
Reactive Test Bench Tutorial 1
© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents
1. Overview..2
2. The Model Under Test (MUT)..2
3. Create signals...3

3.1. Extract ports from MUT..3
3.2. Create clock waveform..3
3.3. Set default clocking signal and edge ...3

4. Draw single write (without waiting on TRDY)...4
5. Add wait for TRDY assertion...4

5.1. Draw expected TRDY waveform..4
5.2. Wait method 1: Wait indefinitely using sensitive edges...4
5.3. Wait method 2: Wait with a timeout using sample..5

6. Draw single read...5
6.1. Draw the waveforms...5
6.2. Disable “Drive” for the DATA segment..6

7. Add a Sample to verify data read from MUT..6
8. Drive data using a “Test Vector Spreadsheet” file...7
9. Create for-loop to perform multiple writes and reads..7
10. TBP Transactor – Add address argument..8
11. Alternatives..9

11.1. Consecutive writes followed by consecutive reads..9
11.2. Random data...9

1. Overview
This tutorial introduces some of the optional reactive test bench feature set. This feature
set is included with TestBencher Pro and can be optionally be added to Waveformer Lite,
Waveformer Pro, Datasheet Pro, and BugHunter Pro. When running any of these
products, documentation on these features can be found in Help->Reactive Test Bench
Generation Help.

The following features will be covered in this tutorial:– Cycle-based test bench generation– “For Loop” Markers– Point Samples for checking model output– Sensitive Edges– Bi-directional signals

All of the relevant files for this tutorial can be found in “<SYNCAD
INSTALL>\Examples\TutorialFiles\ReactiveTestBench”. At the end of this tutorial, you
will have created one timing diagram that uses many different reactive features. There
are also pre-made diagrams for each completed step allowing you to start at any step of
the tutorial desired. These completed diagrams can be found in the
“ReactiveTestBench\CompletedDiagrams” directory.

2. The Model Under Test (MUT)
We will use a simplified version of a PCI slave device as the model to be tested. The
model is contained in “mymut.v” and the module is named mymut. No experience with
PCI is required to perform and understand this tutorial. There is no arbitration, the MUT
responds to all addresses, and the only valid commands are single reads and writes. It
contains a memory that can be written to and read from and has the following ports (all
control signals are active low):– CLK (input) – device is clocked on the negative edge– FRAME (input) – indicates start of transaction.– WRITE (input) – indicates write transaction.– IRDY (input) – stands for “initiator ready”. Indicates when the master device is ready

for transaction to complete (the master will be the test bench in this case). – TRDY (output) – stands for “target ready”. During a write, this indicates that the
MUT has finished writing data to it's memory. During a read, this indicates that the
MUT has read the data from memory and put it on the DATA bus.– ADDR (output) – Address to write to or read from.– DATA (inout) – Data to write to memory or data that is read from memory.

Each transaction consists of an address cycle and data cycle. During the address cycle,
the WRITE and ADDR signals must be valid. During a write data cycle, the DATA
signal must be valid before IRDY is asserted. Then the MUT indicates that it is finished

storing the data by asserting TRDY. During a read data cycle, the MUT must drive
DATA before asserting TRDY. Then, the master asserts IRDY when it is finished
reading the data. Once IRDY or TRDY is asserted, they must remain asserted until the
transaction is finished which is indicated by the de-assertion of FRAME.

3. Create signals

3.1. Extract ports from MUT
If you're running TBP or BHP you can create a new project that contains the mymut.v
source file and use the “Extract MUT ports into Diagram” button to create all of the
signals. If you're using Libero, the ports will automatically be extracted into a new
diagram when WFL is launched.

3.2. Create clock waveform
Once the ports are extracted, convert the signal named “CLK” to a Clock by right-
clicking on the name of the signal and selecting “Signal <-> Clock”. This will draw a
clock waveform with a default frequency of 10 MHz.

3.3. Set default clocking signal and edge
Next we set the “clocking signal” and edge for all of the signals in the diagram so that the
test bench will be cycle-based instead of time-based (this means the test bench stimulus
will change after waiting on clock transitions instead of time delays). Right-click in the
signal name list in the diagram window and select “Diagram Properties.” Select “CLK”
as the default clock to use and “pos” as the Edge. Then click “Update Existing” to set the
clock for existing signals. Press OK to close the dialog.

Following is an example of the difference between a cycle-based and time-based test
bench. Both of these code segments were exported from the diagram you will be drawing
in the next step. The example on the left is time-based and the example on the right is
cycle-based.
 repeat (2)
 begin
 @(posedge CL K);
 #137; end
 FRAME_driver <= 1'b0; FRAME_driver < = 1'b0;
 #3;
 WRITE_driver <= 1'b0; WRITE_driver < = 1'b0;
 ADDR_driver <= 8'h00; ADDR_driver <= 8'h00;
 #100; @(posedge CLK) ;
 WRITE_driver <= 1'b1; WRITE_driver < = 1'b1;
 IRDY_driver <= 1'b0; IRDY_driver <= 1'b0;
 ADDR_driver <= 8'hxx; ADDR_driver <= 8'hxx;
 DATA_driver <= 8'hAA; DATA_driver <= 8'hAA;
 #100; @(posedge CLK) ;
 FRAME_driver <= 1'b1; FRAME_driver < = 1'b1;
 IRDY_driver <= 1'b1; IRDY_driver <= 1'b1;
 DATA_driver <= 8'hzz; DATA_driver <= 8'hzz;
 #101; @(posedge CLK) ;

4. Draw single write (without waiting on TRDY)
Draw the write transaction which is shown below. This transaction could be used as a
simple test bench that just drives the input ports of the MUT, but it ignores the TRDY
signal and doesn't verify that the data was actually written successfully to the MUT. We
will add this functionality in the next couple of steps.

5. Add wait for TRDY assertion
There are two ways to perform this step. One method uses the Sensitive Edge feature and
will wait indefinitely for TRDY to assert. The other method uses a Sample instead,
where a timeout can be specified. Both methods are explained below. Before doing
either method though, you need to draw the expected TRDY waveform shown below.

Note: TRDY's waveform is blue because it is an input, so the data shown is predicted
data, not data to be driven. The direction of TRDY was automatically determined by the
tool during the Extract Ports from MUT step.

5.1. Draw expected TRDY waveform

5.2. Wait method 1: Wait indefinitely using sensiti ve edges
Note: If you want to specify a timeout for this wait, skip this step and go to 5.3.

Double-click on TRDY to open the Signal Properties dialog, enable the “Falling Edge
Sensitive” check box, and hit OK. When this is enabled, the test bench will wait on every
drawn falling edge on TRDY. This is indicated graphically by an arrow on the falling
edge. Make sure that the falling edge of TRDY is drawn after the falling edge of IRDY,
otherwise the test bench will wait for TRDY to assert before asserting IRDY.

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns

CLK

FRAME

WRITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

00

AA

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns

CLK

FRAME

WRITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

00

AA

5.3. Wait method 2: Wait with a timeout using sampl e
Note: Skip this step if you performed step 5.2.

Depress the “Sample” button. To create a sample, left-click on the rising edge of CLK at
300 ns, then right-click on TRDY at 300ns. Double-click on the new sample's name to
open the Sample Properties dialog. Change the name to “WaitForTRDY” then click on
the “HDL Code” button to open the Code Generation Options dialog. Here is where you
can control the behavior of the Sample once it is triggered to run. Make the following
changes:– Disable the “Full Expect” check box. – Specify 100 for the Multiplier. – Enable the “Blocking” check box.

These three options work together to achieve the “wait with timeout” behavior we want.
With “Full Expect” off and the “Multiplier” set to 100, this Sample will wait for up to
100 clock cycles for TRDY to assert. The “Blocking” check box causes the rest of the
transaction to wait on the Sample to finish. Otherwise, the Sample would be run in
parallel with the stimulus. More details on these options can be found in the Reactive
Export Help. Here's what the diagram should look like at this point:

6. Draw single read

6.1. Draw the waveforms
Draw a complete read transaction following the write transaction. Here is what the
waveforms should look like (assuming you used the edge sensitive wait; the sample
version will look slightly different, of course):

0ns 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns

CLK

FRAME

W RITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

00

AA

WaitForTRDY

6.2. Disable “Drive” for the DATA segment
The test bench must not drive the DATA bus during the read cycle to avoid contention as
the MUT will be driving it then. Since the DATA bus is a bi-directional signal, you can
specify which parts of the waveform are driven by the test bench and which are not. One
way to do this is to draw the bus with the TRI state, but in this case we need to specify the
expected data on the bus, so the TRI state can't be used. Instead, double-click on the
waveform segment of DATA that happens during the read. Disable the “Driven” check
box and hit OK. The segment will be drawn in blue now, indicating that the DATA
signal will not be driven by the test bench during this time period (i.e. just like the entire
TRDY signal).

7. Add a Sample to verify data read from MUT
Depress the Sample button, then left-click on the positive clock edge at 600 ns and right-
click on the DATA segment directly below it. This will place a Sample that will trigger
at that clock edge and verify that the data read from the MUT is what we expect
(indicated by the waveform drawn under the Sample). This is the default behavior of the
Sample. Next, make the following changes to the Sample:– Double-click on the Sample name and change its name to “VerifyDataRead”– Click the “HDL Code” button to open the “Code Generation Options” dialog.– Select “Display Message” for the “Then Action”. Select “Note” for the

severity level of this action. This will make the Sample display a note during
simulation when it succeeds.– Hit OK to close these dialogs.

Here is what the diagram should look like after adding the Sample:

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns

CLK

FRAME

WRITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

00 00

AA AA

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns

CLK

FRAME

WRITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

00 00

AA AA

VerifyDataRead

8. Drive data using a “Test Vector Spreadsheet” fil e
This step will use an input file to drive the DATA bus during the write cycle. This will
increase the effectiveness of the test bench by writing different patterns to different
addresses. The basic idea is to create a user-defined array variable that is initialized from
a file. Here are the steps to create the variable.– Click the “View Variables” button in the diagram to open the “Variable List”

dialog.– Click the “New Variable” button, then click on the name and change it to
“inputData”. This name is important because it must match a column name in
the input file that we choose.– Under “Structure” select “array.”– Set “Size” to 256. – Set “Data Type” to “2_state” then change MSB to 7.– Near the bottom of the dialog, enable “Initialize Structure With File”. Browse
to the “inputData” directory and select “inputData.txt”. Hit OK.

Now that the variable is created, the next step is to refer to this array to drive and verify
data. So, both of the “AA” states need to be changed. For the two “AA” states, do the
following:– Double-click on the state to open the “Edit Bus State” dialog.– Type “@inputData[address]” and hit OK. The '@' symbol is used to refer to a

variable defined in the “Variable List” dialog.

9. Create for-loop to perform multiple writes and r eads
This step sets up the diagram to perform multiple writes and reads. Note: If you are
creating a TestBencher transactor then the next step should be performed, TBP Transactor
– Add address argument. Perform this step if you are unsure as it is also valid for
TestBencher transactors.– Depress the “Marker” button, left-click the positive clock edge at 100 ns, then right-

click to place the Marker.

300ns 400ns 500ns 600ns 700ns

CLK

FRAME

WRITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

0 0

@inputData[address] @inputData[address]

A d d r e s s L o o p

VerifyDataRead

– Place another marker at the positive clock edge at 800 ns. – Double-click the first Marker to open the “Edit Time Marker” dialog.– Select “For Loop” in the “Type” drop down list.– Set “Name” to “AddressLoop”.– Set “Index” to “address”.– Set “End” to “10”.

– Hit OK to close the dialog.– Double-click the second Marker to open the “Edit Time Marker” dialog.– Change it's “Type” to “Loop End” and hit OK.– The two markers should now be connected graphically as shown below.

10. TBP Transactor – Add address argument
This step is optional and should only be performed if you are creating a TestBencher
transactor. In this case, the for-loop can be omitted from the diagram and an argument
can be set up for the address (i.e. the address can be passed in via the diagram apply call).
It's not invalid to create a for-loop as performed in the previous step, but avoiding the for-
loop gives the transactor greater flexibility.

Note: The primary purpose of this tutorial is to demonstrate various features available to
all “reactive_tb” users. So, there are several steps that may not make as much sense for
TestBencher users. For instance, two transactors could have been created instead of one:
one for the write cycle and one for the read cycle. Also, the data could have been passed
in as an argument to the diagram apply call (a function call that causes the transactor to
perform a transaction with a given set of transaction arguments).

To add an “address” argument, do the following for the two address states (which

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns

CLK

FRAME

WRITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

00 00

@inputData[address] @inputData[address]

AddressLoop EndAddressLoop

VerifyDataRead

currently are set to 00):– Double-click on the state to open the “Edit Bus State” dialog.– Enter “$$address” for the state value and hit OK.

Here's what the final transactor should look like:

Now when an apply call in inserted for this transactor in the sequencer process, you will
be able to specify which address to use.

11. Alternatives

11.1. Consecutive writes followed by consecutive re ads
If you wanted to perform multiple writes concurrently, followed by multiple concurrent
reads, then two for-loops are needed. The array of data can be referenced in each loop in
the same manner already demonstrated.

11.2. Random data
In Verilog, you could “$random()” as the state value for DATA during the write
transaction. A user-defined function can also be embedded into the generated test bench
using the “Class Methods” dialog which could be used to generate data values. In both of
these cases, you would need to modify the state value under the “VerifyDataRead”
sample since the inputData array is no longer used. A Sample must be placed on the
driven DATA segment to capture the expected data. For example, you could create a
Sample named “ExpectedData” that is triggered from the clock edge at 300 ns. Then the
state under the “VerifyDataRead” Sample would be set to “ExpectedData” instead of
“@inputData[address]”.

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns

CLK

FRAME

W RITE

IRDY

TRDY

ADDR[7:0]

DATA[7:0]

$$address $$address

@inputData[addres s] @inputData[address]

VerifyDataRead

	1. Overview
	2. The Model Under Test (MUT)
	3. Create signals
	3.1. Extract ports from MUT
	3.2. Create clock waveform
	3.3. Set default clocking signal and edge

	4. Draw single write (without waiting on TRDY)
	5. Add wait for TRDY assertion
	5.1. Draw expected TRDY waveform
	5.2. Wait method 1: Wait indefinitely using sensitive edges
	5.3. Wait method 2: Wait with a timeout using sample

	6. Draw single read
	6.1. Draw the waveforms
	6.2. Disable “Drive” for the DATA segment

	7. Add a Sample to verify data read from MUT
	8. Drive data using a “Test Vector Spreadsheet” file
	9. Create for-loop to perform multiple writes and reads
	10. TBP Transactor – Add address argument
	11. Alternatives
	11.1. Consecutive writes followed by consecutive reads
	11.2. Random data

