog
box.

Designing with Custom Blocks Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 823

– Enable the Zero Detect option and click OK. The MySign instance now
has an extra output port, zero.

– Edit the scope to track the extra output port as well.

– Simulate and check the results. The results show basic sign detection
combined with zero detection.

Designing with Custom Blocks
After creating custom blocks and libraries as described in the previous
section, incorporate them in your design using the following procedure.

1. The first time you install the library, make the library available for use
by typing the following at the MATLAB command prompt:

rehash toolboxcache

On subsequent sessions, you can skip this step.

LO

 Working with Custom Blocks Maintaining Custom Libraries

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
824 October 2013

2. Load the custom library.

– Close any open Simulink library browsers and open an updated
browser by typing simulink at the MATLAB command prompt. The
browser now contains an entry for the new custom library: Synphony
HLS Custom Blockset shlsclib.

– Double-click the entry to display the Max block in the right pane.

If your custom library is not listed, make sure that you saved the library
to the specified directory using the appropriate naming convention.
Repeat step 1 to update the Simulink library browser.

3. Follow the usual Synphony Model Compiler procedures when you
instantiate and use the custom block in your design.

4. Generate RTL.

In the Synphony output files, the functionality of the custom block is
automatically resolved to the main primitives, so that the design can be
synthesized.

5. Synthesize your design as usual.

Maintaining Custom Libraries
This section describes the following techniques for maintaining custom
libraries:

• Maintaining Independent Custom Libraries, next

• Converting Custom Libraries, on page 825

Maintaining Independent Custom Libraries

To ensure that your custom library remains independent of new versions of
the software, maintain the blocks in a directory outside the software tree. The
following procedure illustrates.

1. Create a directory outside the software tree with the custom libraries.
For example: C:/Program Files/Synopsys/Synphony_lib/shlsclib*.mdl

Maintaining Custom Libraries Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 825

2. In the MathWorks release, add this directory to your path:

matlabroot/toolbox/local/startup.m:
addpath(fullfile(shlsroot,'..','Synphony_lib')));

3. In the M-generator for a Synphony custom library block, use shlslib to
determine the current release of the library:

syn_lib=shlslib('info');
...
add_block([syn_lib '/<name_of_your_block>'],...);

This will make the custom libraries release-independent.

Converting Custom Libraries

This procedure shows you how to update a custom library for use with a
newer version of the software. Use the following procedure to convert the
shlsclib_xxx.mdl libraries that are in MATLAB path.

1. Update blocks manually if needed.

– If your custom block in the library uses an M script to initialize its
contents, manually convert the static library references in the M
script.

– If your custom block in the library uses an M script to initialize its
contents, manually convert the script to accommodate any Synphony
Model Compiler blocks whose parameters have changed in the latest
release. You can access the parameters from the mask editors for the
blocks. You must do this because there could be block enhancements
from release to release.

2. Run the syn_update_clib script.

When the Simulink library is launched, this script finds all the custom
libraries in the MATLAB path for custom libraries, and converts them to
be compatible with the current software version. It renames all legacy
libraries OBSOLETE_libraryname. Automatic conversion only converts
libraries starting with shlsclib.

LO

 Working with Custom Blocks The MySign M-Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
826 October 2013

The MySign M-Generator
This is the code for the syn_mysign_init.m file.

% Store current configuration

syn_gcb=gcb;
syn_gcbh=gcbh;

% Erase content
% Erase all lines (delete_line works on array)
% Erase all blocks (delete_block does not work on array)
% The 'Parent' criterion is necessary to avoid deleting the
% current block.
% Ports are not erased to maintain existing connectivity if
% possible (erasing a port will disconnect any signal, even if the
% port is recreated).

delete_line(find_system(syn_gcbh,...
'FollowLinks','on',...
'LookUnderMasks','all',...
'SearchDepth',1,...
'FindAll','on',...
'Type','line'));

syn_handles=find_system(syn_gcbh,...
'RegExp','on',...
'FollowLinks','on',...
'LookUnderMasks','all',...
'SearchDepth',1,...
'Parent',syn_gcb);

for i=1:length(syn_handles)
syn_handle=syn_handles(i);
syn_bt=get_param(syn_handle,'BlockType');
if strcmp(syn_bt,'Inport') || strcmp(syn_bt,'Outport')
syn_name=get_param(syn_handle,'Name');

% Create a variable to represent the existence of this port,
% holding the handle to the port
eval(['syn_' syn_name '_h=syn_handle;']);
else

delete_block(syn_handle);
end

end

The MySign M-Generator Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 827

%%
% Initialize icon
%%

licon=strcat('fullfile(shlsroot,''mathworks'',''toolbox'',',...'
''Synopsys'',''SynphonyHLS'',''icons'',''synplicity40_fg.jpg'')');
synDisplay=sprintf('image(imread(%s),''center'');',licon);

%%
% Input ports
%%

ipTot=1;
ipNames{1}='a';
if exist('syn_a_h','var')

set_param(syn_a_h,...
'Position',[100 103 130 117],...
'Port',num2str(ipTot));

else
add_block('built-in/Inport',[syn_gcb '/a'],...

'Position',[100 103 130 117],...
'Port',num2str(ipTot));

end

for n=1:ipTot
synDisplay=strvcat(synDisplay,...

strcat('port_label(''input'',',...
sprintf('%d,''%s''',n,ipNames{n}),...
',''texmode'',''on'');'));

end

%%
% Output ports
%%

opTot=1;
opNames{1}='sign';
if exist('syn_sign_h','var')

set_param(syn_sign_h,...
'Position',[400 313 430 327]);

else
add_block('built-in/Outport',[syn_gcb '/sign'],...

'Position',[400 313 430 327],...
'Port',num2str(opTot));

end

LO

 Working with Custom Blocks The MySign M-Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
828 October 2013

if (syn_zero_port)
opTot=opTot+1;
opNames{opTot}='zero';
if ~exist('syn_zero_h','var')

% Create port
add_block('built-in/Outport',[syn_gcb '/zero'],...

'Position',[400 203 430 217],...
'Port',num2str(opTot));

else
set_param(syn_zero_h,...

'Position',[400 203 430 217],...
'Port',num2str(opTot));

end
else

if exist('syn_zero_h','var')
% Delete port
delete_block(syn_zero_h);

end
end

for n=1:opTot
synDisplay=strvcat(synDisplay,...

strcat('port_label(''output'',',...
sprintf('%d,''%s''',n,opNames{n}),...
',''texmode'',''on'');'));

end

%%
% Content
%%

add_block('shlslibv1/Sources/Constant',[syn_gcb '/Zero'],...
'Position',[100 200 140 240],...
'syn_cst_val','0',...
'syn_cst_wl','2',...
'syn_cst_fl','0',...
'syn_cst_dt','signed');

add_block('shlslibv1/Sources/Constant',[syn_gcb '/Neg'],...
'Position',[100 300 140 340],...
'syn_cst_val','-1',...
'syn_cst_wl','2',...
'syn_cst_fl','0',...
'syn_cst_dt','signed');

The MySign M-Generator Working with Custom Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 829

add_block('shlslibv1/Sources/Constant',[syn_gcb '/Pos'],...
'Position',[100 400 140 440],...
'syn_cst_val','1',...
'syn_cst_wl','2',...
'syn_cst_fl','0',...
'syn_cst_dt','signed');

add_block('shlslibv1/Math Functions/Comparator',...
[syn_gcb '/Sign Detect'],...
'Position',[200 100 240 140],...
'syn_comp_opr','a>=b');

add_line(syn_gcb,'a/1','Sign Detect/1','autorouting','on');
add_line(syn_gcb,[140 220; 150 220; 150 130; 200 130]);

add_block('shlslibv1/Signal Operations/Mux',...
[syn_gcb '/Sign Mux'],...
'Position',[300 290 340 350],...
'syn_in_nb','2');

add_line(syn_gcb,'Sign Detect/1','Sign Mux/1','autorouting','on');
add_line(syn_gcb,'Neg/1','Sign Mux/2','autorouting','on');
add_line(syn_gcb,'Pos/1','Sign Mux/3','autorouting','on');
add_line(syn_gcb,'Sign Mux/1','sign/1','autorouting','on');

if (syn_zero_port)
add_block('shlslibv1/Math Functions/Comparator',...

[syn_gcb '/Zero Detect'],...
'Position',[300 190 340 230],...
'syn_comp_opr','a==b');

add_line(syn_gcb,'a/1','Zero Detect/1','autorouting','on');
add_line(syn_gcb,[150 220; 300 220]);
add_line(syn_gcb,'Zero Detect/1','zero/1','autorouting','on');

end

%%
% Plot
%%

txt='\pm1';
synDisplay=strvcat(synDisplay,...

'color(''black'');',...
'disp(txt,''texmode'',''on'');');

%%
% Note
%%

LO

 Working with Custom Blocks The MySign M-Generator

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
830 October 2013

note='';
synDisplay=strvcat(synDisplay,...

'color(''green'');',...
strcat('text(0.5,1,note,''texmode'',''on'',',...

'''horizontalAlignment'',''center'',',...
'''verticalAlignment'',''top'');'));

%%
% Latency
%%

z=syn_latency;
synDisplay=strvcat(synDisplay,...

'color(''red'');',...
strcat('text(0.5,0,z,''texmode'',''on'',',...
'''verticalAlignment'',''bottom'');'));

%%
% Display Icon
%%

set_param(syn_gcb,'MaskDisplay',synDisplay);

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 831

C H A P T E R 1 0

Analyzing and Verifying the Design

This chapter describes how to analyze, simulate, and cosimulate your
Synphony Model Compiler design to ensure it is correct:

• Using Quantization Analysis Tools, on page 832

• Using Smart Black Boxes for Cosimulation, on page 837

• Simulating HLS Subsystem Blocks, on page 844

LO

 Analyzing and Verifying the Design Using Quantization Analysis Tools

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
832 October 2013

Using Quantization Analysis Tools
The Synphony tool uses the Simulink fixed-point data type to represent the
discrete amplitude of the signals in the Synphony blockset. For background
information about this data type in the Synphony Model Compiler tool, see
Fixed-Point Data Type, on page 696. This section describes how to use the
Synphony Model Compiler SynFixPtTool block and the Simulink Fixed-Point Tool
interface:

• Specifying Fixed-Point Options, on page 832

• Validating Algorithms with the Fixed-Point Toolbox, on page 834

• Using Plots, on page 835

Specifying Fixed-Point Options

To use the fixed-point functionality for conversion before simulation, use the
link to the Simulink fixed point functionality, as described below:

1. Add the Synphony SynFixPtTool block to your design.

This block leverages the existing Simulink fixed point functionality by
providing a link to it.

2. Open the Simulink Fixed-Point Settings tool using one of these methods:

– Double-click the SynFixPtTool block.

– Right-click in the background of the Simulink schematic, and select
Fixed-Point Settings from the menu.

– From the Simulink schematic menu bar, select Tools->Fixed-Point
Settings.

Any of these actions opens the Simulink Fixed-Point Tool interface, which
provides convenient access to global data type overrides and logging
settings. For information about this toolbox, type doc fxptdlg at the
MATLAB prompt.

Using Quantization Analysis Tools Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 833

3. The Model Hierarchy pane displays a tree-structured view of the Simulink
model hierarchy; the fixed-point tool controls the object selected in its
Model Hierarchy pane.

You can use the Fixed-Point Tool interface for any system or subsystem.

4. Use the Simulation settings area of the settings pane to specify the
fixed-point settings. For details, see Validating Algorithms with the
Fixed-Point Toolbox, on page 834 and Using Plots, on page 835.

You can use all the toolbox features with the following exceptions, which
the Synphony tool does not currently support:

– For the Logging mode option, you can only use Use local settings and
Overflow Only. This option controls logging for the selected subsystems.

– For the Data type override option, the only valid choices are Use local
settings and Scaled Doubles. This option controls data type overrides for
the selected subsystems.

LO

 Analyzing and Verifying the Design Using Quantization Analysis Tools

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
834 October 2013

– You cannot currently use the Autoscale fixed-point blocks feature, which
automatically changes the scaling for any block that does not have its
scaling locked.

Validating Algorithms with the Fixed-Point Toolbox

Typically, you first simulate your design with full-accuracy calculations to
validate the algorithm, and then simulate the fixed-point algorithm. The SMC
tool lets you use some of the Simulink fixed point functionality. The following
outlines the general procedure to use the Fixed-Point toolbox:

1. Set up your design.

– Add the Synphony SynFixPtTool block to the design.

– Add Simulink scopes to your design. To plot data, you must set up
the Simulink time scopes to store data as described in Using Plots, on
page 835.

2. Double-click SynFixPtTool to open the Fixed-Point Tool interface.

3. To validate a full-accuracy algorithm, do the following:

– Select the entire design or a particular block from the Model Hierarchy
pane.

– Set Logging mode to Overflow only in the Simulation settings area of the
settings pane.

– Set Data type override to Scaled Doubles in the Simulation settings area of the
settings pane.

– Simulate the design by clicking the Start button (right arrow icon). The
software ignores the fixed-point settings and does a full-accuracy
simulation.

4. Analyze the information in the scope windows to check the floating-point
algorithm.

5. After validating the floating-point algorithm, validate the fixed-point
algorithm by following these steps:

– Select the entire design or a particular block from the Model Hierarchy
pane.

Using Quantization Analysis Tools Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 835

– Set Logging mode to Overflow only in the Simulation settings area of the
settings pane.

– Enable finite word length effects by setting Data type override to Use
Local Settings. This is the default mode where overflow is detected.
Overflow is determined by the local fixed-point annotations.

– Simulate the design by clicking the Start button (right arrow icon). The
software simulates the design using the fixed-point settings and
reports any overflow effects.

6. Analyze the information in the scope windows to check the fixed-point
algorithm. You can now compare the data from the fixed-point and
floating simulations, as described in Using Plots, on page 835.

Using Plots

The Simulink Fixed-Point Tool interface has a plotting feature that you can use
to compare the simulation results.

1. Before simulation, set up the Simulink time scopes to store data, as
follows. Do this for all scopes that you want to plot:

– Double-click on the scope to open the scope window.

– Click the Parameters icon to open the Parameters window.

– Click the Data History tab and disable Limit data points.

– For all scopes that you want to plot, also enable Save Data to Workspace.

– Click OK.

2. Validate your floating-point and fixed-point algorithms (see Validating
Algorithms with the Fixed-Point Toolbox, on page 834).

3. Open the Simulink Fixed-Point Tool interface and select the scope with the
data to be plotted from the Contents pane.

4. You can create any of the following types of plots using the Fixed-Point Tool
interface:

– Time-series plot

– Histogram plot

– Time-series difference (A -R) plot

LO

 Analyzing and Verifying the Design Using Quantization Analysis Tools

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
836 October 2013

For information about the plot interface, see Plot Interface on the Fixed-Point
Tool help page.

5. To compare the full-accuracy simulation results with the quantized
results, use a time-series difference (A -R) plot:

– Select Store All Active Results As Reference Results to store the
floating-point simulation results.

– Use a time-series difference (A -R) plot to plot both the active and
reference versions of a signal on the upper axes and to plot the
difference between the active and reference versions of the same
signal on the lower axes.

Using Smart Black Boxes for Cosimulation Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 837

Using Smart Black Boxes for Cosimulation
This section describes how to use the Smart Black Box block for hardware
cosimulation. A smart black box differs from a simple black box, because you
have access to the RTL code for the IP. For information about implementing a
simple black box, see Using Black Boxes and Third-Party IP, on page 777.

This section describes the following:

• Incorporating Smart Black Boxes in the Design, on page 837

• Configuring the Cosimulation Interface, on page 839

• Creating Smart Black Box Configuration Files, on page 841

• About Cosimulation with ModelSim, on page 842

Incorporating Smart Black Boxes in the Design

1. Make sure you have EDA Simulator Link MQ (formerly Link for
ModelSim)® installed and accessible.

EDA Simulator Link MQ is a cosimulation interface between Simulink
and the ModelSim® HDL simulator. Currently, Synphony Model
Compiler uses this tool to verify and simulate the embedded RTL-level
models. See About Cosimulation with ModelSim, on page 842 for some
background information.

2. Instantiate the SynCoSimTool block (top-level library) in your design and
configure the cosimulation interface. See Configuring the Cosimulation
Interface, on page 839 for details.

3. Create a configuration file that contains port, clock, global enable and
reset information for the smart black box. See Creating Smart Black Box
Configuration Files, on page 841 for details.

4. If the black box is defined in multiple files, create a text file that lists the
absolute paths to all the HDL definition files. Skip this if you have a
single-file definition.

LO

 Analyzing and Verifying the Design Using Smart Black Boxes for Cosimulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
838 October 2013

This example creates a file called sbblist.txt that lists four black box
definition files:

-L sbblib C:\mypath\sbblib1.vhd
C:\mypath\sbb2.v
C:\mypath\sbb3.v
C:\mypath\sbb4.vhd

5. Instantiate the Smart Black Box block (Ports & Subsystems library) in your
design.

6. Double-click the Smart Black Box block to open the parameters dialog box.
See SMC Smart Black Box, on page 532 for details about the block.

– Specify the location of the black box definition file or files. If you have
a single file, type the absolute path to it in Black box Definition. If you
have multiple definition files, specify the absolute path to the text file
you created (step 4) in Black box File List.

– Specify the location of the configuration file you created (step 3) in
Configuration File Name.

– Type a name for the black box in Entity/Model Name. Click OK.

Using Smart Black Boxes for Cosimulation Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 839

7. Run Synphony Model Compiler synthesis.

– Set the Synphony Model Compiler optimizations you want for the
design. For details about the effect of different optimizations on smart
black boxes, see Using Optimizations with Black Boxes, on page 784.

– Synthesize the design and generate RTL.

The tool uses EDA Simulator Link MQ (formerly Link for ModelSim) to
cosimulate and verify the embedded RTL-level models. The Simulink
simulation is transparent.

The generated RTL for the design includes an instance for the smart
black box. The rest of the design is hooked up to the ports of the black
box, with the appropriate connections for global enables, reset, and
black box clocks you specified. Timing arcs stop at the input ports of the
black box and resume from the output of the black box; they do not
include the timing through the black box.

Configuring the Cosimulation Interface

This procedure shows you how to configure the cosimulation interface
between EDA Simulator Link MQ and the DSP synthesis tool, so that you can
use smart black boxes in your design, as described in Incorporating Smart
Black Boxes in the Design, on page 837.

1. Instantiate the SynCoSimTool block from the top-level Synphony Model
Compiler library, and double-click it to open the parameters dialog box.

This dialog box lets you configure the cosimulation interface to EDA
Simulator Link MQ. Do the next few steps in the dialog box. For detailed
description of the dialog box options, refer to SMC SynCoSimTool, on
page 550.

LO

 Analyzing and Verifying the Design Using Smart Black Boxes for Cosimulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
840 October 2013

2. Specify the location of the cosimulator and the connection method.

– In the Connection section, specify the location of the cosimulator.

– Specify the connection method.

– Specify the socket connection port.

– If you have more than one smart black box, set Connection Method to
Socket and provide different port numbers for each smart black box.

3. Specify parameters for the run.

– To have the cosimulator close down after a run and re-initialize every
subsequent time it starts up, enable Run and Close RTL Cosimulator. The
advantage to this setting is that the cosimulator is re-initialized at

Using Smart Black Boxes for Cosimulation Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 841

every run; the disadvantage is longer run times because the
cosimulator is initializing.

– To have the cosimulator remain open after a run, disable Run and
Close RTL Cosimulator. Use this setting if your RTL source does not
depend on initial state values because it offers the advantage of faster
run times. The downside of this setting is that the cosimulator is only
initialized once at the initial run. All subsequent runs use the same
settings.

4. Optionally, specify pre-run and post-run Tcl commands.

These commands execute before or after the cosimulator run, as you
specified.

5. Set any other options in the dialog box and click OK.

When you run DSP synthesis, the tool uses these configuration settings
to run EDA Simulator Link MQ for cosimulation and verification of
smart black boxes.

Creating Smart Black Box Configuration Files

Smart black boxes require configuration files that define connection details
like ports, clocks, global enables and resets. You must have this file to use
smart black boxes in your design as described in Incorporating Smart Black
Boxes in the Design, on page 837.

You can create this xml file in one of two ways:

• Manually create the file in xml format, following the syntax and example
described in Configuration File For Smart Black Box, on page 535.

• Create and then edit a template file.

– Instantiate and configure the SynCoSimTool block as described in
Configuring the Cosimulation Interface, on page 839.

– Click Create Template Configuration File. This creates a template
configuration file in the ../modelpath/synwork directory with SBB
block names.

– Edit the xml template file to include port, clock, global reset and
enable specifics for the smart black box. See Configuration File For
Smart Black Box, on page 535 for syntax.

LO

 Analyzing and Verifying the Design Using Smart Black Boxes for Cosimulation

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
842 October 2013

About Cosimulation with ModelSim

For cosimulation, the Synphony, Simulink (with EDA Simulator Link MQ),
and ModelSim tools need to work together. You must have the EDA Simulator
Link MQ interface software from MATLAB, which sets up the proper relation-
ships between ModelSim and the MathWorks products.

This figure illustrates client-server relationships.The link between the simula-
tors is either shared memory (optimal performance) or a TCP/IP socket (most
versatile). One simulator is a server (responds to requests) and the other is a
client (initiates simulation requests). Links between different MathWorks
products differ. For Simulink cosimulation, ModelSim is the server and
Simulink is the client.

The following figure shows the EDA Simulator Link MQ communications inter-
face, where a HDL Cosimulation block co-simulates a hardware component by
applying input signals to and reading output signals from a VHDL model
being simulated in ModelSim. The HDL Cosimulation block is the Simulink
client to the ModelSim server.

Port
4449

ModelSim
Client

MATLAB
Server

Link

LinkModelSim
Client

MATLAB Cosimulation

Port
4449

Port
4448

Simulink
Client

ModelSim
Server

ModelSim
Server

Link

Link

Simulink Cosimulation

Using Smart Black Boxes for Cosimulation Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 843

LO

 Analyzing and Verifying the Design Simulating HLS Subsystem Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
844 October 2013

Simulating HLS Subsystem Blocks
Model and verify the subsystem design before using it as a HLS Subsystem
block in your design. The following procedure describe how to simulate the
subsystem design, using normal mode and fast simulation model.

1. Set up the HLS Subsystem block, as described in Creating an HLS
Subsytem Block, on page 786.

2. To simulate the block in normal mode, do the following:

– Make sure the Enable Fast Simulation option is not checked when you
set up the block.

– Simulate the subsystem.

The tool uses the Simulink model for simulation. See Enable Fast
Simulation, on page 323 for details.

3. To simulate the block in Fast Simulation mode, do the following:

– This mode requires a C compiler. Make sure you specified a
compatible C compiler when you set up and installed the Synphony
Model Compiler tool.

– Make sure you have a C output license for each HLS Subsytem block
you want to simulate. In Fast Simulation mode, each of these blocks
requires its own C output license for simulation.

Simulating HLS Subsystem Blocks Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 845

– Enable Enable Fast Simulation. The tool generates a C-model for the
block and uses it for simulation.

– Simulate the subsystem. The tool uses the C-model an S-function
wrapper to simulate the block. See Enable Fast Simulation, on
page 323 for details.

Use fast simulation when you are sure that the underlying block design
is not going to change.

LO

 Analyzing and Verifying the Design Viewing Simulink Signals in a Waveform Viewer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
846 October 2013

Viewing Simulink Signals in a Waveform
Viewer

To debug signals within Simulink, you can use the built-in Scope or To
Workspace blocks. However, using an HDL simulator waveform viewer is
more convenient, especially when debugging control logic signals.

Synphony Model Compiler can export Simulink simulation signals to a
waveform viewer environment, using a mechanism that generates a Value
Change Dump (VCD) file.

Enabling Signal Logging for the Model

To enable signal logging for a Simulink model:

1. Open the Configuration Parameters dialog box for your model.

From the menu choose Simulation, then Model Configuration Parameters.

2. Select the Data Import/Export tab.

3. Enable Signal logging and click OK.

Viewing Simulink Signals in a Waveform Viewer Analyzing and Verifying the Design

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 847

Your model is configured to generate a signal logging variable that contains
data for any individual signals in the model. You now have enabled signal
logging.

Enabling Signal Logging for Individual Signals

To enable signal logging for a Simulink signal:

1. In the Simulink model, right-click on the signal.

2. From the context menu, select Signal Properties.

3. On the Signal Properties dialog box, select Log signal from the Logging and
accessibility tab.

4. You should provide a meaningful name for the signal.

See the Simulink documentation for more information about signal logging.

LO

 Analyzing and Verifying the Design Viewing Simulink Signals in a Waveform Viewer

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
848 October 2013

Running the Simulation

To perform simulation:

1. After you have enabled signal logging for your model and selected
signals to be logged, run simulation.

2. Simulink generates a MATLAB workspace variable containing all of your
logged signals. The MATLAB workspace variable name is specified on the
Data Import/Export tab of the Configuration Parameters dialog box.

Generating the VCD File

To generate the VCD file:

1. Use the script provided by SMC called syn_write_wave.

The script extracts all the logged signals from your model and writes
them to a VCD file. Logged signals also include a clock for each sample
rate found in the model. The VCD file has the same name as your model
file.

2. Once the VCD file is created, open it in any waveform viewer of your
choice.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 849

C H A P T E R 11

Working with SMC Output

This chapter describes how to verify the output generated by the Synphony
Model Compiler tool and run logic synthesis on it:

• Checking the Log File, on page 850

• Verifying the RTL with a Test Bench, on page 853

• Working with the Output for FPGA Designs, on page 856

LO

 Working with SMC Output Checking the Log File

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
850 October 2013

Checking the Log File
The shls.log file is generated after synthesis.

1. Check the log file for messages like the following to ensure that your
constraints were applied:

@N:The retiming constraints are successfully applied for the
following blocks or hierarchies in the following order:

Subsytem.Delay_abc : {lock_only}
Subsystem.Delay_abc1 : {lock_only}

@W: “shls_retiming_lock {lock_only}" constraint is already applied
for the Delay_abc1 block.

2. Check the Hardware Resource Utilization section for estimates of resource
usage.

See Hardware Resource Utilization Section, on page 850 for a descrip-
tion.

3. Check the Pattern Usage section for a report of pattern usage.

See Pattern Usage Report, on page 851 for a description.

Hardware Resource Utilization Section

The log file contains a section that estimates usage for multiplier, adder,
register, shift register and RAM resources. This preliminary estimate provided
by the Synphony Model Compiler tool saves you from running logic synthesis
in order to get an estimate. This is particularly useful in the iterative design
development stage, and can save a significant amount of time during the
development cycle.

The resource estimate includes hierarchical blocks like custom blocks, M
Control, and HLS Subsytem, but does not include black boxes.

An example of the resource usage section is shown below:

ESTIMATED HARDWARE RESOURCE UTILIZATION

Number of Multipliers : 10

14X18 bits: 2
18X8 bits: 4
16X8 bits: 4

Checking the Log File Working with SMC Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 851

Number of Adders : 25
49X49 bits: 20
32X32 bits: 1
25X1 bits: 4

Number of Registers/Delays : 44 (99 register bits)
48 bits : 22
32 bits : 2
19 bits(SR): 20

Number of RAMs : 17
W: 64, D: 32 bits(SP): 6
W: 1, D: 128 bits(SP): 3
W: 1, D: 64 bits(SP): 2

W => Width
D => Depth
SR => Shift Register
SP => Single Port
DP => Dual Port

Pattern Usage Report

The Pattern Usage Statistics section of the Synphony log file summarizes the
statistics for each pattern identified in the user design. For each pattern, it
lists three statistics:

• Number of primitive blocks in the pattern netlist

• Number of times the pattern occurs in the original netlist

• Instantiated number of pattern in the generated RTL (after folding)

Here is an example of pattern usage statistics:

PATTERN USAGE STATISTICS

2 distinct patterns are used in the system

Pattern 1

@N: Number of blocks in the pattern: 3
@N: Occurrence in the original netlist: 10
@N: Number of instantiated devices: 2

LO

 Working with SMC Output Checking the Log File

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
852 October 2013

Pattern 2

@N: Number of blocks in the pattern: 4
@N: Occurrence in the original netlist: 15
@N: Number of instantiated devices: 3

Verifying the RTL with a Test Bench Working with SMC Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 853

Verifying the RTL with a Test Bench
The following procedure shows you how to generate a test bench from the
Synphony Model Compiler tool, and use it to verify your design.

1. In the Simulink schematic window, set parameters for the Port In and Port
Out blocks:

– For each Port In block in the design, double-click the block, and enable
the Capture test vectors for RTL Test bench option. Click OK.

– For each Port Out block in the design, double-click the block, and
enable the Capture test vectors for RTL Test bench option. Click OK.

2. Simulate your design. This ensures that you have captured the stimuli
and expected results for the design.

LO

 Working with SMC Output Verifying the RTL with a Test Bench

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
854 October 2013

3. Double-click the SHLSTool block in the model window and then click New
Implementation or Edit Implementation in the SHLSTool window.

– For a testbench with a VHDL netlist, click Generate VHDL to generate a
VHDL design. Enable the Generate RTL test bench checkbox. This
generates a .vhd netlist file and a .vhd testbench in the
<implementation>/vhdl directory.

– For a testbench with a Verilog netlist, click Generate Verilog to generate
a Verilog design. Enable the Generate RTL test bench checkbox. This
generates a .v netlist file in the <implementation>/verilog directory, and a
.v testbench in the <implementation>/verilog directory.

– Set other target options as usual (see Setting up Implementations, on
page 644).

– Click OK.

4. Click Run in the Synphony Model Compiler window.

The Synphony Model Compiler tool generates a Verilog or VHDL netlist,
as specified, along with a Verilog or VHDL test bench and .do files for
supported simulators. The following files for simulation are in the direc-

Verifying the RTL with a Test Bench Working with SMC Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 855

tory where the .mdl file for the design is stored, under the vhdl or verilog
subdirectory for the implementation.

The simulation scripts help to quickly verify the RTL-level representation
of the DSP algorithm.

5. Simulate the test bench to verify your design.

– To run Aldec Active-HDL, type the following at the command prompt:

vsimsa <design>_activehdl.do

– For ModelSim, type the following at the command prompt:

vsim < simulate_modelsim.do

You can also use the Cadence IUS54 or Affirma simulators. The Verilog
simulator you select must be able to handle Verilog 2001-style state-
ments, and the VHDL simulator must handle VHDL 93.

File Description

Inport_<design>_<port>.dat Each Port In instance has a file with stimuli for
the test bench.

Outport_<design>_<port>.dat Each Port Out instance has a file with expected
results for the test bench.

<design>.vhd or <design>.v The RTL associated with the design.

<design>_Test.vhd or .v The test bench wrapper for the design. It applies
the stimuli, and compares the results with the
expected results.

<design>_affirma.do A simulation script for the Cadence NC
simulator.

<design>_activehdl.do A simulation script for the Aldec simulator.

<design>_modelsim.do A simulation script for the ModelSim simulator.

LO

 Working with SMC Output Working with the Output for FPGA Designs

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
856 October 2013

Working with the Output for FPGA Designs
This procedure shows you how to use the Synphony Model Compiler output
for logic synthesis with the Synopsys FPGA synthesis tools, Synplify Pro or
Synplify Premier. These are the only supported FPGA synthesis tools.

1. Make sure you have access to a Synopsys FPGA synthesis tool, Synplify
Pro or Synplify Premier.

2. Create your Synphony Model Compiler implementation and specify the
following implementation options. See Setting up Implementations, on
page 644 for details.

– Specify an FPGA target architecture.

– Specify the format for the output netlist, and any optimizations (see
Optimizing with Retiming, on page 655, Optimizing with Folding, on
page 662, and Optimizing with Multichannelization, on page 674).

– Click Run.

The Synphony Model Compiler software generates an optimized RTL
netlist, a project file and other files. The netlist is vendor-independent
and can be used as input for synthesis.

3. Optionally, verify your design (see Verifying the RTL with a Test Bench,
on page 853).

4. Start Synplify Pro or Synplify Premier, and set up a project, using the
project file, constraint file, and the RTL netlist generated by the
Synphony Model Compiler tool.

5. Set synthesis options and constraints and synthesize your design.

In the logic synthesis tool, you can further explore device trade-offs by
setting device-specific constraints. You can also use various
vendor-specific synthesis optimizations to further refine your design
before placing and routing it.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 857

C H A P T E R 1 2

Using M Code Blocks

The Synphony Model Compiler tool includes the M Control block, which
provides a way to implement complex control-intensive functions using the
MATLAB M language. The following provide more information about creating
and using this block:

• Using M Code Blocks, on page 858

• M Coding Style, on page 862

• M Language Support for M Code Blocks, on page 893

LO

 Using M Code Blocks Using M Code Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
858 October 2013

Using M Code Blocks
This section shows you how to incorporate an M Control block in your design
and some tips on using M Control blocks.

• Using M Code Blocks in SMC Designs, on page 858

• Coding for Synthesis with M Code Blocks, on page 860

Using M Code Blocks in SMC Designs

Use the following procedure to incorporate M functions to your design.

1. Select the M Control block and instantiate it in your design.

See SMC M Control, on page 356for details. Use the M Control block for
control logic.

2. Specify the function for the block.

– Double-click the block to open the dialog box.

– Enter the name of the M function for the block. See step 3 for
information about creating a new M function. The specified function
must be in the MATLAB path.

Using M Code Blocks Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 859

– If you want to view or make changes to a function, click Edit Function to
open the file in the MATLAB M file editor. Edit the function as needed.

– If you want to override the currently-defined M-Function parameters,
select the relevant parameters in the list and click Change Value. When
you override a parameter with a new value, the default value is shown
in parentheses near the new value. For more information about
defining overridable parameters, see Overridable Parameters, on
page 881.

– If the output port dimensions are not scalar, enable Specify output
dimensions, and specify the dimensions.

– Save the file and close the window.

3. To write a new M function, do the following:

– Open the dialog box for the M code block, and enter a name for the
function as before.

– Click Edit Function to open a MATLAB M file editor window.

– Write the M function following the guidelines and caveats described
in Coding for Synthesis with M Code Blocks, on page 860, M Coding
Style, on page 862, and M Language Support for M Code Blocks, on
page 893.

– Use the syntax highlighting feature built into the M editor to check
syntax.

– Save the file when you have finished.

4. Click OK in the dialog box when you have finished creating or editing the
function file.

5. In the model window with the design, press Ctrl-d to update Simulink.

This propagates data types and sample rates through the input and
output ports. At every simulation tick, the block converts the fixed-point
data at the block inputs to double, executes the M control function on this
double data, and then converts the output double data to fixed-point again
for the rest of the model. If your M file followed the guidelines, the model
updates successfully and you can simulate the design.

LO

 Using M Code Blocks Using M Code Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
860 October 2013

Coding for Synthesis with M Code Blocks

This section outlines the best practices for setting up your M code so that it
generates the optimal hardware during M synthesis.

1. Make sure the design is appropriate for M synthesis:

– M code blocks only support a single sample rate.

– All inputs must be fixed point.

2. Write M code that is hardware-aware.

– Define the states in the design (memories, registers, etc.).

– Describe the conditional and unconditional data flow between the
states during a clock cycle, using M language semantics like matrix
variables, loops, and built-in functions.

See Hardware-Aware M Code, on page 892 for an example.

3. Specify precision.

– Specify the precision of persistent variables used in
accumulation-type operations. See Precision Bounds for Persistent
Variables, on page 885 and Counters, on page 878 for more
information.

– Data type propagation through the M code is full-precision up to a
limit of 53 bits. Use MATLAB quantize commands to control the
precision and, if necessary, to limit precision to 53 bits or less. See
Data Type Restrictions, on page 866 and Controlling Precision and
Signedness with Quantizers, on page 867.

– M synthesis uses maximum precision to calculate the data type of
constants; this means that constants with infinite precision could
cause an increase in area. Use the SMC shls_convert function or the
MATLAB quantizer object to quantize constants. For details, see
Defining Precision with shls_convert, on page 886 and Defining
Precision with the Quantizer Object, on page 887, respectively.

4. Model persistent variables accurately.

– To create state-holding elements, use persistent variables that are
initialized to zero with the isempty function. See Using Persistent
Variables, on page 883.

Using M Code Blocks Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 861

– Ensure that the access-update sequence for persistent variables is
correct. M synthesis optimizes away persistent variables (registers)
that are never used before they are updated. See Access-Update
Sequence for Persistent Variables, on page 888 for details.

– For better performance, reduce the number of conditional
assignments to persistent variables. Conditional assignments reduce
the possibilities for mapping datapath logic to dedicated DSP FPGA
resources. See Conditional Assignments to Persistent Variables, on
page 890 for details.

5. Specify combinatorial logic.

Avoid incomplete assignments to outputs and program variables. For
more information, refer to Combinatorial Logic, on page 868.

6. Use the features built into the M editor like syntax highlighting to step
through your M code and identify problems.

For additional information about the extent of M syntax support, see M
Language Support for M Code Blocks, on page 893.

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
862 October 2013

M Coding Style
Specifying block behavior with a high-level, sequential programming style
makes it easier to develop and debug. The Synphony Model Compiler M code
blocks provide a way to implement complex control-intensive and datapath
functions using the MATLAB M language (see SMC M Control, on page 356).

The M function is ultimately used to infer synchronous digital hardware, so
you must observe certain coding restrictions and idioms, which are described
in the following sections:

• Ports and Timing, on page 862

• M Code Block Data Types, on page 864

• Combinatorial Logic, on page 868

• Using Persistent Variables, on page 883

• Precision Bounds for Persistent Variables, on page 885

• Memories, on page 869

• State Machines, on page 870

• Counters, on page 878

• MATLAB Function that Evaluates to a Constant, on page 880

• User-Defined Functions for M Code Blocks, on page 880

• Overridable Parameters, on page 881

Ports and Timing

You encapsulate the behavior of an M code block in a top-level function
written in M. The named input parameters of this top-level function define
the physical input ports of the synthesized SMC M code block, and the
named return values of the function define the physical output ports of the
block. A scalar or single-element vector return value defines a single output
port in the hardware. A multi-element vector return value defines multiple
output ports, one for each element of the returned vector.

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 863

This is a function header for 3-input, single-output design:

function z = checksum(a, b, c)

This is a function header for 3-input, 2-output design:

function [sum, cout] = adder(a, b, cin)

This top-level function can call other functions, like user-defined functions or
some MATLAB built-in functions. See Built-In Function Support, on
page 895 for a list of supported MATLAB built-in functions and User-Defined
Functions for M Code Blocks, on page 880 for information about user
functions.

Ports

As with all Synphony Model Compiler blocks, the inputs of an M code block
receive signals which have a specific data type (word width and signedness)
and a specific sample rate.

Timing

The simulation timing model for an M code block assumes that the top-level
function for the block is called once for each input sample. This means that
multiple references to an input parameter within the same function call all
access the same input sample.

Sample rate All inputs to an M code block must have the same sample rate; you can
not have a multi-rate M code block.

Data type The data type of each input can be in either signed 2’s complement or
unsigned fixed-point format.
Each input port can have its own fixed-point format. The fixed-point
format allows a certain number of bits to the left and to the right of the
digital point. The tool determines the data type of an input port from
the system context in which the M code block is instantiated; it is not
explicitly specified in the M function. The fixed-point format of each
output port is determined by using the input port formats derived from
the system context and the M language expressions used to compute
output port values.

Word width The total word width of each input port signal must not exceed 53 bits.

Dimensions The dimensions of the input ports are inherited. You must explicitly
specify output port dimensions in the block parameters (SMC M
Control, on page 356).

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
864 October 2013

Since synthesis should match simulation, this also defines the timing of the
synthesized hardware. The hardware must therefore operate with a
maximum latency from inputs to outputs of one sample period.

M Code Block Data Types

Each input, output, and internal variable in the M function that defines an M
code block must have a well-defined fixed-point data type. This data type
specifies a digital hardware representation:

• The number of bits to the left of the binary point (integer portion)

• The number of bits to the right of the binary point (fractional portion)

• Whether the format is signed (2’s complement) or unsigned

In addition, inputs and outputs must be scalar, vector, or matrix operations.
Complex types and operations are not supported.

The data type of each input and variable affects the hardware synthesized for
the operations performed on that input or variable. It is therefore important
to understand how data types are assigned and propagated and how to
control the precision and signedness of operations:

Input Data Type Assignment

The tool determines the data types of primary inputs from the Simulink block
diagram in which the M code block is instantiated. Before compiling an M
code block, the tool determines the fixed-point data type of the signal driving
each block input by propagating the data type from the Simulink model

Data type assignment Input Data Type Assignment, on page 864
Output Data Type Assignment, on page 865

Data type propagation
through the
M-function

Internal Data Type Propagation, on page 865
Constant Data Type Assignment, on page 866
Port Dimensions, on page 866
Data Type Restrictions, on page 866

Precision and
signedness control

Controlling Precision and Signedness with Quantizers, on
page 867

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 865

enclosing the block. This means that the data types for the input ports are
determined outside the M function that defines the behavior of the M code
block.

Internal Data Type Propagation

The fixed-point data types of variables and operations defined in the function
for the M code block are determined by propagating data types from the
primary inputs. This is the propagation of data types through a Simulink
model. The data type resulting from an operation (such as add or multiply) is
determined by considering the nature of the operation and the data types of
its input operands.

Type propagation within an M code block tries to preserve the full precision of
the result of each operation.

• Operations such as add and multiply increase precision. For example,
the output of an addition performed on two N-bit inputs will generally
have an N+1-bit result type, preserving any overflow in the N+1st bit.
Similarly, multiplying an N-bit input by an M-bit input will usually
generate an N+M-bit result.

It is not always possible to maintain the full precision result of an opera-
tion such as add or multiply, which increases required precision. Excep-
tions to the full precision model are discussed below in Data Type
Restrictions, on page 866.

• Other operations naturally maintain the precision of their inputs. For
example, a bitwise AND of two N-bit inputs produces an N-bit result.

• The output precision of certain operations will be less than the input
precision. For example, a compare-for-equality operation on two N-bit
inputs produces a 1-bit output signifying the inputs are either equal or
not equal.

Output Data Type Assignment

The fixed-point data type of each M code block output is determined using
the same type propagation process described above for internal operations.
The propagated data type of the operation driving an output becomes the
data type of that output. The fixed-point formats of each output are commu-
nicated to the enclosing Simulink model and assigned to the signals driven by
the outputs of the M code block.

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
866 October 2013

Constant Data Type Assignment

The fixed-point format of constants in the M source code is determined by
using the smallest amount of precision necessary to represent the constant
value. This also applies to constants which are derived by evaluating
constant-valued expressions (such as 1.5 + 6) at compile time. The use of
minimal precision to represent the constant assumes the constant value is
exactly representable with finite precision in a binary representation.

Some constants and constant expressions cannot be exactly represented with
finite precision in base-2; for example the constant expression 1/3. For these
constants, the maximum length of the fractional port is restricted to 32 bits.
This level of precision can produce very large hardware elements which may
not required by your application. It is therefore a good practice to constrain
the precision of constants in the M source code. See Controlling Precision and
Signedness with Quantizers, on page 867 for information on how to do this.

Port Dimensions

The tool determines the dimension of primary inputs from the Simulink block
in which the M code block is instantiated. The dimensions of variables and
operations defined in the function for the M code block are determined by
propagating the dimension from the primary inputs, which is analogous to
the procedure used to propagate dimensions through a Simulink model.

The dimension resulting from an operation, such as concatenation or extrac-
tion, is determined by considering the nature of the operation and the dimen-
sion of its input operands. The dimensions of the output ports must be
explicitly specified in the Specify output dimension parameter of the M code
block. (SMC M Control, on page 356).

Data Type Restrictions

In Simulink, the SMC M code block is simulated using an internally-gener-
ated S-Function which calls the original M function. By simulating your M
code, you can interactively debug the source for the M code block. However,
Simulink executes your M function using IEEE double-precision floating
point types and arithmetic, rather than the fixed-point types that are
ultimately synthesized.

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 867

Precision
As long as the synthesized fixed-point types and internal operations use a
precision less than the precision of doubles (53 bits), the simulation results
using double precision floating point will match the synthesized hardware.
However, if an input or internal operation requires a precision greater than
53 bits, simulation is not guaranteed to match synthesis.

During internal type propagation, the Synphony Model Compiler M compiler
checks for full precision result conditions that exceed 53 bits, and issues a
warning for each such violation. It also trims the full-precision bit width of
the offending operation to 53 bits by discarding enough least significant bits.
However, this trimming does not guarantee that simulation will match
synthesis, so it is a good practice to constrain the precision of internal opera-
tions as described in Controlling Precision and Signedness with Quantizers,
on page 867.

Precision of Input Port Widths
For the same simulation mismatch reasons, input port widths are restricted
to 53 bits or less. Input port widths greater than 53 bits result in an error. To
correct such an error, you must constrain the width of the signal driving the
offending M code block input in the Simulink model. To do this, either use a
Convert block before the M code block input or adjust the output data type of
the block driving the signal.

Controlling Precision and Signedness with Quantizers

The SMC M code blocks support quantizers, which are available in the
MATLAB Fixed-Point Toolbox. Quantizers are useful in situations where you
need to explicitly define the precision and signedness of a result.

You can use quantizers to constrain internal operation widths and avoid
simulation-synthesis mismatches, and in situations where the full precision
of an operation, input, or constant is not required. You can use the
shls_convert function instead of quantizers. The two methods result in equiva-
lent behavior, but shls_convert has faster simulation times for M code blocks.

For detailed information about quantizers, refer to the MATLAB documenta-
tion for the Fixed-Point Toolbox. In brief, you define a quantizer object which
specifies a fixed-point format and a set of modes to handle overflows and
underflows when converting to this format. The type conversion specified by

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
868 October 2013

the quantizer object is applied to an expression by invoking the quantize()
function. For examples of the use of quantizers, see Precision Bounds for
Persistent Variables, on page 885.

The SMC M code blocks support a subset of the full quantizer functionality
provided by the Fixed-Point Toolbox, as described in this table:

Combinatorial Logic

Most useful control functions such as state machines and counters require
state-holding elements (see Using Persistent Variables, on page 883 and
Counters, on page 878 for details), but the simplest M code block is one that
requires no state-holding elements. You implement such a block as purely

Quantizer Property Name Quantizer Property Value SMC Support

mode ‘double’ No

‘float’ No

‘fixed’ Yes

‘ufixed’ Yes

‘single’ No

roundmode ‘ceil’ Yes

‘convergent’ Yes

‘fix’ Yes

‘floor’ Yes

‘nearest’ Yes

overflowmode (fixed-point
only)

‘saturate’ Yes

‘wrap’ Yes

format [wordlength fractionleng] ‘fixed’
or ‘ufixed’ only)

Yes

[wordlength exponent length]
(‘float’ mode)

No

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 869

combinatorial digital logic with no delay elements or registers. An M function
which does not use persistent variables to compute the values of its outputs
is implemented with purely combinatorial logic.

The following example shows a block that is implemented as purely combina-
torial logic, with no states:

function res = sum(a, b, c, d, sel)
if(sel)

res = a + b;
else

res = c + d;
end

end

In a purely combinatorial block, each output must be assigned a value along
some control path through the M function. Failure to do so may cause a
mismatch between simulation in Simulink and the hardware implementation
produced by the Synphony Model Compiler tool. The preceding code example
illustrates this required practice; note that the output res is always assigned a
value each time the function sum is called.

Persistent Variables

A variable that is declared as persistent retains its value across function calls
when an M function is executed in the software. State-holding elements in
hardware require this behavior, because they must retain their value across
input sample times, so in the programming model for M code blocks,
state-holding elements are inferred using persistent variables. See Using
Persistent Variables, on page 883 for details.

Memories

If you are using the M Control block, code persistent arrays as described in
Using Persistent Variables, on page 883. The tool infers memory from the
persistent array.

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
870 October 2013

State Machines

The M language makes it easy to define hardware state machines using the
coding conventions described in Using Persistent Variables, on page 883.
This section contains examples of Mealy and Moore state machines. It also
has a stateflow example, that demonstrates how to implement simple state
flow designs with the M Control block.

Mealy State Machine Example

A Mealy state machine is one in which the outputs are a function of both the
current state and the state machine inputs.

The following find_pattern_mealy function implements a state machine for
detecting the pattern 1001 in a serial bitstream, including overlapping
instances of the pattern.

% Detect the bitpattern 1001, including overlapping instances such
% as in the sequence 1001001.

function detected = find_pattern_mealy(rst, x)

persistent state; % The state variable

if(isempty(state)) %Not a substitute for explicit local reset
input

state = 0;
end

% Define named constants for states
RESET = 0;
GOT_FIRST = 1;
GOT_SECOND = 2;
GOT_THIRD = 3;
GOT_PATTERN = 4;

if(rst == 1)
state = RESET; % Implements a local, synchronous reset
detected = 0;

else
switch(state)

case RESET
if(x)

state = GOT_FIRST;
end
detected = 0;

case GOT_FIRST

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 871

if(x)
state = RESET;

else
state = GOT_SECOND;

end
detected = 0;

case GOT_SECOND
if(x)

state = RESET;
else

state = GOT_THIRD;
end
detected = 0;
case GOT_THIRD

if(x)
state = GOT_PATTERN;
detected = 1;

else
state = RESET;
detected = 0;

end
case GOT_PATTERN

if(x)
state = GOT_FIRST;

else
state = GOT_SECOND; % Detect overlapping pattern

end
detected = 0;
otherwise

state = RESET;
detected = 0;

end
end

end

State Flow Example
This example provides guidelines for translating a stateflow design into M
language.

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
872 October 2013

function [outdata1, outdata2, outdata3] = example(indata1,indata2,
indata3)

%%%%% declaration of variables %%%%%
persistent CurrentState
persistent NextState
persistent Poutdata1
persistent Poutdata2
persistent Poutdata3

RESET=0;
IDLE=1;
STATE1=2;
STATE2=3;
STATE3=4;

%%%%% initialize persistent variables %%%%%
if(isempty(CurrentState))

CurrentState=0;
end

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 873

if(isempty(NextState))
NextState=0;

end

if(isempty(Poutdata1))
Poutdata1=0;

end

if(isempty(Poutdata2))
Poutdata2=0;

end

if(isempty(Poutdata3))
Poutdata3=0;

end

%%%%% start of main body %%%%%

if (CurrentState == RESET)
NextState=IDLE;
Poutdata1=1; % execute entry actions for state IDLE

else
switch CurrentState

case IDLE
if(indata1==1) % execute exit actions for state IDLE

Poutdata3=3;
NextState=STATE1;

else % execute during actions for state IDLE
Poutdata2 =2;

end
case STATE1

if(indata3==1) % execute exit actions for state STATE1
NextState=STATE3;
Poutdata3=6;

elseif(indata1==0) % execute exit actions for state STATE1
NextState=STATE2;
Poutdata3=6;

else % execute during actions for state STATE1
Poutdata2 =5;

end
case STATE2

if(indata2==1) % execute exit actions for state STATE2
NextState=STATE3;
Poutdata3=9;

else % execute during actions for state STATE2
Poutdata2 =8;

end
case STATE3

if(indata2==0) % execute exit actions for state STATE3

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
874 October 2013

NextState=STATE1;
Poutdata3=12;

else % execute during actions for state STATE3
Poutdata2 =11;

end
end

end

%%%%% executing entries if any %%%%%
if (NextState~=CurrentState)

switch NextState
case IDLE

Poutdata1 =1;
case STATE1

Poutdata1 =4;
case STATE2

Poutdata1 =7;
case STATE3

Poutdata1 =10;
end

end
%%%%%% end of main body %%%%%

%%%%% update of persistent variables %%%%%
CurrentState=NextState;
outdata1=Poutdata1 ;
outdata2=Poutdata2 ;
outdata3=Poutdata3 ;

State Encoding
In this example, the numeric encodings of the various states are given
descriptive names by assigning the state encodings to variables.

The five states are modeled using a single persistent variable, state. The input
x provides samples of the serial bitstream and the input rst places the state
machine into a reset state (named RESET) when asserted. The output detected
is asserted high whenever the target pattern is detected and is reset to low on
the sample period following a successful detection. A switch statement whose
cases correspond to legal operating states is used to compute next-state
updates and to correctly set the detection signal.

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 875

Regardless of the state in which the system is operating, the rst input places it
into the RESET state when asserted. To prioritize the effect of rst over the x
input, the example has a top-level if-else statement which evaluates if rst is
used. If rst evaluates to true, reset actions are performed. Otherwise, the switch
statement is executed.

Local Resets
This coding style synthesizes a local, synchronous reset for rst. Updates to the
state register are synchronized to a physical clock in the synthesized
hardware. There is no way to code a local, asynchronous reset. However, the
mandatory global reset modeled with isempty can be specified as either
synchronous or asynchronous using the Synphony Model Compiler UI.

Although the state persistent variable must be initialized to zero using isempty,
it is better to also have a local synchronous reset, such as rst. There are two
reasons why a local reset for state machines is desirable in addition to the
global reset.

• The global reset always sets the state registers to zero, which may not be
the desired encoding for the reset or start-up state of the state machine,
or zero might be an illegal state for that encoding.

– Where a zero-encoded state (as in one-hot encoding) is not a legal
operating state, code it as a separate case in the switch state or in the
otherwise clause of the switch. This lets the state machine detect when
a global reset forces it into the zero state and it can transition to the
correct start-up state on the next sample period.

In one-hot encoding, all normal operating states have exactly one bit
set in the state register, so setting all state bits to zero places the
system in an illegal state.

– When a zero-encoded state is a normal operating state but not the
desired start-up state, define a local reset input using a top-level
if-else and ensure that it is asserted as soon as possible after the
global reset to place the state machine into the correct start-up state.

• A local reset is also useful because the global reset is generally only
asserted once at system start-up. The local reset allows other processes
to reset the state machine at any time during system execution.

If the start-up state of the state machine is encoded as zero and if the
state machine will only be reset once, then the global reset will suffice
for initializing the state machine and the local reset is unnecessary.

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
876 October 2013

Assignment for Outputs and Non-Persistent Variables
Note that the detected output is implemented as combinatorial logic because it
is not declared as a persistent variable. The detected signal is stateless, so it is
crucial that you assign it a value along every control path in the
find_pattern_mealy function. Failure to always assign a value to detected can
result in an undefined signal during simulation and an unpredictable
hardware implementation. You must assign a value to every non-persistent
variable or output.

Assignment for Persistent Variables
You do not always need to assign a value to the persistent variable state,
because it can retain its current state. In this example, the switch statement
that handles the RESET case only assigns state if the x input is asserted.
Otherwise, it retains the current RESET state and no explicit assignment is
required.

Moore State Machine Example

In a Moore state machine, the outputs are a function of the current state
alone, unlike a Mealy state machine where the outputs can change as soon
as an input changes. If there is an input glitch on a Mealy state machine, the
glitch can propagate to the state machine output.

You can easily convert a Mealy state machine to a Moore state machine. The
following M code converts the previous example (Mealy State Machine
Example, on page 870) to a Moore state machine. Note that the exact timing
of when the detected output changes is different in the Mealy and Moore
examples. This is because the output change is sensitive to the x input in the
Mealy example, but not sensitive to it in the Moore example.

The find_pattern_moore function shown here factors the code for computing the
detected output out of the original switch statement in find_pattern_mealy and no
longer depends on the input variable x. It is solely a function of the state
persistent variable.

% Detect the bitpattern 1001, including overlapping instances
% as in the sequence 1001001.

function detected = find_pattern_moore(rst, x)
persistent state; % The state variable

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 877

if(isempty(state)) % Not a substitute for explicit reset input
state = 0;

end

% Define named constants for states
RESET = 0;
GOT_FIRST = 1;
GOT_SECOND = 2;
GOT_THIRD = 3;
GOT_PATTERN = 4;

% This implements the detected output, Moore-style
if(state == GOT_PATTERN)

detected = 1;
else

detected = 0;
end

% This if-else and switch implements the next-state update.
if(rst == 1)

state = RESET; % Implements a local, synchronous reset
else

switch(state)
case RESET

if(x)
state = GOT_FIRST;

end
case GOT_FIRST

if(x)
state = RESET;

else
state = GOT_SECOND;

end
case GOT_SECOND

if(x)
state = RESET;

else
state = GOT_THIRD;

end
case GOT_THIRD

if(x)
state = GOT_PATTERN;

else
state = RESET;

end
case GOT_PATTERN

if(x)
state = GOT_FIRST;

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
878 October 2013

else
state = GOT_SECOND; % Detect overlapping pattern

end
otherwise

state = RESET;
end

end

end

Counters

Counters are another commonly-used control function that are easily
expressed in M. The following examples illustrate a counter and a counter
with a local reset.

Counter

The following function implements a counter which continuously counts from
2 up to 10.

% Implements a counter which continuously counts from 2 up to 10.

function countOut = counter1()

persistent count;

if(isempty(count))
count = 0;

end

q = quantizer([4 0], 'wrap', 'ufixed');

if((count == 0) || (count == 10))
count = 2;

else
count = quantize(q, count + 1);

end

countOut = count;

end

You implement the counter state with a single persistent variable, count.
Because count is initialized to zero by the global reset, you must set it up so
that this condition is detected and the counter can be given the correct

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 879

start-up value of 2. To do this, the if-else statement resets the count to 2 if the
count is zero (due to global reset) or if the count has reached the maximum
value of 10. Otherwise, the count is incremented.

The M compiler does not detect precision bounds for the counter, although
this can be calculated by considering the sequence of states the counter
moves through. Therefore, the M function quantizes the result of the incre-
ment to 4 bits, because this is the minimum precision required to represent
the range of counter values.

Counter with Local Reset

A more practical counter might have a local reset as in the following code. The
local reset is coded as for the state machine examples, using a top-level if-else
statement. See Mealy State Machine Example, on page 870and Moore State
Machine Example, on page 876 for coding examples, and Local Resets, on
page 875 for a discussion on the use of local resets.

% Implements a counter which continuously counts from 2 up to 10.
% The counter has a local reset input.

function countOut = counter2(rst)

persistent count;

if(isempty(count))
count = 0;

end

q = quantizer([4 0], 'wrap', 'ufixed');

if(rst)
count = 2;

else
if((count == 0) || (count == 10))

count = 2;
else

count = quantize(q, count + 1);
end

end

countOut = count;

end

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
880 October 2013

MATLAB Function that Evaluates to a Constant

Your M function can place a call to MATLAB functions that pass constant
arguments and return a constant value. The M code blocks replace such
function calls with a constant, just like constant propagation optimization.
The returned constant from the function must be a scalar or vector; struct is
not supported as a return type.

In the following my_filter function, the call to get_filter_coeffs is replaced by the
filter coefficients obtained from get_filter_coeffs. No hardware is generated for
the get_filter_coeffs function.

function [output] = my_filter(input)
…
coefs = get_filter_coeffs();
…
…

end

function coefs = get_filter_coeffs()
Fs = 150e6;
mfir_N = 15; % Order
mfir_Fpass = 80e3/(Fs/128)*2; % Passband Frequency
mfir_Fstop = 100e3/(Fs/128)*2; % Stopband Frequency
mfir_Wpass = 1; % Passband Weight
mfir_Wstop = 1; % Stopband Weight
mfir_dens = 16; % Density Factor
% Calculate the coefficients using the FIRPM function.
coefs=firpm(mfir_N, [0 mfir_Fpass mfir_Fstop 1], [1 1 0 0], ...

[mfir_Wpass mfir_Wstop], {mfir_dens});
end

If you are logged in with restricted access on a Windows machine, evaluation
to constants might fail. M code blocks try to register the registry server where
MATLAB is currently running. If this access is restricted, evaluation to
constants will not work.

User-Defined Functions for M Code Blocks

You can define other M functions in addition to the top-level M function
which defines the M code block. You can call these additional functions as
needed within the body of the top-level function.

M Coding Style Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 881

User-defined functions are useful for reusing M code and for improving the
overall readability/maintainability of the M specification. For example, you
can encapsulate frequent calls to quantizer and quantize in user-defined
functions, as you use them multiple times to quantize results assigned to
persistent variables.

The following example illustrates how user-defined functions can simplify the
code for function q_accum1 shown in Defining Precision with the Quantizer
Object, on page 887. The calls to quantize and quantizer are folded into the
my_quantize user-defined function.

%Shows user-defined function for quantizing persistent variables

function res = q_accum1(x)

persistent sum;

if(isempty(sum))
sum = 0;

end

sum = sum + x;
sum = my_quantize(sum, 8);
res = sum;

end

function x_q = my_quantize(x, width)
x_q = quantize(quantizer([width 0],'wrap'), x);

end

Overridable Parameters

You can annotate simply assigned variables in the M-function so that they
can be overridden for each block. The following steps describe the procedure.

1. Add a comment tag % syn_parameter to the end of the assignment. For
example:

threshold = 5; % syn_parameter

When you open the dialog box of an M code block using this M-function,
this parameter (and any others defined in the same way) are listed in the
M function parameters list.

2. Open the dialog box for an M block using this function.

LO

 Using M Code Blocks M Coding Style

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
882 October 2013

3. Select the parameter you want to override from the list in the M-Function
parameters section, and click Change Value. Specify the override value you
want to use.

The tool displays the original value in parentheses.

You can specify the override values as an expression that can be evalu-
ated in the base workspace. Note that you cannot override parameters
for variables that have the same name but which appear in different
sub-functions of the M code.

Using Persistent Variables Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 883

Using Persistent Variables
The M programming language includes persistent variables. A variable that is
declared as persistent retains its value across function calls when an M
function is executed in the software. You use them to implement M code with
state-holding elements. State-holding elements in hardware require this
behavior, because they must retain their value across input sample times.

See the following for detailed information about coding with persistent
variables:

• M Code for Persistent Variables, on page 883

• Precision Bounds for Persistent Variables, on page 885

• Access-Update Sequence for Persistent Variables, on page 888

• Conditional Assignments to Persistent Variables, on page 890

M Code for Persistent Variables

See the following topics for details:

• M Language Example of Persistent Variable, on page 883

• Initialization with the isempty Construct, on page 884

• Persistent Variables and Inference of State Registers, on page 884

• Precision Bounds for Persistent Variables, on page 885

M Language Example of Persistent Variable

The following M function describes an M code block which computes parity
(exclusive OR) over a window of three consecutive input samples.

Persistent variables x0 and x1 save the state of the previous two input
samples, and the current input sample is supplied by input x2. The M
compiler infers registers for persistent variables x0 and x1. In hardware, these
registers form a two-element shift register with x2 feeding the shift register
input.

LO

 Using M Code Blocks Using Persistent Variables

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
884 October 2013

function p = parity(x2)
persistent x0;
persistent x1;

if(isempty(x0))
x0 = 0;

end
if(isempty(x1))

x1 = 0;
end

p = bitxor(bitxor(x0,x1),x2);
% next two assignments implement 2-element shift register
x0 = x1;
x1 = x2;

end

Initialization with the isempty Construct

The isempty function shown in the previous example initializes the two persis-
tent variables to zero at the start of system simulation. In the synthesized
hardware, the mandatory global reset performs this initialization. The global
reset is connected to all state-holding elements in an SMC design. In order for
simulation to correctly model the mandatory global reset, all persistent
variables must be initialized to zero in the style shown above. Each persistent
variable must have its own isempty construct containing a single assignment
to zero. This is the only legal use of the isempty function in the SMC M code
programming methodology.

Persistent Variables and Inference of State Registers

Using persistent variables does not guarantee that state registers will be
inferred in the synthesized hardware. The synthesis software only infers
state-holding elements when they are needed; that is, when a persistent
variable can be referenced before it is assigned during the same call to the M
function. In such cases, the referenced value is necessarily the state the
variable had before the current function call and you need a register to hold
this state in the corresponding hardware implementation. On the other hand,
if a persistent variable is always assigned before it is referenced during each
function call, then its previous state is never used, and state-holding
hardware is unnecessary.

Using Persistent Variables Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 885

The following code illustrates a case where no register is inferred for a persis-
tent variable:

function res = no_state(a, b)
persistent x;

if(isempty(x))
x = 0;

end

% x is assigned on every path through function, so
% no state is inferred.
if((a == 0) && (b == 0))

x = 3;
elseif((a == 0) && (b == 1))

x = 2;
elseif((a == 1) && (b == 0))

x = 1;
else

x = 0;
end

res = x;
end

Precision Bounds for Persistent Variables

To create hardware from the M-language description, the software must
determine the width and signedness of the internal signals, operators, and
output ports of the M code blocks. The M compiler uses the fixed-point
format of the block inputs and the nature of the computations that are
performed within the M function to compute the minimum required preci-
sion. The following cases describe how precision bounds are handled:

• Precision for Persistent Variables, on page 886

• Defining Precision with shls_convert, on page 886

• Defining Precision with the Quantizer Object, on page 887

• Effect of Quantize Call Placement, on page 888

LO

 Using M Code Blocks Using Persistent Variables

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
886 October 2013

Precision for Persistent Variables

In some cases, the software cannot statically compute the precision of persis-
tent variables from the M function. Specifically, this happens when an
assignment to a persistent variable may increase the required precision of the
variable on each call of the M function. A common example of this is accumu-
lation into a persistent variable, as shown in this code:

function res = accum(x)

persistent sum;

if(isempty(sum))
sum = 0;

end

sum = sum + x;
res = sum;

end

In this example, the precision required to faithfully represent the state of sum
is unbounded because you potentially require an extra bit of precision on
each call to accum. In such a situation, the M compiler prompts you to set a
bound on the precision of the persistent variable in question. You can do this
with the MATLAB quantizer object as described below in Defining Precision
with the Quantizer Object, on page 887.

Defining Precision with shls_convert

You can use the SMC shls_convert function to define precision, instead of
using the MATLAB quantizer object, as described in Defining Precision with the
Quantizer Object, on page 887. The advantage to using shls_convert is that it
results in much faster simulation runtimes in MATLAB.

The following M code uses the shls_convert function to specify the quantization
for the cnt counter.

Using Persistent Variables Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 887

Defining Precision with the Quantizer Object

The following shows one way to modify the persistent variable in the previous
example so that it compiles. Here, the modified function q_accum1 defines a
quantizer object (q) and uses it to set the precision of sum to 8 bits (with no
fractional portion).

Example 1
function res = q_accum1(x)

persistent sum;
q = quantizer([8 0],'wrap'); % define quantizer object

if(isempty(sum))
sum = 0;

end

sum = sum + x;
sum = quantize(q, sum); % limit sum precision with quantizer q
res = sum;

end

Example 2
You can also set precision bounds using other variations of the code shown
above. For example:

function res = q_accum2(x)

persistent sum;
q = quantizer([8 0],'wrap'); % define quantizer object

sum = quantize(q, sum); % limit sum precision with quantizer q

if(isempty(sum))
sum = 0;

end

sum = sum + x;
res = sum;

end

LO

 Using M Code Blocks Using Persistent Variables

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
888 October 2013

Example 3
This code uses the quantizer object to specify the quantization for the cnt
counter:

Effect of Quantize Call Placement

In general, any call to quantize that adequately constrains the precision of
persistent variables allows compilation to complete. However, the results in
the synthesized hardware may depend on where the call to quantize is inserted
in the M function. You can see this if you compare the first two examples in
Defining Precision with the Quantizer Object, on page 887. While function
q_accum2 in the second example also limits the precision of sum, it produces
slightly different synthesis results than q_accum1.

• In q_accum1, the quantize call comes after the accumulation into sum and
this quantized result is assigned to the output port res. This means that
the output port res is 8 bits wide.

• In q_accum2, the quantize call occurs before the accumulation into sum
and the accumulation increases the precision of sum to 9 bits. Therefore,
output port res is 9 bits wide.

For more information about the quantize() and quantizer(), see Controlling Preci-
sion and Signedness with Quantizers, on page 867.

Access-Update Sequence for Persistent Variables

A persistent variable in M code can be implemented as an SMC Register
component. However, it is not always implemented as a register; it might get
optimized away, depending on how it is accessed. If the persistent variable is
used in the M code before it is updated, it implies that the design accesses

Using Persistent Variables Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 889

the output of the register. If the persistent variable is used in the M code after
it is updated (i.e. using the new value in the same cycle), it implies that the D
input is accessed. If the variable is never used before being updated, the
register inferred by the persistent variable will be optimized away.

In the following example, M synthesis implements a register for the persistent
variable enb_dly, because there is an access to its output:

The next example shows an input access to the persistent variable enb_dly. As
the output of enb_dly is never accessed, the register is optimized away.

The following code shows both input and output access to enb_dly:

Optimized away

LO

 Using M Code Blocks Using Persistent Variables

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
890 October 2013

Conditional Assignments to Persistent Variables

Designs driven by local enables and resets tend to be written with conditional
assignments to persistent variables. This practice reduces the possibilities for
mapping datapath logic to DSPs for FPGA devices.

For such cases, separate datapath assignments, so that the core datapath
processing registers are not enabled. Instead, use enabled registers on the
periphery to control the data flow to and from the core. Such designs gener-
ally result in better QoR. The enable net ceases to be a high fanout net, and
this simplifies implementation. The following code shows the separation of
assignments, with the local if-else condition controlled by reset and enable:

Using Persistent Variables Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 891

LO

 Using M Code Blocks M Code Examples

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
892 October 2013

M Code Examples
The following are examples of recommended coding in the M language.

• Hardware-Aware M Code, on page 892

• Quantization of Constants, on page 893

Hardware-Aware M Code

The following code is hardware-aware code for a multi-channel transposed
FIR filter that can by synthesized by the M code blocks. It defines the states
and describes the data flow, using the following sequence that you can use in
your own designs:

• Constant definition

• State definition

• Combinational logic assignments

• Sequential logic assignments

function [y] = myTransposeFIR(x,w)
% Define constants
no_of_channels = size(x,1);
no_of_coeffs = size(w,2);

out_wl = 16; % syn_parameter - output wordlength
out_fl = 8; % syn_parameter - output fractional length

% Define states
persistent xs; %Declare state variable
if isempty(xs)

xs = zeros(no_of_channels,no_of_coeffs);
end
y = 0;

% Define combinational assignments
y=xs(:,1); % output assignment
pp = zeros(no_of_channels, no_of_coeffs);
for i = 1:no_of_channels

pp(i,:) = x(i) .* w(i,:); %channel-wise partial product computation
end
sum_of_pp=[xs(:,2:noOfCoeffs) zeros(noOfChannels,1)]+pp; %sum of partial product

M Language Support for M Code Blocks Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 893

% sequential assignments
xs=shls_convert(sum_of_pp,'format',[out_wl,out_fl],'fixed','ceil','nearest');

end

Quantization of Constants

By default M synthesis uses maximum precision. You must specify the preci-
sion of constants to avoid generating designs that are area-inefficient. The
following constant definition is inefficient because M synthesis uses the
maximum word length for coeffMatrix, which has infinite precision values
(1/3, 1/6) defined in the matrix:

Specifying the desired quantization in the M code will produce a more
area-efficient hardware implementation. The following example shows the
shls_convert function used for quantization:

M Language Support for M Code Blocks
Various features that are available in the M language are supported in the
Synphony Model Compiler tool:

• Keywords, Variables, Functions, and Structures, on page 894

• Operator Support, on page 894

• Built-In Function Support, on page 895

• SMC Functions for M Code Blocks, on page 898

LO

 Using M Code Blocks M Language Support for M Code Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
894 October 2013

• M Language Limitations, on page 898

Keywords, Variables, Functions, and Structures
• Keywords

The Synphony Model Compiler tool supports all M language keywords
except for while and for; while and for loops are not supported. Each
supported keyword has its usual semantics, except for try-catch-end,
where the code between catch and end is never executed.

• Variables
Variables must be real-value, fixed-point types. The tool does not
support variables and operations with complex values.

• Functions
Function arguments must be real scalars. The software does not
support recursive function calls.

• Structures are not supported.

Operator Support

The following operators and special characters are supported for scalars, with
their usual semantics except where noted.

M Operator Symbol Notes

Plus +

Unary plus +

Minus -

Unary minus -

Multiply *

Power ^ Only for both arguments a constant

Equal ==

Not equal ~=

Less than <

M Language Support for M Code Blocks Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 895

Built-In Function Support

The Synphony Model Compiler software supports the following built-in
functions and constants. They have their usual semantics, except that they
are generally limited to scalar arguments. Exceptions are noted below. The
hardware implied by all functions execute in one input sample period or less,
in keeping with the timing model described in Timing, on page 863.

Greater than >

Less than or equal <=

Greater than or equal >=

Short-circuit logical AND &&

Short-circuit logical OR ||

Logical NOT ~

Decimal point .

Continuation …

Separator ,

Semicolon ;

Comment %

Assignment =

Quote '

Horizontal concatenation [,] Only to compose return argument list of
top-level M functions.

M Operator Symbol Notes

LO

 Using M Code Blocks M Language Support for M Code Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
896 October 2013

Function Description

atan Supports scalar input, but not matrix or vector input.

bin2dec Argument must evaluate to a single string constant. For M synthesis,
you can only use constant-valued string expressions as arguments.
String variables are not allowed. Similarly, you can only use
scalar-valued string expressions as arguments. Cell-arrays of strings
are not allowed. However, you can use an expression that evaluates to
a single string argument, as in the following example:

result = bin2dec([‘101’, ‘011’]);

Here, the concatenation expression argument evaluates to the string
‘101011’ and the function returns decimal value 43.
The SMC implementation follows the MATLAB implementation, and
allows white spaces in the input string and a length restriction of 52
digits for the input string.

bitand

bitcmp The number of bits argument must be a constant.

bitget The selected bit argument must be a constant.

bitor

bitset The set bit argument must be a constant.

bitshift The shift value and number of bits to shift must be constants.

bitsll Input operand A can be a scalar, vector, or matrix.

bitsra Input operand A can be a scalar, vector, or matrix.

bitxor

ceil

convergent

cosh Supports scalar input, but not matrix or vector input.

exp Supports scalar input, but not matrix or vector input.

fix

floor

M Language Support for M Code Blocks Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 897

hex2dec Argument must evaluate to a single string constant. For M Control, you
can only use constant-valued string expressions as arguments. String
variables are not allowed. Similarly, you can only use scalar-valued
string expressions as arguments. Cell-arrays of strings are not allowed.
However, you can use an expression that evaluates to a single string
argument.
The SMC implementation follows the MATLAB implementation, and
does not allow white spaces in the input string and has no length
restrictions for the input string.

isempty May only be used to initialize persistent variables to zero.

length The argument must be scalar or vector.

log Supports scalar input, but not matrix or vector input.

log10 Supports scalar input, but not matrix or vector input.

log 2 Supports scalar input, but not matrix or vector input.

logical

max Supports scalar or vector input. This function only supports a single
return code; [Y,I] = max(X) is not supported, only Y = max(X) is supported.

min Supports scalar or vector input. This function only supports a single
return code; [Y,I] =min(X) is not supported, only Y = min(X) is supported.

nearest

ones Only supports scalar/vector output. No support for matrix output.

pi

power Supports scalar input, but not matrix or vector input. The second
argument y of the power (x, y) function must be an integer constant.

quantize

quantizer Only supports fixed, ufixed, wrap, saturate, floor, ceil, fix, round, convergent,
and nearest. See Controlling Precision and Signedness with
Quantizers, on page 867.

round

sinh Supports scalar input, but not matrix or vector input.

Function Description

LO

 Using M Code Blocks M Language Support for M Code Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
898 October 2013

SMC Functions for M Code Blocks

The Synphony Model Compiler tool includes the following functions for the M
code blocks:

M Language Limitations

The following features are not supported:

• Vectors and matrices are not supported for all operations.

• Complex-valued variables, constants, operations, and related built-ins
(e.g., real, imag, angle) are not supported. Using them results in the
following error message:

"Complex numbers and operations not supported for M-Control
synthesis."

• Function pointers

• Operator overloading

• Structures

• Cell arrays, except for case expression lists, which are supported. For
example, case {2, 3, 6}.

• Logical indexing

• Function arguments varargin and varargout

tan Supports scalar input, but not matrix or vector input.

transpose Supports vector and matrix inputs.

zeros Only supports scalar/vector output. No support for matrix output.

shls_bitrev Reverses the bits of a specified integer (shls_bitrev, on page 590).

shls_convert Applies the quantization rules to the input data (shls_convert, on
page 592).

Function Description

M Language Support for M Code Blocks Using M Code Blocks

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 899

• The M compiler does not support loop pipelining. All loops are unrolled
by default.

• It does not support the automatic serialization of data from a parallel
representation, like vectors for example. When a loop is unrolled,
memory access inside a loop becomes concurrent access, so no memory
component can be inferred for it. In such cases, you must serialize the
data input to the M function or loop.

In addition, M language support has the following limitations:

• Function arguments (input ports) must be real scalars or vectors.

• Top-level output arguments can not have the same names as input
arguments. The software renames top-level output arguments that have
the same name as input arguments.

• Recursive functions are not supported.

LO

 Using M Code Blocks M Language Support for M Code Blocks

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
900 October 2013

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 901

C H A P T E R 1 3

Working with C Output

This chapter describes how to generate and work with the C output from the
Synphony tool.

• Design Flow for Working with C Output, on page 902

• Generating C Output Data, on page 903

• Verifying C Output Against RTL, on page 905

• Simulating C Output, on page 906

• Supported APIs for C Output, on page 913

• C Model API Usage, on page 925

• Using C Output in Simulink, on page 927

• Using C Output with SystemC, on page 932

• Using C Output with Verilog-C Interfaces, on page 933

LO

 Working with C Output Design Flow for Working with C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
902 October 2013

Design Flow for Working with C Output
The following figure shows the high-level design flow for working with the C
output generated by the Synphony tool:

See the following for more information:

• Generating C Output Data, on page 903

• Verifying C Output Against RTL, on page 905

• Simulating C Output, on page 906

• Using C Output with SystemC, on page 932

• Using C Output with Verilog-C Interfaces, on page 933

Generate C Output

Verify C Output Against RTL

Create SystemC
Wrapper

Simulate with
SystemC

Create Verilog
Wrapper

Create Simulink
Wrapper

Simulate with
MATLAB Simulink

Simulate with
VCS MX

Generating C Output Data Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 903

Generating C Output Data
This section describe the following:

• Generating C Output, on page 903

• Generating Output Data Files for C Output, on page 905

Generating C Output

The Synphony tool lets you generate C output that is equivalent to the RTL.
Use the following procedure:

1. Do the following in your design:

– Double-click the input ports and make sure that Capture test vectors for
RTL testbench is enabled.

– Double-click the output ports and make sure that Capture test vectors
for RTL testbench is enabled.

– Double-click the SHLSTool block and open the Implementation Options
dialog box by clicking New Implementation or Edit Implementation, as
appropriate.

2. Do the following in the Implementation Options dialog box:

– Go to the RTL Options tab.

– In the RTL section, enable the language or languages you want for the
RTL output. If you select one language, the tool uses that RTL (Verilog
or VHDL) to generate the C output. If you specify both languages for a
mixed design, the tool generates the C output based on the Verilog
RTL.

– Enable Generate RTL test bench. You must enable this option in order to
generate C output.

– Enable C output, and click OK.

LO

 Working with C Output Generating C Output Data

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
904 October 2013

3. Click Run in the SHLSTool interface to synthesize your design.

The tool generates a C-model of the RTL generated by the Synphony
engine. This model is bit- and cycle-accurate at the inputs and outputs.
Internally, it is optimized for higher speed simulation.

The tool generates a cout directory in the implementation directory. This
contains the following files:

<design>.c ANSI-C source file for the Synphony design.

<design>_sim.c A wrapper that enables simulation of the same RTL testbench
using the native environment. See Verifying C Output
Against RTL, on page 905 for details.

Other .c files Support files for building C-model executables.

*.h Header files for building C-model executables.

Makefile File for building the native simulation executable,
<design>_sim executable file.

Verifying C Output Against RTL Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 905

Generating Output Data Files for C Output

You can also save the values at the output ports of the C model to a file. Do
the following:

1. In the C model driver, set WRITE_OUTPUT_DAT_FILE to 1. Do this by
uncommenting the following line in the C model driver file,
<design_name>_sim.c:

//#define WRITE_OUTPUT_DAT_FILE 1

When you set this option, the tool generates an output file for each
output port, using the following naming convention for the files:
CSimOut_<design_name>_<port_name>.dat.

Verifying C Output Against RTL
Once you have generated the C output, you can verify it using the GCC
compiler and native simulation. Use the following procedure to verify that the
C model behavior matches the behavior of the RTL testbench data.

1. Open the compiler window, and go to the implementation directory with
the C output makefile.

2. Type make at the command line.

The compiler generates a design_sim executable file in the same direc-
tory. This is the C model simulation executable.

3. Run native simulation by typing design_sim at the command line.

The tool runs simulation and then reports the results in the simlog.txt file.
Now that you have checked that the C output matches the behavior of
the RTL output files, you can generate other wrappers and use the C
output.

LO

 Working with C Output Simulating C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
906 October 2013

Simulating C Output
You can verify the generated C output by running simulation with a
third-party tool. See the following for details:

• Simulating C Output with GCC, on page 906

• Simulating C Output in Microsoft Visual Studio 2010, on page 906

Simulating C Output with GCC

The following procedure shows you how to run simulation with GCC on a
Linux platform. Alternatively, you can use Microsoft Visual Studio, as
described in Simulating C Output in Microsoft Visual Studio 2010, on
page 906.

1. Install the GCC simulator. Check the release notes for recommended
software versions.

2. Run synthesis and generate C output. The tool writes the C output is to
the cout directory.

3. To simulate the C output, do the following:

– Go to the cout directory and type make to generate an executable file.

– Run the executable.

Simulating C Output in Microsoft Visual Studio 2010

Use Visual Studio 2010 to simulate the C output on Windows and Linux
platforms. The following describe two ways to simulate the C output using
Visual Studio: with the generated project file, or by creating a new project.
Make sure you have the following before you start:

• A working installation of Microsoft Visual Studio 2010

• A Windows installation of the Synphony tool

Simulating C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 907

Method 1: Using the Generated Project File

1. Start Microsoft Visual Studio 2010 and open the <model_name>.vcproj
file created by the Synphony tool.

This is a VC++ project file, and contains the project settings necessary to
build the executable.

2. Build the executable (F7).

The software prompts to save the project as a solution. Click Yes.

3. Add the directory in which the C output files are generated as the
working directory for the executable: Project Properties -> Configuration
Properties -> Debugging -> Working Directory.

Note that the generated C output driver (i.e. <model_name>_sim.c) uses
the DAT files in the verilog directory at the same level as the cout direc-
tory.

4. Run the executable (Ctrl+F5).

This method is straightforward for the C Output files generated by a
Windows build of Synphony.

Method 2: Creating a New Project

1. Create an empty Win32 Project file for console application.

2. Add the following files to the project:

– <model_name*>.c

– <model_name>_sim.c

You can now update the project file properties as outlined in the
remaining steps.

3. Select Project Properties->Configuration Properties. Then select C/C++ and do
the following:

– Select General. In the Additional Include Directories field, add <Synphony
installation>\cout\include.

LO

 Working with C Output Simulating C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
908 October 2013

– Select C/C++ -> Preprocessor from the menu on the left, and add the
following definitions in the Preprocessor Definitions field:

CSIMOS=\win\
TOOLDIR=\<Synphony Installation>\

When you specify the path, use a backslash (\) before each backslash
character used as a path separator to escape it. For example:

For this path... Enter this...

C:\Synopsys\SynphonyHLS200912 C:\\Synopsys\\SynphonyHLS200912

Simulating C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 909

4. Select Linker in the menu on the left and do the following in this section:

– Select General and add <Synphony Installation>\cout\vs\win32 in
the Additional Library Directories field.

LO

 Working with C Output Simulating C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
910 October 2013

– Select Input on the left, and add the following libraries in the Additional
Dependencies field:

cout.lib
synlpclient.lib

Simulating C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 911

5. Select Configuration Properties -> Debugging from the menu on the left. In the
Working Directory field on the right, add the directory in which the C
output files are generated.

Note that the generated C Output driver (<model_name>_sim.c) uses the
DAT files in the verilog directory at the same level as the cout directory.

LO

 Working with C Output Simulating C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
912 October 2013

Supported APIs for C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 913

Supported APIs for C Output
You can access and use the C output generated by the Synphony tool with
APIs. See the following for details about the supported APIs:

• CEvent, on page 913

• int CModelDeleteEvent, on page 915

• REGISTER_DESIGN, on page 915

• void * CModelCreateInstance, on page 916

• int CModelDeleteInstance, on page 917

• int CModelSetInput, on page 918

• char * CModelGetOutput, on page 919

• int CModelEvalNext, on page 920

• CModelGetErrMsg(), on page 921

• int CSimGetLicense(), on page 923

• int CSimReleaseLicense(), on page 924

CEvent

This API allows you to create different types of events, based on what you
need.

Syntax
CEvent * CModelCreateEvent(char *event_name, char edge, char signal);

LO

 Working with C Output Supported APIs for C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
914 October 2013

Return Values

Use
To create an event, first declare a pointer to the CEvent event structure. Then
call this API and assign the return reference to the declared pointer.

Examples
CEvent *clock_rise_event;

CEvent *clock_fall_event;

clock_rise_event = CModelCreateEvent(clk1, ‘r’, ‘c’);

clock_fall_event = CModelCreateEvent(“clk2”, ‘f’, ‘c’);

event_name Pointer to the string that contains the name of the signal on
which an event has to occur.

edge Defines the edge for the event. It can be one of the following:
• f for falling edge
• r for rising edge

signal Indicates the type of signal. Currently, the tool only supports
clock events as an external event, so this must be set to c, to
indicate that the event is of clock type.

Success Valid CEvent pointer, with a reference to the created event.

Failure NULL

Supported APIs for C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 915

int CModelDeleteEvent

This API allows you to delete an event. When you delete an event, the event
reference becomes invalid. The argument to the API is the reference to the
event which should be deleted. This API frees all memory that was being used
by the specified event.

Syntax
int CModelDeleteEvent(CEvent *);

Return Values

Example
CModelDeleteEvent (clock_rise_event); CModelDeleteEvent (clock_fall_event);

REGISTER_DESIGN

This API allows you to register the C Model with a name. You must call this
API before creating any instances of the named C model.

Syntax
REGISTER_DESIGN(<design>)

Return Values

Success 0

Failure Non-zero positive value

Success 0

Failure Non-zero positive value

LO

 Working with C Output Supported APIs for C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
916 October 2013

Use
You must first call this API once to register the <design> name. You must do
this before creating an instance of <design>. If you call the API multiple times
to register the same design, you get warning messages. Although these
multiple calls do not affect functional simulation in any way, they do degrade
performance.

void * CModelCreateInstance

This API allows you to create a C Model instance of a <design> and returns a
reference to the created C Model instance.

Syntax
void * CModelCreateInstance (const char *design_name)

Return Values

Use
To create an instance of a C model, do the following:

1. Declare a void pointer.

2. Then call this API and assign the return reference to the declared
pointer. In the SystemC wrapper, call this API in the constructor to
create an instance of the C model.

Thereafter, you must use this reference to access the C Model instance.

3. Call the REGISTER_DESIGN API for the design before calling
CModelCreateInstance. If not, you get a runtime error because the API tries
to instantiate a model of a design that is not registered.

Success 0

Failure Non-zero positive value

Supported APIs for C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 917

Example
void *my_model1, *my_model2, *my_model3;
REGISTER_DESIGN(<design>); //Registers the design
my_model1= CModelCreateInstance (<design>);
my_model2= CModelCreateInstance (<design>);
my_model3= CModelCreateInstance (<design>);

int CModelDeleteInstance

This API allows you to free the instance of a model. After you do this, the
instance reference becomes invalid. The argument to the API is the reference
to the model to be freed. This API frees all the memory that was being used
internally by the model.

Syntax
int CModelDeleteInstance (void *model);

Return Values

Use
In the SystemC wrapper, call this API in the destructor to free all memory
allocated to the model instance.

Example
If (CModelDeleteInstance (my_model))
{ //Error Handling }

Success 0

Failure Non-zero positive value

LO

 Working with C Output Supported APIs for C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
918 October 2013

int CModelSetInput

This API lets you set the value val on the specified input port of the C model
instance.

Syntax
int CModelSetInput(void *model, const char *port_name, const char *val);

Return Values

Use
To set values for different ports of the same model, call this API multiple
times changing the port_name and val arguments as required.

Example
If(CModelSetInput (my_model,"Input1","10011"))

{ //Error Handling}
else
{

If(CModelSetInput (my_model,"Input2","1101"))
{ //Error Handling}

else
{

If(CModelSetInput (my_model," SynchronousReset ","1"))
{ //Error Handling}

}
}

model The reference to the Model whose input is to be set.

port_name Pointer to a string containing the name of the input port to
which the value has to be set.

val Pointer to a binary string containing the value to be set at input.
The MSB of the value is the 0th element of the binary string.

Success 0

Failure Non-zero positive value

Supported APIs for C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 919

char * CModelGetOutput

This API allows you to read the value on the specified output port of the C
model instance.

Syntax
char * CModelGetOutput (void *model, const char *port_name);

Return Values

Use
To get the values of multiple outputs, call this API multiple times with
different port_name. If you do this, copy the return value to another place for
future reference if needed. This is because the string pointer returned by the
API is the pointer to an internal buffer that is updated by the C model each
time this function is called.

Example
char *outval; // Temporary pointer to hold the output string
char output1_copy_fromModel[9];
char output2_copy_fromModer[32]
outval = CModelGetOutput(my_model,"output1")
if(outval == NULL)

{ //Error Handling}
strcpy(output1_copy_fromModel, outval);
outval = CModelGetOutput(my_model,"output2")
if(outval == NULL)

{ //Error Handling}
strcpy(output2_copy_fromModel, outval);

model Reference to the model whose output is to be read.

port_name Pointer to a string that contains the name of the output port
from which the value is to be read.

Success A string pointer that has the value of that output port as a binary
string. The 0th element of the binary string is the MSB of the
output value.

Failure NULL

LO

 Working with C Output Supported APIs for C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
920 October 2013

int CModelEvalNext

This API lets you advance the state of the model in response to the set of
given events as the arguments.

Syntax
int CModelEvalNext(void *model, CEvent *events[], int numevents);

Return Values

Use
1. To apply a single event to the model, the arguments should be a pointer

to an array containing just that single event alone and 1 as the value for
numevents.

2. To apply multiple events at the same time to the model, first create an
array of events that must be applied simultaneously. Then call this API
with that array pointer as the events argument, and the number of
events set in numevents. You can mix the rise events with fall events.

For example, you can apply 2X clock (200 MHz, for example) clocks
rising edge and 1X clock’s (100 MHz) falling edge at the same time to the
model. You must use the CModelEvalNext API call if you want to apply
both clock rising and clock falling edges to the C Model.

Example
CEvent* clk_rising_array[1];
CEvent* clk_falling_array[1];
clk_rising_array[0] = CModelCreateEvent("clk1",'r','c');
clk_falling_array[0] = CModelCreateEvent ("clk2",'f','c');
for(clock_cnt=0; clock_cnt<10000; clock_cnt++) {

model The reference to the model to be advanced.

events A pointer to an array of events

numevents The number of events in the event array.

Success 0

Failure Non-zero positive value

Supported APIs for C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 921

if(!CModelEvalNext (my_model,clk_falling_array,1))
{\\Error Handling}|
If(!CModelEvalNext(my_model,clk_rising_array,1))
{\\Error Handling}

}

CModelGetErrMsg()

This API lets you retrieve the message when one of the other APIs signals an
error by returning a non-zero code. It returns a pointer to the string
containing the error message, which is stored in an internal buffer. This
string only changes only when it encounters an error in the API calls. The
buffer is updated as and when errors occur.

The following table shows the error messages that can occur for the APIs
described in the preceding sections:

Error Message Description

REGISTER_DESIGN

Invalid Design Name Returned when the C model for the design name passed is
not available. This causes a compiler error.

void * CModelCreateInstance

Design not registered Returned in the following situations:
• When the CModelCreateInstance API is called before

registering the design (before calling REGISTER_DESIGN)
for the design.

• You type a wrong design name when you creating an
instance of the model.

Design Name pointer
Invalid

Returned when the pointer to the design_name string is an
invalid pointer.

Out of Memory Returned when there is not enough memory to create the
model.

int CModelDeleteInstance

Invalid Model pointer Returned when an invalid model pointer is passed to the API.

Internal Error Returned when there is an internal error in the C model
instance.

LO

 Working with C Output Supported APIs for C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
922 October 2013

int CModelSetInput

Invalid Model pointer Returned when an invalid model pointer is passed to the API.

Invalid Input port Returned when the port_name string does not match any of
the input ports of the C model.

Invalid Input port
pointer

Returned when the pointer to the port_name string is an
invalid pointer.

Invalid binary string
pointer

Returned when the pointer to the binary string val is an
invalid pointer.

Invalid binary string Returned when the binary string val is not a valid binary
string; i.e. the binary string has values other than 0 and 1.

Binary string size
mismatch

Returned when the width of the binary string val is different
from the width of the input port.

char * CModelGetOutput

Invalid Model pointer Returned when an invalid model pointer is passed to the API.

Invalid Output port Returned when the output port_name string does not match
any of the output ports of the C model.

Invalid Output port
pointer

Returned when the pointer to the port_name string is an
invalid pointer.

CEvent * CModelCreateEvent

Invalid event_name
pointer

Returned when the pointer to the event_name string is an
invalid pointer.

Out of Memory Returned when there is not enough memory in the stack to
create the event.

Invalid Edge Info Returned when the edge passed to the API is a character
that is not r or f.

Invalid Signal Info Returned when the signal passed to the API is a character
that is not c.

int CModelDeleteEvent

Invalid CEvent
pointer

Returned when an invalid CEvent pointer is passed to the
API.

Error Message Description

Supported APIs for C Output Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 923

int CSimGetLicense()

This API lets you check out the simulation license so that the C simulation
can run. You must call this API before any other APIs.

You use this API call in conjunction with other calls to provide the build infor-
mation and the OS information to the C Model. The following are the other C
simulation calls. You only need to call them once in the simulation.

• NCSetTooldir

• NCSetPlatform

They need to be called only once in the simulation.

The int CSimGetLicense API returns 0 on success, and a non-zero positive value
if it fails to check out the license.

Syntax
CSimGetLIcense(void);

Example
#ifdef TOOLDIR
// TOOLDIR is the define set in the Synphony HLS generated Makefile
// If not using the generated Makefile, define the TOOLDIR with the
// Synphony HLS build path

NCSetTooldir(TOOLDIR);
#endif

int CModelEvalNext

Invalid Model pointer Returned when an invalid model pointer is passed to the API.

Invalid Events array
pointer

Returned when an invalid pointer of CEvent array events is
passed to the API.

Invalid numevents
Info

Returned when the numevents passed to the API is less than
or equal to 0.

Wrong Event Returned when the event is applied on a wrong signal or on a
signal that does not exist.

Error Message Description

LO

 Working with C Output Supported APIs for C Output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
924 October 2013

#ifdef CSIMOS
// CSIMOS is the define set in the Synphony HLS generated Makefile
// If not using the generated Makefile, define the CSIMOS with the
// information of the OS in which the simulation is run

NCSetPlatform(CSIMOS);
#endif

If (CSimGetLicense())
{

//Error Handling
}

int CSimReleaseLicense()

This API lets you check in the simulation license for the C simulation you are
using. This API checks in the license that was previously checked out with
the CSimGetLicense API. Use the CSimReleaseLicense API when there are no
more C Model API calls later in the simulation.

The CSimReleaseLicense API returns 0 on success and a non-zero positive value
if it fails to check in the license.

Note that the tool automatically releases the C simulation license at the end
of simulation, even if you do not specifically call this API. The CSimReleaseLi-
cense API lets you release the license when none of the C Model APIs are used.

Syntax
CSimReleaseLIcense(void);

Example
If (CSimReleaseLicense())
{

//Error Handling
}

C Model API Usage Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 925

C Model API Usage
The following illustrates how to use the C Model APIs described in Supported
APIs for C Output, on page 913. For a complete working model, see the C
Model test bench generated along with the C Model.

/*Include the necessary libraries */
/*Include the C Model specific libraries */
#include "ncsim.h"
#include "<design_name>.h"

Int main()
{

/*Variable declarations*/

/*Check out the license for the C Simulation*/
#ifdef TOOLDIR

NCSetTooldir(TOOLDIR);
#endif

#ifdef CSIMOS
NCSetPlatform(CSIMOS);

#endif

If(CSimGetLicense())
{//Error Handling}

/*Register the design to be used*/
REGISTER_DESIGN(<design_name>);

/*Create an instance of design */
<model pointer> =
CModelCreateInstance("<design_name>");

/*Create clock events */
<CEvent Variable for rising edge> =

CModelCreateEvent(<clk_name>, 'r','c');
<CEvent Variable for falling edge> =

CModelCreateEvent(<clk_name>, 'f','c');

/*Set the input port of the C Model*/
CModelSetInput(<model pointer>, "<input port_name>",

"<Input value as binary string>");

/*Evaluate the next state. Uses the pointer to the CEvent array
that contains the events on different clocks at a particular
instant.*/

CModelEvalNext(<model pointer>, <CEvent array pointer>,
<Number of events in the array>);

LO

 Working with C Output C Model API Usage

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
926 October 2013

/*Get the value at the output port of the C Model */
<output string variable > = CModelGetOutput(<model pointer>,

"<output port name>");

/*After simulation is complete, you must delete the Model and
CEvent variables. */

/*Delete the clock Events*/
CModelDeleteEvent(<CEvent pointer>);

/*Delete the C Model instance*/
CModelDeleteInstance(<model pointer>);

/*Release the license if no further C Model API is used*/
If(CSimReleaseLicense())
{//Error Handling}
}

Using C Output in Simulink Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 927

Using C Output in Simulink
The tool generates an S-function wrapper for the C model that allows you to
run the C model in the Simulink environment. Using C output can signifi-
cantly speed up verification times. See the following for details:

• Using C Output to Speed up Simulink Simulations, on page 927

• Generating the Simulink C Output Wrapper, on page 928

Using C Output to Speed up Simulink Simulations

You can speed up simulation runtime by using C output from the Synphony
Model Compiler tool and a Simulink wrapper to significantly improve verifica-
tion productivity.

Using the G-2012.09 software, tests have demonstrated runtime reductions
of 3 to 10x. For the GSM DDC (Digital Down Converter) example, which you
can access using the shlsdemo command, this methodology reduced run time
from 915 seconds to 191 seconds, a 4.8x reduction in simulation runtime.
For details about using C output with this example, refer to Solvnet article
036381, Using C Output to Speed up Simulink Simulations.

1. Capture and set up your design.

– Capture the design using the SMC blockset.

– Set up the implementation for your chosen hardware target as usual.

– Enable C output generation on the RTL Options tab of the Implementation
Options dialog box. See Generating C Output, on page 903 for details.

2. Run SMC to synthesize the model and generate RTL.

The tool generates a C model at the same time that it creates the RTL.
The C output is written to a cout directory under the implementation
directory. The cout directory is parallel to the verilog and vhdl directories.

3. Run the MATLAB scripts in <implementation_dir>/cout/simulink to
create a Simulink-wrapped C model.

First run compile.m and then mdlgen.m. For a detailed procedure, see
Generating the Simulink C Output Wrapper, on page 928.

LO

 Working with C Output Using C Output in Simulink

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
928 October 2013

4. Connect the interfaces of the subsystem to the top level ports of the
design.

The interface signals must be of type double, as required by Simulink
source and sink blocks. The SMC tool automatically inserts the appro-
priate type-casting to maintain the functionality of the C model.

Note that C output generation automatically includes the Port In and Port
Out blocks, when it uses the saturation or rounding option and for
registering input and output logic for the C model. When connecting the
interfaces of the subsystem, you can exclude the Port In and Port Out
blocks.

5. Simulate the new model, using your existing testbench.

If the simulation does not meet the required functionality and/or perfor-
mance, modify the design and repeat the previous steps until the model
meets your design requirements.

6. Continue with RTL synthesis and place-and-route for your hardware
target.

Generating the Simulink C Output Wrapper

The tool generates Simulink wrapper files for the C output so that you can
run the C model in the Simulink environment. Simulink wrapper is generated
only when no optimization options are used in the implementation options.
For a description of these files, see Simulink Wrapper Files, on page 930. To
use the wrapper files, follow this procedure:

1. In MATLAB, change the current directory to the directory with the
Simulink wrapper files.

For the location of the Simulink wrapper files, see Simulink Wrapper
Files, on page 930.

2. Compile the S-function.

– If you did not do this at startup, configure MATLAB to use Mex. You
must do this to set the appropriate C/C++ compiler to be used by the
mex command. Consult the Mathworks documentation (MEX-files
Guide) for information about configuring the compilers. The
recommended compilers are listed below:

Using C Output in Simulink Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 929

– Enter the following command in the MATLAB console:

compile

This command compiles a Simulink wrapper for the C model and
creates a Mex file called <design_name>_sunc.mex<platform>. The
<platform> is based on the platform where MATLAB is run:

3. Create an mdl file to use the S-function, by typing the following
command in the MATLAB console:

mdlgen

You must have an mdl file to use the S-function. The mdlgen command
uses the mdlgen.m file (see Simulink Wrapper Files, on page 930) to
create an mdl file called <design_name>_subsystem.mdl. This mdl file is a
Simulink wrapper that uses the S-function and contains the required
input port connections and conversion functions as a subsystem. You
can use the <design_name>_subsystem.mdl file instead of the model
compiler blocks in the Simulink model to speed up simulation time.

4. Optionally, verify the Simulink wrapper before you run it.

You verify the input and output DAT files generated by Simulink against
the original model, by driving the input DAT files to the corresponding
ports, capturing the data at the output ports, and then comparing the
captured output DAT files with the original output DAT files in the <imple-
mentation>/verilog directory. The following describe this procedure:

– Convert the input DAT files into MAT files by typing the following
command in the MATLAB console window:

dat2mat

See Input and Output DAT Files, on page 930for a description.

Windows Microsoft Visual C++ 2005 Express

Linux Gcc 4.2.2

Platform <platform> Value

Windows 32-bit w32

Linux 32-bit glx

Linux 64-bit a64

LO

 Working with C Output Using C Output in Simulink

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
930 October 2013

– Create an mdl file to test the Simulink wrapper by typing the following
command in the MATLAB console window:

mdlgen_test

This command creates an mdl file called
<design_name>_inst_test.mdl, which instantiates the Simulink
wrapper mdl file. It also contains the components required to drive the
input DAT files and capture the output DAT files.

– Use the <design_name>_inst_test.mdl file to simulate the mdl file
with a time equal to the stop time of the original mdl. In the following
example StopTime is equal to the stop time of the original mdl file. This
command creates DAT files for each output port:

sim('<design_name>_inst_test', <StopTime>);

– Compare the captured output DAT files against the original output
DAT files in the <implementation>/verilog directory to verify the
functionality of the model.

Input and Output DAT Files

Note the following:

• The original output DAT files are located in the <implementa-
tion>/verilog directory.

• There is one DAT file for each input port. The input DAT files follow this
naming convention: Inport_<model_name>_<port_name>.dat.

• There is one DAT file for each output port. The output DAT files follow this
naming convention: Outport_<model_name>_<port_name>.dat.

Simulink Wrapper Files

This section describes the directory structure and the Simulink wrapper files
generated for C output.

Directory Structure
The Synphony tool creates a simulink directory under the cout directory. This
directory contains the files for working with C output in Simulink, as
described in Generating the Simulink C Output Wrapper, on page 928.

Using C Output in Simulink Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 931

SMC Scripts for Simulink Wrapper
The Synphony Model Compiler tool generates the following Simulink wrapper
files for use with the Synphony C output:

SMC Wrapper Verification Scripts
The SMC tool also generates the following files for testing the Simulink
wrapper:

<design_name>_sfunc.c S-function wrapper for the C model generated by the
Synphony tool.

compile.m M file for compiling the S-function wrapper.

mdlgen.m M-file that creates the mdl file for the S-function wrapper.

mdlgen_test.m M-file that creates the mdl file that references the Simulink
wrapper mdl file for testing.

dat2mat.m M-file required to support Simulink wrapper testing. This file
converts the input DAT files into MAT files, which is a MATLAB
format.

Base directory with the test.mdl file
Implementation directory
C output directory for the C output and wrapper files
Directory for Simulink wrapper files
S-function wrapper file
M-file for compiling the S-function wrapper
M-file for generating the mdl with the S-function
M-file for generating the mdl to test the wrapper
M-file used to test the S-function wrapper

LO

 Working with C Output Using C Output with SystemC

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
932 October 2013

Using C Output with SystemC
To use the C output with SystemC, you must use the SystemC wrapper
generated by the Synphony Model Compiler tool. The wrapper lets you plug
the C model into SystemC verification environments by providing a port inter-
face for the C model.

1. Synthesize the SMC design as usual.

The tool automatically generates a SystemC wrapper for the C model
output. The following figure shows the files generated:

The <design>_wrapper.cpp and <design>_wrapper.h files define the SystemC
module interface and the code required to integrate it with the C model
APIs. The wrapper is modeled using cycle accurate modeling constructs.

The tool also generates the vcs.ksh simulation script which simulates the
C model and SystemC wrapper with a Verilog testbench that is created
for the Verilog files. This script is for the VCS MX simulator, but you can
use it as a reference to create scripts that work with other RTL simula-
tors, including the OSCI simulator.

2. Simulate and verify your design.

Base directory with the test.mdl file
Implementation directory
C ouput directory

Directory for SystemC wrapper files

Simulation script

Wrapper file

Wrapper file

Using C Output with Verilog-C Interfaces Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 933

Using C Output with Verilog-C Interfaces
The Synphony tool generates wrappers for various Verilog-C interfaces, so
that you can use the Synphony C output with them. The wrappers let you
plug the Synphony C model into a Verilog verification environment, because
they provide a port interface for the C model. The supported Verilog-C inter-
faces are Verilog Procedural Interface (VPI), Programming Language Interface
(PLI), and Direct C.

For details, see the following:

• Simulating C Output with Verilog-C Interfaces, on page 933

• Verilog-C Interface Wrappers, on page 934

• Verilog-C Interface Wrapper Example, on page 936

• Verilog-C Interface Wrapper System Tasks, on page 938

Simulating C Output with Verilog-C Interfaces

The following procedure shows you how to simulate the Synphony C output
with Verilog-C interfaces:

1. Open the Verilog module for the Verilog-C interface you want to use.

The Verilog module and wrapper files are automatically generated by the
Synphony tool. See Verilog-C Interface Wrappers, on page 934 for a
description of the directory structure and wrapper files. See Verilog-C
Interface Wrapper Example, on page 936 and Verilog-C Interface
Wrapper System Tasks, on page 938 for descriptions of the system
tasks.

2. Check the following:

– Check that the system tasks are defined for your needs.

– Check that you have set the appropriate environment variables to run
the script.

3. Simulate and verify your design, using the scripts generated by the
Synphony tool.

LO

 Working with C Output Using C Output with Verilog-C Interfaces

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
934 October 2013

The available simulation scripts vary, depending on which Verilog-C
interface you are targeting and your working platform. See Verilog-C
Interface Wrappers, on page 934 for a description.

Verilog-C Interface Wrappers

The following describe the wrappers generated by the Synphony tool for
Verilog-C interfaces:

• VPI Wrapper, on page 934

• PLI Wrapper, on page 935

• Direct C Wrapper, on page 936

VPI Wrapper

The Synphony tool generates a VPI wrapper for the C model output, so that it
can be used with the Verilog Procedural Interface (VPI). This wrapper consists
of the following:

• A C code wrapper around the C model
This wrapper uses the required VPI routines for information exchange,
as defined in the Verilog 2001 LRM, so that information can be passed
between the Verilog and the C model. The C code functions in this
wrapper are exported as system tasks.

• A Verilog module with the port interface for the C model
This Verilog module is provided for your convenience, and also serves as
a guide to using the C model system tasks. The module calls the system
tasks defined for the C model to transfer data from the port interface to
the C model, and vice versa.

VPI Linux: VCS MX
Windows: Riviera Pro, ModelSim

PLI Linux: VCS MX
Windows: Riviera Pro, ModelSim

Direct C Linux: VCS MX

Using C Output with Verilog-C Interfaces Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 935

Directory for VPI Wrapper Files

PLI Wrapper

The Synphony tool generates a PLI wrapper for the C model output, so that it
can be used with the Verilog Procedural Interface (VPI). This wrapper consists
of the following:

• A C code wrapper around the C model
This wrapper uses the required PLI routines for information exchange,
as defined in the Verilog 2001 LRM, so that information can be passed
between the Verilog and the C model. The C code functions in this
wrapper are exported as system tasks.

• A Verilog module with the port interface for the C model
This Verilog module is provided for your convenience, and also serves as
a guide to using the C model system tasks. The module calls the system
tasks defined for the C model to transfer data from the port interface to
the C model, and vice versa.

Directory for PLI Wrapper Files

Base directory with the test.mdl file
Implementation directory
C output directory for the C model and wrapper files
Directory for VPI wrapper files
C part of VPI wrapper (definitions of system tasks)
Verilog part of VPI wrapper (module that calls tasks)
Script to run the VPI wrapper in VCS MX (Linux)
Script to run the VPI wrapper in Riviera Pro (Windows)
Script to run the VPI wrapper in ModelSim (Windows)

Base directory with the test.mdl file
Implementation directory
C output directory for the C model and wrapper files
Directory for PLI wrapper files
C part of PLI wrapper (definitions of system tasks)
Verilog part of PLI wrapper (module that calls tasks)
Script to run the PLI wrapper in VCS MX (Linux)
Script to run the PLI wrapper in Riviera Pro (Windows)
Script to run the PLI wrapper in ModelSim (Windows)

LO

 Working with C Output Using C Output with Verilog-C Interfaces

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
936 October 2013

Direct C Wrapper

The Synphony tool generates a Direct C wrapper for the C model output, so
that you can use C functions directly as Verilog tasks or functions. This
wrapper consists of the following:

• A C code wrapper around the C model
This wrapper manages information exchange, so that information can be
passed between Verilog and the C model. The C code functions in this
wrapper are exported as Verilog system tasks.

• A Verilog module with the port interface for the C model
This Verilog module is provided for your convenience, and also serves as
a guide to using the Direct C system tasks. The module calls the system
tasks defined for the C model to transfer data from the port interface to
the C model, and vice versa.

Directory for Direct C Wrapper Files

Verilog-C Interface Wrapper Example

The following is a an example of a Verilog-C interface wrapper. The example
uses VPI tasks, but you can extrapolate it for the other Verilog interface
wrappers.

module top (…)
integer lic_check;
integer model_id;
reg [4:0] inport1;
reg[16:0] outport1;

…

initial
begin
#0.1;

Base directory with the test.mdl file
Implementation directory
C output directory for the C model and wrapper files
Directory for Direct C wrapper files
C part of Direct C wrapper (definitions of system tasks)
Verilog part of Direct Cwrapper (module that calls tasks)
Script to run the Direct C wrapper in VCS MX (Linux)

Using C Output with Verilog-C Interfaces Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 937

//The first task is the Get License task. Call this to get the
//simulation license

$VPI_CSimGetLicense(lic_check);
if(lic_check)
begin

$display("Unable to check-out Synphony C model
license!"); $finish;

end

//Call this immediately after Get license, to register the design
$VPI_RegisterDesign("test");

//Call this to create an instance of the design. It is equivalent
//to the component instantiation of the C model
$VPI_CModelCreateInstance("test", model_id);

end

//Use this always block to set the C model input port value. This
//is like connecting the input port of the component to a signal.
//Assume that the input port name is IN1 and the signal to be
//connected to the input port is inport1.
always @(inport1) begin

#0.2;
$VPI_CModelSetInput(model_id, "IN1", inport1);

end

…

//This block gets the output port value from the C model.
//This is like connecting a signal to output port of the component.
// Assume that the output port name is OUT1, the signal to be
//connected to the input port is outport1, and the output port is
//synchronous to clk1.
always @(clk) begin

#0.2;
$VPI_CModelGetOutput(model_id, "OUT1", outpurt1);

end

//This always block connects the clock ports to the C model and
//evaluates the clocks. Assume that the clock port name is “clk”
//and the clock signal is clk.
always @(clk) begin
begin

#0.3;
$VPI_CModelSetInput(model_id, "clk", clk);
#0.1;
$VPI_CModelEvalNext(model_id);

end

LO

 Working with C Output Using C Output with Verilog-C Interfaces

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
938 October 2013

//Do deleteInstance and release license just before the end of
//simulation.
initial begin
wait (endSimulation);
$VPI_CModelDeleteInstance(model_id);
$VPI_CSimReleaseLicense();
$finish;

end

…

endmodule

Verilog-C Interface Wrapper System Tasks

The Verilog-C interface wrappers described in Verilog-C Interface Wrappers,
on page 934 use system tasks to pass information between Verilog and the C
model. For an example file that includes the system tasks, see Verilog-C
Interface Wrapper Example, on page 936.

The following describe the system tasks:

• Get C Output Simulation License, on page 938

• Release C Output Simulation License, on page 939

• Register the Design, on page 940

• Create a Design Instance, on page 940

• Delete a Design Instance, on page 941

• Set Input Port Value, on page 942

• Get Output Port Value, on page 942

• Evaluate Clock Edge, on page 943

Get C Output Simulation License

Checks out the simulation license for the C model. You must run this C
model task before any other C model task.

Using C Output with Verilog-C Interfaces Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 939

Syntax
The syntax for this task varies, according to the Verilog interface:

The output of this task is an integer:
0 = Successful checkout of a license
Non-zero positive value: License checkout failed

Example
integer lic_check;
...
initial
begin

$VPI_CSimGetLicense(lic_check);
if(lic_check)
begin

$display("Unable to check-out Synphony C model
license!");$finish;

end

Release C Output Simulation License

Releases the simulation license. Use this at the end of simulation to release
the simulation license checked out by the *_CSimGetLicense task (Get C
Output Simulation License, on page 938).

Syntax
The syntax for this task varies, according to the Verilog interface:

VPI Task $VPI_CSimGetLicense

PLI Task $PLI_CSimGetLicense

Direct C Task DIRECTC_CSimGetLicense

VPI Task $VPI_CSimReleaseLicense

PLI Task $PLI_CSimReleaseLicense

Direct C Task DIRECTC_CSimReleaseLicense

LO

 Working with C Output Using C Output with Verilog-C Interfaces

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
940 October 2013

The output of this task is an integer:
0 = Successful release of the license
Non-zero positive value: License release failed

Example
integer lic_check;
...
initial
begin
...

$VPI_CSimReleaseLicense(lic_check);
//You can call this before the end of the simulation
$finish;

end

Register the Design

Registers the C model. You must register the design before using the C
model. Specify the name of the design as an argument to the system task.

Syntax
The syntax for this task varies, according to the Verilog interface:

<designName> is the name of the design to be registered.

Example
$VPI_RegisterDesign("test"); // test is the name of the design

Create a Design Instance

Creates an instance of the C model. You must specify the name of the design
as an argument to this task.

VPI Task $VPI_RegisterDesign <designName>

PLI Task $PLI_RegisterDesign <designName>

Direct C Task DIRECTC_RegisterDesign <designName>

Using C Output with Verilog-C Interfaces Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 941

Syntax
The syntax for this task varies, according to the Verilog interface:

<designName> is the name of the design from which you want to create an
instance.

The output of this task is an integer. The integer is a model reference number
that you can use to refer to the created model.

Example
integer model_id;
...
$VPI_CModelCreateInstance("test", model_id);

Delete a Design Instance

Deletes a C model instance. You must specify the reference number o f the
instance to be deleted as an argument to this task.

Syntax
The syntax for this task varies, according to the Verilog interface:

<model_id> is an integer, the reference number of the instance to be deleted.

Example
integer model_id;
...
$VPI_CModelCreateInstance("test", model_id);

VPI Task $VPI_CModelCreateInstance <designName>

PLI Task $PLI_CModelCreateInstance <designName>

Direct C Task DIRECTC_CModelCreateInstance <designName>

VPI Task $VPI_CModelDeleteInstance <model_id>

PLI Task $PLI_CModelDeleteInstance <model_id>

Direct C Task DIRECTC_CModelDeleteInstance <model_id>

LO

 Working with C Output Using C Output with Verilog-C Interfaces

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
942 October 2013

$VPI_CModelDeleteInstance(model_id);
//Called at the end of simulation to free the memory
$VPI_CSimReleaseLicense();

$finish;

Set Input Port Value

Sets a value for an input port of the C model. You must specify the model
reference number, the name of the port, and the value for it.

Syntax
The syntax for this task varies, according to the Verilog interface:

<model_id> is an integer, the model reference number for the design.
<portName> is a string, the name of the port to be updated.
<value> is the value to be assigned to the port, and can be either reg or wire.

Example
always @(GlobalEnable2)
begin|

$VPI_CModelSetInput(model_id, "GlobalEnable2", GlobalEnable2);
end

Get Output Port Value

Gets the value from a C model output port. You must specify the model refer-
ence number and the name of the port for this system task.

VPI Task $VPI_CModelSetInput <model_Id> <portName> <value>

PLI Task $PLI_CModelSetInput <model_Id> <portName> <value>

Direct C Task DIRECTC_CModelSetInput <model_Id> <portName> <value>

Using C Output with Verilog-C Interfaces Working with C Output

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 943

Syntax
The syntax for this task varies, according to the Verilog interface:

<model_id> is an integer, the model reference number for the design.
<portName> is a string, the name of the port to be evaluated.

The output of this task is of type reg. The task returns the value for the speci-
fied output port.

Example
always @(clk)
begin

$VPI_CModelGetOutput(model_id, "xmitout_Q", xmitout_Q_int);
end

Evaluate Clock Edge

Applies clock events to the C model. You must call this system task for each
clock transition.

Syntax
The syntax for this task varies, according to the Verilog interface:

<model_id> is an integer, the model reference number for the design.

Example
always @(clkDiv2,clk,clkDiv4)
begin

$VPI_CModelEvalNext(model_id);
end

VPI Task $VPI_CModelGetOutput <model_Id> <portName>

PLI Task $PLI_CModelGetOutput <model_Id> <portName>

Direct C Task DIRECTC_CModelGetOutput <model_Id> <portName>

VPI Task $VPI_CModelEvalNext <model_Id>

PLI Task $PLI_CModelEvalNext <model_Id>

Direct C Task DIRECTC_CModelEvalNext <model_Id>

LO

 Working with C Output Using C Output with Verilog-C Interfaces

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
944 October 2013

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 945

A P P E N D I X A

Blockset Summary

This chapter contains a handy summary of various block features.

LO

 Blockset Summary SMC Block Summary

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
946 October 2013

SMC Block Summary
The table lists the blocks alphabetically and contains information about word
length, vector, and saturation support for each block. Some blocks that
support vectors also include automatic scalar expansion (ASE), which is the
automatic expansion of scalar ports to match the vector ports. For full
descriptions of the blocks, refer to Chapter 2, SMC Blocks: Abs to Host Inter-
face.

Block Word Length Vector /
Matrix

Saturation Complex
Input

Abs Input WL <= 128 bits V - -

Accumulator Input WL <= 128 bits V - -

Add Depends on the number of inputs.
Sum of input WLs must be <= 128
bits.

V, M
ASE

Yes -

Binary Logic Input WL <= 128 bits V - -

Black Box Input WL <= 128 bits V - -

Block
Deinterleaver

Input WL <= 128 bits - - -

Interleaver Input WL <= 128 bits - - -

CIC Output WL <= 128 bits. If R: Rate
change, M: Differential delay, N:
Number of stages, then output WL
is calculated as follows:
• For decimator CIC:

OutputWL = InputWL + N log2(RM)
• For interpolator CIC:

OutputWL = InputWL +
log2((RM)^N/R)

V
ASE

- -

Commutator Input WL <= 128 bits V - -

SMC Block Summary Blockset Summary

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 947

Comparator Internal size must be less than or
equal to 128. Find the internal size
by aligning inputs with respect to
the binary point. For example, with
two inputs sfix52_16 and sfix40_21,
the internal size is MAX(52-16,
40-21) + MAX (16, 21) which is 57.

V - -

Concat Sum of input WLs <= 128 bits V - -

Configurable
FFT/IFFT

Depends on FFT size and scaling.
FFT reports when internal WL
exceeds 128.

V
ASE

Yes -

Constant Output WL <= 128 bits V, M - -

Convert Input WL <= 128 bits V, M Yes -

Convolutional
Deinterleaver

Input WL <= 128 bits V - -

Convolutional
Encoder

Input WL <= 128 bits - - -

Convolutional
Interleaver

Input WL <= 128 bits V - -

CORDIC Exp Input WL <= 120 bits
Mantissa <= 32 bits
Exp <= 16 bits

- - -

CORDIC Log Input WL <= 120 bits
Output WL <= 54 bits

- - -

CORDIC Polar Input WL <= 52 bits
Output WL <= 53 bits

- - -

CORDIC
Rotate

Input WL <= 120 bits
Number of iterations <= 53

- - -

CORDIC
SinCos

Input WL <= 120 bits
Number of iterations <= 53
Number of iterations < output WL

- - -

CORDIC Sqrt Input WL <= 64 bits - - -

Counter Input WL <= 128 bits V
ASE

- -

Block Word Length Vector /
Matrix

Saturation Complex
Input

LO

 Blockset Summary SMC Block Summary

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
948 October 2013

CRC
Generator

Input/ Output WL = 1 bit unsigned V - -

DDS Output WL <= 128 bits. Waveform
frequency precision, waveform
phase precision, and waveform
magnitude precision must be no
less that 2^-128.

- - -

Decommutator Input WL <= 128 bits V -

Delay Input WL <= 128 bits V, M - -

Demux Input WL <= 128 bits V - -

Depuncture Input WL <= 128 bits - - -

Differentiator Input WL depends on output
format:
• For Full Precision, <= 127 bits
• For Automatic, <= 128 bits

V
ASE

Yes -

Divider Input WL <= 128 bits V Yes -

DivMod Input WL <= 128 bits V - -

Downsample Input WL <= 128 bits V - -

Edge Detector Input WL <= 128 bits - - -

Extract Input WL <= 128 bits V, M - -

FDATool Not Applicable N/A N/A -

FFT Depends on FFT size and scaling.
FFT reports when internal WL
exceeds 128.

V
ASE

- -

FIFO Input WL <= 128 bits V
ASE

- -

Block Word Length Vector /
Matrix

Saturation Complex
Input

SMC Block Summary Blockset Summary

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 949

FIR Internal data path WL <= 128 bits.
According to data path format
(Automatic, Full precision, Specify),
FIR output is calculated with
maximum possible input data and
should be less than or equal to 128.
See SMC FIR, on page 226.

V
ASE

- -

FIR Engine Same as Synphony FIR Coeffs
only

- -

FIR Rate
Converter

Same as Synphony FIR V - -

Gain Input WL + Gain Fraction Length +
Ceil(log2(Gain Value)) <= 128

V, M - -

Gold
Sequence
Generator

Output WL = 1 bit unsigned - - -

HLS
Subsystem

Input WL <= 128 bits V, M N/A -

IIR Internal WL <= 128. See the FIR
entry above for details.

- - -

In Input WL <= 128 bits V, M - -

Integrator Input WL <= 128 bits V
ASE

Yes -

Inverter Input WL <= 128 bits V - -

Log Input WL <= 128 bits V - -

M Control Input WL <= 128 bits - - -

Matrix Mult Output WL <= 128 bits M Yes -

MinMax Input WL <= 128 bits V - -

Moore State
Machine

Output WL <= 128 bits - - -

Mult (First input WL + second input WL)
<= 128 bits

V, M
ASE

Yes -

Block Word Length Vector /
Matrix

Saturation Complex
Input

LO

 Blockset Summary SMC Block Summary

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
950 October 2013

Mux Input WL <= 128 bits V - -

Negate Input WL <= 126 bits V - -

Out Input WL <= 128 bits V, M - -

Parallel to
Serial

Ceil(Input WL/Number of Packets *
Number of Packets <= 128

- - -

Permutation Input WL <= 128 bits - - -

PN Sequence
generator

Output WL = 1 bit unsigned - - -

Port In Input WL <= 128 bits V, M Yes -

Port Out Input WL <= 128 bits V, M Yes -

Pow Input WL <= 128 bits.
Input word lengths must allow
power calculation to fit into 128
bits without data loss.
If BaseWL is base word length,
ExpIL is exponent integer length,
and SB is sign bit value (SB=1 if
signed, SB=0 if unsigned), then the
output is calculated as follows:
(BaseWL-SB) * (2^ExpIL) + SB
Thus, if base is in sfix6.4 and
exponent is in sfix5.2, the output is
in 5 * 7 + 1 = 36 bits.

- - -

Pulse
Generator

Output WL = 1 bit unsigned - - -

Puncture Input WL <= 128 bits V - -

RAM Input WL <= 128 bits V
ASE

- -

Ramp Input WL and Output WL <= 128
bits

- - -

Random Output WL <= 19 bits - - -

Recast Input WL <= 128 bits V, M - -

Block Word Length Vector /
Matrix

Saturation Complex
Input

SMC Block Summary Blockset Summary

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 951

Reed-Solomon
Decoder

Input WL
Minimum 3 bits
Maximum 12 bits

V - -

Reed-Solomon
Encoder

Input WL
Minimum 3 bits
Maximum 12 bits

V - -

Register Input WL <= 128 bits V, M
ASE

- -

Reshape Input WL <= 128 bits
Output WL = same as Input WL

V, M -

RFIR Same as Synphony FIR Engine Coeffs
only

- -

ROM Input WL <= 128 bits V - -

RTL
Encapsulation

Input WL <= 128 bits No - -

Sample and
Hold

Input WL <= 128 bits - - -

Saturate Input WL <= 128 bits V Yes -

Sequence Output WL <= 128 bits - - -

Serial to
Parallel

Input WL * Number of packets <=
128 bits

- - -

Shift Register Input WL <= 128 bits V, M
ASE

- -

Shifter Input WL <= 127 bits - - -

SHLSTool Not Applicable N/A N/A -

Sign Input WL <= 128 bits - - -

SinCos Input WL <= 128 bits
Only 18 bits of the fraction are
supported. Output is truncated to
54 bits.

V - -

Smart Black
Box

Input WL <= 128 bits V - -

Block Word Length Vector /
Matrix

Saturation Complex
Input

LO

 Blockset Summary SMC Block Summary

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
952 October 2013

Sqrt Input WL <= 127 bits V - -

Subsystem Not Applicable N/A N/A -

Sum of
Products

Input WL + Gain Fraction Length +
Ceil(log2(Gain Value)) <= 128

V Yes -

Switch Input WL <= 128 bits V - -

SynFixPtTool Not Applicable N/A N/A -

Test Vector
Capture

N/A N/A N/A N/A

Upsample Input WL <= 128 bits V - -

Vector Concat Output WL <= 128 bits, being the
max of Input WLs.

V - -

Vector Expand Input WL <= 128 bits. Output WL is
the same as Input WL.

V - -

Vector Extract Input WL <= 128 bits. Output WL is
the same as Input WL.

V - -

Vector Split Input WL <= 128 bits. Output WL is
the same as Input WL.

V - -

Viterbi
Decoder

Input WL <= 128 bits - - -

Block Word Length Vector /
Matrix

Saturation Complex
Input

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 953

Index

A
Abs block 42
absolute value

calculating 42
Accumulator block 44
Active-HDL 855
adaptive filters

using 760
using vectors 775

adaptive FIR 448
Add block 48
adder

block 48
adders

resource usage 850
add_register_and_balance_parallel_paths 622
advanced timing engine See advanced timing

mode
advanced timing mode

FPGAs 638
Synplify Pro executable 639

AMBA AXI4 738
AND operation

Binary Logic block 54
antisymmetric coefficients 254
APB protocol 743
APIs for C output 913
areabased_fir_arch_selection_atm constraint

623
asynchronous resets

RTL code, Synphony 685
testbenches, Synphony 686

asynchronous resets, Synphony 684
ATM

constant propagation 731
automatic scalar expansion 946
AVLON-MM protocol 745
AXI4-Lite 738

B
Binary Logic block 66
binary logic functions 53
binary point

interpretation of fixed-point numbers
99

bit growth, FFT2 213
bit reversal

M compiler 590
Black Box block 56
black boxes

advantages 777
folding 785
multichannelization 785
port interface 779
retiming 785
retiming constraint 627
RTL 780
using 777
using variables for names 60

block 806
Block Deinterleaver block 62
Block Interleaver block 64
block parameters

Abs 43
Accumulator 45
Add 49
Binary Logic 54
Black Box 58
Block Deinterleaver 63
Block Interleaver 65
CIC 67
Commutator 78
Comparator 84
Concat 87
Configurable FFT/IFFT 90
Constant 95
Convert 100
Convolutional Deinterleaver 105
Convolutional Encoder 108
Convolutional Interleaver 110
CORDIC Div 112

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
954 October 2013

CORDIC Log 114
CORDIC Polar 116
CORDIC Rotator 119
Counter 133
CRC Generator 141
DDS 145
DDS2 152
Decommutator 164
Delay 170
Demux 172
Depuncture 174
Differentiator 177
Divider 180
DivMod 184
Downsampler 193
Edge Detector 198
Extract 201
FFT 206
FFT2 215
FIFO 222
FIR 229
FIR Engine 237
FIR Rate Converter 242
FIR2 248
Flow Control Buffer 279
Gain 312
Gold Sequence Generator 317
HLS Subsystem 322
IIR 342
Integrator 347
Inverter 351
Log 354
M Control 357
Matrix Mult 361
Mealy State Machine 365
MinMax 368
Moore State Machine 370
Mult 379
Mux 383
Negate 387
Parallel to Serial 393
Permutation 395
PN Sequence Generator 397
Port In 400
Port Out 404
Pow 407
Pulse Generator 410
Puncture 413
RAM 416
Ramp 420
Random 423

Recast 425
Reed-Solomon Encoder 438
Register 442
Reshape 444
RFIR 449
ROM 454
RTL Encapsulation 458
Sample and Hold 466
Saturate 468
Sequence 471
Serial to Parallel 474
Shift Register 478
Shifter 485
Sign 508
SinCos 125, 514, 551
Smart Black Box 534
specifying 643
Sqrt 541
Sum of Products 545
Switch 549
Test Vector Capture 556
Upsampler 559
Vector Concat 563
Vector Expand 567
Vector Extract 570
Vector Split 573
Viterbi Decoder 577

block parmaeters
Host Interface 329

block tagging 649
rules 650

blocks
Abs 42
Accumulator 44
Add 48
adding (Synphony) 642
alphabetical list of Synphony blocks 39
Binary Logic 53
Black Box 56
Block Deinterleaver 62
Block Interleaver 64
casting output data type 697
CIC 66
CIC2 70
Commutator 77
Comparator 84
Concat 86
Configurable FFT/IFFT 88
consolidating in RTL 730
Constant 94
Convert 98

Index

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 955

Convolutional Deinterleaver 104
Convolutional encoder 106
Convolutional Interleaver block 109
CORDIC Exp 111
CORDIC Log 113
CORDIC Magnitude 115
CORDIC Rotator 117
CORDIC SinCos 124
CORDIC Sqrt 126
CORDIC2 127
Counter 131
CRC Generator 138
Decommutator 163
Delay 169
Demux 171
Depuncture 173
Differentiator 176
Divider 179
DivMod 183
Downsampler 191
Edge Detector 197
Extract 200
FDATool 200, 203, 424
FFT 204, 211
FIFO 220
FIR 226, 241
FIR Engine 235
FIR2 246
Fixed to FP 295
FP Add 286
FP Compare 290
FP Constant 292
FP Fused Mult Add block 298
FP Mult 301
FP Port In 303
FP Port Out 306
FP to Fixed 309
Gain 275, 311
Gold Sequence Generator 315
Host Interface 326
IIR 340
Integrator 346
Inverter 350
Leading Zero Counter 352
Log 354
M Control 356
Matrix Mult 360
Mealy State Machine 364
MinMax 367
Moore State Machine 369
Moving Average Filter 372

Mult 378
Mux 381
Negate 386
Out 388
Parallel FIR 389
Parallel to Serial 392
parameterized 816
Permutation 394
PN Sequence Generator 396
Port In 399
Pow 405
Pulse Generator 409
Puncture 412
RAM 414
Recast 424
Reed-Solomon Decoder 428
Reed-Solomon Encoder 435
Register 441
RFIR 448
ROM 453
RTL Encapsulation 456
Sample and Hold 465
Saturate 467
Serial to Parallel 473
Shift Register 476
Shifter 484
shlsdoc function 596
SHLSTool 486
Sign 507
SimControl Tool 550
SinCos 513
SinCos2 516
Single Clock Downsample 526
Single Clock Upsample 529
Smart Black Box 532
Sqrt 539
Sum of Products 544
Switch 548
SynFixPtTool 554
Synphony libraries 28
Test Vector Capture 556
types 800
Upsample 557
Vector Concat 561
Vector Expand 567
Vector Extract 570
Vector Split 572
Viterbi Decoder 574

blocksets
custom. See custom blocksets 804
shlslib function 597

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
956 October 2013

Synphony libraries 28
bus protocols 738

C
C output

APIs 913
design flow 902
directory 904
files 904
generating 903
option for generating 493
output port values file 905
simlog.txt file 905
simulation speedup 927
Simulink wrapper 928
Simulink wrapper scripts 931
Simulink wrapper verification scripts

931
System C 932
verifying against RTL 905

Cadence IUS54 855
casting 697
CEvent API 913
channels

creating multiple 674
char * CModelGetOutput API 919
CIC block 66
CIC filters 66
CIC2 block 70
CIC2 filters 70
clock alignment 721
clock domains 682
clock reset options 497
clocks 682

dedicated clocking 499
multi-rate designs 724
single clock source 499

CModelGetErrMsg() API 921
coefficient variables 588
coefficients

syn_get_coefs 604
command line commands

Synphony information 598
Commutator block 77
Comparator block 84
comparison operations 85
Concat block 86
Constant block 94

constant propagation 731
constraints 622

add_register_and_balance_parallel_pat
hs 622

area_abased_fir_arch_selection_atm
623

file description 620
FIR architecture 228
fir_architecture 623
forward-annotation 636
mult_cycle_path 624
pattern_annotation 626
retimie_across_ blackbox 627
retiming_scale_factor 628
ROM reset 453
shls_retiming_lock 169, 628

constraints file
description 620

Control Logic library 30
Convert block 98

examples 99
Convolutional Deinterleaver block 104
Convolutional Interleaver block 109
CORDIC algorithms

Synphony 701
CORDIC Div block 106
CORDIC Exp block 111
CORDIC Log block 113
CORDIC Magnitude block 115
CORDIC Rotator block 117
CORDIC SinCos block 124
CORDIC Sqrt block 126
CORDIC2 block 127
co-simulation

configuration 842
cosine

CORDIC SinCos block 124
SinCos block 513

Counter block 131
CSimOut__.dat file 905
custom block

creating 805
custom blocks

advantages 800
CIC 66
DDS 143
description 800
differentiator 176
FIR Rate Converter 241

Index

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 957

Flow Control Buffer 275
Integrator 346
masks 806
MinMax 367
parameterized blocks 816
Ramp 419
Random 422
Sequence 470
Sign 507
syn_unlink function 617
unlinking 617

custom blocksets 804
custom libraries

converting 825

D
DAT files, Simulink wrapper 930
data types 696

casting output 697
casting output data type 697
converting from Simulink to Synphony

605
converting input data type 98
displaying for model ports 696
fixed-point in Synphony 696
output data type 697
Synopsys implementation 696
validating fixed-point algorithm 834
validating floating-point algorithm 834
word length for RTL generation 23

DDS block 143
DDS2 block 149
decimation

defined 717
decimators

CIC 67
FIR polyphase 243

Decommutator block 163
define_attribute constraint syntax 620
Delay

retiming constraint 169, 628
delay

defined 717
Delay block 169
delays

Register block 441
demos

shlsdemo function 594
Synphony 594

demultiplexer
Demux block 171
Vector Split block 572

Demux block 171
using in Synphony 562

design flows
Synphony FPGA 20, 23

design options 495
Differentiator block 176
Digital down converter demo 594
direct digital synthesizer. See DDS block
direct digital synthesizer. See DDS2 block
discrete time differentiation 176
discrete time integration 346
Divider block 179
DivMod block 183
doc shls command 598
Downsample

waveforms 195
downsample

offset 719
Downsample block 191

multicycle constraint 633
DSP Basics library 31

E
Edge 198
entities

block consolidation 730
subsystem consolidation 729

error messages
C output API 921

error-correction
Reed-Solomon codes 436
Reed-Solomon Decoder block 428
Reed-Solomon Encoder block 435

examples
Convert block binary point 99

exponents
calculating 111

Extract block 200

F
Fast Fourier Transform. See FFT
FDATool block 203
FFT

FFT block 204

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
958 October 2013

FFT2 block 211
parallel processing 211

FFT2 block 211
FIFO

waveforms 223
FIFO block 220
filter coefficients 760
Filtering library 31
filters

CIC 66
CIC2 70
differentiator 176
FIR 226
FIR2 block 246
IIR 340
Integrator 346
polyphase 241

FIR architecture selection 226
FIR architectures, FIR2 block 246
FIR block 226
FIR Engine block 235

adaptive FIR application 448
reloadable FIR application 448

FIR filters
implementing 764

FIR Rate Converter block 241
FIR2 block 246
fir_architecture constraint 623
FIRs

adaptive 448
reloadable 448

fixed point data type
Synphony 695

Fixed Point Settings toolbox
fixed-point algorithm 834
floating-point data type 834
full-accuracy algorithm 834
plotting 835

Fixed to FP block 295
fixed-point algorithm

comparing to floating-point 835
fixed-point data type

setting 832
setting options 554
Synphony 696

fixed-point numbers
importance of binary point in scaling 99

floating-point algorithm
comparing to fixed-point 835

Flow Control Buffer
waveforms 282

Flow Control Buffer block 275
folding

black boxes 785
effect on FIR architecture 227
effect on forward-annotation of

retiming constraints 629
optimizing with 662
option 501
pattern annotation constraint 626
pattern usage report 673, 851
register balancing 622
smart black boxes 785

forward-annotation
multicycle constraints 626, 636

FP Add block 286
FP Compare block 290
FP Constant block 292
FP Fused Mult Add block 298
FP Mult block 301
FP Port In block 303
FP Port Out block 306
FP to Fixed block 309
fraction length

converting from Simulink to Synphony
605

frame, defined 718
functions

Synphony 589

G
Gain block 311
generic interface protocol 748
global reset options 495
global resets

Synphony RTL 685
Synphony testbench 686

H
handshake

APB 744
AVLON_MM 746
AX14 739
generic protocol 749

help 26
help shls command 598

Index

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 959

hex format
reading ROM data 610

hex records 610
hierarchy

creating (tutorial) 792
preserving subsystems 728
viewing 794

histogram
M Control demo 594

HLS constraint file
creating 653

hls constraint options 505
HLS Subsystem block

parameters 319
shls.log 791
simulation process 320
synthesis process 321
using 786

Host Interface block 326
synthesizing 678

I
I/O blocks

pattern folding 665
icons

custom block 808
IIR block 340
implementation clock 682
implementation options 490
implementations

clock reset options 497, 505
creating 644
deleting 489
design options 495
naming 491
output options 492

In block 345
info shls command 598
inherit port variables 588
input ports 399
input sign values 507
input signals

sample rate propagation 717
inputs

calculating logarithm, CORDIC Log
block 113

calculating logarithm, Log block 354
decreasing sample rate 191
delay 169
increasing sample rate 557
interleaving 64, 109
permutations 64
shifting, Shifter block 484
shuffling 64, 109
square root 539
square root, CORDIC 126

installation directory
shlsroot function 599

int CModelDeleteEvent API 915
int CModelDeleteInstance API 917
int CModelEvalNext API 920
int CModelSetInput API 918
int CSimGetLicense API 923
int CSimReleasLicense API 924
Integrator block 346
interpolation

defined 718
interpolators

CIC 68
FIR polyphase 242, 311

Inverter block 350
IP

embedding 532

L
latency

sample rate definition 718
latency, fixed 504
Leading Zero Counter block 352
libraries

adding custom 806
creating custom 805
loading custom 824
Synphony blocks 28

Log block 354
logarithm

CORDIC Log block 113
Log block 354

logic synthesis
FPGA 856

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
960 October 2013

M
M built-in functions

Synphony support 895
M Control

reversing bit order 590
M Control block 356
M Control block, Synphony

data types 864
demo 594
ports 863
specifying M functions 858
timing 863
using in a design 858

M functions
creating in Synphony 859
editing in Synphony 859
shls_convert 592
specifying for Synphony M Control 858
Synphony control logic with M Control

block 356
Synphony support 894

M keywords
Synphony support 894

M language
Synphony caveats 899
Synphony support 893
Synphony unsupported features 898

M operators
Synphony support 894

M special characters
Synphony support 894

M structures
Synphony support 894

M variables
Synphony support 894

masks
custom blocks 806

masks, subsystem 793
Math Functions library 33
MATLAB

starting Synphony 641
starting Synphony FPGA 23
version for running Synphony 19

Matrix Mult block 360
matrix multiplier 360
Mealy State Machine block 364
Memories library 34
memory queues 220

MinMax block 367
ModelSim 855
modules

block consolidation 730
subsystem consolidation 729

Moore State Machine block 369
Moving Average Filter block 372
Mult block 360, 378
multichannelization

black boxes 785
optimizing with 674
register balancing 622
smart black boxes 785

multi-channels
option 504

multi_cycle_path constraint 624
multiplexers 381

vector 561
multipliers 378

resource usage 850
multirate blocks

pattern folding 665
multirate design

defined 719
multi-rate designs

clock resets 723
Mux block 381

using in Synphony 562

N
NAND operation

Binary Logic block 54
NCO. See DDS block.
Negate block 386
noise cancellation

demo 594
NOR operation

Binary Logic block 54
Note 930

O
offset

defined for downsample 719
upsample 719

opens 554
optimizations

folding 662

Index

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 961

multichannelization 674
using retiming 655

OR operation
Binary Logic block 54

order of operations 697
Out block 388
output format options 583
output options 492
output ports 403
overflow. See saturation options.

P
Parallel FIR block 389
parameterized blocks 816
pattern

for pattern folding 665
pattern folding

annotating patterns in constraint file
626

annotating patterns in Simulink GUI
668

description 665
example 666
excluding patterns 672
option 502

pattern_annotation constraint 626
performance

improving with gate-level retiming 660
Permutation block 394
phase

defined 720
plots 835
polyphase filtering 724
polyphase filters 767, 769

FIR2 block 257
Port In block 399
ports

data capture 615
displaying fixed point data type 696
HLS Subsystem block 320
M Control blocks 863
register latency 616

Ports & Subsystems library 35
primitive blocks 800
punctures

depuncturing 173

Q
QAM 16

demos 594
quantization

Convert block 98

R
Ramp block 419
RAMs

resource usage 850
Recast block 424
Reed Solomon decoder demo 594
Reed Solomon encoder demo 594
Reed-Solomon coding 436
Reed-Solomon Decoder block 428

pins 429
timing 430

Reed-Solomon Encoder block 435
timing 437

register balancing 622
Register block 441
REGISTER_DESIGN API 915
registers

latency parameters 616
resource usage 850

rehash command 806
reloadable filter

FIR2 block 247
reloadable FIR 448
resamplers

FIR polyphase 243
resampling

defined 720
reserved characters for RTL generation 22
resets

global, Synphony 683
local, Synphony 683

Reshape block 443
resource sharing

pattern folding 665
resource usage 850
retime_across_blackbox constraint 628
retiming

black boxes 785
constraint example 629
Delay blocks 169, 628
gate-level (tutorial) 660

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
962 October 2013

latencies for register balancing 622
optimizing with 655
option 503
smart black boxes 785

retiming constraints 653
retiming_scale_factor constraint 628
RFIR block 448
ROM block 453
ROM data

syn_read_hex function 610
ROMs 453

specifying values 454
rounding options 585
RTL

black boxes 780
comparing to C output 905
consolidating blocks 730
global resets, Synphony 685
procedure for generating (FPGA) 24
requirements for generating 22
retaining block names 649
retaining signal names 650
smart black boxes 839
subsystem consolidation 729

RTL encapsulation
port configuration 461

RTL Encapsulation block 456
retiming constraint 627

RTL generation
word length for propagated data types

23

S
sample period

defined 720
sample rate 717

decreasing input rate 191
defined 720
determining 682
increasing input rate 557

saturation options 585
scripts

Aldec simulator 855
Cadence NC simulator 855
Modelsim simulator 855

Sequence block 470
serial to parallel, demo 594
set_param command, pattern folding 672

Shift Register block 476
shift registers

resource usage 850
Shifter block 484
shls.log file

resource usage 850
shls_bitrev function 590
shlsclib custom library 805
shls_convert function 592
shlsdemo function 594
shlsdoc function 596
shlslib function 597
shls_retiming_lock constraint 169, 628

forward-annotation 636
shlsroot function 599
SHLSTool

shlstool function 600
SHLSTool block 486

implementations 488
interface 487

shlstool function 600
SHLSTool toolbox

using 677
shlsver function 602
Sign block 507
signal clocks 682
Signal Operations library 36
signal tracing 650
simlog.txt file 905
simulation license API 923
simulations

comparing with plots 835
Simulink

simulating Synphony FPGA design 24
version 19
wrapper scripts for C output 931

Simulink configuration
checking for Synphony 606
setting for Synphony 614

Simulink simulation speedup 927
Simulink wrapper file

DAT files 930
description 930
generating 928
verification scripts 931

SincCos2 block 516
SinCos block 513

Index

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 963

sine
CORDIC SinCos block 124
SinCos block 513

Single Clock Downsample 526
Single Clock Upsample block 529
single-rate designs

clock resets 722
slot

defined 720
smart black box

demo 594
Smart Black Box block 532
smart black boxes

folding 785
retiming 785
RTL 839

smc_synplify_synthesis_pragma_module 797
Sobel filtering

demo 594
software description 18
Sources library 37
Sqrt block 539
square root

CORDIC Sqrt block 126
Sqrt block 539

state machines
Mealy 364
Moore 369

Subsystem block 543
multicycle constraint 624

subsystems
consolidating in RTL 729
custom blocks 806
in port 345
out port 388
preserving hierarchy 728
Synphony 543
Synphony Subsystem block 319
variable values (tutorial) 794
viewing hierarchy 794

subtractor
Synphony block 48

symbol ordering
block de-interleaving 62
block interleaving 64

symmetric coefficients 254
synchronous resets

RTL code, Synphony 685
testbenches, Synphony 686

synchronous resets, Synphony 684
syn_coef_dt variable 588
syn_coef_fl variable 588
syn_coef_wl variable 588
SynCoSimTool block 550
SynFixPtTool block 554
SynFxPtTool

setting options 832
validating algorithms 834

syn_get_coefs
FIR2 block 251
using for FIRs 769
using for IIRs 772

syn_get_coefs function 604
syn_get_datatype function 605
syn_get_dspstartup function 606
syn_get_wordlength function 608
syn_guard_bit variable 588
syn_inh_dt variable 588
syn_inh_fl variable 588
syn_inh_width variable 568, 588
syn_inh_wl variable 588
syn_inp_dt variable 588
syn_inp_fl variable 588
syn_inp_wl variable 588
syn_mat_columns variable 588

Reshape 445
syn_mat_rows variable

Reshape 445
Synopsys

data type implementation 696
Synphony

accessing blockset 642
accessing information from the

command line 598
checking Simulink configuration 606
FPGA design flow 20, 23
FPGA output 856
functions 589
M language support 893
setting Simulink configuration 614
starting from MATLAB 641
starting from MATLAB (FPGA) 23
starting from Simulink 23, 641

Synphony demos 594
Synphony FDATool block

FIR coefficients 768
IIR coefficients 771

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
964 October 2013

Synphony FIR block
decimators 767

Synphony SynFixPtTool block
using 832

Synplify Pro version 19
syn_read_hex function 610

using 776
syn_set_atm function 612
syn_set_dspstartup function 614
syn_set_portcapture function 615
syn_set_portregister function 616
synStrEval function 60
synthesis pragmas 797
syn_unlink function 617
syn_write_wave

writes VCD file 618
System C, using with C output 932

T
target technology (FPGAs) 491
test benches

generating 853
option for generating 493
simulating 855

testbenches
global reset, Synphony 686

third-party IP, embedding 532
time 0

defined 721
time0

determining 721
single-rate designs 723

timing diagrams. See waveforms
timing engine configuration 612
timing modes

FPGAs 638
timing waveforms. See waveforms
toolboxes

FDATool block 203
SHLSTool 486
SynCoSimTool 550
SynFixPtTool 554

transactions
APB 744
AVLON-MM 747
AX14-Lite 739
generic protocol 749

Transforms library 38

U
underflow. See rounding options.
upsample

offset 719
Upsample block

multicycle constraint 635
Upsampler block 557

V
VCD file

using syn_write_wave 618
Vector Concat block 561
Vector Expand block 567
Vector Extract block 570
Vector Split block 572
vectors

working with 773
verification

generating testbenches from Synphony
853

verification speedup 927
Verilog

asynchronous resets, Synphony 685
generating 646
keywords 647
naming rules 647
synchronous resets, Synphony 685
test benches 853
Verilog 2001 647

version
shlsver function 602

VHDL
asynchronous resets, Synphony 685
generating 646
keywords 647
naming rules 647
synchronous resets, Synphony 685
VHDL 93 647

VHDL test benches 853
Viterbi Decoder block 574
Viterbi Decoder, Synphony

demo 594
demo with puncturing 594

void * CModelCreateInstance API 916

Index

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 965

W
waveforms

Downsample 195
FIFO 223
Flow Control Buffer 282

word length
calculating with syn_get_wordlength

608
converting from Simulink to Synphony

605
propagated data types for RTL

generation 23
syn_get_wordlength function 608

word length options
output 584

word size
converting input word size 98

X
XNOR operation

Binary Logic block 54
XOR operation

Binary Logic block 54

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
966 October 2013

	User Guide Microsemi Edition I-2013.09M
	Copyright Notice and Proprietary Information
	Right to Copy Documentation
	Destination Control Statement
	Disclaimer
	Registered Trademarks (®)
	Trademarks (™)
	Service Marks (sm)

	Getting Started
	About The Synphony Model Compiler Tool
	About the Software
	Synphony Model Compiler and MATLAB

	Synphony Model Compiler Design Flows
	Synphony Model Compiler FPGA Design Flow
	Design Requirements for RTL Generation
	FPGA Design Flow Procedure

	Finding Information
	Getting Help

	SMC Blocks: Abs to Host Interface
	Blocks — By Library
	Communications
	Control Logic
	CORDIC
	DSP Basics
	Filtering
	Floating Point Functions
	Math Functions
	Memories
	Ports & Subsystems
	Signal Operations
	Sources
	Transforms

	Blocks — Alphabetical List
	SMC Abs
	SMC Accumulator
	SMC Add
	SMC Binary Logic
	SMC Black Box
	SMC Block Deinterleaver
	SMC Block Interleaver
	SMC CIC
	SMC CIC2
	SMC Commutator
	SMC Comparator
	SMC Concat
	SMC Configurable FFT/IFFT
	SMC Constant
	SMC Convert
	SMC Convolutional Deinterleaver
	SMC Convolutional Encoder
	SMC Convolutional Interleaver
	SMC CORDIC Exp
	SMC CORDIC Log
	SMC CORDIC Polar
	SMC CORDIC Rotator
	SMC CORDIC SinCos
	SMC CORDIC Sqrt
	SMC CORDIC2
	SMC Counter
	SMC CRC Generator
	SMC DDS
	SMC DDS2
	SMC Decommutator
	SMC Delay
	SMC Demux
	SMC Depuncture
	SMC Differentiator
	SMC Divider
	SMC DivMod
	SMC Downsample
	SMC Edge Detector
	SMC Extract
	SMC FDATool
	SMC FFT
	SMC FFT2
	SMC FIFO
	SMC FIR
	SMC FIR Engine
	SMC FIR Rate Converter
	SMC FIR2
	SMC Flow Control Buffer
	SMC FP Add
	SMC FP Compare
	SMC FP Constant
	SMC Fixed to FP
	SMC FP Fused Mult Add
	SMC FP Mult
	SMC FP Port In
	SMC FP Port Out
	SMC FP to Fixed
	SMC Gain
	SMC Gold Sequence Generator
	SMC HLS Subsystem
	SMC Host Interface

	SMC Blocks: IIR to Viterbi Decoder
	SMC IIR
	SMC In
	SMC Integrator
	SMC Inverter
	SMC Leading Zero Counter
	SMC Log
	SMC M Control
	SMC Matrix Mult
	SMC Mealy State Machine
	SMC MinMax
	SMC Moore State Machine
	SMC Moving Average Filter
	SMC Mult
	SMC Mux
	SMC Negate
	SMC Out
	SMC Parallel FIR
	SMC Parallel to Serial
	SMC Permutation
	SMC PN Sequence Generator
	SMC Port In
	SMC Port Out
	SMC Pow
	SMC Pulse Generator
	SMC Puncture
	SMC RAM
	SMC Ramp
	SMC Random
	SMC Recast
	SMC Reed-Solomon Decoder
	SMC Reed-Solomon Encoder
	SMC Register
	SMC Reshape
	SMC RFIR
	SMC ROM
	SMC RTL Encapsulation
	SMC Sample and Hold
	SMC Saturate
	SMC Sequence
	SMC Serial to Parallel
	SMC Shift Register
	SMC Shifter
	SMC SHLSTool
	SHLSTool Toolbox Interface

	Implementation Options Dialog Box
	SMC Sign
	SMC Signal Update
	SMC SinCos
	SMC SinCos2
	SMC Single Clock Downsample
	SMC Single Clock Upsample
	SMC Smart Black Box
	SMC Sqrt
	SMC Subsystem
	SMC Sum of Products
	SMC Switch
	SMC SynCoSimTool
	SMC SynFixPtTool
	SMC Test Vector Capture
	SMC Upsample
	SMC Vector Concat
	SMC Vector Expand
	SMC Vector Extract
	SMC Vector Split
	SMC Viterbi Decoder
	Common Parameters
	Output Format Options
	Overflow Saturation Options
	Underflow Rounding Options
	Special Variables

	SMC Functions
	shls_bitrev
	shls_convert
	shlsdemo
	shlsdoc
	shlslib
	shlsroot
	shlstool
	shlsver
	syn_get_coefs
	syn_get_datatype
	syn_get_dspstartup
	syn_get_wordlength
	syn_read_hex
	syn_set_atm
	Timing Engine Configuration Dialog Box

	syn_set_dspstartup
	syn_set_portcapture
	syn_set_portregister
	syn_unlink
	syn_write_wave

	Constraints
	HLS Constraints File
	Synphony Model Compiler Constraints
	add_register_and_balance_parallel_paths
	areabased_fir_arch_selection_atm Constraint
	fir_architecture Constraint
	multi_cycle_path Constraint
	pattern_annotation Constraint
	retime_across_blackbox
	retiming_scale_factor Constraint
	shls_retiming_lock Constraint

	Multicycle Path Constraints
	Specifying Multicycle Path Constraints
	Automatically Inferring Multicycle Path Constraints

	Forward-Annotation

	Synthesizing the Design
	Configuring Synphony Model Compiler
	Configuring Settings for Simulink Simulation
	Configuring SMC Timing Modes for FPGAs
	Setting Default Display Modes

	Basic Procedures
	Starting a Synphony Model Compiler Design
	Working with Synphony Model Compiler Blocks

	Setting Options for an Implementation
	Setting up Implementations
	Resolving Read/Write Conflicts in FPGA RAMs
	Including Comments in the Generated RTL
	Keeping Signal Names in Generated RTL

	Using Constraints
	Using Retiming
	Optimizing with Retiming
	Using Automatic Gate-level Retiming

	Using Folding
	Optimizing with Folding
	Using Pattern Folding
	Using Annotations for Folding

	Optimizing with Multichannelization
	Running Synthesis with SHLSTool
	Synthesizing with a Host Interface Block

	Underlying DSP Fundamentals
	Clock Domains
	Resets in the SMC Tool
	Global and Local Resets
	Synchronous and Asynchronous Resets
	Reset Implementation in RTL Code
	Resets and RTL Testbenches

	Clock and Reset Management
	Clock_reset Module Interface
	Reset Functionality with the Clock_reset Module
	Clock Functionality with the Clock_reset Module
	Clock/Reset Circuitry Files
	Clock_reset Module Limitations
	Log File Messages for the Clock_reset Module

	Data Types
	Fixed-Point and Floating-Point Representation
	Synphony Model Compiler Data Type Implementation
	Fixed-Point Data Type
	Data Type Casting: Setting the Output Data Type
	Matrix Data Types

	CORDIC Algorithms
	CORDIC Definitions
	Unified CORDIC Applications

	Multi-Rate Design
	Sample Rate Terminology
	Clock Generation and Clock Reset
	Polyphase Filtering

	Hierarchy Preservation
	Subsystem Consolidation
	Block Consolidation
	Constant Propagation
	RAMs
	RAM Definitions
	RAM Access Control
	Port Use in Different RAM Configurations

	Bus Protocols
	AXI4-Lite Protocol
	APB Protocol
	AVLON-MM Protocol
	Generic Interface Protocol

	Designing with the SMC Tool
	Defining Clocks and Resets
	Specifying a clock_reset Module
	Defining Reset Signals

	Designing Filters
	Implementing FIR Filters with the FIR2 Block
	Implementing FIR Filters with the FIR Block
	Implementing Polyphase FIR Filters
	Defining FIR Filter Coefficients with FDATool
	Implementing IIR Filters
	Defining IIR Filter Coefficients with FDATool

	Working with Vectors
	Creating Vector Signals
	Using Math Operations on Vector Signals

	Specifying ROM Data with syn_read_hex
	Using Black Boxes and Third-Party IP
	Integrating Black Boxes in the Design
	Setting Black Box Parameters
	Configuring a Black Box - Example
	Using Optimizations with Black Boxes

	Managing Subsystems and Hierarchy
	Using the HLS Subsystem Block
	Using the Synphony Subsystem Block
	Tagging Subsystems with FPGA Synthesis Attributes

	Working with Custom Blocks
	Primitives and Custom Blocks
	Design Flow for Building Custom Blocks
	Set up a Custom Library
	Create a Custom Block
	Define Basic Content for Custom Blocks
	Define Content for Parameterized Blocks
	Define Content for Reconfigurable Blocks
	Designing with Custom Blocks
	Maintaining Custom Libraries
	Maintaining Independent Custom Libraries
	Converting Custom Libraries

	The MySign M-Generator

	Analyzing and Verifying the Design
	Using Quantization Analysis Tools
	Specifying Fixed-Point Options
	Validating Algorithms with the Fixed-Point Toolbox
	Using Plots

	Using Smart Black Boxes for Cosimulation
	Incorporating Smart Black Boxes in the Design
	Configuring the Cosimulation Interface
	Creating Smart Black Box Configuration Files
	About Cosimulation with ModelSim

	Simulating HLS Subsystem Blocks
	Viewing Simulink Signals in a Waveform Viewer

	Working with SMC Output
	Checking the Log File
	Verifying the RTL with a Test Bench
	Working with the Output for FPGA Designs

	Using M Code Blocks
	Using M Code Blocks
	Using M Code Blocks in SMC Designs
	Coding for Synthesis with M Code Blocks

	M Coding Style
	Ports and Timing
	M Code Block Data Types
	Combinatorial Logic
	Persistent Variables
	Memories
	State Machines
	Counters
	MATLAB Function that Evaluates to a Constant
	User-Defined Functions for M Code Blocks
	Overridable Parameters

	Using Persistent Variables
	M Code for Persistent Variables
	Precision Bounds for Persistent Variables
	Access-Update Sequence for Persistent Variables
	Conditional Assignments to Persistent Variables

	M Code Examples
	Hardware-Aware M Code
	Quantization of Constants

	M Language Support for M Code Blocks
	Keywords, Variables, Functions, and Structures
	Operator Support
	Built-In Function Support
	SMC Functions for M Code Blocks
	M Language Limitations

	Working with C Output
	Design Flow for Working with C Output
	Generating C Output Data
	Generating C Output
	Generating Output Data Files for C Output

	Verifying C Output Against RTL
	Simulating C Output
	Simulating C Output with GCC
	Simulating C Output in Microsoft Visual Studio 2010

	Supported APIs for C Output
	CEvent
	int CModelDeleteEvent
	REGISTER_DESIGN
	void * CModelCreateInstance
	int CModelDeleteInstance
	int CModelSetInput
	char * CModelGetOutput
	int CModelEvalNext
	CModelGetErrMsg()
	int CSimGetLicense()
	int CSimReleaseLicense()

	C Model API Usage
	Using C Output in Simulink
	Using C Output to Speed up Simulink Simulations
	Generating the Simulink C Output Wrapper

	Using C Output with SystemC
	Using C Output with Verilog-C Interfaces
	Simulating C Output with Verilog-C Interfaces
	Verilog-C Interface Wrappers
	Verilog-C Interface Wrapper Example
	Verilog-C Interface Wrapper System Tasks

	Blockset Summary
	SMC Block Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

