
CoreMP7 Subsystem

User’s Guide

Actel Corporation, Mountain View, CA 94043

© 2005 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200058-1

Release: December 2005

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any
implied warranties of merchantability or fitness for a particular purpose. Information
in this document is subject to change without notice. Actel assumes no responsibility
for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be
disclosed to any unauthorized person without prior written consent of Actel
Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Table of Contents
Introduction . 5

1 CoreMP7 and MP7Bridge . 7
CoreMP7 and MP7Bridge Connections . 7

Connecting CoreMP7 in CoreConsole . 9

CoreMP7 Configuration in CoreConsole . 10

MP7Bridge Connections in CoreConsole . 10

MP7Bridge Configuration in CoreConsole . 12

MP7Bridge Port List . 13

2 AHB Bus . 17
AHB-Lite Overview . 17

Connecting the AHB Bus in CoreConsole . 19

AHB Bus Port List . 20

3 AMBA Bridge . 23
Connecting the AMBA Bridge in CoreConsole 24

4 APB Bus . 25
Connecting the APB Bus in CoreConsole . 26

5 Memory Controller . 27
Connecting the Memory Controller in CoreConsole 27

External Memory Interface . 28

Memory Controller Configurable Options . 31

6 CoreUART-APB . 33
Connecting CoreUART-APB in CoreConsole 34

CoreUART-APB Configurable Options . 35

CoreUART-APB Programmer’s Model . 35

7 Interrupt Controller . 39
Connecting the Interrupt Controller in CoreConsole 40

Programmer’s Model . 41
CoreMP7 Subsystem User’s Guide 3

Table of Contents
8 Watchdog . 51
Connecting the Watchdog in CoreConsole . 51

Programmer’s Model . 52

9 Timers . 57
Functional Description . 57

Operation . 58

Clocking . 59

Connecting the Timers Module in CoreConsole 60

Programmer’s Model . 62

10 System Control Block . 67
Connecting the System Control Block in CoreConsole 67

Programmer’s Model . 68

11 General Purpose I/O (GPIO) Block 69
Connecting the GPIO Block in CoreConsole 69

Programmer’s Model . 70

12 Flash ROM (FROM) Access Block 71
Connecting the FROM Access Block in CoreConsole 71

Programmer’s Model . 72

A Product Support . 75
Customer Service . 75

Actel Customer Technical Support Center . 75

Actel Technical Support . 75

Website . 75

Contacting the Customer Technical Support Center 76

Index . 77
4 CoreMP7 Subsystem User’s Guide

CoreMP7 Subsystem User’s Guide 5

Introduction

This manual describes the subsystem components available within CoreConsole.

Chapter 1 – CoreMP7 and MP7Bridge describes the function of the MP7Bridge, its ports, and
how to connect to it.

Chapter 2 – AHB Bus details the Advanced High-Performance Bus (AHB) fabric component, its
ports, and the multiplexing of this fabric.

Chapter 3 – AMBA Bridge provides a module block diagram for the Advanced Microcontroller Bus
Architecture (AMBA) Bridge and explains its function.

Chapter 4 – APB Bus describes and provides a diagram for the Advanced Peripheral Bus (APB)
fabric.

Chapter 5 – Memory Controller describes the function of the memory controller.

Chapter 6 – CoreUART-APB details the communications, registers, and signals for the
CoreUART-APB.

Chapter 7 – Interrupt Controller describes the function of the interrupt controller.

Chapter 8 – Watchdog describes the watchdog unit, which provides a way of recovering from
software crashes.

Chapter 9 – Timers provides a functional description of the timers and their operation.

Chapter 10 – System Control Block describes the System Control block.

Chapter 11 – General Purpose I/O (GPIO) Block describes the General Purpose I/O (GPIO)
block.

Chapter 12 – Flash ROM (FROM) Access Block describes the Flash Read Only Memory (FROM)
Access component.

1
CoreMP7 and MP7Bridge

The CoreMP7 component is an ARM7TDMI-S processor optimized for implementation on Actel
devices.

The MP7Bridge component has two functions. Firstly, it converts the native signals from the
CoreMP7 processor into an AMBA AHB master interface suitable for connection to an AHB Bus.
Secondly, the MP7Bridge includes circuitry which deals with clock signals, reset signals, and the
signals which connect to the ARM RealView In-Circuit Emulation (ICE) JTAG port.

The MP7Bridge conditions the incoming raw system clock (SYSCLK) and generates two new clock
signals, CLK and HCLK. CLK is tied to the CoreMP7 CLK input. HCLK is tied to the HCLK or
PCLK inputs of all the other IP cores. This eliminates any clock skew between flip-flops internal to
the CoreMP7 and flip-flops in the subsystem.

The incoming hardware reset signal (NSYSRESET) is synchronized to the system clock within the
MP7Bridge and provision is made for handling a watchdog generated reset in the case where a
watchdog component is included in the system.

Some circuitry to condition the RealView ICE signals is also included in the MP7Bridge.

CoreMP7 and MP7Bridge Connections
Figure 1-1 on page 8 illustrates how the CoreMP7 and MP7Bridge components are typically
connected in a subsystem design.

Note: When connecting the MP7Bridge within a design in CoreConsole, the user is not required
to make individual connections to every port. Three groups of signals, or interfaces, are
present on the MP7Bridge and these interfaces allow all of their constituent signals to be
connected in a single step.
CoreMP7 Subsystem User’s Guide 7

CoreMP7 and MP7Bridge
Figure 1-1. CoreMP7 and MP7Bridge Connections

To AHB/APB
Peripherals

CoreMP7

MP7 Bridge

RV_nSRST_IN
RV_nTRST
RV_TMS
RV_TDI
RV_TCK

NSYSRESET

WDOGRESn

WDOGRES

RV_RTCK
RV_TDOUT
RV_TDOEN

AHB Bus

nIRQ
nFIQ

MP7 System Interface

RealView ICE
Interface

AHB Master Interface

nR
ES

ET
CL

K

D
BG

nT
RS

T
D

BG
TM

S
D

BG
TD

I
D

BG
TC

K
EN

D
BG

TD
O

D
BG

nT
D

O
EN

W
D

A
TA

LO
CK

PR
O

T
SI

ZE
W

RI
TE

TR
A

N
S

A
D

D
R

RD
A

TA
A

BO
RT

CL
K

EN

H
W

D
A

TA
H

LO
CK

H
BU

SR
EQ

H
PR

O
T

H
BU

RS
T

H
SI

ZE
H

W
RI

TE
H

TR
A

N
S

H
A

D
D

R

H
RD

A
TA

H
G

RA
N

T
H

RE
SP

H
RE

A
D

Y

H
RE

SE
Tn

H
CL

K

SYSCLK
8 CoreMP7 Subsystem User’s Guide

Connecting CoreMP7 in CoreConsole
Connecting CoreMP7 in CoreConsole
When the CoreMP7 processor is instantiated in a design, most of its connections to the rest of the
system (both inside and outside CoreConsole) are handled through the MP7Bridge.

Table 1-1 lists the ports present on the CoreMP7 component and describes how to connect these in
CoreConsole.

Table 1-1. CoreMP7 Connections

Connection CoreConsole Label Description

Required Connections

CoreMP7 System
Interface

MP7_SysIf

This interface groups together all of the signals which connect between
the CoreMP7 and the MP7Bridge as illustrated in Figure 1-1 on page 8.

Connect this interface to the MP7_SysIf interface of the MP7Bridge.

Optional Connections

Coprocessor
Interface

CoProcIf

Groups together CoreMP7 coprocessor signals which provide a means
to add coprocessor functionality.

This is normally left unconnected. Any inputs present in the interface
will be tied to inactive levels.

Embedded Trace
Macrocell (ETM)
Interface

ETMIf

This interface is used to connect to an ETM which facilitates real–time
tracing of code running on the processor.

This is normally left unconnected. Any inputs present in the interface
will be tied to inactive levels.

nIRQ nIRQ
Active low interrupt request input.

This input is tied high if left unconnected.

nFIQ nFIQ
Active low fast interrupt request input.

This input is tied high if left unconnected.

CFGBIGEND CFGBIGEND

When asserted (high) this input configures the CoreMP7 in big-
endian mode.

If no connection is made to this input (normal case) it will be tied low
to leave the processor in little-endian mode.

DMORE DMORE
Output which is asserted (high) during LDM and STM instructions.

Normally left unconnected.
CoreMP7 Subsystem User’s Guide 9

CoreMP7 and MP7Bridge
CoreMP7 Configuration in CoreConsole
Table 1-2 describes the configurable options for the CoreMP7 component.

MP7Bridge Connections in CoreConsole
Table 1-3 lists the ports present on the MP7Bridge and describes how to connect these in
CoreConsole.

Table 1-2. CoreMP7 Configuration

Configurable Option Default setting Description

Die M7A3P1000
Selects target die. Family (ProAsic3 or ProAsic3E) is implied by die
selection.

Debug Enabled

Determines whether or not debug functionality is included in
CoreMP7 instance.

Possible settings are “Enabled” or “Disabled”.

Speed grade –2 Selects speed grade of the target Actel device

Table 1-3. MP7Bridge Connections

Connection CoreConsole Label Description

Required Connections

CoreMP7 System
Interface

MP7_SysIf

This interface groups together all of the signals which connect between
the CoreMP7 and the MP7Bridge as illustrated in Figure 1-1 on page 8.

Connect this interface to the MP7_SysIf interface of the CoreMP7
component.

AHB master
interface

AHBmaster

Groups together AHB master signals.

Connect to AHB mirrored master (AHBmmaster) interface of AHB
Bus.

SYSCLK SYSCLK
Raw system clock input.

Connect to susbsystem toplevel SYSCLK port.

NSYSRESET NSYSRESET
Active low hardware reset input.

Connect to subsystem toplevel NSYSRESET port.
10 CoreMP7 Subsystem User’s Guide

MP7Bridge Connections in CoreConsole
HCLK HCLK

AMBA system clock.

Connect to HCLK/PCLK ports of AHB/APB peripherals.

May also be connected to subsystem toplevel if used outside the
subsystem.

HRESETn HRESETn

Active low AMBA system reset.

Connect to HRESETn/PRESETn ports of AHB/APB peripherals.

May also be connected to subsystem toplevel if used outside the
subsystem.

Table 1-3. MP7Bridge Connections (Continued)

Connection CoreConsole Label Description
CoreMP7 Subsystem User’s Guide 11

CoreMP7 and MP7Bridge
MP7Bridge Configuration in CoreConsole
Table 1-4 describes the configurable options for the MP7Bridge.

Optional Connections

RealView ICE
interface

RV_ICE_If
Groups together RealView ICE JTAG interface signals.

If using debugging, connect this interface to the subsystem toplevel.

WDOGRES WDOGRES

Active high input which signals that watchdog has timed-out.

If your design includes a watchdog, connect this port to the
WDOGRES port of the watchdog.

This input is tied low if no connection is made to it.

WDOGRESn WDOGRESn

Active low output signal used to reset watchdog component.

If your design includes a watchdog, connect this port to the
WDOGRESn port of the watchdog, otherwise leave unconnected.

Table 1-3. MP7Bridge Connections (Continued)

Connection CoreConsole Label Description

Table 1-4. MP7Bridge Configuration

Configurable Option Default setting Description

Device family ProASIC3
Selects device family of target device.

Possible settings are “ProASIC3” or “ProASIC3E”.
12 CoreMP7 Subsystem User’s Guide

MP7Bridge Port List
MP7Bridge Port List
Table 1-5 on page 13 provides a detailed list and description of the ports on the MP7Bridge.

Table 1-5. MP7Bridge Port List

Port Name Width Direction Description

System Connections

SYSCLK 1 Input Incoming raw system clock

NSYSRESET 1 Input
Raw hardware system reset input from top level. Will typically be
controlled by a push button switch.

AHB Connections

HCLK 1 Output
AHB system clock. Reset and RealView ICE JTAG signals are
synchronized to this clock. This also connects to the other cores.

HRESETn 1 Output
AHB reset signal (active low). This reset may be asserted
asynchronously but will always be negated synchronous to HCLK.
HRESETn also connects to the other cores.

HREADY 1 Input AHB ready signal

HRESP 2 Input AHB response signal

HGRANT 1 Input AHB grant signal

HRDATA 32 Input AHB read data

HADDR 32 Output AHB address signal

HTRANS 2 Output AHB transfer type signal

HWRITE 1 Output AHB read/write indication

HSIZE 3 Output AHB size (byte, word etc.) of transfer indication

HBURST 3 Output AHB burst signal

HPROT 4 Output AHB protection signal

HBUSREQ 1 Output
AHB Bus request. In a single master system this port will typically be
unconnected. Where there are multiple masters it will be connected
to some form of arbitration component.
CoreMP7 Subsystem User’s Guide 13

CoreMP7 and MP7Bridge
HLOCK 1 Output AHB lock signal

HWDATA 32 Output AHB write data

CoreMP7 Connections

CLK 1 Input Clock signal. Connects to CLK port of CoreMP7.

nRESET 1 Input Reset signal. Connects to nRESET port of CoreMP7.

ADDR 32 Input Address bus. Connects to ADDR port of CoreMP7.

LOCK 1 Input Lock signal. Connects to LOCK port of CoreMP7.

SIZE 2 Input Size signal. Connects to SIZE port of CoreMP7.

WRITE 1 Input Write signal. Connects to WRITE port of CoreMP7.

PROT 2 Input Protection signal. Connects to PROT port of CoreMP7.

TRANS 2 Input Transfer signal. Connects to TRANS port of CoreMP7.

WDATA 32 Input Write data. Connects to WRITE port of CoreMP7.

ABORT 1 Output Abort signal. Connects to ABORT port of CoreMP7.

CLKEN 1 Output Clock enable. Connects to CLKEN port of CoreMP7.

RDATA 32 Output Read data. Connects to RDATA port of CoreMP7.

DBGnTRST 1 Output
Debug TAP reset signal. Connects to DBGnTRST port of
CoreMP7.

DBGTMS 1 Output
Debug test mode select signal. Connects to DBGTMS port of
CoreMP7.

DBGTDI 1 Output Debug test data in signal. Connects to DBGTDI port of CoreMP7.

DBGTCKEN 1 Output
Debug test clock signal. Connects to DBGTCKEN port of
CoreMP7.

DBGTDO 1 Input
Debug test data out signal. Connects to DBGTDO port of
CoreMP7.

DBGnTDOEN 1 Input
Debug test data out enable signal. Connects to DBGnTDOEN port
of CoreMP7.

Table 1-5. MP7Bridge Port List (Continued)

Port Name Width Direction Description
14 CoreMP7 Subsystem User’s Guide

MP7Bridge Port List
Watchdog Connections

WDOGRES 1 Input

Watchdog reset input. If a watchdog is present in the system, this
port should be connected to the ‘bark’ port of the watchdog; that is,
whichever signal the watchdog asserts when it initiates a reset.

This input is active high.

WDOGRESn 1 Output

Active low reset output to watchdog. Should be connected to the reset
port of the watchdog (if present).

This output is asserted when NSYSRESET is asserted but not when
WDOGRES is asserted. This allows the watchdog to reset the
system without resetting itself.

RealView ICE JTAG Connections

RV_nSRST_IN 1 Input
RealView ICE system reset input.

Connect to top level if using RealView.

RV_nTRST 1 Input
RealView ICE Test Access Port (TAP) reset.

Connect to top level if using RealView.

RV_TMS 1 Input
RealView ICE test mode select.

Connect to top level if using RealView.

RV_TDI 1 Input
RealView ICE test data in.

Connect to top level if using RealView.

RV_TCK 1 Input
RealView ICE test clock.

Connect to top level if using RealView.

RV_RTCK 1 Output
RealView ICE return test clock.

Connect to top level if using RealView.

RV_TDOUT 1 Output
RealView ICE test data out.

Connect to top level if using RealView.

RV_nTDOEN 1 Output
RealView ICE test data out enable.

Connect to top level if using RealView.

Table 1-5. MP7Bridge Port List (Continued)

Port Name Width Direction Description
CoreMP7 Subsystem User’s Guide 15

2
AHB Bus

The AHB Bus component implements the AHB Bus fabric for a subsystem. Currently the AHB
Bus essentially supports an AHB-Lite system in that it accommodates a single master. Up to 16
AHB slaves can be present on the bus. From a memory map point of view, all AHB slaves are
allocated an equal amount (256 MB) of memory.

AHB-Lite Overview
The AHB Bus component available in CoreConsole essentially implements an AHB-Lite Bus
fabric. AHB-Lite is a subset of the full AHB specification and is intended for use in designs where
there is only a single bus master.

AHB-Lite simplifies the AHB specification by removing the protocol required for multiple bus
masters. This includes arbitration based on a request/grant type mechanism and split/retry responses
from AHB slaves.

The basic structure of this fabric is shown in Figure 2-1 on page 18. The elements labeled “Decoder”
and “Read Data/Response Mux” in the figure are contained within the AHB Bus component.
CoreMP7 Subsystem User’s Guide 17

AHB Bus
Figure 2-1. AHB-Lite Block Diagram

Master

HADDR
HWDATA

HRDATA

Decoder

Slave #1

Slave #2

Slave #3

HSEL
HADDR
HWDATA

HRDATA

HSEL
HADDR
HWDATA

HRDATA

HSEL
HADDR
HWDATA

HRDATA

Read Data /
Response Mux
18 CoreMP7 Subsystem User’s Guide

Connecting the AHB Bus in CoreConsole
Connecting the AHB Bus in CoreConsole
Table 2-1 lists the ports present on the AHB Bus and describes how to connect these in
CoreConsole.

Table 2-1. AHB Bus Connections

Connection CoreConsole Label Description

Required Connections

AHB mirrored
master interface

AHBmmaster

This interface connects to the AHB master.

Normally this will be connected to the AHBmaster interface of the
MP7Bridge.

HCLK HCLK
AHB system clock input.

Connect this to the HCLK output of the MP7Bridge.

HRESETn HRESETn
Active low AHB system reset.

Connect this to the HRESETn output of the MP7Bridge.

Optional Connections

AHBmslave0
AHB mirrored slave 0 interface.

Normally connected to AHBslave_base interface of Memory Controller.

AHBmslave1 AHB mirrored slave 1 interface

AHBmslave2 AHB mirrored slave 2 interface

AHBmslave3 AHB mirrored slave 3 interface

AHBmslave4 AHB mirrored slave 4 interface

AHBmslave5 AHB mirrored slave 5 interface

AHBmslave6 AHB mirrored slave 6 interface

AHBmslave7 AHB mirrored slave 7 interface

AHBmslave8 AHB mirrored slave 8 interface

AHBmslave9 AHB mirrored slave 9 interface

AHBmslave10 AHB mirrored slave 10 interface

AHBmslave11 AHB mirrored slave 11 interface
CoreMP7 Subsystem User’s Guide 19

AHB Bus
AHB Bus Port List
Table 2-2 lists the ports present on the AHB Bus component. Four groups of signals can be
identified:

1. Common AHB system signals (clock and reset)

2. AHB mirrored master interface. This connects to the master on the AHB Bus. A mirrored
master interface is made up of the same signals as a master interface but the direction of the
signals is reversed.

3. Signals common to all 16 AHB mirrored slave interfaces. These are AHB master signals which
connect to all slaves.

4. AHB mirrored slave (master) signals specific to each slave.

AHBmslave12 AHB mirrored slave 12 interface

AHBmslave13 AHB mirrored slave 13 interface

AHBmslave14 AHB mirrored slave 14 interface

AHBmslave15 AHB mirrored slave 15 interface

Table 2-1. AHB Bus Connections (Continued)

Connection CoreConsole Label Description

Table 2-2. Ports on the AHB Bus Component

Signal Direction Description

Common AHB System Signals

HCLK Input
Bus clock. This clock times all bus transfers. All signal timings are related to the
rising edge of HCLK.

HRESETn Input
Reset. The bus reset signal is active low and is used to reset the system and the
bus. This is the only active low AHB signal.
20 CoreMP7 Subsystem User’s Guide

AHB Bus Port List
Mirrored AHB Master Interface

HADDR[31:0] Input This is the 32-bit system address bus.

HTRANS[1:0] Input

Transfer type. Indicates the type of the current transfer:

00 – Idle

01 – Busy

10 – Non-Sequential

11 - Sequential

HWRITE Input
Transfer direction. When high this signal indicates a write transfer and when
LOW a read transfer.

HSIZE[2:0] Input
Transfer size. Indicates the size of the transfer, which can be byte (8-bit),
halfword (16-bit), or word (32-bit).

HBURST[2:0] Input
Burst type. Indicates if the transfer forms part of a burst. The CoreMP7 performs
incrementing bursts of type INCR.

HPROT[3:0] Input
Protection control. These signals indicate if the transfer is an opcode fetch or data
access, and if the transfer is a Supervisor mode access or User mode access.

HWDATA[31:0] Input 32-bit data from the master.

HRDATA[31:0] Output 32-bit date written back to the master.

HREADY Output
Transfer done. When high the HREADY signal indicates that a transfer has
finished on the bus. This signal can be driven low to extend a transfer.

HRESP[1:0] Input Transfer response. Indicates an Okay Error Retry, or Split response.

Common AHB Mirrored Slave Signals

HADDRS[31:0] Output This is the 32-bit system address bus.

HTRANSS[1:0] Output

Transfer type. Indicates the type of the current transfer:

00 – Idle

01 – Busy

10 – Non-Sequential

11 - Sequential

Table 2-2. Ports on the AHB Bus Component (Continued)

Signal Direction Description
CoreMP7 Subsystem User’s Guide 21

AHB Bus
HWRITES Output
Transfer direction. A write transfer is indicated when this signal is high and a
read transfer is indicated this signal is low during the address phase of an AHB
transfer.

HSIZES[2:0] Output

Transfer size. Indicates the size of the transfer, which can be:

00 - byte (8-bit)

01 - halfword (16-bit)

10 - word (32-bit).

HBURSTS[2:0] Output Burst type. Indicates if the transfer forms part of a burst.

HPROTS[3:0] Output
Protection control. These signals indicate if the transfer is an opcode fetch or data
access, and if the transfer is a Supervisor mode access or User mode access.

HWDATAS[31:0] Output 32-bit data to the slave

HREADYS Output Transfer done. Out to the slaves (alias of HREADY)

Slave-Specific Mirrored Slave Signals

HSELx Output Select of slave x (where x is a integer between 0 and 15)

HRDATASx[31:0] Input 32-bit read data from slave x.

HREADYSx Input
Ready signal from slave x. When high indicates that slave has completed transfer
and is ready for another transfer.

HRESPSx[1:0] Input

Transfer response from slave x which can be:

00 – Okay

01 – Error

10 – Retry

11 – Split

Table 2-2. Ports on the AHB Bus Component (Continued)

Signal Direction Description
22 CoreMP7 Subsystem User’s Guide

3
AMBA Bridge

The AMBA Bridge is an AHB slave which links the AHB Bus to the APB Bus and acts as the
master on the APB Bus. Address decoding for the APB Bus is carried out within the AMBA Bridge
and this provides select signals for up to 16 APB slave slots.

Read and write transfers on the AHB are converted into corresponding transfers on the APB. High
bandwidth peripherals such as a memory controller are typically connected to the AHB Bus whereas
the APB Bus is used for less demanding peripherals such as a watchdog. Unlike the AHB Bus,
transfers on the APB Bus are not pipelined.

Figure 3-1 shows the AMBA Bridge module block diagram.

Figure 3-1. AMBA Bridge

State
Machine

Output Data
and Address
Bus Drivers

AHB Slave
Output Drivers

APB
Output Drivers

APB Address
Decoder

Standard AHB
Slave Interface

APB
Bridge
Module
CoreMP7 Subsystem User’s Guide 23

AMBA Bridge
Connecting the AMBA Bridge in CoreConsole
Table 3-1 lists the ports present on the AMBA Bridge and describes how to connect these in
CoreConsole.

Table 3-1. AMBA Bridge Connections

Connection CoreConsole Label Description

Required Connections

AHB slave interface AHBslave
Connect this to the any of the 16 available slave slots on the AHB
Bus.

APB master interface APBmaster Connect this to the APBmmaster interface of the APB Bus.

HCLK HCLK
AHB system clock input.

Connect this to the HCLK output of the MP7Bridge.

HRESETn HRESETn
Active low AHB system reset.

Connect this to the HRESETn output of the MP7Bridge.
24 CoreMP7 Subsystem User’s Guide

4
APB Bus

Along with the AMBA Bridge, the APB Bus component provides an AMBA APB fabric which
supports up to 16 APB slaves. The AMBA Bridge provides APB address decoding in the form of
select signals. The APB Bus is concerned with multiplexing the read data busses from all the APB
slaves unto one single read data bus to send to the AMBA Bridge. Figure 4-1 gives an illustration of
the APB fabric.

There is one APB master interface which is typically connected to the AMBA Bridge, and 16 equal-
sized (16 MB) APB slave interfaces.

Figure 4-1. APB Fabric

PSTB
PA[31:0]

PWDATA[31:0]

PRDATA[31:0]

PWRITE

PSELslave1
PSELslave2
PSELslaveN

PRDATA[31:0]

PRDATA[31:0]

PRDATA[31:0]

From Slave 1

From Slave 2

From Slave N

To APB SlavesFrom Bridge

To Bridge
CoreMP7 Subsystem User’s Guide 25

APB Bus
Connecting the APB Bus in CoreConsole
Table 4-1 lists the ports present on the APB Bus and describes how to connect these in
CoreConsole.

Table 4-1. APB Bus Connections

Connection CoreConsole Label Description

Required Connections

APB mirrored
master interface

APBmmaster
This interface connects to the APBmaster interface of the AMBA
Bridge.

Optional Connections

APBmslave0 APB mirrored slave 0 interface

APBmslave1 APB mirrored slave 1 interface

APBmslave2 APB mirrored slave 2 interface

APBmslave3 APB mirrored slave 3 interface

APBmslave4 APB mirrored slave 4 interface

APBmslave5 APB mirrored slave 5 interface

APBmslave6 APB mirrored slave 6 interface

APBmslave7 APB mirrored slave 7 interface

APBmslave8 APB mirrored slave 8 interface

APBmslave9 APB mirrored slave 9 interface

APBmslave10 APB mirrored slave 10 interface

APBmslave11 APB mirrored slave 11 interface

APBmslave12 APB mirrored slave 12 interface

APBmslave13 APB mirrored slave 13 interface

APBmslave14 APB mirrored slave 14 interface

APBmslave15 APB mirrored slave 15 interface
26 CoreMP7 Subsystem User’s Guide

5
Memory Controller

The Memory Controller is an AHB slave component which supports access to SRAM and Flash
memory resources.

The Memory Controller uses 3 slave slots on the AHB Bus. A slot is allocated to the SRAM,
another to the Flash and a third slot, designated as Base, can be used to access either the SRAM or
Flash via a memory aliasing mechanism.

The memory controller has a ‘Remap’ input which is used to select whether SRAM or Flash appears
at the Base slot. Typically the Base slave interface is connected to slot 0 on the AHB Bus, the Flash
slave interface to slot 1, and the SRAM slave interface to slot 2.

The Remap signal may be driven by the System Control Block (see “System Control Block” on page
67) which provides a way for the processor to change the memory aliasing by writing to a particular
location in its address space.

Connecting the Memory Controller in CoreConsole
Table 5-1 lists the ports present on the Memory Controller and describes how to connect these in
CoreConsole.

Table 5-1. Memory Controller Connections

Connection CoreConsole Label Description

Required Connections

Base AHB slave
interface

AHBslave_base

This interface groups together all of the signals used to connect
the base memory region to an AHB slot.

Normally connected to slave slot 0 (AHBmslave0) of the AHB
Bus.

Flash AHB slave
interface

AHBslave_flash

This interface groups together all of the signals used to connect
the flash memory region to an AHB slot.

Normally connected to slave slot 1 (AHBmslave1) of the AHB
Bus.

SRAM AHB slave
interface

AHBslave_sram

This interface groups together all of the signals used to connect
the SRAM memory region to an AHB slot.

Normally connected to slave slot 2 (AHBmslave2) of the AHB
Bus.
CoreMP7 Subsystem User’s Guide 27

Memory Controller
External Memory Interface
The External Memory Interface of the Memory Controller should be routed to the subsystem
toplevel to facilitate communication with Flash and SRAM resources.

The Memory Controller is designed to accommodate a variety of Flash and SRAM configurations
as outlined in “Memory Controller Configurable Options” on page 31. For this reason, the External
Memory Interface is somewhat generic in nature in order to enable connection to a range of
different memory devices and memory systems.

Memory devices typically have a number of inputs that are fixed at static levels which are dependent
on the particular memory architecture in place. If the memory devices in your system have such
static inputs, it is intended that these are handled in the toplevel description for your FPGA device;
that is, above the subsystem toplevel.

External Memory
Interface

ExternalMemoryInterface

This interface contains the signals used to connect to the actual
memory devices and should be routed to the toplevel of your
subsystem. See “External Memory Interface” on page 28 for more
information on this interface.

HCLK HCLK
AHB system clock input.

Connect this to the HCLK output of the MP7Bridge.

HRESETn HRESETn
Active low AHB system reset.

Connect this to the HRESETn output of the MP7Bridge.

Optional Connections

Remap Remap

This input is used to control aliasing of the Flash and SRAM
memory regions.

When Remap is low, Flash is aliased to the Base memory region.

When Remap is high, SRAM is aliased to the Base memory
region.

Remap is normally connected to the Remap output of the System
Control block (see “System Control Block” on page 67).

If no connection is made, Remap will be tied low.

Table 5-1. Memory Controller Connections (Continued)

Connection CoreConsole Label Description
28 CoreMP7 Subsystem User’s Guide

External Memory Interface
Similarly, any tri-state buffers must be instantiated above the subsystem toplevel. The data bus
connecting between the FPGA and the actual memory devices is normally a bi-directional bus
which is driven by tri-state buffers.

Table 5-2 lists and describes the signals which make up the External Memory Interface. Apart from
“MemDataIn”, all of the signals are outputs from the Memory Controller. All of the 1-bit wide
control signals are active low as indicated by the “N” at the end of the signal names.

Table 5-2. Memory Controller External Memory Interface

Signal Width Description

Flash control signals

FlashCSN 1

Flash chip select.

In some systems the chip select pin of the Flash will be fixed at an active level in which
case this signal may be left unconnected.

FlashOEnN 1 Flash output enable

FlashWEnN 1 Flash write enable

SRAM control signals

SramCSN 1

SRAM chip select.

In some systems the chip select pin of the SRAM will be fixed at an active level in
which case this signal may be left unconnected.

SramOEnN 1 SRAM output enable

SramWEnN 1 SRAM write enable

SramByte0N 1 SRAM byte 0 enable

SramByte1N 1 SRAM byte 1 enable

SramByte2N 1 SRAM byte 2 enable

SramByte3N 1 SRAM byte 3 enable
CoreMP7 Subsystem User’s Guide 29

Memory Controller
Shared memory signals

MemReadN 1

Combined Flash/SRAM read enable.

This signal is asserted (low) when either FlashOEnN or SramOEnN is low and is
intended for use in a memory system which does not have separate connections to the
Flash and SRAM output enable pins.

MemWriteN 1

Combined Flash/SRAM write enable.

This signal is asserted (low) when either FlashWEnN or SramWEnN is low and is
intended for use in a memory system which does not have separate connections to the
Flash and SRAM write enable pins.

MemAddr 28 Flash/SRAM address bus

MemDataOEnN 1

Flash/SRAM data out enable.

Control signal for data bus tri-states. Active low; that is, low when data is driven on
MemDataOut.

MemDataOut 32 Flash/SRAM data out

MemDataIn 32 Flash/SRAM data in

Table 5-2. Memory Controller External Memory Interface (Continued)

Signal Width Description
30 CoreMP7 Subsystem User’s Guide

Memory Controller Configurable Options
Memory Controller Configurable Options
There are a number of configurable options which apply to the Memory Controller; these are
detailed in Table 5-3 on page 31. If a configuration different to the default is required, the user
should use the configuration dialog in CoreConsole to select appropriate values for the configurable
options.

Table 5-3. Memory Controller Configurable Options

Configurable Option Default setting Description

SRAM mode Asynchronous
Selects either asynchronous or synchronous SRAM.

Possible settings are “Asynchronous” or “Synchronous”.

Flash data bus width 32 bit
Selects the data bus width for the Flash memory interface.

Possible settings are “32 bit” or “16 bit”.

Number of wait states for
Flash read

1
Selects the number of wait states inserted during a Flash read access.

Possible range is 0 to 3.

Number of wait states for
Flash write

1
Selects the number of wait states inserted during a Flash write access.

Possible range is 1 to 3.

Number of wait states for
SRAM read

1

Only applicable when SRAM mode is set to “Asynchronous”.

Selects the number of wait states inserted during an SRAM read
access.

Possible range is 0 to 3.

Number of wait states for
SRAM write

1

Only applicable when SRAM mode is set to “Asynchronous”.

Selects the number of wait states inserted during an SRAM write
access.

Possible range is 1 to 3.
CoreMP7 Subsystem User’s Guide 31

6
CoreUART-APB

The CoreUART-APB component available in CoreConsole is an APB-wrapped version of the
Actel DirectCores CoreUART. The serial communication interface is identical to that described in
the DirectCores CoreUART datasheet which is available on the Actel website:

http://www.actel.com/ipdocs/CoreUART_DS.pdf

The CoreConsole CoreUART-APB adds an APB interface which gives access to transmit and
receive data registers as well as two control registers and a status register. The CoreUART registers
are described in “CoreUART-APB Programmer’s Model” on page 35.

Figure 6-1 shows a block diagram of the CoreUART-APB.

Figure 6-1. CoreUART-APB Block Diagram

APB Interface

Control
Registers

CoreUART

CoreUART – APB
CoreMP7 Subsystem User’s Guide 33

http://www.actel.com/ipdocs/CoreUART_DS.pdf

CoreUART-APB
Connecting CoreUART-APB in CoreConsole
Table 6-1 lists the ports present on the CoreUART-APB component and describes how to connect
these in CoreConsole.

Table 6-1. CoreUART-APB Connections

Connection CoreConsole Label Description

Required Connections

APB slave interface APBslave Connect this interface to any available slave slot on the APB Bus.

PCLK PCLK
APB clock signal.

Normally connected to the HCLK output of the MP7Bridge.

PRESETn PRESETn
Active low APB reset input.

Normally connected to the HRESETn output of the MP7Bridge.

rx rx

Serial receive data input.

Normally connected to subsystem toplevel for subsequent connection
to a pin of the FPGA.

tx tx

Serial transmit data output.

Normally connected to subsystem toplevel for subsequent connection
to a pin of the FPGA.

Optional Connections

txrdy txrdy

Status output.

When low, the transmit data buffer/FIFO is not available for
additional transmit data.

The level of this signal is also available in the Status Register. (See
“Status Register” on page 37.)

receive_full receive_full

Status output.

When high, data is available in the receive data buffer/FIFO.

The level of this signal is also available in the Status Register. (See
“Status Register” on page 37.)
34 CoreMP7 Subsystem User’s Guide

CoreUART-APB Configurable Options
CoreUART-APB Configurable Options
There are a number of configurable options which apply to the CoreUART-APB; these are detailed
in Table 6-2. If a configuration different to the default is required, the user should use the
configuration dialog in CoreConsole to select appropriate values for the configurable options.

CoreUART-APB Programmer’s Model
Table 6-3 lists the registers for CoreUART-APB.

Transmit Data Register
The 7- or 8- bit transmit data

Table 6-2. CoreUART-APB Configurable Options

Configurable Option Default setting Description

Transmit FIFO Disabled Enables or disables transmit FIFO

Receive FIFO Disabled Enables or disables receive FIFO

Mode of operation Asynchronous
Selects mode of operation of CoreUART.

Possible settings are “Asynchronous” or “Synchronous”.

Device family ProASIC3
Selects target family.

Possible settings are “ProASIC3” or “ProASIC3E”.

Table 6-3. CoreUART-APB Registers

Address Type Width Reset value Name Description

base + 0x000 Write 32 0 TxData Transmit Data Register

base + 0x004 Read 32 0 RxData Receive Data Register

base + 0x008 Read/Write 32 0 Ctrl1 Control Register 1

base + 0x00C Read/Write 32 0 Ctrl2 Control Register 2

base + 0x010 Read 32 0 Status Status Register
CoreMP7 Subsystem User’s Guide 35

CoreUART-APB
Receive Data Register
The 7- or 8- bit receive data.

Control Register 1
Control Register 1 contains a single field, Baud value, which is used to set the baud rate for the
CoreUART when in asynchronous mode. The Baud value should be set according to the following
equation.

Baud value (decimal) = (clock / ((baud + 1) x 16))

where clock is the APB system clock frequency in hertz.

The result of this calculation must be rounded to the nearest integer and converted to hexadecimal to
obtain the value which should be written to Control Register 1 (Table 6-4).

For example, when the APB clock frequency is 10 MHz and a baud rate of 9600 is desired, 0x41
should be written to Control Register 1.

Control Register 2
Control Register 2 (Table 6-5) is used to assign values to the configuration inputs available on the
CoreUART.

Table 6-4. Control Register 1

Bits Name Type Function

7:0 Baud value Read/Write 8 bit value setting the baud rate

Table 6-5. Control Register 2

Bits Name Type Function

0 bit8 Read/Write

Data width setting :

Bit8 = 0 : 7 bit data

Bit8 = 1 : 8 bit data

1 parity_en Read/Write Parity is enabled when this bit is set to 1

2 odd_n_even Read/Write

Parity is set as follows :

odd_n_even = 0 : even

odd_n_even = 1 : odd

7:3 Unused
36 CoreMP7 Subsystem User’s Guide

CoreUART-APB Programmer’s Model
Status Register
The Status Register (Table 6-6) provides information on the status of the CoreUART.

Table 6-6. Status Register

Bits Name Type Function

0 txrdy Read Only
When low, the transmit data buffer/FIFO is not available for
additional transmit data.

1 receive_full Read Only
When high, data is available in the receive data buffer/FIFO.

This bit is cleared by reading the Receive Data Register.

2 parity_err Read Only
When high, a parity error occurred during a receive transaction.

This bit is cleared by reading the Receive Data Register.

3 overflow Read Only
When high, a receive overflow has occurred.

This bit is cleared by reading the Receive Data Register.

7:4 Unused
CoreMP7 Subsystem User’s Guide 37

7
Interrupt Controller

The Interrupt Controller is an AHB slave which provides a software interface to the interrupt
system. In a CoreMP7 system, two levels of interrupt are available:

• Fast Interrupt Request (FIQ) for fast, low latency interrupt handling

• Interrupt Request (IRQ) for more general interrupts

Only a single FIQ source at a time is generally used in a system, to provide a true low-latency
interrupt. This has the following benefits:

• You can execute the interrupt service routine directly without determining the source of the
interrupt.

• Interrupt latency is reduced. You can use the banked registers available for FIQ interrupts more
efficiently, because a context save is not required.

The Interrupt Controller (Figure 7-1) can accommodate up to 32 interrupt sources. The interrupt
controller uses a bit position for each different interrupt source. The software can control each
request line to generate software interrupts.

Figure 7-1. Interrupt Controller Block Diagram

The nonvectored and daisy-chained IRQ interrupts provide an address for an Interrupt Service
Routine (ISR). Reading from the vector interrupt address register (ICVectAddr) provides the
address of the ISR, and updates the interrupt priority hardware that masks out the current and any
lower priority interrupt requests. Writing to the ICVectAddr register indicates to the interrupt
priority hardware that the current interrupt is serviced, allowing lower priority interrupts to go
active.

FIQ Interrupt Logic

IRQ Interrupt Logic

Interrupt
Request Logic

IRQ Vector
Address and
Priority Logic

AHB Slave
Interface

Daisy Chain

Control Logic
CoreMP7 Subsystem User’s Guide 39

Interrupt Controller
The FIQ interrupt has the highest priority, followed by nonvectored IRQ interrupts. Daisy-chained
interrupts have the lowest priority. A programmed interrupt request enables you to generate an
interrupt under software control. This register is typically used to downgrade an FIQ interrupt to an
IRQ interrupt.

The IRQ and FIQ request logic has an asynchronous path. This enables interrupts to be asserted
when the clock is disabled.

Connecting the Interrupt Controller in CoreConsole
Table 7-1 lists the ports present on the Interrupt Controller and describes how to connect these in
CoreConsole.

Table 7-1. Interrupt Controller Connections

Connection CoreConsole Label Description

Required Connections

AHB slave interface AHBslave

HCLK HCLK
AHB system clock input.

Connect this to the HCLK output of the MP7Bridge.

HRESETn HRESETn
Active low AHB system reset.

Connect this to the HRESETn output of the MP7Bridge.

Optional Connections

Fast Interrupt
Request

nICFIQ
Fast interrupt request output.

Normally connected to nFIQ port of CoreMP7.

Interrupt Request nICIRQ
Interrupt request output.

Normally connected to nIRQ port of CoreMP7.

Fast Interrupt daisy-
chain input

nICFIQIN
Connection for daisy-chained interrupt controllers.

Tied high if left unconnected.

Interrupt daisy-chain
input

nICIRQIN
Connection for daisy-chained interrupt controllers.

Tied high if left unconnected.

Vector address input ICVECTADDRIN
Vector address input.

Tied to 0x00000000 if left unconnected.
40 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Programmer’s Model
By convention, for the IRQ interrupt, bits 1 to 5 must be used as defined in Table 7-2. Bit 0 and bit
6 upwards are available for use as required. For the FIQ interrupt, the bits can be used as required.

The software can control the source interrupt lines to generate software interrupts. These interrupts
are generated before interrupt masking, in the same way as external source interrupts. Software
interrupts are cleared by writing to the software interrupt clear register, ICSoftIntClear (see
“Software Interrupt Clear Register, ICSoftIntClear” on page 46). This is normally done at the end
of the interrupt service routine.

Vector address output ICVECTADDROUT
Vector address output.

Normally left unconnected.

Interrupt source 0 ICINTSOURCE0
Active high interrupt input.

Tied low if no connection is made to this port.

Interrupt source 1 ICINTSOURCE1
Active high interrupt input.

Tied low if no connection is made to this port.

…

Interrupt source 31 ICINTSOURCE31
Active high interrupt input.

Tied low if no connection is made to this port.

Table 7-1. Interrupt Controller Connections (Continued)

Connection CoreConsole Label Description

Table 7-2. Interrupt Standard Configuration

Bit Interrupt source

1 Software interrupt

2 Comms Rx

3 Comms Tx

4 Timer 1

5 Timer 2
CoreMP7 Subsystem User’s Guide 41

Interrupt Controller
Interrupt Flow Sequence
The following procedure shows the sequence for the vectored interrupt flow:

1. An interrupt occurs.

2. The ARM processor branches to either the IRQ or FIQ interrupt vector.

3. If the interrupt is an IRQ, read the ICVectAddr register and branch to the interrupt service
routine. This can be done using an LDR PC instruction.

4. Reading the ICVectorAddr register updates the interrupt controllers hardware priority register.

5. Stack the workspace so that IRQ interrupts can be re-enabled.

6. Enable the IRQ interrupts so that a higher priority can be serviced.

7. Execute the ISR.

8. Clear the requesting interrupt in the peripheral, or write to the ICSoftIntClear.

9. Register if the request was generated by a software interrupt.

10. Disable the interrupts and restore the workspace.

11. Write to the ICVectAddr register. This clears the respective interrupt in the internal interrupt
priority hardware.

12. Return from the interrupt. This re-enables the interrupts.

Simple Interrupt Flow
The following procedure shows how you can use the interrupt controller without using vectored
interrupts or the interrupt priority hardware. For example, you can use it for debugging.

1. An interrupt occurs.

2. Branch to IRQ or FIQ interrupt vector.

3. Branch to the interrupt handler.

4. Interrogate the ICIRQStatus register to determine which source generated the interrupt, and
prioritize the interrupts if there are multiple active interrupt sources. This takes a number of
instructions to compute.

5. Branch to the correct ISR.

6. Execute the ISR.

7. Clear the interrupt. If the request was generated by a software interrupt, the ICSoftIntClear
register must be written to.

8. Check the ICIRQStatus register to ensure that no other interrupt is active. If there is an active
request go to Step 4.

9. Return from the interrupt.

Note: If the above flow is used, you must not read or write to the ICVectorAddr register.
42 CoreMP7 Subsystem User’s Guide

Programmer’s Model
To ensure that the vector address register (see “Vector Address Register, ICVectAddr” on page 47)
can be read in a single instruction, the IC base address must be 0xFFFFF000, the upper 4K of
memory. Placing the IC anywhere else in memory increases interrupt latency as the ARM processor
is unable to access the ICVectorAddr register using a single instruction. The offset of any particular
register from the base address is fixed.

Table 7-3 details the memory map for the interrupt controller.

Table 7-3. Interrupt Controller Memory Map

Address Type Width Reset value Name Description

IC base + 0x000 Read 32 0x00000000 ICIRQStatus IRQ status register

IC base + 0x004 Read 32 0x00000000 ICFIQStatus FIQ status register

IC base + 0x008 Read 32 – ICRawIntr Raw interrupt status register

IC base + 0x00C Read/Write 32 0x00000000 ICIntSelect Interrupt select register

IC base + 0x010 Read/Write 32 0x00000000 ICIntEnable Interrupt enable register

IC base + 0x014 Write 32 – ICIntEnClear Interrupt enable clear register

IC base + 0x018 Read/Write 32 0x00000000 ICSoftInt Software interrupt register

IC base + 0x01C Write 32 – ICSoftIntClear Software interrupt clear register

IC base + 0x020 Read/Write 1 0x0 ICProtection Protection enable register

IC base + 0x030 Read/Write 32 0x00000000 ICVectAddr Vector address register

IC base + 0x034 Read/Write 32 0x00000000 ICDefVectAddr Default vector address register

IC base + 0x300 Read/Write 1 – ICITCR Test control register

IC base + 0x304 Read 2 – ICITIP1 Test input register (nICIRQIN/nICFIQIN)

IC base + 0x308 Read 32 – ICITIP2 Test input register (ICVECTADDRIN)

IC base + 0x30C Read 2 0x0 ICITOP1 Test output register (nICIRQ/nICFIQ)

IC base + 0x310 Read 32 0x00000000 ICITOP2 Test output register (ICVECTADDROUT)

IC base + 0xFE0
to + 0xFFC

Read 8 0x08 RESERVED
CoreMP7 Subsystem User’s Guide 43

Interrupt Controller
IRQ Status Register, ICIRQStatus
The ICIRQStatus register provides the status of interrupts [31:0] after IRQ masking. Table 7-4
shows the bit assignment of the ICIRQStatus register.

FIQ Status Register, ICFIQStatus
The ICFIQStatus register provides the status of the interrupts after FIQ masking. Table 7-5 below
shows the bit assignment of the ICFIQStatus register.

Raw Interrupt Status Register, ICRawIntr
The ICRawIntr register provides the status of the source interrupts (and software interrupts) to the
interrupt controller. Table 7-6 shows the bit assignment of the ICRawIntr register.

Table 7-4. Bit Assignment of the ICIRQStatus Register

Bits Name Type Function

31:0 IRQStatus Read
Shows the status of the interrupts after masking by the ICIntEnable
and ICIntSelect registers. A high bit indicates that the interrupt is
active, and generates an interrupt to the processor.

Table 7-5. Bit Assignment of the ICFIQStatus Register

Bits Name Type Function

31:0 FIQStatus Read
Shows the status of the interrupts after masking by the ICIntEnable
and ICIntSelect registers. A high bit indicates that the interrupt is
active, and generates an interrupt to the processor.

Table 7-6. Bit Assignment of the ICRawIntr Register

Bits Name Type Function

31:0 RawInterrupt Read
Shows the status of the interrupts before masking by the enable
registers. A high bit indicates that the appropriate interrupt request
is active before masking.
44 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Interrupt Select Register, ICIntSelect
The ICIntSelect register selects whether the corresponding interrupt source generates an FIQ or an
IRQ interrupt. Table 7-7 shows the bit assignment of the ICIntSelect register.

Interrupt Enable Register, ICIntEnable
The ICIntEnable register enables the interrupt request lines, by masking the interrupt sources for
the IRQ interrupt. Table 7-8 shows the bit assignment of the ICIntEnable register.

Interrupt Enable Clear Register, ICIntEnClear
The ICIntEnClear register clears bits in the ICIntEnable register. Table 7-9 shows the bit
assignment of the ICIntEnClear register.

Table 7-7. Bit Assignment of the ICIntSelect Register

Bits Name Type Function

31:0 IntSelect Read/write

Selects type of interrupt for interrupt request:

1 = FIQ interrupt

0 = IRQ interrupt

Table 7-8. Bit Assignment of the ICIntEnable Register

Bits Name Type Function

31:0 IntEnable Read/Write

Enables the interrupt request lines:

1 = Interrupt enabled. Allows interrupt request to processor.

0 = Interrupt disabled

On reset, all interrupts are disabled. A high bit sets the
corresponding bit in the ICIntEnable register. A LOW bit has no
effect.

Table 7-9. Bit Assignment of the ICIntEnClear Register

Bits Name Type Function

31:0 IntEnable Clear Write
Clears bits in the ICIntEnable register. A high bit clears the
corresponding bit in the ICIntEnable register. A LOW bit has no
effect.
CoreMP7 Subsystem User’s Guide 45

Interrupt Controller
Software Interrupt Register, ICSoftInt
The ICSoftInt register is used to generate software interrupts. Table 7-10 shows the bit assignment
of the ICSoftInt register.

Software Interrupt Clear Register, ICSoftIntClear
The ICSoftIntClear register clears bits in the ICSoftInt register. Table 7-11 shows the bit
assignment of the ICSoftIntClear register.

Table 7-10. Bit Assignment of the ICSoftInt Register

Bits Name Type Function

31:0 SoftInt Read/Write

Setting a bit generates a software interrupt for the specific source
interrupt before interrupt masking. A high bit sets the
corresponding bit in the ICSoftInt register. A LOW bit has no
effect.

Table 7-11. Bit Assignment of the ICSoftIntClear Register

Bits Name Type Function

31:0 SoftIntClear Write
A high bit clears the corresponding bit in the ICSoftInt register. A
LOW bit has no effect.
46 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Protection Enable Register, ICProtection
The ICProtection register enables or disables protected register access. Table 7-12 shows the bit
assignment of the ICProtection register.

Vector Address Register, ICVectAddr
The ICVectAddr register contains the ISR address of the currently active interrupt. Table 7-13
shows the bit assignment of the ICVectAddr register.

Table 7-12. Bit Assignment of the ICProtection Register

Bits Name Type Function

31:1 Reserved – –

0 Protection Read/Write

Enables or disables protected register access. When enabled, only
privileged mode accesses (reads and writes) can access the interrupt
controller registers. When disabled, both User mode and privileged
mode can access the registers.

This register is cleared on reset, and can only be accessed in
privileged mode.

Note: If the bus master cannot generate accurate protection information, leave this register in its reset state to allow User mode
access.

Table 7-13. Bit Assignment of the ICVectAddr Register

Bits Name Type Function

31:0 VectorAddr Read/Write
Contains the address of the currently active ISR. Any writes to this
register clear the interrupt

Note: Reading from this register provides the address of the ISR, and indicates to the priority hardware that the interrupt is
being serviced. Writing to this register indicates to the priority hardware that the interrupt has been serviced. The register

should be used as follows:

• The ISR reads the ICVectAddr register when an IRQ interrupt is generated

• At the end of the ISR, the ICVectAddr register is written to, to update the priority hardware.

Reading or writing to the register at other times can cause incorrect operation.
CoreMP7 Subsystem User’s Guide 47

Interrupt Controller
Default Vector Address Register, ICDefVectAddr
The ICDefVectAddr register contains the default ISR address. Table 7-14 shows the bit assignment
of the ICDefVectAddr register.

Test Control Register, ICITCR
The ICITCR register selects test mode, and is cleared on reset. Table 7-15 shows the bit assignment
of the ICITCR register.

Test Input Register (nICIRQIN/nICFIQIN), ICITIP1
The ICITIP1 register indicates the status of the nICIRQIN and nICFIQIN daisy chain input lines.
Table 7-16 shows the bit assignment of the ICITIP1 register.

Table 7-14. Bit Assignment of the ICDefVectAddr Register

Bits Name Type Function

31:0
Default
VectorAddr

Read/Write Contains the address of the default ISR handle

Table 7-15. Bit Assignment of the ICITCR Register

Bits Name Type Function

31:1 Reserved – –

0 ITEN Read/Write
Selects test mode, to use ICITIP test registers in place of input
signals.

Table 7-16. Bit Assignment of the ICITIP1 Register

Bits Name Type Function

31:8 Reserved – –

7 I Read Indicates status of nICIRQIN when ICITCR register is LOW

6 F Read Indicates status of nICFIQIN when ICITCR register is LOW

5:0 Reserved –
48 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Test input register (ICVECTADDRIN), ICITIP2
The ICITIP2 register indicates the status of the ICVECTADDRIN daisy chain input lines. Table
7-17 shows the bit assignment of the ICITIP2 register.

Test Output Register (nICIRQ/nICFIQ), ICITOP1
The ICITOP1 register indicates the status of the nICIRQ and nICFIQ interrupt request lines to
the processor. Table 7-18 shows the bit assignment of the ICITOP1 register.

Test Output Register (ICVECTADDROUT), ICITOP2
The ICITOP2 register indicates the status of the ICVECTADDROUT lines from the interrupt
controller. Table 7-19 shows the bit assignment of the ICITOP2 register.

Table 7-17. Bit Assignment of the ICITIP2 Register

Bits Name Type Function

31:0 VectorAddrIn Read/Write
Indicates status of ICVECTADDRIN when ICITCR register is
LOW

Table 7-18. Bit Assignment of the ICITOP1 Register

Bits Name Type Function

31:8 Reserved – –

7 I Read
Status of nICIRQ interrupt line. If set high, the interrupt request is
active.

6 F Read
Status of nICFIQ interrupt line. If set high, the interrupt request is
active.

5:0 Reserved –

Table 7-19. Bit Assignment of the ICITOP2 Register

Bits Name Type Function

31:0 VectorAddr Out Read Indicates status of ICVECTADDROUT from interrupt controller
CoreMP7 Subsystem User’s Guide 49

8
Watchdog

The watchdog unit provides a way of recovering from software crashes. The watchdog clock is used
to generate a regular interrupt (WDOGINT), depending on a programmed value. The watchdog
monitors the interrupt and asserts a reset signal (WDOGRES) if the interrupt remains unserviced
for the entire programmed period. You can enable or disable the watchdog unit as required.

Connecting the Watchdog in CoreConsole
Table 8-1 lists the ports present on the watchdog and describes how to connect these in
CoreConsole.

Table 8-1. Watchdog Connections

Connection CoreConsole Label Description

Required Connections

APB slave
interface

APBslave Connect this interface to any available slave slot on the APB Bus

PCLK PCLK
APB clock signal.

Normally connected to the HCLK output of the MP7Bridge.

PRESETn PRESETn
Active low APB reset input.

Normally connected to the HRESETn output of the MP7Bridge.

Watchdog clock WDOGCLK
Watchdog clock input.

Normally connected to the HCLK output of the MP7Bridge.

Watchdog
interrupt

WDOGINT

Active high interrupt output.

Connect this to one of the interrupt source inputs (ICINTSOURCEx) of
the Interrupt Controller.

Watchdog
timeout reset

WDOGRES

Watchdog timeout output. This signal is asserted (high) if the watchdog
times out.

Connect this output to the WDOGRES input of the MP7Bridge.

Watchdog reset
input

WDOGRESn
This input resets the Watchdog.

Connect this input to the WDOGRESn port of the MP7Bridge.

Optional Connections

Watchdog clock
enable

WDOGCLKEN
Clock enable input for watchdog.

This signal is tied high (asserted) if no connection is made to it.
CoreMP7 Subsystem User’s Guide 51

Watchdog
Programmer’s Model
Table 8-2 provides a list and description of the registers for the watchdog unit.

Watchdog Load Register, WdogLoad
This is a 32-bit register containing the value from which the counter is to decrement. When this
register is written to, the count is immediately restarted from the new value. The minimum valid
value for WdogLoad is one.

Table 8-2. Description of Registers for the WatchDog Unit

Address Type Width Reset value Name Description

Wdog base + 0x00 Read/Write 32 0xFFFFFFFF WdogLoad Watchdog load register

Wdog base + 0x04 Read Only 32 0xFFFFFFFF WdogValue
The current value for the
watchdog counter

Wdog base + 0x08 Read/Write 2 0x0 WdogControl Watchdog control register

Wdog base + 0x0C Write Only – – WdogIntClr Clears the watchdog interrupt

Wdog base + 0x10 Read Only 1 0x0 WdogRIS Watchdog raw interrupt status

Wdog base + 0x14 Read Only 1 0x0 WdogMIS Watchdog masked interrupt status

Wdog base + 0xC00 Read/Write 32 0x0 WdogLock Watchdog lock register

Wdog base + 0xF00 Read/Write 1 0x0 WdogITCR Integration test control register

Wdog base + 0xF04 Write Only 2 0x0 WdogITOP Integration test output set register

Wdog base + 0xFE0 Read Only 8 0x05 WdogPeriphID0 Peripheral ID register bits 7:0

Wdog base + 0xFE4 Read Only 8 0x18 WdogPeriphID1 Peripheral ID register bits 15:8

Wdog base + 0xFE8 Read Only 8 0x04 WdogPeriphID2 Peripheral ID register bits 23:16

Wdog base + 0xFEC Read Only 8 0x00 WdogPeriphID3 Peripheral ID register bits 31:24

Wdog base + 0xFF0 Read Only 8 0x0D WdogPCellID0 PrimeCell ID register bits 7:0

Wdog base + 0xFF4 Read Only 8 0xF0 WdogPCellID1 PrimeCell ID register bits 15:8

Wdog base + 0xFF8 Read Only 8 0x05 WdogPCellID2 PrimeCell ID register bits 23:16

Wdog base + 0xFFC Read Only 8 0xB1 WdogPCellID3 PrimeCell ID register bits 31:24
52 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Watchdog Control Register, WdogControl
This is a read/write register that enables the software to control the watchdog unit. Table 8-3 shows
the bit assignment of the WdogControl register.

Watchdog Clear Interrupt Register, WdogIntClr
A write of any value to this location clears the watchdog interrupt, and reloads the counter from the
value in WdogLoad.

Raw interrupt Status Register, WdogRIS
This register indicates the raw interrupt status from the counter. This value is ANDed with the
interrupt enable bit from the control register to create the masked interrupt, which is passed to the
interrupt output pin. Table 8-4 shows the bit assignment of the WdogRIS register.

Table 8-3. Bit Assignment of the Wdog Control Register

Bits Name Type Function

31:2 – – Reserved, read undefined, must read as zeros

1 RESEN Read/Write
Enable Watchdog reset output (WDOGRES). Acts as a mask for
the reset output. Set high to enable the reset, and LOW to disable
the reset.

0 INTEN Read/Write

Enable the interrupt event (WDOGINT). Set high to enable the
counter and the interrupt, and set LOW to disable the counter and
interrupt. Reloads the counter from the value in WdogLoad when
the interrupt is enabled, and was previously disabled.

Table 8-4. Bit Assignment of the WdogRIS Register

Bits Name Type Function

31:1 – – Reserved, read undefined, must read as zeros

0
Raw Watchdog
Interrupt

Read Raw interrupt status from the counter
CoreMP7 Subsystem User’s Guide 53

Watchdog
Interrupt Status Register, WdogMIS
This register indicates the masked interrupt status from the counter. This value is the logical AND
of the raw interrupt status with the INTEN bit from the control register, and is the same value
which is passed to the interrupt output pin. Table 8-5 shows the bit assignment of the WdogMIS
register.

Watchdog Lock Register, WdogLock
Use of this register enables write-access to all other registers to be disabled. This is to prevent rogue
software from disabling the watchdog functionality. Writing a value of 0x1ACCE551 will enable
write access to all other registers; writing any other value will disable write accesses. A read from this
register will return only the bottom bit:

• 0 indicates that write access is enabled (not locked).

• 1 indicates that write access is disabled (locked).

Table 8-6 shows the bit assignment of the WdogLock register.

Table 8-5. Bit Assignment of the WdogMIS Register

Bits Name Type Function

31:1 – – Reserved, read undefined, must read as zeros

0
Watchdog
Interrupt

Read Enabled interrupt status from the counter

Table 8-6. Bit Assignment of the WdogLock Register

Bits Name Type Function

31:0
Enable register
writes

Write
Enable write access to all other registers by writing 0x1ACCE551.
Disable write access by writing any other value.

0
Register write
enable status

Read
0 = write access to all other registers is enabled (default)

1 = write access to all other registers is disabled
54 CoreMP7 Subsystem User’s Guide

Integration Test Control Register, WdogITCR
Single-bit register used to enable integration test mode. When in this mode, the masked interrupt
output, WDOGINT, and reset output, WDOGRES, are directly controlled by the test output set
register. Table 8-7 shows the bit assignment of the WdogITCR register.

Integration Test Output Set Register, WdogITOP
When in integration test mode, the enabled interrupt output and reset output are driven directly
from the values in this register. Table 8-8 shows the bit assignment of the WdogITOP register.

Table 8-7. Bit Assignment of the WdogITCR Register

Bits Name Type Function

31:1 – – Reserved, read undefined, must read as zeros

0
Integration Test
Mode Enable

Read/Write When set high, places the Watchdog into integration test mode

Table 8-8. Bit Assignment of the Wdog ITOP Register

Bits Name Type Function

31:2 – – Reserved, read undefined, must read as zeros

1
Integration Test
WDOGINT
value

Write Value output on WDOGINT when in Integration Test Mode

0
Integration Test
WDOGRES
value

Write Value output on WDOGRES when in Integration Test Mode

9
Timers

The Dual Input Timers module is an APB slave that provides access to two interrupt-generating,
programmable 32-bit Free-Running Decrementing Counters (FRCs). The system clock (PCLK) is
used to control the programmable registers, and a second clock input (TIMCLK) is used to drive the
counter, enabling the counters to run from a much slower clock than the system clock. The two
clocks must be synchronous while register accesses are performed. A top-level block diagram of the
timers is shown in Figure 9-1 below.

Figure 9-1. Dual Input Timer Block Diagram

Functional Description
Two timers are provided in the Timers module. For each timer, the following modes of operation are
available: free-running mode, periodic mode, and one-shot timer mode.

Free-Running Mode
The counter wraps after reaching its zero value, and continues to count down from the maximum
value. This is the default mode.

Periodic Timer Mode
The counter generates an interrupt at a constant interval, reloading the original value after wrapping
past zero.

One-Shot Timer Mode
The counter generates an interrupt once. When the counter reaches zero, it halts until re-
programmed by the user. This can be achieved by either clearing the One-Shot Count bit in the

Test
Integration
Registers

Identification
Registers

Read Data
Generation

Free-Running
Counter 1

Free-Running
Counter 2

Address
Decoder

TIMINTC
Generation

APB

TIMCLK
TIMCLKEN1
TIMCLKEN2

TIMINT1

TIMINTC
TIMINT2
CoreMP7 Subsystem User’s Guide 57

Timers
control register (in which case the count will proceed according to the selection of free-running or
periodic mode), or by writing a new value to the Load Value register.

Operation
Each timer has an identical set of registers. The operation of each timer is identical. The timer is
loaded by writing to the load register and, if enabled, counts down to zero. When a counter is
already running, writing to the load register will cause the counter to immediately restart at the new
value. Writing to the background load value has no effect on the current count. The counter
continues to decrement to zero, and then recommences from the new load value (if in periodic
mode, and one-shot mode is not selected).

When zero is reached, an interrupt is generated. The interrupt can be cleared by writing to the clear
register. If one-shot mode is selected, the counter halts on reaching zero until you deselect one-shot
mode, or write a new load value. Otherwise, after reaching a zero count, if the timer is operating in
free-running mode it continues to decrement from its maximum value. If periodic timer mode is
selected, the timer reloads the count value from the load register and continues to decrement. In this
mode the counter effectively generates a periodic interrupt. The mode is selected by a bit in the
timer control register. At any point, the current counter value can be read from the value register.
The counter is enabled by a bit in the control register. At reset, the counter is disabled, the interrupt
is cleared, and the load register is set to zero. The mode and prescale values are set to free-running,
and clock divide of 1 respectively. A block diagram of the free-running timer module is shown in
Figure 9-2.

Figure 9-2. Free Running Timer Block

Timer
Clock Enable Load Control

32-Bit Down Counter

Value Interrupt
Generation
58 CoreMP7 Subsystem User’s Guide

Clocking
The timer clock enable is generated by a prescale unit. The enable is then used by the counter to
create a clock with a timing of one of the following:

• The system clock

• The system clock divided by 16, generated by 4 bits of prescale

• The system clock divided by 256, generated by a total of 8 bits of prescale

Figure 9-3 shows how the timer clock frequency is selected in the prescale unit. This enables you to
clock the timer at different frequencies.

Figure 9-3. Prescale Clock Enable Generation

Interrupt Generation
An interrupt is generated when the full 32-bit counter reaches zero, and is only cleared when the
TimerXClear location is written to. A register holds the value until the interrupt is cleared. The
most significant carry bit of the counter detects the counter reaching zero.

Interrupts can be masked by writing 0 to the Interrupt Enable bit in the Control register. Both the
raw interrupt status (prior to masking) and the final interrupt status (after masking) can be read
from status registers.

The interrupts from the individual counters (after masking) are logically OR'ed into a combined
interrupt, TIMINTC, which is provided as an additional output from the Timer peripheral.

Clocking
The timers have two clock inputs, PCLK and TIMCLK. PCLK is the main APB system clock, and
is used by the register interface. TIMCLK is the input to the prescale units and the decrementing
counters. A pulse on TIMCLK must be qualified by the appropriate TIMCLKENx being high.

The design of the timers assumes that PCLK and TIMCLK are synchronous. To enable the counter
to operate from a lower effective frequency than that at which PCLK is running, either of the
following can be done:

Timer
Clock

Enable

Divide
by 16

Divide
by 16

Control
Prescale Select

Timer Clock
Enable after
Prescaling
CoreMP7 Subsystem User’s Guide 59

Timers
• Both PCLK and TIMCLK inputs are connected to the APB PCLK signal, and TIMCLKENx is
pulsed high at the required frequency (synchronized to PCLK).

• TIMCLKENx is tied high and an enabled version of PCLK is fed into the TIMCLK input, giving
sparse clock pulses synchronous to PCLK.

This provision of two clock inputs enables the counters to continue to run while the APB system is
in a sleep state whereby PCLK is disabled. The changeover periods when PCLK is disabled and
enabled must be handled by external system control logic, to ensure that the PCLK and TIMCLK
inputs are fed with synchronous signals when any register access is to occur.

Connecting the Timers Module in CoreConsole
Table 9-1 lists the ports present on the Timers module and describes how to connect these in
CoreConsole.

Table 9-1. Timers Module Connections

Connection CoreConsole Label Description

Required Connections

APB slave interface APBslave Connect this interface to any available slave slot on the APB Bus.

PCLK PCLK
APB clock signal.

Normally connected to the HCLK output of the MP7Bridge.

PRESETn PRESETn
Active low APB reset input.

Normally connected to the HRESETn output of the MP7Bridge.

Timer clock TIMCLK

Clock input for timers. This must be synchronous to PCLK for
normal operation.

This may be connected to the HCLK output of the MP7Bridge or to a
separate (typically slower) clock signal.
60 CoreMP7 Subsystem User’s Guide

Connecting the Timers Module in CoreConsole
Optional Connections

Timer 1 interrupt TIMINT1

Active high interrupt output for timer 1. This signal indicates an
interrupt has been generated by counter 1 having being decremented
to zero.

This is normally connected to one of the interrupt source
(ICINTSOURCEx) inputs of the Interrupt Controller.

Timer 2 interrupt TIMINT2

Active high interrupt output for timer 2. This signal indicates an
interrupt has been generated by counter 2 having being decremented
to zero.

This is normally connected to one of the interrupt source
(ICINTSOURCEx) inputs of the Interrupt Controller.

Combined interrupt
for timers

TIMINTC

This active high interrupt output is a combination of the two timer
interrupt signals. This signal indicates an interrupt has been generated
by either counter having being decremented to zero, and is the logical
OR of TIMINT1 and TIMINT2.

This is normally connected to one of the interrupt source
(ICINTSOURCEx) inputs of the Interrupt Controller.

Timer 1 clock
enable

TIMCLKEN1

Clock enable input for timer 1. The counter will only decrement on a
rising edge of TIMCLK when TIMCLKEN1 is high.

This input will be tied high (asserted) if no connection is made to it.

Timer 2 clock
enable

TIMCLKEN2

Clock enable input for timer 2. The counter will only decrement on a
rising edge of TIMCLK when TIMCLKEN2 is high.

This input will be tied high (asserted) if no connection is made to it.

Table 9-1. Timers Module Connections (Continued)

Connection CoreConsole Label Description
CoreMP7 Subsystem User’s Guide 61

Timers
Programmer’s Model
The Timer Registers are shown in Table 9-2.

Load register, TimerXLoad
This is a 32-bit register containing the value from which the counter is to decrement. This is the
value used to reload the counter when Periodic mode is enabled, and the current count reaches zero.

When this register is written to directly, the current count is immediately reset to the new value at
the next rising edge of TIMCLK which is enabled by TIMCLKEN.

Table 9-2. Timer Registers

Address Type Width Reset value Name Description

Timer base + 0x00 Read/Write 32 0x00000000 Timer1Load Load value for Timer1

Timer base + 0x04 Read 32 0xFFFFFFFF Timer1Value The current value for Timer1

Timer base + 0x08 Read/Write 8 0x20 Timer1Control Timer 1 control register

Timer base + 0x0C Write – – Timer1IntClr Timer 1 interrupt clear

Timer base + 0x10 Read 1 0x0 Timer1RIS Timer 1 raw interrupt status

Timer base + 0x14 Read 1 0x0 Timer1MIS Timer 1 masked interrupt status

Timer base + 0x18 Read/Write 32 0x00000000 Timer1BGLoad Background load value for Timer 1

Timer base + 0x20 Read/Write 32 0x00000000 Timer2Load Load value for Timer 2

Timer base + 0x24 Read 32 0xFFFFFFFF Timer2Value The current value for Timer 2

Timer base + 0x28 Read/Write 8 0x20 Timer2Control Timer 2 control register

Timer base + 0x2C Write – – Timer2IntClr Timer 2 interrupt clear

Timer base + 0x30 Read 1 0x0 Timer2RIS Timer 2 raw interrupt status

Timer base + 0x34 Read 1 0x0 Timer2MIS Timer 2 masked interrupt status

Timer base + 0x38 Read/Write 32 0x00000000 Timer2BGLoad Background load value for Timer 2

Timer base + 0xF00 Read/Write 1 0x0 TimerITCR Integration test control register

Timer base + 0xF04 Write 2 0x0 TimerITOP Integration test output set register

Timer base + 0xFE0
to 0xFFC

Read 8 0x04 RESERVED RESERVED
62 CoreMP7 Subsystem User’s Guide

Programmer’s Model
The value in this register is also overwritten if the TimerXBGLoad register is written to, but the
current count is not immediately affected.

If values are written to both the TimerXLoad and TimerXBGLoad registers before an enabled
rising edge on TIMCLK, the following occurs:

• On the next enabled TIMCLK edge the value written to the TimerXLoad value replaces the
current count value.

• Following this, each time the counter reaches zero, the current count value is reset to the value
written to TimerXBGLoad.

Reading from the TimerXLoad register at any time after the two writes have occurred will retrieve
the value written to TimerXBGLoad. That is, the value read from TimerXLoad is always the value
which will take effect for Periodic mode after the next time the counter reaches zero.

Current Value Register, TimerXValue
This register gives the current value of the decrementing counter.

Timer Control Register, TimerXControl
The bit assignments for the TimerXControl register are shown in Table 9-3.

Table 9-3. Bit Assignments for the TimerXControl Register

Bits Name Type Function

31:8 – – Reserved, read undefined, must read as zeros

7 Timer Enable Read/Write Enable bit: 0 = Timer disabled (default) 1 = Timer enabled

6 Timer Mode Read/Write
Mode bit: 0 = Timer is in free-running mode (default) 1 = Timer is
in periodic mode

5 Interrupt Enable Read/Write
Interrupt Enable bit: 0 = Timer Interrupt disabled 1 = Timer
Interrupt enabled (default)

4 RESERVED Reserved bit, do not modify, and ignore on read

3:2 TimerPre Read/Write
Prescale bits: 00 = 0 stages of prescale, clock is divided by 1 (default)
01 = 4 stages of prescale, clock is divided by 16 10 = 8 stages of
prescale, clock is divided by 256 11 = Undefined, do not use.

1 Timer Size Read/Write
Selects 16/32 bit counter operation: 0 = 16-bit counter (default) 1 =
32-bit counter

0 One Shot Count Read/Write
Selects one-shot or wrapping counter mode: 0 = wrapping mode
(default) 1 = one-shot mode
CoreMP7 Subsystem User’s Guide 63

Timers
Interrupt Clear Register, TimerXIntClr
Any write to this register will clear the interrupt output from the counter.

Raw Interrupt Status Register, TimerXRIS
This register indicates the raw interrupt status from the counter. This value is ANDed with the
timer interrupt enable bit from the control register to create the masked interrupt, which is passed to
the interrupt output pin. Table 9-4 shows the bit assignments for the TimerXRIS register.

Interrupt Status Register, TimerXMIS
This register indicates the masked interrupt status from the counter. This value is the logical AND
of the raw interrupt status with the timer interrupt enable bit from the control register, and is the
same value which is passed to the interrupt output pin. Table 9-5 shows the bit assignments for the
TimerXMIS register.

Background Load Register, TimerXBGLoad
This is a 32-bit register containing the value from which the counter is to decrement. This is the
value used to reload the counter when Periodic mode is enabled, and the current count reaches zero.

This register provides an alternative method of accessing the TimerXLoad register. The difference is
that writes to TimerXBGLoad will not cause the counter immediately to restart from the new value.

Reading from this register returns the same value returned from TimerXLoad. See “Load register,
TimerXLoad” on page 62 for more details.

Table 9-4. Bit Assignments for the TimerXRIS Register

Bits Name Type Function

31:1 – – Reserved, read undefined, must read as zeros

0
Raw Timer
Interrupt

Read Raw interrupt status from the counter

Table 9-5. Bit Assignments for the TimerXMIS Register

Bits Name Type Function

31:1 – – Reserved, read undefined, must read as zeros

0 Timer Interrupt Read Enabled interrupt status from the counter
64 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Integration Test Control Register, TimerITCR
This is a single-bit register used to enable integration test mode. When in this mode, the masked
interrupt outputs are directly controlled by the test output set register. The combined interrupt
output TIMINTC then becomes the logical OR of the bits set in the test output set register. Table
9-6 shows the bit assignments for the TimerITCR register.

Integration Test Output Set Register, TimerITOP
When in integration test mode, the enabled interrupt outputs are driven directly from the values in
this register. Table 9-7 shows the bit assignments for the TimerITOP register.

Table 9-6. Bit Assignments for the TimerITCR Register

Bits Name Type Function

31:1 – – Reserved, read undefined, must read as zeros

0
Integration Test
Mode Enable

Read/Write When set high, places the Timers into integration test mode

Table 9-7. Bit Assignments for the TimerITOP Register

Bits Name Type Function

31:2 – – Reserved, read undefined, must read as zeros

1
Integration Test
TIMINT2 value

Write Value output on TIMINT2 when in Integration Test Mode

0
Integration Test
TIMINT1 value

Write Value output on TIMINT1 when in Integration Test Mode
CoreMP7 Subsystem User’s Guide 65

10
System Control Block

This APB slave is a small control block that has a single bit register which is intended to be used to
control aliasing of memory resources at the bottom of the processor address space. Typically the
(non-volatile) Flash is aliased to the bottom of the memory map by default but the SRAM may be
made to appear at the base of the address space by setting Remap high.

The RemapDefault input determines the value of the Remap output following a reset.

The Remap output of the System Control module is normally connected to the Remap input of the
Memory Controller. The RemapDefault input may be connected to the toplevel of the subsystem to
provide a means of controlling the reset value of Remap.

Connecting the System Control Block in CoreConsole
Table 10-1 lists the ports present on the System Control block and describes how to connect these in
CoreConsole.

Table 10-1. System Control Block Connections

Connection CoreConsole Label Description

Required Connections

APB slave interface APBslave Connect this interface to any available slave slot on the APB Bus.

PCLK PCLK
APB clock signal.

Normally connected to the HCLK output of the MP7Bridge.

PRESETn PRESETn
Active low APB reset input.

Normally connected to the HRESETn output of the MP7Bridge.

Remap Remap

This output is driven by an internal control register bit and is intended
to be used for controlling memory aliasing.

This signal should be connected to the Remap input of the Memory
Controller.

Optional Connections

Default setting for
Remap

RemapDefault

This input determines the value of the Remap output following a reset.

This signal may be connected to the subsystem toplevel to allow
external control of memory aliasing after reset.

If no connection is made to this port, it will be tied low.
CoreMP7 Subsystem User’s Guide 67

System Control Block
Programmer’s Model
The System Control block contains a single register at offset 0x00 (and aliased throughout the slot)
which is described in Table 10-2.

Table 10-2. System Control Register

Bits Name Type Function

31:1 – – Reserved

0 Remap Read/Write Control bit which drives Remap output
68 CoreMP7 Subsystem User’s Guide

11
General Purpose I/O (GPIO) Block

The GPIO block is an APB peripheral which provides 32 inputs and 32 outputs. There is a single
register at offset 0x00 (and aliased throughout the slot) which is cleared on reading. Writing to this
register writes 32 bits to the outputs, reading from the register reads the state of the inputs.

It is not required that all inputs and outputs are used. The user need only connect to those inputs
and outputs which are actually used. Any unused inputs should be tied either high or low and
unused outputs may be left unconnected.

Connecting the GPIO Block in CoreConsole
Table 11-1 lists the ports present on the GPIO block and describes how to connect these in
CoreConsole.

Table 11-1. GPIO Connections

Connection CoreConsole Label Description

Required Connections

APB slave interface APBslave Connect this interface to any available slave slot on the APB Bus.

PCLK PCLK
APB clock signal.

Normally connected to the HCLK output of the MP7Bridge.

PRESETn PRESETn
Active low APB reset input.

Normally connected to the HRESETn output of the MP7Bridge.

Optional Connections

Input data dataIn

32 bit input data bus.

This port provides the user with up to 32 inputs. Any unused input
lines should be tied to a fixed value (high or low).

Output data dataOut

32 bit output data bus.

This port provides up to 32 outputs. Any unused outputs may be left
unconnected.
CoreMP7 Subsystem User’s Guide 69

General Purpose I/O (GPIO) Block
Programmer’s Model
The GPIO block contains a single 32 bit register which is described in Table 11-2.

Table 11-2. GPIO Control/Status Register

Bits Name Type Function

31:0
I/O Control/
Status Register

Read/Write

A write to this register will set the values of the output lines.

Reading this register gives the status of the input lines. The status is
cleared on read.
70 CoreMP7 Subsystem User’s Guide

12
Flash ROM (FROM) Access Block

The FROM Access block is an APB slave which provides a means to access the 128-byte FROM
which is available in Actel ProASIC3/E devices.

If you want to access the on-chip FROM, add a FROM Access component to your design and
connect it to the APB Bus. Aside from the connections to the APB Bus, there are two other ports
on the FROM Access component. These are named fromAddr (7-bit FROM address bus) and
fromData (8-bit FROM data bus) and should be routed to the toplevel of your subsystem design in
CoreConsole for subsequent connection to a FROM instance.

The user should use the SmartGen core generator, available in the Actel Libero® Integrated Design
Environment (IDE), to generate a FROM instance and to set the values to be programmed into the
FROM.

More information on using the FROM on ProASIC3/E devices can be found in the following
Application Note:

http://www.actel.com/documents/PA3_E_FROM_AN.pdf

Connecting the FROM Access Block in CoreConsole
Table 12-1 lists the ports present on the FROM Access block and describes how to connect these in
CoreConsole.

Table 12-1. FROM Access Connections

Connection CoreConsole Label Description

Required Connections

APB slave interface APBslave Connect this interface to any available slave slot on the APB Bus.

FROM address bus fromAddr

7-bit FROM address bus.

This port should be connected to the subsystem toplevel for subsequent
connection to a FROM instance.

FROM data bus fromData

8-bit FROM data bus.

This port should be connected to the subsystem toplevel for subsequent
connection to a FROM instance.
CoreMP7 Subsystem User’s Guide 71

http://www.actel.com/documents/PA3_E_FROM_AN.pdf

Flash ROM (FROM) Access Block
Programmer’s Model
When the FROM is connected to the FROM Access component, the contents of the FROM
appear at the base address of the APB slot where the FROM Access is located. The FROM
contents are also aliased throughout this APB slot.

The data stored in the FROM is read only and cannot be changed by the processor.

The FROM data can only be accessed one byte at a time; it is not possible to read a word or half-
word of FROM data in one step.

Table 12-2 shows how the FROM data appears to the processor.

Table 12-2. FROM data

Offset Data

Base address + 0x00 Byte 3 Byte 2 Byte 1 Byte 0

Base address + 0x04 Byte 7 Byte 6 Byte 5 Byte 4

Base address + 0x08 Byte 11 Byte 10 Byte 9 Byte 8

Base address + 0x0C Byte 15 Byte 14 Byte 13 Byte 12

Base address + 0x10 Byte 19 Byte 18 Byte 17 Byte 16

Base address + 0x14 Byte 23 Byte 22 Byte 21 Byte 20

Base address + 0x18 Byte 27 Byte 26 Byte 25 Byte 24

Base address + 0x1C Byte 31 Byte 30 Byte 29 Byte 28

Base address + 0x20 Byte 35 Byte 34 Byte 33 Byte 32

Base address + 0x24 Byte 39 Byte 38 Byte 37 Byte 36

Base address + 0x28 Byte 43 Byte 42 Byte 41 Byte 40

Base address + 0x2C Byte 47 Byte 46 Byte 45 Byte 44

Base address + 0x30 Byte 51 Byte 50 Byte 49 Byte 48

Base address + 0x34 Byte 55 Byte 54 Byte 53 Byte 52

Base address + 0x38 Byte 59 Byte 58 Byte 57 Byte 56

Base address + 0x3C Byte 63 Byte 62 Byte 61 Byte 60

Base address + 0x40 Byte 67 Byte 66 Byte 65 Byte 64

Base address + 0x44 Byte 71 Byte 70 Byte 69 Byte 68
72 CoreMP7 Subsystem User’s Guide

Programmer’s Model
Base address + 0x48 Byte 75 Byte 74 Byte 73 Byte 72

Base address + 0x4C Byte 79 Byte 78 Byte 77 Byte 76

Base address + 0x50 Byte 83 Byte 82 Byte 81 Byte 80

Base address + 0x54 Byte 87 Byte 86 Byte 85 Byte 84

Base address + 0x58 Byte 91 Byte 90 Byte 89 Byte 88

Base address + 0x5C Byte 95 Byte 94 Byte 93 Byte 92

Base address + 0x60 Byte 99 Byte 98 Byte 97 Byte 96

Base address + 0x64 Byte 103 Byte 102 Byte 101 Byte 100

Base address + 0x68 Byte 107 Byte 106 Byte 105 Byte 104

Base address + 0x6C Byte 111 Byte 110 Byte 109 Byte 108

Base address + 0x70 Byte 115 Byte 114 Byte 113 Byte 112

Base address + 0x74 Byte 119 Byte 118 Byte 117 Byte 116

Base address + 0x78 Byte 123 Byte 122 Byte 121 Byte 120

Base address + 0x7C Byte 127 Byte 126 Byte 125 Byte 124

Table 12-2. FROM data (Continued)

Offset Data
CoreMP7 Subsystem User’s Guide 73

A
Product Support

Actel backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center
spends a great deal of time creating application notes and answers to FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.
CoreMP7 Subsystem User’s Guide 75

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com

Product Support
Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific
Time, Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by
email, fax, or phone. Also, if you have design problems, you can email your design files to receive
assistance. We constantly monitor the email account throughout the day. When sending your
request to us, please be sure to include your full name, company name, and your contact information
for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your
name, company name, phone number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available application engineer receives the
data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via
email (tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/contact/offices/index.html.
76 CoreMP7 Subsystem User’s Guide

http://www.actel.com/contact/offices/index.html
mailto:tech@actel.com
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 76
telephone 76
web-based technical support 75

AHB
slaves 17

AHB Bus 17
port list 20

AHB-Lite 17
AHB-Lite Block Diagram 18
AMBA Bridge 23

module block diagram 23
APB Bus 25

multiplexing 25
ARM7TDMI-S Processor 7

C
contacting Actel

customer service 75
electronic mail 76
telephone 76
web-based technical support 75

CoreConsole
connecting AHB Bus 19
connecting APB Bus 26
connecting CoreMP7 9
connecting CoreUART-APB 34
connecting FROM Access block 71
connecting GPIO block 69
connecting interrupt controller 40
connecting memory controller 27
connecting MP7Bridge 7
connecting system control block 67
connecting timers module 60
connecting watchdog 51

CoreMP7
configuration options 10
ports 9

CoreUART-APB 33
block diagram 33
configuration options 35
registers 35

customer service 75

F
FIQ 39

fast interrupt request 39
FRC 57
FROM Access

programmer’s model 72
FROM Access Block 71

G
GPIO Block 69

I
Interrupt Controller 39
interrupt service routine 39
IRQ interrupt

programmer’s model 41

M
Memory Controller 27, 67

configuration options 31
MP7Bridge 7

configuration options 12
connections 10
port list 13
ports 10

MP7Bridge Connections 8
CoreMP7 Subsystem User’s Guide 77

Index
P
product support 75–76

customer service 75
electronic mail 76
technical support 75
telephone 76

R
RealView ICE Signals 7

S
System Control Block 67

T
technical support 75
Timer

registers 62
Timers 57

W
Watchdog Unit

registers 52
web-based technical support 75
78 CoreMP7 Subsystem User’s Guide

For more information about Actel’s products, visit our website at
http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • Dunlop House, Riverside Way • Camberley, Surrey GU15 3YL • United Kingdom

Phone +44 (0) 1276 401 450 • Fax +44 (0) 1276 401 490

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200058-1/12.05

	Introduction
	CoreMP7 and MP7Bridge
	CoreMP7 and MP7Bridge Connections
	Figure 1-1. CoreMP7 and MP7Bridge Connections

	Connecting CoreMP7 in CoreConsole
	Table 1-1. CoreMP7 Connections

	CoreMP7 Configuration in CoreConsole
	Table 1-2. CoreMP7 Configuration

	MP7Bridge Connections in CoreConsole
	Table 1-3. MP7Bridge Connections

	MP7Bridge Configuration in CoreConsole
	Table 1-4. MP7Bridge Configuration

	MP7Bridge Port List
	Table 1-5. MP7Bridge Port List

	AHB Bus
	AHB-Lite Overview
	Figure 2-1. AHB-Lite Block Diagram

	Connecting the AHB Bus in CoreConsole
	Table 2-1. AHB Bus Connections

	AHB Bus Port List
	Table 2-2. Ports on the AHB Bus Component

	AMBA Bridge
	Figure 3-1. AMBA Bridge
	Connecting the AMBA Bridge in CoreConsole
	Table 3-1. AMBA Bridge Connections

	APB Bus
	Figure 4-1. APB Fabric
	Connecting the APB Bus in CoreConsole
	Table 4-1. APB Bus Connections

	Memory Controller
	Connecting the Memory Controller in CoreConsole
	Table 5-1. Memory Controller Connections

	External Memory Interface
	Table 5-2. Memory Controller External Memory Interface

	Memory Controller Configurable Options
	Table 5-3. Memory Controller Configurable Options

	CoreUART-APB
	Figure 6-1. CoreUART-APB Block Diagram
	Connecting CoreUART-APB in CoreConsole
	Table 6-1. CoreUART-APB Connections

	CoreUART-APB Configurable Options
	Table 6-2. CoreUART-APB Configurable Options

	CoreUART-APB Programmer’s Model
	Table 6-3. CoreUART-APB Registers
	Transmit Data Register
	Receive Data Register
	Control Register 1
	Table 6-4. Control Register 1

	Control Register 2
	Table 6-5. Control Register 2

	Status Register
	Table 6-6. Status Register

	Interrupt Controller
	Figure 7-1. Interrupt Controller Block Diagram
	Connecting the Interrupt Controller in CoreConsole
	Table 7-1. Interrupt Controller Connections

	Programmer’s Model
	Table 7-2. Interrupt Standard Configuration
	Interrupt Flow Sequence
	Simple Interrupt Flow
	Table 7-3. Interrupt Controller Memory Map

	IRQ Status Register, ICIRQStatus
	Table 7-4. Bit Assignment of the ICIRQStatus Register

	FIQ Status Register, ICFIQStatus
	Table 7-5. Bit Assignment of the ICFIQStatus Register

	Raw Interrupt Status Register, ICRawIntr
	Table 7-6. Bit Assignment of the ICRawIntr Register

	Interrupt Select Register, ICIntSelect
	Table 7-7. Bit Assignment of the ICIntSelect Register

	Interrupt Enable Register, ICIntEnable
	Table 7-8. Bit Assignment of the ICIntEnable Register

	Interrupt Enable Clear Register, ICIntEnClear
	Table 7-9. Bit Assignment of the ICIntEnClear Register

	Software Interrupt Register, ICSoftInt
	Table 7-10. Bit Assignment of the ICSoftInt Register

	Software Interrupt Clear Register, ICSoftIntClear
	Table 7-11. Bit Assignment of the ICSoftIntClear Register

	Protection Enable Register, ICProtection
	Table 7-12. Bit Assignment of the ICProtection Register

	Vector Address Register, ICVectAddr
	Table 7-13. Bit Assignment of the ICVectAddr Register

	Default Vector Address Register, ICDefVectAddr
	Table 7-14. Bit Assignment of the ICDefVectAddr Register

	Test Control Register, ICITCR
	Table 7-15. Bit Assignment of the ICITCR Register

	Test Input Register (nICIRQIN/nICFIQIN), ICITIP1
	Table 7-16. Bit Assignment of the ICITIP1 Register

	Test input register (ICVECTADDRIN), ICITIP2
	Table 7-17. Bit Assignment of the ICITIP2 Register

	Test Output Register (nICIRQ/nICFIQ), ICITOP1
	Table 7-18. Bit Assignment of the ICITOP1 Register

	Test Output Register (ICVECTADDROUT), ICITOP2
	Table 7-19. Bit Assignment of the ICITOP2 Register

	Watchdog
	Connecting the Watchdog in CoreConsole
	Table 8-1. Watchdog Connections

	Programmer’s Model
	Table 8-2. Description of Registers for the WatchDog Unit
	Watchdog Load Register, WdogLoad
	Watchdog Control Register, WdogControl
	Table 8-3. Bit Assignment of the Wdog Control Register

	Watchdog Clear Interrupt Register, WdogIntClr
	Raw interrupt Status Register, WdogRIS
	Table 8-4. Bit Assignment of the WdogRIS Register

	Interrupt Status Register, WdogMIS
	Table 8-5. Bit Assignment of the WdogMIS Register

	Watchdog Lock Register, WdogLock
	Table 8-6. Bit Assignment of the WdogLock Register

	Integration Test Control Register, WdogITCR
	Table 8-7. Bit Assignment of the WdogITCR Register

	Integration Test Output Set Register, WdogITOP
	Table 8-8. Bit Assignment of the Wdog ITOP Register

	Timers
	Figure 9-1. Dual Input Timer Block Diagram
	Functional Description
	Operation
	Figure 9-2. Free Running Timer Block
	Figure 9-3. Prescale Clock Enable Generation
	Interrupt Generation

	Clocking
	Connecting the Timers Module in CoreConsole
	Table 9-1. Timers Module Connections

	Programmer’s Model
	Table 9-2. Timer Registers
	Load register, TimerXLoad
	Current Value Register, TimerXValue
	Timer Control Register, TimerXControl
	Table 9-3. Bit Assignments for the TimerXControl Register

	Interrupt Clear Register, TimerXIntClr
	Raw Interrupt Status Register, TimerXRIS
	Table 9-4. Bit Assignments for the TimerXRIS Register

	Interrupt Status Register, TimerXMIS
	Table 9-5. Bit Assignments for the TimerXMIS Register

	Background Load Register, TimerXBGLoad
	Integration Test Control Register, TimerITCR
	Table 9-6. Bit Assignments for the TimerITCR Register

	Integration Test Output Set Register, TimerITOP
	Table 9-7. Bit Assignments for the TimerITOP Register

	System Control Block
	Connecting the System Control Block in CoreConsole
	Table 10-1. System Control Block Connections

	Programmer’s Model
	Table 10-2. System Control Register

	General Purpose I/O (GPIO) Block
	Connecting the GPIO Block in CoreConsole
	Table 11-1. GPIO Connections

	Programmer’s Model
	Table 11-2. GPIO Control/Status Register

	Flash ROM (FROM) Access Block
	Connecting the FROM Access Block in CoreConsole
	Table 12-1. FROM Access Connections

	Programmer’s Model
	Table 12-2. FROM data

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

