Power Matters

Microsemi – Your Partner for Space System Solutions

Microsemi Space Forum India – July/August 2013

Patrick Franks Director of Engineering, Power Management Group

Agenda

- Technical Overview
- Space Heritage
- Systems View of Product Definition and Development
- Recent Products
- Processes, Capabilities, and Products in the Development "Pipe"
- Summary

Global provider of semiconductor solutions for applications focused on delivering power, reliability, security and performance

About Microsemi Corporation (Nasdaq: MSCC)

- High-value, high barrier-entry markets
 - Communications
 - Defense & Security
 - Aerospace
 - Industrial
- FY 2012 Revenue: \$1 billion
 - 3,000 employees globally

Corporate headquarters in Aliso Viejo, CA

About Microsemi

- Microsemi is focused on key markets where we look to apply our system knowledge to help define integrated roadmaps to leverage our breath in applications
- Microsemi has a very broad portfolio of technologies to serve our partners product needs
- Microsemi excels where solving problems is difficult, there is a need multi-disciplinary engineering, or where reliability and security are critical
- Microsemi applies its breath of capabilities to develop broad-based solutions to specific circuit and system problems (leverage.)

Technical Overview: Design

- Deep and Broad Engineering Team
 - Systems
 - Space/Aerospace/Industrial power generation, conversion, and switching
 - Security: mmWave, integrated systems, secure components
 - Avionics systems and subsystems

Circuits

- RF: transceivers, AFEs, power modules, ULP radios, PAs, LNA, mixers
- o Timing: sync, synth, distribution, frac-N, Ultra low jitter, any in any out
- Communication: SLICs, SLACs, voice processing, PoE
- High Density: FPGAs, SoCs, ASICs
- Power: switchers, drivers, conversion, regulation, protection
- SSD: high speed, security, and reliability
- Module/Hybrid
 - o High density/integration
 - o POL, linear, digital
 - SS relays
 - o Build to print

Technical Overview: Design

- Process Engineering
 - Device: SiC, GaN, IGBTs, RH, high temperature
 - ICs: CMOS, HV Biploar, HV CMOS, NVM, Anti-fuse, MIMICs
 - Misc: TVS, sensors
 - Packages: Stacked die, multi-die package, hermetic, non-hermetic, high temp
 - Modeling: Process, device, reliability, thermal, photonic

Technical Overview: Design

- Security
 - o Information assurance: IP, circuits, firmware, and software
 - o Anti-tamper: systems, IP, circuits, firmware, and software
 - o Black hat, white hat, red hat, etc.
 - SoCs: special security features, extensive IP, NV memory
- Integration
 - High gate count: FPGAs, ASICs
 - Mixed signal: ASICs, FPGAs, SoCs
 - o Multi-die packaging: horizontal, vertical, interposer, TSVs
- Harsh Environment
 - Radiation hard: process development, RH by design, circuit library, HV and power processes, TID, SEE, ELDRS
 - o High temperature: devices, drivers, POLs, FPGAs
 - Up to 250 degrees, low and high temp cycle

Technical overview: Design

- World's best tools and procedures
 - System simulation
 - Circuit simulation
 - Process simulation
 - Thermal simulation
 - Radiation modeling
 - Software ecosystems
 - Mechanical stress
 - Parasitic extraction
 - Environment modeling/simulation

\sub Microsemi.

© 2013 Microsemi Corporation. Company Proprietary.

Continued Investment in R&D

Technical Overview: Process

- Device
 - High performance
 - Harsh environment
 - Power

Vicrosemi

Device Technologies:

- Wide Band Gap (Compound Semiconductor)
 - SiC
 - GaN/SiC, GaN/Si
 - NG 0.25um (Low noise Epi and power Epi)
- SiGe
 - 0.18u
 - 0.35u
 - 0.35u on 1K Substrate
- GaAs
 - HBT3 (2u, High Linearity for WAN PA applications)
 - Enhancement Mode pHEMT (LNA's)
 - Depletion Mode pHEMT (Switches)
 - pHEMT Low Noise
 - pHEMT Power
 - HFET 0.25u
 - VPIN High Power
- InGaP
 - HBT Low Phase Noise
- SOI
 - 0.32u, 0.28u, 2.5v FET's
- IPD

© 2013 Microsemi Corporation. Company Proprietary.

Technical Overview: Process

- IC
 - High density
 - High voltage
 - Radiation hard
 - Power switching
 - Pico-power
 - RF

Process Technologies:

- Pure CMOS
 - 0.5u, 0.35u, 0.35u with color filter, 0.18u, 0.13u, 0.065u
- CMOS with NVM
 - 0.15u, 0.11u, 0.065u
- CMOS with Anti-Fuse
 - 2.0u, 0.35u, 0.15u
- BCD CMOS
 - 0.5u 30V
 - 0.35u 20V, 30V, 40V (Full Float)
 - 0.35u 80V (Trench Isolated)
 - 0.35u SmartFET
 - 0.35u 20-60V, natural Vt and 5,12Vgs
 - 0.18u, 40v, 80v (Full Float)
 - 100V and 200V N and P MOSFETs for military and RT applications.
- Bipolar
 - 9 to 11 mask with voltage from 12V to 60V, single or double metals.
 - BiCMOS: 4mm and 1.4mm double metals with 19 mask Non-RT
 - Schottky: up to 200V with Pt, W, TiW barrier metal.
 - Rectifier: Planar or Mesa, switching or non-switching, up to 1600V
 - SCR: up to 1200V SCR and RGT
 - Zener and TVS: 5V to 250V
 - 5 Ohm-cm Bipolar with Buried Layer, Deep Collector, 24 KA SLM RT
 - 12v, 20V, 40V Bipolar with Buried Layer, Deep Collector, SLM or DLM Rad Hard

Technical Overview: Process

- Module/Hybrid
 - High density/integration
 - POL, linear, digital
 - SS relays
 - Build to print
- Packaging
 - Hermetic & Non-hermetic
 - Multi-die, stacked
 - Power

Technical Overview: Test & Reliability

- Test
 - Full device characterization and modeling
 - Production device and IC testing
 - o Power
 - o RF
 - High performance timing (Jitter, wonder, etc.)
 - Digital/mixed signal
 - Processor, memory, fabric, scan, ATPG
 - Radiation Hard
 - o SEE
 - o ELDRS
 - o TID
 - Process characterization

- Reliability
 - Thermal cycling
 - Mil and Space level testing (more on this later)
 - Circuit DPPM levels below 5
 - QML
 - ELDRS lab

Space Heritage: Part of our DNA

- Microsemi has a greater than a 55 year history in space
 - Very broad product and capability base
 - Experience with systems, circuits and customers
- Microsemi is dedicated to space
 - Enlarging product portfolio non obsolescence policy
 - Space segment is key for Microsemi growth
 - We continue to invest in space segment (R&D)
 - Leveraging size and diversity of company to expand and enhance product capabilities
 - Building advanced technologies to serve space requirements
 - Packaging, device technologies, system design

2013 overview

- Continued strong market growth
- Continuing to increase content
- Systems approach to product development
- Product Leadership in FPGAs, power converters and control, ASICs, rad-hard components and RF technology

Space Heritage: Where do we fly?

Launchers / Missiles

Delta IV Sea Launch VLS MinuteMan III THAAD Pegasus Arianne Y H-2A D5 ENTB Patriot Atlas II, V

💟 Microsemi.

Commercial Globalstar Anik F2 Intelsat IX GE-1.2...18 Echostar Telstar Radarsat I. II CRSS / IKONOS OrbView IndoStar QuickBird Hispasat Astra WorldStar Orion 2 KompSa Orbcom PanAmSat

Military

MightySat P81 (Classified) P59 (Classified) HESSI Clementine SBIRS AEHF Myter Joint GeoLite WarFighter 1 TSX-5 MTI STEP STSS Midcourse Space Exp NPP / NPOESS GPS MUOS

International EnviSat Cluster II METOP Rosetta Champollion Stentor Yamal 100 SAC Sicral ACeS L-Star SOHO SILEX Integral Int'l Space Station MDS N-Star MTSat ETS VII JEM ADEOS II OICETS DRTS

Civilian / Scientific Deep Space I Mars Pathfinder, Surveyor Mars MER1 and 2, MRO Mars: MSL Contours Seawinds SIRTF Messenger Lunar Prospector GALEX GIFTS TIROS Landsat VII EOS-AM1, Chem1, PM1 Cassini TDRS Space Shuttle Hubble Space Telescope Windsat

GOES AXAF TRMM XTE ACE SMEX MIDEX GLAS NEAR Timed FUSE Genesis

© 2013 Microsemi Corporation. Company Proprietary.

Space Heritage: Committed to QPL-19500

- Microsemi remains committed to the QPL-19500 system for discrete
 - 100% committed to the QML system
 - Still have the largest number of QPLs in the industry
 - We are adding parts on a continuing basis
 - RH MOSFETs
 - Small signal transistors
 - Also expanding our commitment to MIL-PRF-38534

- We look at the total system when building our product roadmaps to build devices that work together better in the final system
 - Smaller, lighter, less expensive, faster, more reliable
- System engineers always look at a satellite as a system
- Interfaces and partitioning are done at this level of engineering
- Without coordination of component development
 - Difficult and limited choices in partitions
 - Performance, power, weight, and cost are sacrificed
 - Interoperability assurance diminished

Microsemi Space Product Flow

- If device designers look at the system design to define products
 - Digital interface formats aligned
 - Digital and analog physical interfaces aligned
 - Power generation optimized for load and rails
 - No more level converters, signal dividers, extra clock channels
 - Product introductions aligned
 - Reliability architected into the component systems

- To take advantage of this advanced view of product definition
 - Companies can align products in their portfolio
 - Companies can partner
 - General standards

- Examples
 - High-speed digital interfaces, standard, and custom
 - Analog converters (A/D, D/A) dynamic range alignment
 - Integrated voltage and current references
 - POL devices and FPGA or ASIC current and voltage load matching
 - Consistent cross device radiation performance (weakest link)
 - High temperature switching device drivers optimized to switching device characteristics
 - Serial communication width appropriate for the device technologies involved
 - FPGAs control and monitoring clock and power generation
 - Optimized device power down

© 2013 Microsemi Corporation. Company Proprietary.

Satellite Block Diagram

😳 Microsemi.

© 2013 Microsemi Corporation. Company Proprietary.

System View: Roadmap Alignment Examples

- Next-generation RT FPGAs
 - High-speed communications common with our space system managers
 - POL matched to load requirements, programmable and monitoring
- Space system companion devices
 - Analog and/or digital processing
 - "Custom ASIC"
 - High speed interfaces
 - Digital bus alignment
- High power switching devices
 - Custom drivers for optimized performance and protection
 - Device switching constraints eliminated from user
- Needs of system designers built into roadmaps from the start

Summary

- Microsemi is dedicated, focused, and investing in space products and capabilities
- Microsemi has been in the space business as a partner with our customers for more than 55 years and expects to be for a long time
- Microsemi has the system, circuit, and production experience in space to be a long term supplier of state-of-the-art products for long life cycles
- Microsemi uses a system view of applications, our breath of technology and design experience to build the best in class products for space

Power Matters

Thank You