Synphony Model Compiler
User Guide

Microsemi Edition 1-2013.09M

October 2013

http://solvnet.synopsys.com

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright © 2013 Synopsys, Inc. All rights reserved. This software and
documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance
with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the
license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of and its
employees. This is copy number ”

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
2 October 2013

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, COMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 3

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
October 2013

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
4 October 2013

Contents

Chapter 1: Getting Started

About The Synphony Model Compiler Tool 18
Aboutthe Software 18
Synphony Model Compilerand MATLAB 19

Synphony Model Compiler Design Flows 20
Synphony Model Compiler FPGA Design Flow 20
Design Requirements for RTL Generation 22
FPGA Design Flow Procedure 23

Finding Information e 26

Getting Help 26

Chapter 2: SMC Blocks: Abs to Host Interface

Blocks — By Library e 28
Communications 29
Control LOGICot 30
CORDIC . . 30
DSP BasiCS ...t 31
Fiteringo 31
Floating Point Functions 32
Math Functions 33
MemOries e 34
Ports & Subsystems 35
Signal Operations e 36
SOUICES . . o 37
Transforms 38

Blocks — Alphabetical List 39

SMC ADS . . 42

SMC Accumulator e 44

SMC Add ..o 48

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 5

SMC Binary LOgIiC 53

SMC BIack BOXo 56
SMC Block Deinterleaver i 62
SMC Block Interleaver 64
SMC ClC . o 66
SMC ClC2 . .o 70
SMC Commutator 77
SMC Comparatoro i 84
SMC Concat 86
SMC Configurable FFT/IFFT e e e 88
SMC Constanto 94
SMC ConVert . .. 98
SMC Convolutional Deinterleaver 104
SMC Convolutional Encoder 106
SMC Convolutional Interleaver 109
SMC CORDIC EXD .. oottt et e e e e e e e e 111
SMC CORDIC LOG . .t ittt et e e e e e e e e 113
SMC CORDIC Polar e 115
SMC CORDIC Rotator e 117
SMC CORDIC SINCOS ..ottt it e e e e e e 124
SMC CORDIC SOt . ..ottt e 126
SMC CORDICZ . . . 127
SMC CoUNtEr . .. 131
SMC CRC Generatort e 138
SMC DS . .o 143
SMC DD S . ot 149
SMC Decommutator 163
SMC Delay 169
© 2013 Synopsys, Inc. Synphony Model Compiler User Guide

6 October 2013

SMC DEMUX . . ottt e 171

SMC DepUNCIUre 173
SMC Differentiator 176
SMC DiIVIdEr .. o 179
SMC DIVMOd . . .o 183
SMC Downsample 191
SMC Edge Detector 197
SMC EXIract 200
SMC FDATOOI . . o oot 203
SMC FRT 204
SMC FFT 2 211
SMC FIFO . o 220
SMC FIR . 226
SMC FIRENGINEo e e 235
SMC FIRRate Converter e 241
SMC FIRZ .. o 246
SMC Flow Control Buffer e 275
SMC FP Addo 286
SMC FP Compare e 290
SMC FP Constant 292
SMC Fixed to FP . .. 295
SMC FP Fused Mult Add 298
SMC FP MuUlt . .o 301
SMC FP Port Ino 303
SMC FP Port OUut 306
SMC FPto FiXxed 309
SMC Gain ..o 311
SMC Gold Sequence Generator i 315
Synphony Model Compiler User Guide © 2013 Synopsys, Inc.

October 2013 7

SMC HLS Subsystem 319

SMC HostInterface 326
Chapter 3: SMC Blocks: IIR to Viterbi Decoder

SMC IR o 340
SMC N 345
SMC Integrator 346
SMC INVeIter . . o 350
SMC Leading Zero Counter i e 352
SMC LOg . .ot e 354
SMC M CoNtrol . ..o 356
SMC Matrix MUIto 360
SMC Mealy State Machine 364
SMC MINMaX . .ot 367
SMC Moore State Machine 369
SMC Moving Average Filter 372
SMC MUt . 378
SMC MUX . 381
SMC NEgate e 386
SMC OUL . o 388
SMC Parallel FIR ... 389
SMC Parallelto Serial 392
SMC Permutation 394
SMC PN Sequence Generatort 396
SMC Port In . 399
SMC Port OUt 403
SMC POW . 405
SMC Pulse Generator 409
SMC PUNCIUIE . . . oo e 412

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide

8 October 2013

SMC RAM . 414

SMC RaMP . . 419
SMC RanNdom 422
SMC ReCast 424
SMC Reed-Solomon Decodert 428
SMC Reed-Solomon ENCoderottt 435
SMC Register 441
SMC ReShape 443
SMC RFIR 448
SMC ROM .o 453
SMC RTL Encapsulation it 456
SMC Sampleand Hold 465
SMC Saturate 467
SMC SEQUENCE o 470
SMC Serialto Parallel 473
SMC Shift Register e 476
SMC Shifter 484
SMC SHLSTOOI . ..ot 486

SHLSTool Toolbox Interface i 487
Implementation Options Dialog Box 490
SMC SigN .. 507
SMC Signal Update e 509
SMC SINCOS . .ot 513
SMC SiNCOS2 516
SMC Single Clock Downsample 526
SMC Single Clock Upsample it 529
SMC Smart Black BOX 532
SMC SOt .ot 539
SMC Subsystem e 543

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.

October 2013 9

SMC Sum of Products 544

SMC SWitCh ... 548
SMC SynCoSimToO0l 550
SMC SynFixPITool 554
SMC TestVector Capture e 556
SMC Upsample 557
SMC Vector ConCatt e 561
SMC Vector Expand 567
SMC Vector Extract 570
SMC Vector Split 572
SMC Viterbi Decoder 574
Common Parameters 583
Output Format Options e 583
Overflow Saturation Options 585
Underflow Rounding Options i 585
Special Variables 588
Chapter 4: SMC Functions
Shls _bitrev 590
Shls_Convert 592
SNISAEMO 594
SNISAOC . . .o 596
Shislib ... 597
SNISIOOt . . . 599
ShIStOOl . . . 600
SRSV . 602
SYN_gel _COBSo 604
syn_get datatype 605
syn_get dspstartup 606
syn_get wordlength 608
syn_read_heX 610
© 2013 Synopsys, Inc. Synphony Model Compiler User Guide

10 October 2013

SYN_Set atm 612

Timing Engine Configuration DialogBox 612
syn_set dspstartup 614
syn_set_portcapture 615
syn_set_portregister 616
SYN_UNIINK . . o 617
SYN_WItE WaVE e 618

Chapter 5: Constraints

HLS Constraints File e 620
Synphony Model Compiler Constraints 622
add_register_and_balance_parallel_paths 622
areabased_fir_arch_selection_atm Constraint 623
fir_architecture Constraint 623
multi_cycle path Constraint 624
pattern_annotation Constraint 626
retime_across_blackbox 627
retiming_scale factorConstraint 628
shls_retiming_lock Constraint 628
Multicycle Path Constraints 632
Specifying Multicycle Path Constraints 632
Automatically Inferring Multicycle Path Constraints 633
Forward-Annotation 636

Chapter 6: Synthesizing the Design

Configuring Synphony Model Compiler 638
Configuring Settings for Simulink Simulation 638
Configuring SMC Timing Modes for FPGAs 638
Setting Default Display Modes 640

Basic Procedures 641
Starting a Synphony Model CompilerDesign 641
Working with Synphony Model Compiler Blocks 642

Setting Options for an Implementation 644
Setting up Implementations 644
Resolving Read/Write Conflicts in FPGARAMs 647
Including Comments in the Generated RTL 649
Keeping Signal Names in Generated RTL 650

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.

October 2013 11

Using Constraints e e 653

Using Retiming e 655
Optimizing with Retiming 655
Using Automatic Gate-level Retiming 660

Using Folding e 662
Optimizing with Folding i 662
Using Pattern Folding 665
Using Annotations for Folding i 668

Optimizing with Multichannelization 674

Running Synthesis with SHLSTool 677

Synthesizing with a Host Interface Block 678

Chapter 7: Underlying DSP Fundamentals

Clock DOMaINSo 682
Resetsinthe SMC Tool e 683
Global and Local Resets i 683
Synchronous and Asynchronous Resets 684
Reset ImplementationinRTLCode 685
Resets and RTL Testbenches 686
Clock and Reset Management 686
Clock_reset Module Interface 688
Reset Functionality with the Clock_resetModule 689
Clock Functionality with the Clock_resetModule 689
Clock/Reset Circuitry Files 690
Clock_reset Module Limitations 690
Log File Messages for the Clock_reset Module 691
Data TYPES . . oot 695
Fixed-Point and Floating-Point Representation 695
Synphony Model Compiler Data Type Implementation 696
Fixed-Point Data Type e 696
Data Type Casting: Setting the Output Data Type 697
Matrix Data Types e 698
CORDIC Algorithms 701
CORDIC Definitions 702
Unified CORDIC Applications e 711
Multi-Rate Design e 717
Sample Rate Terminology 717
© 2013 Synopsys, Inc. Synphony Model Compiler User Guide

12 October 2013

Clock Generation and Clock Reset 721

Polyphase Filtering 724
Hierarchy Preservation i 728
Subsystem Consolidation 729
Block Consolidation 730
Constant Propagation 731
RAMS 733

RAM Definitions 733

RAM Access Control 736

Port Use in Different RAM Configurations 737
Bus Protocols 738

AXI4-Lite Protocol 738

APB Protocol 743

AVLON-MM Protocol e 745

Generic Interface Protocol 748
Chapter 8: Designing with the SMC Tool
Defining Clocks and Resets i, 754

Specifyingaclock_resetModule 755

DefiningReset Signals 758
Designing Filters e 760

Implementing FIR Filters withthe FIR2Block 760

Implementing FIR Filters withthe FIRBlock 764

Implementing Polyphase FIRFilters 767

Defining FIR Filter Coefficients with FDATool 768

Implementing IR Filters 769

Defining IIR Filter Coefficients with FDATool 771
Working with Vectors e 773

Creating Vector Signals i, 773

Using Math Operations on Vector Signals 774
Specifying ROM Data with syn_read_hex 776
Using Black Boxes and Third-Party IP 777

Integrating Black Boxes inthe Design 777

Setting Black Box Parameters i 780

Configuringa Black Box-Example 782

Using Optimizations with Black Boxes 784

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.

October 2013 13

Managing Subsystems and Hierarchy 786

Using the HLS Subsystem Block 786
Using the Synphony Subsystem Block 792
Tagging Subsystems with FPGA Synthesis Attributes 796

Chapter 9: Working with Custom Blocks

Primitives and Custom Blocks 800
Design Flow for Building Custom Blocks 804
SetupaCustomlLibrary 805
Createa Custom BIOCK 806
Define Basic Content for Custom Blocks 812
Define Content for Parameterized Blocks 816
Define Content for Reconfigurable Blocks 820
Designing with Custom Blocks 823
Maintaining Custom Libraries 824

Maintaining Independent Custom Libraries 824

Converting Custom Libraries 825
The MySign M-Generator e 826

Chapter 10: Analyzing and Verifying the Design

Using Quantization Analysis Tools 832
Specifying Fixed-Point Options 832
Validating Algorithms with the Fixed-Point Toolbox 834
Using Plots 835

Using Smart Black Boxes for Cosimulation 837
Incorporating Smart Black Boxesinthe Design 837
Configuring the Cosimulation Interface 839
Creating Smart Black Box ConfigurationFiles 841
About Cosimulation with ModelSim 842

Simulating HLS Subsystem Blocks 844

Viewing Simulink Signals in a Waveform Viewer 846

Chapter 11: Working with SMC Output

Checkingthe Log File 850

Verifying the RTLwithaTestBench, 853

Working with the Output for FPGA Designs 856

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide

14 October 2013

Chapter 12: Using M Code Blocks

UsingM Code BIoCKS e 858
Using M Code Blocks in SMC Designs 858
Coding for Synthesis with M Code Blocks 860

M Coding Style 862
Portsand Timing 862
M Code Block Data Types e 864
Combinatorial LogiC 868
Persistent Variables 869
Memories e 869
State Machines 870
COUNEIS .« . . ot e 878
MATLAB Function that EvaluatestoaConstant 880
User-Defined Functions for M Code Blocks 880
Overridable Parameters 881

Using Persistent Variables 883
M Code for Persistent Variables 883
Precision Bounds for Persistent Variables 885
Access-Update Sequence for Persistent Variables 888
Conditional Assignments to Persistent Variables 890

M Code Examples e 892
Hardware-Aware M Code 892
Quantizationof Constants 893

M Language Support for M Code Blocks 893
Keywords, Variables, Functions, and Structures 894
Operator SUpport e 894
Built-In Function Support 895
SMC Functions for M Code Blocks 898
M Language Limitations 898

Chapter 13: Working with C Output

Design Flow for Working with COutput 902

Generating C OutputData 903
Generating C Output e 903
Generating Output Data Filesfor COutput 905

Verifying C Output Against RTL 905

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.

October 2013 15

Simulating C Output 906

Simulating C Outputwith GCC 906
Simulating C Output in Microsoft Visual Studio2010 906
Supported APIs for C Output 913
CEVENt . 913
int CModelDeleteEvent e 915
REGISTER _DESIGN i 915
void * CModelCreatelnstance 916
int CModelDeletelnstance 917
int CModelSetlnput 918
char* CModelGetOutput 919
int CModelEvalNext 920
CModelGetErmMSg() . . .o v oo 921
iNt CSIMGELLICENSE() . . . vt i e e 923
int CSimReleaseLicense() 924
CModel APIUSAgE e 925
Using C Outputin Simulink i 927
Using C Output to Speed up Simulink Simulations 927
Generating the Simulink C Output Wrapper 928
Using C Output with SystemC 932
Using C Output with Verilog-C Interfaces 933
Simulating C Output with Verilog-C Interfaces 933
Verilog-C Interface Wrappersttt i 934
Verilog-C Interface Wrapper Example 936
Verilog-C Interface Wrapper System Tasks 938

Appendix A: Blockset Summary
SMC BIOCK SUMMArY 946

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
16 October 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 1

Getting Started

The following topics provide a general introduction to the Synphony Model
Compiler software:

* About The Synphony Model Compiler Tool, on page 18
* Synphony Model Compiler Design Flows, on page 20
* Finding Information, on page 26

* Getting Help, on page 26

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 17

Getting Started About The Synphony Model Compiler Tool

About The Synphony Model Compiler Tool

This section briefly discusses the following topics:
* About the Software, on page 18
* Synphony Model Compiler and MATLAB, on page 19

About the Software

The Synphony product is a high-level tool for hardware DSP design. It is an
add-on to the Simulink® product from The MathWorks®, and provides the
designer with an automated path from high-level design and simulation to an
architecturally-optimized, synthesizable, system-level HDL implementation.
This tool provides performance and productivity benefits for designers who
are implementing DSP circuits into FPGA devices. The software achieves
significantly higher performance than alternative solutions and provides the
designer with a mechanism to evaluate high-level area/performance
trade-offs. The output is synthesizable HDL code ready for use with the
Synopsys® Synplify Pro® synthesis software.

The software consists of the following components:
* A Simulink blockset

* An automated mechanism to produce a bit-exact, optimized HDL imple-
mentation when a Simulink model is created using this blockset

* An automated mechanism to capture test vectors during Simulink
simulation

* Automatic HDL test bench generation to verify bit accuracy

Value for DSP Algorithm Designers

Using FPGAs for DSP design is a complex task, and the Synphony Model
Compiler software makes it easy to maximize the optimizations possible with
this design flow. For DSP algorithm designers implementing in FPGAs, the
Synphony Model Compiler software does the following:

* Provides a familiar working environment. The Synphony Model Compiler
tool plugs into the familiar Simulink and MATLAB environment, so the
DSP algorithm designer need not learn a new tool or methodology.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
18 October 2013

About The Synphony Model Compiler Tool Getting Started

Automates the design flow by smoothly transitioning from the high-level
arithmetic Simulink abstractions to the Synopsys FPGA synthesis tools,
with which it is tightly integrated. It eliminates the need for the

algorithm designer to learn about physical issues that affect the design.

Is the only tool that offers a vendor-independent solution for a DSP
FPGA implementation. The designer can experiment with different FPGA
vendor technologies.

Includes proprietary optimizations that improve area and performance.

Value for Hardware Engineers

For the hardware engineer, the Synphony Model Compiler software does the
following:

Eliminates costly iterations normally required to accurately translate the
DSP algorithms, because it generates the necessary RTL code. It elimi-
nates the extra cycles normally required to generate RTL that captures
the algorithmic intent of the designer and also accounts for physical
issues.

Makes the hardware engineer’s job easier with built-in optimizations
that account for hardware considerations. The Synphony Model
Compiler tool does DSP-level optimizations (z-domain) using implemen-
tation-level constraints like target technology and timing.

Generates an optional testbench, which can be extremely useful in
verifying bit accuracy.

Synphony Model Compiler and MATLAB

It is assumed that you have valid licenses for the appropriate versions of the
MATLAB® and Simulink software from MathWorks and that you are familiar
with these products. For FPGA targets, the use model assumes that the
Synphony Model Compiler output will be synthesized with the Synplify Pro
product from Synopsys, so the designer must have this product and be
familiar with its use.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 19

Getting Started Synphony Model Compiler Design Flows

Synphony Model Compiler Design Flows

This section contains a flow description and a step-by-step procedure.

¢ Synphony Model Compiler FPGA Design Flow, on page 20

Design Requirements for RTL Generation, on page 22

¢ FPGA Design Flow Procedure, on page 23

Synphony Model Compiler FPGA Design Flow

The following figure summarizes the flow for creating an FPGA design, gener-
ating RTL code, synthesis, and verification. For more details, see the proce-
dure in FPGA Design Flow Procedure, on page 23. To step through an
example using the tool for an FPGA design, refer to the training materials
packaged with the tool.

Synphony Model Compiler User Guide

© 2013 Synopsys, Inc.
20 October 2013

Synphony Model Compiler Design Flows Getting Started

SYNPHONY FPGA DESIGN FLOW

Design algorithm with
Synphony blocks

Simulate and verify design
in Simulink Stage 1: Design Entry

and Simulation

Select target and
architectural optimizations

Y

Run synthesis for FPGAs bm=d SHLSTool Toolbox
and optimize

Test Bench
Source File
Constraint File Stage 2: Design Optimization
Project File and RTL Generation
Run Synplify Pro/Premier
logic synthesis
+ Verify

Place and route

Stage 3: Logic Synthesis, Verification,
and Place and Route

Stage 1: Design Entry and Simulation

For this first stage of the flow, use the Simulink software and the Synphony
Model Compiler blockset to compose the design. You can use other Simulink
blocksets for simulation and debugging, but the software only generates RTL

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 21

Getting Started Synphony Model Compiler Design Flows

code for blocks from the Synphony blockset. Simulate and verify the design at
least once with Simulink to ensure correct functionality. For additional
details about the flow, see FPGA Design Flow Procedure, on page 23.

Stage 2: Design Optimization and RTL Generation

The strengths of the Synphony Model Compiler software are optimization and
RTL generation. To do this, add the SHLSTool block to the design.

Set system-level optimization settings and the target technology with the
SHLSTool block. Use the same block to generate RTL code. The optimizations
are targeted towards the FPGA design. For details of the flow, see FPGA
Design Flow Procedure, on page 23. The software generates RTL code and an
optional test bench.

Stage 3: Logic Synthesis, Verification, and Place-and-Route

For this stage, you use synthesis, verification, and place-and-route tools. If
you generated a test bench, run it in a VHDL simulator to verify the bit-exact-
ness of the generated VHDL code with respect to the Simulink model. Use the
RTL code for logic synthesis with the Synplify Pro software. After synthesis,
verify the post-synthesis VHDL code generated by the synthesis software
against the Synphony Model Compiler test bench. Then, use the synthesized
netlist as input to the place-and-route tool of the FPGA vendor. For additional
details about the flow, see FPGA Design Flow Procedure, on page 23.

Design Requirements for RTL Generation

To generate RTL, you must follow these rules:

* The design must be bound by the Synphony Model Compiler Port In and
Port Out blocks. You must define your design boundaries with Synphony
Model Compiler Port In and Port Out blocks. If you do not do this, the
Synphony Model Compiler tool cannot determine the ports for the RTL
description. The generated RTL will not be correct.

¢ All the blocks that need to be synthesized into RTL must be from the
Synphony Model Compiler blockset.

* Do not use the following characters in port, block, subsystem, or signal
names in the Simulink model. If you do, the tool might not generate RTL
code successfully.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
22 October 2013

Synphony Model Compiler Design Flows Getting Started

& Ampersand ! Exclamation mark
' Apostrophe " Grave accent

* Asterisk - Minus

\ Backslash # Number sign

A Caret % Percent

: Colon + Plus

, Comma ? Question mark
{Curly bracket, open ; Semicolon

} Curly bracket, close ~ Tilde

$ Dollar sign

* Data types that are propagated through any of the Synphony blocks
must have a word length that is greater than or equal to the fraction
length.

FPGA Design Flow Procedure

The following procedure describes the steps required to follow the design flow
(Synphony Model Compiler FPGA Design Flow, on page 20):

1. Start MATLAB and make sure you are in your design directory. Click the
Simulink icon and open Simulink.

File Edit Debug Desktop Windnﬂ_\Help

D] % BB o o (M) 2]

2. Set up the design.

— Open a model window. For details, see Starting a Synphony Model
Compiler Design, on page 641.

— Configure the tool settings and specify the timing mode, as described
in Configuring Synphony Model Compiler, on page 638.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 23

Getting Started Synphony Model Compiler Design Flows

— Build your circuit with Synphony Model Compiler blocks. For details,
see Working with Synphony Model Compiler Blocks, on page 642.
3. Verify the design in Simulink.

— Set simulation parameters and simulate the design using the
commands on the Simulate menu. For details, consult the Simulink
documentation.

— Use a Simulink simulation with scaled double precision.

— Impose quantization on the design enabling fixed-point data type
associations.

— Verify the bit-accurate design with a Simulink simulation.

4. Set up the implementation for RTL generation.

— Make sure your design follows the requirements described in Design
Requirements for RTL Generation, on page 22.

— In the Simulink window, click Synphony Blockset, and add the SHLSTool
block to the design. One instance of this block controls the whole
design.

— Double-click the SHLSTool block in the model window to open the
Synphony Model Compiler toolbox.

— Set up the implementation and the options for it, as described in
Setting up Implementations, on page 644.

— Click OK in the Implementation Options dialog box.

S. Click Run in the Synphony Model Compiler window to generate RTL code
and output files for the optimized design.

The software generates RTL code for the Synphony Model Compiler
block components in the design. It does not generate RTL code for other
blocks.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
24 October 2013

Synphony Model Compiler Design Flows Getting Started

= iy dort
3 . i fl———
= we Ll
1w N e ,
" em
Iveger Dely "
m _DI_“‘I it cont rl_;"l Lt
nt ot
Prke
Geweraor FiFo S
-
(—ldh oort =|_'_1_, i :l
| oot
Resart
- » i
Temhaior
- 12 e —..
— [il
= Temnawrt
R wint cont
SHLSTedl
Tem a2
FIFO1
o | o]
- din dore
Resnf2
- Tem a3
-
Tem haord
= e
conit
Temhaos

FIFOD

6. Run logic synthesis, verify, and place-and-route your design. For details
about these tasks, consult the documentation for these tools.

— Start the Synplify Pro or Synplify Premier software and use the source
code, constraint, and project files generated in the previous step as
input to synthesize your design. If you want to target a different
family or device, you can reset that in the synthesis tool when you
run synthesis.

— Compare the test bench to post-synthesis gate-level simulation to
verify results.

— Place and route the design, using the tool appropriate to your design
and vendor.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 25

Getting Started Finding Information

Finding Information

The following table shows you where to find information:

For...

See...

Procedures and tips on using the tool Synthesizing the Design

Descriptions of individual Synphony Model Blocks — By Library

Compiler blocks Blocks — Alphabetical List
Descriptions of command line functions SMC Functions
Help Getting Help

Getting Help

The Synphony Model Compiler software includes documentation, which you
can access in the following ways:

For a printed copy, go to the MATLAB help (Help->Product Help) and select
Synphony Model Compiler in the Contents tab of the Help system. Scroll down
and open the PDF document (Release Notes or User Guide) you need.
You can print out the PDF documents.

For online help, open the Contents tab of the Help Navigator, scroll to
Synphony Model Compiler, and select the topic you want.

For context-sensitive online help about blocks in the Simulink library
browser, click a block to see a one-line description displayed. Right-click
on a block and select Help to display information about the block.

For context-sensitive online help about blocks in the Simulink model
window, right-click on the block and select Help. This displays informa-
tion about the block.

For context-sensitive online help on a dialog box, click the Help button.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
26

October 2013

SYnopsys

CHAPTER 2

SMC Blocks: Abs to Host Interface

This chapter describes the Synphony Model Compiler blocks and the
Synphony Model Compiler custom blocks, categorizing them by library and
alphabetically. See the following:

* Blocks — By Library, on page 28
* Blocks — Alphabetical List, on page 39
Note the following:

* The Synphony Model Compiler library includes some toolboxes at the
top level: SynCoSimTool, SHLSTool and SynFixPtTool. They are documented
along with the other blocks.

* Some Synphony Model Compiler blocks are classified as custom blocks.
For details, and a list of the custom blocks, see Primitives and Custom
Blocks, on page 800.

* Some blocks are specialized blocks, and the icons reflect the difference.
For example, Black Box, M Control, and the port and subsystem blocks.

* The appendix Blockset Summary, on page 945, contains a quick refer-
ence list of parameters like saturation and word length for different
blocks.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 27

SMC Blocks: Abs to Host Interface Blocks — By Library

Blocks — By Library

The Synphony Model Compiler blockset is organized into the block libraries

described in the following table. You can access the libraries from the
Simulink Library Browser. For an alphabetical list of individual blocks, see
Blocks — Alphabetical List, on page 39).

Communications
Control Logic
CORDIC

DSP Basics
Filtering

Floating Point
Functions

Math Functions
Memories

Ports &
Subsystems

Signal Operations
Sources

Transforms

SMC
SynCoSimTool

SMC SHLSTool

SMC
SynFixPtTool

© 2013 Synopsys, Inc.
28

Contains blocks specific to the communications industry.
Contains blocks that implement logic for controlling datapaths.
Contains blocks for specialized CORDIC math operations.
Contains fundamental blocks used for most DSP functions.
Contains blocks for designing and implementing filters.

Contains blocks that perform various floating point
computations of math functions.

Contains blocks for specialized math operations.
Contains blocks for memory structures like RAMs and FIFOs.

Contains port and black box blocks.

Contains blocks for the manipulation of signals.
Contains blocks that generate constants and counters.

Contains blocks for transforms that are important to DSP
operations.

Specialized toolbox that manages the cosimulation interface
between the smart black boxes in the design and ModelSim.

Specialized toolbox that controls the generation of RTL for
synthesis. The toolbox lets you set options in the
Implementation Options dialog box, described in
Implementation Options Dialog Box, on page 490.

Specialized toolbox that opens the Simulink fixed point
interface.

Synphony Model Compiler User Guide
October 2013

Blocks — By Library

SMC Blocks: Abs to Host Interface

Communications

=

=

This library contains specialized blocks used for DSP designs in the commu-

nications industry.

SMC Block
Deinterleaver

SMC Block Interleaver

SMC Convolutional
Deinterleaver

SMC Convolutional
Encoder

SMC Convolutional
Interleaver

SMC CRC Generator

SMC Depuncture

SMC Gold Sequence
Generator

SMC PN Sequence
Generator

SMC Puncture

SMC Reed-Solomon
Decoder

SMC Reed-Solomon
Encoder

SMC Viterbi Decoder

Synphony Model Compiler User Guide
October 2013

Reshuffles a fixed number of interleaved input symbols
to obtain the original sequence.

Shuffles a fixed number of input symbols to a new
permutation.

Reshuffles streaming input symbols according a to a
predefined mapping scheme.

Corrects feed-forward errors using k/n convolutional
codes.

Shuffles streaming input symbols to a new permutation,
using a predefined mapping scheme.

Generates CRC bits and appends them to the input data
frames.

Removes user-specified symbols from the input data
stream and replaces them with zeroes.

Generates a Gold sequence, with specified polynomials u
and v, o

f period N =2n - 1, called a preferred pair.

Generates a sequence of pseudorandom (PN) binary
numbers using a linear-feedback shift register (LFSR).

Removes user-specified bits from the input data stream.

Decodes the encoded signal using Reed-Solomon
error-correcting codes.

Generates an encoded signal, using Reed-Solomon
codes.

Decodes convolutionally encoded input data.

© 2013 Synopsys, Inc.
29

SMC Blocks: Abs to Host Interface Blocks — By Library

Control Logic

3

This library contains blocks that provide control logic for outputs.

SMC M Control Uses an M file to define a function for complex control logic.

SMC Mealy State Provides control logic where the output depends on the input
Machine and an internal state vector.

SMC Moore State Provides control logic where the output depends on the
Machine current state.

CORDIC

This library contains blocks for specialized CORDIC math operations.

SMC CORDIC Exp
SMC CORDIC Log
SMC CORDIC Polar

SMC CORDIC Rotator
SMC CORDIC SinCos

SMC CORDIC Sqrt

SMC CORDIC2

© 2013 Synopsys, Inc.
30

Calculates the natural exponent of the input using the
CORDIC algorithm.

Calculates the natural logarithm of the input using the
CORDIC algorithm.

Calculates \/(X2+y2) and atan(y/x) where x and y are the
inputs.

Implements a fully pipelined CORDIC rotator.

Implements a sine and/or cosine generator circuit using a
fully parallel CORDIC algorithm in rotation mode.

Calculates the square root of the input using the CORDIC
algorithm.

Implements a circular CORDIC (Coordinate Digital
Rotation Computer).

Synphony Model Compiler User Guide
October 2013

Blocks — By Library

SMC Blocks: Abs to Host Interface

DSP Basics

L]

%

This library contains blocks for basic DSP operations.

SMC Add
SMC Delay

SMC Gain

Filtering

s

Implements a full-precision signed adder or subtractor.

Delays the input by the specified number of sample clock
cycles.

Implements a constant gain to the input.

This library contains blocks for designing and implementing filters.

SMC CIC
SMC CIC2

SMC Differentiator

SMC FDATool
SMC FIR
SMC FIR2

SMC FIR Engine

SMC FIR Rate

Custom block that implements a CIC filter.

Implements a CIC filter with additional enhancements
compared to the CIC block.

Custom block that performs a discrete time differentiation
of the input signal.

Opens the Simulink FDATool interface.
Implements a finite impulse response (FIR) filter.

Implements fixed and reloadable coefficient FIR filters,
including polyphase filters, multichannel filters, and
symmetric coefficient filters.

Implements a finite impulse response (FIR) filter that uses
the coefficients as vector input.

Implements a polyphase FIR filter.

Converter

SMC IIR Implements an infinite impulse response (IIR) filter.
Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 31

SMC Blocks: Abs to Host Interface Blocks — By Library

SMC Integrator

SMC Moving Average
Filter

SMC Parallel FIR
SMC RFIR

Performs a discrete time integration of the input signal.

Implements a hardware efficient moving average filter.

Implements a parallel input FIR filter.

Custom block that implements a reloadable finite impulse
response FIR filter.

Floating Point Functions

This library contains blocks that perform various floating point computations

of math functions.

SMC FP Add
SMC FP Compare

SMC FP Constant

SMC FP Fused Mult
Add

SMC FP Port In
SMC FP Port Out
SMC FP to Fixed

SMC Fixed to FP

SMC FP Mult

© 2013 Synopsys, Inc.
32

Adds or subtracts two floating point values.

Compares two floating point numbers and returns 1 if the
selected condition holds true. Otherwise, O is returned.

Sets a constant value for a specified floating point
representation as the output.

Performs various multiply-add operations on three/four
inputs.

Converts Simulink double to SMC floating point format.
Can be used instead of SMC Port In to define the RTL
generation boundary of floating point designs.

Converts SMC floating point format to Simulink double.
Can be used instead of SMC Port Out to define the RTL
generation boundary of floating point designs.

Converts an input SMC floating point format to a signed
fixed point format for the specified word length and
fraction length.

Converts a fixed point input to the SMC floating point
format with the specified representation.

Multiplies two floating point values.

Synphony Model Compiler User Guide
October 2013

Blocks — By Library

SMC Blocks: Abs to Host Interface

Math Functions

This library contains blocks for specialized math operations.

SMC Abs
SMC Accumulator

SMC Add

SMC Binary Logic

SMC Comparator
SMC Divider

SMC DivMod

SMC Gain
SMC Log
SMC Matrix Mult

SMC MinMax

SMC Mult
SMC Negate

SMC Pow
SMC Shifter
SMC Sign

SMC SinCos

Synphony Model Compiler User Guide
October 2013

Calculates the absolute value of the scalar input.

Implements an accumulator with optional reset and
enable.

Implements a full-precision signed multi-input adder.
Selected inputs can be configured for addition or
subtraction.

Calculates bitwise binary logic functions on the inputs.
Implements a programmable comparator.

Calculates the fixed-point fractional division of two
inputs, A and B.

Calculates the integer division and/or modulo function of
two inputs, A and B.

Implements a constant gain to the input.
Calculates the natural logarithm of the input.

Implements matrix multiplication of a two-input matrix
signal.

Custom block that calculates the minimum, maximum, or
minimum and maximum of two inputs.

Implements a full-precision multiplier.

Computes the two’s complement (arithmetic negation) of a
signed input.

Raises a value to the power of another value.
Performs a variable left or right shift on the input signal.

Custom block that provides the 2-bit sign value (+1 or -1)
for the input.

Calculates sin(27tf) or cos(27tf) for the input.

© 2013 Synopsys, Inc.
33

SMC Blocks: Abs to Host Interface Blocks — By Library

SMC SinCos2

SMC Sqrt
SMC Sum of Products

Memories

i

Creates sin and cos waveforms based on the input phase
and amplitude values.

Calculates the square root of the input.

Multiplies inputs with gain values and calculates the sum
of the computed products to provide a scalar output.

This library contains blocks for memory structures like RAMs and FIFOs.

SMC Delay

SMC FIFO

SMC Flow Control
Buffer

SMC Permutation

SMC RAM

SMC Register
SMC ROM

SMC Shift Register

© 2013 Synopsys, Inc.
34

Delays the input by the specified number of sample clock
cycles.

Implements a synchronous FIFO (First in First Out)
memory queue.

Provides forward or backward flow control.

Shuffles the incoming data according to a specified
permutation vector.

Implements a memory function through a storage array
that has read and write access through ports.

Inserts a delay.

Models a read-only memory (ROM) with a latency of one
sample.

Implements a delay line with dynamic or static access to
intermediate taps.

Synphony Model Compiler User Guide
October 2013

Blocks — By Library

SMC Blocks: Abs to Host Interface

B

Ports & Subsystems

This library contains port and black box blocks.

SMC Black Box
SMC HLS Subsystem

SMC Host Interface

SMC In
SMC Out
SMC Port In

SMC Port Out

SMC RTL
Encapsulation

SMC Smart Black Box

SMC Subsystem

SMC Test Vector
Capture

Synphony Model Compiler User Guide
October 2013

Provides a way to embed other blocks.

Lets you add a previously designed Synphony model to
the current design and set implementation settings for it.

Provides an interface to the host processor using a
simpler bus protocol to configure the design.

Provides a way to add an in port to a subsystem
Provides a way to add an out port to a subsystem

Defines the input boundaries for the DSP design to be
implemented in RTL.

Defines the output boundaries for the DSP design to be
implemented in RTL.

Embeds and simulates RTL blocks inside their Simulink
model without the need of external RTL simulators or
special Simulink features.

Lets you embed third-party IP in a Synphony Model
Compiler design.

Allows you to add a subsystem to a Synphony Model
Compiler design.

Toggles between setting or resetting Port In and Port Out
Capture Test Vector mode for all Synphony Model
Compiler ports

© 2013 Synopsys, Inc.
35

SMC Blocks: Abs to Host Interface Blocks — By Library

Signal Operations

P
i

y

This library contains blocks for the management of signals.

SMC Commutator

SMC Concat
SMC Convert

SMC Decommutator

SMC Demux

SMC Downsample
SMC Edge Detector

SMC Extract

SMC Leading Zero
Counter

SMC Mux
SMC Parallel to

Serial
SMC Recast

SMC Reshape

SMC Sample and
Hold

© 2013 Synopsys, Inc.
36

Sequentially switches the data from multiple input ports to a
single output port, increasing the data rate of each output
port accordingly.

Concatenates the bits of up to 32 input signals.

Changes the word size and data type of the input. You can
apply a constant before the new word size and data type is
casted.

Sequentially switches the data at the input port to multiple
output ports, reducing the data rate of each output port
accordingly.

Implements a de-multiplexer of up to 2048 outputs with a
latency of one sample.

Decreases the sample rate of the input by removing samples.

Outputs a unity amplitude pulse of one sample period to a
synchronous transition from high to low or low to high.

Extracts specified bits from the input signal.

Computes the number of leading zeros for an unsigned
input.

Implements a multiplexer of up to 2048 inputs.

Implements a data packet splitter that divides the parallel
data word at the input into small serial data packets in the
order specified.

Custom block that provides a value, based on the requested
data type cast at the output and maintaining the same bits
as provided at the input.

Changes the dimensionality of the input signal.

Samples and holds the input signal.

Synphony Model Compiler User Guide
October 2013

Blocks — By Library

SMC Blocks: Abs to Host Interface

SMC Saturate

SMC Serial to
Parallel

SMC Signal Update

SMC Single Clock
Downsample

SMC Single Clock
Upsample

SMC Switch

SMC Upsample
SMC Vector Concat
SMC Vector Expand
SMC Vector Extract
SMC Vector Split

Sources

&

Saturates the input signal to the values specified in the
positive and negative saturation value fields.

Implements a data packet combiner that collects serial data
packets at the input and merges them into a parallel data
word at the output.

Updates the specified elements of a vector or matrix input
signal using a given update signal.

Provides variable rate and single clock downsample
operations.

Provides variable rate and single clock upsample operations.

Routes the signal through input or data port based on signal
in the control port.

Increases the sample rate of the input by inserting zeroes.
Constructs vectors by bundling up to 2048 inputs together.
Converts scalar input to vector output.

Extracts selected ports for the output.

Implements a de-multiplexer of up to 2048 outputs.

This library contains blocks that generate constants and counters.

SMC Constant
SMC Counter
SMC DDS

Synphony Model Compiler User Guide
October 2013

Implements a source with a constant value.
Implements a resettable modulo counter with enable.

Custom block that creates a direct digital synthesizer with
sin and cos waves based on frequency, phase settings,
and modulations.

© 2013 Synopsys, Inc.
37

SMC Blocks: Abs to Host Interface Blocks — By Library

SMC DDS2 Creates a direct digital synthesizer with sin and cos
waveforms based on frequency, phase settings, and
modulations. This block provides additional functionality
and QoR improvements compared with the DDS block.

SMC Pulse Generator Generates a single pulse.

SMC Ramp Custom block that creates a ramp based on increments
derived from a port or parameter
SMC Random Custom block that creates a random integer of the
requested word length.
SMC Sequence Custom block that repeats a sequence of specified data
Transforms

ez

This library contains blocks for transforms that are important to DSP opera-
tions.

SMC Configurable Implements a fully pipelined Fast Fourier Transform (FFT) or

FFT/IFFT Inverse Fast Fourier Transform (IFFT).
SMC FFT Implements a fully pipelined Fast Fourier Transform.
SMC FFT2 Implements Fast Fourier Transform that supports both

serial and parallel inputs.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
38 October 2013

Blocks — Alphabetical List

SMC Blocks: Abs to Host Interface

Blocks — Alphabetical List

This list includes the toolboxes, as well as the blocks and custom blocks:

SMC Abs, on page 42

SMC Add, on page 48

SMC Black Box, on page 56

SMC Block Interleaver, on page 64
SMC CIC2, on page 70

SMC Comparator, on page 84

SMC Configurable FFT/IFFT, on
page 88

SMC Convert, on page 98

SMC Convolutional Encoder, on
page 106

SMC CORDIC Exp, on page 111
SMC CORDIC Polar, on page 115
SMC CORDIC SinCos, on page 124
SMC CORDIC2, on page 127
SMC CRC Generator, on page 138
SMC DDS2, on page 149

SMC Delay, on page 169

SMC Depuncture, on page 173
SMC Divider, on page 179

SMC Downsample, on page 191
SMC Extract, on page 200

SMC FFT, on page 204

SMC FIFO, on page 220

Synphony Model Compiler User Guide
October 2013

SMC Accumulator, on page 44

SMC Binary Logic, on page 53

SMC Block Deinterleaver, on page 62
SMC CIC, on page 66

SMC Commutator, on page 77

SMC Concat, on page 86

SMC Constant, on page 94

SMC Convolutional Deinterleaver, on
page 104

SMC Convolutional Interleaver, on
page 109

SMC CORDIC Log, on page 113
SMC CORDIC Rotator, on page 117
SMC CORDIC Sqrt, on page 126
SMC Counter, on page 131

SMC DDS, on page 143

SMC Decommutator, on page 163
SMC Demux, on page 171

SMC Differentiator, on page 176
SMC DivMod, on page 183

SMC Edge Detector, on page 197
SMC FDATool, on page 203

SMC FFT2, on page 211

SMC FIR, on page 226

© 2013 Synopsys, Inc.
39

SMC Blocks: Abs to Host Interface

Blocks — Alphabetical List

SMC FIR Engine, on page 235
SMC FIR Rate Converter, on page 241

SMC FIR2, on page 246
SMC Flow Control Buffer, on page 275

SMC FP Add, on page 286

SMC FP Compare, on page 290

SMC FP Constant, on page 292

SMC Fixed to FP, on page 295

SMC FP Fused Mult Add, on page 298

SMC FP Mult, on page 301

SMC FP Port In, on page 303

SMC FP Port Out, on page 306

SMC FP to Fixed, on page 309

SMC Gain, on page 311

SMC Gold Sequence Generator, on
page 315

SMC HLS Subsystem, on page 319

SMC Host Interface, on page 326

SMC IIR, on page 340

SMC In, on page 345

SMC Integrator, on page 346

SMC Inverter, on page 350

SMC Leading Zero Counter, on
page 352

SMC Log, on page 354

SMC M Control, on page 356

SMC Mealy State Machine, on
page 364

SMC Matrix Mult, on page 360

SMC Moore State Machine, on
page 369

SMC MinMax, on page 367

SMC Mult, on page 378

SMC Negate, on page 386
SMC Parallel FIR, on page 389

SMC Moving Average Filter, on
page 372

SMC Mux, on page 381
SMC Out, on page 388

SMC Permutation, on page 394

SMC Parallel to Serial, on page 392

SMC Port In, on page 399

SMC Pow, on page 405

SMC PN Sequence Generator, on
page 396

SMC Port Out, on page 403

SMC Puncture, on page 412

SMC Pulse Generator, on page 409

SMC Ramp, on page 419

SMC RAM, on page 414

SMC Recast, on page 424

SMC Random, on page 422

© 2013 Synopsys, Inc.
40

Synphony Model Compiler User Guide
October 2013

Blocks — Alphabetical List

SMC Blocks: Abs to Host Interface

SMC Reed-Solomon Encoder, on
page 435

SMC Reed-Solomon Decoder, on
page 428

SMC Reshape, on page 443
SMC ROM, on page 453
SMC Sample and Hold, on page 465

SMC Sequence, on page 470

SMC Register, on page 441

SMC RFIR, on page 448

SMC RTL Encapsulation, on page 456
SMC Saturate, on page 467

SMC Shift Register, on page 476

SMC Serial to Parallel, on page 473

SMC SHLSTool, on page 486

SMC Shifter, on page 484

SMC Signal Update, on page 509

SMC Sign, on page 507

SMC SinCos2, on page 516

SMC SinCos, on page 513

SMC Single Clock Upsample, on
page 529

SMC Single Clock Downsample, on
page 526

SMC Sqrt, on page 539

SMC Smart Black Box, on page 532

SMC Sum of Products, on page 544

SMC Subsystem, on page 543

SMC SynCoSimTool, on page 550

SMC Switch, on page 548

SMC Test Vector Capture, on page 556

SMC SynFixPtTool, on page 554

SMC Vector Concat, on page 561

SMC Upsample, on page 557

SMC Vector Extract, on page 570

SMC Vector Expand, on page 567

SMC Viterbi Decoder, on page 574

Synphony Model Compiler User Guide
October 2013

SMC Vector Split, on page 572

© 2013 Synopsys, Inc.
41

SMC Blocks: Abs to Host Interface SMC Abs

SMC Abs

Calculates the absolute value of the scalar or vector input.

Library
Synphony Model Compiler Math Functions

Description

The Synphony Model Compiler Abs block calculates the absolute value of the
vector or scalar input. The output has the same signal dimension as the
input, with each channel being the absolute value of the corresponding input
channel.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
42 October 2013

SMC Abs SMC Blocks: Abs to Host Interface

Abs Parameters

i ﬂ
— Synphony Model Compiler Abs {mask) {ink)
The Abs block calculates the absolute value of the input.
—Parameters
Qutput format ISpecif'y :I
Output word length
|15
Output fraction length
E
QOuput data type Isigned :I
0K I Cancel Help | Apply |

For descriptions of the parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584
Output fraction length Output Fraction Length, on page 584
Output data type Output Data Type, on page 584

The default output format for the Abs block is Automatic, where the tool keeps
the input word length and fraction length with unsigned output. Thus, there
is no lost bit for negative extremes, because there is no overflow or underflow.

If you use Specify to specify the output format of the block, and the integer
length and/or fraction length you specify is less than the input values, the
output is wrapped (no saturation) for overflow and/or truncated (no
rounding) for underflow.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 43

SMC Blocks: Abs to Host Interface SMC Accumulator

SMC Accumulator

Implements an accumulator with optional reset and enable.

Library
Synphony Model Compiler Math Functions

Description

Ax Zixjp

The Synphony Model Compiler Accumulator block implements an adder or
subtractor-based accumulator with optional reset and enable ports.

y[n]=x[n-1]+y[n-1]
H(z)=z/(1-z)
Automatic Scalar Expansion

If the data input is a vector, and if one of the reset or enable ports is scalar,
the reset and enable ports are expanded according to the size of the data
input vector.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block provides the result of the accumulating register.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
44 October 2013

SMC Accumulator SMC Blocks: Abs to Host Interface

Accumulator Parameters

-
E Function Block Parameters: Accumulator

Synphony Model Compiler Accumulator (mask) (link)

The Accumulator block is a resettable accumulator with enable.

Parameters
Operation ’+= v]
Qutput format ’Specif‘_.r V]

Output word length
16

Output fraction length
8

Output data Type |signed

[C] Reset port
[C] Enable port
[C] overflow port
| [Inherit port
Inherit sample time
Sample time factor
1

[OK H Cancel ” Help H Apply

Operation
Configures the operation of the block. You can select from the following:

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
45

October 2013

SMC Blocks: Abs to Host Interface SMC Accumulator

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

Output data type Output Data Type, on page 584
Reset port

When enabled, the block is implemented with a reset port.

Enable port

When enabled, the block is implemented with an enable pin.

Overflow port

When enabled, the block is implemented with an output pin (ovf) for
monitoring overflows.

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

— Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

— Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.
Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
46 October 2013

SMC Accumulator SMC Blocks: Abs to Host Interface

port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 47

SMC Blocks: Abs to Host Interface SMC Add

SMC Add

Implements both signed single-input and multi-input adders. Selected inputs
can be configured for addition or subtraction.

Library

Synphony Model Compiler DSP Basics and Synphony Model Compiler Math
Functions

Description
L
D

The Synphony Model Compiler Add block implements a signed single-input or
multi-input adder, whose inputs can be configured for addition or subtrac-
tion. The Add block can have up to 256 input ports. The inputs can be vector-
ized to a maximum size of 2048 for single-input adder (in sum of elements
mode) and multi-input adder implementations.

Automatic Scalar Expansion

If enabled when the block has a mixture of scalar inputs and matrix or vector
inputs, the tool expands the scalar inputs to the size of the vectors or
matrices. The vector or matrix inputs must have the same size. You cannot
have a combination of vector and matrix inputs.

In sum of elements mode, the elements of the input vector/matrix signal are
summed up to a scalar. In multi-input adder mode, if the input signals are
vectors/matrices, the corresponding elements of the input vectors/matrices
are summed to give a vector/matrix output of the same size as the inputs.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
48 October 2013

SMC Add SMC Blocks: Abs to Host Interface

Latency
This block has no latency.

Add Parameters

E Function Block Parameters: Add Iﬁ

Synphony Model Compiler Add (mask) (link) I,\\S

The Add block is a full precision adder/subtractor.

Parameters

Operation

++

Output format [Specif',r -

Output word length
16

Output fraction length
8

Output data type [signed ']

[T Qutput saturate on overflow (wrap if not selected)

Output round on underflow [Floor (Truncate) ']

[T Sum of Rows
Inherit port

Inherit sample time
Sample time factor

1

[OK H Cancel H Help ” Apply

A

Operation

Configures the operation of the multi-input adder. Specify a + or - for
each input to the block; the number of inputs is determined by the
number of + or - signs. The default is ++.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 49

SMC Blocks: Abs to Host Interface SMC Add

The + or - signs correspond to the adding or subtraction of the corre-
sponding input port. For example, if you specify ++-, the block is imple-
mented with three inputs. The output of the block is calculated as Input1
+ Input2 -Input3. The inputs and the operation symbol on the block icon
reflect the operation choices you made. For example:

++ Operation -- Operation ++- Operation + Operation

::® g "e > :|:e > >+@ >

-

If your design has a single input port feeding in the vector or matrix
signal and if you set Operation to +, the output is the sum of the vector or
matrix elements. If you set Operation to -, the output is the negative value
of the sum of the vector or matrix elements.

If your design has a single input port feeding a matrix signal and if you
set Operation to + when Sum of Rows is enabled, the output is a vector
whose size matches the number of columns in the input signal. Each
element of the output vector is a sum of all the rows of that particular
column of the input signal.

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583.

There is an exception to the general description
provided in Output Format, on page 583. If the
output format is set to Automatic for an Add block, the
data type of the first input is propagated to the
output. The figure below illustrates the behavior.

Output word length Output Word Length, on page 584.
Output fraction length Output Fraction Length, on page 584.
Output data type Output Data Type, on page 584.

In the following example, all the adders have Output Format set to
Automatic. The input of the first adder is O, because it goes through a
Constant block, and the input data type is sfix2. The other input is
through a port, with a data type of sfix29_en5. When this model is
updated, all the adders have an output of sfix2, because that is the data
type of the first input.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
50 October 2013

SMC Add SMC Blocks: Abs to Host Interface

fist _.:@ o

"T

Output saturate on overflow, Output round on underflow

Determine how overflow and underflow are treated. These options are
available if Output Format is set to Automatic or Specify. You can get overflow
when Output Format is set to Automatic, because in this case the output
data type for the Add block is inherited from the first input of the adder,
so overflow can occur at the output.

Output saturate on When enabled, saturates the overflow; when disabled,

overflow wraps the overflow. See Overflow Saturation Options,
on page 585 for details.

Output round on See Underflow Rounding Options, on page 585 for

underflow details about the rounding options available.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 51

SMC Blocks: Abs to Host Interface SMC Add

Sum of Rows

When enabled, the sum of all rows for each column in input matrix can
be obtained at the output. The output is a vector whose size equals the
number of columns in the input matrix. When this is enabled, you can
only have a single input adder with + operation.

Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

— Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

— Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.

Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output
port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
52 October 2013

SMC Binary Logic SMC Blocks: Abs to Host Interface

SMC Binary Logic

Calculates bitwise binary logic functions on both scalar and vector inputs.

Library
Synphony Model Compiler Math Functions

Description

adiout pe

The Synphony Model Compiler Binary Logic block implements bitwise binary logic
functions. The input value is TRUE (1) if it is nonzero and FALSE (0) if it is
Zero.

If the block is fed by vector inputs, they must be the same size. In vectorized
mode, the tool handles each input channel independently and calculates the
corresponding output channel according to the specified expression, treating
it as if a single Binary Logic block is replicated for each input channel.

Automatic Scalar Expansion

If the block has some scalar inputs and other vector inputs, the tool expands
the scalar inputs to the size of the vectors. The vector inputs must be the
same size.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 53

SMC Blocks: Abs to Host Interface SMC Binary Logic

Binary Logic Parameters

E! Function Block Parameters: Binary Logic ! |

— Synphony Model Compiler Binary Logic (mask) (ink)

The Binary Loagic block calculates bitwise binary logic functions on the inputs.

—Parameters

Expression
asb
0K I Cancel Help Apply
Expression

Specifies the logic operation performed by the block. For information
about rules for the operation, see Rules for Expressions, on page 55. The
operation can be any of the following:

— Binary operations

Operator Description

& AND implements an AND operation, where the output is TRUE if all
inputs are TRUE.

| OR implements an OR operation, where the output is TRUE if at
least one input is TRUE. This is the default.

A XOR implements an XOR operation, where the output is TRUE if
an odd number of inputs are TRUE.

~& NAND implements a NAND operation, where the output is TRUE if
at least one input is FALSE.

~| NOR implements a NOR operation, where the output is TRUE if no
inputs are TRUE. Remember that ~| is not equal to |~.

~A A~ XNOR implements an XNOR operation.

— Unary operations
Operator Description

~ Not

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
54 October 2013

SMC Binary Logic SMC Blocks: Abs to Host Interface

— Reduction operations that do bitwise operations on a single operand
to produce a single-bit output

&a=0/1
la

Aa

~&a

.....la

.-.../\a

Rules for Expressions
Follow these guidelines when you specify the binary logic operations:

* The inputs must be integers of the same size. You cannot use signed
and unsigned integers together. If you do, you can get unexpected
outputs, because the sign bit accepted as the part of the number.

* The expression must not start with an underscore ().
* Precedence for the operators is from left to right.

* The operands for each binary operation must be the same size. For
example, with the a&b expression, a and b must have same word length.

* Curly brackets {} are the expand operators. Operands inside curly
brackets must be 1 bit wide, and they are expanded to the size of next
expression.

Take {a}&b for example, where a is 1 bit and b is 8 bits. The expression
takes a and expands it to 8 bits by adding the LSB value to the expanded
bits. It then ands it with the operand b.

* The number of inputs is limited to 32.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 55

SMC Blocks: Abs to Host Interface SMC Black Box

SMC Black Box

Allows you to embed other blocks or IP in a Synphony Model Compiler design.

Library
Synphony Model Compiler Ports & Subsystems

Description

The Synphony Model Compiler Black Box block implements a black box, which
allows you to embed other blocks in a Synphony Model Compiler design. For
the purposes of simulation with Simulink, the black box is transparent;
however, for RTL generation, the contents of the block will just be a black
box. See the <install_dir> \mathworks\toolbox\Synopsys\Synhis\demos\examples direc-
tory for an example.

Use this block for IP for which you do not have access to the RTL code. If you
have access to the RTL code, use the Smart Black Box block (SMC Smart Black
Box, on page 532) instead. For details about using a black box in your design,
see Using Black Boxes and Third-Party IP, on page 777.

The Black Box consists of just an input and an output, to which you can add
other blocks:

o))

" ¥

The Black Box supports vector inputs. If the input is a vector, the Input port in
the black box is duplicated and connected to the signal coming outside the
black box. Output vectors are handled in the same way.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
56 October 2013

SMC Black Box SMC Blocks: Abs to Host Interface

double (4 =fin16_End (4)
Lz 3 4) —L-E—l_’ F—Vi =fin2f_BEnif (4 double (4
| double ()
Partin 4 i
P | Y1! sf|x1B_EnSdC2)bl @ Fort Out
- - ouble
5 double » fix16_En8 Black Box m
Fort Outt Ijl i
Constanti Ramtlnl .
:
Dizplay1

In the design shown above, the Port In block is the input to the x port of the
Black Box block. In the HDL, the top-level input ports Port_In_e3, Port_In_e2,
Port_In_e1, and Port_In_e0 are connected to the duplicated input ports x_e0,
x_e1,x _e2, and x_e3, which are inside the black box.

=fin16_End (41 ’ =fin26_En16 (4

v

b
Gain

=fin16_End

E|

= by —

“wiector Expand

Latency

Latency is determined by the contents of the black box.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 57

SMC Blocks: Abs to Host Interface

SMC Black Box

Black Box Parameters

ke

E Function Block Parameters: Black Box

=)

Synphony Model Compiler Black Box (mask)

The Black Box block allows to embed foreign objects in a Synphony
HLS design. The simulation in Simulink is transparent, however the
RTL generation is just an instance of a black box.

Parameters
Global Reset
Global Enable

Blackbox Definition lSingIe HDL File

HDL File
C:\mypath\blackbox.{v | vhd}
[T] Copy HDL File to Implementation Directory
Entity/Model Name
blackbox
Format Clock
Clack Names
clk:clkDiv2
Format Enable
Enable Names
GlobalEnablel:GlobalEnable2
Format Reset

Reset Mame(s)

GlobalReset

[OK H Cancel ”

Help

| [Apply |

For information about setting these parameters, see Setting Black Box
Parameters, on page 780. The following are explanations of these parameters:

© 2013 Synopsys, Inc.
58

Synphony Model Compiler User Guide
October 2013

SMC Black Box SMC Blocks: Abs to Host Interface

Global Reset

When enabled, the tool adds a single reset port to the instantiated black
box and ties this port to the global reset in the RTL generated after DSP
synthesis. It also makes the Format Reset option available, where you
specify the global reset.

Global Enable

When enabled, the tool adds an enable port for each clock domain of the
black box. The enable ports are tied to the global enable ports in the RTL
generated after DSP synthesis. It also makes the Format Enable option
available, where you can specify the global enables.

Black Box Definition
Determines the mode used to define the black box.

— Single HDL File specifies that the black box definition is in a single
Verilog or VHDL file (.v or .vhd). Selecting this option makes the HDL
File and Entity/Model Name options available, where you can specify
additional parameters.

— Single EDIF File specifies that the black box definition is in a single
EDIF file. Selecting this option makes the EDIF File, Simulation File, and
Entity/Model Name options available, where you specify additional
parameters.

— Import File List specifies that the black box definition is in multiple HDL
and EDIF files. Selecting this option makes the Black Box File LIst and
Entity/Model Name options available.

— Undefined specifies that there is no black box definition available, as
when the black box is defined in some other black box block.
Selecting this option makes the Entity/Model Name option available.

HDL File

Specifies the absolute path to the single HDL file that defines the black
box; for example, C:\mypath\blackbox.v. This option is only available when
you set Black Box Definition to Single HDL File. The file you specify is added to
the project file and the simulator .do files.

Copy HDL File to Implementation Directory

When enabled, copies the HDL file specified in HDL File to the implemen-
tation directory. This options is only available when you set Black Box
Definition to Single HDL File.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 59

SMC Blocks: Abs to Host Interface SMC Black Box

EDIF File

Specifies the absolute path to the single EDIF file (.edf or .edif) that
defines the black box. This option is only available when you set Black
Box Definition to Single EDIF File. The file you specify is added to the project
file.

Simulation File

Specifies the absolute path to an HDL file that contains the behavioral
simulation model for the black box defined in the EDIF file. This option
is only available when you set Black Box Definition to Single EDIF File. The
behavioral model can be a Verilog or VHDL file (.v or .vhd). The specified
file is added to the simulator .do files.

Black Box File List

Specifies the absolute path to a single text file that lists all the Verilog,
VHDL, and EDIF files that define the black box. This option is only avail-
able when Black Box Definition is set to Import File List.

The list must contain absolute paths to the files. Valid file extensions for
black box definition files in the list file are .v, .vhd, .edf, and .edif. For
example, if your black box is defined in three files called bb1.v, bb2.v and
bb3.vhd, create and save a text file (bblist.txt) that contains the absolute
paths to the black box definition files:

C:\mypath\bbl.v
C:\mypath\bb2.v
C:\mypath\bb3.vhd

Specify the path to the text file (C:\mypath\bblist.txt) in the Black Box File
List field. All listed files are added to the project file. The Verilog and
VHDL files are also added to the simulator .do files.

Entity/Model Name

Specifies the top-most entity or model for the black box in the RTL. The
name you specify becomes the instance name for the black box and the
name of the instantiated entity or model.

You can specify a variable entity or model name in this field using the
synStrEval function. If you have a variable called MyVariable with the value
MySampleEntityName, you can instantiate MySampleEntityName as the name
for the top-level entity or model in the RTL by entering the following in
this field:

synStrEval(MyVariable)

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
60 October 2013

SMC Black Box SMC Blocks: Abs to Host Interface

Format Clock

When enabled, the Clock Names option becomes available and lets you
specify black box clock names. If it is disabled, the tool uses the
Synphony Model Compiler convention for clock names, where the fastest
clock is clk, and reduced frequency clocks are clkDivN.

Clock Names

Specifies clock names for the black box if you do not want to use the
Synphony Model Compiler convention. This field becomes available
when you select Format Clock. Type in the clock names, starting with the
fastest clock, and using colons as separators. For example, if you have
two clocks, clk_sg and clk_2_sg, type clk_sg:clk_2_sg in this field.

Format Enable

When enabled, the Enable Names option becomes available and lets you
specify black box enable names. If it is disabled, the tool uses the
Synphony Model Compiler convention for enable names, where the
fastest domain enable signal is GlobalEnable1, and N-reduced enable
signals are GlobalEnableN.

Enable Names

Specifies enable names for the black box if you do not want to use the
Synphony Model Compiler convention. This field becomes available
when you select Format Enable. Type in the enable names, starting with
the time domain, and using colons as separators. For example, if you
have two enables, ce_sg and ce_2_sg, type ce_sg:ce_2_sg in this field.

Format Reset

When enabled, the Reset Name option becomes available and lets you
specify a name for the black box reset. If it is disabled, the tool uses the
Synphony Model Compiler reset name, which is GlobalResetSel.

Reset Name

Specifies the reset name for the black box if you do not want to use the
Synphony Model Compiler convention. This field becomes available
when you select Format Reset. For example, if you have a reset called grst,
type grstin this field.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 61

SMC Blocks: Abs to Host Interface SMC Block Deinterleaver

SMC Block Deinterleaver

Shulffles a fixed number of interleaved input symbols to obtain the original
sequence.

Library

Synphony Model Compiler Communications

Description

1 1(d

dp

it

=

M

This block shulffles a fixed number of input symbols according to the
mapping you define to get the original sequence. This is a custom block; for
information about custom blocks, see Primitives and Custom Blocks, on
page 800.

The following figure shows the internals of this block:

1 %} J={d Pid) = 1
d di
Jelrst rdy
Faro_rst 75
Permutation

lcon Annotations

Note Specifies that the block is a deinterleaver.

Latency Is equal to the number of input symbols - 1.
© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
62 October 2013

SMC Block Deinterleaver SMC Blocks: Abs to Host Interface

Block Deinterleaver Parameters

E! Function Block Parameters: Block Deinterleaver =l
—Synphony Model Compiler Block Deinterleaver (mask) {ink)

Block Deinterleaver is opposite of Block Interleaver, It de-shuffies interleaved
symbols within frames according to a defined mapping scheme in order to obtain
the original sequence.

—Parameters

Symbol ordering vector
[[25143

[~ Resetport
[Enable port

oK I Cancel Help Apply

Symbol ordering vector

Specifies the order for deinterleaving the input symbols. It operates on
frames with a fixed number of symbols and shuffles them back to the
original permutation, using all the symbols without missing any, and
using each symbol only once.

Reset port
When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 63

SMC Blocks: Abs to Host Interface SMC Block Interleaver

SMC Block Interleaver

Shulffles a fixed number of input symbols to a new permutation.

Library

Synphony Model Compiler Communications

Description

This block shuffles a fixed number of input symbols to a new permutation,
according to the mapping you define. This is a custom block; for information
about custom blocks, see Primitives and Custom Blocks, on page 800.

The following figure shows the internals of this block:

d P

[8] Bty

Faro_rst 75

=9
¥
[‘lj

Permutation

Ilcon Annotations

Note Specifies that the block is a interleaver.

Latency Varies with the number of input symbols.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
64 October 2013

SMC Block Interleaver SMC Blocks: Abs to Host Interface

Block Interleaver Parameters

=] Function Block Parameters: Block Interleaver x|
— Synphony Model Compiler Blodk Interleaver (mask) (ink)

Block Interleaver shuffles or permutes frames of input symbols according to a
defined mapping scheme.

—Parameters

Symbol ordering vector
|[25143]

[~ Resetport
[Enable part

0K I Cancel Help Apply

Symbol ordering vector

Specifies the order for interleaving the input symbols. It operates on
frames with a fixed number of symbols and shuffles them, using all the
symbols without missing any, and using each symbol only once.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 65

SMC Blocks: Abs to Host Interface SMC CIC

SMC CIC

Implements a CIC filter by applying cascaded integrator-comb (CIC) filtering
on the input signal.

Library
Synphony Model Compiler Filtering

Description

This is a custom block (see Primitives and Custom Blocks, on page 800 for a
definition) that implements a CIC filter by applying cascaded integrator-comb
filtering on the input signal. Cascaded Integrator-Comb filters are a type of
linear phase FIR filter, and have a comb section and an integrator section.
You can use this filter in either interpolating (upsample) or decimating
(downsample) mode.

The SMC library also includes another CIC block, CIC2, with additional
features. See SMC CIC2, on page 70 for a description of this block.

Automatic Scalar Expansion

If the data input is a vector and the reset or enable port is scalar, the tool
expands the scalar reset or enable port to the size of the data input vector.
The reset and enable can be either vector or scalar.

Latency

This block has no latency. In releases prior to 2.6, the CIC block had a
latency of 1.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
66 October 2013

SMC CIC SMC Blocks: Abs to Host Interface

CIC Parameters

=] Function Block Parameters: CIC x|

— Synphony Model Compiler CIC (mask) (ink)

The CIC block applies Cascaded-Integrator-Comb filtering on the input signal. The
device can be put in either interpolating (Upsample) or dedmating (Downsample)
mode,

—Parameters

Filter type |Decimator =
Differential delay (M)
|1

Downsample rate

|15

Mumber of stages
|3

Qutput format ISpecif'y :I
Output word length
|15

Output fraction length
E

Qutput datatype Isigned :I
[Output saturate on overflow (wrap if not selected)

™ Output round towards nearest on underflow (truncate if not selected)

[~ Resetport

™ Enable part
0K I Cancel Help Apply

Filter Type

Determines the type of filter. The next figure shows how the filters are
implemented, without resets and enables.

— Decimator uses downsampling mode and implements a CIC filter that
performs a sample rate decrease on an input signal.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 67

SMC Blocks: Abs to Host Interface SMC CIC

— Interpolator uses upsampling mode and implements a CIC filter that
performs a sample rate increase on an input signal.

3
3
¥

3
=
¥

3
=

L —

b1 W1 =1
5y P 5w 5w
c1 C2 c2 “
L »312
’
Floor ¥
Normalize
Decimator Interpolator

Differential Delay (M)

Specifies the differential delay of the comb portion of the filter. Inter-
nally, the CIC filter uses differentiators, and the value of this parameter
is passed to all differentiators in the CIC filter.

Upsample/Downsample Rate

Determines the interpolation or decimation rate for the filter, depending
on the mode you selected in Filter Type.

Number of Stages

Specifies the number of filter stages. The CIC filter uses differentiators
and integrators internally, and this number equals the number of differ-
entiator/integrator pairs in the CIC filter.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
68 October 2013

SMC CIC SMC Blocks: Abs to Host Interface

Output format, Output word length, Output fraction length, and Output Data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584
Output fraction length Output Fraction Length, on page 584
Output data type Output Data Type, on page 584

Output saturate on overflow, Output round towards nearest on underflow

Determine how overflow and underflow are treated. These options are
available when Output format is set to Specify.

Output saturate ~ Saturates the overflow when the option is enabled and
on overflow wraps the overflow when it is disabled. See Overflow
Saturation Options, on page 585 for details.

Output round Uses the Nearest or Floor (Truncate) algorithms to round
towards nearest the underflow; see Underflow Rounding Options, on
on underflow page 585 for descriptions of the algorithms.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 69

SMC Blocks: Abs to Host Interface SMC CIC2

SMC CIC2

Implements a CIC filter by applying cascaded integrator-comb (CIC) filtering
on the input signal.

Library
Synphony Model Compiler Filtering

Description

432 2. 6
A EEE

3 ssync

L

srdyo

bt

srdyi

The CIC2 custom block implements a CIC filter by applying cascaded
integrator-comb filtering on the input signal. Cascaded integrator-comb
filters are a type of linear phase FIR filter, with a comb section and an
integrator section. You can use this filter in either interpolating (upsample) or
decimating (downsample) mode.

The CIC2 block offers many enhancements over the CIC block, such as
enhanced flow control and mulichannel support. It also supports folding
across differentiators or channels of the differentiator stages in decimation
mode, and supports enabled datapath designs with either a partial clock
frequency change or single clock operation for enabled inputs or outputs.

This block also supports a variable decimation factor and non-recursive
decimation architectures. Currently, the tool only supports power of two
decimation factors for non-recursive decimation.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
70 October 2013

SMC CIC2 SMC Blocks: Abs to Host Interface

CIC2 Flow Control

The following flow control ports are always available for the CIC2 block:

ssync The ssync (source sync) input can be forced high to reset the integrator
stages to zero.

srdyi The srdyi (source ready) input port can qualify whether the input data in the
current sample period is valid. An invalid input sample is indicated by
srdyi going low. The presence of srdyi allows for interpolation without
changing the clock rate by the corresponding amount.

srdyo The srdyo (source ready) output port can qualify whether the current output
sample is valid. An invalid output sample is indicated by srdyo going low.
The presence of srdyo allows for decimation without changing the clock
rate by the corresponding amount.

For a multichannel operation, flow control ports are scalar and the same flow
control signal applies to all channels.

Icon Annotations

Top The green annotations specify the following information:
* Decimation factor
* Clock ratio
¢ Number of channels,
e Number of stages

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 71

SMC Blocks: Abs to Host Interface

SMC CIC2

CIC2 Parameters

= "
W Function Block Parameters: CI ||

Synphony Model compiler CIC2 (mask)

Implements a CIC filter by applying cascaded integrator-comb (CIC)
filtering on the input signal.

CIC2 offers several enhancements over the CIC block including
enhanced flow control, multi-channel support, folding across
differentiators and across channels in decimation mode, and support
for enabled datapath designs with either partial clock frequency change
or single clock operation with enabled inputs and outputs.

Main Hardware

E

Filter type | Decimator -
Decimation factor

32

Differential delay

1

Number of stages

6

Input word length
16
Number of channels

2

Clock Ratio { Input/Output Clock frequency)
1

[0K][Cancel ” Help Apply

Main Tab

This tab sets parameters for filter type, decimation factor, differential delay,
number of stages, input word length, number of channels, and clock ratio.

© 2013 Synopsys, Inc.
72

Synphony Model Compiler User Guide
October 2013

SMC CIC2 SMC Blocks: Abs to Host Interface

Filter Type
Determines the type of filter.

Decimator Uses downsampling mode and implements a CIC filter that
decimates the input signal. Decimators can be implemented
with a full sample rate change. They can also be implemented
with either a partial sample rate change or a single rate mode
by specifying the appropriate Clock Ratio.

Interpolator Uses upsampling mode and implements a CIC filter that
interpolates the input signal. Interpolators can be implemented
with a full sample rate change. They can also be implemented
with either a partial sample rate change or a single rate mode
by specifying the appropriate Clock Ratio.

Variable Rate Implements a CIC filter where you can use the the ratei input

Decimator port to program the decimation factor. With this option, the tool
sets Clock Ratio internally to 1, and you cannot specify the
Folding and Pipelined implementation options on the Hardware tab.
This option uses a variable shift operation at the output, which
may cause the maximum speed that can be achieved to be
significantly lower.

Non-recursive Implements a power of two CIC decimator by using only

Decimator feed-forward addition operations, thus avoiding large
wordlength growth in the feedback integrator sections. You can
program the log2(decimation factor) through a ratei input port. The
decimation rates are all integer powers of two. With this option,
the tool sets Clock Ratio internally to 1 and disables the Folding
and Pipelined implementation options on the Hardware tab.

Decimation/Interpolation Factor
Determines the interpolation or decimation rate for the filter, depending
on the implementation you selected for Filter Type.
Filter Type Option Description

Decimator / Sets the decimation rate or interpolation rate for the filter
Interpolator

Variable Rate Sets the maximum decimation rate for the filter.
Decimator

Non-recursive Sets the decimation rate to log2(Maximum Decimation Factor).
decimator

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 73

SMC Blocks: Abs to Host Interface SMC CIC2

Differential Delay (M)

Specifies the differential delay of the comb portion of the filter. Inter-
nally, the CIC filter uses differentiators, and the value of this parameter
is passed to all differentiators in the CIC filter. This option is not avail-
able if you selected a non-recursive decimator in Filter Type.

Number of Stages

Specifies the number of filter stages. The CIC filter uses differentiators
and integrators internally, and this number equals the number of differ-
entiator/integrator pairs in the CIC filter.

Input Word Length
Specifies the word length of the input samples.

Number of Channels

Specifies the number of channels implemented for the CIC filter. The
input x must be a vector, for which its size is equal to the number of
channels. The output sample y is scalar if decimators are selected for the
fold across channel option. Otherwise, the size of the vector is same as
the input.

Clock Ratio (Input/Output Clock Frequency)

Specifies the ratio of the input to output clock frequencies for the
decimator and output to input clock frequencies for the interpolator.
This value must be an integer factor of the interpolation/decimation
factor. If the decimation factor is 16, then the values for the clock ratio
canbe 1, 2, 4, 8, 16.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
74 October 2013

SMC CIC2 SMC Blocks: Abs to Host Interface

Hardware Tab

This tab sets parameters for pipelined implementation, folding, and serial
input.

- W/ Function Block Parameters: CIC2

Synphony Model compiler CIC2 (mask)

Implements a CIC filter by applying cascaded integrator-comb (CIC)
filtering on the input signal.

CIC2 offers several enhancements over the CIC block including
enhanced flow control, multi-channel support, folding across
differentiators and across channels in decimation mode, and support
for enabled datapath designs with either partial clock frequency
change or single clock operation with enabled inputs and outputs.

Hardware

Pipelined Implementation

Folding |Across Channels

Serial Input

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 75

SMC Blocks: Abs to Host Interface SMC CIC2

Pipelined Implementation

Valid only in decimation mode. Specifies whether the tool inserts
pipeline stages after every differentiator/integrator. This option is not
available if you selected a variable rate decimator or non-recursive
decimator in Filter Type.

Folding

Valid for decimators only, but it is not available for variable rate
decimator or non-recursive decimator implementations. You can specify
these folding options:

— None

— Fold across differentiators
This option is available only when the clock ratio is greater than
ceil(number of stages/2). In this case, a folding factor of the clock ratio is
applied that folds the differentiators into a single MAC (multiply
accumulate).

— Across channels
This option folds across channels for the differentiator bank.

Serial Input

This option is only available when you specify folding across channels
and clock rate=1. The input x must be a scalar input of the commutated
channels that results in a single clock implementation.

Non-recursive Decimator architecture
Specifies how decimation by two stages in a non-recursive architecture
is to be implemented.
MCM Each stage is implemented as a transpose MCM filter.

Cascaded Each stage is implemented as a cascaded chain of (1+z-1) z-1
Adder stages.

The MCM options is more resource-efficient for designs with a large value
for Number of stages, while Cascaded Adder yields more resource-efficient
hardware when Number of Stages is small.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
76 October 2013

SMC Commutator SMC Blocks: Abs to Host Interface

SMC Commutator

Sequentially switches the data from multiple input ports to a single output
port, increasing the data rate of each output port accordingly (time division
multiplexing). The Commutator block provides optional flow control, multi-
channel, and single-clock multi-rate support.

Library
Synphony Model Compiler Signal Operations

Description

2=
Wl —

w2 7

The Synphony Model Compiler Commutator block sequentially switches the data
from multiple input ports to a single output port. In order to sequentially
multiplex input data without missing a sample, the output data rate is
increased by a factor of the number of input ports. This block is a custom
block (see Primitives and Custom Blocks, on page 800 for a definition).

Icon Annotation

The icon for this block displays the following information:

Top Annotation Shows the number of input ports to be multiplexed to a single
output port.

Latency Annotation Zero latency.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 77

SMC Blocks: Abs to Host Interface SMC Commutator

Commutator Parameters

r ™y
E Function Block Parameters: Commutator k M

Synphony Model Compiler Commutator (mask) (link)

The Synphony Model Compiler Commutator block sequentially
switches the data from multiple inputs to a single output, increasing
the data rate of the output accordingly. It is a time division multiplexer.

This block provides optional flow control, multi-channel, and single-
clock multi-rate.

Parameters Input format

Mumber of channels

1

Mumber of phases

2

Output format | Full Precision -

[7] srdyi/srdyo ports
[7] single clock

oK H Cancel ” Help Apply

Number of channels
Specifies the number of channels processed. The format of the input
data depends on the Input format parameters described in the sections:
Scalar Input Format, on page 79, Vector Input Format, on page 80, and
Matrix Input Format, on page 82.

Number of phases

Specifies the number of inputs or phases (per channel) from which data
is multiplexed to the output. The format of the input data depends on
the Input format parameters described in the sections: Scalar Input
Format, on page 79, Vector Input Format, on page 80, and Matrix Input

Format, on page 82.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
78 October 2013

SMC Commutator SMC Blocks: Abs to Host Interface

Output format, Output word length, Output fraction length, and Output data type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584
Output fraction length Output Fraction Length, on page 584
Output data type Output Data Type, on page 584

srdyi/srdyo ports

When enabled, the block provides forward flow control. srdyi (Source
Ready Input) indicates that the current input data is valid. srdyo (Source
Ready Output) is used to chain the Commutator block to other flow control
blocks. When Single clock is enabled, these ports are required.

Single clock

When enabled, the block does not introduce a new sample time on the
output. It creates a single-clock multi-rate implementation instead.

For Single clock mode, the inputs are provided in the fast domain and the
srdyi/srdyo ports are required. srdyi cannot be active more than 1 of N
samples, where N is the number of inputs (per channel). If this require-
ment is not met, the behavior is undefined. srdyo is pulse stretched by N
samples; this indicates the output is valid.

Scalar Input Format

The way the Commutator block accepts input data depends on how many
channels are required and the state of the Vector input and Matrix input
parameters. See Vector Input Format, on page 80 and Matrix Input
Format, on page 82. Scalar input is only available when the Vector input
option is disabled.

Each input is a separate port to the block. x1...xN are the inputs to the
first channel, x1+N...x2N are the inputs to the second channel, and
x1+(C-1)*N...xC*N are the inputs to the last channel.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 79

SMC Blocks: Abs to Host Interface SMC Commutator

Example of a 3-phase, 2-channel scalar input:

Port Input Channel
x1 1 1
x2 2 1
x3 3 1
x4 1 2
x5 2 2
x6 3 2

Vector Input Format

| E Function Block Parameters: Cmm u .

Synphony Model Compiler Commutator (mask) (link)

The Synphony Model Compiler Commutator block sequentially
switches the data from multiple inputs to a single output, increasing
the data rate of the output accordingly. It is a time division multiplexer.

This block provides optional flow control, multi-channel, and single-
clock multi-rate.

Vector input

Vector order [Phase First -

[T Matrix input

| ok |[concel |[mHep |[apply

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
80 October 2013

SMC Commutator SMC Blocks: Abs to Host Interface

Vector input

When enabled, the block accepts a single vector input for all data. The
Vector order parameter determines the format of the input data.

Vector order

Vector input must be enabled and Matrix input disabled for this option to be
available. A single port and the data is provided as a vector of length

N*C, where N is the number of phases and C is the number of channels.
The Vector order parameter determines the order of elements in the vector.

Vector order Description

Phase First 1st phase el...eC
2nd phase e1+C...eC+C
Nth phase e1+(N-1)*C...eN*C

Channel First 1st channel el...eN
2nd channel el+N...e2N
Cth channel e1+(C-1)*N...eC*N

Example of a 2-phase, 3-channel, phase first vector input:

Element Phase Channel
1 1 1
2 1 2
3 1 2
4 2 1
5 2 2
6 2 3

Example of a 2-phase, 3-channel, channel first vector input:

Element Phase Channel
1 1 1
2 2 1
3 1 2

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 81

SMC Blocks: Abs to Host Interface SMC Commutator

Element Phase Channel
4 2 2
S 1 3
6 2 3

Matrix Input Format

F ™
E Function Block Parameters: Comml.rlator_‘ M

Synphony Model Compiler Commutator (mask) (link)

The Synphony Model Compiler Commutator block sequentially
switches the data from multiple inputs to a single output, increasing
the data rate of the output accordingly. It is a time division multiplexer.

This block provides optional flow control, multi-channel, and single-
clock multi-rate.

Vector input
Matrix input
Matrix order ’Phasesxchannels -
[OK] l Cancel l [Help] l Apply l

Matrix input

When enabled, the block accepts a single matrix input for all data. The
Matrix order parameter determines the format of the input data. Vector input
must be enabled for this option to be available.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
82 October 2013

SMC Commutator SMC Blocks: Abs to Host Interface

Matrix order

Matrix input must be enabled for this option to be available. A single input
port and the data is provided as a matrix. The Matrix order parameter
determines the dimension of the matrix.

Matrix order Description

Phases x Channels NxC matrix, where N is the number of phases and
C is the number of channels

Channels x Phases CxN matrix, where C is the number of channels and
N is the number of phases

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 83

SMC Blocks: Abs to Host Interface SMC Comparator

SMC Comparator

Implements a programmable comparator.

Library
Synphony Model Compiler Math Functions

Description

a=hb pe

The Synphony Model Compiler Comparator block implements a comparator by
comparing two signals and returning a single bit.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

Comparator Parameters

E: Function Block Parameters: Comparator E =|

Synphony Model Compiler Comparator {mask) (ink)

’71113 Comparator block is a programmable comparator.

Parameters

Operation |a>=b vI
¥ Compare with constant

Compare with
B

oK | cancel | Help apply |

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
84 October 2013

SMC Comparator SMC Blocks: Abs to Host Interface

Operator

Determines the type of comparison to be performed on the two buses:

a==b
al=b
a<b
a<=b
a>b

a>=b This is the default.

Compare with constant

When enabled, it compares a with the constant specified in Compare with,
instead of b. Enabling this option makes the Compare with option avail-
able.

Compare with

Defines the constant to be used for comparison with a. This option
becomes available only when Compare with constant is enabled. The defined
constant is displayed on the block icon without being quantized, but
while performing the specified operation it is first quantized to the input
data type.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
85

October 2013

SMC Blocks: Abs to Host Interface SMC Concat

SMC Concat

Concatenates the bits of up to 32 input signals.

Library
Synphony Model Compiler Signal Operations

Description

high
out
low

The Synphony Model Compiler Concat block concatenates the bits of up to 32
input signals. This block converts the inputs to unsigned integers, by
ignoring the binary point and maintaining the bit representation of the word.
The output is an unsigned integer with the word length equal to the sum of
the input word lengths. The software takes the bits of the hi input and makes
them the most significant bits of the output. The bits of the lo input become
the least significant bits of the output

If the block has vector inputs, each vector element is concatenated with the

corresponding one. Vector inputs must be the same size.

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Latency

This block has no latency.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
86 October 2013

SMC Concat

SMC Blocks: Abs to Host Interface

Concat Parameters

=] Function Block Parameters: Concat

concatenates into & single output.

—Synphony Model Compiler Cancat {mask) {ink)

The Concat block extracts the stored integer of one or more signals, and

—Parameters

MNumber of inputs

|2

Output format ISpecif'y

Qutput word length

|15

Qutput fraction length

E

Output data type Isigned

B

Cancel

Help | Apply |

Number of inputs

Specifies the number of input signals to be concatenated. The maximum
number of input signals you can specify is 32. If you set the number of
inputs to 1, the output is the stored integer bit representation of the
input as an unsigned ufix value.

Output format, Output word length, Output fraction length, and Output data type

The output data format can be fully specified for this block. For descrip-
tions of the following parameters, refer to this table:

Word length
Fraction length

Data type

Synphony Model Compiler User Guide
October 2013

Output Word Length, on page 584
Output Fraction Length, on page 584
Output Data Type, on page 584

© 2013 Synopsys, Inc.
87

SMC Blocks: Abs to Host Interface SMC Configurable FFT/IFFT

SMC Configurable FFT/IFFT

Implements a fully pipelined Fast Fourier Transform (FFT) or Inverse Fast
Fourier Transform (IFFT).

Library
Synphony Model Compiler Transforms

Description

=
=)

. 204
inv e
Z\C
Configurable FFT/IFFT

The Configurable FFT/IFFT block implements a fully pipelined Fast Fourier
Transform (FFT) or Inverse Fast Fourier Transform (IFFT) based on whether
inv port is low or high respectively. When it is used to perform the block-wise
FFT of a streaming signal, you only require to reset the first block.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
88 October 2013

SMC Configurable FFT/IFFT SMC Blocks: Abs to Host Interface

Latency

Latency is a complex function of frame size and output order:

Transform Size Latency (Bit-reversed Output) Latency (Natural Order Output

16 19 36

32 38 71

64 70 135
128 137 266
256 265 522
512 524 1037
1024 1036 2061
2048 2063 4112
4096 4111 8208
8192 8210 16403
16384 16402 32787
32768 32789 65558
65536 65557 131094

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 89

SMC Blocks: Abs to Host Interface SMC Configurable FFT/IFFT

Configurable FFT/IFFT Parameters

E! Function Block Parameters: Configurable
— Synphony Model Compiler Configurable FET/IFFT (mask) (link)

]

The Configurable FFT/IFFT block is a fully pipelined Fast Fourier
Transform

that supports direction changes dynamically (i.e., Forward vs.
Inverse).

— Parameter.

T e R - |

Scaling IScaIe by 1/H j

Twiddle factor fraction length

[14

Data path format IAutomatic

Data path rounding IFIUUr[Truncate]

Output order I Matural

Ll Led Lef L

Output format IFuII Precision
I Reset port

™ Enable port

™ Ready port

™ valid port

OK | Cancel | Help Apply

Transform Size

Sets the size of the FFT/IFFT block. For sizes of integer power 4, the software
uses the Radix-4 algorithm. For other sizes, the software uses a Radix-2 stage,
followed by Radix-4 stages.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
90 October 2013

SMC Configurable FFT/IFFT SMC Blocks: Abs to Host Interface

Scaling

Specifies whether the FFT/IFFT is to be scaled. Scaling is applied after the
butterfly stages to prevent bit growth from the beginning. Floor rounding
(truncation) is used for the scaled data. See Underflow Rounding Options, on
page 585 for details.

N is the FFT/IFFT size. The following three options are available for scaling:
— Scale by 1/N divides the DFT summation by N.
— Scale by 1/Sqgrt (N) divides the DFT summation by the square root of N.
— No scaling does not scale the FFT.

Twiddle factor fraction length

Determines the precision of the Configurable FFT/IFFT block by setting the
fraction length for a twiddle factor, in bits. The specified value must be an
integer between 1 and 50. Increasing the value of Twiddle factor fraction length
increases precision. You can also specify the twiddle factor in terms of the
variables syn_inp_wl and syn_inp_fl.

Data path format

Determines data path format. You can set one of these options:

— Automatic sets the data path format to the one that uses the maximum
input and output fractions, and the smallest bit width that
guarantees no overflow.

— Full Precision uses the smallest bit width that guarantees no overflow,
and no truncation after twiddle factor multiplications.

— Specify uses the user-defined data type to determine the cast for
internal calculations. For this block, data path casting is done at the
input, after the twiddle factor multiplications, and at the block
output. Overflow only occurs at the points where data casting is
done. The rest of the calculations are overflow-free, regardless of the
specified data type.

Data path word length

Determines the word length of the data path in bits. It is only available when
you set Data path format to Specify. You can also specify the word length in terms
of the variables syn_inp_wil, syn_inp_fl, syn_coef wl, and syn_coef fl.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 91

SMC Blocks: Abs to Host Interface SMC Configurable FFT/IFFT

Data path fraction length

Sets the fraction length of the data path in bits. It is only available when you
set Data Path Format to Specify. You can also specify the fraction length in terms
of the variables syn_inp_wl, syn_inp_fl, syn_coef wl, and syn_coef fl.

Data path saturate on overflow

Determines how data path overflow is treated. When enabled, the option
saturates the overflow. When disabled, it wraps the overflow. See Overflow
Saturation Options, on page 585 for details. This option is only available
when you set Data path format to Specify.

Data path rounding

Determines how underflow in the data path is rounded. See Underflow
Rounding Options, on page 585 for details. This option becomes available
when Data path format is set to Automatic or Specify.

Output Order

Sets the output order for the block. This option determines the latency of the
block; see Latency, on page 89 for a table of values.

— Natural is the default. It sets the output order of the FFT results to the
natural order.

— Bit-reversed sets the pipelined FFT results to bit-reversed order.
Output format, Output word length, Output fraction length, and Output Data
type

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Output word length Output Word Length, on page 584. You can also specify
word length in terms of variables syn_inp_wil, syn_inp_fl,
syn_coef wl, and syn_coef fl. See Special Variables, on
page 588, for details on these variables.

Output fraction length Output Fraction Length, on page 584. You can also specify
fraction length in terms of variables syn_inp_wl, syn_inp_fl,
syn_coef wl, and syn_coef fl. See Special Variables, on
page 588, for details on these variables.

Output data type Output Data Type, on page 584

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
92 October 2013

SMC Configurable FFT/IFFT SMC Blocks: Abs to Host Interface

Output saturate on overflow, Output rounding type

Determines how output overflow and underflow are treated. These options
are only available when you set Output Format to Specify.

Output saturate on overflow ~ When enabled it saturates the overflow; when
disabled, it wraps the overflow. See Overflow
Saturation Options, on page 585 for details.

Output round on underflow Uses the specified algorithm to round the underflow;
see Underflow Rounding Options, on page 585 for
descriptions of the algorithms.

Reset port

When enabled, it creates a local reset (rst) for the FFT block, clearing the
pipeline. The reset is active high.

When disabled, the block outputs invalid data for the depth of the pipeline.
Enable port

When enabled, it creates an enable (en) port, which provides control over the
Enable status of the block; however, you cannot use folding optimizations, as
it leads to verification mismatches.

When disabled, the software does not create an en port and the FFT operation
is always enabled.

Ready port

When enabled, this option outputs a ready pulse (rdy), and valid FFT data
streams to the clock after the validity is asserted. A typical use of this pin is to
feed the ready pin of a forward FFT to the reset pin of an inverse FFT. When
disabled, the tool does not create a ready pin.

Valid port

When enabled, this option creates an active high signal (vld) that frames the
valid output data. A typical use of this pin is to feed the valid pin of a forward
FFT to the enable pin of an inverse FFT. When disabled, the tool does not
create a valid pin.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 93

SMC Blocks: Abs to Host Interface SMC Constant

SMC Constant

Sets a constant value of a specified data type as the output.

Library
Synphony Model Compiler Sources

Description

oo

The Synphony Model Compiler Constant block sets the output of the block to a
constant value of a specified data type.

| Y[n] = <constant>

The value is cast to the specifications of the data format, and also displayed
in the icon of the instance. The sample period of the constant is usually
inherited through back inheritance from the rest of the design, but you can
use the parameters to force the sample period.

Ilcon Annotation

The icon for this block displays the following information:

Top Annotation Displays the constant value. If you enter an expression or a
variable, you can use this annotation to identify the
constant.

Latency Annotation There is no latency, and the block drives the same value
independent of the global reset or enable.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
94 October 2013

SMC Constant SMC Blocks: Abs to Host Interface

Constant Parameters

%] Source Block Parameters: Constant , : x|
—Synphony Model Compiler Constant (mask) (link)

The Constant block drives a constant value of a specified data type.

—Parameters

Constant value

jo

Constant fraction length

jo

Constant data type Iunsigned ;I

[Constant round towards nearest on underflow (truncate if not selected)

Sample time (Use -1 to inherit)

f-1

0K I Cancel Help

Constant value

Sets the value to be driven (the output value of the block). For vectorized
output, specify a row or column vector. For matrix output, specify a
matrix value. Each value corresponds to a different channel.

Constant fraction length and Constant data type
The output data format must be fully specified for this block. See the
following for details:
Constant fraction length Output Fraction Length, on page 584

Constant data type Output Data Type, on page 584

Constant round towards nearest on underflow

Determines how the underflow for the constant is treated. Enable the
option to round the underflow using the Nearest algorithm, and disable it
to round the overflow with the Floor (truncate) algorithms. See Underflow
Rounding Options, on page 585 for details.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 95

SMC Blocks: Abs to Host Interface SMC Constant

Sample Time

Sets the sample time. Use -1 to inherit.

Constant Block Examples

The following examples show the Constant block and the value of the green
annotation at the top of this block.

Example 1
The first example shows the importance of truncating versus rounding.
The note shows a value outside the range of the given data format.
Rounding will set the LSB anyway:

_{]— sfixis End
truncated — "*@ sfix15 EHSPI -0.003006]
-..........h. -
27 Display
o Add)
B030063 sfix16 Eng
roundad
Example 2

The second example shows the convenience of the note when you use
variables or built-in constants. Further, in this test case, the sample
period can only be derived if specified in at least one of the constant
blocks.

§opqz SIS Eng

Sfd2 Endd . |

»
® - > 6 st33_Enza N 75570 004

Constani

Blult

Add Display
EJ sfix18 En T
L
Srani sfxlf _En16
Canstant __Z
CORMC Phaze

1 sfj1S_EnB 15703 sfie16_End

Constant2 Conzfantd

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
96 October 2013

SMC Constant

SMC Blocks: Abs to Host Interface

Example 3

This third example illustrates how the notes can reveal a quantization
issue, when the note is different from the quantized value.

slix1e Eni

discrepancy

075

sfixié En2

—
h

correct

Diagnostics

0.25

@ sfixis Enzh_

Add

Display

Warning: value can not be represented with selected data type.

Synphony Model Compiler User Guide

October 2013

© 2013 Synopsys, Inc.
97

SMC Blocks: Abs to Host Interface SMC Convert

SMC Convert

Changes the word size and data type of the input. You can apply a constant
shift before the new word size and data type are cast.

Library
Synphony Model Compiler Signal Operations

Description

-~

Floor

The Synphony Model Compiler Convert block changes the word size and data type
of the input. Most Synphony Model Compiler blocks have an option to provide
a built-in cast on the output. This block explicitly casts a signal, with an
optional shift. You can apply the constant shift before the word size and data
type change.

The quantization of a signal is determined by the quantization propagated
from input signals. Each block in the Synphony Model Compiler blockset
calculates the quantization of the outputs based on block-specific rules and
the quantization on the inputs. You can also manage the quantization of a
signal directly with a block cast operation inside the block, or by putting the
Convert block (Synphony Model Compiler Signal Operations library) at the output
of the block.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
98 October 2013

SMC Convert SMC Blocks: Abs to Host Interface

Binary Point Examples

The position of the binary point determines how fixed-point numbers are
interpreted. The binary point is the means by which fixed-point numbers are
scaled. The following table shows how the binary point position affects the
five-bit binary number 10110, using signed and unsigned arithmetic:

Signed (two's complement) arithmetic Unsigned arithmetic

10110. -24+22+2=-10 24+ 22+2=22
10.110 -2+ 2-1+2-2=-1.25 2+21+22=275
1.0110 -20+ 22+ 2-3=-0.625 20+ 2-2+2-3=1.375

The following table contains an example of input values and results:

A Convert block with these input parameters... Gives you these results...
A sfix5_0 signed input 10110 to the Convert block Input 10110. (-10)

(word length = 5, fraction length = 0)

A left shift over 3 bits Shift 10.110

A cast towards a sfix4_2 signed output (word length is Output 10.110
4, fraction length is 2)

Constant Propagation

The tool propagates constants for this block. See Constant Propagation, on
page 731 for a description.

Icon Annotations

Note (green) Specifies the number and direction of shift bits, if any.

Rounding (red) Specifies the algorithm used for rounding.

Latency

This block has no latency.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 99

SMC Blocks: Abs to Host Interface

SMC Convert

Convert Parameters

=] Function Block Parameters: Convert |
— Synphony Model Compiler Convert (mask) (ink)

The Convert blodk changes the word size and data type of the input.

A constant shift can be applied before the new word size and data type is casted.
—Parameters

Pre-shift Inone :I

Qutput format ISpecif'y :I

Output word length

|16

Output fraction length

E

Qutput data type Isigned :I

[~ Output saturate on overflow (wrap if not selected)

Output round on underflow IF|DDI’ (Truncate) j

W Inherit port

¥ Inherit sample time

Sample time factor

|1

0K I Cancel Help Apply

Pre-shift

The direction of the optional shift. The value can be one of the following:

— none. This is the default. It keeps the value of the input data intact.

— << does a left shift. Setting this value makes the Number of shift bits

parameter available.

— >>does a right shift. Setting this value makes the Number of shift bits

parameter available.

© 2013 Synopsys, Inc.
100

Synphony Model Compiler User Guide
October 2013

SMC Convert SMC Blocks: Abs to Host Interface

Number of shift bits

This parameter indicates the number of bits the input has to be shifted
and only becomes available when you set Pre-shift to << or >>. For a right
shift, the value of the most significant bit (MSB) is shifted in by the
number of bits specified. For a left shift, zero is shifted in on the least
significant bit (LSB) side.

You can also specify the number of shift bits in terms of one of these
variables: syn_inp_wil, syn_inp_fl, or syn_inp_dt. If Inherit port is enabled, you
can also use the syn_inh_wl, syn_inh_fl, or syn_inh_dt variables. See Special
Variables, on page 588 for information about them.

Output format, Output word length, and Output fraction length

For descriptions of these parameters, see the following:

Output format Output Format, on page 583

Outputword Output Word Length, on page 584.

length You can also specify it in terms of the syn_inp_wil, syn_inp_fl, and
syn_inp_dt variables. If Inherit port is enabled, you can also use
the syn_inh_wil, syn_inh_fl, and syn_inh_dt variables. The
variables are described in Special Variables, on page 588.

Output Output Fraction Length, on page 584.
fraction You can also specify it in terms of the variables syn_inp_wl,
length syn_inp_fl, and syn_inp_dt. If Inherit port is enabled, you can

also use the syn_inh_wl, syn_inh_fl, and syn_inh_dt variables.
The variables are described in Special Variables, on
page 588.

Output Data Type

Determines the data type for the output.

Signed See Output Data Type, on page 584 for details.
Unsigned See Output Data Type, on page 584 for details.

Preserve Preserves the input data type. If the input is signed, the output is
also signed. If the input is unsigned, the output is also unsigned.

Inherit Inherits the input data type from the inherit port. This option is
only available when you enable Inherit port. See Inherit port, on
page 102 for information about this port.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 101

SMC Blocks: Abs to Host Interface SMC Convert

Output saturate on overflow, Output round on underflow

Determine how output overflow and underflow are treated. These
options are available when you set Output Format to Automatic or Specify.

Output saturate Saturates the overflow when the option is enabled and wraps
on overflow the overflow when it is disabled. See Overflow Saturation
Options, on page 585 for details.

OQutputroundon See Underflow Rounding Options, on page 585 for details
underflow about the rounding options available.

The symbol on the block icon reflects the saturation and rounding
choices you make. For example:

Saturation on, Saturation off,
Floor rounding Convergent rounding
4] <1
Floar Conwergent
Inherit port

Determines whether the tool creates an inherit port. The tool creates an
inherit port when you enable the option. If you enable the option, the
tool applies automatic scalar expansion to the inherit and data ports. If
one input is scalar and the other is vector, the scalar input is expanded
to the size of the vector input.

This port does not convey data, but is used to specify the data type.
Enabling this option allows you to do the following:

— Use the variables syn_inh_wl, syn_inh_fl, and syn_inh_dt to specify Output
word length, Output fraction length, and Number of shift bits. See Special
Variables, on page 588 for information about these variables.

— Use the inherit option to specify the Output data type. See Output Data
Type, on page 101 for a description of the option.
Inherit sample time

Determines whether the output inherits the sample time from the
inherit port. Enabling this option means that the output port inherits
the sample time from the inherit port, and disabling it means the output

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
102 October 2013

SMC Convert SMC Blocks: Abs to Host Interface

port inherits sample time from the input. This option becomes available
when you enable Inherit port.

Sample time factor

Specifies a time factor for the sample time that the output port inherits
from the inherit port. This option is only available when you select Inherit
sample time.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 103

SMC Blocks: Abs to Host Interface SMC Convolutional Deinterleaver

SMC Convolutional Deinterleaver

Reshuffles streaming input symbols according a to a predefined mapping
scheme.

Library

Synphony Model Compiler Communications

Description

11

dp

—_—

—
z

This block reshuffles a fixed number of input symbols according to the
mapping you define. This is a custom block; for information about custom
blocks, see Primitives and Custom Blocks, on page 800.

The following figure shows the internal modeling of this block:

1=3 = a3—=1
w1 = q5 ' Shl
—_ z"md et
SRLI
3
. P 2 pd sy ———— 1)
d = di
SRLE
¥3 3
z—l
Decommutator Commutatar
Icon Annotations
Note Specifies that the block is a deinterleaver.
Latency Depends on the number of inputs.
© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
104 October 2013

SMC Convolutional Deinterleaver SMC Blocks: Abs to Host Interface

Convolutional Deinterleaver Parameters

—Synphony Model Compiler Convolutional Deinterleaver {(mask) {ink)

Convolutional Deinterleaver is the opposite of Convolutional Interleaver, It
reversely delays and orders streaming input symbols according to a defined
mapping scheme in order to obtain the original sequence.

—Parameters

Delay vector

|[0:1:21%3

Reset vector

jo
[~ Reset port
[Enable port

oK I Cancel Help Apply

Delay vector

Specifies the mapping scheme for the input symbols. It operates on
streaming symbols and uses the order specified here, starting at the
vector specified in Reset Vector.

Reset vector

Specifies the vector to be used for initialization.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The enable
port is connected to the enable signal of the internal shift registers.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 105

SMC Blocks: Abs to Host Interface SMC Convolutional Encoder

SMC Convolutional Encoder

Performs feed-forward convolutional encoding using k/n convolutional codes,
with optional reset and enable ports.

Library

Synphony Model Compiler Communications

Description

The Synphony Model Compiler Convolutional Encoder is a custom block (see Primi-
tives and Custom Blocks, on page 800 for a definition) that encodes the input
data stream with k/n convolutional codes, where k is the number of input bits
and n is the number of output bits. It includes optional reset and enable
ports.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
106 October 2013

SMC Convolutional Encoder SMC Blocks: Abs to Host Interface

The following shows how this custom block is implemented:

[0:0]

& "

Eeetractt

q0

¥

qt

it

Shift Registerl

¥

o

Icon Annotation

The icon for this block displays the following information:

Note Is Code Rate - Constraint Lengths (e.g. 1/2 code rate with K=3

constraint length)

Latency This block has no latency.
Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 107

SMC Blocks: Abs to Host Interface SMC Convolutional Encoder

Convolutional Encoder Parameters

=] Function Block Parameters: Convolutional E : x|

—Synphony Model Compiler Convolutional Encoder (mask) (link)

The convolutional encoder block performs feed-forward convolutional encoding by
using kfn convolutional codes.

—Parameters

Constraint length array {1xk)
|3
Generator polynomial matrix (octal) (ken)
|6 71

™ Reset port

[~ Enable port

0K I Cancel | Help Apply

Constraint length array

Determines the 1xk vector which holds the constraint length values for
each input.

Generator polynomial matrix

Sets the kxn matrix that specifies the input contributions for each
output. The values of the generator polynomial should be specified in
the octal number system.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable pin. The enable
port is connected to the enable signal of the internal shift registers.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
108 October 2013

SMC Convolutional Interleaver SMC Blocks: Abs to Host Interface

SMC Convolutional Interleaver

Shuffles streaming input symbols to a new permutation, using a predefined
mapping scheme.

Library

Synphony Model Compiler Communications

Description

{a _:n;dp

£

This block shulffles streaming input symbols according to the mapping you
define. This is a custom block; for information about custom blocks, see
Primitives and Custom Blocks, on page 800.

The following figure shows the internals of this block:

1—=3 =1
vl o] 1
3
1} P 2 ped g2 oy ————— e 1)
d P di
SRLZ
G
w3 pd g 3
-1 Z-."dd
= SRL3
Decommutator Commutator
Icon Annotations
Note Specifies that the block is an interleaver.
Latency Varies with the number of input symbols.
Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 109

SMC Blocks: Abs to Host Interface SMC Convolutional Interleaver

Convolutional Interleaver Parameters

=] Function Block Parameters: Convolutional Interleavs Xl

—Synphony Model Compiler Convolutional Interleaver (mask) (ink)

Convolutional Interleaver delays and interlaces streaming input symbols according
to a defined mapping scheme.

—Parameters

Delay vector
| [0:1:2]=3

Reset vector

o
[~ Resetport
[™ Enable port

oK I Cancel Help Apply

Delay vector

Specifies the order for shuffling the input symbols. It operates on
streaming symbols and uses the order specified here, starting at the
vector specified in Reset Vector.

Reset vector

Specifies the vector to be used for initialization.

Reset port

When enabled, the block is implemented with a reset port. The reset port
is connected to the reset signal of the internal shift registers.

Enable port

When enabled, the block is implemented with an enable port. The
enable port is connected to the enable signal of the internal shift regis-
ters.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
110 October 2013

SMC CORDIC Exp SMC Blocks: Abs to Host Interface

SMC CORDIC Exp

Calculates the natural exponent of the input using a CORDIC algorithm.

Library
Synphony Model Compiler CORDIC

Description
mant(&%)

Hx
2 exalelip

i

The Synphony Model Compiler CORDIC Exp block uses a CORDIC algorithm to
calculate the natural exponent of the input. See CORDIC Algorithms, on
page 701 for a description of the algorithms.

The result from this block is output in the form of a mantissa and an
exponent, where x=mant*2éXP. The mantissa is a fraction, with the most signifi-
cant bit of the mantissa to the left of the binary point. The exponent is an
integer. The number of iterations is equal to the word length of the mantissa.

Icon Annotations

The icon for this block displays the following information:

Latency Annotation Latency is based on accuracy. It is equal to the number
of mantissa bits + 2.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 111

SMC Blocks: Abs to Host Interface SMC CORDIC Exp

CORDIC Exp Parameters

=] Function Block Parameters: CORDIC Exp i x|

—Synphony Model Compiler Exp (mask)

The CORDIC Exp block calculates the natural exponent of the input.

—Parameters

Mantissa word length

|10

Exponent word length

|s

oK I Cancel Help Apply

Mantissa word length

Number of bits requested for the mantissa fraction.

Exponent word length

Number of bits requested for the exponent integer.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
112 October 2013

SMC CORDIC Log SMC Blocks: Abs to Host Interface

SMC CORDIC Log

Calculates the natural logarithm of the input using a CORDIC algorithm.

Library
Synphony Model Compiler CORDIC

Description

o logix) o

20

The Synphony Model Compiler CORDIC Log block calculates the natural logarithm
of the input, using a CORDIC algorithm. See CORDIC Algorithms, on

page 701 for a description of CORDIC algorithms. The number of iterations is
equal to output word length.

Icon Annotations

The icon for this block displays the following information:

Latency Annotation The latency of the block is based on the number of
iterations. It is equal to the output word length + 4.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 113

SMC Blocks: Abs to Host Interface SMC CORDIC Log

CORDIC Log Parameters

L= Function Block Parameters: CORDIC Log 1 x|
—Synphony Model Compiler CORDIC Log (mask)

The CORDIC Log blodk caloulates the natural logarithm of the input.

—Parameters

QOutput word length

|16

QOutput fraction length

Is

oK I Cancel Help Apply

For descriptions of the parameters, see the following:

Output word length Output Word Length, on page 584

Output fraction length Output Fraction Length, on page 584

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
114 October 2013

SMC CORDIC Polar SMC Blocks: Abs to Host Interface

SMC CORDIC Polar

Performs rectangular-to-polar conversion. It calculates\/(xz+y2) and atan(y/x)
where x and y are inputs.

Library
Synphony Model Compiler CORDIC

Description
Nx \xz+y2 -3
3 yz_.z atan{yix) b

The Synphony Model Compiler CORDIC Polar block uses the CORDIC algorithm to
perform rectangular-to-polar conversions. See CORDIC Algorithms, on

page 701 for a description of the algorithms. The CORDIC algorithm is used
for computation, and the implementation is fully pipelined.

When y=0, the value of CORDIC phase goes back and forth between -0.5 and
0.5 for the values of x<0. This is because of numerical instability in the
CORDIC algorithm, as 0.5 and -0.5 correspond to the same angle (-pi, pi). If this
causes a problem in the application, use a mux as a workaround. This
enables the output to be 0.5 or -0.5 when x<0 and y=0.

Icon Annotations

The icon for this block displays the following information:

Latency Annotation The latency of the block is based on the number of
iterations. It is equal to the number of iterations + 2.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 115

SMC Blocks: Abs to Host Interface

SMC CORDIC Polar

CORDIC Polar Parameters

=] Function Block Parameters: CORDIC Polar

—Synphony Model Compiler CORDIC Polar (mask) (ink)

The CORDIC Polar blodk performs Rectangular to Polar
conversion, It calculates sgrifx~2+y2) and atan(yfx) where
x and y are the inputs,

—Parameters

Operation |Magnitude&Phase

Mumber of iterations

|18

Phase output word length

|18

oK I Cancel Help

Apply

Operation

Determines the kind of rectangular-to-polar operation to be performed.

— Magnitude & Phase calculatesV (x2+y2) and atan(y/x) where x and y are

inputs.

— Magnitude calculates N (x2+y2) where x and y are the inputs.

— Phase calculates atan(y/x) where x and y are scalar inputs.

Number of iterations

This field defines the number of cascaded rotator stages, and affects

precision. It is recommended that you set the number of iterations to be
equal or close to the input word length. The number of iterations affects
the latency of the block, as described in Icon Annotations, on page 115.

Output word length

Determines the total word length for the fixed point data type.

© 2013 Synopsys, Inc.
116

Synphony Model Compiler User Guide
October 2013

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

SMC CORDIC Rotator

Implements a fully pipelined CORDIC rotator.

Library
Synphony Model Compiler CORDIC

Description
® e -2

y oz oy

z 18 -

The Synphony Model Compiler CORDIC Rotator block implements a fully pipelined
CORDIC engine using the CORDIC algorithm in either rotation or vectoring
mode. Use this building block to elegantly compute a variety of functions.
This block is intended for advanced users, and requires familiarity with
CORDIC architecture. See CORDIC Algorithms, on page 701 for a description
of CORDIC algorithms.

CORDIC algorithms are designed to rotate vectors in a plane, through a set of
shift-add operations. CORDIC functions can be hardware-efficient because
they do not need a multiplier, but they require latency to execute the CORDIC
iterations.

Circular, Linear, and Hyperbolic Coordinate Systems

The Synphony Model Compiler tool supports circular, linear and hyperbolic
coordinate systems. For additional background information about the
algorithms, see CORDIC Algorithms, on page 701.

The Synphony blocks do not apply any techniques to modify the range of the
inputs, like quadrant folding or pre-shift, because these techniques are
specific to the application or function to be implemented with the block. You
must use the block with external manipulation to ensure the desired conver-
gence range.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 117

SMC Blocks: Abs to Host Interface

SMC CORDIC Rotator

Convergence Range

Circular

X |y/x|>5.74 for x<0

z [-1.7433,1.7433]/2R=[-.2775,.22775]

Linear Hyperbolic
ly/x[<1 ly/x|<.81
-1,1] [-1.1182,1.1182]

Circular and hyperbolic systems are executed with pseudo-rotations, and the
block does not apply gain compensation in any of the stages. This means that

the block exposes the typical CORDIC gain associated with CORDIC

equations, and you must externally compensate for the gain, if this is
required. Linear systems do not have a gain associated with the equations, so

there is no need for compensation.

Gain
Number of iterations Circular
1 1.4142
1.5811
1.6298
1.6425
1.6457
1.6465
1.6467
1.6467

| N o A WN

Linear Hyperbolic
1 .8660
1 .8358
1 .8319
1 .8303
1 .8287
1 .8283
1 .8282
1 .8282

To ensure convergence, hyperbolic systems require some of the iterations in
the CORDIC algorithm to be repeated. TheSynphony Model Compiler Rotator block

does this automatically.

X'[n] = iterate(Xj- m . Y; . d; . 2"-i)
Y’'[n] = iterate(Y; + X; _d; . 2/-i)
Z'[n] = iterate(Z;- d; . &)

© 2013 Synopsys, Inc.
118

Synphony Model Compiler User Guide

October 2013

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

Xo=X[n]
Yo=YIn]
Z4=ZIn]

Icon Annotations

The icon for this block displays the following information:

Note Reflects the selected coordinate system:

 CIR
Circular. This is the default. The rotation unit is tan-12-.

« LIN
Linear. The rotation unit is 2--

* HYP _
Hyperbolic. The rotation unit is atan-12-.

Image Reflects the selected mode:
« Z->0
Rotation mode (iterating to make z’ 0)
° y’_>0
Vectoring mode (iterating to make y’ 0)

Latency Latency is equal to the number of iterations selected.

CORDIC Rotator Parameters

E! Function Block Parameters: CORDIC Rotator x|
— Synphony Model Compiler CORDIC Rotator (mask) ink)

The CORDIC Rotator blodk is a fully pipelined CORDIC Rotator,

—Parameters
m |1 j
Mode IRDtah'Dn j

Mumber of iterations

|15

0K I Cancel Help Apply

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 119

SMC Blocks: Abs to Host Interface SMC CORDIC Rotator

Determines the coordinate system used by the block. For further details
about coordinate systems, see Circular, Linear, and Hyperbolic Coordi-
nate Systems, on page 117.

— 1 specifies a circular (trigonometric) coordinate system. The z input
represents a circular coordinate (angle) expressed in normalized
radians. The fraction [-1,1] corresponds to [-T,T[; however the rotator
only converges for inputs in the range of [-.2775,.2775], which
corresponds to [-1.743,1.743] radians or [-99.9,99.9] degrees. The vector
rotation over a circle will have a CORDIC gain.

(T —

Y s e s g

|
|
|
|
X X
— O specifies a linear coordinate system. The z input represents a linear
coordinate (angle) expressed as a normalized radius. The fraction

[-1,1] corresponds to [y-x:y+x] and \y/x\<1 is required for the rotator to
converge. The vector rotates on a line through the first coordinate.

XX

— -1 specifies a hyperbolic coordinate system. The z input presents a
hyperbolic coordinate that must be in the range [-1,1] for the rotator to
converge. The vector rotates on a hyperbole, and will have a CORDIC
gain.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
120 October 2013

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

Mode
Determines the rotation mode.

— Rotation applies a rotation Z (Z’=0) on the given vector coordinates (X,Y),
and calculates the resulting vector coordinates (X,Y’).

— Vectoring rotates the vector (X,Y) to the X-axis (Y’=0), and calculates the
required angle (Z) to do this.

Number of iterations

Specifies the number of CORDIC rotations to be executed.

Data Format
The data formats for rotation and vectoring modes are as follows:

* The data format for X’ and y’ has a fraction length of max(FL(x),FL(y)). The
integer portion is also the maximum of both respective inputs. The data
type is always signed.

* The data format for Z has the same WL and FL as z, but the data type is
always signed.

Examples

The following examples illustrate the convergence check for vectoring mode in
the three coordinate systems.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 121

SMC Blocks: Abs to Host Interface SMC CORDIC Rotator

o - Convert
Lb X
+
PR
T - Convert onvergencs
yiix

4 ER— x:jr—ﬂx“—|

x1

/e >]

b e
Vil z 1 iR ¥l | Scopeil
o — CORDIC Rﬂu'.:zl"@ TR

z1 z1

Y

Y

¥

Canvert
|-> ®
proT P Convert ;[anvergeﬁceﬂ

—’12 x LN xﬁﬂ. I (-
—I-E L L :’—FE 7

¥2 z g ¥ | Scope2
I CORDIC Retztor? =

B[NE

z3 -
o R e Conwert
z - Convert
yaid

v
[

II_"Ej— —— !_J"@ 3
_/ : ¥y =0 a’—h@ v -

¥2 T gl ¥ Scopel
CORDIC -;Em;—l-bg =
23

z3

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
122 October 2013

SMC CORDIC Rotator SMC Blocks: Abs to Host Interface

o

oE [Ee eE [E=S o]
SE FPPE AGE B W - &0 cPL AEE BAS - =

SE LA AEE B AR

Circular For x=-1 and 0<=y<=10 Convergence is (y'=0) for |y/x|>5.74.
Linear For x=1 and -5<=y<=5 Convergence is (y'=0) for |y/x|<1.
Hyperbolic For x=1 and -5<=y<=5 Convergence is (y'=0) for |y/x|<.81.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 123

SMC Blocks: Abs to Host Interface SMC CORDIC SinCos

SMC CORDIC SinCos

Implements a sine and/or cosine generator circuit using a fully parallel
CORDIC algorithm in rotation mode.

Library
Synphony Model Compiler CORDIC

Description
=in(2=f) pe
Af
718 cos(2 i) pe

The Synphony Model Compiler CORDIC SinCos block implements a sine and/or
cosine generator circuit using a fully parallel CORDIC algorithm in rotation
mode. (See CORDIC Algorithms, on page 701 for a description of the
algorithms.) It calculates sin(27f) and/or cos(27tf) where f is an input. The
implementation is fully pipelined. The output is signed, with the fraction
length being two less than the total word length requested. This allows
coverage of the full output range of possible values ([-1 1]).

lcon Annotations

The icon for this block displays the following information:

Latency Annotation = The latency of the block is equal to the number of CORDIC
rotations + 2.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
124 October 2013

SMC CORDIC SinCos SMC Blocks: Abs to Host Interface

CORDIC SinCos Parameters

=] Function Block Parameters: CORDIC SinCos X|
— Synphony Model Compiler CORDIC SinCos (mask) (ink)

The CORDIC SinCos blodk calculates sin(2*pi*f) and or cos(2*pi*f) where fis the
input.

—Parameters

Operation |sin&cos j

Mumber of iterations

|15

Qutput word length

|15

0K I Cancel Help Apply

Function
You can select one of the following:
— sin&cos
— sin
— cos
Number of iterations

Defines the number of cascaded rotator stages, and affects precision. It
is recommended that you set the number of iterations equal or close to
output word length.

Output word length

The output is signed, with fraction bits being two less than the total
word length.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 125

SMC Blocks: Abs to Host Interface SMC CORDIC Sqrt

SMC CORDIC Sqrt

Calculates the square root of the input using the CORDIC algorithm.

Library
Synphony Model Compiler CORDIC

Description

b A b

o

The Synphony Model Compiler CORDIC Sqrt block calculates the square root of the
input using a fully pipelined CORDIC algorithm for the implementation. See
CORDIC Algorithms, on page 701 for a description of the algorithms.

The output word length is half of the input word length, and the number of
output fraction bits is half of the number of input fraction bits. For odd input
word length and input fraction bit values, the output word length and
number of fraction bits are rounded upwards. For example, if the input word
length is 9 and the number of input fraction bits is 3, then the output word
length is 5 and the number of output fraction bits is 2. The number of
cascaded rotators is the same as the output word length. The output words
length affects the latency of the block.

lcon Annotations

The icon for this block displays the following information:

Latency The latency of the block is equal to the output word length
Annotation (OWL) + 4.

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
126 October 2013

SMC CORDIC2 SMC Blocks: Abs to Host Interface

SMC CORDIC2

Implements a circular CORDIC (Coordinate Digital Rotation Computer).

Library
Synphony Model Compiler CORDIC

Description

The Synphony Model Compiler CORDIC2 is a custom block that creates a circular
CORDIC implementation. See CORDIC Algorithms, on page 701 for a descrip-
tion of the CORDIC algorithms. CORDIC algorithms are designed to rotate
vectors with a set of shift-add operations in a plane. Because CORDIC
functions do not need a multiplier, they can be hardware-efficient, but there
is extra latency to execute the CORDIC iterations.

The SMC CORDIC2 output is scaled by the gain inherent with any CORDIC
operation. You must scale the x and y (or mag) outputs by approximately
0.602 to compensate for the CORDIC gain. The phase (z) inputs and outputs
in CORDIC2 are all modulo 2pi and scaled by 2pi, where 2pi*angle represents
the actual value of the angle in radians.

The word length of the input coordinates (x, y) and z must be promoted by 1.
To correctly promote the word length, use a Convert block by specifying
syn_inp_wl+1 and syn_inp_fl for the word length. The data type for the input
coordinates must be set to cast to signed, because that is what the CORDIC2
block expects.

CORDIC2 provides the following enhancements compared to SMC CORDIC:

* Configures the number of pipeline stages for the mask from O (full
combinational implementation) to any positive integer.

* Configures the rounding mode for x, y, and angle outputs computed for
each stage from the mask allowing speed vs. accuracy trade off.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 127

SMC Blocks: Abs to Host Interface SMC CORDIC2

* Supports flow control.

* Supports both one and four quadrant operations.
* Supports dynamic vectoring and rotation mode.

* Supports the enabled data path folded structure.

* Provides multichannel support.

CORDIC2 Flow Control
The CORDIC2 block provides the following optional flow control ports:

srdyi The srdyi (source ready) input port determines whether the input data in
the current sample period is valid. An invalid input sample is indicated by
srdyi going low. For Enabled data path folded mode, you must keep srdyi low for
at least (number of iterations-1) the number of clock cycles between two
srdyi HIGH events.

srdyo The srdyo (source ready) output port determines whether the current
output sample is valid. An invalid output sample is indicated by srdyo going
low.

For a multichannel operation, the flow control signals are serial and apply for
all the channels.

Latency

For Streaming mode, the latency of CORDIC?2 is equal to the latency parameter
value you entered for the mask. For Enabled data path folded mode, the latency
is equal to (number of iterations + 2).

© 2013 Synopsys, Inc. Synphony Model Compiler User Guide
128 October 2013

SMC CORDIC2 SMC Blocks: Abs to Host Interface

CORDIC2 Parameters

E Function Block Parameters: CORDIC2 @
Parameters
Architecture | Streaming vJ

Number of iterations

10

Stage output rounding mode IFIoor (Truncate) -
Latency

4 =
Function [D)rnamic hd

Four Quadrant Operation
[T srdyifsrdyo port
Number of Channels

3

[oK H Cancel H Help Apply

Architecture
Specifies how the CORDIC block is implemented:

— Streaming implements each iteration as a separate stage in the
pipeline, that takes input from the previous stage and feeds the
output to the next stage in the pipeline. The maximum effective
throughput can be achieved at a cost of .

— Enabled data path folded reuses one stage to implement all the iterations,
resulting in a folded iteration structure. This mode requires that
srdyi/srdyo always be available, since the CORDIC only processes one
valid input every number of iterations clock cycles. Throughput can
be reduced effectively, at the most once every number of iterations
clock cycles. However, the entire CORDIC is implemented with only
three adders.

Synphony Model Compiler User Guide © 2013 Synopsys, Inc.
October 2013 129

SMC Blocks: Abs to Host Interface SMC CORDIC2

Stage output rounding mode

Specifies the rounding mode for X, y and angle (z) at the output of each
iteration stage. Select one of the following options: Floor(Truncate), Nearest,
Convergent, Fix, Ceil, or Round.

Latency

Specifies the latency for the CORDIC, which is made available only with
the Streaming architecture. The pipeline registers that account for the
latency are distributed uniformly among the iteration stages to optimize
timing performance.

Functions
Specifies the operation to be implemented for the CORDIC:

— Vectoring implements mag(x’) = sqrt(x2+y2), y'=0, phase(z’) = arg(x+jy)+z.
— Rotation implements x’ = x*cos(z)-y*sin(z), y'’=y*cos(z)+x*sin(z), z=0.
— Dynamic performs vectoring or rotation dynamically at runtime.

— For vectoring, feed a one (1) to the veci port.

— For rotation, feed a zero (0) to the veci port.

Veco is the delayed version of veci for chaining multiple CORDICs.

Four quadrant operation

Specifies whether to implement the default of one quadrant CORDIC or
use wrapper logic to implement a four quadrant rotation for vectoring.

srdyi/srdyo port

Specifies that flow control ports are available when you select the
Streaming architecture.

Number of channels

Specifies the number of channels implemented for the CORDIC. All data
inputs must be vectors of a width equal to the number of channels.

© 2013 Synopsys, Inc. Synphony Model Compiler Us