
Understanding Actel
Antifuse Device Security

January 2004

White Paper

Table of Contents

2 Understanding Actel Antifuse Device Security

Abstract . 3
Introduction . 3
Understanding Antifuse Programming . 3
The Role of the Security Fuse . 4
Possible Means of Attack . 4
Summary . 7

Abstract
An antifuse-based FPGA is the most secure programmable device available. This paper explores various
aspects of the Actel antifuse security structures, as well as the inherent security of the technology and
underlying architecture. The method of programming an antifuse device and the role of the security fuse
are also discussed. Various means of attack or "hacking" a secure Antifuse FPGA are also discussed and
shown to be ineffective.

Introduction
When third parties discuss the design security of Actel's antifuse FPGAs, the focus is frequently on the
security fuse. It is often incorrectly identified as the primary protection that prohibits device cloning,
tampering or reverse engineering. Unlike other PLDs with security fuses, Actel's security fuse is only a
small part of the security built into every Antifuse FPGA. But what happens if, in the unlikely event, the
security fuse is bypassed or is left unprogrammed? What else must a hacker do to extract design
information from an Actel antifuse device?

This paper will explore all aspects of antifuse security, as well as various approaches of attack that a
hacker might attempt. We will show that the antifuse security system is much more sophisticated than just
a simple security fuse, and even if left unprogrammed, Actel's antifuse FPGAs are still the most secure
programmable technology available today.

Understanding Antifuse Programming
When users think of FPGA programming, they often think in terms of a bitstream being downloaded to and
stored in the FPGA. An SRAM-based FPGA is a volatile device that must be initialized or programmed at
each power-up cycle. This is not the case for antifuse-based FPGAs which are one-time programmable
and non-volatile devices. An antifuse does not use a
bitstream. This means that there is never a bitstream
that can be intercepted, copied, modified, or
corrupted.

Once a designer has completed place-and-route using
Actel's Designer software, the program generates an
AFM (Actel fuse map) programming file. This file's
format is unpublished, and is a carefully guarded
secret within Actel, in contrast to competitors'
bitstream formats which have been well documented
and are freely discussed in the public domain. The
AFM is an encrypted, binary file compressed using a
proprietary algorithm. What can be disclosed is that
this file contains the addresses of fuses to be
programmed, and that the data is stored in records
(sometimes of variable length), containing
programming information for multiple fuses. No design
information is contained within the file, in contrast to
the ADB (Actel database) file, which does contain
design information; but the ADB is not used for
programming. Each AFM also includes device and
design-specific end-of-programming tests to insure
correct device programming (see Figure 1).

The AFM File: A Secure Medium
The secure nature of Actel's AFM file makes it
the ideal method for communicating a secure
design to a manufacturer for two reasons: the
design's netlist cannot be compromised if
intercepted by a third party, and the
manufacturer has the only means of
programming devices so the design data is
never resident with the manufacturer. Thus, the
design data is never on the outside.

This is in contrast to communicating a design
database to a secure ASIC manufacturer. To
produce an ASIC, the ASIC manufacturer needs
either the source netlist or GDSII layout data
(which can be converted within hours to a
netlist). This second scenario leaves design
data on the outside and vulnerable, both to
interception during transmission and to theft
once at the manufacturer's site.
Understanding Actel Antifuse Device Security 3

The AFM file is downloaded to the Sculptor programming station via the PC interface. This file is
essentially a script file telling the programmer which fuses to program. The programmer communicates
with the device programming interface, issuing the commands necessary to program and verify each
antifuse needed for the design. The device-level programming interface only understands how to build a
connection based upon the addresses communicated by the programmer. These addresses are not stored
within the device. No other programming data is downloaded or stored within the device. All "intelligence"
for programming is contained in the programmer, not in the device, so no programming file can be
downloaded or read back from the device. This fact alone makes antifuse FPGAs immune to device
cloning.

The Role of the Security Fuse
So what is the role of the security fuse if Actel's
antifuse FPGAs are immune to cloning? The security
fuse, once programmed, disables the probe and
programming interface, serving merely as additional
insurance to thwart hackers—a belt-and-suspenders
approach. Even if Actel antifuse FPGAs did not have a
security fuse, they would still be the most secure
programmable devices available.

Possible Means of Attack
Next we will explore possible means of attack that a
hacker might contemplate in an attempt to recover
design data from an Actel antifuse FPGA.

Figure 1: Probe and Programming Interface File Generation

Place and Route

ADB
Actel Database

AFM
Actel Database
Fuse Location

Encrypted, Binary
Compressed (Proprietary)

No Design Information

PRB
Probe File

Address of Outputs in
Logic Module

Silicon Sculpture
Programs Fuses

Based on Addresses

Silicon Explorer
Monitors Output of

Four Modules

Cloning
Cloning is different from reverse engineering.
With cloning, a competitor or hacker simply
copies the device contents—he does not know
how your design works, nor does he need to.

Cloning requires that something be easily
copied; this is the situation with SRAM-based
FPGA designs. A competitor either makes a
copy of the boot prom, or intercepts the
bitstream from the on-board processor and
copies the code. He is able to steal the entire
design by copying the external bitstream, which
is always required for an SRAM FPGA. He can
then manufacture exact clones of your product.
4 Understanding Actel Antifuse Device Security

Bypassing the Security Fuse
A hacker’s first thought might be to try and bypass the security fuse to gain access to the device. The first
problem is that the hacker has to identify which antifuse out of several million is the correct one. How to
identify which is the correct fuse? One approach suggested by competitors is the use of thermal imaging
during security fuse programming. Antifuse connections are passive low-impedance elements, and
although they require high voltage to program, the current and duration of the pulse to build the antifuse
connection is very small. The total energy needed is on the order of 40µ joules (an amount of energy
sufficient only to raise the temperature of one gram of silicon 0.000056ºC). Any heat generated from a fuse
being programmed would be swamped by other heat from CMOS circuitry in the area, as well as the
thermal mass of surrounding metal and silicon. Conclusion: simple thermal imaging cannot be used to
detect the location of any antifuse, including the security bit.

What if a highly capable hacker has somehow been able to locate and bypass the security fuse? He has
now gained access to the programming and probe interface, but since no programming data is stored in
the device, there is no bitstream to download. The programming interface has limited capability. For
example, this interface cannot be queried for the location of programmed fuses, so there is no way to have
the programming I/F reconstruct the AFM file, or even a fuse map. So, as stated before, it is impossible to
clone an antifuse device—bypassing the security fuse only gains more access to internal nodes within the
device; it does not allow programming additional devices or reverse engineering an existing device.

Next we will look at what might be done with this additional access.

Exploiting the Probe Interface
Bypassing the security fuse (or leaving it unprogrammed) will allow a hacker access to the antifuse probe
circuitry. In normal usage, the probe interface allows the designer to have internal access to his design
during operation, providing virtual logic probes that operate in real time and do not affect either the
performance or loading of the design. To properly probe the design requires a valid probe file (PRB)
generated from the same database (ADB) as the AFM programming file.

The probe interface accepts output addresses for logic modules to be probed (basically building a
connection to a dedicated output pin). So how could a hacker try an exploit this interface? First, he would
need to reverse engineer the probe file structure, then reverse engineer how the addressing scheme
works. Then he would have to determine the address for each logic module output in the device. For
example, for the AX2000, a hacker has to determine addresses for 32,256 logic module outputs out of
more than 50-million antifuses in the device—technically feasible, but a highly daunting task.

Again, for argument’s sake, let us assume that a highly capable hacker has spent countless hours,
destroyed multiple devices, and has somehow determined the probe interface’s addressing scheme. How
can he exploit this knowledge to reverse engineer a device?

First, we will assume that the hacker has the board and system from which the FPGA comes, and has the
equipment and time to understand how each of the I/O pins of the FPGA are configured and what the
signals going into the FPGA look like. We will also assume that he has countless hours of access to a
sophisticated (and expensive) component tester. We will also assume that he can generate a stimulus file
using data he has gained from the actual system. Where is he now?

He can now see anywhere from two to four outputs at the same time. Using the AX1000 as an example, he
can monitor the output of four modules until that output changes state on one of the modules, and note the
patterns leading up to that change. Then, using the other three probes, he can check each of the
remaining 18,143 to see which clock-cycle they are on and if they change state, to determine the
connectivity. Of course since the output of one module can drive multiple outputs, he would have to rerun
the same set of patterns 18,143 times for each module. And since each combinatorial module can have as
Understanding Actel Antifuse Device Security 5

many as five inputs, it would be unwise to try and shortcut the process by eliminating the earlier modules
examined. So the hacker would need to run 18,1432 tests to determine module connectivity. Assuming
that he runs a minimum of five patterns to "flush out" a connection, he would need to run more than 1.6
billion patterns just to determine module interconnectivity. Of course he would also have to develop a
methodology to weed out false paths (did module 1,046 change state because it is driven by module 864,
or is there another path that is exercised by the same pattern?).

Once again, let us assume that our highly capable hacker has been able to work out a correct connectivity
map. Now he needs to determine from the input patterns the correct configuration for each logic module.
However, this is even more challenging than the connectivity problem, as each register module (R-Cell)
has to be identified for the clock domain to which it belongs, whether the output change is a result of
clocking, setting or clearing, or if the clock polarity is negative (clock polarity can be configured at each
individual R-Cell, and may need to double his pattern set to look at both rising and falling edges—another
3-billion patterns). The combinatorial module (C-Cell) is even trickier as it can implement up to 4,000
possible functions with up to five inputs. Looking at only module outputs via the probe interface to construct
the entire circuit is a nearly impossible task, so even a highly capable hacker needs to find another way.

Exploiting the Programming Interface
So after having failed or finally given up trying to exploit the probe interface, our hacker now turns to attack
the programming interface. As discussed earlier, the programmer addresses each fuse to program and
verify each needed for the design. A hacker could attempt to use this verification process to determine the
programmed state of each fuse. He would need his fuse-addressing scheme reverse engineered during
his probing attack, but now he needs to generate a special (and legal) AFM file to address and verify every
fuse. As discussed earlier, the AFM file is a proprietary encrypted and compressed binary file, so our
hacker would have to reverse engineer the entire programming process without the help of Actel—an
impossible task.

Our hacker could try to bypass this step, thinking that all he needs to do is generate a design that utilizes
100% of the logic resources and 100% of all module inputs in the device, then generate an AFM that would
address and verify most, if not every, fuse. However, even 100% utilized designs require less than 1.5% of
the total of all device fuses be programmed (the vast majority of fuses are used as vias for routing). Our
hacker is back to square one.

We will assume that through a combination of genius and persistence, our highly capable hacker has
overcome these impossible odds and has developed a special AFM file, and can verify each fuse to
determine its programmed state. However, our hacker now hits another wall. During device programming,
antifuses are programmed in a specific order, and from the inside out. This is done to minimize the amount
of addressing circuitry that would be needed to address every fuse independently. So when our hacker
tries to verify a fuse, he may not be able to address the correct one, or he may end up with a false positive
(the fuse he thinks he is addressing may also address additional fuses in sympathy). Additionally, there are
other buried security structures inside an Actel antifuse device to designed to hinder illicit access. As a
result, any hacker will end up with a junk fuse map that will be of no value.

Having exhausted both the probe and programming interface without success, our hacker now tries
another method to get at the design.

Decompiling the AFM File
Our hacker has given up attacking the device directly in his attempts to steal the design. Now he resorts to
more traditional and clandestine methods. Since the AFM file is used to program devices, it is more widely
distributed than the design files, which are kept in a more secure environment. Our hacker finds a
corruptible employee or an unscrupulous contract manufacturer and obtains a copy of the AFM file. But, as
6 Understanding Actel Antifuse Device Security

discussed earlier, the AFM file contains no design information, and there are no programs available either
inside or outside Actel that can decrypt, decompile and regenerate the existing design info. Even if our
hacker had "inside" knowledge, he could still not decompile the AFM. All he can do is program additional
copies of the original device.

Direct Inspection
So our hacker is left with one last resort, an invasive attack—direct inspection of each fuse to generate a
fuse map. The antifuses are located between two layers of metal, so inspection from above won't work. He
needs to slice along each metal track in the device. Since the feature size difference between a
programmed and unprogrammed antifuse is only several angstroms wide, our hacker will need a scanning
electron microscope (SEM) to determine the state of the antifuse (they are not visible with the naked eye).
Given the difficulty in sectioning a device without damaging the antifuse location, he would need to slice
many, many programmed devices and inspect each slice to find which 1.5% of the fuses out of millions is
programmed—a very expensive, time-consuming and error-prone process. Once our very determined
hacker has finally created a fuse map, he then would need to reverse engineer the FPGA architecture to
know which fuses are used for interconnect, which are for logic module configuration, which are for clock
distribution, etc. Only then would he be able to reverse engineer a device, or produce modified copies of
the original design.

Summary
• Actel antifuse devices cannot be cloned whether or not the security fuse has been programmed. There

is no recoverable bitstream or similar mechanism contained in an antifuse part.

• Specific architectural features and aspects of the device hinder or make impossible any attempts to
reverse engineer the device.

• Design information is contained in the ADB file, which is not used for programming. The ADB is
normally kept in a secure place and is not distributed to third parties for programming.

• The AFM file does not contain any device information, and cannot be reverse engineered to extract
design information. The AFM only specifies what fuses should be blown, and in which order.

• The antifuse technology itself provides a high level of security and design protection. Determining the
difference between a programmed and unprogrammed fuse requires a scanning electron microscope,
and the device must be physically destroyed in the process.

• Attempts to identify fuse locations via thermal imaging of fuses being programmed is ineffective.
Insufficient thermal energy is generated during programming, and the thermal signature is swamped
by the power generated by the CMOS circuits within the chip itself.

• Probes look at module outputs only. To use them effectively, you need access to the ADB file to
generate a valid probe map. Without this information, you are trying to reconstruct an entire design by
looking at the outputs of modules without knowing the input stimuli.

It is clear that even the most determined hacker (even a highly capable one) is faced with several
significant hurdles, many of which are virtually impossible to overcome when attempting to reverse-
engineer an Actel antifuse device. A serious attempt would require significant investment in dollars and
time—and would most likely end in failure. From a practical perspective, Actel antifuse devices are virtually
impossible to reverse engineer, and are the most secure silicon devices available.
Understanding Actel Antifuse Device Security 7

8 Understanding Actel Antifuse Device Security

For more information, visit our website at http://www.actel.com

www.actel.com

Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0)1276.401450
Fax +44 (0)1276.401490

Actel Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150, Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
39th Floor, One Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852.227.35712
Fax +852.227.35999

© 2004 Actel Corporation. All rights reserved. Actel and the Actel logo are trademarks of Actel Corporation. All other brand or product
names are the property of their respective owners.

55800003-0

http://www.actel.com

	Abstract
	Introduction
	Understanding Antifuse Programming
	Figure 1: Probe and Programming Interface File Generation

	The Role of the Security Fuse
	Possible Means of Attack
	Bypassing the Security Fuse
	Exploiting the Probe Interface
	Exploiting the Programming Interface
	Decompiling the AFM File
	Direct Inspection

	Summary

