

3 Amp & 5 Amp ULDO REGULATORS MHL8601 / MHL8605 Series

(Formerly SAT8601 / SAT8605 Series) (Consult Table 4 for Part Number Designations) Levels Available
COTS
MILITARY
SPACE

DESCRIPTION

The MHL Series are space qualified, ultra low dropout linear regulators designed for military and space flight applications. Assembled in a hermetic MO-078 package, this series provides an ultra low drop out voltage of 400mV @ 3A, or 500mV at 5A. They are optimized for operation at a +5V input or a +3.3V input. All components are derated per internal requirements.

MO-078 PACKAGE

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Rad-Tolerant to 300K rad TID (Note 9)
- Ultra Low Dropout Voltage 400mV @ 3.0A
- Space-Level screening available
- Shutdown pin for output control
- Thermal Shutdown @ 150°C
- Optimized for operation at an input voltage of 3.3V or 5V
- Available in fixed or adjustable output versions

APPLICATIONS / BENEFITS

- Ultra low dropout voltages lead to lower losses.
- Some models run from a 3.3V input.

Table 1 – ABSOLUTE MAXIMUM RATINGS ($Tc = +25^{\circ}C$ unless otherwise note) (Exceeding maximum ratings may damage the device)

Parameters / Test Conditions	Symbol	Value		Unit
		(3A Version)	(5A Version)	
DC input Voltage Vin-Vground	V_{in}	10.0	10.0	٧
Output Current	Io	3.3	5.5	Α
Power Dissipation Tcase = 25°C	P_d	25	25	W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	3.0	°C/W
Storage Temperature	T _{stg}	-65 to +150	-65 to +150	°C
Operating Temperature Range	T_j	-55 to +125	-55 to +125	°C
Maximum Soldering Temperature, 10 sec.	T _{solder}	300	300	°C

MECHANICAL and PACKAGING

See Figure 5 for packaging information

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 (978) 620-2600

Fax: (978) 689-0803

Website:

www.microsemi.com

Table 2 – ELECTRICAL CHARACTERISTICS $(T_A = -55^{\circ}\text{C to} + 125^{\circ}\text{C unless otherwise noted})$ (Nominal reference voltage is 1.265V @ 25°C)

Develope / Test Conditions	Cumahad	(3A Version)			(5A Version)			Unit
Parameters / Test Conditions	Symbol -	Min.	Тур	Max.	Min.	Тур	Max.	Offic
Output Voltage Accuracy, Adjustable Units Vin = 3.3V or 5V as appropriate (Note 4) Vo = Vref, Io = 1A	Vout	1.24	1.265	1.29	1.24	1.265	1.29	V
Output Voltage Accuracy, Fixed Voltage Units (Note 4) Io = 1A	Vout	-3		+3	-3		+3	%
Input Voltage Range: +3.3V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \leq 2\%$	Vin (+3.3)	2.9		3.6	3.0		3.6	V
Input Voltage Range: +5.0V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \le 2\%$	Vin (+5.0)	4.5		5.5	4.5		5.5	٧
Dropout Voltage (Note 2) lout = $3.0A$, Vout $\ge +2.5V$	Vdrop			0.40		N/A		V
Dropout Voltage (Note 2) lout = 5.0A, Vout \geq +2.5V	Vdrop		N/A				0.5	٧
Current Limit $T_C = 25^{\circ}C$ Vout = 2.5V or Vfixed as appropriate Vin = 3.3V or 5V as appropriate	llatch	3.3			5.5			А
Ripple Rejection Vin = 3.3V or 5V as appropriate (Note 6) Vr = 500mVpp; 1KHz < f < 10kHz, lout = 100mA	PSRR			-20			-20	dB
Shutdown Input threshold (Note 1) Vout < 0.5V, Vin = 3.3 or 5V as appropriate	Vshdn	1.0		1.6	1.0		1.6	V

Table 3 – POST-RADIATION (Notes 3, 9) $T_A = 25$ °C

Barrandara (Tant One Pitters	0	(3A Version)			(5A Version)			11
Parameters / Test Conditions	Symbol	Min.	Тур	Max.	Min.	Тур	Max.	Unit
Output Voltage Accuracy (Note 4, 5) Vin = 3.3V or 5V as appropriate Vo = Vref, Io = 1A	Vout	-100	±25	+100	-100	±25	+100	mV
Output Voltage Accuracy, Fixed Voltage Versions Io = 1A (Note 4, 5)	Vout	-8.0	±6.6	+8.0	-8.0	±6.6	+8.0	%
Input Voltage Range: +3.3V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \leq 2\%$	Vin (+3.3)	2.9		3.6	3.0		3.6	V
Input Voltage Range: +5.0V Versions (Note 4) Iout = 2A or 4A as appropriate, $\Delta Vo \le 2\%$	Vin (+5.0)	4.5		5.5	4.5		5.5	V
Dropout Voltage (Note 2) lout = $3.0A$, Vout $\ge +2.5V$	Vdrop			0.40		N/A		V
Dropout Voltage (Note 2) lout = $5.0A$, Vout $\ge +2.5V$	Vdrop		N/A				0.50	V
Current Limit $T_C = 25^{\circ}C$ Vout = 2.5V or Vfixed as appropriate Vin = 3.3V or 5V as appropriate	llatch	3.3			5.5			Α
Shutdown Input threshold (Note 1) Vout < 0.5V, Vin = 3.3V or 5V as appropriate	Vshdn	1.0		1.6	1.0		1.6	V

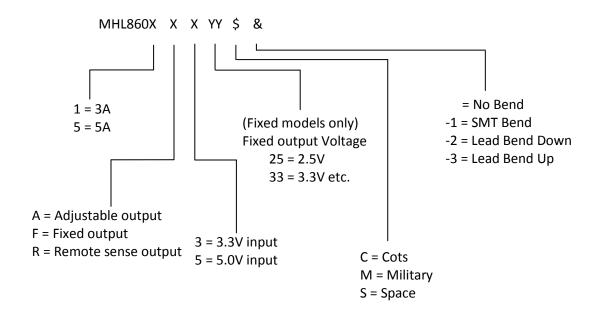


Table 4 - PART NUMBER FUNCTIONAL CHART

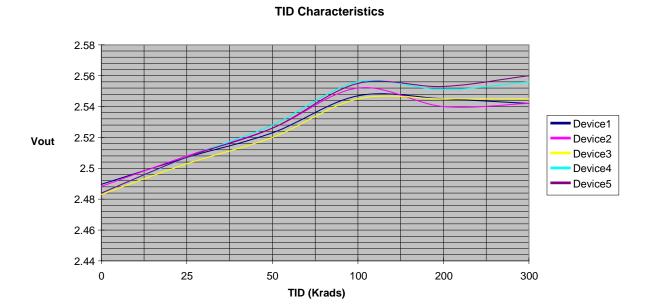
ADJUSTABLE OUTPUT VOLTAGE PART NUMBERS	Input Voltage	lout Range	Vout Range
MHL8601A3\$&	3.3V	0 – 3A	1.265 – 2.5V
MHL8605A3\$&	3.3V	0 – 5A	1.265 – 2.5V
MHL8601A5\$&	5V	0 – 3A	1.265 – 4.0V
MHL8605A5\$&	5V	0 – 5A	1.265 – 4.0V

Examples of Part Numbers with Fixed Output Voltages *	Input Voltage	lout Range	Vout
MHL8601F325\$&	3.3 V	0 – 3 A	2.5 V
MHL8605F320\$&	3.3 V	0 – 5 A	2.0 V
MHL8601F530\$&	5.0 V	0 – 3 A	3.0 V
MHL8605F533\$&	5.0 V	0 – 5 A	3.3 V

^{*} Replace the "F" with an "R" for remote sense versions.

Table 5 - SCREENING OPTIONS

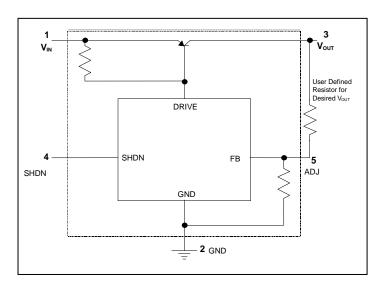
	SCR				
TESTS	Commercial MILITARY		SPACE	MIL-STD-883 METHOD	
120.0	сотѕ	MIL-PR Cerit			
Element Evaluation	N/A			Note 7	
Non-Destruct Wirebond Pull	N/A	Sample	100%	2023	
Pre-Cap Visual	N/A	100%	100%	2017	
Temperature Cycle	N/A	100%	100%	1010	
Constant Acceleration	N/A	100%	100%	2001	
PIND	N/A	N/A	100%	2020	
Pre-Burn-In Electrical	N/A	100%	100%		
Burn-In	N/A	100% (160 hours)	100% (320 hours)	1015	
Final Electrical Tests	100% (25°C)	100%	100%	Note 7	
Hermeticity (Fine & Gross Leak)	100%	100%	100%	1014	
X-Ray (Note 8)	N/A	N/A	YES	2012	
External Visual	Sample	100%	100%	2009	
Certified	N/A	YES	YES		


NOTES:

- 1. Shutdown pin voltage must be > 2.0V to initiate output inhibit. Pin should be grounded if not used. Pin input voltage can exceed supply voltage, but not greater than 10V above GND pin.
- 2. Actual voltage dropout is affected by device operating point. Minimum operating input voltage is 2.9V. As a result, the dropout specification applies to output voltage of 2.5V and higher, and the model numbers specifically designed to operate at these output voltage levels, 3.3V input voltage product only.
- 3. Radiation testing is per MIL-STD-883, Method 1019.
- 4. These regulators are optimized for specific Input Voltage ranges. The 860xx3 will have peak performance at +3.0V to +3.6V. The 860xx5 will have peak performance at +4.5V to +5.5V. Input voltages outside of this range can affect short-circuit current, load current capability and create electrical overstress to internal components.
- 5. Typical post 100K Rad ELDRS radiation performance in the powered mode is < +/-5%. Typical unpowered performance is ±6.6%.
- 6. Guaranteed by design.
- 7. Per MIL-PRF-38534.
- 8. Performed at a DLA approved facility.
- 9. Certified to Appendix G of MIL-PRF-38534 for Radiation Hardness Assurance (RHA) requirements for Hybrid Microcircuits and Multichip Modules effective June 27, 2013. (See RHA Test Laboratory Suitability)

RADIATION CHANGES

Figure 1 – Typical Radiation Characteristics – Vout



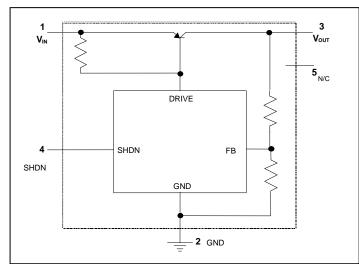
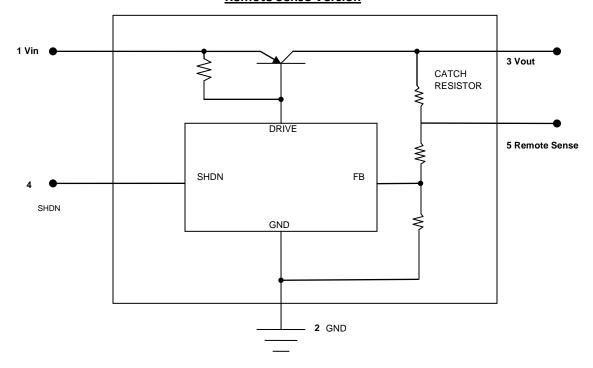
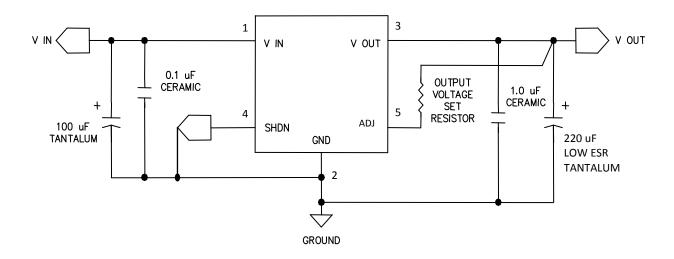

BLOCK DIAGRAMS

Figure 2 - External connections for the various versions.


Adjustable Version

Fixed Output Version


Remote Sense Version

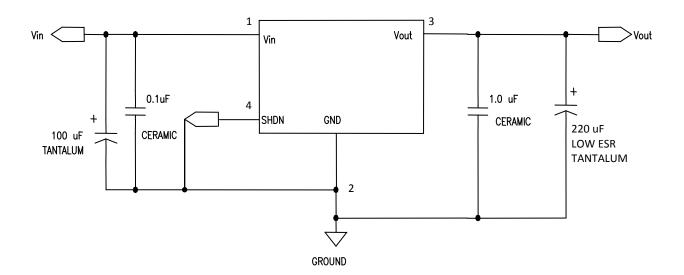

APPLICATIONS

Figure 3 - Application Circuit, Adjustable Output Circuit

 $V_{out} = V_{ref} x (1+R_{adj}/1000)$, with Vref~1.265 Volts

Figure 4 – Fixed Output 3/5 Amp Regulator

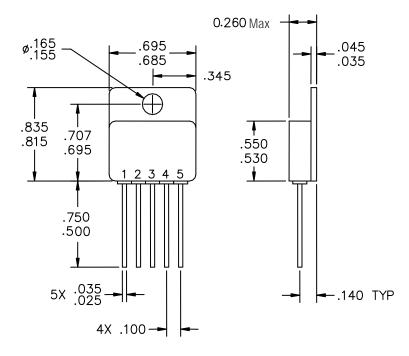
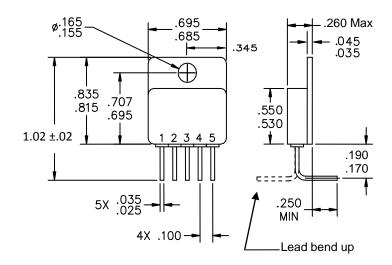

PACKAGING AND PIN CONNECTIONS

Figure 5 - Available Package Outlines

Pin Assignments Table

Pin #	Pin Name	Pin Description
1	Vin	Input Voltage
2	Gnd	Ground
3	Vout	Output Voltage
4	Shdn	Shutdown Pin. Output reset occurs when Vshdn > 1.6V
5	Adjust / N/C / Sense	Adjust pin for Adjustable Output, Not connected for fixed version. Load sense for remote sense versions.


Straight Lead

Surface Mount Outline - 1

0.260 Maxø.165 ø.155 695 .045 685 .035 .345 .707 .815 .115 **.**.095 1.03 ±.03 .110 🕇 5X :035 -.090 4X .100 --

Right Angle Down Outline – 2 = Down -3 = Up

Dimensions are in inches Tolerances .xxx = \pm .005" .xx = \pm .01"