Reactive Test Bench Tutorial 1

© Copyright 1994-2004 SynaptiCAD, Inc.

Table of Contents

@ =T 1)/ 2
2. The Model UNder TeSt (MUT).....uuuuiieeieiiiii ettt e e e e eeees 2
3. CrBALE SIONAIS. . e et 3
3.1, EXtract portS from MUT. .. .cee it e e e e e e e enes 3
3.2. Create ClOCK WaVETOLIM ... ittt e e e e e e e e ens 3
3.3. Set default clocking signal and €dge.............ovieviiiiiiiiiiieeeee e 3
4. Draw single write (without waiting 0n TRDY)......ccuuuuiiieiieiiiiiee e 4
oI ANe [0 VIV = 1Al (o] A I D N A= Y=Y 1[0 o 4
5.1. Draw expected TRDY WaVeIOrm .. ...ovuiiniiiiiieieeee et 4
5.2. Wait method 1: Wait indefinitely using sensitive edges.............ccccevvviieeeeennnns 4
5.3. Wait method 2: Wait with a timeout using sample............cccccceevieiiiiiiiiineeenenns 5
B. DIraw SINGIE FBAU. .. .ceueieiiiii et e e et e e e e et e e e e s e e enennas 5
B.1. Draw the WaVEIOIMAS. .....ve et e e e e e et s e e anes 5
6.2. Disable “Drive” for the DATA SEOMENL ......ccuiiviieieeeeeeeee e e e e eneenaas 6
7. Add a Sample to verify data read from MUT.........cccooiiiiiiiiiiiie e, 6
8. Drive data using a “Test Vector Spreadsheet’ file.........ccovveiiiiiiiiiiiiiiiiee, 7
9. Create for-loop to perform multiple writes and reads...........cccoevveiviiiiiiieiniennnns 7.
10. TBP Transactor — Add address argUmIENT...........ceeuvveniieiiiiieieeieeeeeeee e eannas 8
T AN (=T = LY 9
11.1. Consecutive writes followed by consecutive reads..........coooeveeviiiiineiinnnnn. 9

2 =T e (o] 4 o = 7= TR 9..




1. Overview

This tutorial introduces some of the optional reactige bench feature set. This feature
set is included with TestBencher Pro and can be optionalydded to Waveformer Lite,
Waveformer Pro, Datasheet Pro, and BugHunter Pro. Wihering any of these
products, documentation on these features can be founelpa>Reactive Test Bench
Generation Help.

The following features will be covered in this tutorial:

- Cycle-based test bench generation

- “For Loop” Markers

- Point Samples for checking model output
- Sensitive Edges

- Bi-directional signals

All of the relevant files for this tutorial can be foumd'<SYNCAD
INSTALL>\Examples\TutorialFiles\ReactiveTestBenctt the end of this tutorial, you
will have created one timing diagram that uses many diifereactive features. There
are also pre-made diagrams for each completed steprajlgou to start at any step of
the tutorial desired. These completed diagrams cédounel in the
“ReactiveTestBench\CompletedDiagrams” directory.

2. The Model Under Test (MUT)

We will use a simplified version of a PCI slave dewasethe model to be tested. The
model is contained in “mymut.v” and the module is namgchut. No experience with
PCl is required to perform and understand this tutofidlere is no arbitration, the MUT
responds to all addresses, and the only valid commandsgle reads and writes. It
contains a memory that can be written to and read frairhas the following ports (all
control signals are active low):

— CLK (input) — device is clocked on the negative edge

- FRAME (input) — indicates start of transaction.

- WRITE (input) — indicates write transaction.

- IRDY (input) — stands for “initiator ready”. Indicates whine master device is ready
for transaction to complete (the master will be ## bench in this case).

- TRDY (output) — stands for “target ready”. During a writes indicates that the
MUT has finished writing data to it's memory. Durmgead, this indicates that the
MUT has read the data from memory and put it on the DATS.

-~ ADDR (output) — Address to write to or read from.

- DATA (inout) — Data to write to memory or data thataad from memory.

Each transaction consists of an address cycle and dé&a ©uring the address cycle,
the WRITE and ADDR signals must be valid. Duringréewdata cycle, the DATA
signal must be valid before IRDY is asserted. TherMIT indicates that it is finished



storing the data by asserting TRDY. During a read datie,cche MUT must drive
DATA before asserting TRDY. Then, the master asd&DY when it is finished
reading the data. Once IRDY or TRDY is asserted, mnest remain asserted until the
transaction is finished which is indicated by the deftisseof FRAME.

3. Create signals

3.1. Extract ports from MUT

If you're running TBP or BHP you can create a new profettcontains the mymut.v
source file and use the “Extract MUT ports into Diagréuiton to create all of the
signals. If you're using Libero, the ports will automaiticbe extracted into a new
diagram when WFL is launched.

3.2. Create clock waveform

Once the ports are extracted, convert the signal name’ € a Clock by right-
clicking on the name of the signal and selecting “SighalClock”. This will draw a
clock waveform with a default frequency of 10 MHz.

3.3. Set default clocking signal and edge

Next we set the “clocking signal’” and edge for altlaf signals in the diagram so that the
test bench will be cycle-based instead of time-baséslrttbans the test bench stimulus
will change after waiting on clock transitions insteddime delays). Right-click in the
signal name list in the diagram window and select gcaa Properties.” Select “CLK”

as the default clock to use and “pos” as the Edgen Thek “Update Existing” to set the
clock for existing signals. Press OK to close théodia

Following is an example of the difference between aeeelsed and time-based test
bench. Both of these code segments were exported feodiagiram you will be drawing
in the next step. The example on the left is timeedaand the example on the right is
cycle-based.

repeat (2)
begin
@(posedge CL K);

#137; end
FRAME_driver <= 1'b0; FRAME_driver < = 1'b0;
#3;
WRITE_driver <= 1'b0; WRITE_driver < = 1'b0;
ADDR_driver <= 8'h00; ADDR_driver <= 8'h00;
#100; @(posedge CLK) ;
WRITE_driver <= 1'b1; WRITE_driver < =1'b1;
IRDY_driver <= 1'b0; IRDY_driver <= 1'b0;
ADDR_driver <= 8'hxx; ADDR_driver <= 8'hxx;
DATA_driver <= 8'hAA; DATA_driver <= 8'hAA;
#100; @(posedge CLK) ;
FRAME_driver <= 1'b1; FRAME_driver < =1'b1;
IRDY_driver <= 1'b1; IRDY_driver <= 1'b1;

DATA driver <= 8'hzz; DATA driver <= 8'hzz;
#101; @(posedge CLK) ;



4. Draw single write (without waiting on TRDY)

Draw the write transaction which is shown below. Thasmisaction could be used as a
simple test bench that just drives the input porth@MUT, but it ignores the TRDY
signal and doesn't verify that the data was actuallgemrsuccessfully to the MUT. We
will add this functionality in the next couple of steps.

Ons, | | |S9ns | |1Q0ns | |1%0ns | |200ns | |2%0ns | |300ns | |3%0ns | |400ns,
e e Y e W e U
FRAME \ /
WRITE \ /
IRDY \ /
TRDY
ADDR[7:0] | 00 _
DATA[7:O]I AA |

5. Add wait for TRDY assertion

There are two ways to perform this step. One methodtheesensitive Edge feature and
will wait indefinitely for TRDY to assert. The otherethod uses a Sample instead,
where a timeout can be specified. Both methods gnlaierd below. Before doing
either method though, you need to draw the expected TRI»éfaran shown below.

Note: TRDY's waveform is blue because it is an inputheadata shown is predicted
data, not data to be driven. The direction of TRDY wasmatically determined by the
tool during the Extract Ports from MUT step.

5.1. Draw expected TRDY waveform

Ons , , [Sgns | | [200fs | [130ms | [2Q0ps, | [290ps | |3Q0ns | [330ns | |4Q0ns
IS I Y N S D Y L Y
FRAME \ /
WRITE \ /
IRDY \ /
TRDY \ ]
ADDR(7:0] | 00 _
DATA[7:O]I AA |

5.2. Wait method 1: Wait indefinitely using sensiti  ve edges
Note: If you want to specify a timeout for this wakipsthis step and go to 5.3.

Double-click on TRDY to open the Signal Properties diadgble the “Falling Edge
Sensitive” check box, and hit OK. When this is enabileel test bench will wait on every
drawn falling edge on TRDY. This is indicated graphichiyan arrow on the falling
edge. Make sure that the falling edge of TRDY is drawer #fie falling edge of IRDY,
otherwise the test bench will wait for TRDY to assmfore asserting IRDY.



5.3. Wait method 2: Wait with a timeout using sampl e
Note: Skip this step if you performed step 5.2.

Depress the “Sample” button. To create a samplecliek-on the rising edge of CLK at
300 ns, then right-click on TRDY at 300ns. Double-clicktlbe new sample's name to
open the Sample Properties dialog. Change the nanvgaibForTRDY” then click on
the “HDL Code” button to open the Code Generation @stidialog. Here is where you
can control the behavior of the Sample once it gg#&ied to run. Make the following
changes:

- Disable the “Full Expect” check box.
- Specify 100 for the Multiplier.
- Enable the “Blocking” check box.

These three options work together to achieve thet ‘with timeout” behavior we want.
With “Full Expect” off and the “Multiplier” set to 100, thBample will wait for up to
100 clock cycles for TRDY to assert. The “Blocking” ckhéox causes the rest of the
transaction to wait on the Sample to finish. Otherwtise Sample would be run in
parallel with the stimulus. More details on these opt@arsbe found in the Reactive
Export Help. Here's what the diagram should look likéniatgoint:

Oqs [ ‘5(\)”8\ . ‘1(\)0[\18\ ! ‘15‘0r‘1$ [ ‘ZC‘JOF‘IS L ‘25\0n\8 . ‘39%8\ ! ‘35‘0r‘1$ [ 4(‘)0r‘1$ Ll
ok /7 7 ¢ T ]

FRAME \ /

WRITE \ /
IRDY \ /
vWaitForTRDY

TRDY \ ]
| AooR(o | — 00 —
DATA[7:0] | AA {

6. Draw single read

6.1. Draw the waveforms

Draw a complete read transaction following the wiriémsaction. Here is what the
waveforms should look like (assuming you used the edgdisensait; the sample
version will look slightly different, of course):



oqs\ (. ‘lqows\ | ‘290?5‘ | ‘390?5\ | ‘490?5‘ | ‘590?5\ | ‘690?5\ | ‘790qs‘ | ‘890”5
CLK | A S A e A S R e S A Y e
FRAME[ \ S\ /A
wrte| L/
IRDY \ / \ /
TRDY \ / \ /

ADDR[7:0]
DATA[7:0] I AA AA

6.2. Disable “Drive” for the DATA segment

The test bench must not drive the DATA bus during the cgele to avoid contention as
the MUT will be driving it then. Since the DATA busasi-directional signal, you can
specify which parts of the waveform are driven by tisé bench and which are not. One
way to do this is to draw the bus with the TRI state,titis case we need to specify the
expected data on the bus, so the TRI state can't be instdad, double-click on the
waveform segment of DATA that happens during the readal® the “Driven” check
box and hit OK. The segment will be drawn in blue nowicatihg that the DATA

signal will not be driven by the test bench during this time periad fast like the entire
TRDY signal).

7. Add a Sample to verify data read from MUT

Depress the Sample button, then left-click on the pestiock edge at 600 ns and right-
click on the DATA segment directly below it. Thislivplace a Sample that will trigger
at that clock edge and verify that the data read fronvith& is what we expect
(indicated by the waveform drawn under the Sample)s iBhihe default behavior of the
Sample. Next, make the following changes to the Sample:

- Double-click on the Sample name and change its nariéetdyDataRead”

— Click the “HDL Code” button to open the “Code Generati@ptions” dialog.

- Select “Display Message” for the “Then Action”. Selddote” for the
severity level of this action. This will make thengde display a note during
simulation when it succeeds.

- Hit OK to close these dialogs.

Here is what the diagram should look like after addimgSample:

OqS‘ (. ‘1q0qs‘ | ‘ZQOQS‘ | ‘3q0qs‘ | ‘4q0q5‘ | ‘5q0qs‘ | ‘eqoqs\ | ‘7q0qs‘ | ‘SqOHS

CLK | A S A S A Y A S | A Y
FRAME|] [\ [ ]
wRrRITE| ]

IRDY \ / \ L

TRDY \ / v /
ADDR[7:0] 00 ) 00 X

VerifyDataRead

DATA[7:0] AA AA




8. Drive data using a “Test Vector Spreadsheet” fil e

This step will use an input file to drive the DATA bus durihg write cycle. This will
increase the effectiveness of the test bench by wriiffeyeht patterns to different
addresses. The basic idea is to create a user-defir@dvariable that is initialized from
a file. Here are the steps to create the variable.

- Click the “View Variables” button in the diagram to opgée “Variable List”
dialog.

- Click the “New Variable” button, then click on the namnd change it to
“inputData”. This name is important because it must matcblumn name in
the input file that we choose.

- Under “Structure” select “array.”

- Set “Size” to 256.

- Set “Data Type” to “2_state” then change MSB to 7.

- Near the bottom of the dialog, enable “Initialize StawetWith File”. Browse
to the “inputData” directory and select “inputData.txtlit OK.

Now that the variable is created, the next step lisfey to this array to drive and verify
data. So, both of the “AA” states need to be changedr the two “AA” states, do the
following:

— Double-click on the state to open the “Edit Bus Stdialbg.
- Type “@inputData[address]” and hit OK. The '@' symbol isiuseefer to a
variable defined in the “Variable List” dialog.

‘300ps ‘ ‘400‘ns ‘ ‘SOQns ‘ ‘GOO‘ns ‘ ‘700p
ok [\ § ]
FRAME [\
WRITE|  /
IRDY \ / \ ]
TRDY \ / \ I
ADDR[7:0]
VerifyDataRead
DATA[7:0] @inputData[address] @inputData[‘hddress]

9. Create for-loop to perform multiple writes andr  eads

This step sets up the diagram to perform multiple writelsreads.Note: If you are
creating a TestBencher transactor then the next ktapdsbe performe(TBP Transactor
— Add address argume. Perform this step if you are unsure as it is addwl for
TestBencher transactors.

- Depress the “Marker” button, left-click the positiMeak edge at 100 ns, then right-
click to place the Marker.



- Place another marker at the positive clock edge at 800 ns.

— Double-click the first Marker to open the “Edit Time Mar” dialog.
- Select “For Loop” in the “Type” drop down list.

- Set “Name” to “AddressLoop”.

- Set “Index” to “address”.

- Set “End” to “10".

Edit Time Marker x|

Marne: I AddressLoop

Type: IFl:nr Loop j

Index: I address Inc; I 1

Beqin: IEI End: |1IZI

- Hit OK to close the dialog.

— Double-click the second Marker to open the “Edit Timerlké&’ dialog.
- Change it's “Type” to “Loop End” and hit OK.

- The two markers should now be connected graphicathasn below.

Ons, , , [1Q0ps, | [2Q0ns, | [3Q0ns | |4Q0fs, | [SQOns, , [6Q0ps, | [7Q0ns, | [8Qons, |
AddressLoop EndAddresgLoop
ok [ N\ /[ [\ T\
FRAME \ [\ /s
WRITE \ /
IRDY \ / ]
TRDY \ / N
ADDR([7:0] (00 ) (00 )
verifyDataRead
DATA[7:0] - o]

10. TBP Transactor — Add address argument

This step is optional and should only be performed ifgr@ucreating a TestBencher
transactor. In this case, the for-loop can be odhittem the diagram and an argument
can be set up for the address (i.e. the address candesl pavia the diagram apply call).
It's not invalid to create a for-loop as performedthi& previous step, but avoiding the for-
loop gives the transactor greater flexibility.

Note: The primary purpose of this tutorial is to demonstvatious featureavailable to

all “reactive_tb” users. So, there are several stegisrithy not make as much sense for
TestBencher users. For instance, two transactord tawke been created instead of one:
one for the write cycle and one for the read cyéso, the data could have been passed
in as an argument to the diagram apply call (a functiortlwaticauses the transactor to
perform a transaction with a given set of transactignraents).

To add an “address” argument, do the following for the two addtases (which



currently are set to 00):

- Double-click on the state to open the “Edit Bus Stdialog.
- Enter “$$address” for the state value and hit OK.

Here's what the final transactor should look like:

On‘s‘ (- ‘lo\on\s\ | ‘ZO‘OH‘S‘ | ‘30‘0n‘s‘ | ‘40‘0n‘s‘ | ‘50‘0n‘s‘ | ‘BO‘OH‘S‘ | ‘70‘0n‘s‘ |
CLK [\ [\ [ [ \ [\
FRAME| [\ I/
WRITEl \ ]
IRDY \ / \ -]
TRDY \ / I I A
ADDR(7:0] ( $$address
VerifyDataRead
DATA[7:0] @inputd ) Gimpuataladess]

Now when an apply call in inserted for this transactdhe sequencer process, you will
be able to specify which address to use.

11. Alternatives

11.1. Consecutive writes followed by consecutive re  ads

If you wanted to perform multiple writes concurrentllowed by multiple concurrent
reads, then two for-loops are needed. The array otcdathe referenced in each loop in
the same manner already demonstrated.

11.2. Random data

In Verilog, you could “$random()” as the state valueD&TA during the write
transaction. A user-defined function can also be embedtizthie generated test bench
using the “Class Methods” dialog which could be used temg¢a data values. In both of
these cases, you would need to modify the state valder the “VerifyDataRead”
sample since the inputData array is no longer used. A Sanysiebe placed on the
driven DATA segment to capture the expected data. Fon@erayou could create a
Sample named “ExpectedData” that is triggered from ldekedge at 300 ns. Then the
state under the “VerifyDataRead” Sample would be s#xpectedData” instead of
“‘@inputDatajaddress]”.



	1. Overview
	2. The Model Under Test (MUT)
	3. Create signals
	3.1. Extract ports from MUT
	3.2. Create clock waveform
	3.3. Set default clocking signal and edge

	4. Draw single write (without waiting on TRDY)
	5. Add wait for TRDY assertion
	5.1. Draw expected TRDY waveform
	5.2. Wait method 1: Wait indefinitely using sensitive edges
	5.3. Wait method 2: Wait with a timeout using sample

	6. Draw single read
	6.1. Draw the waveforms
	6.2. Disable “Drive” for the DATA segment

	7. Add a Sample to verify data read from MUT
	8. Drive data using a “Test Vector Spreadsheet” file
	9. Create for-loop to perform multiple writes and reads
	10. TBP Transactor – Add address argument
	11. Alternatives
	11.1. Consecutive writes followed by consecutive reads
	11.2. Random data


