

SoftConsole v3.4

Release Notes

Revision: 1.0

Date: March 25
th
 2013

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 2 of 30

TABLE OF CONTENTS

1 INTRODUCTION .. 4

2 WHAT’S NEW .. 4

2.1 COMPONENT TOOL VERSIONS ... 4

2.2 NEW FEATURES.. 5

2.2.1 Support for Microsemi SmartFusion2 cSoC .. 5

2.2.2 Consolidated debug support for Cortex-M3 targets ... 5

2.2.3 Fixes and improvements .. 5

2.3 FIXES AND IMPROVEMENTS ... 5

3 USING SOFTCONSOLE V3.4 WITH SMARTFUSION2 .. 5

3.1 SMARTFUSION2 BOARD JTAG_SEL CONFIGURATION .. 5

3.2 TARGETING SMARTFUSION2 CORTEX-M3 .. 5

3.3 CREATING PROGRAMS .. 9

3.4 DRIVERS_CONFIG/SYS_CONFIG ... 13

3.5 CONSOLIDATED DEBUG SUPPORT FOR CORTEX-M3 TARGETS ... 13

4 CORTEX-M3 LINKER SCRIPTS .. 15

4.1 OVERVIEW ... 15

4.2 LINKER SCRIPTS ... 15

4.2.1 Linker scripts bundled with the CMSIS .. 15

4.2.2 Other linker scripts ... 16

4.2.3 User modified linker scripts .. 16

4.2.3.1 debug-in-actel-smartfusion-envm.ld debug-in-microsemi-smartfusion2-envm.ld16

4.2.3.2 debug-in-actel-smartfusion-esram.ld debug-in-microsemi-smartfusion2-esram.ld17

4.2.3.3 debug-in-external-ram.ld ...17

4.2.3.4 production-execute-in-place.ld ..17

4.2.3.5 production-relocate-executable.ld ...17

4.2.3.6 debug-in-external-flash.ld ...18

4.2.4 Configuring the linker script for your project .. 18

5 KNOWN LIMITATIONS, ISSUES, AND WORKAROUNDS .. 19

5.1 GENERAL ... 19

5.2 FLASH PROGRAMMING/PROGRAM DOWNLOAD ... 23

5.3 CORTEX-M3 DEBUGGING .. 24

5.4 CORE8051S ... 25

6 DOCUMENTATION .. 29

7 SYSTEM REQUIREMENTS ... 29

7.1 SUPPORTED PLATFORMS .. 29

7.2 SOFTWARE ENVIRONMENT .. 30

8 LICENSING .. 30

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 3 of 30

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 4 of 30

1 Introduction
SoftConsole v3.4 adds support for Microsemi SmartFusion2 cSoC so that the list processor
targets now supported by SoftConsole is:

 Microsemi SmartFusion2® MSS ARM® Cortex-M3

 Microsemi SmartFusion® MSS ARM® Cortex-M3

 Microsemi ARM® Cortex-M1

 Microsemi CoreMP7 (ARM7TDMI-S™)

 Microsemi Core8051s

2 What’s New

2.1 Component Tool Versions
SoftConsole v3.4 comprises the component tool packages listed below.

 Eclipse Platform (and Java Runtime)

o Eclipse IDE Galileo SR2 v3.5.2

o Eclipse CDT (C/C++ Development Tooling) v6.0.2

o Oracle Java 6 Standard Edition Version 6 Update 22 (1.6.0_22-b04)

 CodeSourcery Sourcery G++ Lite for ARM EABI

(GNU Toolchain for ARM Processors) 2010q1-188

o GCC (The GNU Compiler Collection) C and C++ Compilers v4.4.1-sg++

o GDB (The GNU Project Debugger) v7.0.50-sg++ (plus Microsemi modifications

v1.2)

o GNU Binutils (Binary Utilities) v2.19.51-sg++

o GNU Make v3.81

o Newlib C standard library v1.17.0-sg++

 8051 Development Tools

o SDCC Small Device C Compiler v2.6.3 (source code available on request from

Microsemi)

o CodeSourcery omf2elf (OMF to ELF converter) v1.0‐7

o GDB (The GNU Project Debugger) v6.7.50-sg++ (plus Microsemi modifications

v1.1)

o GNU Binutils (Binary Utilities) v2.18.50-sg++ (plus Microsemi modifications v1.1)

o GDB and Binutils are based on the CodeSourcery G++ Lite 2008q1-126 versions

 Hardware target debug support tools – the following tools sit between GDB and the

relevant target processor in order to facilitate hardware‐based debugging by translating

between GDB Remote Serial Protocol and target‐processor‐specific JTAG/debug

commands/responses:

o Cortex‐M1/Cortex-

M3: CodeSourcery ARM Debug Sprite v1.0‐8 + Microsemi v1.3.8‐M3 + Flash

Programming v1.2.2

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 5 of 30

o Core8051s: C8051 Debug Sprite v1.0‐8 + Microsemi v1.6.0 + Flash Programming

v1.2.2

o CoreMP7: FS2 In‐Target System Analyzer for ARM Processor Cores v1.2.0

2.2 New Features

2.2.1 Support for Microsemi SmartFusion2 cSoC

Support for development and debugging of software for the SmartFusion2 MSS Cortex-M3 in
embedded SRAM (ESRAM) and embedded flash (ENVM).

2.2.2 Consolidated debug support for Cortex-M3 targets
SoftConsole now provides a single debug launch configuration for both SmartFusion Cortex-M3
(r1p1) and SmartFusion2 Cortex-M3 (r2p1). This single debug launch configuration also supports
all sample link scenarios that are supported by the linker scripts bundled with the SmartFusion
CMSIS-PAL and SmartFusion2 CMSIS and Hardware Abstraction Layer firmware cores. This
simplifies debugging by obviating the need to match a specific debug launch configuration to the
linker script used to build the program. There is also a single debug sprite which seamlessly
supports both SmartFusion Cortex-M3 and SmartFusion2 Cortex-M3.

2.2.3 Fixes and improvements
Various SAR (Software Action Request) feature, usability and bug issues have been fixed as
detailed below.

2.3 Fixes and Improvements
The following Software Action Request (SAR) issues are fixed.

SAR Number Description

18210 Add support for further Actel board flash parts & Fusion2 ENVM

29618 Installer: remove or refine checks for FlashPro software/drivers

30301 8051: assembler build step missing from project settings

41646 unable to debug/program the SmartFusion2 device

3 Using SoftConsole v3.4 with SmartFusion2

3.1 SmartFusion2 board JTAG_SEL configuration
Ensure that the SmartFusion2 board JTAG_SEL switch/jumper is set to H in order to allow the
SoftConsole debug sprite connect to the target.

3.2 Targeting SmartFusion2 Cortex-M3
To target SmartFusion2 Cortex-M3 compile your program as normal and link using the
appropriate SmartFusion2 MSS CMSIS and Hardware Abstraction Layer sample linker script. For
example:

SmartFusion2 MSS CMSIS and Hardware
Abstraction Layer sample linker script

Description

debug-in-microsemi-smartfusion2-

esram.ld

Download to and debug from SmartFusion2
embedded SRAM (ESRAM) at 0x20000000.

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 6 of 30

debug-in-microsemi-smartfusion2-

envm.ld
Download to and debug from SmartFusion2
embedded flash/NVM (ENVM) at 0x60000000
mirrored to 0x00000000 at runtime. Uses the
SmartFusion2 ENVM flash programming profile

(C:\Program
Files\Microsemi\SoftConsole

v3.4\Sourcery-

G++\share\sprite\flash\microsemi-

smartfusion2-envm.xml) to download the

program to ENVM. Programs downloaded in
this way will also persist in ENVM so that they
run from ENVM from power on reset.

production-execute-in-place.ld

production-relocate-executable.ld

These linker scripts are for linking ―production‖
programs which will be loaded to ENVM using
a FlashPro ENVM data storage client and
which will execute directly from ENVM or
relocate/copy to and run from ESRAM. They
are not designed for interactive debugging
using SoftConsole.

debug-in-external-ram.ld

debug-in-external-flash.ld

Please note that download to/debugging from
external memories at/above 0x70000000 has
not yet been exercised and tested on
SmartFusion2.

To debug a program compiled for download/debug to ESRAM or ENVM simply create a
Microsemi Cortex-M3 Target debug launch configuration and run it. SoftConsole will connect to

the target, download the program and stop at a temporary breakpoint at main() at which point

you can interactively debug your program. Note that even if you change the linker script used to
link your program you can continue to use the same debug launch configuration unlike in
SoftConsole v3.3 where you had to match the debug launch configuration to the linker script.

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 7 of 30

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 8 of 30

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 9 of 30

3.3 Creating programs
The easiest way to get started with SmartFusion2 Cortex-M3 software development and
debugging is to launch the Firmware Catalog from SoftConsole:

and generate one of the sample projects from the Firmware Catalog – for example:

And then import it into the workspace:

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 10 of 30

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 11 of 30

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 12 of 30

And then the project will appear in your workspace:

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 13 of 30

You can also build programs up from scratch by generating the required firmware cores (for
example SmartFusion2 CMSIS and Hardware Abstraction Layer and relevant drivers) into a new
project and writing your own code.

Alternatively you can use the SoftConsole workspace and projects created by the integrated flow
in Libero SoC.

3.4 drivers_config/sys_config
In order to avoid a software/target hardware mismatch you must ensure that your SoftConsole

project contains the drivers_config/sys_config folder/files created by Libero SoC when

generating the MSS for your design.

3.5 Consolidated debug support for Cortex-M3 targets
Previous versions of SoftConsole had several different debug launch configurations for Cortex-
M3 which had to be matched to the sample CMSIS linker script used to build the program – for
example:

Debug launch configuration SmartFusion MSS CMSIS-PAL sample linker
script

Microsemi Cortex-M3 ENVM Target debug-in-actel-smartfusion-envm.ld

Microsemi Cortex-M3 External Flash Target debug-in-external-flash.ld

Microsemi Cortex-M3 RAM Target debug-in-actel-smartfusion-esram.ld

debug-in-external-ram.ld

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 14 of 30

Mismatching the debug launch configuration and linker script would lead to debug problems.

SoftConsole v3.4 provides consolidated debug support for all Cortex-M3 targets and link
scenarios. This means that there is a single debug sprite and a single debug launch configuration
for Cortex-M3 regardless of the target device (SmartFusion Cortex-M3 r1p1 or SmartFusion2
Cortex-M3 r2p1) or linker script used. This significantly simplifies the SoftConsole Cortex-M3
debugging experience.

When the debug sprite connects to the target hardware it probes the FPGA and Cortex-M3 to
figure out whether it needs to send the SmartFusion CTXSELECT (0x94) or the SmartFusion2
M3DEBUG (0x0A) JTAG command in order to bypass the FPGA JTAG controller and talk directly
to the Cortex-M3 for debugging purposes. It also probes the Cortex-M3 CPUID base register to
understand if it is communicating with the SmartFusion Cortex-M3 r1p1 or the SmartFusion2
Cortex-M3 r2p1.

The single debug launch configuration makes use of a GDB script (C:\Program
Files\Microsemi\SoftConsole v3.4\Sourcery-G++\share\gdbinit\microsemi-

cortex-m3-target-gdbinit) to manage debug related differences between the SmartFusion

and SmartFusion Cortex-M3 targets. This GDB script contains pre and post GDB load

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 15 of 30

command hooks that cater for the two targets and the common sample link/debug scenarios
supported by the CMSIS firmware cores for each target. The GDB script is referenced from the
debug launch configuration debug initialization commands.

In cases where a customized linker script is used it may be necessary to use a (copied and)
modified version of this script.

4 Cortex-M3 Linker Scripts

4.1 Overview
This section summarises the example linker scripts provided by the SmartFusion CMSIS-PAL
and SmartFusion2 CMSIS Hardware Abstraction Layer firmware cores. Refer to the CMSIS
documentation and example projects for more information about these and other CMSIS features
and capabilities.

4.2 Linker scripts

4.2.1 Linker scripts bundled with the CMSIS

The SmartFusion2 CMSIS Hardware Abstraction Layer firmware core bundles the following linker
scripts, which can be used to build/link SmartFusion2 Cortex-M3 executables and are described
in more detail below:

 debug-in-microsemi-smartfusion2-envm.ld

 debug-in-microsemi-smartfusion2-esram.ld

 debug-in-external-ram.ld

 production-execute-in-place.ld

 production-relocate-executable.ld

Similarly the SmartFusion CMSIS-PAL firmware core bundles the following linker scripts, which
can be used to build/link SmartFusion Cortex-M3 executables and are described in more detail
below:

 debug-in-actel-smartfusion-envm.ld

 debug-in-actel-smartfusion-esram.ld

 debug-in-external-ram.ld

 production-execute-in-place.ld

 production-relocate-executable.ld

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 16 of 30

The debug-in-* linker scripts are for building/linking programs for downloading to and

debugging from ENVM, ESRAM and external RAM.

The production-* linker scripts are for building/linking ―production‖ executable images which

will execute out of reset in a live system and which are stored in ENVM not by SoftConsole but
through some other mechanism – e.g. SmartFusion/SmartFusion2 ENVM Data Storage Client

using the Intel Hex (<project-name>.hex) file generated by SoftConsole for the program

image in the project’s Debug or Release folder.

Programs built using the debug-in-actel-smartfusion-envm.ld/debug-in-

microsemi-smartfusion2-envm.ld linker scripts can be downloaded to and debugged in

ENVM. Once they have been downloaded to ENVM they can also run out of ENVM from power
on reset.

4.2.2 Other linker scripts

The following sample linker script is bundled with the SoftConsole installation:

 debug-in-external-flash.ld

This is installed as <SoftConsole-install-folder>\src\Cortex-M3\linker-script-

examples\debug-in-external-flash.ld. For example, on most systems this will be
C:\Program Files\Microsemi\SoftConsole v3.4\src\Cortex-M3\linker-

script-examples\debug-in-external-flash.ld.

4.2.3 User modified linker scripts

The combination of linker scripts bundled with the CMSIS and the debug launch configurations
supported by SoftConsole cover a wide range of common development and debug situations.
However some targets may require the adaptation of these to suit the specific platform being
targeted. If you need to modify a linker script to a target your specific hardware platform then
please refer to the GNU ld linker (http://en.wikipedia.org/wiki/GNU_linker) documentation for
information.

4.2.3.1 debug-in-actel-smartfusion-envm.ld
debug-in-microsemi-smartfusion2-envm.ld

Use these linker scripts in order to build/link programs for downloading to and debugging from
ENVM.

They cater for 256KB of ENVM @ 0x60000000, which is also mirrored @ 0x00000000, and 64KB
of ESRAM @ 0x20000000.

1
 The program code is downloaded to ENVM @ 0x60000000 and

executed from ENVM mirrored @ 0x00000000.
2
 ESRAM @ 0x20000000 is used for data

(BSS/zero initialized data, static initialized data, stack and heap).

1
 Note that the sample linker scripts described here may need modification if the target device

supports a different about of ENVM or ESRAM.

2
 In this linker script the GNU ld linker LMA (Load Memory Address) is 0x60000000 while the

VMA (Virtual Memory Address), at which the code actually executes, is 0x00000000. The reason
for this is twofold – (a) the program cannot be downloaded directly to ENVM mirrored @
0x00000000 because ENVM is not writeable (even through the debug interface) at that address
and (b) Cortex-M3 only supports hardware breakpoints below 0x20000000 so the code must
execute below this address in order to support debugging. Note also that the linker script defines

__mirrored_nvm = 1 in order to inform the CMSIS not to do any copying of code from LMA to

VMA addresses since this is already taken care of by the mirroring or ENVM from 0x60000000 to
0x00000000.

http://en.wikipedia.org/wiki/GNU_linker

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 17 of 30

4.2.3.2 debug-in-actel-smartfusion-esram.ld
debug-in-microsemi-smartfusion2-esram.ld

Use these linker scripts in order to build/link programs for downloading to and debugging from
ESRAM. It caters for 64KB ESRAM @ 0x20000000 in which both the program code and data
(BSS/zero initialized data, static initialized data, stack and heap) reside.

4.2.3.3 debug-in-external-ram.ld
Use this linker script in order to build/link programs for downloading to and debugging from
external RAM @ the SmartFusion Cortex-M3 External Memory Type 0 address of 0x70000000.

It caters for 2MB of external RAM @ 0x70000000
3
 and 64KB of ESRAM @ 0x20000000. The

program code is downloaded to external RAM @ 0x70000000 with the exception of the vector
table which is downloaded to ESRAM @ 0x20000000.

4
 Data (BSS/zero initialized data, static

initialized data, stack and heap) also reside in ESRAM @ 0x20000000.

4.2.3.4 production-execute-in-place.ld
Use this linker script in order to build/link programs for execution from ENVM @ 0x00000000 out
of reset. This is for production programs which are stored in and execute directly from ENVM.

5

It caters for 1MB of ENVM @ 0x00000000 in which the program code is stored and 64KB of
ESRAM @ 0x20000000 in which data (BSS/zero initialized data, static initialized data, stack and
heap) resides.

Programs linked using this linker script cannot be downloaded or debugged using SoftConsole
and the program image must be stored in ENVM using some other mechanism such as an ENVM
Data Storage Client. In this case the ENVM data storage client can be configured to read in hex
file version of the program image produced by the SoftConsole build process. The ENVM data
storage client can then be programmed with the program image using Libero/FlashPro.

4.2.3.5 production-relocate-executable.ld
Use this linker script in order to build/link programs that will execute from reset out of ENVM but
which will be copied/relocated to external RAM @ 0x70000000 by the CMSIS startup code.

It caters for 1MB of ENVM @ 0x00000000, 2MB of external RAM @ 0x70000000 and 64KB of
ESRAM @ 0x20000000. The program code resides in ENVM @ 0x00000000 and the CMSIS
startup code copies/relocates it to external RAM @ 0x70000000 (excluding the vector table which
remains resident in ENVM @ 0x00000000). Data (BSS/zero initialized data, static initialized data,
stack and heap) resides in ESRAM @ 0x20000000.

3
 If SmartFusion external RAM is not at 0x70000000 (e.g. @ External Memory Type 1 address

0x74000000 or not at the ―bottom‖ of External Memory Type 0 @ 0x70000000 or External
Memory Type 1 @ 0x74000000 then the linker script and Actel Cortex-M3 RAM Target debug
initialization commands will require modification.

4
 Cortex-M3 requires that the vector table resides below 0x40000000 in the Code (0x00000000-

0x1FFFFFFF) or SRAM (0x20000000-0x3FFFFFFF) memory regions.

5
 Building a program with the debug-in-actel-smartfusion-envm.ld/ debug-in-

microsemi-smartfusion2-envm.ld linker script and downloading it to ENVM also means

that the program will thereafter run from power on reset. However the rationale for the

production-execute-in-place.ld linker script is that in certain production scenarios it is

not feasible to use SoftConsole to download the program but it is preferable to be able to fully
program the target using a single STAPL file containing all relevant information (e.g.
SmartFusion/SmartFusion2 MSS configuration data, other ENVM content, Cortex-M3 program
image for ENVM, FPGA fabric design etc.).

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 18 of 30

As with the production-execute-in-place.ld linker script, programs linked using this

linker script cannot be downloaded or debugged using SoftConsole and the program image must
be stored in ENVM using some other mechanism such as an ENVM data storage client.

4.2.3.6 debug-in-external-flash.ld
A further linker script, debug-in-external-flash.ld, is installed in the SoftConsole tree

under src\Cortex-M3\linker-script-examples. A version of this script will be part of the

CMSIS firmware core in the future.

Use this linker script in order to build/link programs for downloading to external flash. It is not
possible to actually debug the code which is executing in external flash, since its starting location
of 0x74000000 is beyond the Cortex-M3 requirement that hardware breakpoints be placed
beneath 0x20000000.

It caters for 16MB external flash across two devices: the first 8MB @ 0x74000000 and the
second 8MB @ 0x74800000. Code in the .text section is placed in the external flash. The

.init section containing the vector table is downloaded to ENVM @ 0x60000000 and executed

from ENVM mirrored @ 0x00000000.
6
 ESRAM @ 0x20000000 is used for data (BSS/zero

initialized data, static initialized data, stack and heap), with its initial contents copied from the
external flash.

The project must be compiled with the –mlong-calls flag in order for the startup code to be

able to jump up to main() which will be located in the external flash. Select the project in Project

Explorer, choose Properties > C/C++ Build > Settings > GCC C Compiler, and add -mlong-

calls into the Command field. Alternatively this option can be applied to just the

./CMSS/startup_gcc/startup_a2fxxxm3.s file rather than the project as a whole.

Note: The second external flash device at 0x74800000 is expected to be already unlocked when
SoftConsole performs the programming of the flash memory.

Note: Currently this linker script cannot support C++ programs because the .ARM.exidx section

is beyond the 31-bit range for the linker to provide the required relocations from the .text

section in the external flash.

4.2.4 Configuring the linker script for your project
To configure or change the linker script used when building a project:

 Right click on the project in the Project Explorer view and choose Properties7

 In the Properties for <project-name> dialog navigate to C/C++ Build > Settings > GNU C

Linker > Miscellaneous

 Ensure that the Linker flags field has the appropriate linker script specified using the

GNU ld linker’s -T <ld-script> option – e.g.:

6
 As in other linker scripts, the GNU ld linker LMA (Load Memory Address) is 0x60000000 while

the VMA (Virtual Memory Address), at which the code actually executes, is 0x00000000. The
reason for this is twofold – (a) the program cannot be downloaded directly to eNVM mirrored @
0x00000000 because ENVM is not writeable (even through the debug interface) at that address
and (b) Cortex-M3 only supports hardware breakpoints below 0x20000000 so the code must
execute below this address in order to support debugging. Note also that the linker script defines

__mirrored_nvm = 1 in order to inform the CMSIS not to do any copying of code from LMA to

VMA addresses since this is already taken care of by the mirroring or eNVM from 0x60000000 to
0x00000000.

7
 Project properties must be modified separately for Debug and Release build configurations.

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 19 of 30

5 Known Limitations, Issues, and Workarounds

5.1 General
Build problems and bare.specs: If you have problems compiling/building your project when
using the SmartFusion CMSIS-PAL and peripheral driver firmware cores then remove any

references to bare.specs in the project properties in case these are causing problems:

 Right-click the project in the Project Explorer and choose Properties

 In the Properties for <project-name> dialog navigate to C/C++ Build

 Under each of GNU C Compiler, GNU C Linker and GNU Assembler look at the

Command field and if it contains -specs=bare.specs then remove this option as

this is not relevant when building “bare metal” (non *RT+-OS) based programs using the

SmartFusion CMSIS-PAL and peripheral driver firmware cores.

Cortex-M1 sample linker scripts no longer bundled with SoftConsole: Please note that
sample linker scripts for the Cortex-M1 are no longer installed by default as part of SoftConsole.
Instead they can now be obtained from the Cortex-M1 HAL using the Firmware Catalog.

10452 – Eclipse plugins and SoftConsole: The download and integration of arbitrary Eclipse
plugins into SoftConsole (e.g. via Help > Check for Updates and Help > Install New Software)
is not supported.

13017 – Memory Monitor memory writes happen at wrong granularity: Writing a value to
memory using a Memory Monitor view takes place with the hardware only one byte at a time.
Thus, setting a particular address to have a particular 32-bit value involves asking GDB to write
four individual bytes. For some target designs, addresses are used assuming a single write will
take place of all four bytes. In particular, APB memory may depend upon this behavior, where

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 20 of 30

you only need the lower 8 bits of the 32-bit word involved. Until this is fixed in a future release,
make sure only a single one-byte write takes place for any given address: right-click in the
memory region you want to modify and select Format. In the Format dialog, change the column
size from 4 to 1, and click OK. You must make this change for each distinct memory monitor or
window in your project if you need to change the width of your reads and writes.

13063 – Remove all terminated launches remains disabled even when relevant: When a
GDB debugging session is terminated, the option to Remove all terminated launches may
remain greyed out on both the toolbar and the right-click context menu even when some
terminated launches remain listed.

13389 – Debug configuration Program Selection does not work if build target file has
extension: When configuring a debug launch configuration for your program (right-click the
project in the Project Explorer, choose Debug As > Debug Configurations, right-click the
relevant target CPU and memory debug configuration, and choose New), the Program Selection
dialog launched by the Search Project button will be blank if the executable built by the project
has a file extension. The Project Selection dialog will only find executables with no file
extension.

13956 – Prevent selecting a project directory for use as a workspace: Eclipse/CDT does not
protect against the creation of a workspace inside a workspace or project folder and the recursive
creation of very deeply nested folder structures that may result when importing files in such a
context. To avoid this problem, never create a workspace inside another workspace or project
folder, and never create a project inside another project folder.

17678 – Breakpoint from a different SoftConsole project is used in current project: If the
same file is part of two open projects and a breakpoint is set in the file in one project, then when
debugging the second project the processor stops at the breakpoint from the first project. A
workaround is to close all projects other than the project you are debugging. To do this:

 Right-click the project in Project Explorer and select Close Unrelated Projects.

18968 – Step empty loop at C level resumes execution until loop completes & cannot be
paused: GDB considers an empty loop to be the equivalent of a single statement or atomic
instruction. For example, when the debugger is about to execute the code

 volatile unsigned int i;

 for (i = 0; i < ~0; i++) /*  */

 ;

if you tell it to step on the loop, execution will resume until all iterations of the for loop have
completed. Control only returns to the debugger once that has happened. However, for long
delay loops like the above, this can take a very long time making it appear like the debug session
has locked up. While the loop is executing, it is not possible to break into execution of the loop
itself. The two options available are to: a) wait for execution to complete and control is returned to
the debugger, or b) press the red Stop button to terminate the debug session.

21406 – Debugging does not work well for interrupt driven programs: While debugging a
program on a target, GDB will not react if an interrupt occurs on the device and causes execution
to go to an interrupt handler. Instead, SoftConsole will believe the program is still performing the
steps the user requested, and thus not offer the Pause button to let you suspend execution. In
this situation the only option is to terminate execution of the program.

22011 – Default character encoding can cause issues for non-Latin-1 character sets: The
use of character sets for languages other than those considered ―Western European‖ (of The
Americas, Western Europe, Oceania, and much of Africa) is not yet supported. To change the

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 21 of 30

encoding for your files to the Unicode UTF-8 encoding, select File > Properties and change Text
file encoding to UTF-8.

27949 – variadic functions compile OK but editor mistakenly reports syntax errors: due to a

problem with CDT errors can be reported in the editor on variadic functions (using va_arg()

etc.) even where they have compiled correctly. See here for more information:
http://www.eclipse.org/forums/index.php?t=msg&goto=223579.

28697 – Microsemi Default code style formatter removes leading whitespace in comments:
the Microsemi Default code formatter active by default (see Window > Preferences > C/C++ >
Code Style) removes leading space in comments. For example using Edit > Format with the
Microsemi Default code style formatter active changes this:

/* This line

 and this one. */

to this

/* This line

 and this one. */

while it does not alter the whitespace in the following:

/* This line

 * and this one

 * and another one */

29172 – "Unresolved inclusion" annotation on system includes: If you import a project
created with SoftConsole v3.1 or earlier into SoftConsole v3.2 or later then "system" header

include directives (e.g. #include <stdio.h>) will be annotated with an "Unresolved inclusion"

warning in the annotation margin on the left hand side of the editor window. In contrast a project
created afresh with SoftConsole v3.2 or later will not exhibit this issue.

The reason for this is that between SoftConsole v3.1 and v3.2 (or, to be more accurate, between
CDT v4.0.3 and v6.0.2) the way in which C/C++ project settings for system include files were
handled was changed. In particular projects created with SoftConsole v3.2 automatically have
project level settings specifying where "system" include files are to be found.

This warning is innocuous, can be ignored and does not impact the build process. However if you
want to eliminate it then there are two options:

1. Recreate the project using SoftConsole v3.2 - create an empty project, import the

folders/files from the original and then apply the project settings in the original to the

new project. Because the project created with SoftConsole v3.2 or later has the relevant

system include paths specified in the project settings automatically the "unresolved

inclusion" annotations no longer appear.

2. Manually modify the system include path settings for the existing project as follows:

a. Right-click the project in Project Explorer and choose Properties

b. Go to C/C++ General > Paths and Symbols > Includes

http://www.eclipse.org/forums/index.php?t=msg&goto=223579

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 22 of 30

c. In the Languages list/tree view the following will be listed: GNU C and s,S. For

both of these add the following Include directories (adjusting the specific paths

if you have installed SoftConsole v3.4 in a non default location):

i. c:/program files/microsemi/softconsole

v3.4/sourcery-g++/lib/gcc/arm-none-

eabi/4.4.1/include

ii. c:/program files/microsemi/softconsole

v3.4/sourcery-g++/lib/gcc/arm-none-

eabi/4.4.1/include-fixed

iii. c:/program files/microsemi/softconsole

v3.4/sourcery-g++/arm-none-eabi/include

d. Click OK on the Properties dialog and when prompted to rebuild the project

index click Yes. Any previously displayed system include "unresolved inclusion"

annotations should now disappear.

29363 – Only a single debug session per host PC is supported: At the moment SoftConsole
uses a single "global" named mutex to ensure that, at most, a single debug session is active at
any one time. This is more restrictive than absolutely necessary and could be relaxed to allow for
a maximum of one debug session per attached FlashPro programmer. To do this the mutex name
should incorporate the FlashPro URI style name. This would allow for, say, two separate
instances of SoftConsole running each debugging a different target CPU over separate FlashPro
programmer connections.

Note that if more than one FlashPro programmer is attached then SoftConsole debugging will fail
with possibly arcane errors. If this happens then ensure that only one FlashPro programmer is
attached or else configure the debug launch configuration to explicitly select one of the two more
FlashPro programmers that are attached to the PC. To do this:

1. Run the debug sprite on the command line with the -i command line option to inquire

about the attached FlashPro programmers – e.g.:

C:\Program Files\Microsemi\SoftConsole v3.4\Sourcery-

G++\bin>arm-none-eabi-sprite -i

CodeSourcery ARM Debug Sprite (FlashPro Sprite 1.0-8 +

Actel 1.3.7-M3 + Flash Programming 1.2.2)

flashpro: [jtagclock=<n:93750-4000000>&cpu=<arch>] Actel

FlashPro device

flashpro://usb51451/ - Flash Pro 3B Device

flashpro://usb72412/ - Flash Pro 3B Device

2. Edit the debug launch configuration initialization commands to ensure that the debug

sprite is invoked with the identifier for the relevant FlashPro device:

target remote | "${eclipse_home}/../Sourcery-G++/bin/arm-

none-eabi-sprite" flashpro://usb72412?cpu=Cortex-M3

"${build_loc}"

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 23 of 30

29618 – Installer reports that no FlashPro programmer has been connected even when it
has on Windows 64 bit: on Windows 64 bit platforms even if a FlashPro programmer has been
or is still connected to the host PC the installer will report that this is not the case. This warning
can be safely ignored.

Firmware Catalog sample projects generated from Firmware Catalog Libero Configure
Firmware view do not automatically appear in Project Explorer: As mentioned previously in
the section about using the Firmware Catalog with SoftConsole, when a sample project is
generated from a firmware core into the SoftConsole workspace it does not automatically appear
in the SoftConsole IDE Project Explorer. Although the project files are resident in the workspace
folder it is still necessary to import the project manually into the workspace.

5.2 Flash Programming/Program Download

1246 – Cannot target a Microsemi CPU in a single JTAG chain with multiple devices:
SoftConsole can only target a Microsemi CPU for program download and debugging where it is
the only device in a JTAG chain. At the moment SoftConsole debug sprites do not support JTAG
bypassing of irrelevant devices or ―chained‖ debugging.

2306 – Writes to memory do not happen unless value different to that displayed: When
debugging, poking a value to a memory location in a Memory Monitor view only succeeds if the
value to be written is different from the value already displayed for that memory location. This
presents a problem with write-only locations which read as zero when you actively want to write
zero to this location. Some peripheral registers fall into this category. For example, you may write
0xFF to a register which always reads as 0x00 because of the way in which the hardware is
implemented. If you subsequently want to actually write 0x00 to this same register, the write will
not occur. The workaround is to initiate the write using a GDB command in the console window.
For example:

set *((unsigned char *)0x10000000) = 0x00

4521: CDT setting to display hex values does not take effect on variables in code window:
By default, SoftConsole's Eclipse CDT displays variables, expressions, and registers in decimal
values. Window > Preferences > C/C++ > Debug allows you to choose to display these values
in hexadecimal and other formats. These options control the way values appear in the Variables,
Expressions, and Register views. However, they do not affect the way variables and expressions
appear in the code editor window when debugging. Values continue to be displayed in decimal in
this window.

13218 – sprite should confirm that target memory write actually succeeded: Mismatches
between the target memory type (e.g. embedded/external SRAM versus embedded/external
NVM/flash), the linker scripts memory map descriptions and the selected debug launch
configuration can lead to confusing behaviour and arcane log messages. Always ensure that all
of these match up correctly.

14377, 14378, 24053 – Flash programming times can be quite slow in some
circumstances: Check the FlashPro device activity LED if SoftConsole seems to stall while
downloading a program to flash. The default timeout for actions to perform flash programming is
currently rather long; in situations where an incorrect base address was used for the flash
memory in question, the session would appear to hang indefinitely. Make sure the address
specified in your linker script matches the actual location of the flash memory device in your
design.

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 24 of 30

Flash programming log messages may not appear: When downloading to flash the flash
download progress messages may sometimes fail to appear even though download and
execution/debugging works properly.

5.3 Cortex-M3 Debugging
19480 – Registers view does not display all Cortex-M3 registers: The Registers view
currently only displays the Cortex-M1 register set even for Cortex-M3 so this means that the
Cortex-M3 BASEPRI and FAULTMASK registers are not displayed.

21132 – log messages when downloading to ENVM: When downloading programs to ENVM
SoftConsole will display a lot of red log messages reflecting the progress of the download. These
messages are normal and should not be confused with errors – e.g.:

load

Loading section .init, size 0x460 lma 0x60000000

Loading section .text, size 0x800c lma 0x60000460

Loading section .ARM.exidx, size 0x10 lma 0x6000846c

Loading section .data, size 0x530 lma 0x6000847c

arm-none-eabi-sprite: Using host routines for flash programming

arm-none-eabi-sprite: Start of flash programming

arm-none-eabi-sprite: Program 0x60000000 sector [0x0,+0x80) erase

write

arm-none-eabi-sprite: Program 0x60000000 sector [0x80,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x100,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x180,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x200,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x280,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x300,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x380,+0x80)

unchanged

arm-none-eabi-sprite: Program 0x60000000 sector [0x400,+0x80)

erase write

arm-none-eabi-sprite: Program 0x60000000 sector [0x480,+0x80)

erase write

...

arm-none-eabi-sprite: Program 0x60000000 sector [0x8800,+0x80)

erase write

arm-none-eabi-sprite: Program 0x60000000 sector [0x8880,+0x80)

erase write

arm-none-eabi-sprite: Program 0x60000000 sector [0x8900,+0x80)

erase write

arm-none-eabi-sprite: Program 0x60000000 sector [0x8980,+0x80)

erase write

arm-none-eabi-sprite: End of programming

Start address 0x298, load size 35244

Transfer rate: 1 KB/sec, 63 bytes/write.

Cortex-M3 debugging requires that linker script defines

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 25 of 30

__vector_table_vma_base_address symbol: The consolidated debug support for Cortex-

M3 targets make uses of an external GDB script to manage differences between the SmartFusion
and SmartFusion2 Cortex-M3 targets. In order to facilitate this the script uses a symbol named

__vector_table_vma_base_address to initialize the target for debugging. This symbol

provides the VMA (Virtual Memory Address or runtime memory address) for the base of the
program’s vector table and is expected to be provided by the linker script used to link the
program.

The sample linker scripts provided by the SmartFusion2 MSS CMSIS and Hardware Abstraction
Layer firmware core define this symbol. However the sample linker scripts provided by the current
released version of the SmartFusion CMSIS-PAL do not. A future update release of this firmware
core will address this issue. For now if you are using SoftConsole v3.4 to target SmartFusion
Cortex-M3 and get the following error when debugging:

No symbol "__vector_table_vma_base_address" in current context.

then you will need to edit the linker script used to add the require symbol and relink – for example
add the highlighted text:

SECTIONS

{

 .text :

 {

 CREATE_OBJECT_SYMBOLS

 __text_load = LOADADDR(.text);

 __text_start = .;

 __vector_table_vma_base_address = .;

 *(.isr_vector)

 ...

5.4 Core8051s
Addressing different Core8051s memory spaces using the debugger: To access different
memory spaces of a Core8051s design from the debugger, you must prefix the actual address
with a fixed memory space designator value, as outlined in the following table:

Memory Space Memory Space
Designator Prefix

Prefixed Address
Format (xx or xxxx is
the actual address in
the target memory
space)

Example

XDATA 0x00 0x00xxxx 0x00120C

DATA (including
SFRs in upper 128
bytes)

0x4000 0x4000xx 0x40004A

CODE 0x80 0x80xxxx 0x8000F3

IDATA Not supported Not supported Not supported

Note: these memory space designator prefixes are only needed when interacting with the target
using the debugger – they should not be used in your program code.

Breakpoints in Flash Memory used by the Core8051s: A debug session using a program
running from flash memory will only differ in the choice of breakpoints used by the debugger.
Software breakpoints are not possible because they depend upon the ability to write a trap
instruction (0xA5) at a given location, and flash memory is normally read-only. Instead, the

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 26 of 30

Core8051s debug sprite now also supports the use of hardware breakpoints if they are available
from a particular design.

A debug session will detect if up to four hardware breakpoints are available on the target. If too
many hardware breakpoints are requested, the console will show the error

c8051-elf-sprite: only 4 hardware breakpoints available

(The number 4 above may differ if you have fewer hardware breakpoints in your design.) If this
occurs, disable the extra breakpoints which will not yet be reached. When a given breakpoint
stops execution, disable its entry under the Breakpoints tab and enable the next one which you
expect your code to use.

Registers view include values for some pseudo-registers specific to SDCC:

 spx – stack pointer in XDATA memory

 bpx – frame pointer in XDATA memory

 bp – frame pointer in DATA memory

These are used by SDCC when you enable its use of a pseudo stack. In the Properties for your
project, select C/C++ Build and under SDCC Compiler, select Memory Options and click
Pseudo Stack (--xstack).

SDCC and Keil 8051 source code compatibility issues: For details of this issue please refer to
the SoftConsole v2.1 Release Notes.

12982 – Step Over sometimes acts like Step Into on lcall

12987 – 8051: issues with accessing APB XDATA memory: Viewing the APB region of
XDATA memory is restricted to just the first byte of each 4-byte location, regardless of the APB

data width configured in the Core8051s. As a possible workaround, you can observe the XWBn

and XRBn SFRs when APB transactions are occurring.

12991 - 8051: Problems with visibility/access to IDATA upper 128 bytes: The lower 128
bytes share the same physical memory with directly addressed internal data memory (DATA), so
they can still be viewed. However, the upper 128 bytes cannot be viewed. Also, the stack uses
the IDATA memory space and so cannot be accessed via the debugger if the stack grows into the
upper 128 bytes.

13001 – 8051: propagate memory model change details to all component tools: To change
the target memory model from the default option of large, you must select it for both the compiler
and the linker. If you only change it for the compiler, you will receive errors at link-time. To
change the memory model:

1. In the SoftConsole Project Explorer select your project, right-click and select Properties

2. Choose C/C++ Build > Settings

3. Under SDCC Linker > Memory Options select the appropriate option from the Memory

Model dropdown

4. Choose SDCC Linker > Miscellaneous

5. Click the + icon in the Other options section, and enter --model-small, --model-

medium, or --model-large according to the memory model that you wish to use.

Run C:\Program Files\Microsemi\SoftConsole v3.4\Sourcery-

G++\bin\sdcc --help or refer to the SDCC documentation (e.g. at

http://sdcc.sourceforge.net/) for more details on the SDCC compiler command line

options.

http://www.actel.com/download/software/softconsole/sc21.aspx
http://sdcc.sourceforge.net/

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 27 of 30

6. Click OK to accept the change, then click Apply and OK on the project's Properties

dialog box

13003 – 8051: omf2elf doesn't like trailing '/' in the '-i directory' argument: The c8051-elf-

omf2elf command has a -i <directory> option to specify a directory to look in to

automatically diagnose the correct combination of OMF and SDCC-generated CDB input files,
required to generate an ELF-format binary version of your program. This option will not accept a

directory name if it has a trailing '/' character, like -i ./. This will be fixed in a future release.

13043 – 8051: register view needs to be improved: Not all of the Special Function Registers
(SFRs) are displayed in the Registers view while debugging; only the accumulator "a", the "b"
register, and the data pointer "dptr" are included with the other more traditional registers. To see
other SFRs, you must use the Memory Monitor view, reading DATA memory in the upper 128
bytes (0x80—0xFF, or specifically 0x400080—0x4000FF as used in the view itself).

13045 – 8051: cannot create a debuggable release build executable: There is no way to
create an ELF-format debuggable application as a release build for the Core8051s target. The

result of a release build is an Intel Hex file (*.ihx), which will need to be appropriately loaded

onto your target.

13046 – 8051: need better control over SDCC optimization options: SoftConsole uses a
number of SDCC options to disable most optimizations that cause problems with debugging. By
default, SDCC compiles all optimizations and there is no flag dedicated to enabling or disabling
them all as a group.

13064 – 8051: XDATA local variable can cause C source level debugging problems.

14536 – 8051: Build fails with missing output files if source file containing main() and

project have the same name: The c8051-elf-omf2elf command may fail if a project

contains a source file that has the same name as the project. In particular, if you have a project

named "test" and a source file named "test.c" containing the definition of main(), then you may

get the following error:

'Invoking: CodeSourcery OMF2ELF Converter'

c8051-elf-omf2elf -c -i .

omf2elf: could not open test: No such file or directory

make: *** [default.elf] Error 1

The workaround is to rename the source file so that it has a different name from that of the
project.

14756 – Port P2 required by SDCC --xstack option not supported: Core8051s does not

support the P2 port required by the SDCC --xstack (external stack) compilation option. This

option should not be used.

14807 – c8051-elf-omf2elf generates "Detected inconsistent/missing symbol location

information" messages: This can happen due to the way in which SDCC generates and links

code in some circumstances. In order to obtain more details, run c8051-elf-omf2elf with the

-v (verbose) flag. Right-click the Core8051s project in Project Explorer, choose Properties >

C/C++ Build > Settings > CodeSourcery OMF2ELF Converter, and append -v to the

Command field.

17897 – 8051: build errors with extern functions: Due to a bug in SDCC v2.6.3 if you do:

extern void foo() {}

SDCC does not make foo a global symbol, but if you do:

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 28 of 30

extern void foo();

void foo() {}

it does and correctly emits:

global _foo

17899 – 8051: various CDT options ignored by SDCC: Some project configuration options
presented by CDT are not relevant to SDCC and may cause compile errors if used. For example:

 Properties > Tool Settings > SDCC Compiler > Misc

o Support ANSI program (-ansi)

 Properties > Tool Settings > SDCC Linker > General

o Do not use standard start files (-nostartfiles)

o Do not use default libraries (-nodefaultlibs)

o No startup or default libs (-nostdlib)

17900 – 8051: cannot find source files in project when debugging: The combination of SDCC
and Eclipse/CDT in SoftConsole do not cope well with source file names that use hyphens or
spaces. The workaround is to avoid the use of hyphens or spaces in source file names for
Core8051s projects.

17931 – 8051: incremental build with SDCC -v (verbose) enabled gives meaningless error:
Enable verbose output in a project using Project Properties > C/C++ Build > Settings > Tool
Settings > SDCC Compiler > Miscellaneous > Verbose (-v). Build the project. The project
should build OK and give verbose progress info as it does. When it finishes choose build (just
build - not clean and build) again and you get something like this:

**** Build of configuration Debug for project test8051 ****

make all

foobar.d:5: *** multiple target patterns. Stop.

18435 – 8051: "BFD: Dwarf Error: mangled line number section" errors when building:
when building 8051 programs sometimes the following type of errors are displayed:

c8051-elf-objdump -h -S 8051blinky.elf > "8051blinky.lst"

BFD: Dwarf Error: mangled line number section.

BFD: Dwarf Error: mangled line number section.

BFD: Dwarf Error: mangled line number section.

BFD: Dwarf Error: mangled line number section.

'Finished building: 8051blinky.lst'

18934 – 8051: debug session reports error but none in project: If SDCC sees unreachable
code it will issue a warning during compile. However, currently SoftConsole sees all messages
from SDCC as compiler errors, and will claim your build failed. This can make attempts to launch
a debug session produce a dialog about an error in your workspace. While you can tell it to
continue to launch your debug session, as another workaround you can instead make
SoftConsole build your project again. This error state will go away because there will be no other
commands to be run, which SoftConsole will interpret as meaning the build was successful.

20573 - 8051: PSW SFR may be misreported depending on how it is accessed: access to
the PSW SFR via DATA memory space (upper 128 bytes) may report the wrong value compared

to accesses via the Registers view or p $psw GDB console command.

30301 - 8051: assembler build step missing from project settings: in SoftConsole v3.3 (and
SoftConsole v3.2 but not SoftConsole v3.1 and earlier) the SDCC assembler build step is missing
from the default Core8051s project tool settings for the Debug configuration/build target. Because

of this projects that use assembler (*.s or *.S) source files will not link properly. For example a

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 29 of 30

project that uses the HAL (Hardware Abstraction Layer) firmware core configured for Core8051s
large memory model will generate the following errors at link time:

'Invoking: SDCC Linker'

sdcc --debug --noinduction --nooverlay --no-peep --model-large -

o"test8051.hex" ./main.rel ./hal/Core8051s/SDCC/hal_assert.rel

./hal/Core8051s/SDCC/hw_reg_access.rel

./drivers/CoreGPIO/core_gpio.rel

?ASlink-Warning-Undefined Global '_HW_set_32bit_reg' referenced

by module '___hal_Core8051s_SDCC_hw_reg_access'

?ASlink-Warning-Undefined Global '_HW_set_32bit_reg' referenced

by module '___drivers_CoreGPIO_core_gpio'

?ASlink-Warning-Undefined Global '_HW_set_16bit_reg' referenced

by module '___hal_Core8051s_SDCC_hw_reg_access'

?ASlink-Warning-Undefined Global '_HW_set_16bit_reg' referenced

by module '___drivers_CoreGPIO_core_gpio'

...

The workaround for this problem is to manually add the SDCC assembler build step to the
project’s tool settings for the Debug configuration/build target as follows.

1. Right-click the Core8051s project in SoftConsole’s Project Explorer and choose

Properties.

2. Go to C/C++ Build > Tool Chain Editor

3. From the Configuration dropdown list choose Debug.

4. Under Used tools click the Select Tools button

5. In the Select tools dialog select SDCC Assembler from the Available tools list and click

the Add tool button to add it to the Used tools list.

6. Click OK in the Select tools dialog.

7. Click OK in the project Properties dialog.

8. Right-click the Core8051s project in SoftConsole’s Project Explorer and choose Clean

Project followed by Build Project and the project (including any assembler source files)

will now build and link correctly.

6 Documentation
Please refer to the Microsemi (formerly Actel) website (www.actel.com) for more extensive
documentation on how to use SoftConsole.

7 System Requirements

7.1 Supported Platforms

 Microsoft Windows 8 Pro or Enterprise 32-bit and 64-bit

http://www.actel.com/

SoftConsole v3.4 Release Notes Rev: 1.0

Microsemi 2013 Page 30 of 30

 Microsoft Windows 7 Professional 32-bit and 64-bit

 Microsoft Windows Vista Business 32-bit and 64-bit

 Microsoft Windows XP Professional with SP3 32-bit and 64-bit

 SoftConsole may run on other Windows 8/Windows 7/Vista/XP variants but it is not

supported on anything other than those listed above.

Note: Administrator privileges are required in order to install SoftConsole. Once installed
administrator privileges are not required in order to use SoftConsole.

7.2 Software Environment
In order to use SoftConsole to download and debug programs on a hardware target (for example,
a development board), you must first attach a FlashPro programmer device to a USB port on your
computer and install the required drivers. Make sure to do this before attempting to download and
debug programs on a hardware target. Failing to attach the required programmer results in the
following error when attempting to access the hardware target:

error: No FlashPro device found

Refer to the FlashPro Installation Instructions

(http://www.actel.com/download/program_debug/flashpro/default.aspx) for more information
about installing the required FlashPro software, hardware, and drivers.

8 Licensing
The individual licenses for the elements that make up SoftConsole are presented during the
installation process for your review and acceptance. SoftConsole includes tools covered by the
following licenses:

 Eclipse Foundation Software User Agreement

 Eclipse Public License - v 1.0

 CodeSourcery Sourcery G++ Software License Agreement

 GNU GENERAL PUBLIC LICENSE, Version 2, June 1991

 GNU LIBRARY GENERAL PUBLIC LICENSE, Version 2, June 1991

 GNU LESSER GENERAL PUBLIC LICENSE, Version 2.1, February 1999

 expat license

 newlib license

 Oracle Java JRE license

 Oracle Java JRE Third Party Licenses

 GNU GENERAL PUBLIC LICENSE, Version 3, 29 June 2007

 GNU RUNTIME LIBRARY EXCEPTION, Version 3.1, 31 March 2009

 GNU LESSER GENERAL PUBLIC LICENSE, Version 3, 29 June 2007

 Libgloss license

 GNU Free Documentation License, Version 1.3, 3 November 2008

 GNU Free Documentation License, Version 1.2, November 2002

http://www.actel.com/download/program_debug/flashpro/default.aspx

	Introduction
	What’s New
	Component Tool Versions
	New Features
	Support for Microsemi SmartFusion2 cSoC
	Consolidated debug support for Cortex-M3 targets
	Fixes and improvements

	Fixes and Improvements

	Using SoftConsole v3.4 with SmartFusion2
	SmartFusion2 board JTAG_SEL configuration
	Targeting SmartFusion2 Cortex-M3
	Creating programs
	drivers_config/sys_config
	Consolidated debug support for Cortex-M3 targets

	Cortex-M3 Linker Scripts
	Overview
	Linker scripts
	Linker scripts bundled with the CMSIS
	Other linker scripts
	User modified linker scripts
	debug-in-actel-smartfusion-envm.ld debug-in-microsemi-smartfusion2-envm.ld
	debug-in-actel-smartfusion-esram.ld debug-in-microsemi-smartfusion2-esram.ld
	debug-in-external-ram.ld
	production-execute-in-place.ld
	production-relocate-executable.ld
	debug-in-external-flash.ld

	Configuring the linker script for your project

	Known Limitations, Issues, and Workarounds
	General
	Flash Programming/Program Download
	Cortex-M3 Debugging
	Core8051s

	Documentation
	System Requirements
	Supported Platforms
	Software Environment

	Licensing

