Synopsys FPGA Synthesis

Synplify Pro for Microsemi
Edition

User Guide

February 2013

SYNOPSYS

Copyright Notice and Proprietary Information

Copyright © 2012 Synopsys, Inc. All rights reserved. This software and
documentation contain confidential and proprietary information that is the
property of Synopsys, Inc. The software and documentation are furnished
under a license agreement and may be used or copied only in accordance
with the terms of the license agreement. No part of the software and
documentation may be reproduced, transmitted, or translated, in any form or
by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the
license agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of and its
employees. This is copy number ”

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
2 February 2013

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, COMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 3

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective

OoOwWners.

Printed in the U.S.A
February 2013

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide

4 February 2013

Contents

Chapter 1: Introduction

Synopsys FPGA and Prototyping Products 14
FPGA Implementation Tools 14
Synopsys FPGA Tool Features i, 16

Scopeofthe Document e 19
The Document Set 19
AUdIENCE . . . 19

Getting Started e 20
Startingthe Software 20
Getting Help 20

User Interface Overview i e 22

Chapter 2: FPGA Synthesis Design Flows

Logic Synthesis Design Flow 24

Chapter 3: Preparing the Input

Setting Up HDL Source Files e 28
Creating HDL Source Files, 28
Using the Context Help Editor 30
Checking HDL Source Files e 31
Editing HDL Source Files with the Built-in Text Editor 32
Setting Editing Window Preferences 35
Using an External TextEditor 37

Using Mixed Language Source Files 38

Working with Constraint Files 43
When to Use Constraint Files over Source Code 43
Using a Text Editor for Constraint Files (Legacy) 44
Tcl Syntax Guidelines for ConstraintFiles 45
Checking Constraint Files 46

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.

February 2013 5

Generating Constraint Files for Forward Annotation 47

Chapter 4: Specifying Constraints

Usingthe SCOPE Editor e 50
Creating Constraints in the SCOPE Editor 50
Specifying SCOPE Constraints e 55
Entering and Editing Scope Constraints 55
Setting Clock and Path Constraints 58
Specifying Standard /O Pad Types 61
Using the TCL View of SCOPE GUI 61
Guidelines for Entering and Editing Constraints 64
Specifying Timing Exceptions 68
Defining From/To/Through Points for Timing Exceptions 68
Defining Multicycle Paths 72
Defining False Paths i 73
Using ColleCtions e 74
Comparing Methods for Defining Collections 74
Creating and Using Collections (SCOPE Window) 75
Creating Collections (Tcl Commands) i, 78
Using the Tcl Find Command to Define Collections 81
Using the Expand Tcl Command to Define Collections 83
Viewing and Manipulating Collections (Tcl Commands) 84
Converting SDCto FDC e 89
Using the SCOPE Editor (Legacy) i 90
Entering and Editing SCOPE Constraints (Legacy) 92
Specifying SCOPE Timing Constraints (Legacy) 93
Entering Default Constraints 94
Setting Clock and Path Constraints 94
Defining Clocks 97
Defining Input and Output Constraints (Legacy) 104
Defining False Paths (Legacy) 105

Chapter 5: Setting up a Logic Synthesis Project

Setting Up Project Files 108
Creatinga ProjectFile 108
Opening an Existing ProjectFile 111
Making ChangestoaProject 112
Setting Project View Display Preferences 113
Updating Verilog Include Paths in Older ProjectFiles 116

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide

6 February 2013

Project File Hierarchy Management 117

Creating Custom Folders i 117
Other Custom Folder Operations 120
Other Custom File Operations i 121
Setting Up Implementations and Workspaces 124
Working with Multiple Implementations 124
Creating Workspaces i 126
Using WOrKSPaceso e e 127
Setting Logic Synthesis Implementation Options 128
Setting Device Oplions e 128
Setting Optimization Options i 131
Specifying Global Frequency and ConstraintFiles 132
Specifying Result Options 134
Specifying Timing Report Output 136
Setting Verilogand VHDL Options i 136
Specifying Attributes and Directives 141
Specifying Attributes and Directivesin VHDL 143
Specifying Attributes and Directivesin Verilog 144
Specifying Attributes Using the SCOPE Editor 145
Specifying Attributes in the Constraints File 148
Searching Files 150
Identifying the Filesto Search 151
Filteringthe FilestoSearch 151
Initiating the Search 152
Search Results 152
Archiving Files and Projects 153
Archive a Project e 153
Un-Archive a Project 157
CopyaProject 160

Chapter 6: Inferring High-Level Objects

Defining Black Boxes for Synthesis 166
Instantiating Black Boxes and I/OsinVerilog 166
Instantiating Black Boxes and I/Osin VHDL 168
Adding Black Box Timing Constraints 170
Adding Other Black Box Attributes 174

Defining State Machines for Synthesis 175
Defining State MachinesinVerilog 175
Defining State Machinesin VHDL 176

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.

February 2013 7

Specifying FSMs with Attributes and Directives 177

Inferring RAMS 179
Inference Versus Instantiation 179
Basic Guidelines for Coding RAMSs i 180
Specifying RAM Implementation Styles 184

Initializing RAMS e 185
Initializing RAMs in Verilog 185
Initializing RAMs in VHDL 186

Chapter 7: Specifying Design-Level Optimizations

Tips for Optimization 192
General Optimization Tips it e e 192
Optimizing for Area 193
Optimizing for Timing e 194

Retiming ... 196
Controlling Retiming e 196
Retiming Example 198
Retiming Report 199
How Retiming Works e 200

Preserving Objects from Optimization 203
Using syn_keep for Preservation or Replication 204
Controlling Hierarchy Flattening 207
Preserving Hierarchy 207

Optimizing Fanout 209
Setting Fanout Limits e 209
Controlling Buffering and Replication 211

Sharing ReSOUICES e 213

Inserting [/Os 218

Optimizing State Machines 218
Deciding when to Optimize State Machines 219
Running the FSM Compiler 221
Runningthe FSM EXplorer e 224

Inserting Probes 227
Specifying Probes inthe Source Code 227
Adding Probe Attributes Interactively 228

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide

8 February 2013

Chapter 8: Synthesizing and Analyzing the Log Results

Synthesizing Your Design 232
Running Logic Synthesis 232
Using Up-to-date Checking for Job Management 232

Checking Log Results 237
Viewingthe Log File 237
Analyzing Results Using the Log File Reports 240
Using the Watch Window 241

Handling Messageso e e 243
Checking Results in the Message Viewer 243
Filtering Messages in the Message Viewer 245
Filtering Messages from the Command Line 248
Automating Message Filtering with a Tcl Script 249
Log File Message Controls i 250
Handling Warnings e 253

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Working in the Schematic Views 256
Differentiating Betweenthe Views 257
Openingthe Views 257
Viewing Object Properties 258
Selecting Objects in the RTL/Technology Views 263
Working with Multisheet Schematics 265
Moving Between Views in a Schematic Window 266
Setting Schematic View Preferences 267
Managing Windows e 269

Exploring Design Hierarchy 270
Traversing Design Hierarchy with the Hierarchy Browser 270
Exploring Object Hierarchy by Pushing/Popping 271
Exploring Object Hierarchy of Transparent Instances 277

Finding Objects 278
Browsing to Find Objects in HDL Analyst Views 278
Using Find for Hierarchical and Restricted Searches 280
Using Wildcards with the Find Command 283
Combining Find with Filtering to Refine Searches 288
Using Find to Search the Output Netlist 288

CroSSpProbiNgt 291
Crossprobing within an RTL/Technology View 291
Crossprobing from the RTL/Technology View 292

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.

February 2013 9

Crossprobing from the Text Editor Window 294

Crossprobing from the Tcl Script Window 297
Crossprobing fromthe FSM Viewer 298
Analyzing With the HDL Analyst Tool 299
Viewing Design Hierarchyand Context 300
Filtering Schematics 303
Expanding Pinand NetLogic 305
Expanding and Viewing Connections, 309
Flattening Schematic Hierarchy 310
Minimizing Memory Usage While Analyzing Designs 315
Usingthe FSM Viewer e e 315

Chapter 10: Analyzing Timing

Analyzing Timing in Schematic Views 322
Viewing Timing Information 322
Annotating Timing Information in the Schematic Views 323
Analyzing Clock Treesinthe RTL View 325
Viewing Critical Paths 325
Handling Negative Slack 328

Generating Custom Timing Reports with STA 329

Using Analysis Design Constraints 332
Scenarios for Using Analysis Design Constraints 333
Creatingan ADC File e 334
Using Object Names Correctly inthe adcFile 338

Using Auto Constraints 339
Results of Auto Constraints 341

Chapter 11: Optimizing for Microsemi Designs

Optimizing Microsemi Designs e 346
Using Predefined MicrosemiBlack Boxes 346
Using Smartgen Macros i 347
Working with Radhard Designs i 347
Specifying syn_radhardlevel in the Source Code 348

Chapter 12: Working with Synthesis Output

Passing Informationtothe P&R Tools 352
Specifying Pin Locations 352
Specifying Locations for MicrosemiBus Ports 353
Specifying Macro and Register Placement 353

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide

10 February 2013

Generating Vendor-Specific Qutput 354
Targeting Outputto YourVendor 354
Customizing Netlist Formats 355

Chapter 13: Running Post-Synthesis Operations

Running Place-and-Route after Synthesis 358
Working with the Identify Tool Set 359
Launching from the Synplify Pro Tool 359
Handling Problems with Launching Identify 361
Using the Identify Tool 362
Using Compile Points with the Identify Tool 364
Simulating withthe VCS Tool i 366
Chapter 14: Working with IP Input
Generating IP with SYNCore i 372
Specifying FIFOs with SYNCore i 372
Specifying RAMs with SYNCore i, 378
Specifying Byte-Enable RAMs with SYNCore 385
Specifying ROMs with SYNCore 391
Specifying Adder/Subtractors with SYNCore 396
Specifying Counters with SYNCore 403
The Synopsys FPGA IP EncryptionFlow 409
Overview of the Synopsys FPGAIPFlow 409
Encryption and Decryption 410
Working with Encrypted IP 415
Encrypting Your 1P 415
Encrypting IP with the encryptP1735.pl Script 416
Encrypting IP with the encryptlP Script 418
Specifying the Script Output Method 419
Preparingthe IP Package 421
Using HYper SOUrce e e e 424
Using Hyper Source for Prototyping 424
Using Hyper Source for IP Designs, 424
Threading Signals Through the Design Hierarchy ofanIP 425

Chapter 15: Working with Compile Points

Compile Point BasiCs 430
Advantages of Compile PointDesign 430
Manual Compile Points 432

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.

February 2013 11

Nested Compile Points 433

Compile Point Typest e 435
Compile Point SynthesisBasics 439
Compile Point ConstraintFiles 439
Interface Logic Models 442
Interface Timing for Compile Points 442
Compile Point Synthesis 445
Incremental Compile Point Synthesis 448
Forward-annotation of Compile Point Timing Constraints 449
Synthesizing Compile Points 449
The Manual Compile PointFlowc..... 450
Creating a Top-Level Constraints File for Compile Points 452
Defining Manual Compile Points, 453
Setting Constraints at the Compile PointLevel 456
Analyzing Compile PointResults 458
Using Compile Points with Other Features 460
Combining Compile Points with Multiprocessing 460
Resynthesizing Incrementally 461
Resynthesizing Compile Points Incrementally 461

Chapter 16: Process Optimization and Automation

UsingBatch Mode 466
Running Batch Mode on a ProjectFile 466
Running Batch Mode witha Tcl Script 467
License QUEUING it 468

Working with Tcl Scriptsand Commands 472
Using Tcl Commands and Scripts 472
GeneratingaJob Script 473
Setting Number of Parallel Jobs 473
Creating a Tcl Synthesis Script i 474
Using Tcl Variables to Try Different Clock Frequencies 476
Using Tcl Variables to Try Several Target Technologies 478
Running Bottom-up Synthesis witha Script 479

Automating Flows with synhooks.tcl 479

Chapter 17: Using Multiprocessing

Multiprocessing With Compile Points 484
Setting Maximum Parallel Jobs 484
License Utilization 485

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide

12 February 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 1

Introduction

This introduction to the Synplify Pro® software describes the following:
* Synopsys FPGA and Prototyping Products, on page 14
* Scope of the Document, on page 19
* Getting Started, on page 20

* User Interface Overview, on page 22

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 13

Chapter 1: Introduction Synopsys FPGA and Prototyping Products

Synopsys FPGA and Prototyping Products

The following figure displays the Synopsys FPGA and Prototyping family of
products.

Synplify Pro°
Advanced FPGA Synthesis

FPGA ?Synplif\f Premier

Implementation The Ultimate FPGA Implementation Platform

Identify” Tool Set
Identify Instrumentor and Identify Debugger

High-Level Synphony Model Compiler
Synthesis Language and Model-Based High-Level Synthesis

Q Certify”
Multi-FPGA ASICPrototyping
ASIC/ASSP HAPSTHM
Rapid Prototvpingv High-Performance ASIC Prototyping System™

) CHIPit® Platinum & Iridium
| AutomatedPrototyping Systems

FPGA Implementation Tools

The Synplify Pro and Synplify Premier products are RTL synthesis tools
especially designed for FPGAs (field programmable gate arrays) and CPLDs
(complex programmable logic devices).

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
14 February 2013

Synopsys FPGA and Prototyping Products Chapter 1: Introduction

Synplify Pro Product

The Synplify Pro FPGA synthesis software is the de facto industry standard
for producing high-performance, cost-effective FPGA designs. Its unique
Behavior Extracting Synthesis Technology® (B.E.S.T.™) algorithms, perform
high-level optimizations before synthesizing the RTL code into specific FPGA
logic. This approach allows for superior optimizations across the FPGA, fast
runtimes, and the ability to handle very large designs. The Synplify Pro
software supports the latest VHDL and Verilog language constructs including
SystemVerilog and VHDL 2008. The tool is technology independent allowing
quick and easy retargeting between FPGA devices and vendors from a single
design project.

Synplify Premier Product

The Synplify Premier solution is a superset of the Synplify Pro product
functionality and is the ultimate FPGA implementation and debug
environment. It provides a comprehensive suite of tools and technologies for
advanced FPGA designers, as well as ASIC prototypers targeting single
FPGA-based prototypes. The Synplify Premier software is a technology
independent solution that addresses the most challenging aspects of FPGA
design including timing closure, logic verification, IP usage, ASIC compati-
bility, DSP implementation, debug, and tight integration with FPGA vendor
back-end tools.

The Synplify Premier product offers FPGA designers and ASIC prototypers,
targeting single FPGA-based prototypes, with the most efficient method of
design implementation and debug. The Synplify Premier software provides
in-system verification of FPGAs, dramatically accelerates the debug process,
and provides a rapid and incremental method for finding elusive design
problems.

Features exclusively supported in the Synplify Premier tool are the following:
* Fast and Enhanced Synthesis Modes
* Physical Synthesis
* Design Planning (Optional)
* DesignWare Support
* Integrated RTL Debug (Identify Tool Set)
* Power Switching Activity (SAIF Generation)

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 15

Chapter 1: Introduction

Synopsys FPGA and Prototyping Products

Synopsys FPGA Tool Features

This table distinguishes between the Synplify Pro, Synplify, Synplify Premier,
and Synplify Premier with Design Planner products.

Synplify Synplify Synplify Synplify
Pro

Performance

Behavior Extracting Synthesis X

Technology® (BEST™)

Vendor-Generated Core/IP
Support (certain technologies)

FSM Compiler X

FSM Explorer
Gated Clock Conversion
Register Pipelining

Register Retiming

Code Analysis
SCOPE® Spreadsheet X
HDL Analyst® Option

Timing Analyzer — Point-to-point
FSM Viewer

Crossprobing

Probe Point Creation

Physical Design

Design Plan File

Logic Assignment to Regions

Area Estimation and Region
Capacity

Pin Assignment

Copyright © 2013 Synopsys, Inc.
16

Premier Premier DP

X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X

X

X

X

X

Synplify Pro for Microsemi Edition User Guide
February 2013

Synopsys FPGA and Prototyping Products Chapter 1: Introduction

Synplify Synplify Synplify Synplify
Pro Premier Premier DP

Physical Synthesis X
Optimizations

Graph-based Physical Synthesis X X
Physical Analyst X X
Prototyping X X
Synopsys DesignWare X X

Foundation Library

Runtime Advantages

Enhanced Optimization X X
Fast Synthesis X X

Team Design

Mixed Language Design X X X

Compile Points X X X

True Batch Mode (Floating X X X

licenses only)

GUI Batch Mode (Floating X X X X

licenses)

Batch Mode Post-synthesis P&R - X X X

Run

Back-annotation of P&R Data - - - X

Formal Verification Flow X X X
(Physical (Physical
synthesis synthesis
disabled) disabled)

Identify Integration Limited X X X

Back-annotation of P&R Data X

Design Environment

Technical Resource Center X X X X

Text Editor View X X X X
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 17

Chapter 1: Introduction

Synopsys FPGA and Prototyping Products

Watch Window

Message Window

Tcl Window

Workspaces

Multiple Implementations

Vendor Technology/Family
Support

Copyright © 2013 Synopsys, Inc.
18

Synplify Synplify Synplify Synplify
Pro Premier Premier DP

X X X
X X X
X X X
X X X
X X X
X X Limited Limited

Synplify Pro for Microsemi Edition User Guide
February 2013

Scope of the Document Chapter 1: Introduction

Scope of the Document

The following explain the scope of this document and the intended audience.

The Document Set

This user guide is part of a document set that includes a reference manual
and a tutorial. It is intended for use with the other documents in the set. It
concentrates on describing how to use the Synopsys FPGA software to
accomplish typical tasks. This implies the following:

* The user guide only explains the options needed to do the typical tasks
described in the manual. It does not describe every available command
and option. For complete descriptions of all the command options and
syntax, refer to the User Interface Overview chapter in the Synopsys
FPGA Synthesis Reference Manual.

* The user guide contains task-based information. For a breakdown of
how information is organized, see Getting Help, on page 20.

Audience

The Synplify Pro software tool is targeted towards the FPGA system developer.
It is assumed that you are knowledgeable about the following:

* Design synthesis
* RTL

* FPGAs

* Verilog/VHDL

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 19

Chapter 1: Introduction Getting Started

Getting Started

This section shows you how to get started with the Synopsys FPGA synthesis
software. It describes the following topics, but does not supersede the infor-
mation in the installation instructions about licensing and installation:

¢ Starting the Software, on page 20
* Getting Help, on page 20

Starting the Software

1. If you have not already done so, install the Synopsys FPGA synthesis
software according to the installation instructions.

2. Start the software.

— If you are working on a Windows platform, select
Programs->Synopsys->product version from the Start button.

— If you are working on a UNIX platform, type the appropriate
command at the command line:

synplify pro

* The command starts the synthesis tool, and opens the Project window. If
you have run the software before, the window displays the previous
project. For more information about the interface, see the User Interface
Overview chapter of the Reference Manual.

Getting Help

Before you call Synopsys Support, look through the documented information.
You can access the information online from the Help menu, or refer to the PDF
version. The following table shows you how the information is organized.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
20 February 2013

Getting Started Chapter 1: Introduction

For help with... Refer to the...

Using software features Synopsys FPGA Synthesis User Guide

How to... Synopsys FPGA Synthesis User Guide,
application notes on the support web site

Flow information Synopsys FPGA Synthesis User Guide,
application notes on the support web site

Error messages Online help (select Help->Error Messages)

Licensing Synopsys SolvNet Website

Attributes and directives Synopsys FPGA Synthesis Reference Manual

Synthesis features Synopsys FPGA Synthesis Reference Manual

Language and syntax Synopsys FPGA Synthesis Reference Manual

Tcl syntax Online help (select Help->Tcl Help)

Tcl synthesis commands Synopsys FPGA Synthesis Reference Manual

Product updates Synopsys FPGA Synthesis Reference Manual

(Web menu commands)

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 21

Chapter 1: Introduction User Interface Overview

User Interface Overview

The user interface (Ul) consists of a main window, called the Project view, and
specialized windows or views for different tasks. For details about each of the
features, see Chapter 2, User Interface Overview of the Synopsys FPGA
Synthesis Reference Manual.

Synplify Pro Interface

Button Panel Toolbars Projectview Status Implementation Results view
P50 Rk fdE View Project Impart Fun Anclyss Hebaayst Optiors wipfhw TachSuspart e Halp i
E LA B BTN e a8 a 6 R ol o
SN N JE-R
Synplify Pro®
Done: 0 emors, 0w Saarch Sobiiet
| T3 Dpen Proect.. | Pruect Ak erarcy prupd Stete | mpkmentation o Prisoezs Viem
——— 1 Datoriad i we_1 it _uc] - Ack Prise)C3E | AFPESO) | POFPEH | -1
R Coen Pt | [- 8 mutorag” cainkaniahtoraLar] Peojact Satings :
|l A Fike., -'Mlllu Project Hama | tutarial |Imgdameartatian Name: | s 1
% Charge Fie D Contraint T Motz [moni e e |Rntiming [0
T i s s Shiineg [1 [Fanuut Guite D
I Dk KO Inserion] FSM Compler 1
(G tmpkemenkation Options..
9% 4cd PAR Implementation & Foum Status
&, View Log Job M [Status |) |86 [CPU Tam |Rasd Tames |Mimecry | DatoTims
Fraquancy (WHZ): Comple ot | Compinte | 230 |0 |- i : ey
2w o o Premos [P P L e A e
:;Nw:u;“:l:"w _ Mo & Optmaze | oo | 360 |0 | Ometle [LAFN T i
5 Explarer
Feecource Sharing “ frnn Samemary
Feetiming Cors Calle | 2154 |10 Calle 6
[Black RAMs _ﬂ
Detaies report
< : L i :
Clock Hams: Ry Frug |E=Frug |sanck
clogk 1860 MHz S0 MHz -14 446
Ostaied o
T tuiorialpri *
=
0 wambgs, 43 nobes = | | Set Aker. | Apply Filter | [v| Grouplommon [D's
Ty o Massage Sawta Lacaton Fapart B
] WFLE Faund RAM rage mam_rigfiel7:0]', 32 wards b (99 Goy (17) - Pre-miapping RApart
u MOLDS Found FdM, 'rom. Data_[11:07", 9% words by 12 s romodd G23) Pre-mapping Rapark
o BO3 Witing defaul property annataen e CWILE. - i35, Pro-mapping Rapert =
s@le om0 ating tima rsbton b s il el [125) - Compiker Rapart &
TOsdpt | Mossagas
== S -]
Tl Script/Messages Window Watch Window

Tabs to access
views

Copyright © 2013 Synopsys, Inc.
22

Synplify Pro for Microsemi Edition User Guide
February 2013

SYNOPSys

CHAPTER 2

FPGA Synthesis Design Flows

This chapter describes the Logic Synthesis Design Flow, on page 24.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 23

Chapter 2: FPGA Synthesis Design Flows Logic Synthesis Design Flow

Logic Synthesis Design Flow

The Synopsys FPGA tools synthesize logic by first compiling the RTL source,
and then doing logical mapping and optimizations. After logic synthesis, you
get a vendor-specific netlist and constraint file that you use as inputs to the
place-and-route (P&R) tool.

The following figure shows the phases and the tools used for logic synthesis
and some of the major inputs and outputs. You can use the Synplify Pro
synthesis software for this flow. The interactive timing analysis is optional.
Although the flow shows the vendor constraint files as direct inputs to the
P&R tool, you should add these files to the synthesis project for timing black

boxes.

Synopsys FPGA Tool
RTL—> RTL Compilation
FDC —> Logic Synthesis

Synthesized netlist
Synthesis constraints
Vendor constraints

l Vendor Tool

Place & Route

Logic Synthesis Procedure

For a design flow with step-by-step instructions based on specific design
data, download the tutorial from the website. The following steps summarize
the process, which is also illustrated in the figure that follows.

1. Create a project.
2. Add the source files to the project.

3. Set attributes and constraints for the design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
24 February 2013

Logic Synthesis Design Flow Chapter 2: FPGA Synthesis Design Flows

4. Set options for the implementation in the Implementation Options dialog
box.

5. Click Run to run logic synthesis.

6. Analyze the results, using the log file, the HDL Analyst schematic views,
the Message window and the Watch Window.

After you have completed the design, you can use the output files to run
place-and-route with the vendor tool and implement the FPGA.

The following figure lists the main steps in the flow:

Create Project

5 Add Source Files

»! Set Constraints

| I Set Options

Run the Software

Analyze Results

No

@ Yes

Place and Route

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 25

Chapter 2: FPGA Synthesis Design Flows Logic Synthesis Design Flow

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
26 February 2013

SYNOPSYs

celerating Innovation

CHAPTER 3

Preparing the Input

When you synthesize a design, you need to set up two kinds of files: HDL files
that describe your design, and project files to manage the design. This
chapter describes the procedures to set up these files and the project. It
covers the following:

* Setting Up HDL Source Files, on page 28
* Using Mixed Language Source Files, on page 38
* Working with Constraint Files, on page 43

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 27

Chapter 3: Preparing the Input Setting Up HDL Source Files

Setting Up HDL Source Files

This section describes how to set up your source files; project file setup is
described in Setting Up Project Files, on page 108. Source files can be in

Verilog or VHDL. For information about structuring the files for synthesis,
refer to the Reference Manual. This section discusses the following topics:

¢ Creating HDL Source Files, on page 28

¢ Using the Context Help Editor, on page 30

* Checking HDL Source Files, on page 31

¢ Editing HDL Source Files with the Built-in Text Editor, on page 32
* Using an External Text Editor, on page 37

* Setting Editing Window Preferences, on page 35

Creating HDL Source Files

This section describes how to use the built-in text editor to create source
files, but does not go into details of what the files contain. For details of what
you can and cannot include, as well as vendor-specific information, see the
Reference Manual. If you already have source files, you can use the text editor
to check the syntax or edit the file (see Checking HDL Source Files, on

page 31 and Editing HDL Source Files with the Built-in Text Editor, on

page 32).

You can use Verilog or VHDL for your source files. The files have v (Verilog) or
vhd (VHDL) file extensions, respectively. You can use Verilog and VHDL files
in the same design. For information about using a mixture of Verilog and
VHDL input files, see Using Mixed Language Source Files, on page 38.

1. To create a new source file either click the HDL file icon () or do the
following:

— Select File->New or press Cirl-n.

— In the New dialog box, select the kind of source file you want to create,
Verilog or VHDL. Note that you can use the Context Help Editor for
Verilog designs that contain SystemVerilog constructs in the source
file. For more information, see Using the Context Help Editor, on
page 30.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
28 February 2013

Setting Up HDL Source Files Chapter 3: Preparing the Input

If you are using Verilog 2001 format or SystemVerilog, make sure to
enable the Verilog 2001 or System Verilog option before you run synthesis
(Project->Implementation Options->Verilog tab). The default Verilog file
format for new projects is SystemVerilog.

P New s S|

File Type:(Select a type)

1 Verilog File

& WVHDL File

jﬁ Text Fil_e Cancel
7 Tcl Script

B FPGA Design Constraints

By Analysis Design Constraints

P Project File (Project)

Add To Project

New File Name:

File Location:

[C:\switutoriall,

Full Path:
[Chswitutoriall,

— Type a name and location for the file and Click OK. A blank editing
window opens with line numbers on the left.

2. Type the source information in the window, or cut and paste it. See
Editing HDL Source Files with the Built-in Text Editor, on page 32 for
more information on working in the Editing window.

For the best synthesis results, check the Reference Manual and ensure
that you are using the available constructs and vendor-specific attri-
butes and directives effectively.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 29

Chapter 3: Preparing the Input

Setting Up HDL Source Files

3. Save the file by selecting File->Save or the Save icon ().

Once you have created a source file, you can check that you have the right
syntax, as described in Checking HDL Source Files, on page 31.

Using the Context Help Editor

When you create or open a Verilog design file, use the Context Help button
displayed at the bottom of the window to help you code with SystemVerilog
constructs in the source file. This feature is currently supported for some of

the SystemVerilog constructs.

To use the Context Help Editor:

1. Click on the Context Help button to display this text editor.

1 mocduls dfZzigl, dl, clk, el, e2, ed): =1
3 input clk;
4 cutput [4:0]
5 regP[4:'J] ql |\ﬁerilog ‘ elp struct
g i:gﬁ: :i:_ &3 B S\fb;l;?t\;enlog | Top | |@Eack | | »Forward | | Online Help |
8 always @(pos - Sunit
9 begin - always_comb
10 if (el & always_ff
11 ql =d - always_latch ﬁ
12 end - const
13 end - do
14 endmodulel endfunction
- endpackage Struct Construct
- endtask
[] - eum SystemVerilog adds several enhancements to Verilog for representing large
for amounts of data. In SystemVerilog, the Verilog array constructs are extended
D “ | - function both in how data can be reprezented and for operations on arrays. A structure
- interface data type has been defined as a means to represent collections of data types.
- modport These data types can be either standard data types (such as int, logic, or bit)
package or, they can be user-defined types (using log typ). Structures
- parameter allow multiple signals, of various data types, to be bundled together and
- priarity referenced by a single name.
— I - struct
task
- typedef Template:
- union
- unique /*Structure data type represents collections of
var data types. These data types cen be either standard
- while data types (such as int,
- wire logie, or bit) or, they cen be user-defined types
(typedef) */
struct [packed <signing>] { wariable declaraticons;...}
[FPacked Dimensions..] structNames,...
//examples: E
Copy | |j;1nsertTemp\aDe
&

Copyright © 2013 Synopsys, Inc.
30

Synplify Pro for Microsemi Edition User Guide
February 2013

Setting Up HDL Source Files Chapter 3: Preparing the Input

2. When you select a construct in the left-side of the window, the online
help description for the construct is displayed. If the selected construct
has this feature enabled, the online help topic is displayed on the top of
the window and a generic code template for that construct is displayed
at the bottom.

3. The Insert Template button is also enabled. When you click the Insert
Template button, the code shown in the template window is inserted into
your SystemVerilog file at the location of the cursor. This allows you to
easily insert code and modify it for the design that you are going to
synthesize.

4. If you want to copy only parts of the template, select the code you want
to insert and click Copy. You can then paste it into your file.

Checking HDL Source Files

The software automatically checks your HDL source files when it compiles
them, but if you want to check your source code before synthesis, use the
following procedure. There are two kinds of checks you do in the synthesis
software: syntax and synthesis.

1. Select the source files you want to check.

— To check all the source files in a project, deselect all files in the
project list, and make sure that none of the files are open in an active
window. If you have an active source file, the software only checks the
active file.

— To check a single file, open the file with File->Open or double-click the
file in the Project window. If you have more than one file open and
want to check only one of them, put your cursor in the appropriate
file window to make sure that it is the active window.

2. To check the syntax, select Run->Syntax Check or press Shift+F7.

The software detects syntax errors such as incorrect keywords and
punctuation and reports any errors in a separate log file (syntax.log). If
no errors are detected, a successful syntax check is reported at the
bottom of this file.

3. To run a synthesis check, select Run->Synthesis Check or press Shift+F8.
The software detects hardware-related errors such as incorrectly coded
flip-flops and reports any errors in a separate log file (syntax.log). If there

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 31

Chapter 3: Preparing the Input Setting Up HDL Source Files

are no errors, a successful syntax check is reported at the bottom of this
file.

4. Review the errors by opening the syntax.log file when prompted and use
Find to locate the error message (search for @E). Double-click on the
S-character error code or click on the message text and push F1 to
display online error message help.

S. Locate the portion of code responsible for the error by double-clicking on
the message text in the syntax.log file. The Text Editor window opens the
appropriate source file and highlights the code that caused the error.

6. Repeat steps 4 and 5 until all syntax and synthesis errors are corrected.

Messages can be categorized as errors, warnings, or notes. Review all
messages and resolve any errors. Warnings are less serious than errors, but
you must read through and understand them even if you do not resolve all of
them. Notes are informative and do not need to be resolved.

Editing HDL Source Files with the Built-in Text Editor

The built-in text editor makes it easy to create your HDL source code, view it,
or edit it when you need to fix errors. If you want to use an external text
editor, see Using an External Text Editor, on page 37.

1. Do one of the following to open a source file for viewing or editing:

— To automatically open the first file in the list with errors, press F5.

— To open a specific file, double-click the file in the Project window or
use File->Open (Ctrl-0) and specify the source file.

The Text Editor window opens and displays the source file. Lines are
numbered. Keywords are in blue, and comments in green. String values
are in red. If you want to change these colors, see Setting Editing
Window Preferences, on page 35.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
32 February 2013

Setting Up HDL Source Files Chapter 3: Preparing the Input

:/Designs/certify 88tutorial f'commchip.y.

i* synthesis syn_noprune = 1 *7

f* synthesis syn_black_box */
CLE, RESET;

endunodule

wmodule clock generator (CLE, REZET): E

wodule WR_STATE (CLK, RESET, WR_CMD, SNDER_BDY, RCVE_RDY, WREM, CNTEM);
WREN, CNTEN;
a CLE, RESET, SNDE DBDY, RCVE_EDY, WE_CMD;

[W= LT, B SR

11 IDLE = E'hl, WRO = E'hE, WR1 = E'hd;
12 WRE = E'h2, WR2 = L'hl0;

13 [4:0] present_state, next_state;

14 WREN, CHTEN;

16 always @ (posedge CLE or posedge RESET)
(4] [«
[| tn] 1 Col 1 Total| =3

2. To edit a file, type directly in the window.

This table summarizes common editing operations you might use. You
can also use the keyboard shortcuts instead of the commands.

To... Do...

Cut, copy, and paste; Select the command from the popup (hold down
undo, or redo an action the right mouse button) or Edit menu.

Go to a specific line Press Ctrl-g or select Edit->Go To, type the line
number, and click OK.

Find text Press Ctrl-f or select Edit ->Find. Type the text you
want to find, and click OK.

Replace text Press Ctrl-h or select Edit->Replace. Type the text you
want to find, and the text you want to replace it
with. Click OK.

Complete a keyword Type enough characters to uniquely identify the
keyword, and press Esc.

Indent text to the right Select the block, and press Tab.
Indent text to the left Select the block, and press Shift-Tab.

Change to upper case Select the text, and then select Edit->Advanced
->Uppercase or press Ctrl-Shift-u.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 33

Chapter 3: Preparing the Input Setting Up HDL Source Files

To... Do...

Change to lower case Select the text, and then select Edit->Advanced
->Lowercase or press Ctrl-u.

Add block comments Put the cursor at the beginning of the comment
text, and select Edit->Advanced->Comment Code or
press Alt-c.

Edit columns Press Alt, and use the left mouse button to select

the column. On some platforms, you have to use
the key to which the Alt functionality is mapped,
like the Meta or diamond key.

3. To cut and paste a section of a PDF document, select the T-shaped Text
Select icon, highlight the text you need and copy and paste it into your
file. The Text Select icon lets you select parts of the document.

4. To create and work with bookmarks in your file, see the following table.

Bookmarks are a convenient way to navigate long files or to jump to
points in the code that you refer to often. You can use the icons in the
Edit toolbar for these operations. If you cannot see the Edit toolbar on the
far right of your window, resize some of the other toolbars.

To... Do...
Insert a Click anywhere in the line you want to bookmark.
bookmark Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the

first icon in the Edit toolbar.

The line number is highlighted to indicate that there is a
bookmark at the beginning of that line.

Delete a Click anywhere in the line with the bookmark.
bookmark Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.

The line number is no longer highlighted after the
bookmark is deleted.

Delete all Select Edit->Delete all Bookmarks, press Ctrl-Shift-F2, or select
bookmarks the last icon in the Edit toolbar.

The line numbers are no longer highlighted after the
bookmarks are deleted.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
34 February 2013

Setting Up HDL Source Files Chapter 3: Preparing the Input

To... Do...
Navigate a file Use the Next Bookmark (F2) and Previous Bookmark (Shift-F2)
using commands from the Edit menu or the corresponding icons
bookmarks from the Edit toolbar to navigate to the bookmark

you want.

5. To fix errors or review warnings in the source code, do the following:

Open the HDL file with the error or warning by double-clicking the file
in the project list.

Press F5 to go to the first error, warning, or note in the file. At the
bottom of the Editing window, you see the message text.

To go to the next error, warning, or note, select Run->Next Error/Warning
or press F5. If there are no more messages in the file, you see the
message “No More Errors/Warnings/Notes” at the bottom of the
Editing window. Select Run->Next Error/Warning or press F5 to go to the
the error, warning, or note in the next file.

To navigate back to a previous error, warning, or note, select
Run->Previous Error/Warning or press Shift-F5.

6. To bring up error message help for a full description of the error,
warning, or note:

Open the text-format log file (click View Log) and either double click on
the 5-character error code or click on the message text and press F1.

Open the HTML log file and click on the 5-character error code.

In the Tcl window, click the Messages tab and click on the 5-character
error code in the ID column.

7. To crossprobe from the source code window to other views, open the
view and select the piece of code. See Crossprobing from the Text Editor
Window, on page 294 for details.

8. When you have fixed all the errors, select File->Save or click the Save icon
to save the file.

Setting Editing Window Preferences

You can customize the fonts and colors used in a Text Editing window.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
35

February 2013

Chapter 3: Preparing the Input Setting Up HDL Source Files

1. Select Options->Editor Options and either Synopsys Editor or External Editor. For
more information about the external editor, see Using an External Text
Editor, on page 37.

2. Then depending on the type of file you open, you can to set the
background, syntax coloring, and font preferences to use with the text
editor.

Note: Thereafter, text editing preferences you set for this file will apply
to all files of this file type.

The Text Editing window can be used to set preferences for project files,
source files (Verilog/VHDL), log files, Tcl files, constraint files, or other
default files from the Editor Options dialog box.

3. You can set syntax colors for some common syntax options, such as
keywords, strings, and comments. For example in the log file, warnings
and errors can be color-coded for easy recognition.

Click in the Foreground or Background field for the corresponding object in
the Syntax Coloring field to display the color palette.

Select color

HEEEEN N
FEEEENED
C LA 0 b e
EEEEEEE
EEEEENNEC)
EEENENCE

Custam colars

HE NN

DDDDDDDD Sat: 255 |5 areen: [160 |5
val: [160]%] Elue: [D]%]

A

Hue: [120 |5 Red: [0 [2]

| Define Custam Colars == |

| Ok | | Cancel | | Add ta Custam Calors |

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
36 February 2013

Setting Up HDL Source Files Chapter 3: Preparing the Input

You can select basic colors or define custom colors and add them to
your custom color palette. To select your desired color click OK.

4. To set font and font size for the text editor, use the pull-down menus.

5. Check Keep Tabs to enable tab settings, then set the tab spacing using
the up or down arrow for Tab Size.

Options

File Tvpe Log Files

Fonk | Cautier - |
Size E M
Keep Tabs Tah Size E =

6. Click OK on the Editor Options form.

Using an External Text Editor

You can use an external text editor like vi or emacs instead of the built-in text
editor. Do the following to enable an external text editor. For information
about using the built-in text editor, see Editing HDL Source Files with the
Built-in Text Editor, on page 32.

1. Select Options->Editor Options and turn on the External Editor option.

2. Select the external editor, using the method appropriate to your
operating system.

If you are working on a Windows platform, click the ...(Browse) button
and select the external text editor executable.

From a UNIX or Linux platform for a text editor that creates its own
window, click the ... Browse button and select the external text editor
executable.

From a UNIX platform for a text editor that does not create its own
window, do not use the ... Browse button. Instead type xterm -e
editor. The following figure shows VI specified as the external editor.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
37

February 2013

Chapter 3: Preparing the Input

Using Mixed Language Source Files

Select Editor

Synopsys Editor

2 x]

® External Editor [] EI

Options

File Type | Default Files [~]
Font ICDurier |v|
Size |s [~]
Keep Tabs Tab Size

| Syntax Coloring | Foreground | Background ‘

— From a Linux platform, for a text editor that does not create its own
window, do not use the ... Browse button. Instead, type
gnome-terminal -x editor. To use emacs for example, type

gnome-terminal -x emacs.

The software has been tested with the emacs and vi text editors.

3. Click OK.

Using Mixed Language Source Files

With the Synplify Pro software, you can use a mixture of VHDL and Verilog
input files in your project. For examples of the VHDL and Verilog files, see the

Reference Manual.

1. Remember that Verilog does not support unconstrained VHDL ports and
set up the mixed language design files accordingly.

2. If you want to organize the Verilog and VHDL files in different folders,
select Options->Project View Options and toggle on the View Project Files in

Folders option.

When you add the files to the project, the Verilog and VHDL files are in

separate folders in the Project view.

Copyright © 2013 Synopsys, Inc.
38

Synplify Pro for Microsemi Edition User Guide
February 2013

Using Mixed Language Source Files

Chapter 3: Preparing the Input

3. When you open a project or create a new one, add the Verilog and VHDL

files as follows:

— Select the Project->Add Source File command or click the Add File button.
— On the form, set Files of Type to HDL Files (*.vhd, *.vhdl, *.v).

— Select the Verilog and VHDL files you want and add them to your
project. Click OK. For details about adding files to a project, see
Making Changes to a Project, on page 112.

Select Files to Add to Project

Look in:

[QC:'l,Designs'l,ramCtrljrod

X

-] o0 2EE

aluy [ramsel.vhd
data_mux.w =) reg_file.w
eight_bit_uc.w || spcl_regs.»
ins_decode. v

ins_rom.v

oy

pricd.vhd

prgm_cnkr .

ramé4:18.vhd

ramnédxd, vhd

File name: [ramSeI.vhd

Files of type: IAII Files (*.*}

WHDLlb: |

Files to add to project:

UUse relative paths

L framCerl_prod)alu.y

L SramCerl_prodfdata_mu. v

. framChl_prod)eight_bit_ue.w
L JramChl_prodfins_decode.w
. framChrl_prodjins_rom. v

. framCerl_prodfio,w

2 JramCerl_prod/prigd, vhd

. framCerl_prod/prgm_cnikr,

. SramiCkel_prod)raméd 18, vhd
. JramChrl_prod)ramé4xs,vhd
. framCtrl_prodjram3el. vhd

. framCirl_prodireg_file.v
LSramCerl_prodfspel_regs.y

<- Add Al

<- Add

Remaove All -

Remowve -=

Cancel

=
&

\

E1-B2F prol1 [project)

%a ‘Werilag

[— prep2_2.v

----- inz_decode.v >MOTES: 1
----- ins_rarn.w ->NOTES: 1

----- prgm_cntry ->MOTES: 2
[req_filew ->MOTES: 3
B3 WHOL

..... pe.whd [work]

----- const_pkg.vhd [work]

----- its_rarn.whd [wark]

..... alu.wvhd [work]

----- data_mu.vhd [wark]

----- ins_decode.vhd [wark]
..... iovhd [work]

----- reg_file.vhd [work]

----- spel_regs.vhd [wark]

----- verpler_design.vhd [work]

The files you added are displayed in the Project view. This figure shows
the files arranged in separate folders.

4. When you set device options (Implementation Options button), specify the
top-level module. For more information about setting device options, see
Setting Logic Synthesis Implementation Options, on page 128.

— If the top-level module is Verilog, click the Verilog tab and type the

name of the top-level module.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
39

Chapter 3: Preparing the Input Using Mixed Language Source Files

— If the top-level module is VHDL, click the VHDL tab and type the name
of the top-level entity. If the top-level module is not located in the
default work library, you must specify the library where the compiler
can find the module. For information on how to do this, see VHDL
Panel, on page 163.

Verilog
Top Level Module: Compiler Directives and Parameters
[eight_b'rt_uc] =
Parameter Name Value
Verilog Language

Verilog 2001
[System Verilog

Push Tristates Extract Parameters

Allow Duplicate Modul
D Dol AP AT Compiler Directives: e.g. SIZE=8
[J Multiple File Compilation Unit []

VHDL

Top Level Entity: Default Enum Encoding:
[eight_bit_uc] |default -

Push Tristates
[Synthesis On/Off Implemented as Translate On/Off
[wHDL 2008

You must explicitly specify the top-level module, because it is the
starting point from which the mapper generates a merged netlist.

5. Select the Implementation Results tab on the same form and select one
output HDL format for the output files generated by the software. For
more information about setting device options, see Setting Logic
Synthesis Implementation Options, on page 128.

— For a Verilog output netlist, select Write Verilog Netlist.

— For a VHDL output netlist, select Write VHDL Netlist.

— Set any other device options and click OK.

You can now synthesize your design. The software reads in the mixed

formats of the source files and generates a single srs file that is used for
synthesis.

6. If you run into problems, see Troubleshooting Mixed Language Designs,
on page 41 for additional information and tips.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
40 February 2013

Using Mixed Language Source Files Chapter 3: Preparing the Input

Troubleshooting Mixed Language Designs

This section provides tips on handling specific situations that might come up
with mixed language designs.

VHDL File Order

For VHDL-only designs or mixed designs where the top level is not specified,
the FPGA synthesis tools automatically re-arrange the VHDL files so that the
VHDL packages are compiled in the correct order.

However, if you have a mixed-language design where you have specified the
top level, you must specify the VHDL file order for the tool. You only need to
do this once, by selecting the Run->Arrange VHDL files command. If you do not
do this, you get an error message.

VHDL Global Signals

Currently, you cannot have VHDL global signals in mixed language designs,
because the tool only implements these signals in VHDL-only designs.

Passing VHDL Boolean Generics to Verilog Parameters

The tool infers a black box for a VHDL component with Boolean generics, if
that component is instantiated in a Verilog design. This is because Verilog
does not recognize Boolean data types, so the Boolean value must be repre-
sented correctly. If the value of the VHDL Boolean generic is TRUE and the
Verilog literal is represented by a 1, the Verilog compiler interprets this as a
black box.

To avoid inferring a black box, the Verilog literal for the VHDL Boolean
generic set to TRUE must be 1’b1, not 1. Similarly, if the VHDL Boolean generic
is FALSE, the corresponding Verilog literal must be 1'b0, not 0. The following
example shows how to represent Boolean generics so that they correctly pass
the VHDL-Verilog boundary, without inferring a black box.

VHDL Entity Declaration Verilog Instantiation
Entity abc is abc #(
Generic .Number Bits (16),
(.Divide Bit (1'b0)
Number Bits : integer := 0;)
Divide Bit : boolean := False;
)i
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 41

Chapter 3: Preparing the Input Using Mixed Language Source Files

Passing VHDL Generics Without Inferring a Black Box

In the case where a Verilog component parameter, (for example [0:0] RSR =
1'b0) does not match the size of the corresponding VHDL component generic
(RSR : integer := 0), the tool infers a black box.

You can work around this by removing the bus width notation of [0:0] in the
Verilog files. Note that you must use a VHDL generic of type integer because
the other types do not allow for the proper binding of the Verilog component.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
42 February 2013

Working with Constraint Files Chapter 3: Preparing the Input

Working with Constraint Files

Constraint files are text files that are automatically generated by the SCOPE
interface (see Specifying SCOPE Constraints, on page 55), or which you
create manually with a text editor. They contain Tcl commands or attributes
that constrain the synthesis run. Alternatively, you can set constraints in the
source code, but this is not the preferred method.

This section contains information about
* When to Use Constraint Files over Source Code, on page 43
* ,on page 46
* Tcl Syntax Guidelines for Constraint Files, on page 45

* Generating Constraint Files for Forward Annotation, on page 47

When to Use Constraint Files over Source Code

You can add constraints in constraint files (generated by SCOPE interface or
entered in a text editor) or in the source code. In general, it is better to use
constraint files, because you do not have to recompile for the constraints to
take effect. It also makes your source code more portable. See Using the
SCOPE Editor, on page S0 for more information.

However, if you have black box timing constraints like syn_tco, syn_tpd, and
syn_tsu, you must enter them as directives in the source code. Unlike attri-
butes, directives can only be added to the source code, not to constraint files.
See Specifying Attributes and Directives, on page 141 for more information
on adding directives to source code.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 43

Chapter 3: Preparing the Input Working with Constraint Files

Using a Text Editor for Constraint Files (Legacy)

You can use the Legacy SCOPE editor for the SDC constraint files created
before release version G-2012.09. However, it is recommended that you
translate your SDC files to FDC files to enable the latest version of the SCOPE
editor and to utilize the enhanced timing constraint handling in the tool.

If you choose to use the legacy SCOPE editor, this section shows you how to
manually create a Tcl constraint file. The software automatically creates this
file if you use the legacy SCOPE editor to enter the constraints. The Tcl
constraint file only contains general timing constraints. Black box
constraints must be entered in the source code. For additional information,
see When to Use Constraint Files over Source Code, on page 43.

1. Open a file for editing.

— Make sure you have closed the SCOPE window, or you could
overwrite previous constraints.

— To create a new file, select File->New, and select the Constraint File
(SCOPE) option. Type a name for the file and click OK.

— To edit an existing file, select File->Open, set the Files of Type filter to
Constraint Files (sdc) and open the file you want.

2. Follow the syntax guidelines in Tcl Syntax Guidelines for Constraint
Files, on page 45.

3. Enter the timing constraints you need. For the syntax, see the Reference
Manual. If you have black box timing constraints, you must enter them
in the source code.

4. You can also add vendor-specific attributes in the constraint file using
define_attribute. See Specifying Attributes in the Constraints File, on
page 148 for more information.

5. Save the file.

6. Add the file to the project as described in Making Changes to a Project,
on page 112, and run synthesis.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
44 February 2013

Working with Constraint Files Chapter 3: Preparing the Input

Tcl Syntax Guidelines for Constraint Files

This section covers general guidelines for using Tcl for constraint files:

* Tcl is case-sensitive.

* For naming objects:

The object name must match the name in the HDL code.

Enclose instance and port names within curly braces {}.

Do not use spaces in names.

Use the dot (.) to separate hierarchical names.

In Verilog modules, use the following syntax for instance, port, and
net names:

v:cell[prefix:]object_name

Where cell is the name of the design entity, prefixis a prefix to identify
objects with the same name, object_name is an instance path with the
dot (.) separator. The prefix can be any of the following:

Prefix (Lower-case) Object

i: Instance names
p: Port names (entire port)
b: Bit slice of a port

n: Net names

In VHDL modules, use the following syntax for instance, port, and net
names in VHDL modules:

v:cell[.view] [prefix:Jobject_name

Where v: identifies it as a view object, 1ib is the name of the library, cell
is the name of the design entity, view is a name for the architecture,
prefix is a prefix to identify objects with the same name, and
object_name is an instance path with the dot (.) separator. View is only
needed if there is more than one architecture for the design. See the
table above for the prefixes of objects.

* Name matching wildcards are * (asterisk matches any number of
characters) and ? (question mark matches a single character). These

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
45

February 2013

Chapter 3: Preparing the Input Working with Constraint Files

characters do not match dots used as hierarchy separators. For
example, the following string identifies all bits of the statereg instance in
the statemod module:

i:statemod.statereg[*]

Checking Constraint Files

You can check syntax and other pertinent information on your constraint
files using the Constraint Check command. To generate a constraint report, do
the following:

1. Create a constraint file and add it to your project.
2. Select Run->Constraint Check.

This command generates a report that checks the syntax and applica-
bility of the timing constraints in the FPGA synthesis constraint file(s)
for your project. The report is written to the project name cck.rpt file
and lists the following information:

— Constraints that are not applied
— Constraints that are valid and applicable to the design
— Wildcard expansion on the constraints

— Constraints on objects that do not exist

For details on this report, see Constraint Checking Report, on page 449 of
the Reference Manual.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
46 February 2013

Working with Constraint Files Chapter 3: Preparing the Input

Generating Constraint Files for Forward Annotation

The tool automatically generates vendor-specific constraint files that you can
use for forward-annotation. The synthesis constraints are mapped to the
appropriate vendor constraints.You can control this process with some attri-
butes as described in the following procedure.

1. Set attributes to control forward annotation.

To forward-annotate timing constraints, set the clock period, max delay,
input delay, output delay, multiple-cycle paths, and false paths in the
SCOPE interface.

For details about these attributes, see the Reference Manual.

2. Select Project->Implementation Options, and check Write Vendor Constraints in
the Implementation Results tab.

3. Click OK and run synthesis.

The software converts the synthesis define_input_delay, define_output_delay,
define_clock (including the define_clock constraints generated by auto
constraining), define_multicycle_path, define_false_path, define_max_delay, and
global-frequency constraints into corresponding commands in the
filename_sdc.sdc file for Microsemi.

See the Reference Manual for details about forward annotation.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 47

Chapter 3: Preparing the Input Working with Constraint Files

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
48 February 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 4

Specifying Constraints

This chapter describes how to specify constraints for your design. It covers
the following:

Using the SCOPE Editor, on page 50
Specifying SCOPE Constraints, on page 55
Specifying Timing Exceptions, on page 68
Using Collections, on page 74

Converting SDC to FDC, on page 89

Using the SCOPE Editor (Legacy), on page 90

See Also:

For an overview about constraints, see Chapter 5, Constraints.

For a description of the SCOPE editor, see Chapter 6, SCOPE
Constraints Editor.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 49

Chapter 4: Specifying Constraints Using the SCOPE Editor

Using the SCOPE Editor

The SCOPE (Synthesis Constraints OPtimization Environment®) presents a
spreadsheet-like editor with a number of panels for entering and managing
timing constraints and synthesis attributes. The SCOPE GUI is good for
editing most constraints, but there are some constraints (like black box
constraints) which can only be entered as directives in the source files. The
SCOPE GUI also includes an advanced text editor that can help you edit
constraints easily.

These constraints are saved to the FPGA Design Constraint (FDC) file. The
FDC file contains Synopsys SDC Standard timing constraints (for example,
create_clock, set_input_delay, and set_false_path), along with the non-timing
constraints (design constraints) (for example, define_attribute,
define_scope_collection, and define_io_standard). When working with these
constraints, use the following processes:

* For existing designs, run the sdc2fdc script to translate legacy SDC
constraints and create a constraint file that contains Synopsys SDC
standard timing constraints and design constraints. For details about
this script, see Converting SDC to FDC, on page 89.

* For new designs, use the SCOPE editor. See Creating Constraints in the
SCOPE Editor, on page 50 for more information.

Creating Constraints in the SCOPE Editor

The following procedure shows you how to use the SCOPE editor to create
constraints for the FDC constraint file.

1. To create a new constraint file, follow these steps:
— Compile the design (F7).
— Open the SCOPE window by:
Clicking the SCOPE icon in the toolbar ([5]).
This brings up the New Constraint File dialog box.

OR
Pressing Ctrl-n or selecting File -> New. This brings up the New dialog
box.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
50 February 2013

Using the SCOPE Editor Chapter 4: Specifying Constraints

'| File Type:(Select a type)

§ en o]
4 VHDL File “
Cancel

Tl Script

FPGA Design Constraints |
B3 Analysis Design Constraints
P Project File (Project)

Help

Add To Project

New File Name:

File Location:

(]

[C:\switutorial',]

Full Path:
[C:\switutorial',

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 51

Chapter 4: Specifying Constraints Using the SCOPE Editor

2. To open an existing file, do one of the following:
— Double-click the file from the project view.

— Press Ctrl-o or select File->Open. In the dialog box, set the kind of file
you want to open to Constraint Files (SCOPE) (fdc), and double-click to
select the file from the list.

An empty SCOPE spreadsheet window opens. The tabs along the bottom
of the SCOPE window list the different kinds of constraints you can add.
For each kind of constraint, the columns contain specific data.

Cifsoftware/tutorial/test.fdc

Current Design: |<TO|:| Level> v| |r¢J Check Constraints |

Enablel Name | Object | Period | Waveform | Add | Clock Group Latency Uncertainty Comment E

Il Il S N S S

:

Clocks Generated Clocks Collections Inputs/Outputs Delay Paths Attributes IO Standards Compile Points TCL View

3. Select if you want to apply the constraint to the top-level or for modules
from from the Current Design option drop-down menu located at the top of
the SCOPE editor.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
52 February 2013

Using the SCOPE Editor Chapter 4: Specifying Constraints

Current Design: | <Top Level> yi "¢/, Check Constraints |

i<Top Level=

worE.INS_ROM 4 Object | —Jesriod
work.alu
work.data_mu
work.ins_decode
work.io
work.mult
wiork.prep4
wiork.prgm_cntr
wiork.reg_file

EIDE

il Il Gl I I N

I

4. You can enter or edit the following types of constraints:

— Timing constraints—on the Clocks, Generated Clocks, Inputs/Outputs, or
Delay Paths tab.

— Design constraints—on the Collections, Attributes, |/O Standards, or
Compile Points tab.

For details about these constraints, see Specifying SCOPE Constraints,
on page 55.

For information about ways to enter constraints within the SCOPE
editor, see Guidelines for Entering and Editing Constraints, on page 64.

5. The free form constraint editor is located in the TCI View tab, which is the
last tab in SCOPE. The text editor has a help window on the right-hand
side. For more information about this text editor, see Using the TCL
View of SCOPE GUI, on page 61.

6. Click on the Check Constraints button to run the constraint checker. The

output provides information on how the constraints are interpreted by
the tool.

All constraint information is saved in the same FPGA Design Constraint file
(FDC) with clearly marked beginning and ending for each section. Do not
manually modify these pre-defined SCOPE sections.

The following example shows the contents of an FDC file.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 53

Chapter 4: Specifying Constraints Using the SCOPE Editor

tEERE tEERE 3 544 tEEEEEEEREREE
§ FDC constraints translated Design Comstraints

_names {#}

BEE BEGIN Header

§ Synopays, Inc. constraint file

£ bugs\timing 88\clk_pr scratch\top.fdc

§ Written on Wed Jun 20 10:50:15 2012

§ by Synplify Premier with Design Planner, G-2012_03% FDC Constraint Editor

§ Custom constraint commands may be added cutside of the SCOPE tab sections bounded with BEGIN/END.
£ These sections are generated from SCOPFE spreadsheet tabs.

§§§=——— END Header

i
create_clock —
create_clock —

BEGIN Clocks - (Populated from tab im SCOPE, do mot edit)
e {clka} {p:clka} icd 10 -w 1 {0 5.0}
{elkb} {p:clkb} -t {0 3.3335}
default_clkgroup 0 s -
default_clkgroup 1

set_clock_groups -deriwve -
set_cleock _groups -deriwve —

222

[get_clocks {clkal]
[get_clocks {clkb}]

END Clocks

BEGIN "Generated Clocks™ - (Populated from tab im SCOFE, do mot edit)
END "Generated Clocks™

BEGIN Collections — (Populated from tab in SCOPE, do not edit)

ne_scope_collection all imputs_ fdc {find -port * -filter @direction==input}

ne_scope_collection all cutputs_fdc {find -port * —-filter @direction=—cutput}

ne_scope_collection all clocks_fdc {find -hier -clock *}

define scope_collection all registers_fde {find -hier -seqg *}

d ne_scope_cecllection all grp {define_ collection [find -inst {i:FirstStbcPhasel] [find -inst {i:Norml
define_ scope_collection fdc_cmd 0 {find -seq {*y*.gl[*]}}

di ne_scope_collection fdco cmd 1 {find {n:foo}}

define scope_collecticon fdc cmd 2 {expand -hier -seqg -from $fdc cmd 1}

BEE END Collections

#28
set_input_delay -cl
set_cutput_delay -
set_input_delay - {ec:zclka}
set_input_delay -clock {c:clka}
#E# END Inputs/Cutputs

BEGIN Inputs/Cutputs — (Populated
k {eoczclka}l 1 k_£
{czclka}

from tab in SCOPE, do not edit)
ielzy 0.000 $2ll_ inputs_£de

© 0.000 $2ll cutputs_fdc

2.00 {p:al7:z01}

0 {p:rst}

§#f=——— BEGIN "Delay Paths" - (Populated from tab in SCOPE, do not edit)
set_multicycle_path 3 -en o $fde_cmd O

set_false_path t {false fool[0] free{iddhh}} -Ifzcm

$fdc emd 2 —to {i:abc.def.g_reg} 1
{$boing} -to {c:dem|clk0fx derived clock[Z2]}-through {n:fudge}
{c:dem|clk0fx derived clock} -to {i:abec.def.g_regl[0] i:zabc}
END "Delay Paths™

{n:fudge}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
54 February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

Specifying SCOPE Constraints

Timing constraints define the performance goals for a design. The FPGA
synthesis tool supports a subset of the Synopsys FDC Standard timing
constraints (for example, create_clock, set_input_delay, and set_false path). For
additional support, see Synopsys Standard Timing Constraints, on page 57.

Design constraints let you add attributes, define collections and specify
constraints for them, and select specific I/O standard pad types for your
design.

You can define both timing and design constraints in the SCOPE editor. For
the different types of constraints, see the following topics:

* Entering and Editing Scope Constraints
* Setting Clock and Path Constraints

* Specifying Standard I/O Pad Types

To set constraints for timing exceptions like false paths and multicycle paths,
see Specifying Timing Exceptions, on page 68.

For information about collections, see Using Collections, on page 74.

Entering and Editing Scope Constraints

This section contains a description of the timing and design constraints you
can enter in the SCOPE GUI that are saved to an FDC file. The SCOPE timing
constraint panels include:

SCOPE Panel See... Tcl Commands

Clocks Clocks create_clock
set_clock_groups
set_clock latency
set_clock_uncertainty

Generated Clocks Generated Clocks create_generated_clock
Collections Collections define_scope_collection
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 55

Chapter 4: Specifying Constraints

Specifying SCOPE Constraints

SCOPE Panel
Inputs/Outputs

Delay Paths

Attributes

Compile Points

TCL View

Copyright © 2013 Synopsys, Inc.
56

See...

Inputs/Outputs

Delay Paths

Attributes

Compile Points

TCL View

Tcl Commands
set_input_delay
set_output_delay

set_false_path
set_max_delay
set_multicycle_path

define_attribute
define_global_attribute

define_compile_point
define_current_design

Synplify Pro for Microsemi Edition User Guide
February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

Synopsys Standard Timing Constraints

The FPGA synthesis tools support Synopsys standard timing constraints for a
subset of the clock definition (Clocks and Generated Clocks), I/O delay

(Inputs /Outputs), and timing exception constraints (Delay Paths). For complete
information about using the FPGA timing constraints with your project, see:

* For specific information on individual constraint options and
arguments, see the Synthesis Commands PDF document at
https://solvnet.synopsys.com/dow_retrieve/G-2012.06/manpages/ni/syn2.pdf.

* For information on which options and arguments are supported, see the
FDC Standard for FPGA Synthesis document on SolvNet.

* For general information on the Design Constraints Format, see the
Using the Synopsys Design Constraints Format Application Note on
SolvNet.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 57

https://solvnet.synopsys.com/dow_retrieve/G-2012.06/manpages/ni/syn2.pdf

Chapter 4: Specifying Constraints Specifying SCOPE Constraints

Setting Clock and Path Constraints

The following table summarizes how to set different clock and path
constraints from the SCOPE window.

To define... Pane Do this to set the constraint...

Clocks Clock Select the clock object (Clock).
Specify a clock name (Clock Alias), if required.
Type a period (Period).
Change the rise and fall edge times for the clock
waveforms of the clock in nanoseconds, if needed.
Change the default clock group, if needed
Check the Enabled box.
See Defining Clocks, on page 97 for information about
clock attributes.

Generated Generated Select the generated clock object.

Clocks Clocks Specify the master clock source (a clock source pin in
the design).

Specify whether to use invert for the generated clock
signal.

Specify whether to use: edges, divide_by, or multiply by.
Check the Enabled box.

Input/output Inputs/ See Defining Input and Output Constraints (Legacy),
delays Outputs on page 104 for information about setting I/O
constraints.

Maximum Delay Paths Select the Delay Type path of Max Delay.

path delay Select the start/from point for either a port or register
(From/Through). See Defining From /To/Through Points
for Timing Exceptions, on page 68 for more
information.
Select the end/to point for either an output port or
register. Specify a through point for a net or
hierarchical port/pin (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multicycle Delay Paths See Defining Multicycle Paths, on page 72.
paths

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
58 February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

To define... Pane Do this to set the constraint...
False paths Delay Paths See Defining False Paths, on page 73 for details.

Global Attributes Set Object Type to <global>.

attributes Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

Attributes Attributes Do either of the following:

* Select the type of object (Object Type).
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

* Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box.

In addition to setting I/O delays in the SCOPE window as described in Setting
Clock and Path Constraints, on page 94, you can also set the Use clock period
for unconstrained 10 option.

* Open the SCOPE window, click Inputs/Outputs, and select the port (Port).
You can set the constraint for

— All inputs and outputs (globally in the top-level netlist)
— For a whole bus

— For single bits

You can specify multiple constraints for the same port. The software
applies all the constraints; the tightest constraint determines the worst
slack. If there are multiple constraints from different levels, the most
specific overrides the more global. For example, if there are two bit
constraints and two port constraints, the two bit constraints override
the two port constraints for that bit. The other bits get the two port
constraints.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 59

Chapter 4: Specifying Constraints Specifying SCOPE Constraints

* Specify the constraint value in the SCOPE window:
— Select the type of delay: input or output (Type).
— Type a delay value (Value).
— Check the Enabled box, and save the constraint file in the project.

Make sure to specify explicit constraints for each I/O path you want to
constrain.

* To determine how the I/O constraints are used during synthesis, do the
following:

— Select Project->Implementation Options, and click Constraints.

— To use only the explicitly defined constraints disable Use clock period for
unconstrained 10.

— To synthesize with all the constraints, using the clock period for all
I/O paths that do not have an explicit constraint enable Use clock
period for unconstrained 10.

— Synthesize the design. When you forward-annotate the constraints,
the constraints used for synthesis are forward-annotated for place-
and-route.

* Input or output ports with explicitly defined constraints, but without a
reference clock (-ref option) are included in the System clock domain and
are considered to belong to every defined or inferred clock group.

¢ If you do not meet timing goals after place-and-route and you need to
adjust the input constraints; do the following:

— Open the SCOPE window with the input constraint.

— Use the set_clock _route_delay command to translates the -route option
for the constraint, so that you can specify the actual route delay in
nanoseconds, as obtained from the place-and-route results. Adding
this constraint is equivalent to putting a register delay on the input
register.

— Resynthesize your design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
60 February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

Specifying Standard 1/0 Pad Types

You can specify a standard I/O pad type to use in the design. The equivalent
Tcl command is define_io_standard.

1. Open the SCOPE window and go to the I/O Standard tab.

2. In the Port column, select the port. This determines the port type in the
Type column.

3. Enter an appropriate I/O pad type in the I/O Standard column. The
Description column shows a description of the I/O standard you selected.

For details of supported I/O standards, see Industry [/O Standards, on
page 386.

4. Where applicable, set other parameters like drive strength, slew rate,
and termination.

You cannot set these parameter values for industry I/O standards
whose parameters are defined by the standard.

The software stores the pad type specification and the parameter values
in the syn_pad_type attribute. When you synthesize the design, the I/O
specifications are mapped to the appropriate I/O pads within the
technology.

Using the TCL View of SCOPE GUI

The TCL View of the SCOPE GUI is an advanced text file editor used for FPGA
timing and design constraints. This text editor provides the following capabil-
ities:
* Uses dynamic keyword expansion and tool tips for commands that
— Automatically completes the command from a popup list
— Displays complete command syntax as a tool tip
— Displays parameter options for the command from a popup list

— Includes a keyword command syntax help

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 61

Chapter 4: Specifying Constraints Specifying SCOPE Constraints

* Checks command syntax and uses color indicators that
— Validates commands and command syntax

— Distinguishes between FPGA design constraints and SCOPE legacy
constraints

* Allows for standard editor commands, such as copy, paste,
comment/un-comment a group of lines, and highlighting of keywords
To use the TCL View of the SCOPE GUI:
1. Click on the TCL View of the SCOPE GUI.

2. You can specify FPGA design constraints as follows:

— Type the command; after you type three characters a popup menu
displays the design constraint command list. Select a command.

— When you type a dash (-), the options popup menu list is displayed.
Select an option.

— When you hover over a command, a tool tip is displayed for the
selected commands.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
62 February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

Command List Popup Menu

1 creace_clock 10
? sct_:;lsc_ps_th Lrdwux. alua[7:0] ODtiOnS Llst PDDUD Menu
+ set 1 creace_clock 10
f set_codk_aroups 2 szt_Zfelse_path izdmae.alual7:0]
2 |get_chdk_latency 3
7 |set_dodc_uncertanty 4 zat_rlo=k groups -
B |set_false_path 5 - - pre
9 dl set_herarchy_serarator a sy
set_irput_delay 7 SHCILEh/E
set_max_delay orop
set_mulicyde_path 3 B) Hoqically_excusve
— i 9 define_clock -fr|-name
set_output_delay — -
cot i FF mames -physically_exdusive
1 create_~look 10
2 set_ralse_path 1:dnux.&lual7:0]
3
4 set_clock_groupa
g
5 sct_dodk_groups
- [-asynchranous |
: [-exclusive]
. . [Hogically_exdusive]
B defing cla [-physically_exclusive]
[-name <string value:]
-graup

Command Tool Tip

3. You can also specify a command by using the constraints browser that
displays a constraints command list and associated syntax.

— Double-click the specified constraint to add the command to the
editor window.

— Use the constraint syntax window to help you specify the options for
this command.

— Click the Hide Syntax Help button at the bottom of the editor window to
close the syntax help browser.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 63

Chapter 4: Specifying Constraints

Specifying SCOPE Constraints

Current Design: | <Top Level =| |'gfiched: constraints |

::g = | | Hame &
148 ==t gffs [define_collection [find —seqg ~hier [gb[*1 El- FOC Constraints
149 bus_dimension_separst...
150 =: {elkal [get_port= {clkall 10 -wa bus_naming_style
151 [elkb] [get_ports |=lkb]] 5.EEEE creake_clock
152 Cg=t_clocks {clkel] —=dd create_generated_dock
155 = [gac_eclooka [elka]] d.00 define_stribut=
154 ser tger_clocks {clkal] .00 define_compile_peint
155 =e3 £ (get_clocks {clke}] 9 [ge define_gloha _attribute
136 '"'-: b define_ie_standard
i:; me define scope collection
159 re=d_sdc
150 reset_path
151 set_clock_groups =
152 set_clock latency q
153 . J
154 [find —seg -hiss {g7[*1} | Cansfraint Synta:
165) set_ril_ff_rames
186 sor multicyola path 2 N valle <string vales
167 from
158 [find -seq [*y*_gl*1}]
159 e
10 zet_clock groupa default_clkgsoup_0 Y =
171 -group [get_clocks {clke demlclkd_derived_clock demlclk =

(4] | SO

Hide syntaxHelg | Ln| 1 ca 1 roml 73 [ou
Click on the Hide Syntax Help button
to close this browser
Syntax Help

4. When you save this file, the constraint file is added to your project in the
Constraint directory if the Add to Project option is checked on the New
dialog box. Thereafter, you can double-click the FDC constraint file to

open it in the text editor.

Guidelines for Entering and Editing Constraints

1. Enter or edit constraints as follows:

— For attribute cells in the spreadsheet, click in the cell and select from
the pull-down list of available choices.

— For object cells in the spreadsheet, click in the cell and select from
the pull-down list. When you select from the list, the objects
automatically have the proper prefixes in the SCOPE window.

Copyright © 2013 Synopsys, Inc.
64

Synplify Pro for Microsemi Edition User Guide
February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

Alternatively, you can drag and drop an object from an HDL Analyst
view into the cell, or type in a name. If you drag a bus, the software
enters the whole bus (busA). To enter busA[3:0], select the appropriate
bus bits before you drag and drop them. If you drag and drop or type
a name, make sure that the object has the proper prefix identifiers:

Prefix Identifiers Description for...

v:design_name hierarchies or “views” (modules)

c:clock_name clocks

izinstance_name instances (blocks)

p:port_name ports (off-chip)

t:pin_name hierarchical ports, and pins of instantiated cells
b:name bits of a bus (port)

n:net_name internal nets

— For cells with values, type in the value or select from the pull-down
list.

— Click the check box in the Enabled column to enable the constraint or
attribute.

— Make sure you have entered all the essential information for that
constraint. Scroll horizontally to check. For example, to set a clock
constraint in the Clocks tab, you must fill out Enabled, Clock, Period,
and Clock Group. The other columns are optional. For details about
setting different kinds of constraints, go to the appropriate section
listed in Specifying SCOPE Constraints, on page 55.

2. For common editing operations, refer to this table:

To... Do...
Cut, copy, paste, Select the command from the popup (hold down the
undo, or redo right mouse button to get the popup) or from the
Edit menu.
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 65

Chapter 4: Specifying Constraints

Specifying SCOPE Constraints

To...

Copy the same value
down a column

Insert or delete rows

Find text

Do...

Select Fill Down (Ctrl-d) from the Edit or popup menus.

Select Insert Row or Delete Rows from the Edit or
popup menus.

Select Find from the Edit or popup menus. Type the text
you want to find, and click OK.

3. Edit your constraint file if needed.

— Make sure the object identifiers map as expected:

Synopsys Design Constraint Identifiers FPGA Synthesis

Constraint Identifiers

get clocks (Wildcards are not supported) c:

get registers
get_nets
get_ports
get cells

get pins

r.

— If your naming conventions do not match these defaults, add the
appropriate command specifying your naming convention to the
beginning of the file, as shown in these examples:

Default You use Add this to your file

Hierarchy separator AB

Slash: A/B set hierarchy_separator {/}

Naming bit 5 of bus ABC ABC[5] Underscore bus_naming_style {%s_%d}

Naming row 2 bit 3 of ABC [2][3] Underscore bus_dimension_separator_style { }

array ABC [2x16]

Copyright © 2013 Synopsys, Inc.
66

ABC[2_3]

Synplify Pro for Microsemi Edition User Guide
February 2013

Specifying SCOPE Constraints Chapter 4: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 67

Chapter 4: Specifying Constraints Specifying Timing Exceptions

Specifying Timing Exceptions
You can specify the following timing exception constraints, either from the
SCOPE interface or by manually entering the Tcl commands in a file:
* Multicycle Paths—Paths with multiple clock cycles.

¢ False Paths—Clock paths that you want the synthesis tool to ignore
during timing analysis and assign low (or no) priority during optimiza-
tion.

* Max Delay Paths—Point-to-point delay constraints for paths.

The following shows you how to specify timing exceptions in the SCOPE GUI.
For the equivalent Tcl syntax, see Chapter 12, Batch Commands and Scripts
in the Reference Manual.

¢ Defining From/To/Through Points for Timing Exceptions, on page 68
¢ Defining Multicycle Paths, on page 72
* Defining False Paths, on page 73

For information about resolving timing exception conflicts, see Conflict
Resolution for Timing Exceptions, on page 402 in the Reference Manual.

Defining From/To/Through Points for Timing Exceptions

For multi-cycle path, false path, and maximum path delay constraints, you
must define paths with a combination of From/To/Through points. Whenever the
tool encounters a conflict in the way timing-exception constraints are written,
see Conflict Resolution for Timing Exceptions, on page 402 to determine how
resolution occurs based on the priorities defined.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
68 February 2013

Specifying Timing Exceptions Chapter 4: Specifying Constraints

The following guidelines provide details for defining these constraints. You
must specify at least one From, To, or Through point.

* In the From field, identify the starting point for the path. The starting
point can be a clock, input or bi-directional port, or register. Only black
box output pins are valid. To specify multiple starting points:

— Such as the bits of a bus, enclose them in square brackets: A[15:0] or
A[*].

— Select the first start point from the HDL Analyst view, then drag and
drop this instance into the From cell in SCOPE. For each subsequent
instance, press the Shift key as you drag and drop the instance into
the From cell in SCOPE. For example, valid Tcl command format
include:

set multicycle path -from {i:ag i:bg} 2
set multicycle path -from [i:ag i:bg} -through {n:xor all} 2

* In the To field, identify the ending point for the path. The ending point
can be a clock, output or bi-directional port, or register. Only black box
input pins are valid. To specify multiple ending points, such as the bits
of a bus, enclose them in square brackets: B[15:0].

* A single through point can be a combinational net, hierarchical port or
instantiated cell pin. To specify a net:

— Click in the Through field and click the arrow. This opens the Product of
Sums (POS) interface.

— Either type the net name with the n: prefix in the first cell or drag the
net from an HDL Analyst view into the cell.

— Click Save.

For example, if you specify n:net1, the constraint applies to any path
passing through neti.

* To specify an OR when constraining a list of through points, you can type
the net names in the Through field or you can use the POS UlI. To do this:

— Click in the Through field and click the arrow. This opens the Product of
Sums interface.

— Either type the first net name in a cell in a Prod row or drag the net
from an HDL Analyst view into the cell. Repeat this step along the
same row, adding other nets in the Sum columns. The nets in each
row form an OR list.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 69

Chapter 4: Specifying Constraints Specifying Timing Exceptions

Editing POS throughs for row 1 I
Sum 1 Sum 2 Sum 3 Sum 4 el
Prad1 |ninetl ninetz L
Prod 2 > Through
Prod 3 {rinet! mnet2}
Prod 4
S

Prod 5
< | K10

Drag and Drop: Drag and Drop goes:

® Inserts New Cells ® Along Row

Overwrites Cells Do Caluran

— Alternatively, select Along Row in the SCOPE POS interface. In an HDL
Analyst view, select all the nets you want in the list of through points.
Drag the selected nets and drop them into the POS interface. The tool

fills in the net names along the row. The nets in each row form an OR
list.

— Click Save.

Synplify Pro for Microsemi Edition User Guide

Copyright © 2013 Synopsys, Inc.
70 February 2013

Specifying Timing Exceptions Chapter 4: Specifying Constraints

The constraint works as an OR function and applies to any path passing
through any of the specified nets. In the example shown in the previous
figure, the constraint applies to any path that passes through net1 or
net2.

* To specify an AND when constraining a list of through points, type the
names in the Through field or do the following:

— Open the Product of Sums interface as described previously.

— Either type the first net name in the first cell in a Sum column or drag
the net from an HDL Analyst view into the cell. Repeat this step down
the same Sum column.

Editing POS throughs for row 1 2xl

Sum 1 Surm & Sum 3 3um 4

IC

Prod1 |mnetl

Prodz |ninet3 > Through

Prod 3 -

in:net! }innet3}
Prod 4

Prod 5
< |

Drag and Drop: Drag and Drop goes:

Save
@ Inserts Mew Cells ® Along Row

Cancel

1.

Overwrites Cells Dawn Column

— Alternatively, select Down Column in the SCOPE POS interface. In an
HDL Analyst view, select all the nets you want in the list of through
points. Drag the selected nets and drop them into the POS interface.
The tool fills in the net names down the column.

The constraint works as an AND function and applies to any path
passing through all the specified nets. In the previous figure, the
constraint applies to any path that passes through net1 and net3.

* To specify an AND/OR constraint for a list of through points, type the
names in the Through field (see the following figure) or do the following:

— Create multiple lists as described previously.
— Click Save.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 71

Chapter 4: Specifying Constraints Specifying Timing Exceptions

Editing POS throughs for row 1 e B
Sum 1 Sur 2 Sum 3 Sum 4 |~ |
inetl inetZ \
Prad 1 [|nine ninel | e Through
Prod 2 \.mnetS n:nekd
{renet! monet2) fnonet3 nonetd
-

Prod 3 E

< | 4|

In this example, the synthesis tool applies the constraint to the paths
through all points in the lists as follows:

netl AND net3

OR netl AND net4
OR net2 AND net3
OR net2 AND net4

Defining Multicycle Paths

To define a multicycle path constraint, use the Tcl set_multicycle_path
command, or select the SCOPE Delay Paths tab and do the following;

1.

2.

From the Delay Type pull-down menu, select Multicycle.

Select a port or register in the From or To columns, or a net in the Through
column. You must set at least one From, To, or Through point. You can use
a combination of these points. See Defining From/To/Through Points
for Timing Exceptions, on page 68 for more information.

. Select another port or register if needed (From/To/Through).

Type the number of clock cycles or nets (Cycles).

Specify the clock period to use for the constraint by going to the Start/End
column and selecting either Start or End.

If you do not explicitly specify a clock period, the software uses the end
clock period. The constraint is now calculated as follows:

multicycle_distance = clock_distance + (cycles -1) * reference_clock_period

In the equation, clock_distance is the shortest distance between the
triggering edges of the start and end clocks, cycles is the number of

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
72

February 2013

Specifying Timing Exceptions Chapter 4: Specifying Constraints

clock cycles specified, and reference_clock_period is either the specified
start clock period or the default end clock period.

6. Check the Enabled box.

Defining False Paths

You define false paths by setting constraints explicitly on the Delay Paths tab
or implicitly on the Clock tab. See Defining From/To/Through Points for
Timing Exceptions, on page 68 for object naming and specifying through
points.

* To define a false path between ports or registers, select the SCOPE Delay
Paths tab, and do the following:

— From the Delay Type pull-down menu, select False.

— Use the pull-down to select the port or register from the appropriate
column (From/To/Through).

— Check the Enabled box.

The software treats this as an explicit false constraint and assigns it the
highest priority. Any other constraints on this path are ignored.

* To define a false path between two clocks, select the SCOPE Clocks tab,
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different
clock groups. This false path constraint can be overridden by a
maximum path delay constraint, or with an explicit constraint.

* To set an implicit false path on a path to/from an I/O port, do the
following:

— Select Project->Implementation Options->Constraints.

— Disable Use clock period for unconstrained 10.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 73

Chapter 4: Specifying Constraints Using Collections

Using Collections

A collection is a group of objects. It can consist of just one object, or of other
collections. You can set the same constraint for multiple objects if you group
them together in a collection. You can either define collections in the SCOPE
window or type the commands in the Tcl script window.

* Comparing Methods for Defining Collections, on page 74

* Creating and Using Collections (SCOPE Window), on page 75

* Creating Collections (Tcl Commands), on page 78

* Using the Tcl Find Command to Define Collections, on page 81

* Using the Expand Tcl Command to Define Collections, on page 83

* Viewing and Manipulating Collections (Tcl Commands), on page 84

Comparing Methods for Defining Collections

The find and expand Tcl commands that are used to define collections in the
synthesis software can either be entered in the Tcl script window or in the
SCOPE window. It is recommended that you use the SCOPE interface for two
reasons:

* When you use the SCOPE interface, the software uses the top-level
database to find objects, which is a good practice. The Tcl window
commands are based on the current Analyst view. If you use the Tcl
script window to type in a command after mapping, the search is based
on the mapped database, which could have instances that have been
renamed, replicated, or removed.

To
P B
al
a2 a4 | | a3
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
74 February 2013

Using Collections

Chapter 4: Specifying Constraints

Similarly, the current Analyst view could be a lower-level view. In the
design shown above, if you push down into B, and then type find -hier
a* in the Tcl window, the command finds a3 and a4. However if you cut
and paste the same command into the SCOPE Collections tab, your
results would include a1, a2, a3, and a4, because the SCOPE interface
uses the top-level database and searches the entire hierarchy.

If you use the Tcl script window, you have to redefine the collection the

next time you open the project. When you define a collection in the

SCOPE window, the software saves the information in the constraint file
for the project.

You cannot apply constraints to collections defined in the Tcl script

window, but you can apply constraints and attributes to SCOPE collec-
tions.

Creating and Using Collections (SCOPE Window)

The following procedure shows you how to define collections in the SCOPE
window. You can also type the commands directly in the Tcl script window
(Creating Collections (Tcl Commands), on page 78). See Comparing Methods
for Defining Collections, on page 74 for a comparison of the two methods.

1. Define a collection by doing the following:

Open the SCOPE window and click the Collections tab.

In the Collection Name column, type a name for the collection. This is
equivalent to defining the collection with the set command, as
described in Creating Collections (Tcl Commands), on page 78.

Enabled Collection Name Command Command Arguments Comment =

Find_all find -hier -inst {*ushSlaveContraol.u_endpMuzx. *}

find_reg find -hier -seq {*usbslaveContral.u_endpMuzx. *}

find_comb find -hier -inst {*usbSlaveContral.u_sndpMux.*} -filter @is_combination

Synplify Pro for Microsemi Edition User Guide

February 2013

Collections

In the Commands column, select find or expand. For tips on using these
commands, see Using the Tcl Find Command to Define Collections,
on page 81 and Using the Expand Tcl Command to Define

Copyright © 2013 Synopsys, Inc.
75

Chapter 4: Specifying Constraints Using Collections

Collections, on page 83. For complete syntax details, see the
Reference Manual.

If you cut and paste a Tcl Find command from the Tcl window into the
SCOPE Collections tab, remember that the SCOPE interface works on
the top-level database, while the Find command in the Tcl window
works on the current level displayed in the Analyst view. See
Comparing Methods for Defining Collections, on page 74.

— In the Command Arguments column, type only the arguments to the
command you set in the Commands column, so that you locate the
objects you want. Do not repeat the command itself. For details of the
syntax, see the Reference Manual. Objects in a collection do not have
to be of the same type. The collections defined above do the following:

Collection Finds...

find_all All components in the module endpMux
find_reg All registers in the module endpMux
find_comb All combinatorial components under endpMux

The collections you define appear in the SCOPE pull-down object
lists, so you can use them to define constraints.

— To crossprobe the objects selected by the find and expand commands,
click Select in the Select in Analyst column. The schematic views
highlight the objects located by these commands. For other viewing
operations, see Viewing and Manipulating Collections (Tcl
Commands), on page 84.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
76 February 2013

Using Collections Chapter 4: Specifying Constraints

2. To create a collection that is made up of other collections, do this:

— Define the collections as described in the previous step. These
collections must be defined before you can concatenate them or add
them together in a new collection.

— To concatenate collections or add to collections, type a name for the
new collection in the Collection Name column. Set Commands to one of
the operator commands like c_union or c_diff. Type the appropriate
arguments in Command Arguments. See Creating Collections (Tcl
Commands), on page 78 for a list of available commands and the
Reference Manual for the complete syntax.

— Click Run Commands. The software runs through the commands in
sequence, so you must first define collections before doing any group
or comparative operations.

The software saves the information in the constraint file for the project.

3. To apply constraints to a collection do the following:
— Define a collection as described in the previous steps.

— Go to the appropriate SCOPE tab and specify the collection name
where you would normally specify the object name. Collections
defined in the SCOPE interface are available from the pull-down
object lists. The following figure shows the collections defined in step
1 available for setting a false path constraint.

Enabled Delay Tvpe From To Through StartfEnd | Cycles | Max Delayins) | Zommen ﬂ

1 False special_regs.status[7:0]] -

aluu] 0 3
irdecode.apcade_cal
irdecode, opcode_rethw
i:decode. skip
irdecode.decodes[13:0]
4 izprgmentr..r_0_[10:0]
irpramentr..r_1_[10:0]
=} irprgmentr.r_Z_[10:0]
itprgmente.r_3_[10:0] |* -
I3 irprgmentr.r_4_[10:0]

Delay Paths

— Specify the rest of the constraint as usual. The software applies the
constraint to all the objects in the collection.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 77

Chapter 4: Specifying Constraints

Using Collections

Creating Collections (Tcl Commands)

This section describes how to type in and use the Tcl collection commands
instead of the SCOPE window (Creating and Using Collections (SCOPE
Window), on page 75). Although you can type these commands in the Tcl
window or put them in a Tcl script, it is recommended that you use the
SCOPE window, for the reasons described in Comparing Methods for

Defining Collections, on page 74.

For details of the syntax for the commands described here, refer to Collection
Commands, on page 1104 in the Reference Manual.

1. To create a collection, name it with the set command and assign it to a

variable.

A collection can consist of individual objects, Tcl lists (which can have
single elements as arguments), or other collections. Use the Tcl find and
expand commands to locate objects for the collection (see Using the Tcl
Find Command to Define Collections, on page 81 and Using the Expand
Tcl Command to Define Collections, on page 83). The following example
creates a collection called my_collection which consists of all the modules
(views) found by the find command.

set my collection [find -view {*}]

2. To create collections derived from other collections, do the following:

— Define a new variable for the collection.

— Create the collection with one of the operator commands from this

table:

To...

Add objects to a collection
Concatenate collections

Create a collection from the
differences between collections

Create a collection from common
objects in collections

Find objects that belong to just
one collection

Copyright © 2013 Synopsys, Inc.
78

Use this command...

c_union. See Examples: c_union
Command, on page 79

c_union. See Examples: c_union
Command, on page 79.

c_diff. See Examples: c_diff Command, on
page 79.

c_intersect. See Examples: c_intersect
Command, on page 80.

c_symdiff. See Examples: c_symdiff
Command, on page 80.

Synplify Pro for Microsemi Edition User Guide
February 2013

Using Collections Chapter 4: Specifying Constraints

3. If your Tcl collection includes instances that have special characters
make sure to use extra curly braces or use a backslash to escape the
special character. See Examples: Names with Special Characters, on
page 80 for details.

Once you have created a collection, you can do various operations on the
objects in the collection (see Viewing and Manipulating Collections (Tcl
Commands), on page 84), but you cannot apply constraints to the collection.

Examples: ¢c_union Command

This example adds the reg3 instance to collection1, which contains reg1 and
reg2 and names the new collection sumCollection.

set sumCollection [c union $collectionl {i:reg3}]
c list $sumCollection
{"i:regl" "i:reg2" "i:reg3"}

If you added reg2 and reg3 with the c_union command, the command removes
the redundant instances (reg2) so that the new collection would still consist of
reg1, reg2, and reg3.

This example concatenates collection1and collection2 and names the new collec-
tion combined_collection:

set combined collection [c union $collectionl $collection2]

Examples: c_diff Command

This example compares a list to a collection (collection1) and creates a new
collection called subCollection from the list of differences:

set collectionl {i:regl i:reg2}
set subCollection [c diff S$Scollectionl {i:regl}]

c_print $subCollection
"i:reg2"

You can also use the command to compare two collections:

set reducedCollection [c diff $collectionl $collection2]

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 79

Chapter 4: Specifying Constraints Using Collections

Examples: c_intersect Command

This example compares a list to a collection (collection1) and creates a new
collection called interCollection from the objects that are common:

set collectionl {i:regl i:reg2}
set interCollection [c intersect $collectionl {i:regl i:reg3}]

c print $interCollection
"i:regl"

You can also use the command to compare two collections:

set common collection [c_intersect $collectionl $collection2]

Examples: ¢c_symdiff Command

This example compares a list to a collection (collection1) and creates a new
collection called diffCollection from the objects that are different. In this case,
reg1 is excluded from the new collection because it is in the list and collection1.

set collectionl {i:regl i:reg2}
set diffCollection [c_symdiff $collectionl {i:regl i:reg3}]

c list $diffCollection
{"i:reg2" "i:reg3"}

You can also use the command to compare two collections:

set symdiff collection [c _symdiff S$collectionl $collection2]

Examples: Names with Special Characters

Your instance names might include special characters, as for example when
your HDL code uses a generate statement. If your instance names have special
characters, do the following:

Make sure that you include extra curly braces {}, as shown below:
define scope collection GRP EVENT PIPE2 {find -seq
{EventMux\ [2\] .event inst? sync[*]} -hier}
define scope collection mytn {find -inst {i:countl.co[*]}}

Alternatively, use a backslash to escape the special character:

define scope collection mytn {find -inst i:countl.co\[*\]}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
80 February 2013

Using Collections Chapter 4: Specifying Constraints

Using the Tcl Find Command to Define Collections

It is recommended that you use the SCOPE window rather than the Tcl
window described here to specify the find command, for the reasons described
in Comparing Methods for Defining Collections, on page 74.

The Tcl find command returns a collection of objects. If you want to create a
collection of connectivity-based objects, use the Tcl expand command instead
of find (Using the Expand Tcl Command to Define Collections, on page 83).
This section lists some tips for using the Tcl find command.

1. Tcl find always searches at the top-level of your design, regardless of the
current Analyst view.

2. Create a collection by typing the find command and assigning the results
to a variable. The following example finds all instances with a primitive
type DFF and assigns the collection to the variable $result:

set result [find -hier -inst {*} -filter @ view == FDE]

The result is a random number like s:49078472, which is the collection of
objects found. For a list of some useful find commands, see Examples:
Useful Find Commands, on page 83.

The following table lists some usage tips for specifying the find command.
For the full details of the syntax, refer to find Command (Batch), on
page 1115 of the Reference Manual.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 81

Chapter 4: Specifying Constraints

Using Collections

Case rules

Pattern matching

Restricting search by
type of object

Restricting search to
hierarchical levels
below the current view

Restricting search by
object property

Use the case rules for the language from which the
object was generated:

* VHDL: case-insensitive

* Verilog: case-sensitive. Make sure that the object

name you type in the SCOPE window matches the
Verilog name.

For mixed language designs, use the case rules for
the parent module. This example finds any object in
the current view that starts with either a or A:

find {a*} -nocase

You have two choices:
¢ Specify the -regexp argument, and then use regular
expressions for pattern matching.

* Do not specify -regexp, and use only the * and ?
wildcards for pattern matching.

Use the -object_type argument. The following
command finds all nets that contain syn.

find -net {*syn*}

Use the -hier argument. The following example finds
all objects below the current view that begin with a:

find {a*} -hier

¢ Select Project->Implementation Options. On the Device
tab, enable Annotated Properties for Analyst.

* Compile or synthesize the design. After the compile
stage, the tool annotates the design with properties
like clock pins. You can find objects based on these
annotated properties.

* Use the -filter argument to the find command. The
following example finds any register in the current
view that is clocked by myclk.

find -seq {*} -filter {@clock==myclk}

find -seq {*} -clock myclk

3. Once you have defined the collection, you can view the objects in the
collection, using one of the following methods, which are described in
more detail in Viewing and Manipulating Collections (Tcl Commands),

on page 84:

Copyright © 2013 Synopsys, Inc.
82

Synplify Pro for Microsemi Edition User Guide
February 2013

Using Collections Chapter 4: Specifying Constraints

— Select the collection in an HDL Analyst view (select).
— Print the collection using the -print option to the find command.
— Print the collection without carriage returns or properties (c_list).

— Print collection in columns, with optional properties (c_print).

4. To manipulate the objects in the collection, use the commands
described in Viewing and Manipulating Collections (Tcl Commands), on
page 84.

Examples: Useful Find Commands

To find... Use a command like this example...
Instances by slack value set result [find —hier —inst {*} —filter @slack <= {-1.000}]

Instance within a slack set result [find —hier —inst {*} —filter @slack <= {-1.000} &&
range @slack >= {+1.000}]

Pins by fanout value set result [find —pin *.CE —hier —filter {@fanout > 15 &&
@slack < 0.0} -print]

Sequential components by set result [find —hier —seq {*} —filter @view=={FDRSE}
primitive type

Using the Expand Tcl Command to Define Collections

The Tcl expand command returns a collection of objects that are logically
connected between the specified expansion points. This section contains tips
on using the Tcl expand command to generate a collection of objects that are
related by their connectivity. For the syntax details, refer to expand
Command (Batch), on page 1112 in the Reference Manual.

* Specify at least one from, to, or through point as the starting point for
the command. You can use any combination of these points. The
following example expands the cone of logic between reg1 and reg2.

expand -from {i:regl} -to {i:reg2}

If you only specify a through point, the expansion stops at sequential
elements. The following example finds all elements in the transitive
fanout and transitive fanin of a clock-enable net:

expand -thru {n:cen}

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 83

Chapter 4: Specifying Constraints Using Collections

To specify the hierarchical scope of the expansion, use the -hier
argument. If you do not specify this argument, the command only works
on the current view. The following example expands the cone of logic to
reg1, including instances below the current level:

expand -hier -to {i:regl}

If you only specify a through point, you can use the -level argument to
specify the number of levels of expansion. The following example finds
all elements in the transitive fanout and transitive fanin of a clock-
enable net across one level of hierarchy:

expand -thru {n:cen} -level 1

To restrict the search by type of object, use the -object type argument.
The following command finds all pins driven by the specified pin.

expand -pin -from {t:i and3.z}

To print a list of the objects found, either use the -print argument to the
find command, or use the c_print or c_list commands (see Creating Collec-
tions (Tcl Commands), on page 78).

Viewing and Manipulating Collections (Tcl Commands)

The following section describes various operations you can do on the collec-
tions you defined. For full details of the syntax, see Collection Commands, on
page 1104 in the Reference Manual.

1. To view the objects in a collection, use one of the methods described in
subsequent steps:
— Select the collection in an HDL Analyst view (step 2).
— Print the collection without carriage returns or properties (step 3).
— Print the collection in columns (step 4).
— Print the collection in columns with properties (step 5).
2. To select the collection in an HDL Analyst view, type select <collection>.
For example, select $result highlights all the objects in the $result collec-
tion.
3. To print a simple list of the objects in the collection, uses the c_list
command, which prints a list like the following:
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
84 February 2013

Using Collections

Chapter 4: Specifying Constraints

{i:EPORxFifo.u fifo.dataOut [0]} {i:EPORxFifo.u fifo.dataOut[1]}
{i:EPORxFifo.u fifo.dataOut [2]}

The c_list command prints the collection without carriage returns or
properties. Use this command when you want to perform subsequent
Tcl commands on the list. See Example: c_list Command, on page 87.

. To print a list of the collection objects in column format, use the c_print

command. For example, c_print $result prints the objects like this:

.
{
{.
{
{
{

R A

EPORxFifo
EPORxFifo
EPORxFifo
EPORxFifo
EPORxFifo
EPORxFifo

.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.

dataOut
dataOut
dataOut
dataOut
dataOut
dataOut

— e, o,

01}
1]}
21}
31}
4]}
5]}

5. To print a list of the collection objects and their properties in column

format, use the ¢_print command as follows:

Annotate the design with a full list of properties by selecting Project-
>lmplementation Options, going to the Device tab, and enabling Annotated
Properties for Analyst. Synthesize the design. If you do not enable the
annotation option, properties like clock pins will not be annotated as

properties.

Check the properties available by right-clicking on the object in the
HDL Analyst view and selecting Properties from the popup menu. You
see a window with a list of the properties that can be reported.

In the Tcl window, type the c¢_print command with the -prop option. For
example, typing c_print -prop slack -prop view -prop clock $result lists the
objects in the $result collection, and their slack,

properties.

Object Name

Lt Vet W et W e e e e Y W e
R S R

i:
i :EPORxFifo
i :EPORxFifo
i :EPORxFifo
i :EPORxFifo
i :EPORxFifo
i :EPORxFifo
i :EPORxFifo
i :EPOTxFifo
i :EPOTxFifo

EPORxFifo

.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.
.u_fifo.

dataOut
dataOut
dataOut
dataOut
dataOut
dataOut
dataOut
dataOut
dataOut

0
1
2
3
4
5
6
7
0
dataOut [1

e lenRes s Ree e e

1}
1}
1}
1}
1}
1}
1}
1}
1}
1}

Synplify Pro for Microsemi Edition User Guide

February 2013

[eNeNeoNeoNeolNolNoNolNolNe)

view

n FDE n
n FDE n
n FDE n
n FDE n
n FDE n
n FDE n
n FDE n
n FDE n
n FDE n
n FDE n

view and clock

clock
clk
clk
clk
clk
clk
clk
clk
clk
clk
clk

Copyright © 2013 Synopsys, Inc.
85

Chapter 4: Specifying Constraints Using Collections

— To print out the results to a file, use the c_print command with the -file
option. For example, c_print -prop slack -prop view -prop clock $result -file
results.txt writes out the objects and properties listed above to a file
called results.txt. When you open this file, you see the information in a
spreadsheet format.

6. You can do a number of operations on a collection, as listed in the
following table. For details of the syntax, see Collection Commands, on
page 1104 in the Reference Manual.

To... Do this...

Copy a collection Create a new variable for the copy and copy the original
collection to it with the set command. When you make
changes to the original, it does not affect the copy, and
vice versa.

set my_collection_copy $my_collection

List the objects in a Use the c¢_print command to view the objects in a
collection collection, and optionally their properties, in column
format:
"v:top"
"v:block_a"
"v:block_b"

Alternatively, you can use the -print option to an
operation command to list the objects.

Generate a Tcl list Use the c_list command to view a collection or to convert

of the objects in a a collection into a Tcl list. You can manipulate a Tcl list

collection with standard Tcl commands. In addition, the Tcl
collection commands work on Tcl lists.

This is an example of c_list results:
{"v:top" "v:block_a" "v:block_b"}

Alternatively, you can use the -print option to an
operation command to list the objects.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
86 February 2013

Using Collections Chapter 4: Specifying Constraints

To... Do this...
Iterate through a Use the foreach command. This example iterates through
collection all the objects in the collection:

foreach port ¢ list[[find -port *]] {
set false path -from S$port }

You can also modify foreach_in_collection loops from
PrimeTime or Design Compiler to work with the FPGA
synthesis tools.

foreach in collection x $col 1

}

You can convert the foreach_in_collection loop shown
above to the following:

foreach x [c list $col 1] {

Example: c_list Command

The following provides a practical example of how to use the c_list command.
This example first finds all the CE pins with a negative slack that is less than
0.5 ns and groups them in a collection:

set get components list [c list [find -hier -pin {*.CE} -filter
@slack < {0.5}1]

The c_list command returns a list:

{t:EPORxFifo.u fifo.dataOut [0] .CE}
{t:EPORxFifo.u fifo.dataOut [1].CE}
{t:EPORxFifo.u fifo.dataOut [2].CE}

You can use the list to find the terminal (pin) owner:

proc terminal to owner instance {terminal name terminal type} {
regsub -all $terminal type$ $terminal name {} suffix
regsub -all {*t:} $suffix {i:} prefix
return S$prefix

foreach get component $get components list
append owner [terminal to owner instance $get component {.CE}]

}

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 87

Chapter 4: Specifying Constraints Using Collections

puts "terminal owner is Sowner"

This returns the following, which shows that the terminal (pin) has been
converted to the owning instance:

terminal owner is i:EPORxFifo.u fifo.dataOut [0]
i:EPORxFifo.u fifo.dataOut[1] i:EPORxFifo.u fifo.dataOut [2]

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
88 February 2013

Converting SDC to FDC Chapter 4: Specifying Constraints

Converting SDC to FDC

The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to
Synopsys FPGA timing constraints. From the Tcl command line in the
synthesis tool, the sdc2fdc command scans the input SDC files and attempts
to convert constraints for the implementation.

To run the sdc2fdc Tcl shell command:
1. Load your Project file.
2. From the Tcl command line, type:
sdc2fdc
3. Check the constraint results directory for details about this translation.

4. The new constraints file is automatically updated for your project. Save
the new settings.

The constraint results directory is created at

projectDir/FDC_constraints/implName

This directory includes the following results files:

— topLevel translated.fdc — Contains the Synopsys FPGA design
constraints (FPGA design constraints and the Synopsys standard
timing constraints)

— topLevel [compilePoint translate.log— Contains details about the
translation. Translation error messages explain issues and how to fix
them. Any translation errors not addressed when you run synthesis
appear in the SRR log file, but does not stop synthesis from running.

5. Open the FDC file resulting from translation in the FPGA SCOPE editor
to check these constraints and make any changes to them.

6. Run the constraints checker.
7. Save this version of the FDC to run synthesis.

For information about the FDC file, see FPGA Design Constraint (FDC) File,
on page 773.

For details about the translated files and troubleshooting guidelines, see
sdc2fdc Tcl Shell Command, on page 772.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 89

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

Using the SCOPE Editor (Legacy)

You can use the Legacy SCOPE editor for the SDC constraint files created
before release version G-2012.09. However, it is recommended that you
translate your SDC files to FDC files to enable the latest version of the SCOPE
editor and to utilize the enhanced timing constraint handling in the tool. The
latest version of the SCOPE editor automatically formats timing constraints
using Synopsys Standard syntax (such as create_clock, and set_multicyle_path).

To do this, add your SDC constraint files to your project and run the following
at the command line:

% sdc2fdc
This feature translates all SDC files in your project.

If you choose to do so, the following procedure shows you how to use the
legacy SCOPE editor to create constraints for the constraint file (SDC).

1. Open an existing file for editing.

— Make sure you have closed the SCOPE window, or you could
overwrite previous constraints.

— Double-click on an existing constraint file (sdc) in the project.

— Select File->Open, set the Files of Type filter to Constraint Files (sdc) and
open the file you want.

2. Enter the timing or design constraints you need.

Use SCOPE... To Define...

Clocks Clock frequencies

define_clock. See Defining Clocks, on page 97 for
additional information.

Clock frequency other than the one implied by
the signal on the clock pin

syn_reference_clock (attribute). See Defining
Clocks, on page 97 for additional information
Clock domains with asymmetric duty cycles

define_clock. See Defining Clocks, on page 97 for
additional information

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
90 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

Use SCOPE... To Define...

Clock to Clock Edge-to-edge clock delays

define_clock_delay. See Defining Clocks, on
page 97 for additional information

Collections Set constraints for a group of objects you have
defined as a collection with the Tcl command.

Inputs/Outputs Speed up paths feeding into a register
define_reg_input_delay.

Speed up paths coming from a register
define_reg_output_delay.

Registers Input delays from outside the FPGA

define_input_delay. See Defining Input and
Output Constraints (Legacy), on page 104 for
additional information

Output delays from your FPGA

define_output_delay. See Defining Input and
Output Constraints (Legacy), on page 104 for
additional information

Delay Paths Paths with multiple clock cycles

define_multicycle_path. See Defining Multicycle
Paths, on page 72 for additional information

False paths (certain technologies)
define_false_path. See Defining False Paths
(Legacy), on page 105 for additional
information.

Path delays

define_path_delay. See Defining
From/To/Through Points for Timing
Exceptions, on page 68 for additional

information
Attributes Assign attributes for objects specifying their
values
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 91

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

Use SCOPE... To Define...

I/O Standards Define an I/O standard for ports

Compile Points Specify compile points for your design

Other Enter newly-supported constraints for advanced
users.

Entering and Editing SCOPE Constraints (Legacy)

Enter constraints directly in the SCOPE window. You can use the Initialize
Constraint panel to enter default constraints, and then use the direct method

to modify, add, or delete constraints.

The tool also lets you add constraints automatically. For information about

auto constraints, see Using Auto Constraints, on page 339.

1. Click the appropriate tab at the bottom of the window to enter the kind

of constraint you want to create:

To define... Click...
Clock frequency for a clock signal output of clock divider logic Clocks
A specific clock frequency that overrides the global frequency
Edge-to-edge clock delay that overrides the automatically Clock to
calculated delay. Clock
Constraints for a group of objects you have defined as a Collections
collection with the Tcl command. For details, see Creating and
Using Collections (SCOPE Window), on page 75.
Input/output delays that model your FPGA input/output Inputs/
interface with the outside environment Outputs
Delay constraints for paths feeding into/out of registers Registers
Paths that require multiple clock cycles Delay Paths
Paths to ignore for timing analysis (false paths) Delay Paths
Maximum delay for paths Delay Paths
Attributes, like syn_reference_clock, that were not entered in the Attributes
source files
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
92 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

To define... Click...

I/O standards for any port in the I/O Standard panel of the /O Standard
SCOPE window.

Compile points in a top-level constraint file. See Synthesizing Compile
Compile Points, on page 449 for more information about Points
compile points.

Place and route tool constraints Other

Other constraints not used for synthesis, but which are passed
to other tools. For example, multiple clock cycles from a
register or input pin to a register or output pin

The SCOPE window displays columns appropriate to the kind of
constraint you picked. You can now enter constraints using the wizard,
or work directly in the SCOPE window.

2. Save the file by clicking the Save icon and naming the file.

The software creates a TCL constraint file (sdc). See Working with
Constraint Files, on page 43 for information about the commands in this
file.

3. To apply the constraints to your design, you must add the file to the
project now or later.

— Add it immediately by clicking Yes in the prompt box that opens after
you save the constraint file.

— Add it later, following the procedure for adding a file described in
Making Changes to a Project, on page 112.

Specifying SCOPE Timing Constraints (Legacy)

You can define timing constraints in the SCOPE GUI, which automatically
generates a Tcl constraints file, or manually with a text editor, as described in
Using a Text Editor for Constraint Files (Legacy), on page 44.

The SCOPE GUI is much easier to use, and you can define various timing
constraints in it. For the equivalent Tcl syntax, see Chapter 12, Batch
Commands and Scripts in the Reference Manual. See the following for
different timing constraints:

* Entering Default Constraints, on page 94

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 93

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

* Setting Clock and Path Constraints, on page 94

* Defining Clocks, on page 97

* Defining Input and Output Constraints (Legacy), on page 104
* Specifying Standard I/O Pad Types, on page 61

To set constraints for timing exceptions like false paths and multicycle paths,
see Specifying Timing Exceptions, on page 68.

Entering Default Constraints

To edit or set individual constraints, or to create constraints in the Other tab,
work directly in the SCOPE window (Setting Clock and Path Constraints, on
page 94). For auto constraints, see Using Auto Constraints, on page 339. To
apply the constraints, add the file to the project according to the procedure
described in Making Changes to a Project, on page 112. The constraints file
has an fdc extension. See Working with Constraint Files, on page 43 for more
information about constraint files.

Setting Clock and Path Constraints

The following table summarizes how to set different clock and path
constraints from the SCOPE window. For information about setting compile
point constraints or attributes, see Synthesizing Compile Points, on page 449
for more information about compile points and Specifying Attributes Using
the SCOPE Editor, on page 145. For information about setting default
constraints, see Entering Default Constraints, on page 94.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
94 February 2013

Using the SCOPE Editor (Legacy)

Chapter 4: Specifying Constraints

To define...

Clocks

Virtual
clocks

Route delay

Edge-to-edge
clock delay

Input/output

delays

Register
delays

Pane

Clock

Clock

Clock

Inputs/
Outputs

Registers

Clock to
Clock

Inputs/
Outputs

Registers

Synplify Pro for Microsemi Edition User Guide
February 2013

Do this to set the constraint...

Select the clock object (Clock).

Specify a clock name (Clock Alias), if required.

Type a frequency value (Frequency) or a period (Period).
Change the default Duty Cycle or set Rise/Fall At, if
needed.

Change the default clock group, if needed

Check the Enabled box.

See Defining Clocks, on page 97 for information about
clock attributes.

Set the clock constraints as described for clocks, above.
Check the Virtual Clock box.

Specify the route delay in nanoseconds. Refer to
Defining Clocks, on page 97, Defining Input and
Output Constraints (Legacy), on page 104 and the
Register Delays section of this table details.

Select the starting edge for the delay constraint (From
Clock Edge).

Select the ending edge for the constraint (To Clock Edge).
Enter a delay value.

Mark the Enabled check box.

See Defining Input and Output Constraints (Legacy),
on page 104 for information about setting I/O
constraints.

Select the register (Register).

Select the type of delay, input or output (Type).

Type a delay value (Value).

Check the Enabled box.

If you do not meet timing goals after place-and-route,
adjust the clock constraint as follows:

¢ In the Route column for the constraint, specify the
actual route delay (in nanoseconds), as obtained from
the place-and-route results. Adding this constraint is
equivalent to putting a register delay on that input
register.

* Resynthesize your design.

Copyright © 2013 Synopsys, Inc.
95

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

To define... Pane Do this to set the constraint...

Maximum Delay Path Select the Delay Type path of Max Delay.

path delay Select the port or register (From/Through). See Defining
From/To/Through Points for Timing Exceptions, on
page 68 for more information.
Select another port or register if needed (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multi-cycle Delay Paths See Defining Multicycle Paths, on page 72.
paths

False paths Delay Paths See Defining False Paths (Legacy), on page 105 for

Clock to details.

Clock
Global Attributes Set Object Type to <global>.
attributes Select the object (Object).

Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

Attributes Attributes Do either of the following:

* Select the type of object (Object Type).
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

¢ Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box.

Other Other Type the TCL command for the constraint (Command).
Enter the arguments for the command (Arguments).
Check the Enabled box.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
96 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

Defining Clocks

Clock frequency is the most important timing constraint, and must be set
accurately. If you are planning to auto constrain your design (Using Auto
Constraints, on page 339), do not define any clocks. The following procedures
show you how to define clocks and set clock groups and other constraints
that affect timing:

* Defining Clock Frequency, on page 97
* Constraining Clock Enable Paths, on page 101
* Defining Other Clock Requirements, on page 103

Defining Clock Frequency

This section shows you how to define clock frequency either through the GUI
or in a constraint file. See Defining Other Clock Requirements, on page 103
for other clock constraints. If you want to use auto constraints, do not define
your clocks.

1. Define a realistic global frequency for the entire design, either in the
Project view or the Constraints tab of the Implementation Options dialog box.

This target frequency applies to all clocks that do not have specified
clock frequencies. If you do not specify any value, a default value of 1
MHz (or 1000 ns clock period) applies to all timing paths whenever the
clock associated with both start and end points of the path is not speci-
fied. Each clock that uses the global frequency is assigned to its own
clock group. See Defining Other Clock Requirements, on page 103 for
more information about clock group settings.

The global frequency also applies to any purely combinatorial paths. The
following figure shows how the software determines constraints for
specified and unspecified start or end clocks on a path:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 97

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

A _ B
Logic
clkA —> c =
clkB

If clkA is... And clkB is... The effect for logic C is...

Undefined Defined The path is unconstrained unless you specify that
clkB be constrained to the inferred clock domain for
clkA

Defined Undefined The path is unconstrained unless you specify that
clkA be constrained to the inferred clock domain for
clkB.

Defined Defined For related clocks in the same clock group, the
relationship between clocks is calculated; all other
paths between the clocks are treated as false paths.

Undefined Undefined The path is unconstrained.

2. Define frequency for individual clocks on the Clocks tab of the SCOPE
window (define_clock constraint).

— Specify the frequency as either a frequency in the Frequency column
(-freq Tcl option) or a time period in the Period column (-period Tcl
option). When you enter a value in one column, the other is
calculated automatically.

— For asymmetrical clocks, specify values in the Rise At (-rise) and Fall At
(-fall) columns. The software automatically calculates and fills out the
Duty Cycle value.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
98 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

The software infers all clocks, whether declared or undeclared, by
tracing the clock pins of the flip-flops. However, it is recommended that
you specify frequencies for all the clocks in your design. The defined
frequency overrides the global frequency. Any undefined clocks default
to the global frequency.

3. Define internal clock frequencies (clocks generated internally) on the
SCOPE Clocks tab (define_clock constraint). Apply the constraint
according to the source of the internal clock.

Source Add SCOPE constraint/define_clock to...
Register Register.

Instance, like a PLL Instance. If the instance has more than one clock

or clock DLL output, apply the clock constraints to each of the
output nets, making sure to use the n: prefix (to
signify a net) in the SCOPE table.

Combinatorial logic = Net. Make sure to use the n: prefix in the SCOPE
interface.

4. For signals other than clocks, define frequencies with the
syn_reference_clock attribute. You can add this attribute on the SCOPE
Attributes tab, as follows:

— Define a dummy clock on the Clocks tab (define_clock constraint).

— Add the syn_reference_clock attribute (Attributes tab) to the affected
registers to apply the clock. In the constraint file, you can use the Find
command to find all registers enabled by a particular signal and then
apply the attribute:

define clock -virtual dummy -period 40.0
define attribute {find -seq * -hier -filter @(enable == en40)}
syn reference clock dummy

In earlier releases, limited clocking resources might have forced you to
use an enable signal as a clocking signal, and use the syn_reference_clock
attribute to define an enable frequency. However, because of changes in
the reporting of clock start and end points, it is recommended that you
use a multicycle path constraint instead for designs that use an enable
signal and a global clock, and where paths need to take longer than one
clock cycle. See Constraining Clock Enable Paths, on page 101 for a
detailed explanation.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 99

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

Note: This method is often used for designs that have an enable signal
and a global clock, and where paths need to take longer than one clock
cycle. The registers in the design are actually connected to the global
clock, however, the tool treats the registers as having a virtual clock at
the frequency of the enable signal.

Using this method to constrain paths for technologies with clock buffer
delays requires careful analysis with the Timing Analysis Reports (STA).
The virtual clock does not include clock buffer delays. However, non-
virtual clocks that pass through clock buffers do include clock buffer
delays. The register that generates the enable signal is on the non-
virtual clock domain, whereas the registers connected to the enable
signal are on the virtual clock domain. Timing analysis shows that the
enable signal is on the path between the non-virtual and virtual clock
domains. For the actual design, the enable signal is on a path in the
non-virtual clock domain. Any paths between virtual and non-virtual
clocks are reported with a clock buffer delay on the non-virtual clock.
This may result in the critical path reporting negative slack.

In the following example, the path comes from a register on a non-
virtual clock and goes to a register on a virtual clock.

Path information for path number 1:
Requested Period:3.125
- Setup time: 0.229
= Required time: 2.896

- Propagation time: 1.448
- Clock delay at starting point: 1.857
= Slack (critical: -0.409

Number of logic level(s): O

Starting point: SourceFlop / Q

Ending point: DestinationFlop / CE

The start point is clocked by Non-VirtualClock [rising] on pin C
The end point is clocked by VirtualClock [rising] on pin C

The path is reported with a negative slack of -0.49.

Timing analysis specifies a Clock delay at starting point that is the delay in
the clock buffers of the non-virtual clock, but not a Clock delay at ending
point. In the actual design, this delay exists at the end point. Since the
clock end point is a virtual clock, the clock buffer delay creates a
negative slack that does not exist in the actual design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
100 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

It is recommended that you use a multicycle path constraint instead to
constrain all registers driven by the enable signal in the design.

5. After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

6. If you do not meet timing goals after place-and-route, adjust the clock
constraint as follows:

— Open the SCOPE window with the clock constraint.

— In the Route column for the constraint, specify the actual route delay
(in nanoseconds), as obtained from the place-and-route results.
Adding this constraint is equivalent to putting a register delay on all
the input registers for that clock.

— Resynthesize your design.

Constraining Clock Enable Paths

You might use an enable signal as a clocking signal if you have limited
clocking resources. If the enable is slower than the clock, you can ensure
more accuracy by defining the enable frequency separately, instead of
slowing down the clock frequency. If you slow down the clock frequency, it
affects all other registers driven by the clock, and can result in longer run
times as the tool tries to optimize a non-critical path.

There are two ways to define clock enables:

* By setting a multicycle path constraint to constrain all flip-flops driven
by the clock enable signal (see Defining Multicycle Paths, on page 72).
This is the recommended method.

* Using the syn_reference_clock attribute, as described in step 4 of Defining
Clock Frequency, on page 97. Although this method was used in earlier
releases, it is not recommended any more because of changes in the way
the clock start and end points are reported. An explanation of the clock
start and end points reporting follows.

Clock Domains for Clock Enables Defined with syn_reference_clock

When you use the syn_reference_clock attribute to constrain an enable signal,
you are telling the tool to treat the flip-flops as if they had a virtual clock at
the frequency of the enable signal, when the flip-flops are actually connected
to the global clock. This could result in critical paths being reported with
negative slack.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 101

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

The flip-flop that generates the enable signals is in the non-virtual clock
domain.The flip-flops that are connected to the enable signal are in the
virtual clock domain. The timing analyst considers the enable signal to be on
a path that goes between a non-virtual clock domain and a virtual clock
domain. In the actual circuit, the enable signal is on a path within a non-
virtual clock domain. The timing analyst reports any paths between virtual
and non-virtual clocks with a clock buffer delay on the non-virtual clock. This
is why critical paths might be reported with negative slack.

If you use this method to constrain paths in a technology that includes clock
buffer delays, you must carefully analyze the timing analysis reports. The
virtual clock does not include clock buffer delays, but any non-virtual clock
that passes through clock buffers will include clock buffer delays.

The following is an example report of a path from a clock enable, starting
from a flip-flop on a non-virtual clock to a flip-flop on a virtual clock. The
path is reported with a negative slack of -0.49.

Path information for path number 1:
Requested Period: 3.125
- Setup time: 0.229
= Required time:2.896

- Propagation time: 1.448

- Clock delay at starting point: 1.857
= Slack (critical) : -0.409
Number of logic level(s): 0

Starting point:SourceFlop/ Q
Ending point:DestinationFlop / CE

The start point is clocked by Non-VirtualClock [risinglon pin C
The end point is clocked by VirtualClock [rising] on pin C

This timing analysis report includes a Clock delay at starting point, but does not
include Clock delay at ending point. The clock delay at the starting point is the
delay in the clock buffers of the non-virtual clock. In the actual circuit, this
delay would also be at the ending point and not affect the calculation of slack.
However as the ending clock is a virtual clock, the clock buffer delay ends up
creating a negative slack that does not exist in the actual circuit.

This report is a result of defining the clock enables with the syn_reference_clock
attribute. This is why it is recommended that you use multicycle paths to
constrain all the flip-flops driven by the enable signal.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
102 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

Defining Other Clock Requirements

Besides clock frequency (described in Defining Clock Frequency, on page 97),
you can also set other clock requirements, as follows:

* If you have limited clock resources, define clocks that do not need a
clock buffer by attaching the syn_noclockbuf attribute to an individual
port, or the entire module/architecture.

* Define the relationship between clocks by setting clock domains. By
default, each clock is in a separate clock group named default_clkgroup<n>
with a sequential number suffix.

— On the SCOPE Clocks tab, group related clocks by putting them into
the same clock group. Use the Clock Group field to assign all related
clocks to the same clock group.

— Make sure that unrelated clocks are in different clock groups. If you
do not, the software calculates timing paths between unrelated clocks
in the same clock group, instead of treating them as false paths.

— Input and output ports that belong to the System clock domain are
considered a part of every clock group and will be timed. See Defining
Input and Output Constraints (Legacy), on page 104 for more
information.

The software does not check design rules, so it is best to define the
relationship between clocks as completely as possible.

* Define all gated clocks with the define_clock constraint.

Avoid using gated clocks to eliminate clock skew. If possible, move the
logic to the data pin instead of using gated clocks. If you do use gated

clocks, you must define them explicitly, because the software does not
propagate the frequency of clock ports to gated clocks.

To define a gated clock, attach the define_clock constraint to the clock
source, as described above for internal clocks. To attach the constraint
to a keepbuf (a keepbuf is a placeholder instance for clocks generated from
combinatorial logic), do the following:

— Attach the syn_keep attribute to the gated clock to ensure that it
retains the same name through changes to the RTL code.

— Attach the define_clock constraint to the net or pin connected to the
keepbuf instance generated for the gated clock.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 103

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

* Specify edge-to-edge clock delays on the Clock to Clock tab
(define_clock_delay).

After synthesis, check the Performance Summary section of the log file for a list
of all the defined and inferred clocks in the design.

Defining Input and Output Constraints (Legacy)

In addition to setting I/ O delays in the SCOPE window as described in Setting
Clock and Path Constraints, on page 94, you can also set the Use clock period
for unconstrained 10 option.

* Open the SCOPE window, click Inputs/Outputs, and select the port (Port).
You can set the constraint for

— All inputs and outputs (globally in the top-level netlist)
— For a whole bus

— For single bits

You can specify multiple constraints for the same port. The software
applies all the constraints; the tightest constraint determines the worst
slack. If there are multiple constraints from different levels, the most
specific overrides the more global. For example, if there are two bit
constraints and two port constraints, the two bit constraints override
the two port constraints for that bit. The other bits get the two port
constraints.

* Specify the constraint value in the SCOPE window:
— Select the type of delay: input or output (Type).
— Type a delay value (Value).

— Check the Enabled box, and save the constraint file in the project.

Make sure to specify explicit constraints for each I/O path you want to
constrain.

* To determine how the I/O constraints are used during synthesis, do the
following:

— Select Project->Implementation Options, and click Constraints.

— To use only the explicitly defined constraints disable Use clock period for
unconstrained 10.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
104 February 2013

Using the SCOPE Editor (Legacy) Chapter 4: Specifying Constraints

— To synthesize with all the constraints, using the clock period for all
I/O paths that do not have an explicit constraint enable Use clock
period for unconstrained 10.

— Synthesize the design. When you forward-annotate the constraints,
the constraints used for synthesis are forward-annotated for place-
and-route.

* Input or output ports with explicitly defined constraints, but without a
reference clock (-ref option) are included in the System clock domain and
are considered to belong to every defined or inferred clock group.

* If you do not meet timing goals after place-and-route and you need to
adjust the input constraints; do the following:
— Open the SCOPE window with the input constraint.

— In the Route column for the input constraint, specify the actual route
delay in nanoseconds, as obtained from the place-and-route results.
Adding this constraint is equivalent to putting a register delay on the
input register.

— Resynthesize your design.

Defining False Paths (Legacy)

You define false paths by setting constraints explicitly on the Delay Paths tab
or implicitly on the Clock and Clock to Clock tabs. See Defining
From/To/Through Points for Timing Exceptions, on page 68 for object
naming and specifying through points.

* To define a false path between ports or registers, select the SCOPE Delay
Paths tab, and do the following:
— From the Delay Type pull-down menu, select False.

— Use the pull-down to select the port or register from the appropriate
column (From/To/Through).

— Check the Enabled box.

The software treats this as an explicit false constraint and assigns it the
highest priority. Any other constraints on this path are ignored.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 105

Chapter 4: Specifying Constraints Using the SCOPE Editor (Legacy)

* To define a false path between two clocks, select the SCOPE Clocks tab,
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different
clock groups. This false path constraint can be overridden by a
maximum path delay constraint, or with an explicit constraint.

* To define a false path between two clock edges, select the SCOPE Clock to
Clock tab, and do the following:

— Specify one clock as the starting clock edge (From Clock Edge).

— Specify the other clock as the ending clock edge (To Clock Edge).
— Click in the Delay column, and select false.

— Mark the Enabled check box.

Use this technique to specify a false path between any two clocks,

regardless of clock groups. This constraint can be overridden by a
maximum delay constraint on the same path.

* To override an implicit false path between any two clocks described
previously, set an explicit constraint between the clocks by selecting the
SCOPE Clock to Clock tab, and doing the following:

— Specify the starting (From Clock Edge) and ending clock edges (To Clock
Edge).

— Specify a value in the Delay column.
— Mark the Enabled check box.

The software treats this as an explicit constraint. You can use this
method to constrain a path between any two clocks, regardless of
whether they belong to the same clock group.

* To set an implicit false path on a path to/from an I/O port, do the
following:

— Select Project->Implementation Options->Constraints.

— Disable Use clock period for unconstrained 10.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
106 February 2013

SYNOPSYs

celerating Innovation

CHAPTER §

Setting up a Logic Synthesis Project

When you synthesize a design with the Synopsys FPGA synthesis tools, you
must set up a project for your design. The following describe the procedures
for setting up a project for logic synthesis:

* Setting Up Project Files, on page 108

* Project File Hierarchy Management, on page 117

* Setting Up Implementations and Workspaces, on page 124

* Setting Logic Synthesis Implementation Options, on page 128
* Specifying Attributes and Directives, on page 141

* Searching Files, on page 150

* Archiving Files and Projects, on page 153

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 107

Chapter 5: Setting up a Logic Synthesis Project Setting Up Project Files

Setting Up Project Files

For a specific example on setting up a project file, refer to the Synplify Pro
tutorial. This section describes the following:

¢ Creating a Project File, on page 108

* Opening an Existing Project File, on page 111

* Making Changes to a Project, on page 112

* Setting Project View Display Preferences, on page 113

* Updating Verilog Include Paths in Older Project Files, on page 116

Creating a Project File

You must set up a project file for each project. A project contains the data
needed for a particular design: the list of source files, the synthesis results
file, and your device option settings. The following procedure shows you how
to set up a project file using individual commands.

1. Start by selecting one of the following: File->Build Project, File->Open Project,
or the P icon. Click New Project.

The Project window shows a new project. Click the Add File button, press
F4, or select the Project->Add Source File command. The Add Files to Project
dialog box opens.

2. Add the source files to the project.

— Make sure the Look in field at the top of the form points to the right
directory. The files are listed in the box. If you do not see the files,
check that the Files of Type field is set to display the correct file type. If
you have mixed input files, follow the procedure described in Using
Mixed Language Source Files, on page 38.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
108 February 2013

Setting Up Project Files Chapter 5: Setting up a Logic Synthesis Project

il i 2
R | 21

*

L | \J My Computer

Loak in: |BC:1synp\ifyjrn\tutnr\a\\veri\ng v| O = | 0 J E]

] ahow

®| data_mux.y
| eight_bit_uc.v
| ins_decode v
B o

B multe

’_) joann. 3¥MP|

B po

| reqg_file.
®| spd_regs.w
®| state_mc.yw

CIEEARED)

File name: []

Files of type: |AII Files (*.*) vl

DL b | |-

Files ko add to project: (10 fileis) selected) Use relative paths Add Files ta Folders | Folder Options. ..

Jwerilogialu, v <- add all
Nwerilogidata_musx.y
Nwerilagheight _bit_uc.v
Mwerilaghins_decode.v
Jweriloghioy
Nwerilogimult, Remaove All -=
Awerilagipe.y
Swerilagireg_file.v B
JAweriloglspol_regs.y
JAwerilogstate_mc.v

<- Add

[s]

Cancel

4

To add all the files in the directory at once, click the Add All button on
the right side of the form. To add files individually, click on the file in
the list and then click the Add button, or double-click the file name.

You can add all the files in the directory and then remove the ones
you do not need with the Remove button.

If you are adding VHDL files, select the appropriate library from the
the VHDL Library popup menu. The library you select is applied to all
VHDL files when you click OK in the dialog box.

Your project window displays a new project file. If you click on the plus
sign next to the project and expand it, you see the following:

A folder (two folders for mixed language designs) with the source files.
If your files are not in a folder under the project directory, you can set
this preference by selecting Options->Project View Options and checking
the View project files in folders box. This separates one kind of file from
another in the Project view by putting them in separate folders.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
109

February 2013

Chapter 5: Setting up a Logic Synthesis Project Setting Up Project Files

— The implementation, named rev_1 by default. Implementations are
revisions of your design within the context of the synthesis software,
and do not replace external source code control software and
processes. Multiple implementations let you modify device and
synthesis options to explore design options. You can have multiple
implementations in Synplify Pro. Each implementation has its own
synthesis and device options and its own project-related files.

=} i Designs)S-bik-vhdl{proj, pri
b 27 WHOL
-~ [const_pkg.whd [work]

- [aho.vhd [work]
- [daka_mux.vhd [work]
- [ins_decode.vhd [work]
- [ins_rom.vhd [work]
- [io.vhd [work]
- [pe.vhd [work]
- [req_file.vhd [work]
- [spcl_regs.vhd [work]

[eight_bit_ue.vhd [work]

rev 2

3. Add any libraries you need, using the method described in the previous
step to add the Verilog or VHDL library file.

— For vendor-specific libraries, add the appropriate library file to the
project. Note that for some families, the libraries are loaded
automatically and you do not need to explicitly add them to the
project file.

To add a third-party VHDL package library, add the appropriate .vhd
file to the design, as described in step 2. Right click the file in the
Project view and select File Options, or select Project-> Set VHDL library.
Specify a library name that is compatible with the simulators. For
example, MYLIB. Make sure that this package library is before the top-
level design in the list of files in the Project view.

For information about setting Verilog and VHDL file options, see
Setting Verilog and VHDL Options, on page 136. You can also set
these file options later, before running synthesis.

For additional vendor-specific information about using vendor macro
libraries and black boxes, see Optimizing for Microsemi Designs, on
page 345.

— For generic technology components, you can either add the
technology-independent Verilog library supplied with the software

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
110 February 2013

Setting Up Project Files Chapter 5: Setting up a Logic Synthesis Project

(install_dir/lib /generic_ technology/gtech.v) to your design, or add your
own generic component library. Do not use both together as there
may be conflicts.

4. Check file order in the Project view. File order is especially important for
VHDL files.

— For VHDL files, you can automatically order the files by
selecting Run->Arrange VHDL Files. Alternatively, manually move the
files in the Project view. Package files must be first on the list because
they are compiled before they are used. If you have design blocks
spread over many files, make sure you have the following file order:
the file containing the entity must be first, followed by the architecture
file, and finally the file with the configuration.

— In the Project view, check that the last file in the Project view is the
top-level source file. Alternatively, you can specify the top-level file
when you set the device options.

5. Select File->Save, type a name for the project, and click Save. The Project
window reflects your changes.

6. To close a project file, select the Close Project button or File->Close Project.

Opening an Existing Project File

There are two ways to open a project file: the Open Project and the generic File
->0Open command.

1. If the project you want to open is one you worked on recently, you can
select it directly: File->Recent Projects-> projectName.

2. Use one of the following methods to open any project file:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 111

Chapter 5: Setting up a Logic Synthesis Project

Setting Up Project Files

Open Project Command

Select File->Open Project, click the
Open Project button on the left side of
the Project window, or click the

P icon.

To open a recent project, double-
click it from the list of recent
projects.

Otherwise, click the Existing Project

button to open the Open dialog box
and select the project.

File->Open Command

Select File->Open.

Specify the correct directory in the Look
In: field.

Set File of Type to Project Files (*.prj). The
box lists the project files.

Double-click on the project you want
to open.

The project opens in the Project window.

Making Changes to a Project

Typically, you add, delete, or replace files.

1.

To add source or constraint files to a project, select the Add Files button
or Project->Add Source File to open the Select Files to Add to Project dialog box.
See Creating a Project File, on page 108 for details.

press the Delete key.

. To replace a file in a project,

. To delete a file from a project, click the file in the Project window, and

— Select the file you want to change in the Project window.

— Click the Change File button, or select Project->Change File.

— In the Source File dialog box that opens, set Look In to the directory
where the new file is located. The new file must be of the same type as

the file you want to replace.

— If you do not see your file listed, select the type of file you need from

the Files of Type field.

— Double-click the file. The new file replaces the old one in the project

list.

To specify how project files are saved in the project, right click on a file
in the Project view and select File Options. Set the Save File option to either

Relative to Project or Absolute Path.

Copyright © 2013 Synopsys, Inc.
112

Synplify Pro for Microsemi Edition User Guide
February 2013

Setting Up Project Files Chapter 5: Setting up a Logic Synthesis Project

S. To check the time stamp on a file, right click on a file in the Project view
and select File Options. Check the time that the file was last modified.
Click OK.

Setting Project View Display Preferences
You can customize the organization and display of project files.
1. Select Options->Project View Options.

The Project View Options form opens.

Project Yiew Options ﬂﬂ

Cptions

Qption

Show Project File Library

Beep when a job completes

‘iew Project Files in Type Folders

‘iew Project Files in Custom Folders

Order Files alphabetically

Auto-load projects from previous session

Auto-save project on Run

Open log file Following Run

Show all files in results directory

Allow multiple prajects ta be opened

| [0 O | @ | @) | O | &
o

Wigw log File in HTML

Project file name display File name only

(1 (]

Description:

Click on an option For description

2. To organize different kinds of input files in separate folders, check View
Project Files in Folders.

Checking this option creates separate folders in the Project view for
constraint files and source files.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 113

Chapter 5: Setting up a Logic Synthesis Project

Setting Up Project Files

Yiews Project: Files in Folders |E

=X ﬁ C fDesmnsframCtrIJJde,fram orj

D data_mux.\t
O o
- O ins_rarm.y
- [ins_decode.y
[prom_cntr.y
O reg_fle.y
- [spcl_regs.y
- [eight_hit_uc.y
B E,z Constraint
----- B timingrodels.sdc
- B internal_bb.sdc

G- # rev_4

3. Control file display with the following:

Wiew Project Files in Folders [[]

=2 |= C:/DesignsfrarnCtrl_prod/ram. pri
- [auy

- [data_rmw.y

i

ins_romm.v
ins_decode. v
prann_chtr .y
reg_file.v
spcl_regs.y
eight_bit_uc.v
tirningrnodels, sdc
internal_bb.sdc
rev_d4

By

#d@bbbbbbb

— Automatically display all the files, by checking Show Project Library. If
this is unchecked, the Project view does not display files until you
click on the plus symbol and expand the files in a folder.

— Check one of the boxes in the Project File Name Display section of the
form to determine how filenames are displayed. You can display just
the filename, the relative path, or the absolute path.

4. To view project files in customized custom folders, check View Project Files
in Custom Folders. For more information, see Creating Custom Folders, on
page 117. Type folders are only displayed if there are multiple types in a

custom folder.

= 120 [tukorial] - Cihsynplify_profboboriallbotorial, pri

B} [F vHDL

Custom B [verilog
Folders ﬁ’fJ Conskraint
EJ i memary
[ram.vhd [work]
B prep

[prepz_z.vhd [work]
Tev_1

‘o [par_1 (xilinx Place & Rouke)

Copyright © 2013 Synopsys, Inc.
114

H const_pka.vhd [work]
" ins_rom.vhd [work] -=NOTES: 2

Synplify Pro for Microsemi Edition User Guide
February 2013

Setting Up Project Files Chapter 5: Setting up a Logic Synthesis Project

5. To open more than one implementation in the same Project view, check
Allow Multiple Projects to be Opened.

Project 1 —> | [E1 C:jDesigns/ramCtrlfram.pri

Allowe rmultiple projects to be opened | & g :'::"ig
Project 2 —» | £+ B iC: fDesigrsjB-bit-vhdiprod.pr

B g WHOL
=N

6. Control the output file display with the following:

3!

— Check the Show all Files in Results Directory box to display all the output
files generated after synthesis.

— Change output file organization by clicking in one of the header bars
in the Implementation Results view. You can group the files by type
or sort them according to the date they were last modified.

7. To view file information, select the file in the Project view, right-click,

and select File Options. For example, you can check the date a file was
modified.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 115

Chapter 5: Setting up a Logic Synthesis Project Setting Up Project Files

Updating Verilog Include Paths in Older Project Files

If you have a project file created with an older version of the software (prior to
8.1), the Verilog include paths in this file are relative to the results directory or
the source file with the ‘include statements. In releases after 8.1, the project
file ‘include paths are relative to the project file only. The GUI in the more
recent releases does not automatically upgrade the older prj files to conform
to the newer rules. To upgrade and use the old project file, do one of the
following:

* Manually edit the prj file in a text editor and add the following on the
line before each set_option -include_path:

set option -project relative includes 1

* Start a new project with a newer version of the software and delete the
old project. This will make the new prj file obey the new rule where
includes are relative to the prj file.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
116 February 2013

Project File Hierarchy Management Chapter 5: Setting up a Logic Synthesis Project

Project File Hierarchy Management

* Creating Custom Folders
* Other Custom Folder Operations

* Other Custom File Operations

Creating Custom Folders

Synplify ® Pro
2Run
Ready
P, +|lrev_1 rev_t
Open Project. . — =
IJ—/ B @) [tutorial] - Clsoftwarcisyngly pri
— B) verlog B [backup
|4l Add Fie... B [Constraint B[coreip
B @ memory &) par_t
By Change File... @ ram_tv B) syntmp
B @ misc & 2 verif
4k Add Implementation... B addert.y 0 o
0 asye.y O _verlog_hintfile
B vy B e bt fe
BR add Pes. Inplementation @O muxdtoly [eight_bit_uc.hkm
O muxnewl.w @ eight_bit_uc.sap
[muznewz.y B eight_hit_uc.srr
@ resreshr.v @ eight_bit_uc.srs
Freguency(MHz): [scaleabl.w [layer0.sra
® (Lo]2 ||| O template.v [layero.tlg
Auka Constrain - [tsthench.« 0 lavertinfo
= rev_t et
" - = 4 4
als e | 2] D)

P tukarial, prj

1. Right-click on a project file or another custom folder and select Add Folder
from the popup menu. Then perform any of the following file operations:

— Right-click on a file or files and select Place in Folder. A sub-menu
displays so that you can either select an existing folder or create a
new folder.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 117

Chapter 5: Setting up a Logic Synthesis Project Project File Hierarchy Management

Folder Mame
| Ok | | Cancel |

Note that you can arbitrarily name the folder, however do not use the
character (/) because this is a hierarchy separator symbol.

— To rename a folder, right-click on the folder and select Rename from
the popup menu. The Rename Folder dialog box appears; specify a new
name.

2. Use the Add Files to Project dialog box to add the entire contents of a folder
hierarchy, and optionally place files into custom folders corresponding
to the OS folder hierarchies listed in the dialog box display.

lookin: |G _175R\examplesyhdicommon | | @ © O F B

i Py Computer |12 zombinat

i
] ieamn. SR =) remory

1) misc

12 prep

1) sequent!

15 statmehs

EERGD)

Fie name: [ram.vhd]

Files of bype: [all Fles (*%) -]

yHoLib: [-

Files to add to praject: (1 file(s) selected) [¥] Use relative paths Add files to Folders | Folder Optians. .

<- Add Al

< pdd

Remave All -

Remave -

oK

Cancel

A

— To do this, select the Add File button in the Project view.

— Select the requested folder(s) such as dsp from the dialog box, then
click the Add button. This places all the files from the dsp hierarchy
into the custom folder you just created.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
118 February 2013

Project File Hierarchy Management Chapter 5: Setting up a Logic Synthesis Project

— To automatically place the files into custom folders corresponding to
the OS folder hierarchy, check the option called Add Files to Custom
Folders on the dialog box.

— By default, the custom folder name is the same name as the folder
containing files or folder to be added to the project. However, you can
modify how folders are named, by clicking on the Folders Option
button. The following dialog box is displayed.

Folder Options 7| x|
Select a method for naming Folders:
® Use OS Folder Name

Use Parent Path (select from list below):
tutorial
synplify_pro
tutoril

oK | | Cancel
To use:

— Only the folder containing files for the folder name, click on Use OS
Folder Name.

— The path name to the selected folder to determine the level of
hierarchy reflected for the custom folder path.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 119

Chapter 5: Setting up a Logic Synthesis Project

Project File Hierarchy Management

3. You can drag and drop files and folders from an OS Explorer application
into the Project view. This feature is available on Windows and Linux
desktops running KDE.

When you drag and drop a file, it is immediately added to the project.
If no project is open, the software creates a project.

When you drag and drop a file over a folder, it will be placed in that
folder. Initially, the Add Files to Project dialog box is displayed asking
you to confirm the files to be added to the project. You can click OK to
accept the files. If you want to make changes, you can click the
Remove All button and specify a new filter or option.

Note: To display custom folders in the Project view, select the
Options->Project View Options menu, then enable/disable the check
box for View Project Files in Custom Folders on the dialog box.

Other Custom Folder Operations

The following procedure describes how you can remove files from folders,
delete folders, and change the folder hierarchy.

1.

To remove a file from a custom folder, either:

Drag and drop it into another folder or onto the project.
Highlight the file, right-click and select Remove from Folder from the
popup menu.

Do not use the Delete (DEL) key, as this removes the file from the
project.

. To delete a custom folder, highlight it then right-click and select Delete

from the popup menu or press the DEL key. When you delete a folder,
make one of the following choices:

Click Yes to delete the folder and the files contained in the folder from
the project.

Click No to just delete the folder.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
120

February 2013

Project File Hierarchy Management Chapter 5: Setting up a Logic Synthesis Project

3. To change the hierarchy of the custom folder:

— Drag and drop the folder within another folder so that it is a sub-
folder or over the project to move it to the top-level.

— To remove the top-level hierarchy of a custom folder, drag and drop
the desired sub-level of hierarchy over the project. Then delete the
empty root directory for the folder.

For example, if the existing custom folder directory is:
/Examples/Verilog/RTL

Suppose you want a single-level RTL hierarchy only, then drag and
drop RTL over the project. Thereafter, you can delete the
/Examples/Verilog directory.

Other Custom File Operations
Additionally, you can perform the following types of custom file operations:

1. To suppress the display of files in the Type folders, right-click in the
Project view and select Project View Options or select Options->Project View
Options. Disable the option View Project Files in Type Folders on the dialog
box.

2. To display files in alphabetical order instead of project order, check the
Sort Files button in the Project view control panel. Click the down arrow
key in the bottom-left corner of the panel to toggle the control panel on
and off.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 121

Chapter 5: Setting up a Logic Synthesis Project Project File Hierarchy Management

- 20 {[tutorial] - C:\softwareisynplify_proftukorialibutarial, pri iT]

- YHOL ——
.’ ﬁ;j} . = 20 [tukorial] - Ciisoftwaresynplify_proltukorialitutorial,pri
E}- [verilog ra
4 sl B [wHOL
. -
A data_muxw [Veriog
A ins_decode.v id 3l
4 iov - A data_muey
4 mlult v - 4] eight_Bit_uc.w
4w vl A ins_decade.v
- 3 reg_file. ﬁ LleTtv
A spcl_regs.v ¥ cvl
- A eight_bit_uc.v ¥ rpel ey
#- [Constraint - 4 spgl_reu;;s y
[+ - — '
? g :E:DW = [£) Constraint
- [adderig.v " ﬁ memary
- [asyney T ﬁ %scadderlﬁ v
- [hierarcy.v [asyme vl
- [muxdtale ST
[ety - [hierarcy.v
[ez - [muxdtol . L
~ [resrcshr.y % mﬁi::x;:
[scaleabl.y '
[template.y - [resreshr.w
[tsthenchy - [scaleabl.v
B 4 rov 1 - [template.w
- [tstbench.v [+]
E— G- 4k rev 1 ~
Control Panel Toggle ——] Folder Sork Files
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
122 February 2013

Project File Hierarchy Management Chapter 5: Setting up a Logic Synthesis Project

3. To change the order of files in the project:
— Make sure to disable custom folders and sorting files.

— Drag and drop a file to the desired position in the list of files.

4. To change the file type, drag and drop it to the new type folder. The
software will prompt you for verification.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 123

Chapter 5: Setting up a Logic Synthesis Project Setting Up Implementations and Workspaces

Setting Up Implementations and Workspaces

Workspaces and implementations are extensions of the project metaphor
used in the Synplify Pro synthesis software.

This section describes the following:
* Working with Multiple Implementations, on page 124
* Creating Workspaces, on page 126
* Using Workspaces, on page 127

Working with Multiple Implementations

The Synplify Pro tool lets you create multiple implementations of the same
design and then compare results. This lets you experiment with different
settings for the same design. Implementations are revisions of your design
within the context of the synthesis software, and do not replace external
source code control software and processes.

1. Click the Add Implementation button or select Project->New Implementation
and set new device options (Device tab), new options (Options tab), or a
new constraint file (Constraints tab).

The software creates another implementation in the project view. The
new implementation has the same name as the previous one, but with a
different number suffix. The following figure shows two implementa-
tions, revl and rev2, with the current (active) implementation highlighted.

= 2 i kools/tamp,rampr, pr
B [Verilog

The new implementation uses the same source code files, but different
device options and constraints. It copies some files from the previous
implementation: the tlg log file, the srs RTL netlist file, and the
design_fsm.sdc file generated by FSM Explorer. The software keeps a
repeatable history of the synthesis runs.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
124 February 2013

Setting Up Implementations and Workspaces Chapter 5: Setting up a Logic Synthesis Project

2. Run synthesis again with the new settings.
— To run the current implementation only, click Run.

— To run all the implementations in a project, select Run->Run All
Implementations.

You can use multiple implementations to try a different part or experi-
ment with a different frequency. See Setting Logic Synthesis Implemen-
tation Options, on page 128 for information about setting options.

The Project view shows all implementations with the active implementa-
tion highlighted and the corresponding output files generated for the
active implementation displayed in the Implementation Results view on
the right; changing the active implementation changes the output file
display. The Watch window monitors the active implementation. If you
configure this window to watch all implementations, the new implemen-
tation is automatically updated in the window.

3. Compare the results.

— Use the Watch window to compare selected criteria. Make sure to set
the implementations you want to compare with the Configure Watch
command. See Using the Watch Window, on page 241 for details.

| Log Parameter rew_1 rev_2 ﬂ

eight_hit_uc|clock - Estimated Frequency | 47.0 MHz 201.6 MHz

eight_bit_uc|clock - Requested Frequency | 55.3 MHz 237.1 MHz

eight_hit_uc|clock - Slack. -3.191 -0, 744 ﬂ
-

— To compare details, compare the log file results.

4. To rename an implementation, click the right mouse button on the
implementation name in the project view, select Change Implementation
Name from the popup menu, and type a new name.

Note that the current Ul overwrites the implementation; releases prior to
9.0 preserve the implementation to be renamed.

5. To copy an implementation, click the right mouse button on the
implementation name in the project view, select Copy Implementation from
the popup menu, and type a new name for the copy.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 125

Chapter 5: Setting up a Logic Synthesis Project Setting Up Implementations and Workspaces

6. To delete an implementation, click the right mouse button on the
implementation name in the project view, and select Remove
Implementation from the popup menu.

Creating Workspaces

The Synplify Pro tool lets you group projects together into workspaces. A
workspace is like a container for a number of projects.

1. To create a new workspace, select File->New Workspace or right-click in
the Project view and select Build Workspace.
2. In the dialog box,

— Select the project files (prj) of the projects you want to add to the
workspace.

— Name the workspace and click OK.

The Project view displays the workspace and the associated projects
under it. The workspace file is also a prj file.

B - Z: ftonlsfwarkspace. pri
----- EN C:jDesignsia-hit-verilogfproj_1.pri

3. To open more than one project in the same Project view, check Allow
Multiple Projects to be Opened. After you set up the new project, you can see
it in the Project view.

Project 1 —— [E1- [0 C:fDesigns/ram(Ctrifram.pri

=
& g wirilog
rev _4
C
Bl [

& % WHOL
=N

Project2 —> El

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
126 February 2013

Setting Up Implementations and Workspaces Chapter 5: Setting up a Logic Synthesis Project

Using Workspaces

You can use your workspace to simplify your work flow. For example, you can
set up dependencies between projects in the same workspace.

1. To add a project to a workspace, right-click the workspace and select
Insert Project. Select the project file you want to add, and click OK.

2. To remove a project from a workspace, right-click on the project and
select Remove Project from Workspace.

3. To synthesize a single project in a workspace, click Run.
The software synthesizes the current project.

4. To run all the projects in a workspace, do the following:

— If you have multiple implementations within a project, check that the
correct implementation is active. To make an implementation active,
click on the implementation in the Project view.

— Select the workspace in the Project view, right-click, and select Run all
Projects.

The software synthesizes the active implementations of all the projects
in the workspace.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 127

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Setting Logic Synthesis Implementation Options

You can set global options for your synthesis implementations, some of them
technology-specific. This section describes how to set global options like
device, optimization, and file options with the Implementation Options command.
For information about setting constraints for the implementation, see Speci-
fying SCOPE Constraints, on page 55. For information about overriding
global settings with individual attributes or directives, see Specifying Attri-
butes and Directives, on page 141.

This section discusses the following topics:
¢ Setting Device Options, on page 128
* Setting Optimization Options, on page 131
* Specifying Global Frequency and Constraint Files, on page 132
* Specifying Result Options, on page 134
* Specifying Timing Report Output, on page 136
* Setting Verilog and VHDL Options, on page 136

Setting Device Options

Device options are part of the global options you can set for the synthesis
run. They include the part selection (technology, part and speed grade) and
implementation options (I/O insertion and fanouts). The options and the
implementation of these options can vary from technology to technology, so
check the vendor chapters of the Reference Manual for information about
your vendor options.

1. Open the Implementation Options form by clicking the Implementation Options
button or selecting Project->Implementation Options, and click the Device tab
at the top if it is not already selected.

2. Select the technology, part, package, and speed. Available options vary,
depending on the technology you choose.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
128 February 2013

Setting Logic Synthesis Implementation Options Chapter 5: Setting up a Logic Synthesis Project
Device
Technology: Part Package: Speed:
Microsemi SmartFusion | | A2F200M3F ~| |Pgrr20s ~| | std -
Device
Technology: Part Package: Speed:
| Microsemi 1GLOO+ ~| |acLPozov2 | |cs201 ~| |std M

3. Set the device mapping options. The options vary, depending on the

technology you choose.

— If you are unsure of what an option means, click on the option to see
a description in the box below. For full descriptions of the options,
click F1 or refer to the appropriate vendor chapter in the Reference

Manual.

— To set an option, type in the value or check the box to enable it.

For more information about setting fanout limits and retiming, see
Setting Fanout Limits, on page 209, and Retiming, on page 196, respec-
tively. For details about other vendor-specific options, refer to the appro-
priate vendor chapter and technology family in the Reference Manual.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
129

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Device Mapping Options

Cption Value
Fanout Guide 24
Disable I/ Insertion]
Update Compile Point Timing Data]
Promote Global Buffer Threshold &0
Operating Conditions COMWC
Annotated Properties for Analyst [+1
m Device Mapping Options
Conser | Option Value
Resolv | | Fanout Guide 16
Disable I/O Insertion]
Conservative Register Optimization L]
Resolve Mixed Drivers LJ

4. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

5. Click the Run button to synthesize the design. The software compiles
and maps the design using the options you set.

6. To set device options with a script, use the set_option Tcl command. The
following table contains an alphabetical list of the device options on the
Device tab mapped to the equivalent Tcl commands. Because the options
are technology- and family-based, all of the options listed in the table
may not be available in the selected technology. All commands begin
with set_option, followed by the syntax in the column as shown. Check
the Reference Manual for the most comprehensive list of options for your
vendor.

The following table shows typical device options.

Option Tcl Command (set_option...)

Disable 1/0O Insertion -disable io insertion {1]0}

Fanout Guide -fanout limit fanout value

Package -package pkg name
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
130 February 2013

Setting Logic Synthesis Implementation Options Chapter 5: Setting up a Logic Synthesis Project

Option Tcl Command (set_option...)

Part -part part name

Resolve Mixed Drivers -resolve multiple driver {1]0}
Speed -speed grade speed grade
Technology -technology keyword

Update Compile Point Timing Data -update models cp {0|1}

Setting Optimization Options

Optimization options are part of the global options you can set for the imple-
mentation. This section tells you how to set options like frequency and global
optimization options like resource sharing. You can also set some of these
options with the appropriate buttons on the Ul

1. Open the Implementation Options form by clicking the Implementation
Options button or selecting Project->Implementation Options, and click the
Options tab at the top.

2. Click the optimization options you want, either on the form or in the
Project view. Your choices vary, depending on the technology. If an
option is not available for your technology, it is greyed out. Setting the
option in one place automatically updates it in the other.

Optimization Options
Project View

FSM Compiler
FSM Explorer

Resource Sharing

Implementation Options->Options

O®0|=

Retiming

Qptions
Optimization Switches

FSM Campiler
[_|FSM Explarer
Resource Sharing
[_|Retiming

For details about using these optimizations refer to the following
sections:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 131

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

FSM Compiler Optimizing State Machines, on page 218

FSM Explorer Running the FSM Explorer, on page 224

Note: Only a subset of the Microsemi technologies
support the FSM Explorer option. Use the
Project->Implementation Options->Options panel to determine
if this option is supported for the device you specify in
your tool.

Resource Sharing Sharing Resources, on page 213

Retiming Retiming, on page 196

The equivalent Tcl set_option command options are as follows:

Option set_option Tcl Command Option
FSM Compiler -symbolic fsm compiler {1]0}
FSM Explorer -use fsm explorer {1|0}
Resource Sharing -resource sharing {1]0}
Retiming -retiming {1]0}

3. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

4. Click the Run button to run synthesis.

The software compiles and maps the design using the options you set.

Specifying Global Frequency and Constraint Files

This procedure tells you how to set the global frequency and specify the
constraint files for the implementation.
1. To set a global frequency, do one of the following:
— Type a global frequency in the Project view.

— Open the Implementation Options form by clicking the Implementation
Options button or selecting Project->Implementation Options, and click the
Constraints tab.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
132 February 2013

Setting Logic Synthesis Implementation Options Chapter 5: Setting up a Logic Synthesis Project

The equivalent Tcl set_option command is -frequency frequencyValue.

You can override the global frequency with local constraints, as
described in Specifying SCOPE Constraints, on page 55. In the Synplify
Pro tool, you can automatically generate clock constraints for your
design instead of setting a global frequency. See Using Auto Constraints,
on page 339 for details.

Global Frequency and Constraints

Project View Freguency(MHz):
=]
®ho 5
{} Auko Constrain

Implementation Options->Constraints

Constraints

Frequency (MHz)

L) [lleI.IZIDDD - Auto Constrain (Optimize to obtain maximum frequency)

[_] use clock peried for unconstrained 10

Constraint Files

| Check files to apply to this implernentation. Click + to add new file.

FRE Power |
C:\synplify_pro\tutorial\tutorial_2. fie
C:\synplify_pro\tutoriahtutorial_1. fic
<click to add fie...>

2. To specify constraint files for an implementation, do one of the following:

— Select Project->Implementation Options->Constraints. Check the constraint
files you want to use in the project.

— From the Implementation Options->Constraints panel, you can also click to
add a constraint file.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 133

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

— With the implementation you want to use selected, click Add File in the
Project view, and add the constraint files you need.

To create constraint files, see Specifying SCOPE Constraints, on
page S5.

3. To remove constraint files from an implementation, do one of the
following:

— Select Project->Implementation Options->Constraints. Click off the checkbox
next to the file name.

— In the Project view, right-click the constraint file to be removed and
select Remove from Project.

This removes the constraint file from the implementation, but does not
delete it.

4. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Specifying Result Options

This section shows you how to specify criteria for the output of the synthesis
run.

1. Open the Implementation Options form by clicking the Implementation Options
button or selecting Project->Implementation Options, and click the
Implementation Results tab at the top.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
134 February 2013

Setting Logic Synthesis Implementation Options Chapter 5:

Setting up a Logic Synthesis Project

Implementation Results

Implementation Name:

[rev_1

]

Results Directory:

C:\synplify_pro_microsemiyrev_1

oo |

Result Base Mame:

Result Format:

[eight_bit_uc

Jledf -]

Optional Qutput File Options
[write Mapped Verilog Netlist
[] wirite Mapped VHDL Netlist
Wirite Vendor Constraint File

2. Specify the output files you want to generate.

— To generate mapped netlist files, click Write Mapped Verilog Netlist or Write

Mapped VHDL Netlist.

— To generate a vendor-specific constraint file for forward annotation,
click Write Vendor Constraint File. See Generating Constraint Files for
Forward Annotation, on page 47 for more information.

3. Set the directory to which you want to write the results.

4. Set the format for the output file. The equivalent Tcl command for

scripting is project -result_format format.

You might also want to set attributes to control name-mapping. For
details, refer to the appropriate vendor chapter in the Reference Manual.

5. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the

design using the options you set.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
135

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

Specifying Timing Report Output

You can determine how much is reported in the timing report by setting the
following options.

1. Selecting Project->Implementation Options, and click the Timing Report tab.

2. Set the number of critical paths you want the software to report.

Timing Repork

Murber of Critical Paths: [32]

Muber of StartiEnd Points: | |

3. Specify the number of start and end points you want to see reported in
the critical path sections.

4. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting Verilog and VHDL Options

When you set up the Verilog and VHDL source files in your project, you can
also specify certain compiler options.

Setting Verilog File Options

You set Verilog file options by selecting either Project->Implementation Options->
Verilog, or Options->Configure Verilog Compiler.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
136 February 2013

Setting Logic Synthesis Implementation Options Chapter 5: Setting up a Logic Synthesis Project

Verilog

Top Level Module: Compiler Directives and Parameters
I |} reeereerrees - :

Verilog Language

Verilog 2001

[System verilog
Push Tristates
] Allow Duplicate Modules =

-
[Multiple File Compilation Unit
[Beta Features for Verilog Extract Parameters
Compiler Directives: e.g. SIZE=8

Indude Path Order: (Relative to Project File) I] I I
Library Directories: I] I L I

1. Specify the Verilog format to use.

— To set the compiler globally for all the files in the project, select
Project->Implementation Options->Verilog. If you are using Verilog 2001 or
SystemVerilog, check the Reference Manual for supported constructs.

— To specify the Verilog compiler on a per file basis, select the file in the
Project view. Right-click and select File Options. Select the appropriate
compiler. The default Verilog file format for new projects is
SystemVerilog.

Save File

File Type: Iverilog

@ Relative to Project

Yerilog Standard: | Use Project Default

() Absolute Path

|Jse Project Default
verilog 95
verilog 2001

Syskem Yerilog h Ok | | Cancel |

2. Specify the top-level module if you did not already do this in the Project
view.

3. To extract parameters from the source code, do the following:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 137

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

— Click Extract Parameters.

— To override the default, enter a new value for a parameter.

The software uses the new value for the current implementation only.
Note that parameter extraction is not supported for mixed designs.

~Compiler Directives and Parameters

|Parameter Marme Walue ﬂ
s
-

Extract Parameters
Compiler Directives: e.q. SIZE=8

4. Type in the directive in Compiler Directives, using spaces to separate the
statements.

You can type in directives you would normally enter with 'ifdef and ‘define
statements in the code. For example, ABC=30 results in the software
writing the following statements to the project file:

set option -hdl define -set "ABC=30"

Include Path Order: (Relative to Praject File) . n

Libraty Directaries: . n

5. In the Include Path Order, specify the search paths for the include
commands for the Verilog files that are in your project. Use the buttons
in the upper right corner of the box to add, delete, or reorder the paths.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
138 February 2013

Setting Logic Synthesis Implementation Options Chapter 5: Setting up a Logic Synthesis Project

6. In the Library Directories, specify the path to the directory which
contains the library files for your project. Use the buttons in the upper
right corner of the box to add, delete, or reorder the paths.

7. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Setting VHDL File Options

You set VHDL file options by selecting either Project->Implementation
Options->VHDL, or Options->Configure VHDL Compiler.

VHDL

Top Level Entity: Default Enum Encoding:
| | [defeut -

Push Tristates

[synthesis On/fOff Implemented as Translate On/Off
[vHDL 2008

[Beta Features for VHDL

Generics

Generic Name Value

Extract Generic Constants

For VHDL source, you can specify the options described below.

1. Specify the top-level module if you did not already do this in the Project
view. If the top-level module is not located in the default work library, you
must specify the library where the compiler can find the module. For
information on how to do this, see VHDL Panel, on page 163.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 139

Chapter 5: Setting up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

You can also use this option for mixed language designs or when you
want to specify a module that is not the actual top-level entity for HDL
Analyst displaying and debugging in the schematic views.

2. For user-defined state machine encoding, do the following:
— Specify the kind of encoding you want to use.
— Disable the FSM compiler.
When you synthesize the design, the software uses the compiler direc-
tives you set here to encode the state machines and does not run the
FSM compiler, which would override the compiler directives. Alterna-
tively, you can define state machines with the syn_encoding attribute, as
described in Defining State Machines in VHDL, on page 176.

3. To extract generics from the source code, do this:
— Click Extract Generic Constants.
— To override the default, enter a new value for a generic.
The software uses the new value for the current implementation only.

Note that you cannot extract generics if you have a mixed language
design.

GENEHcs

Generic Mame Yalue

Extract Generic Constants

4. To push tristates across process/block boundaries, check that Push
Tristates is enabled. For details, see Push Tristates Option, on page 174 in
the Reference Manual.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
140 February 2013

Specifying Attributes and Directives Chapter 5: Setting up a Logic Synthesis Project

5. Determine the interpretation of the synthesis_on and synthesis_off
directives:

— To make the compiler interpret synthesis_on and synthesis_off directives
like translate_on/translate_off, enable the Synthesis On/Off Implemented as
Translate On/Off option.

— To ignore the synthesis_on and synthesis_off directives, make sure that
this option is not checked. See translate_off/translate_on Directive,
on page 1045 in the Reference Manual for more information.

6. Set other implementation options as needed (see Setting Logic Synthesis
Implementation Options, on page 128 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the
design using the options you set.

Specifying Attributes and Directives

Attributes and directives are specifications that you assign to design objects
to control the way your design is analyzed, optimized, and mapped.

Attributes control mapping optimizations and directives control compiler
optimizations. Because of this difference, you must specify directives in the
source code. This table describes the methods that are available to create
attribute and directive specifications:

Attributes Directives
VHDL Yes Yes
Verilog Yes Yes
SCOPE Editor Yes No
fdc Constraints File Yes No

It is better to specify attributes in the SCOPE editor or the constraints file,
because you do not have to recompile the design first. For directives, you
must compile the design for them to take effect.

If SCOPE /constraints file and HDL source code are specified for a design, the
constraints has priority when there are conflicts.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 141

Chapter 5: Setting up a Logic Synthesis Project Specifying Attributes and Directives

For further details, refer to the following:
* Specifying Attributes and Directives in VHDL, on page 143
* Specifying Attributes and Directives in Verilog, on page 144
* Specifying Attributes Using the SCOPE Editor, on page 145
* Specifying Attributes in the Constraints File, on page 148

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
142 February 2013

Specifying Attributes and Directives Chapter 5: Setting up a Logic Synthesis Project

Specifying Attributes and Directives in VHDL

You can use other methods to add attributes to objects, as listed in Specifying
Attributes and Directives, on page 14 1. However, you can specify directives
only in the source code. There are two ways of defining attributes and direc-
tives in VHDL:

* Using the predefined attributes package

* Declaring the attribute each time it is used

For details of VHDL attribute syntax, see VHDL Attribute and Directive
Syntax, on page 747in the Reference Manual.

Using the Predefined VHDL Attributes Package

The advantage to using the predefined package is that you avoid redefining
the attributes and directives each time you include them in source code. The
disadvantage is that your source code is less portable. The attributes package
is located in installDirectory/lib/vhd/synattr.vhd .

1. To use the predefined attributes package included in the software
library, add these lines to the syntax:

library synplify;
use synplify.attributes.all;

2. Add the attribute or directive you want after the design unit declaration.

declarations ;
attribute attribute_name of object_name : object_kind is value ;

For example:

entity simpledff is
port (g: out bit vector (7 downto 0);
d : in bit vector (7 downto 0);
clk : in bit);
attribute syn noclockbuf of clk : signal is true;

For details of the syntax conventions, see VHDL Attribute and Directive
Syntax, on page 747 in the Reference Manual.

3. Add the source file to the project.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 143

Chapter 5: Setting up a Logic Synthesis Project Specifying Attributes and Directives

Declaring VHDL Attributes and Directives

If you do not use the attributes package, you must redefine the attributes
each time you include them in source code.

1. Every time you use an attribute or directive, define it immediately after
the design unit declarations using the following syntax:

design_unit_declaration ;
attribute attribute_name : data type ;
attribute attribute_name of object name : object kind is value ;

For example:

entity simpledff is
port (g: out bit vector (7 downto 0);
d : in bit vector (7 downto 0);
clk : in bit);
attribute syn noclockbuf : boolean;
attribute syn noclockbuf of clk :signal is true;

2. Add the source file to the project.

Specifying Attributes and Directives in Verilog

You can use other methods to add attributes to objects, as described in Speci-
fying Attributes and Directives, on page 141. However, you can specify direc-
tives only in the source code.

Verilog does not have predefined synthesis attributes and directives, so you
must add them as comments. The attribute or directive name is preceded by
the keyword synthesis. Verilog files are case sensitive, so attributes and direc-
tives must be specified exactly as presented in their syntax descriptions. For
syntax details, see Verilog Attribute and Directive Syntax, on page 551 in the
Reference Manual.

1. To add an attribute or directive in Verilog, use Verilog line or block
comment (C-style) syntax directly following the design object. Block
comments must precede the semicolon, if there is one.

Verilog Block Comment Syntax Verilog Line Comment Syntax

I* synthesis attribute_name = value */ Il synthesis attribute_name = value
I* synthesis directory_name = value*I Il synthesis directory_name = value

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
144 February 2013

Specifying Attributes and Directives Chapter 5: Setting up a Logic Synthesis Project

For details of the syntax rules, see Verilog Attribute and Directive
Syntax, on page 551 in the Reference Manual. The following are
examples:

module fifo(out, in) /* synthesis syn hier = "hard‘ */;

2. To attach multiple attributes or directives to the same object, separate
the attributes with white spaces, but do not repeat the synthesis keyword.
Do not use commas. For example:

case state /* synthesis full case parallel case */;

3. If multiple registers are defined using a single Verilog reg statement and
an attribute is applied to them, then the synthesis software only applies
the last declared register in the reg statement. For example:

reg [5:0] g, g a, gb, gc, gd /* synthesis syn preserve=l */;

The syn_preserve attribute is only applied to q_d. This is the expected
behavior for the synthesis tools. To apply this attribute to all registers,
you must use a separate Verilog reg statement for each register and
apply the attribute.

Specifying Attributes Using the SCOPE Editor

The SCOPE window provides an easy-to-use interface to add any attribute.
You cannot use it for adding directives, because they must be added to the
source files. (See Specifying Attributes and Directives in VHDL, on page 143 or
Specifying Attributes and Directives in Verilog, on page 144). The following
procedure shows how to add an attribute directly in the SCOPE window.

1. Start with a compiled design and open the SCOPE window. To add the
attributes to an existing constraint file, open the SCOPE window by
clicking on the existing file in the Project view. To add the attributes to a
new file, click the SCOPE icon and click Initialize to open the SCOPE
window.

2. Click the Attributes tab at the bottom of the SCOPE window.

You can either select the object first (step 3) or the attribute first (step 4).

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 145

Chapter 5: Setting up a Logic Synthesis Project Specifying Attributes and Directives

D

Enabled | Object Type Object Attribute Yalue | val Tvpe Description

<any = <global= syn_noclockbuf 1 boolean |Use normal input buffer

[«

[«

[«

[«

5

(1]

| ttributes |

3. To specify the object, do one of the following in the Object column. If you
already specified the attribute, the Object column lists only valid object
choices for that attribute.

Select the type of object in the Object Filter column, and then select an
object from the list of choices in the Object column. This is the best
way to ensure that you are specifying an object that is appropriate,
with the correct syntax.

Drag the object to which you want to attach the attribute from the
RTL or Technology views to the Object column in the SCOPE window.
For some attributes, dragging and dropping may not select the right
object. For example, if you want to set syn_hier on a module or entity
like an and gate, you must set it on the view for that module. The
object would have this syntax: vimoduleName in Verilog, or
v:library.moduleName in VHDL, where you can have multiple libraries.

Type the name of the object in the Object column. If you do not know
the name, use the Find command or the Object Filter column. Make
sure to type the appropriate prefix for the object where it is needed.
For example, to set an attribute on a view, you must add the v: prefix
to the module or entity name. For VHDL, you might have to specify
the library as well as the module name.

4. If you specified the object first, you can now specify the attribute. The
list shows only the valid attributes for the type of object you selected.
Specify the attribute by holding down the mouse button in the Attribute
column and selecting an attribute from the list.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
146

February 2013

Specifying Attributes and Directives Chapter 5: Setting up a Logic Synthesis Project

Enabled

1

<global= -

Object Type Object Attribute Value | Val Type Description Comment j

syn_loc

syn_netlist_hierarchy
SyN_noarrayporks

syn_noclockbuf
syn_ramskyle

syn_replicate

If you selected the object first, the choices available are determined by
the selected object and the technology you are using. If you selected the
attribute first, the available choices are determined by the technology.

When you select an attribute, the SCOPE window tells you the kind of
value you must enter for that attribute and provides a brief description
of the attribute. If you selected the attribute first, make sure to go back
and specify the object.

Fill out the value. Hold down the mouse button in the Value column, and
select from the list. You can also type in a value.

Save the file.

The software creates a Tcl constraint file composed of define_attribute
statements for the attributes you specified. See How Attributes and
Directives are Specified, on page 914 of the Reference Manual for the
syntax description.

. Add it to the project, if it is not already in the project.

— Choose Project -> Implementation Options.

— Go to the Constraints panel and check that the file is selected. If you
have more than one constraint file, select all those that apply to the
implementation.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 147

Chapter 5: Setting up a Logic Synthesis Project Specifying Attributes and Directives

Constraints

Frequency (MHz)
® | 100.0000 = Auto Constrain (Optimize to obtain maximum frequency)

[] use dack period for unconstrained 10

Constraint Filas

[check files to apply to this implementation. Click + to add new file.

FoC Power |
C:\synplify_pro\tutorialtutorial_2. fde
C:\synplify_pro\tutorialtutorial_1. fde
<click to add file...>

The software saves the SCOPE information in a Tcl constraint file, using
define_attribute statements. When you synthesize the design, the software
reads the constraint file and applies the attributes.

Specifying Attributes in the Constraints File

When you use the SCOPE window (Specifying Attributes Using the SCOPE
Editor, on page 145), the attributes are automatically written to a constraint
file using the Tcl define_attribute syntax. This is the preferred method for
defining constraints as the syntax is determined for you.

However, the following procedure explains how you can specify attributes
directly in the constraint file.

1. Open a file in a text editor.
2. Enter the desired attributes. For example,
define_attribute {objectName} attributeName value

For commands and syntax, see Attribute and Directive Summary
(Alphabetical), on page 917 in the Reference Manual.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
148 February 2013

Specifying Attributes and Directives Chapter 5: Setting up a Logic Synthesis Project

3. Save the constraints in a file using the FDC file extension.

The following code excerpt provides an example of attributes defined in the
constraint file.

Use a regular buffer instead of a clock buffer for clock "clk slow".
define attribute {clk slow} syn noclockbuf 1

Relax timing by not buffering "clk slow", because it is the slow clock
Set the maximum fanout to 10000.
define attribute {clk slow} syn maxfan 10000

For information about editing constraints, see , on page 46.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 149

Chapter 5: Setting up a Logic Synthesis Project Searching Files

Searching Files

A find-in-files feature is available to perform string searches within a speci-
fied set of files. Advantages to using this feature include:

* Ability to restrict the set of files to be searched to a project or implemen-
tation.

* Ability to crossprobe the search results.

The find-in-files feature uses a dialog box to specify the search pattern, the
criteria for selecting the files to be searched, and any search options such as
match case or whole word. The files that meet the criteria are searched for the
pattern, and a list of the files containing the search pattern are displayed at
the bottom of the dialog box.

To use the find-in-files feature, open the Find in Files dialog box by selecting
Edit->Find in Files and enter the search pattern in the Find what field at the top of
the dialog box.

Find in Files 7| x|

Find what:

~Find In:

Files Contained in Project: I

[tmplementation Directory: I <all Implementations =

D Direckory: [] E]

[result Window (search only in results window below)

>

Include sub-folders For direckory searches

File filter: e.q. srryv;vhd;a®. bt
[-]

—Search Option:

[Match case [] Match whole word [Use Reqular Expressions

Double-Click to open found item. FS/Shift FS open Mext/Previous item,

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
150 February 2013

Searching Files

Chapter 5: Setting up a Logic Synthesis Project

Identifying the Files to Search

The Find In section at the top of the dialog box identifies the files to be
searched:

Project Files — searches the files included in the selected project (use the
drop-down menu to select the project). By default, the files in the active
project are searched. The files can reside anywhere on the disk; any
project ‘include files are also searched.

Implementation Directory — searches all files in the specified implemen-
tation directory (use the drop-down menu to select the implementation).
By default, the files in the active implementation are searched. You can
search all implementations by selecting <All Implementations> from the
drop-down menu. If Include sub-folders for directory searches is also selected,
all files in the implementation directory hierarchy are searched.

Directory — searches all files in the specified directory (use the browser
button to select the directory). If Include sub-folders for directory searches is
also selected, all files in the directory hierarchy are searched.

All of the above selection methods can be applied concurrently when
searching for a specified pattern.

The Result Window selection is used after any of the above selection methods to
search the resulting list of files for a subsequent subpattern.

Filtering the Files to Search

A file filter allows the file set to be searched to be further restricted based on
the matching of patterns entered into the File filter field.

« »

A pattern without a wildcard or a “.” (period) is interpreted as a filename
extension. For example, f£dc restricts the search to only constraint files.

Multiple patterns can be specified using a semicolon delimiter. For
example, v;vhd restricts the files searched to only Verilog and VHDL files.

Wildcard characters can be used in the pattern to match file names. For
example, a*.vhd restricts the files searched to VHDL files that begin with
an “a” character.

Leaving the File filter field empty searches all files that meet the Find In
criteria.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 151

Chapter 5: Setting up a Logic Synthesis Project Searching Files

* The Match Case, Whole Word, and Regular Expressions search options can be
used to further restrict searches.

Initiating the Search

After entering the search criteria, click the Find button to initiate the search.
All matches found are listed in the results area at the bottom of the dialog

box; the status line just below the Find button reports the number of matches
found in the indicated number of files and the total number of files searched.

While the find operation is running, the status line is continually updated
with how many matches are found in how many files and how many files are
being searched.

Search Results

The search results are displayed is the results window at the bottom of the
dialog box. For each match found, the entire line of the file is the displayed in
the following format:

fullpath_to_file(lineNumber): matching_line_text
For example, the entry
C:\Designs\leon\dcache.vhd (487): wdata := r.wb.datal;

indicates that the search pattern (datal) was found on line 487 of the
dcache.vhd file.

To open the target file at the specified line, double-click on the line in the
results window.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
152 February 2013

Archiving Files and Projects Chapter 5: Setting up a Logic Synthesis Project

Archiving Files and Projects

Use the archive utility to archive, extract (unarchive), or copy design projects.
Archived files are in a proprietary format and saved to a file name using the
sar extension. The archive utility is available through the Project menu in the
GUI or using the project command in the Tcl window.

Whenever you have a sar file that contains relative or absolute include paths
for the files in the project, use the _SEARCHFILENAMEONLY_ directive to have
the compiler remove the relative/absolute paths from the 'include and search
only for the file names. Otherwise, you may have problems using the archive
utility. For details, see _'SEARCHFILENAMEONLY_ Directive, on page 172.

This document provides a description of how to use the utility.
* Archive a Project
* Un-Archive a Project

* Copy a Project

Archive a Project

Use the archive utility to store the files for a design project into a single
archive file in a proprietary format (sar). You can archive an entire project or
selected files from a project. If you want to create a copy of a project without
archiving the files, see Copy a Project, on page 160.

Here are the steps to create an archive:
1. In the Project view, select Project->Archive Project to bring up the wizard.

The Tcl command equivalent is project -archive. For a complete description
of the project Tcl command options for archiving, see project, on
page 1069 of the Reference Manual.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 153

Chapter 5: Setting up a Logic Synthesis Project Archiving Files and Projects

The archive utility automatically runs a syntax check on the active
project (Run->Syntax Check command) to ensure that a complete list of
project files is generated. If you have Verilog 'include files in your project,
the utility includes the complete list of Verilog files. It also checks the
syntax automatically for each implementation in the project to ensure
that the file list is complete for each implementation as well. The wizard
displays the name of the project to archive, the top-level directory where
the project file is located (root directory), and other information.

Synopsys Archive Utility - [C: /tools/temp/proi_1_prj]

Step L: Please select the type of archiving.

Praject Path and Filename | Cojtoolsftempipro_Lprj]

Root Directory [coitonlsfrempi] | Change... I
Destination File [oitonls rempiproi_t.sar) | I
~#rchive Sty

(@ Create a fully self-contained copy (File: 52 Size: 2,301)

) All Inplementation @ Active Implementation : rev_1

() Customized file list

() Local copy For internal network (File: 0 Size: 0)

[Archive Type]- Create a fully self-contained copy

All the input Files and Files in implementation result directories For the project will be archived in this mode. All the remate reference files will be added inta the archive file with & special
"lacal type Filename",

All the source files (verilog, whdl, edif, etc.), constraint files {.sdc files), and other reference files {option, plan files) are considered as input files,

The purpose of this bype of archive is For users in different network environment. E.g., cuskomers can archive their project in this mode and send it to Synopsys For debugging.

2. Do the following on the first page of the wizard:

Fill in Destination File with a location for the archive file.

Set Archive Style. You can archive all the project files with all the
implementations or selectively archive files and implementations

To archive only the active implementation, enable Active Implementation.

To selectively archive files, enable Customized file list, and use the check
boxes to include files in or exclude files from the archive.Use the Add
Extra Files button on the second page to include additional files in the
project.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
154

February 2013

Archiving Files and Projects

Chapter 5: Setting up a Logic Synthesis Project

Synopsyps Archive

[C:Mtools/temp/proj_1.pr]

Step 2: Please review the archiving summary and spexify destination file then press ARCHIVE buttan,

—Archive Summary

Local Fils
Local Fils
Lawcal File
Lawal File
Lawal File
Local File
Local File
Local File
Local File
Local Fils
Local Fils
Lawcal File
Lawal File
Lawal File
Local File
Local File
Local File
Local File
Local Fils
Local Fils
Lawcal File
Lawal File
Lawal File
Local File
Local File
Extra File

rew_1frpk_counker_self.areasrr
rew_1frpk_counker_self _areasrr, hktm
rev_1frun_ise.kcl
rev_1frun_options, txt
rev_1fsyn.db
rev_1fsynplicity uck
rev_1fsynplify.td
rev_1fsyntax.log

rew_1 fsynkax_log.htm
rew_1}synkmpfcounter_self msg
rew_1[syntmpfcounter_self.plg
rev_1fsyntmpfcounter_self_Flink. htm
rev_1fsyntmpicounter_self _srr.htm
rev_1fsyntmpfcounter_self_toc.htm
rev_1fsyntmpfidentify_flink.htm
rev_1fsyntmpjidentify_srr.htm
rev_1fsyntmpjidentify_toc.htm

rew_1 jsyntmpjsap.log
rew_1}syntmp/sap_log_flink.htm
rew_1[synkmp/sap_log_srr.htm
rev_1[syntmp/syntax_log_flink.htm
rev_1fsyntmplsyntax_log_ser.hktm
rev_1fsyntmpfsyntax_log_tac.htm
rev_1fverif/counter_self wif
rev_1fverif fcounter_self_bb.y
Ciftoolsisynmapdey_183Rb | linsfunisim, »

g

Destination File | C:ftoolsjtempfproj_1 sar

(———

<pack | [achve | [concel |

Click Next.

The tool summary displays all the files in the archive and shows the
full uncompressed file size. The actual size is smaller after the
archiving operation as there is no duplication of files.

Synplify Pro for Microsemi Edition User Guide

February 2013

Copyright © 2013 Synopsys, Inc.
155

Chapter 5: Setting up a Logic Synthesis Project

Archiving Files and Projects

Copyright © 2013 Synopsys, Inc.
156

Synplicity Archive Utility - [C:/tools/temp/rampri. pri]

Step 3t Please review the archiving summary and specify destination File then press ARCHIVE butkon,
—archive Summary
N
Project File : Ciftoolsjtempframpri. pri
Rook Direckory C:fhoolsitempyf
Date @ Wed Apr 25 09:39:22 2007
Files : 42
Tatal Size 2.07 M {plus project file and surmary log)
Praoject File rampri.prj
Summaty File archive_summary.lag
Remote Ref, ... JDesignsjramctrlfalu.
==> Designs_ramCtrlfalu.
Remote Ref. ..{. . iDesignsramiCtrlidata_mus.w
=== Designs_ramCtrlfdata_muzx.v
Remote Ref, ... JDesignsjramtrlfeight _bit_uc.v
==> Diesigns_ramCrlfeight _bit_uc.v
Remote Ref. ..{. . iDesignsramiCtrlfins_decade.w
=== Designs_ramCtrlfins_decode. v
Remote Ref, ..[. JDesignsframtrlfins_rom. v
==> Designs_ramCtrlfins_rom.v @
Remabe Ref. [, fDesignsframCtrlfio .y

Deestination File [C:J‘tuuls,l’temp,iramprj.sar

| I

| < Back ” Archive ” Cancel |

follow-up on any missing files, as appropriate.

3. Use the Back button to correct directory or file information and/or

4. Verify that the current archive contains the files that you want, then

click Archive which creates the project archive sar file and displays the

following prompt:

Synplify Archive Utility B

i J Archive successful | T /Designe3/cell-tutorial/cel-tutorial zar

IF pou wwould like to trangfer thiz file via FTP to Sunopays, Inc. or another site, please click

on the "FTF Archive File" button,
Otherwize, please click on "Done button,

| Done | [FTParchive Fie

Click Done if you are finished.

Synplify Pro for Microsemi Edition User Guide

February 2013

Archiving Files and Projects

Chapter 5: Setting up a Logic Synthesis Project

Un-Archive a Project

Use this procedure to extract design project files from an archive file (sar).

1. In the Project view, select Project->Un-Archive Project to display the wizard

The Tcl command equivalent is project -unarchive. For a complete descrip-
tion of the project Tcl command options for archiving, see project, on
page 1069 of the Reference Manual.

Synplify Un-Archive Utility

=0l x|

Step 1: Please select archive file and destination directary.

Archive Filename [C:,l’tools,l’temp,l’ramprj.sar

Project Mame [rampri.pri

Destination Directary [C:,I’Designs,l’ramctrl

Mexk = ” Cancel |

2. In the wizard, enter the following:

— Name of the sar file containing the project files.

— Name of project to extract (un-archive). This field is automatically
extracted from the sar file and cannot be changed.

— Pathname of directory in which to write the project files (destination.

Click Next.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
157

Chapter 5: Setting up a Logic Synthesis Project

Archiving Files and Projects

Synplify Un-Archive Utility

- (O] x|

Step 2: Please fix unresolved file reference, Uncheck any input: file you wish to comment out in the project file,

External File Reference { Please fix unresalved file reference. Uncheck filename to remove it from project file)

| Resolved File Reference

Resolved File Reference

IC

Designs_ramCtrlfspel_regs.v Designs_ramCtrlfspel_regs.v Change
Designs_ramCtrlfreg_file.w Designs_ramCtrlfreg_file.w
Designs_ramCtrlfprgm_cntr.v Designs_ramCtrlfprgm_cntr.v
Designs_ramCtrlfio, v Designs_ramCtrlfio, v
Designs_ramCtrlfins_rom.y Designs_ramCtrlfins_rom.y |
Designs_ramCtrlfins_decode.w Designs_ramCtrlfins_decode.w
Designs_ramCtrlfeight_bit_uc.v Designs_ramCtrlfeight_bit_uc.v Change =

-
I File exists in archive File reference exists Inwalid file reference

| < Back | | Mexk = | | Cancel |

3. Make sure all the files that you want to extract are checked and
references to these files are resolved.

— If there are files in the list that you do not want to include when the
project is un-archived, uncheck the box next to the file. The un-
checked files will be commented out in the project file (prj) when

project files are extracted.

— If you need to resolve a file in the project before un-archiving, click
the Resolve button and fill out the dialog box.

— If you want to replace a file in the project, click the Change button and
fill out the dialog box. Put the replacement files in the directory you
specify in Replace directory. You can replace a single file, any
unresolved files, or all the files. You can also undo the replace

operation.

Copyright © 2013 Synopsys, Inc.
158

Synplify Pro for Microsemi Edition User Guide

February 2013

Archiving Files and Projects Chapter 5: Setting up a Logic Synthesis Project

Synplicity Un-Archive Utility - RBesolve File Reference

~File Referance

Filename [prgm_cntr.v l
Criginal Direckory [Dresigns_ramiZkrl l
Replace directory with I_Designs_ramctr“ I |_|

Final Filename [_Designs_ramCtrI,l'prgm_cntr.v l

| Replace ” Replace Unresolved ” Replace all |

4. Click Next and verify that the project files you want are displayed in the
Un-Archive Summary.

Synplify Un-Archive Utility =1 B3

Step 3: Please review the un-archiving summary then press Un-Archive button ko un-archive,

—Un-Archive Summary

Archive File : Ciftoolsftemp/ramprj.sar
Project File : rampri.pri
Destination Directory : Ci/Designs/ramitrl

Files : 44

Space Required : 207 M

Extract Files:

Designs_ramCrlfalu, v
Designs_ramCtrlfdata_mu,v
Designs_ramCtrlfeight_bit_uc.v
Designs_ramCtrlfins_decode.w
Designs_ramCtrlfins_rom.y

[Load project into Synplify after un-archiving,

| < Back ” Un-Archive ” Cancel |

5. If you want to load this project in the UI after files have been extracted,
enable the Load project into Synplicity after un-archiving option.

6. Click Un-Archive.

A message dialog box is displayed while the files are being extracted.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 159

Chapter 5: Setting up a Logic Synthesis Project Archiving Files and Projects

7. If the destination directory already contains project files with the same
name as the files you are extracting, you are prompted so that the
existing files can be overwritten by the extracted files.

Synplify Un-Archive Utility - Extracting...

File [Designs_ramCtrlfal,w] exists in [C:fDesignsramCtrl]. Do ywou wank to replace it?

[0%]

| fes ” Yes ko Al ” Mo ” o ko Al |

Copy a Project

Use this utility to create an unarchived copy of a design project. You can copy
an entire project or just selected files from the project. However, if you want
to create an archive of the project, where the entire project is stored as a
single file, see Archive a Project, on page 153.

Here are the steps to create a copy of a design project:
1. From the Project view, select Project->Copy Project.

The Tcl command equivalent is project -copy. For a complete description of
the project Tcl command options for archiving, see project, on page 1069
of the Reference Manual.

This command automatically runs a syntax check on the active project
(Run->Syntax Check command) to ensure that a complete list of project
files is generated. If you have Verilog include files in your project, they
are included. The utility runs this check for each implementation in the
project to ensure that the file list is complete for each implementation
and then displays the wizard, which contains the name of the project
and other information.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
160 February 2013

Archiving Files and Projects Chapter 5: Setting up a Logic Synthesis Project

Synplicity Copy Utility - [C:/Designs/ramCtrl/rampri. prj]

Step 1: Please select the bype of copying,

Project Path and Filename [C:,I’Designs,l’ramctrl,l’ramprj.prj l

Root Directary [C:,I’Desmns,l’ramctrl,l’]l Change. .. |

Drestination Directory [] | D |

—Copy Skyl

® Create a fully self-contained copy

() Customized file list

() Local copy for internal netwaork

[Copy Type] - Create a Fully self-contained copy

Al the input files and Files in implementation result directories for the project will be copied in this mode., All the remote reference Files will be
added into the copy file with a special "local bype filename",

All the source files {werilag, vhd, edif, etc.), constraint files {.sdc files), and other reference files {option, plan files) are cansidered as input files.

The purpose of this bype of copy is for users in different network environment., E.g., customers can copy their project in this mode and send it ko
Synplicity For debugaing.

2. Do the following in the wizard:
— Specify the destination directory where you want to copy the files.

— Select the files to copy. You can choose to copy all the project files;
one or more individual files, input files only, or customize the list to
be copied.

— To specify a custom list of files, enable Customized file list. Use the check
boxes to include or exclude files from the copy. Enable SRS if you
want to copy all srs files (RTL schematics). You cannot enable the
Source Files option if you select this. Use the Add Extra Files button to
include additional files in the project.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 161

Chapter 5: Setting up a Logic Synthesis Project Archiving Files and Projects

Designz/ramCtil/rampry_prj]

Step 2: Please select files to be copied,

~Praject File List

Create project using: (@) Source Files () SRS
Archive Summary: Total file(s): 41 Total Size: 2.1 M l
| Ci/DesignsjramCtrlframpri. prj |~ | rev_1 | Type | Madified e
23] Werilog Z] backup
Designs_ramCtrlfalu. v 3 syntmp
Designs_ramCtrlidata_musx,v AutoConstr.. Constral .. 10:31:16 25-Apr-2007
Designs_ramCtrlfeight _bit_uc.v run_options... File 10:31:16 25-Apr-2007
Designs_ramCtrlfins_decode. v spcl_regs.ar.. File 10:31:16 25-Apr-2007
Designs_ramCtrlfins_rom.v spcl_regs.edn File 10:31:16 25-Apr-2007
Designs_ramCtrlfio, v spcl_regs.fse File 10:31:16 25-Apr-2007
Designs_ramCtrlireg_file.v spel_regs.htm HTMLLo... 10:32:19 25-Apr-2007
Designs_ramCtrlispcl_regs.v spcl_regs.map File 10:31:16 25-Apr-2007
ev_1 (File: 23 Size: 2.0 M) b spcl_regs.sap File 10:31:16 25-Apr-2007
Files in [C:/Designsframctrl]] spel_regs.sdf File 10:31:16 25-Apr-2007
Extra Input Files (File: 10 Size: 80.5 k) spel_regs.srd File 10:31:16 25-Apr-2007
C:fkoolsisynaBogt_0S6R Jlibfpro.w spel_regs.srm Gate Met... 10:31:16 25-Apr-2007
C:fDesignsframCirlfalu. v spel_regs.sre File 10:31:16 25-Apr-2007
C:fDesignsframCtrlidata_mux.v @ : spel_regs.tly File 10:31:16 25-Apr-2007 @
C:fDesignsframCtrlfeight_bit_uc.v - [+ spel_regs_s.. Constral .. 10:31:16 25-Apr-2007
Active Impl, D Lacal File Remote File Ref, D Remote File {wil be copied locally before archiving) E’h Missing File

| < Back ” ek = ” Cancel

— Click Next.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
162 February 2013

Archiving Files and Projects Chapter 5: Setting up a Logic Synthesis Project

Synplicity Copy Utility - [C:/DesignsframCtil/ramprj.pri]

Step 3: Please review the copy summary and specify destination directory then press COPY button,
—Copy Summmary
-

Project Fils : C:fDesignsframCtrlirampri.pri
Rook Direckary : C:fDesignsframCtrlf

Date : Wed Apr 25 10:39:07 2007

Files : 41

Total Size : 2.06 M (plus project file and summary log)
Project File ramprj.prj
Summary File archive_summary.log
Lacal File Diesigns_ramCtrlfalu. v
Local File Designs_ramCtrlfdata_muzx.v
Local File Designs_ramCtrlfeight _bit_uc.v
Lacal File Designs_ramCtrlfins_decade.w
Lacal File Designs_ramCtrlfins_rom.v
Local File Designs_ramCtrlfio.y
Local File Designs_ramCtrlireg_file.v
Lacal File Designs_ramCtrlispel_regs.v
Lacal File rev_1jAukaConstraint_eight_bit_uc.sdc
Local File rev_1/backup/spel_regs.srr
Local File rev 1frun options. bxk =]

Destination Directory IC:,I’Deswgns,l’ramtesd I | |
< Back. | | Copy | | Cancel |

3. Do the following:
— Verify the copy information.

— Enter a destination directory. If the directory does not exist it will be
created.

— Click Copy.

This creates the project copy.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 163

Chapter 5: Setting up a Logic Synthesis Project Archiving Files and Projects

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
164 February 2013

SYNOPSys

Innova

CHAPTER 6

Inferring High-Level Objects

This chapter contains guidelines on how to structure your code or attach
attributes so that the synthesis tools can automatically infer high-level
objects like RAMs. See the following for more information:

* Defining Black Boxes for Synthesis, on page 166

* Defining State Machines for Synthesis, on page 175
* Inferring RAMs, on page 179

* Initializing RAMs, on page 185

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 165

Chapter 6: Inferring High-Level Objects Defining Black Boxes for Synthesis

Defining Black Boxes for Synthesis

Black boxes are predefined components for which the interface is specified,
but whose internal architectural statements are ignored. They are used as
place holders for IP blocks, legacy designs, or a design under development.

This section discusses the following topics:
* Instantiating Black Boxes and I/Os in Verilog, on page 166
* Instantiating Black Boxes and I/Os in VHDL, on page 168
* Adding Black Box Timing Constraints, on page 170
¢ Adding Other Black Box Attributes, on page 174

Instantiating Black Boxes and I/Os in Verilog

Verilog black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in Verilog macro
libraries, or black boxes that are defined in another input source like a
schematic. For information about instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in VHDL, on page 168.

The following process shows you how to instantiate both types as black
boxes. Refer to the installDirectory/examples directory for examples of instantia-
tions of low-level resources.

1. To instantiate a predefined Verilog module as a black box:

— Select the library file with the macro you need from the
installDirectory/lib /technology directory. Files are named technology.v.
Most vendor architectures provide macro libraries that predefine the
black boxes for primitives and macros.

— Make sure the library macro file is the first file in the source file list
for your project.

2. To instantiate a module that has been defined in another input source
as a black box:

— Create an empty macro that only contains ports and port directions.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
166 February 2013

Defining Black Boxes for Synthesis Chapter 6: Inferring High-Level Objects

— Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

module myram (out, in, addr, we) /* synthesis syn black box */;
output [15:0] out;
input [15:0] in;
input [4:0] addr;
input we;
endmodule

— Make an instance of the stub in your design.

— Compile the stub along with the module containing the instantiation
of the stub.

— To simulate with a Verilog simulator, you must have a functional
description of the black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use
the translate_off and translate_on constructs. For example:

module adder8 (cout, sum, a, b, cin);
// Code that you want to synthesize
/* synthesis translate off */

// Functional description.

/* synthesis translate on */

// Other code that you want to synthesize.
endmodule

3. To instantiate a vendor-specific (black box) I/O that has been defined in
another input source:

— Create an empty macro that only contains ports and port directions.

— Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

— Specify the external pad pin with the black_box_pad_pin directive, as in
this example:

module BBDLHS (D, E,GIN, GOUT, PAD, Q)
/* synthesis syn black box black box pad pin="PAD"

— Make an instance of the stub in your design.

— Compile the stub along with the module containing the instantiation
of the stub.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 167

Chapter 6: Inferring High-Level Objects Defining Black Boxes for Synthesis

4. Add timing constraints and attributes as needed. See Adding Black Box
Timing Constraints, on page 170 and Adding Other Black Box
Attributes, on page 174.

S. After synthesis, merge the black box netlist and the synthesis results file
using the method specified by your vendor.

Instantiating Black Boxes and 1/Os in VHDL

VHDL black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in VHDL macro
libraries, or black boxes that are defined in another input source like a
schematic. For information about instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in Verilog, on page 166.

The following process shows you how to instantiate both types as black
boxes. Refer to the installDirectory/examples directory for examples of instantia-
tions of low-level resources.

1. To instantiate a predefined VHDL macro (for a component or an 1/0),

— Select the library file with the macro you need from the
installDirectory/lib /vendor directory. Files are named family.vhd. Most
vendor architectures provide macro libraries that predefine the black
boxes for primitives and macros.

— Add the appropriate library and use clauses to the beginning of your
design units that instantiate the macros.

library family ;
use family.components.all;
2. To create a black box for a component from another input source:
— Create a component declaration for the black box.
— Declare the syn_black_box attribute as a boolean attribute.
— Set the attribute to true.
library synplify;
use synplify.attributes.all;
entity top is

port (clk, rst, en, data: in bit; g: out bit);
end top;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
168 February 2013

Defining Black Boxes for Synthesis Chapter 6: Inferring High-Level Objects

architecture structural of top is
component bbox

port (Q: out bit; D, C, CLR: in bit);
end component ;

attribute syn black box of bbox: component is true;

— Instantiate the black box and connect the ports.

begin
my bbox: bbox port map (
Q => Jd,
D => data,
C => clk,
CLR => rst);

— To simulate with a VHDL simulator, you must have the functional
description of a black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use
the translate_off and translate_on constructs. For example:

architecture behave of ram4 is
begin
synthesis translate off
stimulus: process (clk, a, b)
-- Functional description
end process;
synthesis translate on

-- Other source code you WANT synthesized

3. To create a vendor-specific (black box) I/O for an I/O defined in another
input source:

— Create a component declaration for the I/0O.
— Declare the black_box_pad_pin attribute as a string attribute.

— Set the attribute value on the component to be the external pin name
for the pad.

library synplify;
use synplify.attributes.all;

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 169

Chapter 6: Inferring High-Level Objects Defining Black Boxes for Synthesis

component mybuf
port (O: out bit; I: in bit);
end component ;
attribute black box pad pin of mybuf: component is "I";

— Instantiate the pad and connect the signals.

begin

data pad: mybuf port map (
O => data_core,
I => data);

4. Add timing constraints and attributes. See Adding Black Box Timing
Constraints, on page 170 and Adding Other Black Box Attributes, on
page 174.

Adding Black Box Timing Constraints

A black box does not provide the software with any information about
internal timing characteristics. You must characterize black box timing
accurately, because it can critically affect the overall timing of the design. To
do this, you add constraints in the source code or in the SCOPE interface.

You attach black box timing constraints to instances that have been defined
as black boxes. There are three black box timing constraints, syn_tpd, syn_tsu,

and syn_tco.
Black Box
== O i
syn_tsu
clk N - -
bt r syn_tco

1. Define the instance as a black box, as described in Instantiating Black
Boxes and I/Os in Verilog, on page 166 or Instantiating Black Boxes and
I/Os in VHDL, on page 168.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
170 February 2013

Defining Black Boxes for Synthesis Chapter 6: Inferring High-Level Objects

2. Determine the kind of constraint for the information you want to specify:

To define... Use...

Propagation delay through the black box syn_tpd
Setup delay (relative to the clock) for input pins syn_tsu
Clock-to-output delay through the black box syn_tco

3. In VHDL, use the following syntax for the constraints.

Use the predefined attributes package by adding this syntax

library synplify;
use synplify.attributes.all;

In VHDL, you must use the predefined attributes package. For each
directive, there are ten predeclared constraints in the attributes
package, from directive_name1 to directive_name10. If you need more
constraints, declare the additional constraints using integers greater
than 10. For example:

attribute syn tcoll : string;
attribute syn tcol2 : string;

Define the constraints in either of these ways:

VHDL attribute attribute name<n> : "att value"
syntax

Verilog-style attribute attribute name<n> of bbox name :
notation component is "att value"

The following table shows the appropriate syntax for att_value. See the
Reference Manual for complete syntax information.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
171

February 2013

Chapter 6: Inferring High-Level Objects Defining Black Boxes for Synthesis

Attribute Value Syntax

syn tsu<n> bundle -> [!|clock = value
syn_tco<n> [Yclock => bundle = value
syn_tpd<n> bundle -> bundle = value

e <n>is a numerical suffix.

* bundle is a comma-separated list of buses and scalar signals, with no
intervening spaces. For example, A,B,C.

* lindicates (optionally) a negative edge for a clock.
* valueis in ns.

The following is an example of black box attributes, using VHDL
signal notation:

architecture top of top is
component rcfléx4z port (
ad0, adl, ad2, ad3 : in std logic;
dio, dil, di2, di3 : in std logic;
wren, wpe : in std logic;
tri : in std logic;
do0, dol, do2 do3 : out std logic;
end component

attribute syn tpdl of rcfléx4z : component is
"ad0,adl,ad2,ad3 -> do0,dol,do2,do3 = 2.1";

attribute syn tpd2 of rcfléx4z : component is
"tri -> do0,dol,do2,do3 = 2.0";

attribute syn tsul of rcfléx4z : component is
"ad0,adl,ad2,ad3 -> ck = 1.2";

attribute syn tsu2 of rcfléx4z : component is
"wren, wpe,do0,dol,do2,do3 -> ck = 0.0";

4. In Verilog, add the directives as comments, as shown in the following
example. For explanations about the syntax, see the table in the
previous step or the Reference Manual.

module ram32x4 (z, d, addr, we, clk)
/* synthesis syn black box
syn tpdl="addr[3:0]->z[3:0]=8.0"
syn tsul="addr[3:0] ->clk=2.0"
syn tsu2="we->clk=3.0" */;

output [3:0[z;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
172 February 2013

Defining Black Boxes for Synthesis Chapter 6: Inferring High-Level Objects

input [3:0] d;
input [3:0] addr;
input we;

input clk;
endmodule

5. To add black box attributes through the SCOPE interface, do the
following:

— Open the SCOPE spreadsheet and select the Attributes panel.

— In the Object column, select the name of the black-box module or
component declaration from the pull-down list. Manually prefix the
black box name with v: to apply the constraint to the view.

— In the Attribute column, type the name of the timing attribute, followed
by the numerical suffix, as shown in the following table. You cannot
select timing attributes from the pull-down list.

— In the Value column, type the appropriate value syntax, as shown in
the table in step 3.

— Save the constraint file, and add it to the project.
The resulting constraint file contains syntax like this:
define_attribute v:{blackboxModule} attribute<n> {attributeValue}

6. Synthesize the design, and check black box timing.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 173

Chapter 6: Inferring High-Level Objects Defining Black Boxes for Synthesis

Adding Other Black Box Attributes

Besides black box timing constraints, you can also add other attributes to
define pin types on the black box. You cannot use the attributes for all
technologies. Check the Reference Manual for details about which technolo-
gies are supported.

Black Box

Clk Fk
Clk buffer black_box_tri_pins

Pad
syn_isclock black_box_pad_pin

1. To specify that a clock pin on the black box has access to global clock
routing resources, use syn_isclock.

Depending on the technology, different clock resources are inserted. For
Microsemi it inserts CLKBUF.

2. To specify that the software need not insert a pad for a black box pin,
use black_box_pad_pin.

Use this for technologies that automatically insert pad buffers for the
I/Os, like Microsemi technologies.

3. To define a tristate pin so that you do not get a mixed driver error when
there is another tristate buffer driving the same net, use
black_box_tri_pins.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
174 February 2013

Defining State Machines for Synthesis Chapter 6: Inferring High-Level Objects

Defining State Machines for Synthesis

A finite state machine (FSM) is a piece of hardware that advances from state
to state at a clock edge. The synthesis software recognizes and extracts the
state machines from the HDL source code. For guidelines on setting up the
source code, see the following:

* Defining State Machines in Verilog, on page 175
* Defining State Machines in VHDL, on page 176

* Specifying FSMs with Attributes and Directives, on page 177

For information about the attributes used to define state machines, see
Running the FSM Compiler, on page 221.

Defining State Machines in Verilog

The synthesis software recognizes and automatically extracts state machines
from the Verilog source code if you follow these coding guidelines. The
software attaches the syn_state_machine attribute to each extracted FSM.

For alternative ways to define state machines, see Defining State Machines in
VHDL, on page 176 and Specifying FSMs with Attributes and Directives, on
page 177.

* In Verilog, model the state machine with case, casex, or casez statements
in always blocks. Check the current state to advance to the next state
and then set output values. Do not use if statements.

* Always use a default assignment as the last assignment in the case
statement, and set the state variable to ‘bx. This is a “don’t care” state-
ment and ensures that the software can remove unnecessary decoding
and gates.

* Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

* Use explicit state values for states using parameter or ‘define statements.
This is an example of a parameter statement that sets the current state to
2'h2:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 175

Chapter 6: Inferring High-Level Objects Defining State Machines for Synthesis

parameter statel = 2’hl, state2 = 2’h2;

current state = state2;

This example shows how to set the current state value with "define state-
ments:

‘define statel 2'hl
‘define state2 2'h2

current state = ‘state2;

Make state assignments using parameter with symbolic state names.Use
parameter over "define, because "define is applied globally whereas parameter
definitions are local. Local definitions make it easier to reuse certain
state names in multiple FSM designs. For example, you might want to
reuse common state names like RESET, IDLE, READY, READ, WRITE,
ERROR, and DONE. If you use 'define to assign state names, you cannot
reuse a state name because the name has already been taken in the
global name space. To use the names multiple times, you have to ‘undef
state names between modules and redefine them with ‘define state
names in the new FSM modules. This method makes it difficult to probe
the internal values of FSM state buses from a testbench and compare
them to the state names.

Defining State Machines in VHDL

The synthesis software recognizes and automatically extracts state machines
from the VHDL source code if you follow coding guidelines. For alternative
ways to define state machines, see Defining State Machines in Verilog, on
page 175 and Specifying FSMs with Attributes and Directives, on page 177.

The following are VHDL guidelines for coding. The software attaches the
syn_state_machine attribute to each extracted FSM.

Copyright © 2013 Synopsys, Inc.
176

Use case statements to check the current state at the clock edge,
advance to the next state, and set output values. You can also use if-then-
else statements, but case statements are preferable.

If you do not cover all possible cases explicitly, include a when others
assignment as the last assignment of the case statement, and set the
state vector to some valid state.

If you create implicit state machines with multiple WAIT statements, the
software does not recognize them as state machines.

Synplify Pro for Microsemi Edition User Guide
February 2013

Defining State Machines for Synthesis Chapter 6: Inferring High-Level Objects

* Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

* To choose an encoding style, attach the syn_encoding attribute to the
enumerated type. The software automatically encodes your state
machine with the style you specified.

Specifying FSMs with Attributes and Directives

If your design has state machines, the software can extract them automati-
cally with the FSM Compiler (see Optimizing State Machines, on page 218), or
you can manually specify attributes to define the state machines. You attach
the attributes to the state registers. For detailed information about the attri-
butes and their syntax, see the Reference Manual.

The following steps show you how to use attributes to define FSMs for extrac-
tion. For alternative ways to define state machines, see Defining State
Machines in Verilog, on page 175 and Defining State Machines in VHDL, on
page 176.

1. To determine how state machines are extracted, set attributes in the
source code as shown in the following table:

To... Attribute
Specify a state machine for extraction and syn_state_machine=1
optimization

Prevent state machines from being extracted syn_state_machine=0
and optimized

Prevent the state machine from being syn_preserve=1
optimized away

For information about how to add attributes, see Specifying Attributes
and Directives, on page 141.

2. To determine the encoding style used for the state machine, set the
syn_encoding attribute in the source code or in the SCOPE window. For
VHDL users there are alternative methods, described in the next step.

The FSM Compiler and the FSM Explorer honor this setting. The

different values for this attribute are briefly described here:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 177

Chapter 6: Inferring High-Level Objects

Defining State Machines for Synthesis

Situation: If...

Area is important

Speed is
important

Recovery from an
invalid state is
important

There are
<5 states

Large output
decoder follows
the F'SM

There are a large
number of flip-
flops

syn_encoding Value

sequential
onehot

safe, with another
style. For example:

/* synthesis
syn encoding =
"safe, onehot" */

sequential

sequential or
gray

onehot

Explanation

One of the smallest encoding
styles.

Usually the fastest style and
suited to most FPGA styles.

Forces the state machine to
reset. For example, where an
alpha particle hit in a hostile
operating environment causes a
spontaneous register change,
you can use safe to reset the
state machine.

Default encoding.

Could be faster than onehot,
even though the value must be
decoded to determine the state.
For sequential, more than one bit
can change at a time; for gray,
only one bit changes at a time,
but more than one bit can be
hot.

Fastest style, because each state
variable has one bit set, and
only one bit of the state register
changes at a time.

3. If you are using VHDL, you have two choices for defining encoding:

— Use syn_encoding as described above, and enable the FSM compiler.

— Use syn_enum_encoding to define the states (sequential, onehot, gray, and
safe) and disable the FSM compiler. If you do not disable the FSM
compiler, the syn_enum_encoding values are not implemented. This is
because the FSM compiler, a mapper operation, overrides
syn_enum_encoding, which is a compiler directive.

Use this method for user-defined FSM encoding. For example:

attribute syn enum encoding of state type :

Copyright © 2013 Synopsys, Inc.
178

type is "001 010 101";

Synplify Pro for Microsemi Edition User Guide
February 2013

Inferring RAMs

Chapter 6: Inferring High-Level Objects

Inferring RAMs

There are two methods of handling RAMs: instantiation and inference. The
software can automatically infer RAMs if they are structured correctly in your
source code. For details, see the following sections:

* Inference Versus Instantiation, on page 179

* Basic Guidelines for Coding RAMs, on page 180

* Specifying RAM Implementation Styles, on page 184

For information about generating RAMs with SYNCore, see Specifying RAMs

with SYNCore, on page 378.

Inference Versus Instantiation

There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

Inference in Synthesis

Advantages

Portable coding style

Automatic timing-driven synthesis
No additional tool dependencies

Limitations
Glue logic to implement the RAM might

result in a sub-optimal implementation.

Can only infer synchronous RAMs
No support for address wrapping

Pin name limitations means some pins
are always active or inactive

Synplify Pro for Microsemi Edition User Guide
February 2013

Instantiation

Advantages

Most efficient use of the RAM primitives
of a specific technology

Supports all kinds of RAMs

Limitations

Source code is not portable because it is
technology-dependent.

Limited or no access to timing and area
data if the RAM is a black box.

Inter-tool access issues, if the RAM is a
black box created with another tool.

Copyright © 2013 Synopsys, Inc.
179

Chapter 6: Inferring High-Level Objects Inferring RAMs

Basic Guidelines for Coding RAMs

Read through the limitations before you start. See Inference Versus Instanti-
ation, on page 179 for information. The following steps describe general rules
for coding RAMs so that the compiler infers them; to ensure that they are
mapped to the vendor-specific implementation you want, see Specifying RAM
Implementation Styles, on page 184.

1. Make sure that the RAM meets minimum size and address width
requirements for your technology. The software implements RAMs that
are smaller than the minimum as registers.

2. Structure the assignment to a VHDL signal/Verilog register as follows:

— To infer a RAM, structure the code as an indexed array or a case
structure. Code it as a two-dimensional array (VHDL) or memory
(Verilog) with writes to one process.

— Control the structure with a clock edge and a write enable.

The software extracts RAMs even if write enables are tied to true (VCC),
if you have complex write enables coded in nested if statements, or if you
have RAMs with synchronous resets.

3. For a single-port RAM, make the address for indexing the write-to the
same as the address for the read-from. The following code and figure
illustrate how the software infers a single-port RAM.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic signed.all;

entity ramtest is
port (g : out std logic vector (3 downto 0);

d : in std logic_vector (3 downto 0);
addr : in std logic_vector (2 downto 0) ;
we : in std logic;
clk : in std logic);

end ramtest;

architecture rtl of ramtest is
type mem type is array (7 downto 0) of std logic vector

(3 downto 0) ;
signal mem : mem type;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
180 February 2013

Inferring RAMs Chapter 6: Inferring High-Level Objects

begin
g <= mem(conv_integer (addr)) ;

process (clk) begin
if rising edge(clk) then

if (we = '1') then
mem (conv_integer (addr)) <= d;
end if;
end if;

end process;

end rtl;
_ ram1
B RaDDR[Z0]
[AE:10] =0 O] DATA[3:0] o Bol
Goazo B2 B9 Lyyapprpzo DOVTEE
e WWE
CLK
mem[3:0]

4. For a dual-port RAM, make the write-to and read-from addresses
different. The following figure and code example illustrate how the
software infers a dual-port RAM.

ram1
raddr3.0 Bo] BSL_{ pADDR[3:0]

[a70] == O] paTA70) o ol
wiaddr[3:.0 s BAL] wwADDR[Z:0] DOUTEFO]

e = — WE
E— -~ CLK
memO[7:0]
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
181

February 2013

Chapter 6: Inferring High-Level Objects Inferring RAMs

module ramléx8(z, raddr, d, waddr, we, clk);

output [7:0] z;

input [7:0] d;

input [3:0] raddr, waddr;

input we;

input clk;

reg [7:0] z;

reg [7:0] mem0, meml, mem2, mem3, mem4, mem5, mem6, mem7;

reg [7:0] mem8, mem9, memlO, memll, meml2, meml3, meml4, meml5;

always @(mem0 or meml or mem2 Or mem3 Or mem4 Or mem5 Or memé Oor
mem7 or mem8 or mem9 or memlO0 or memll or meml2 or meml3 oOr
meml4 or meml5 or raddr)

begin
case (raddr([3:0])
4'b0000: z = memO;

4'b0001: z = meml;
4'b0010: z = mem2;
4'b0011: z = mem3;
4'b0100: z = mem4;
4'b0101: z = mem5;
4'b0110: z = mem6;
4'b0111: z = mem7;
4'p1000: z = mem8;
4'p1001: z = mem9;
4'01010: z = meml0;
4'b1011: z = memll;
4'b1100: z = meml2;
4'b1101: z = meml3;
4'b1110: z = meml4;
4'b1111: z = meml5;

endcase

end

always @(posedge clk) begin
if (we) begin

case (waddr([3:0])
4'b0000: mem0 = d
4'b0001: meml = d
4'b0010: mem2 = d
4'b0011: mem3 = d
4'b0100: mem4 = d
d

d

d

d

d

7

~e Ne o~

~.

4'b0101: mem5 =
4'b0110: memé =
4'b0111: mem7 =
4'p1000: mem8 =
4'01001: mem9 = d;
4'01010: memlO = d;

~e ~e o~

~.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
182 February 2013

Inferring RAMs Chapter 6: Inferring High-Level Objects

4'1011: memll = d;
4'p1100: meml2 = d;
4'p1101: meml3 = d;
4'p1110: memld = d;
4'pb1111: meml5 = d;
endcase
end
end
endmodule

5. To infer multi-port RAMs or nrams (certain technologies only), do the
following:

— Target a technology that supports multi-port RAMs.
— Register the read address.

— Add the syn_ramstyle attribute with a value of no_rw_check. If you do not
do this, the compiler errors out.

— Make sure that the writes are to one process. If the writes are to
multiple processes, use the syn_ramstyle attribute to specify a RAM.

6. For RAMs where inference is not the best solution, use either one of
these approaches:

— Implement them as regular logic using the syn_ramstyle attribute with
a value of registers. You might want to do this if you have to conserve
RAM resources.

— Instantiate RAMs using the black box methodology. Use this method
in cases where RAM is implemented in two cells instead of one
because the RAM address range spans the word limit of the primitive
and the software does not currently support address wrapping. If the
address range is 8 to 23 and the RAM primitive is 16 words deep, the
software implements the RAM as two cells, even though the address
range is only 16 words deep. Refer to the list of limitations in
Inference Versus Instantiation, on page 179 and the vendor-specific
information referred to in the previous step to determine whether you
should instantiate RAMs.

7. Synthesize your design.

The compiler infers one of the following RAMs from the source code. You
can view them in the RTL view:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 183

Chapter 6: Inferring High-Level Objects Inferring RAMs

RAM1 RAM
RAM2 Resettable RAM
NRAM Multi-port RAM

If the number of words in the RAM primitive is less than the required
address range, the compiler generates two RAMs instead of one, leaving
any extra addresses unused.

Once the compiler has inferred the RAMs, the mapper implements the
inferred RAMs in the technology you specified. For details of how to map
the RAM inferred by the compiler to the implementation you want, see
Specifying RAM Implementation Styles, on page 184.

Specifying RAM Implementation Styles

You can manually influence how RAMs are implemented with the syn_ramstyle
attribute, as described in the following procedure. The valid values vary
slightly, depending on the technology you use. Check the Reference Manual
for the values that apply to the technology you choose.

1. If you do not want to use RAM resources, attach the syn_ramstyle
attribute with a value of registers to the RAM instance name or to the
signal driven by the RAM.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
184 February 2013

Initializing RAMs Chapter 6: Inferring High-Level Objects

Initializing RAMs

You can specify startup values for RAMs and pass them on to the place-and-
route tools. See the following for ways to set the initial values:

* Initializing RAMs in Verilog, on page 185
* Initializing RAMs in VHDL, on page 186

Initializing RAMs in Verilog

In Verilog, you specify startup values using initial statements, which are
procedural assign statements guaranteed by the language to be executed by
the simulator at the start of the simulation. This means that any assignment
to a variable within the body of the initial statement is treated as if the
variable was initialized with the corresponding LHS value. You can initialize
memories using the built-in load memory system tasks $readmemb (binary)
and $readmemh (hex).

The following procedure is the recommended method for specifying initial
values:

1. Create a data file with an initial value for every address in the memory
array. This file can be a binary file or a hex file. See Initialization Data
File, on page 501 in the Reference Manual for details of the formats for
these files.

2. Do the following in the Verilog file to define the module:

— Include the appropriate task enable statement, $readmemb or
$readmemh, in the initial statement for the module:

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]);

Use $readmemb for a binary file and use $readmemh for a hex file. For
descriptions of the syntax, see Initial Values in Verilog, on page 497 in
the Reference Manual.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 185

Chapter 6: Inferring High-Level Objects Initializing RAMs

— Make sure the array declaration matches the order in the initial value
data file you specified. As the file is read, each number encountered is
assigned to a successive word element of the memory. The software
starts with the left-hand address in the memory declaration, and
loads consecutive words until the memory is full or the data file has
been completely read. The loading order is the order in the
declaration. For example, with the following memory definition, the
first line in the data file corresponds to address O:

reg [7:0] mem up [0:63]

With this next definition, the first line in the data file applies to
address 63:

reg [7:0] mem down [63:0]

3. To forward-annotate initial values, use the $readmemb or $readmemh
statements, as described in Initializing RAMs with $readmemb and
$readmembh, on page 189.

See RAM Initialization Example, on page 500 in the Reference Manual for
an example of a Verilog single-port RAM.

Initializing RAMs in VHDL

There are two ways to initialize RAMs in the VHDL code: with signal declara-
tions or with variable declarations.

Initializing VHDL Rams with Signal Declarations

The following example shows a single-port RAM that is initialized with signal
initialization statements. For alternative methods, see Initializing VHDL
Rams with Variable Declarations, on page 188.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
186 February 2013

Initializing RAMs Chapter 6: Inferring High-Level Objects

entity w _r2048x28 is
port (
clk : in std logic;
adr : in std logic_vector (10 downto 0) ;
di : in std logic vector (26 downto 0) ;
we : in std logic;
dout : out std logic_vector (26 downto 0));
end;

architecture arch of w_r2048x28 is
-- Signal Declaration --

type MEM is array (0 to 2047) of std logic vector (26 downto 0);
signal memory : MEM := (
"111111111111111000000000000"
,"111110011011101010011110001"
,"111001111000111100101100111"
,"110010110011101110011110001"
"101001111000111111100110111"
"100000000000001111111111111"
,"010110000111001111100110111"
"001101001100011110011110001"
"000110000111001100101100111"
"000001100100011010011110001"
"000000000000001000000000000"
"000001100100010101100001110"
"000110000111000011010011000"
"001101001100010001100001110"
"010110000111000000011001000"
"011111111111110000000000000"
"101001111000110000011001000"
"110010110011100001100001110"
"111001111000110011010011000"
"111110011011100101100001110"
"111111111111110211111111111"
,"111110011011101010011110001"
"1110011110001111001011001121"
,"110010110011101110011110001"
,"101001111000111111100110111"
"100000000000001111112121211112"
,others => (others => '0'"));

begin
process (clk)

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 187

Chapter 6: Inferring High-Level Objects Initializing RAMs

begin
if rising edge(clk) then
if (we = '1') then
memory (conv_integer(adr)) <= di;
end if;
dout <= memory (conv_integer (adr)) ;
end if;

end process;

end arch;

Initializing VHDL Rams with Variable Declarations

The following example shows a RAM that is initialized with variable declara-
tions. For alternative methods, see Initializing VHDL Rams with Signal Decla-
rations, on page 186 and Initializing RAMs with $readmemb and
$readmemh, on page 189.

library ieee;

use ieee.std logic 1164.all;

use ieee.numeric_std.all;

entity one is

generic (data width : integer := 6;
address_width :integer := 3
) ;
port (data a :in std logic vector (data width-1 downto 0);
raddrl :in unsigned (address width-2 downto 0) ;
waddrl :in unsigned(address width-1 downto 0) ;
wel :in std logic;

clk :in std logic;
outl :out std logic vector (data width-1 downto 0));
end;

architecture rtl of one is
type mem array is array(0 to 2** (address width) -1) of
std logic_ vector (data width-1 downto 0) ;

begin
WRITEL RAM : process (clk)
variable mem : mem array := (1 => "111101", others => (1=>'l"',
others => '0'"));
begin

if rising edge(clk) then
outl <= mem(to integer (raddrl)) ;
if (wel = '1') then

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
188 February 2013

Initializing RAMs Chapter 6: Inferring High-Level Objects

mem(to integer(waddrl)) := data a;
end if;
end if;
end process WRITEl RAM;
end rtl;

Initializing RAMs with $readmemb and $readmemh

1. Create a data file with an initial value for every address in the memory
array. This file can be a binary file or a hex file. See Initialization Data
File, on page 501 in the Reference Manual for details.

2. Include one of the task enable statements, $readmemb or $readmemh, in
the initial statement for the module:

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]) ;
$readmembh ("fileName", memoryName [, startAddress [, stopAddress]]) ;

Use $readmemb for a binary file and $readmemh for a hex file. For details
about the syntax, see Initial Values in Verilog, on page 497 in the Refer-
ence Manual.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 189

Chapter 6: Inferring High-Level Objects Initializing RAMs

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
190 February 2013

SYNOPSYs

celerating Innovation

CHAPTER 7

Specifying Design-Level Optimizations

This chapter covers techniques for optimizing your design using built-in tools
or attributes. For vendor-specific optimizations, see Chapter 11, Optimizing
for Microsemi Designs. It describes the following:

* Tips for Optimization, on page 192

* Retiming, on page 196

* Preserving Objects from Optimization, on page 203
* Optimizing Fanout, on page 209

* Sharing Resources, on page 213

* Inserting I/Os, on page 218

* Optimizing State Machines, on page 218

* Inserting Probes, on page 227

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 191

Chapter 7: Specifying Design-Level Optimizations Tips for Optimization

Tips for Optimization

The software automatically makes efficient trade-offs to achieve the best
results. However, you can optimize your results by using the appropriate
control parameters. This section describes general design guidelines for
optimization. The topics have been categorized as follows:

General Optimization Tips, on page 192
Optimizing for Area, on page 193
Optimizing for Timing, on page 194

General Optimization Tips

This section contains general optimization tips that are not directly area or
timing-related. For area optimization tips, see Optimizing for Area, on
page 193. For timing optimization, see Optimizing for Timing, on page 194.

In your source code, remove any unnecessary priority structures in
timing-critical designs. For example, use CASE statements instead of
nested IF-THEN-ELSE statements for priority-independent logic.

If your design includes safe state machines, use the syn_encoding attri-
bute with a value of safe. This ensures that the synthesized state
machines never lock in an illegal state.

For FSMs coded in VHDL using enumerated types, use the same
encoding style (syn_enum_encoding attribute value) on both the state
machine enumerated type and the state signal. This ensures that there
are no discrepancies in the type of encoding to negatively affect the final
circuit.

Make sure that the source code supports inferencing or instantiation by
using architecture-specific resources like memory blocks.

Some designs benefit from hierarchical optimization techniques. To
enable hierarchical optimization on your design, set the syn_hier attri-
bute to firm.

For accurate results with timing-driven synthesis, explicitly define clock
frequencies with a constraint, instead of using a global clock frequency.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
192

February 2013

Tips for Optimization Chapter 7: Specifying Design-Level Optimizations

Optimizing for Area

This section contains information on optimizing to reduce area. Optimizing
for area often means larger delays, and you will have to weigh your perfor-
mance needs against your area needs to determine what works best for your
design. For tips on optimizing for performance, see Optimizing for Timing, on
page 194. General optimization tips are in General Optimization Tips, on
page 192.

Increase the fanout limit when you set the implementation options. A
higher limit means less replicated logic and fewer buffers inserted
during synthesis, and a consequently smaller area. In addition, as P&R
tools typically buffer high fanout nets, there is no need for excessive
buffering during synthesis. See Setting Fanout Limits, on page 209 for
more information.

Enable the Resource Sharing option when you set implementation options.
With this option checked, the software shares hardware resources like
adders, multipliers, and counters wherever possible, and minimizes
area. This is a global setting, but you can also specify resource sharing
on an individual basis for lower-level modules. See Sharing Resources,
on page 213 for details.

For designs with large FSMs, use the gray or sequential encoding styles,
because they typically use the least area. For details, see Specifying
FSMs with Attributes and Directives, on page 177.

If you are mapping into a CPLD and do not meet area requirements, set
the default encoding style for FSMs to sequential instead of onehot. For
details, see Specifying FSMs with Attributes and Directives, on

page 177.

For small CPLD designs (less than 20K gates), you might improve area
by using the syn_hier attribute with a value of flatten. When specified, the
software optimizes across hierarchical boundaries and creates smaller
designs.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 193

Chapter 7: Specifying Design-Level Optimizations Tips for Optimization

Optimizing for Timing

This section contains information on optimizing to meet timing requirements.
Optimizing for timing is often at the expense of area, and you will have to
balance the two to determine what works best for your design. For tips on
optimizing for area, see Optimizing for Area, on page 193. General optimiza-
tion tips are in General Optimization Tips, on page 192.

* Use realistic design constraints, about 10 to 15 percent of the real goal.
Over-constraining your design can be counter-productive because you
can get poor implementations. Typically, you set timing constraints like
clock frequency, clock-to-clock delay paths, I/O delays, register I/O
delays and other miscellaneous path delays. Use clock, false path, and
multi-cycle path constraints to make the constraints realistic.

* Enable the Retiming option. This optimization moves registers into I/O
buffers if this is permitted by the technology and the design. However, it
may add extra registers when clouds of logic are balanced across more
than one register-to-register timing path. Extra registers are only added
in parallel within the timing path and only if no extra latency is added by
the additional registers. For example, if registers are moved across a 2x1
multiplexer, the tool adds two new registers to accommodate the select
and data paths.

You can set this option globally or on specific registers. See Retiming, on
page 196 for details.

* Select a balanced fanout constraint. A large constraint creates nets with
large fanouts, and a low fanout constraint results in replicated logic. See
Setting Fanout Limits, on page 209 for information about setting limits
and using the syn_maxfan attribute. You can use this in conjunction with
the syn_replicate attribute that controls register duplication and buffering.

* Control register duplication and buffering criteria with the syn_replicate
attribute. The tool automatically replicates registers during optimization,
and you can use this attribute globally or locally on a specific register to
turn off register duplication. See Controlling Buffering and Replication,
on page 211 for a description. Use syn_replicate in conjunction with the
syn_maxfan attribute that controls fanout.

¢ If the critical path goes through arithmetic components, try disabling
Resource Sharing. You can get faster times at the expense of increased
area, but use this technique carefully. Adding too many resources can
cause longer delays and defeat your purpose.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
194 February 2013

Tips for Optimization Chapter 7: Specifying Design-Level Optimizations

* If the P&R and synthesis tools report different critical paths, use a
timing constraint with the -route option. With this option, the software
adds route delay to its calculations when trying to meet the clock
frequency goal. Use realistic values for the constraints.

* For FSMs, use the onehot encoding style, because it is often the fastest
implementation. If a large output decoder follows an FSM, gray or
sequential encoding could be faster.

* For designs with black boxes, characterize the timing models accurately,
using the syn_tpd, syn_tco, and syn_tso directives.

* If you see warnings about feedback muxes being created for signals
when you compile your source code, make sure to assign set/resets for
the signals. This improves performance by eliminating the extra mux
delay on the input of the register.

* Make sure that you pass your timing constraints to the place-and-route
tools, so that they can use the constraints to optimize timing.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
195

February 2013

Chapter 7: Specifying Design-Level Optimizations Retiming

Retiming

Some Microsemi technologies. Retiming improves the timing performance of
sequential circuits without modifying the source code. It automatically moves
registers (register balancing) across combinatorial gates or LUTs to improve
timing while maintaining the original behavior as seen from the primary
inputs and outputs of the design. Retiming moves registers across gates or
LUTs, but does not change the number of registers in a cycle or path from a
primary input to a primary output. However, it can change the total number
of registers in a design.

The retiming algorithm retimes only edge-triggered registers. It does not
retime level-sensitive latches. Note that registers associated with RAMS and
DSPs may be moved, regardless of the Retiming option setting. The Retiming
option is not available if it does not apply to the family you are using.

These sections contain details about using retiming.
¢ Controlling Retiming, on page 196
* Retiming Example, on page 198
* Retiming Report, on page 199
* How Retiming Works, on page 200

Controlling Retiming
The following procedure shows you how to use retiming.
1. To enable retiming for the whole design, check the Retiming check box.

You can set the Retiming option from the button panel in the Project
window, or with the Project->Implementation Options command (Options tab).
The option is only available in certain technologies.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
196 February 2013

Retiming

Chapter 7: Specifying Design-Level Optimizations

3.

FSM Compiler
FS Explarer O Set the retiming option in either place.
Resource Sharing L
Rekirnirg
Options

Optimization Switches

FSM Compiler
[]F5M Explorer
Resource Shai
Retiming

Retiming works globally on the design, and moves edge-triggered regis-
ters as needed to balance timing.

To enable retiming on selected registers, use either of the following
techniques:

— Check the Retiming checkbox and attach the syn_allow_retiming attribute
with a value of 0 or false to any registers you do not want the software
to move. This attribute specifies that the register cannot be moved for
retiming. Refer to How Retiming Works, on page 200 for a list of the
components the retiming algorithm will move.

— Do not check the Retiming checkbox. Attach the syn_allow_retiming
attribute with a value of 1 or true to any registers you want the
software to consider for retiming. You can do this in the SCOPE
interface or in the source code. This attribute marks the register as
one that can be moved during retiming, but does not necessarily force
it to be moved during retiming. If you apply the attribute to an FSM,
RAM or SRL that is decomposed into flip-flops and logic, the software
applies the attribute to all the resulting flip-flops

You can also fine-tune retiming using attributes:

— To preserve the power-on state of flip-flops without sets or resets (FD
or FDE) during retiming, set syn_preserve=1 or syn_allow_retiming=0 on
these flip-flops.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 197

Chapter 7: Specifying Design-Level Optimizations Retiming

— To force flip-flops to be packed in I/O pads, set syn_useioff=1 as a
global attribute. This will prevent the flip-flops from being moved
during retiming.

4. Set other options for the run. Retiming might affect some constraints
and attributes. See How Retiming Works, on page 200 for details.

S. Click Run to start synthesis.

After the LUTs are mapped, the software moves registers to optimize
timing. See Retiming Example, on page 198 for an example. The
software honors other attributes you set, like syn_preserve, syn_useioff,
and syn_ramstyle. See How Retiming Works, on page 200 for details.

Note that the tool might retime registers associated with RAMs and
DSPs, regardless of whether the Retiming option is on or off.

The log file includes a retiming report that you can analyze to under-
stand the retiming changes. It contains a list of all the registers added or
removed because of retiming. Retimed registers have a _ret suffix added
to their names. See Retiming Report, on page 199 for more information
about the report.

Retiming Example

The following example shows a design with retiming disabled and enabled.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
198 February 2013

Retiming Chapter 7: Specifying Design-Level Optimizations

Feetimin | o]
a O Fo LUT3_FE LUT4_8000

2] 0] (21 | e |y
n o {ow

B £]y 0
3

FLEL 12

=+
E
a
=
=
S

@:;__[2:01

Retiming |

LUT4_8000
0

out

The top figure shows two levels of logic between the registers and the output,
and no levels of logic between the inputs and the registers.

The bottom figure shows the results of retiming the three registers at the
input of the OR gate. The levels of logic from the register to the output are
reduced from two to one. The retimed circuit has better performance than the
original circuit. Timing is improved by transferring one level of logic from the
critical part of the path (register to output) to the non-critical part (input to
register).

Retiming Report
The retiming report is part of the log file, and includes the following:
* The number of registers added, removed, or untouched by retiming.

* Names of the original registers that were moved by retiming and which
no longer exist in the Technology view.

* Names of the registers created as a result of retiming, and which did not
exist in the RTL view. The added registers have a _ret suffix.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 199

Chapter 7: Specifying Design-Level Optimizations Retiming

How Retiming Works

This section describes how retiming works when it moves sequential compo-
nents (flip-flops). Registers associated with RAMs and DSPs might be moved,
whether Retiming is enabled or not. Here are some implications and results of
retiming;:

Flip-flops with no control signals (resets, presets, and clock enables) are
moved. Flip-flops with minimal control logic can also be retimed.
Multiple flip-flops with reset, set or enable signals that need to be
retimed together are only retimed if they have exactly the same control
logic.

The software does not retime the following combinatorial sequential
elements: flip-flops with both set and reset, flip-flops with attributes like
syn_preserve, flip-flops packed in I/O pads, level-sensitive latches, regis-
ters that are instantiated in the code, SRLs, and RAMs. If a RAM with
combinatorial logic has syn_ramstyle set to registers, the registers can be
retimed into the combinatorial logic.

Retimed flip-flops are only moved through combinatorial logic. The
software does not move flip-flops across the following objects: black
boxes, sequential components, tristates, I/O pads, instantiated compo-
nents, carry and cascade chains, and keepbufs.

You might not be able to crossprobe retimed registers between the RTL
and the Technology view, because there may not be a one-to-one corre-
spondence between the registers in these two views after retiming. A
single register in the RTL view might now correspond to multiple regis-
ters in the Technology view.

Retiming affects or is affected by, these attributes and constraints:

Attribute/Constraint Effect

False path constraint Does not retime flip-flops with different false path
constraints. Retimed registers affect timing

constraints.

Multicycle constraint Does not retime flip-flops with different multicycle
constraints. Retimed registers affect timing
constraints.

Register constraint Does not maintain define_reg_input_delay and

define_reg_output delay constraints. Retimed
registers affect timing constraints.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
200

February 2013

Retiming Chapter 7: Specifying Design-Level Optimizations

Attribute/Constraint Effect
from/to timing If you set a timing constraint using a from/to
exceptions specification on a register, it is not retimed. The

exception is when using a max_delay constraint. In
this case, retiming is performed but the constraint is
not forward annotated. (The max_delay value would
no longer be valid.)

syn_hier=macro Does not retime registers in a macro with this
attribute.

syn_keep Does not retime across keepbufs generated because
of this attribute.

syn_hier=macro Does not retime registers in a macro with this
attribute.

syn_preserve Does not retime flip-flops with this attribute set.

syn_probe Does not retime net drivers with this attribute. If the
net driver is a LUT or gate, no flip-flops are retimed
across it.

syn_reference_clock On a critical path, does not retime registers with

different syn_reference_clock values together,
because the path effectively has two different clock
domains.

syn_useioff Does not override attribute-specified packing of
registers in I/O pads. If the attribute value is false,
the registers can be retimed. If the attribute is not
specified, the timing engine determines whether the
register is packed into the I/O block.

syn_allow_retiming Registers are not retimed if the value is O.

* Retiming does not change the simulation behavior (as observed from
primary inputs and outputs) of your design, However if you are
monitoring (probing) values on individual registers inside the design,
you might need to modify your test bench if the probe registers are
retimed.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 201

Chapter 7: Specifying Design-Level Optimizations Retiming

* Beginning with the C-2009.09-SP1 release, the behavior for retiming
unconstrained I/O pads has changed. If retiming is enabled, registers
connected to unconstrained I/O pins are not retimed by default. If you
want to revert to how retiming I/O paths was previously implemented,
you can:

— Globally turn on the Use clock period for unconstrained IO switch from the
Constraints tab of the Implementation Options panel.

— Add constraints to all input/output ports.

— Separately constrain each I/O pin as required.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
202 February 2013

Preserving Objects from Optimization

Chapter 7: Specifying Design-Level Optimizations

Preserving Objects from Optimization

Synthesis can collapse or remove nets during optimization. If you want to
retain a net for simulation, probing, or for a different synthesis implementa-
tion, you must specify this with an attribute. Similarly, the software removes
duplicate registers or instances with unused output. If you want to preserve
this logic for simulation or analysis, you must use an attribute. The following
table lists the attributes to use in each situation. For details about the attri-
butes and their syntax, see the Reference Manual.

To Preserve...

Nets

Nets for probing

Shared registers

Sequential
components

FSMs

Instantiated
components

Attach...

syn_keep on wire or reg
(Verilog), or signal (VHDL).

For Microsemi designs, use
alspreserve as well as
syn_keep.

syn_probe on wire or reg
(Verilog), or signal (VHDL)

syn_keep on input wire or
signal of shared registers

sSyn_preserve on reg or
module (Verilog), signal or
architecture (VHDL)

syn_preserve on reg or
module (Verilog), signal
(VHDL)

syn_noprune on module or
component (Verilog),
architecture or instance
(VHDL)

Synplify Pro for Microsemi Edition User Guide

February 2013

Result

Keeps net for simulation, a different
synthesis implementation, or for
passing to the place-and-route tool.

Preserves internal net for probing.

Preserves duplicate driver cells,
prevents sharing. See Using
syn_keep for Preservation or
Replication, on page 204 for details
on the effects of applying syn_keep
to different objects.

Preserves logic of constant-driven
registers, keeps registers for
simulation, prevents sharing

Prevents the output port or internal
signal that holds the value of the
state register from being optimized

Keeps instance for analysis,
preserves instances with unused
outputs

Copyright © 2013 Synopsys, Inc.
203

Chapter 7: Specifying Design-Level Optimizations Preserving Objects from Optimization

See the following for more information:

Using syn_keep for Preservation or Replication, on page 204
* Controlling Hierarchy Flattening, on page 207

* Preserving Hierarchy, on page 207

Using syn_keep for Preservation or Replication

By default the tool considers replicated logic redundant, and optimizes it
away. If you want to maintain the redundant logic, use syn_keep to preserve
the logic that would otherwise be optimized away.

The following Verilog code specifies a replicated AND gate:

module redundantl (ina, inb,outl) ;
input ina,inb;

output outl,out2;

wire outl;

wire out2;

assign outl = ina & inb;
assign out2 = ina & inb;;
endmodule

The compiler implements the AND function by replicating the outputs out1
and out2, but optimizes away the second AND gate because it is redundant.

out2_1 out1
| T —
out2
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
204

February 2013

Preserving Objects from Optimization Chapter 7: Specifying Design-Level Optimizations

To replicate the AND gate in the previous example, apply syn_keep to the input
wires, as shown below:

module redundantld(ina, inb,outl,out2) ;
input ina, inb;

output outl,out2;

wire outl;

wire out2;

wire inla /*synthesis syn keep = 1*/;

wire inlb /*synthesis syn keep = 1*/;
wire in2a /*synthesis syn keep = 1%*/;
wire in2b /*synthesis syn keep = 1 */;

assign inla = ina ;

assign inlb = inb ;
assign in2a = ina;

assign in2b = inb;

assign outl = inla & inlb;
assign out2 = in2a & in2b;
endmodule

Setting syn_keep on the input wires ensures that the second AND gate is
preserved:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 205

Chapter 7: Specifying Design-Level Optimizations

Preserving Objects from Optimization

inla

[

in1b

out1

in2a

[1

L1

in2b

out2

You must set syn_keep on the input wires of an instance if you want to
preserve the logic, as in the replication of this AND gate. If you set it on the
outputs, the instance is not replicated, because syn_keep preserves the nets
but not the function driving the net. If you set syn_keep on the outputs in the
example, you get only one AND gate, as shown in the next figure.

|ina
[inb

N

#
out2_1

Copyright © 2013 Synopsys, Inc.
206

| T

outi

| ut2

out?

Synplify Pro for Microsemi Edition User Guide
February 2013

Preserving Objects from Optimization Chapter 7: Specifying Design-Level Optimizations

Controlling Hierarchy Flattening

Optimization flattens hierarchy. To control the flattening, use the syn_hier
attribute as described here. You can also use the attribute to prevent
flattening, as described in Preserving Hierarchy, on page 207.

1. Attach the syn_hier attribute with the value you want to the module or
architecture you want to preserve.

To... Value...
Flatten all levels below, but not the current level flatten
Remove the current level of hierarchy without affecting remove

the lower levels
Remove the current level of hierarchy and the lower levels flatten, remove

Flatten the current level (if needed for optimization) soft

You can also add the attribute in SCOPE instead of the HDL code. If you
use SCOPE to enter the attribute, make sure to use the v: syntax. For
details, see syn_hier Attribute, on page 960 in the Reference Manual.

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

2. If you want to flatten the entire design, use the syn_netlist_hierarchy
attribute set to false, instead of the syn_hier attribute.

This flattens the entire netlist and does not preserve any hierarchical
boundaries. See syn_netlist_hierarchy Attribute, on page 986 in the
Reference Manual for the syntax.

Preserving Hierarchy

The synthesis process includes cross-boundary optimizations that can flatten
hierarchy. To override these optimizations, use the syn_hier attribute as
described here. You can also use this attribute to direct the flattening process
as described in Controlling Hierarchy Flattening, on page 207.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 207

Chapter 7: Specifying Design-Level Optimizations Preserving Objects from Optimization

2. Set the attribute value:

To... Value...
Preserve the interface but allow cell packing across the firm
boundary

Preserve the interface with no exceptions hard
Preserve the interface and contents with no exceptions macro

(except ProASIC3 families)

Flatten lower levels but preserve the interface of the specified flatten, firm
design unit

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
208 February 2013

Optimizing Fanout Chapter 7: Specifying Design-Level Optimizations

Optimizing Fanout

You can optimize your results with attributes and directives, some of which
are specific to the technology you are using. Similarly, you can use specify
objects or hierarchy that you want to preserve during synthesis. For a
complete list of all the directives and attributes, see the Reference Manual.
This section describes the following:

* Setting Fanout Limits, on page 209
* Controlling Buffering and Replication, on page 211

Setting Fanout Limits

Optimization affects net fanout. If your design has critical nets with high
fanout, you can set fanout limits. You can only do this in certain technolo-
gies. For details specific to individual technologies, see the Reference Manual.

1. To set a global fanout limit for the whole design, do either of the
following:

— Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option.

— Apply the syn_maxfan attribute to the top-level view or module.

The value sets the number of fanouts for a given driver, and affects all
the nets in the design. The defaults vary, depending on the technology.
Select a balanced fanout value. A large constraint creates nets with large
fanouts, and a low fanout constraint results in replicated or buffered
logic. Both extremes affect routing and design performance. The right
value depends on your design. The same value of 32 might result in
fanouts of 11 or 12 and large delays on the critical path in one design or
in excessive replication in another design.

The software uses the value as a soft limit, or a guide. It traverses the
inverters and buffers to identify the fanout, and tries to ensure that all
fanouts are under the limit by replicating or buffering where needed (see
Controlling Buffering and Replication, on page 211 for details). However,
the synthesis tool does not respect the fanout limit absolutely; it ignores
the limit if the limit imposes constraints that interfere with optimization.

2. For certain Microsemi technologies, you can set a global hard fanout
limit by doing the following:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 209

Chapter 7: Specifying Design-Level Optimizations Optimizing Fanout

— Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option, as described in the previous step.

— On the same tab, check the Hard Fanout Limit option.
This makes the specified value a global hard fanout limit for the design.

3. To override the global fanout guideline and set a soft fanout limit at a
lower level, set the syn_maxfan attribute on modules, views, or non-
primitive instances.

These limits override the more global limits for that object (including a
global hard limit in Microsemi technologies). However, these limits still
function as soft limits, and are replicated or buffered, as described in
Controlling Buffering and Replication, on page 211.

Attribute specified on... Effect

Module or view Soft limit for the module; overrides the global setting.
Non-primitive instance Soft limit; overrides global and module settings
Clock nets or Soft limit.

asynchronous control nets

4. To set a hard or absolute limit, set the syn_maxfan attribute on a port,
net, register, or primitive instance.

Fanouts that exceed the hard limit are buffered or replicated, as
described in Controlling Buffering and Replication, on page 211.

5. To preserve net drivers from being optimized, attach the syn_keep or
syn_preserve attributes.

For example, the software does not traverse a syn_keep buffer (inserted
as a result of the attribute), and does not optimize it. However, the
software can optimize implicit buffers created as a result of other opera-
tions; for example, it does not respect an implicit buffer created as a
result of syn_direct_enable.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
210 February 2013

Optimizing Fanout Chapter 7: Specifying Design-Level Optimizations

6. Check the results of buffering and replication in the following:

— The log file (click View Log). The log file reports the number of buffered
and replicated objects and the number of segments created for the
net.

— The HDL Analyst views. The software might not follow DRC rules
when buffering or replicating objects, or when obeying hard fanout
limits.

Controlling Buffering and Replication

To honor fanout limits (see Setting Fanout Limits, on page 209) and reduce
fanout, the software either replicates components or adds buffers. The tool
uses buffering to reduce fanout on input ports, and uses replication to reduce
fanout on nets driven by registers or combinatorial logic. The software first
tries replication, replicating the net driver and splitting the net into segments.
This increases the number of register bits in the design. When replication is
not possible, the software buffers the signals. Buffering is more expensive in
terms of intrinsic delay and resource consumption. The following table
summarizes the behavior.

Replicates When... Creates Buffers When...

syn_maxfan is set on a syn_maxfan is set on input ports in Microsemi
register output ProASIC3 families

syn_replicate is 1 syn_replicate is O.

Note that the syn_replicate attribute must be used in
conjunction with the syn_maxfan attribute for
Microsemi families. The syn_replicate attribute is
used only to turn off the replication.

syn_maxfan is set on a port/net that is driven by a
port or I/O pad

The net driver has a syn_keep or syn_preserve
attribute

The net driver is not a primitive gate or register
You can control whether high fanout nets are buffered or replicated, using
the techniques described here:
* To use buffering instead of replication, set syn_replicate with a value of 0

globally, or on modules or registers. The syn_replicate attribute prevents

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 21

Chapter 7: Specifying Design-Level Optimizations Optimizing Fanout

replication, so that the software uses buffering to satisfy the fanout
limit. For example, you can prevent replication between clock bound-
aries for a register that is clocked by clk1 but whose fanin cone is driven
by clk2, even though clk2 is an unrelated clock in another clock group.

* To specify that high-fanout clock ports should not be buffered, set
syn_noclockbuf globally, or on individual input ports. Use this if you want
to save clock buffer resources for nets with lower fanouts but tighter
constraints.

* Inverters merged with fanout loads increase fanout on the driver during
placement and routing. A distinction is made between a keep buffer
created as the result of the syn_keep attribute being applied by the user
(explicit keep buffer) and a keep buffer that exists as the result of
another attribute (implicit keep buffer). For example, the syn_direct_enable
attribute inserts a keep buffer. When a syn_maxfan attribute is applied to
the output of an explicit keep buffer, the signal is buffered (the keep
buffer is not traversed so that the driver is not replicated). When the
syn_maxfan attribute is applied to the output of an implicit keep buffer,
the keep buffer is traversed and the driver is replicated.

* Turn off buffering and replication entirely, by setting syn_maxfan to a very
high number, like 1000.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
212 February 2013

Sharing Resources Chapter 7: Specifying Design-Level Optimizations

Sharing Resources

One of the ways you can optimize area is to use resource sharing. With
resource sharing, the software uses the same arithmetic operators for
mutually exclusive statements; for example, with the branches of a case
statement. Conversely, you can improve timing by disabling resource
sharing, but at the expense of increased area.

1.

Specify resource sharing globally for the whole design, using one of the

methods below. Enable the option to improve area; disable it to improve

timing.

— Select Project->Implementation Options->Options, and enable or disable
Resource Sharing. Alternatively, enable the Resource Sharing button on
the left side of the Project view.

— Apply the syn_sharing directive to the top-level module or architecture
in the source code. See syn_sharing Directive, on page 1024 of the
Reference Manual for details of the syntax.

Verilog module top(out, in, clk in) /* synthesis syn sharing = "on" */;

VHDL architecture rtl of top is

attribute syn sharing : string;
attribute syn sharing of rtl : architecture is "off";

— Edit your project file and include the following command. O disables
and 1 enables resource sharing:

set_option -resource sharing 1|0

When you save the project file, it includes the Tcl set _option
-resource sharing command.

You cannot specify syn_sharing from the SCOPE interface, because it is a
compiler directive and works during the compilation stage of synthesis.
The mapper does not consider the resource sharing setting, so even if
resource sharing is disabled, it can perform resource sharing optimiza-
tions to improve results.

To specify resource sharing on an individual basis, or to override the
global setting, specify the syn_sharing attribute for the lower-level
module/architecture, using the syntax described in the previous step.

The following examples illustrate resource sharing.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 213

Chapter 7: Specifying Design-Level Optimizations Sharing Resources

Verilog Example

The following example illustrates resource sharing in Verilog. The first
diagram shows the equivalent logic with resource sharing enabled, and the
second diagram shows the same logic with resource sharing disabled.

module add (a, b, x, y, outl, out2, sel, en, clk);
input a, b, x, y, sel, en, clk;

output outl, out2;

wire tmpl, tmp2;

assign tmpl = a * b;

assign tmp2 = x * y;

reg outl, out2;

always@ (posedge clk)

if (en)
begin
outl <= sel ? tmpl: tmp2;
end
else
begin
out2 <= sel ? tmpl: tmp2;
end
endmodule
(e =
= .
—s— D[0] Q[0 _'—@
o * :
un1_x outt_2 ’—_0 o
[k =
[en ==
[y — 0
 E——
(b= L—=— D[0] Q)] ———pu =
unl_y > c
uni_en out2
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
214

February 2013

Sharing Resources Chapter 7: Specifying Design-Level Optimizations

——a—t

=— D[0] Q] —e——putl ===
E

out1

L et

—=— D[0] Q0] ———futZ ==
Dc E

e
[a_ =
(b
-
=

unl_en out2

VHDL Example

The following example illustrates resource sharing in VHDL. The first
diagram shows the equivalent logic with resource sharing enabled, and the
second diagram shows the same logic with resource sharing disabled.

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

entity add is
port (a, b : in std logic_vector (1l downto 0);
X, Yy : in std logic vector (1l downto 0);
clk, sel, en: in std logic;
outl : out std logic vector (3 downto 0);
out2 : out std logic_vector (3 downto 0)
)
end add;

architecture rtl of add is
signal tmpl, tmp2: std logic vector (3 downto 0);
begin

tmpl <= a * b;

tmp2 <= x * y;

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 215

Chapter 7: Specifying Design-Level Optimizations Sharing Resources

process (clk) begin
if clk’event and clk='1’ then
if (en='1’) then
if (sel='1’) then
outl <= tmpl;
else
outl <= tmp2;
end if;
else
if (sel='1’) then
out2 <= tmpl;
else
out2 <= tmp2;
end if;
end if;
end if;
end process;
end rtl;

[0 gy e
pal L0t D[3:0] Q[30] § ki

Ed=So s . [= A
unt_x[3:2] out1_3[3:0] out1[3.0]

[
E=

(B0t = Lol D[3:0] Q[30] i 230 o
. > 0 .

un1_en out2[3:0]

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
216 February 2013

Sharing Resources

Chapter 7: Specifying Design-Level Optimizations

—
St D[3:0] Q[30
C
out1_P[3:0] out1[3:0]
| DE D30 Q30
Eb > .
uni_en out2[3:0]

Synplify Pro for Microsemi Edition User Guide

February 2013

o 30 =

g LEEI—

Copyright © 2013 Synopsys, Inc.
217

Chapter 7: Specifying Design-Level Optimizations Inserting I/Os

Inserting 1/Os

You can control I/O insertion globally, or on a port-by-port basis.

1. To control the insertion of I/O pads at the top level of the design, use the
Disable I/O Insertion option as follows:

— Select Project->Implementation Options and click the Device panel.

— Enable the option (checkbox on) if you want to do a preliminary run
and check the area taken up by logic blocks, before synthesizing the
entire design.

Do this if you want to check the area your blocks of logic take up,
before you synthesize an entire FPGA. If you disable automatic I/O
insertion, you do not get any I/O pads in your design, unless you
manually instantiate them.

— Leave the Disable I/O Insertion checkbox empty (disabled) if you want to
automatically insert I/O pads for all the inputs, outputs and
bidirectionals.

When this option is set, the software inserts I/O pads for inputs,
outputs, and bidirectionals in the output netlist. Once inserted, you
can override the I/O pad inserted by directly instantiating another
I/0O pad.

— For the most control, enable the option and then manually
instantiate the I/O pads for specific pins, as needed.

Optimizing State Machines

You can optimize state machines with the symbolic FSM Compiler and the
FSM Explorer tools.

* The Symbolic FSM Compiler
An advanced state machine optimizer, it automatically recognizes state
machines in your design and optimizes them. Unlike other synthesis
tools that treat state machines as regular logic, the FSM Compiler
extracts the state machines as symbolic graphs, and then optimizes
them by re-encoding the state representations and generating a better
logic optimization starting point for the state machines.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
218 February 2013

Optimizing State Machines Chapter 7: Specifying Design-Level Optimizations

* The FSM Explorer

A specialized state machine optimizer that explores different encoding
styles before selecting the best style. It uses the FSM Compiler to extract

state machines, and runs the FSM Compiler automatically if it has not
been run.

For more information, see the following:

Deciding when to Optimize State Machines, on page 219
* Running the FSM Compiler, on page 221
* Running the FSM Explorer, on page 224

Deciding when to Optimize State Machines

The FSM Explorer and the FSM Compiler are automatic tools for encoding
state machines, but you can also specify FSMs manually with attributes. For

more information about using attributes, see Specifying FSMs with Attributes
and Directives, on page 177.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 219

Chapter 7: Specifying Design-Level Optimizations Optimizing State Machines

Here are the main reasons to use the FSM Compiler:
* To generate better results for your state machines

The software uses optimization techniques that are specifically tuned for
FSMs, like reachability analysis for example. The FSM Compiler also lets
you convert an encoded state machine to another encoding style (to
improve speed and area utilization) without changing the source. For
example, you can use a onehot style to improve results.

* To debug the state machines

State machine description errors result in unreachable states, so if you
have errors, you will have fewer states. You can check whether your
source code describes your state machines correctly. You can also use
the FSM Viewer to see a high-level bubble diagram and crossprobe from
there. For information about the FSM Viewer, see Using the FSM Viewer,
on page 315.

* To run the FSM Explorer

The FSM Explorer is a tool that examines all the encoding styles before
selecting the best option, based on the state machine extraction done by
the FSM Compiler. If the FSM Compiler has not been run previously, the
Explorer automatically runs it. For more information about using the
FSM Explorer, see Running the FSM Explorer, on page 224.

If you are trying to decide whether to use the FSM Compiler or the FSM
Explorer to optimize your state machines, remember these points:

* The FSM Explorer runs the FSM Compiler if it has not already been run,
because it picks encoding styles based on the state machines that the
FSM Compiler extracts.

* Like the FSM Compiler, you use the FSM Explorer to generate better
results for your state machines. Unlike the FSM Compiler, which picks
an encoding style based on the number of states, the FSM Explorer tries
out different encoding styles and picks the best style for the state
machine based on overall design constraints.

The trade-off is that the FSM Explorer takes longer to run than the FSM
Compiler.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
220 February 2013

Optimizing State Machines Chapter 7: Specifying Design-Level Optimizations

Running the FSM Compiler

You can run the FSM Compiler tool on the whole design or on individual
FSMs. See the following:

* Running the FSM Compiler on the Whole Design, on page 221
* Running the FSM Compiler on Individual FSMs, on page 222

Running the FSM Compiler on the Whole Design

1. Enable the compiler by checking the Symbolic FSM Compiler box in one of
these places:

— The main panel on the left side of the project window

— The Options tab of the dialog box that comes up when you click the
Add Implementation/New Impl or Implementation Options buttons

2. To set a specific encoding style for a state machine, define the style with
the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 177.

If you do not specify a style, the FSM Compiler picks an encoding style
based on the number of states.

3. Click Run to run synthesis.

The software automatically recognizes and extracts the state machines
in your design, and instantiates a state machine primitive in the netlist
for each FSM it extracts. It then optimizes all the state machines in the
design, using techniques like reachability analysis, next state logic
optimization, state machine re-encoding and proprietary optimization
algorithms. Unless you specified an encoding style, the tool automati-
cally selects the encoding style. If you did specify a style, the tool uses
that style.

In the log file, the FSM Compiler writes a report that includes a descrip-
tion of each state machine extracted and the set of reachable states for
each state machine.

4. Select View->View Log File and check the log file for descriptions of the
state machines and the set of reachable states for each one. You see text
like the following:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 221

Chapter 7: Specifying Design-Level Optimizations

Optimizing State Machines

Extracted state machine for register cur state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

original code

0000001 ->
0000010 ->
0000100 ->
0001000 ->
0010000 ->
0100000 ->
1000000 ->

-> new code

0000001
0000010
0000100
0001000
0010000
0100000
1000000

5. Check the state machine implementation in the RTL and Technology

views and in the FSM viewer.

— In the RTL view you see the FSM primitive with one output for each

state.

— In the Technology view, you see a level of hierarchy that contains the
FSM, with the registers and logic that implement the final encoding.

— In the FSM viewer you see a bubble diagram and mapping
information. For information about the FSM viewer, see Using the

FSM Viewer, on page 315.

— In the statemachine. info text file, you see the state transition

information.

Running the FSM Compiler on Individual FSMs

If you have state machines that you do not want automatically optimized by
the FSM Compiler, you can use one of these techniques, depending on the
number of FSMs to be optimized. You might want to exclude state machines
from automatic optimization because you want them implemented with a
specific encoding or because you do not want them extracted as state
machines. The following procedure shows you how to work with both cases.

Copyright © 2013 Synopsys, Inc.
222

Synplify Pro for Microsemi Edition User Guide
February 2013

Optimizing State Machines Chapter 7: Specifying Design-Level Optimizations

1. If you have just a few state machines you do not want to optimize, do the
following:

Enable the FSM Compiler by checking the box in the button panel of
the Project window.

If you do not want to optimize the state machine, add the
syn_state_machine directive to the registers in the Verilog or VHDL
code. Set the value to 0. When synthesized, these registers are not
extracted as state machines.

Verilog reg [3:0] curstate /* synthesis syn state machine=0 */ ;

VHDL signal curstate : state type;

attribute syn state machine : boolean;
attribute syn state machine of curstate : signal is
false;v

If you want to specify a particular encoding style for a state machine,
use the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 177. When synthesized, these
registers have the specified encoding style.

Run synthesis.

The software automatically recognizes and extracts all the state
machines, except the ones you marked. It optimizes the FSMs it
extracted from the design, honoring the syn_encoding attribute. It writes
out a log file that contains a description of each state machine extracted,
and the set of reachable states for each FSM.

2. If you have many state machines you do not want optimized, do this:

Disable the compiler by disabling the Symbolic FSM Compiler box in one
of these places: the main panel on the left side of the project window
or the Options tab of the dialog box that comes up when you click the
Add Implementation or Implementation Options buttons. This disables the
compiler from optimizing any state machine in the design. You can
now selectively turn on the FSM compiler for individual FSMs.

For state machines you want the FSM Compiler to optimize
automatically, add the syn_state_machine directive to the individual
state registers in the VHDL or Verilog code. Set the value to 1. When
synthesized, the FSM Compiler extracts these registers with the
default encoding styles according to the number of states.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
223

February 2013

Chapter 7: Specifying Design-Level Optimizations Optimizing State Machines

Verilog reg [3:0] curstate /* synthesis syn state machine=1 */ ;

VHDL signal curstate : state type;
attribute syn state machine : boolean;
attribute syn state machine of curstate : signal is true;

— For state machines with specific encoding styles, set the encoding
style with the syn_encoding attribute, as described in Specifying FSMs
with Attributes and Directives, on page 177. When synthesized, these
registers have the specified encoding style.

— Run synthesis.

The software automatically recognizes and extracts only the state
machines you marked. It automatically assigns encoding styles to the
state machines with the syn_state_machine attribute, and honors the
encoding styles set with the syn_encoding attribute. It writes out a log file
that contains a description of each state machine extracted, and the set
of reachable states for each state machine.

3. Check the state machine in the log file, the RTL and technology views,
and the FSM viewer. For information about the FSM viewer, see Using
the FSM Viewer, on page 315.

Running the FSM Explorer

1. If you need to customize the extraction process, set attributes.
— Use syn_state_machine=0 to specify state machines you do not want to
extract and optimize.
Verilog reg [3:0] curstate /* synthesis state machine */ ;

VHDL signal curstate : state type;
attribute syn state machine : boolean;
attribute syn state machine of curstate : signal is true;

— Use syn_encoding if you want to set a specific encoding style.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
224 February 2013

Optimizing State Machines Chapter 7: Specifying Design-Level Optimizations

Verilog reg [3:0] curstate /* synthesis syn encoding="gray"*/ ;

VHDL signal curstate : state type;
attribute syn encoding : string;
attribute syn encoding of curstate : signal is "gray";

The FSM Compiler honors the syn_state_machine attribute when it
extracts state machines, and the FSM Explorer honors the syn_encoding
attribute when it sets encoding styles. See Specifying FSMs with Attri-
butes and Directives, on page 177 for details.

2. Enable the FSM Explorer by checking the FSM Explorer box in one of
these places:

— The main panel on the left side of the project window

— The Options tab of the dialog box that comes up when you click the
Add Implementation or Implementation Options buttons.

If you have not checked the FSM Compiler option, checking the FSM
Explorer option automatically selects the FSM Compiler option.

3. Click Run to run synthesis.

The FSM Explorer uses the state machines extracted by the FSM
Compiler. If you have not run the FSM Compiler, the FSM Explorer
invokes the compiler automatically to extract the state machines,
instantiate state machine primitives, and optimize them. Then, the FSM
Explorer runs through each encoding style for each state machine that
does not have a syn_encoding attribute and picks the best style. If you
have defined an encoding style with syn_encoding, it uses that style.

The FSM Compiler writes a description of each state machine extracted
and the set of reachable states for each state machine in the log file. The
FSM Explorer adds the selected encoding styles. The FSM Explorer also
generates a <design> fsm.sdc file that contains the encodings and
which is used for mapping.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 225

Chapter 7: Specifying Design-Level Optimizations Optimizing State Machines

4. Select View->View Log File and check the log file for the descriptions. The
following extract shows the state machine and the reachable states as
well as the encoding style, gray, set by FSM Explorer.

Extracted state machine for register cur state
State machine has 7 reachable states with original encodings of:
0000001
0000010
0000100
0001000
0010000
0100000
1000000

Adding property syn encoding, value "gray", to instance
cur_state[6:0]
List of partitions to map:

view:work.Control (verilog)

Encoding state machine work.Control (verilog) -
cur state h.cur state[6:0]
original code -> new code

0000001 -> 000

0000010 -> 001

0000100 -> 011

0001000 -> 010

0010000 -> 110

0100000 -> 111

1000000 -> 101

S. Check the state machine implementation in the RTL and Technology
views and in the FSM viewer.

For information about the FSM viewer, see Using the FSM Viewer, on
page 315.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
226 February 2013

Inserting Probes Chapter 7: Specifying Design-Level Optimizations

Inserting Probes

Probes are extra wires that you insert into the design for debugging. When
you insert a probe, the signal is represented as an output port at the top
level. You can specify probes in the source code or by interactively attaching
an attribute.

Specifying Probes in the Source Code

To specify probes in the source code, you must add the syn_probe attribute to
the net. You can also add probes interactively, using the procedure described
in Adding Probe Attributes Interactively, on page 228.

1. Open the source code file.

2. For Verilog source code, attach the syn_probe attribute as a comment on
any internal signal declaration:

module alu(out, opcode, a, b, sel);
output [7:0] out;
input [2:0] opcode;
input [7:0 a, b;
input sel;
reg [7:0] alu tmp /* synthesis syn probe=1 */;
reg [7:0] out;
//Other code

The value 1 indicates that probe insertion is turned on. For detailed
information about Verilog attributes and examples of the files, see the
Reference Manual.

To define probes for part of a bus, specify where you want to attach the
probes; for example, if you specify reg [1:0] in the previous code, the
software only inserts two probes.

3. For VHDL source code, add the syn_probe attribute as follows:

architecture rtl of alu is
signal alu tmp : std logic_ vector (7 downto 0) ;
attribute syn probe : boolean;
attribute syn probe of alu tmp : signal is true;
--other code;

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 227

Chapter 7: Specifying Design-Level Optimizations Inserting Probes

For detailed information about VHDL attributes and sample files, see the
Reference Manual.

4. Run synthesis.

The software looks for nets with the syn_probe attribute and creates
probes and I/O pads for them.

S. Check the probes in the log file (*.srr) and the Technology view.

This figure shows some probes and probe entries in the log file.

_ Adding property syn_probe, value 1, to net pc[0]
T P Adding property syn_probe, value 1, to net pc[1]
Adding property syn_probe, value 1, to net pc[2]
Adding property syn_probe, value 1, to net pc[3]

=

pe_keep_probe_11_ouot{10]
—_—

apex20k_io_PD @“N|Added probe pc_keep_probe_1[0] on pc_keep[0] in
] st patin————{pc Jeep probe TOBT = eight_bit_uc
pe_keep_probe_10_out9] @N]|Also padding probe pc_keep_probe_1[0]
@N|Added probe pc_keep_probe_2[1] on pc_keep[1]in
apex20k_io_PD eight_bit_uc
lm | o padiol———{po Temp prabe_BET == @N]Also padding probe pc_keep_probe_2[1] _
pe. keen_prabe_9_out(a] @N|AdQed probe pc_keep_probe_3[2] on pc_keep[2] in
B eight_bit_uc

Adding Probe Attributes Interactively

The following procedure shows you how to insert probes by adding the
syn_probe attribute through the SCOPE interface. Alternatively, you can add
the attribute in the source code, as described in Specifying Probes in the
Source Code, on page 227.

1. Open the SCOPE window and click Attributes.

2. Push down as necessary in an RTL view, and select the net for which
you want to insert a probe point.

Do not insert probes for output or bidirectional signals. If you do, you
see warning messages in the log file.

3. Do the following to add the attribute:
— Drag the net into a SCOPE cell.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
228 February 2013

Inserting Probes Chapter 7: Specifying Design-Level Optimizations

— Add the prefix n: to the net name in the SCOPE window. If you are
adding a probe to a lower-level module, the name is created by
concatenating the names of the hierarchical instances.

— If you want to attach probes to part but not all of a bus, make the
change in the Object column. For example, if you enter
n:UC_ALU.longq[4:0] instead of n:UC_ALU.longq[8:0], the software only
inserts probes where specified.

— Select syn_probe in the Attribute column, and type 1 in the Value
column.

— Add the constraint file to the project list.

4. Rerun synthesis.

5. Open a Technology view and check the probe wires that have been
inserted. You can use the Ports tab of the Find form to locate the probes.

The software adds I/O pads for the probes. The following figure shows
some of the pads in the Technology view and the log file entries.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 229

Chapter 7: Specifying Design-Level Optimizations Inserting Probes

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
230 February 2013

SYNOPSys

CHAPTER 8

Synthesizing and Analyzing the Log
Results

This chapter describes how to run synthesis, and how to analyze the log file
generated after synthesis. See the following:

* Synthesizing Your Design, on page 232
* Checking Log Results, on page 237
* Handling Messages, on page 243

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 231

Chapter 8: Synthesizing and Analyzing the Log Results Synthesizing Your Design

Synthesizing Your Design

Once you have set your constraints, options, and attributes, running
synthesis is a simple one-click operation. See the following:

* Running Logic Synthesis, on page 232
¢ Using Up-to-date Checking for Job Management

Running Logic Synthesis

When you run logic synthesis, the tool compiles the design and then maps it
to the technology target you selected.

1. If you want to compile your design without mapping it, select Run->
Compile Only or press F7.

A compiled design has the RTL mapping, and you can view the RTL view.
You might want to just compile the design when you are not ready to
synthesize the design, but when you need to use a tool that requires a
compiled design, like the SCOPE interface.

2. To synthesize the logic, set all the options and attributes you want, and
then click Run.

Using Up-to-date Checking for Job Management

Synthesis is becoming more complex and consists of running many jobs.
Often, part or all of the job flow is already up-to-date and rerunning the job
may not be necessary. For large designs that may take hours to run, up-to-
date checking can reduce the time for rerunning jobs.

Up-to-date checking is run for all synthesis design flows. However, for the
Hierarchical Project Management flows, up-to-date checking is an essential
feature. For example, if a project contains four sub-projects and only one
project is modified, then the other three projects do not need to be rerun. This
saves in overall runtime.

Up-to-date checking includes the following:

* The GUI launches mapper modules (pre-mapping and technology
mapping) and saves the intermediate netlists and log files in the synwork
and synlog folders, respectively.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
232 February 2013

Synthesizing Your Design Chapter 8: Synthesizing and Analyzing the Log Results

* After each individual module run completes, the GUI optionally copies
the contents of these intermediate log files from the synlog folder and
adds them to the Project log file (rev_1/projectName.srr). To set this option,
see Copy Individual Job Logs to the SRR Log File, on page 234.

* If you re-synthesize the design and there are no changes to the inputs
(HDL, constraints, and Project options):

— The GUI does not rerun pre-mapping and technology mapping and no
new netlist files are created.

— In the HTML log file, the GUI adds a link that points to the existing
pre-mapping and mapping log files from the previous run. Double-
click on this link (eL: indicates the link) to open the new text file
window.

If you open the text log file, the link is a relative path to the
implementation folder for the pre-mapping and mapping log files from
the previous run.

Note: Also, the GUI adds a note that indicates mapping will not be re-
run and to use the Run->Resynthesize All option in the Project view
to force synthesis to be run again.

ersion mapelldew, Build

Synopsys Pre-mapping Report 11 Rights Reserved

@z : | premespping cutput is up to date. Mo run necessary.
= o ; . ; P
To force 2 re-synthesis, select [Resynthesize 2111 in menu [Fun]. d\gated_clocks\test.sde

Log file from previous run:

GL:top premapping.srr le <C:\builds\synZ01103_
——— table from £file <C:i\buil
ok, vsyn_hierhfixedh\gated_cloc) rreg.w':18:14:18:22 |Het U_reg

cihsyn_hierifixed\gated clock

Finished Pre Mepping Phase. (Time elapsed Oh:00m:00s3; Memory used

L

@N: BNZ2:Z5 |Writing default property annotatien file C:ihwsyn_hierhf
Pre Mapping successfull!

Process tock Oh:00m:0ls realtime, Oh:00m:0ls cputime

§ Mon Jan Z4 18:3%:0& 2011

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 233

Chapter 8: Synthesizing and Analyzing the Log Results Synthesizing Your Design

As the job is running, you can click in the job status field of the Project view
to bring up the Job Status display. When you rerun synthesis, the job status
identifies which modules (pre-mapping or mapping) are up-to-date.

Job Status for Re-synthesis Run

2|

|J0b Name |State |Run T|rne|_]0b Command |
B- proj|rev_1 (rev_1) Running 00:00:34
Eh Logic Synthesis (synthesis) Running 00:00:34
= Complle (complle) Done (up-to-date) | 00:00:03
£ Compile Process (compie_flow) Done (up-to-date) | 00:00:03
.+ Compile Input (compiler) Done (up-to-date) | 00:00:03 c_hdl.exe - C:\buids\syn201109ac...
- Premap (premap) Done (up-to-date) | 00:00:00 m_proasic.exe - C:\buids\syn2011...
E-Map (map) Running 00:00:31
“-Map & Optimize (fpga_mapper) Running 00:00:31 m_proasic.exe - C:\builds\syn20...
| Cancel Job | | Close |
See also:

* Copy Individual Job Logs to the SRR Log File

e Limitations and Risks

Copy Individual Job Logs to the SRR Log File

By default, up-to-date checking uses links in the log file (srr) to individual job
logs. To change this option so that individual job logs are always appended to
the main log file (srr), do the following:

1. Select Options->Project View Options from the Project menu.

2. On the Project View Options dialog box, scroll down to the Use links in SRR log
file to individual job logs option.

3. Use the pull-down menu, and select off.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
234 February 2013

Synthesizing Your Design Chapter 8: Synthesizing and Analyzing the Log Results

Options

Option Value [:I
Beep when a job completes] S
View Project Files in Type Folders

View Project Files in Custom Folders

Order files alphabetically]

Auto-load projects from previous session

Auto-save project on Run D

Open log file following Run]

Shiow all files in results directory

Allow multiple projects to be opened

View log file in HTML

Project file name display File name anly =
Use links in SRR log file to individual job loas off | 3
4] B | Ei D]
—Description:

Instead of appending all log files to main SRR, pravide links to each job
log file.
oK | | Cancel
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 235

Chapter 8: Synthesizing and Analyzing the Log Results Synthesizing Your Design

Limitations and Risks
Up-to-date checking limitations and risks include the following:

* Compiler up-to-date checks are done internally by the compiler and with
no changes to the compiler reporting structure.

* GUI up-to-date checks use timestamp information of its input files to
decide when mapping is re-run. Be aware that:

— The GUI uses netlist files (srs and srd) from the synwork folder for
timestamp checks. If you delete an srs file from the implementation
folder, this does not trigger compiler or mapper re-runs. You must
delete netlist files from the synwork folder instead.

— The copy command behaves differently on Windows and Linux. On
Windows, the timestamp does not change if you copy a file from one
directory to another. But on Linux (and MKS shell), the timestamp
information gets changed.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
236 February 2013

Checking Log Results Chapter 8: Synthesizing and Analyzing the Log Results

Checking Log Results

You can check the log file for information about the synthesis run. In
addition, the Synplify Pro interface has a Tcl Script window, that echoes each
command as it is run. The following describe different ways to check the
results of your run:

* Viewing the Log File, on page 237
* Analyzing Results Using the Log File Reports, on page 240
* Using the Watch Window, on page 241

Viewing the Log File

The log file contains the most comprehensive results and information about a
synthesis run. The default log file is in HTML format, but there is a text
version available too.

For users who only want to check a few critical performance criteria, it is
easier to use the Watch Window (seeUsing the Watch Window, on page 241)
instead of the log file. For details, read through the log file.

1. To view the log file, do one of the following:

— To view the log file in the default HTML format, select View->Log File or
click the View Log button in the Project window. You see the log file in
HTML format. Alternatively you can double-click the
designName_srr.htm file in the Implementation Results view to open the
HTML log file.

— To see a text version of the log file, double-click the designName.srr file
in the Implementation Results view. A Text Editor window opens with the
log file.

Alternatively, you can set the default to show the text file version
instead of the HTML version. Select Options->Project View Options, and
toggle off the View log file in HTML option.

The log file lists the compiled files, details of the synthesis run, color-
coded errors, warnings and notes, and a number of reports. For infor-
mation about the reports, see Analyzing Results Using the Log File
Reports, on page 240.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 237

Chapter 8: Synthesizing and Analyzing the Log Results Checking Log Results

10 # Start of Compile

11 #Wed Apr 25 08:53:31 Z007
1z

13 Symplicity Verilog Compiler, wersion 3.7, Build 196R, built Apr 1& 2007
14 Copyright (C) 1994-2007, Synplicity Inc. All Rights Reserved

15 R

16 @I::"C:/tools/synS&0qe_056R[Man | Hierarchical Area |

17 @I::"C:yDesignsirawCtrlialu
15 @M: CG346 -"C:iyDesignshramCy

19 to"CoiDesignsiramCtrly dat #Thu May 10 02:45:04 2007

20 "C:hDesignsi\ranCtrl’eigh

21 crtCiiDesignstranCerliins $ Start of Compile

22 crtCiiDesignstranCerliins §Thu May 10 08:46:04 2007

23 co"CoiDesignsiramCtrliio. i

2% @l::"CiiDesimsiranCorliprm Symplicity VHDL Compiler, wersion 3.7, Build 196R, built kp:
25 srtCihDesignshranCtrlired)

Copyright (C) 1994-2007, S8ymplicity Inc. All Bights Reserwve

26 co"CoiDegignsiranCtrly spol
27 Verilog = ax check succes:

: CD7E0 @ std.vhdi{lZ2) | Setting time resolution to ns
28 Selecting top lewvel module S X X .
29 @N: CG364 {°C:\Desimms)ramCt i tCiibesigmsh@-bic-vhdlhconst_phky.vhd

"CihnDesignsy8-bit-vhdlyins_ rom.vhd"

1 "CihwDesignsh8-bit-vhdltio.vhd"

t: "CihwDesignsh8-bit-vhdli\reg file. wvhd"

i "CinDesignsy8-bit-vhdlhalu. vhd"

1 "CihwDesignshyS-bic-vhdlidata max. vhd"

1 "CihyDesignshyS-bic-vhdliins decode. vhd"
"CiAlesigmsyE-bit-vhdlipo. vhd"

o "CihwDesignshy28-bic-vhdlispel regs.whd"

: "C:\Designsh2-bit-vhdll\eight_ bit_uc.vhd"
syntax check successfull!

Log File (Text)

Compiler ocutput is up to date. No re-compile necessary

Log File (HTML) —LogFile Links:

rev_d

EN:CDEZ0 - eight bit_wuc.vhd({7) | Synthesizing work.eight_bit
@N:CDERZ : const_pkg.vwhd(?) | Using sequential encoding for
EN:CDE32 @ const_phkg. whdig) | Using seguential encoding for
EN:CLE33 @ const_pkg.whd{l0) | Using sequential encoding for
Hierarchical Area Repart (€ EN:CDE30 : ins_decode.whd({7?) | Synthesizing work.ins_decode.

BN:CDE33 : const_pkg.whdil0) | Using sequential encoding for
rev_d/par_1 @N:CDEZE @ const_pkg.vwhd(?) | Using sequential encoding for

2. To navigate in the log file, use the following techniques:
— Use the scroll bars.
— Use the Find command as described in the next step.

— In the HTML file, click the appropriate header to jump to that point in
the log file. For example, you can jump to the Starting Points with Worst
Slack section.

3. To find information in the log file, select Edit->Find or press Ctrl-f. Fill out
the criteria in the form and click OK.

For general information about working in an Editing window, including
adding bookmarks, see Editing HDL Source Files with the Built-in
Text Editor, on page 32.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
238 February 2013

Checking Log Results Chapter 8: Synthesizing and Analyzing the Log Results

The areas of the log file that are most important are the warning
messages and the timing report. The log file includes a timing report
that lists the most critical paths. The Synplify Pro product also lets you
generate a report for a path between any two designated points, see
Generating Custom Timing Reports with STA, on page 329. The
following table lists places in the log file you can use when searching for

information.

To find... Search for...

Notes @N or look for blue text

Warnings and errors @W and @E, or look for purple
and red text respectively

Performance summary Performance Summary

The beginning of the timing report START TIMING REPORT

Detailed information about slack times, Interface Information

constraints, arrival times, etc.

Resource usage Resource Usage Report

4. Resolve any errors and check all warnings.

You must fix errors, because you cannot synthesize a design with errors.
Check the warnings and make sure you understand them. See Checking
Results in the Message Viewer, on page 243 for information. Notes are
informational and usually can be ignored. For details about
crossprobing and fixing errors, see Handling Warnings, on page 253,
Editing HDL Source Files with the Built-in Text Editor, on page 32, and
Crossprobing from the Text Editor Window, on page 294.

If you see Automatic dissolve at startup messages, you can usually ignore
them. They indicate that the mapper has optimized away hierarchy
because there were only a few instances at the lower level.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 239

Chapter 8: Synthesizing and Analyzing the Log Results Checking Log Results

S. If you are trying to find and resolve warnings, you can bookmark them
as shown in this procedure:

— Select Edit->Find or press Ctrl-f.

— Type @W as the criteria on the Find form and click Mark All. The
software inserts bookmarks at every line with a warning. You can
now page through the file from bookmark to bookmark using the
commands in the Edit menu or the icons in the Edit toolbar. For more
information on using bookmarks, see Editing HDL Source Files with
the Built-in Text Editor, on page 32.

6. To crossprobe from the log file to the source code, click on the file name
in the HTML log file or double-click on the warning text (not the ID code)
in the ASCII text log file.

Analyzing Results Using the Log File Reports

The log file contains technology-appropriate reports like timing reports,
resource usage reports, and net buffering reports, in addition to any notes,
errors, and warning messages.

1. To analyze timing results, do the following:

— View the Timing Report by going to the Performance Summary section of
the log file.

— Check the slack times. See Handling Negative Slack, on page 328 for
details.

— Check the detailed information for the critical paths, including the
setup requirements at the end of the detailed critical path
description. You can crossprobe and view the information graphically
and determine how to improve the timing.

— In the HTML log file, click the link to open up the HDL Analyst view
for the path with the worst slack.

To generate Synplify Pro timing information about a path between any
two designated points, see Generating Custom Timing Reports with STA,
on page 329.

2. To check buffers,

— Check the report by going to the Net Buffering Report section of the log
file.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
240 February 2013

Checking Log Results Chapter 8: Synthesizing and Analyzing the Log Results

— Check the number of buffers or registers added or replicated and
determine whether this fits into your design optimization strategy.

3. To check logic resources,
— Go to the Resource Usage Report section at the end of the log file.

— Check the number and types of components used to determine if you
have used too much of your resources.

Using the Watch Window

The Synplify Pro Watch window provides a more convenient viewing
mechanism than the log file for quickly checking key performance criteria or
comparing results from different runs. Its limitation is that it only displays
certain criteria. If you need details, use the log file, as described in Viewing
the Log File, on page 237.

1. Open the Watch window, if needed, by checking View->Watch Window.

If you open an existing project, the Watch window shows the parameters
set the last time you opened the window.

2. If you need a larger window, either resize the window or move the Watch
Window as described below.

— Hold down Ctrl or Shift, click on the window, and move it to a position
you want. This makes the Watch window an independent window,
separate from the Project view.

— To move the window to another position within the Project view, right-
click in the window border and select Float in Main Window. Then move
the window to the position you want, as described above.

See Watch Window, on page 56 in the Reference Manual for information
about the popup menu commands.

3. Select the log parameter you want to monitor by clicking on a line and
selecting a parameter from the resulting popup menu.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 241

Chapter 8: Synthesizing and Analyzing the Log Results Checking Log Results

Log Parameter rev_1

<rlear > i
Waorsk Slack
eight...guency
eight...guency
eight_... Period
eight_... Period
eight_b ... - Slack
Total Area
CPU Time

The software automatically fills in the appropriate value from the last
synthesis run. You can check the clock requested and estimated
frequencies, the clock requested and estimated periods, the slack, and
some resource usage criteria.

4. To compare the results of two or more synthesis runs, do the following:

— If needed, resize or move the window as described above.

— Click the right mouse button in the window and select Configure Watch
from the popup.

— Click Watch Selected Implementations and either check the
implementations you want to compare or click Watch All
Implementations. Click OK. The Watch window now shows a column for
each implementation you selected.

— In the Watch window, set the parameters you want to compare.
The software shows the values for the selected implementations side by

side. For more information about multiple implementations, see Tips for
Optimization, on page 192.

Log Parameter rew_1 rew_2 rev_3
Warst Slack, 989,029 995,511 Q97,109
system|clk_inferred_clock - Requested Frequency | 1.0 MHz 1.0 MHz 1.0 MHz
system|clk_inferred_clock - Estimated Frequency | 91.1 MHz 2337 MHz 35,9 MHz
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
242 February 2013

Handling Messages Chapter 8: Synthesizing and Analyzing the Log Results

Handling Messages

This section describes how to work with the error messages, notes, and
warnings that result after a run. See the following for details:

* Checking Results in the Message Viewer, on page 243

* Filtering Messages in the Message Viewer, on page 245

* Filtering Messages from the Command Line, on page 248

* Automating Message Filtering with a Tcl Script, on page 249
* Log File Message Controls, on page 250

* Handling Warnings, on page 253

Checking Results in the Message Viewer

The Tcl Script window includes a Message Viewer. By default, the Tcl window
is in the lower left corner of the main window. This procedure shows you how
to check results in the message viewer.

1. If you need a larger window, either resize the window or move the Tcl
window. Click in the window border and move it to a position you want.
You can float it outside the main window or move it to another position
within the main window.

2. Click the Messages tab to open the message viewer.

The window lists the errors, warnings, and notes in a spreadsheet
format. See Message Viewer, on page 61 in the Reference Manual for a
full description of the window.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 243

Chapter 8: Synthesizing and Analyzing the Log Results Handling Messages

1 warning, 29 notes Find: - [[apply Filker [GroupCommon ID's
Type |ID Message Source Location |L0g Location |Time |Rep0rt [:]
& BMZZ7 This data was produced by a restricted version of 5... - eight bit uc.srr {1157 11:10:47... PROASICIE Mappe
{D MF249 Running in 32-bit mode, - eight bit uc.srr {121 11:10:47... PROASICIE Mapp
{D ME258 Gated clock conversion disabled - eight bit wc.srr {1227 11:10:47... PROASIC3E Mapp
{D MF135 Found RAM, 'regs.mem_regfile[7:0]', 32 words by &... reg file.w (17) eight bit uc.srr {1357 11:10:47... PROASICIE Mapp
] MO106 Found ROM, 'rom.Data_1[11:0], 92 words by 12 bits ins_rom.vhd {22} gight bit uc.srr (1347 11:10:47... PROASICIE Mapp
{D CL134 Found RAM mem_regfile, depth=32, width=8 req file.w (17% eight bit uc.srr{48) 11:10:44.. HDL Compiler
1] CDA30 Synthesizing work.ins_rom. First ins_rom.vhd (13} eight bit uc.srr (973 11:10:44... HOL Compiler
G- {D 10 G364 Synthesizing module eight_bit_uc - eight bit uc.srr 11:10:44 .. HDL Compiler
-- {D z ME176 Default generator successful - eight bit uc.srr 11:10:50... PROASICIE Mapps
=8 {D 2 MF238 Found 11 bit incrementor, 'unlS_pc[10:0] po.y eight bit uc.srr 11:10:50... PROASICIE Mappe
{D ME238 Found 11 bit incrementar, 'un?_stack[10:0]" po.w (770 eight bit uc.srr {1647 11:10:50... PROASICIE Mapp
{D MF238 Found 11 bit incrementor, 'unlS_pc[10:0] po.yv (47 eight bit uc.srr {1637 11:10:47... PROASICIE Mapp%
4| | [III]

TCL Scripk Messages

3. To reduce the clutter in the window and make messages easier to find
and understand, use the following techniques:

— Use the color cues. For example, when you have multiple synthesis
runs, messages that have not changed from the previous run are in
black; new messages are in red.

— Enable the Group Common IDs option in the upper right. This option
groups all messages with the same ID and puts a plus symbol next to
the ID. You can click the plus sign to expand grouped messages and
see individual messages.

There are two types of message groups:

- The same warning or note ID appears in multiple source files
indicated by a dash in the source files column.

- Multiple warnings or notes in the same line of source code indicated
by a bracketed number.

— Sort the messages. To sort by a column header, click that column
heading. For example, click Type to sort the messages by type. For
example, you can use this to organize the messages and work
through the warnings before you look at the notes.

— To find a particular message, type text in the Find field. The tool finds
the next occurrence. You can also click the F3 key to search forward,
and the Shift-F3 key combination to search backwards.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
244 February 2013

Handling Messages Chapter 8: Synthesizing and Analyzing the Log Results

4. To filter the messages, use the procedure described in Filtering
Messages in the Message Viewer, on page 245. Crossprobe errors from
the message window:

— If you need more information about how to handle a particular
message, click the message ID in the ID column. This opens the
documentation for that message.

— To open the corresponding source code file, click the link in the Source
Location column. Correct any errors and rerun synthesis. For
warnings, see Handling Warnings, on page 253.

— To view the message in the context of the log file, click the link in the
Log Location column.

Filtering Messages in the Message Viewer

The Message viewer lists all the notes, warnings, and errors. The following
procedure shows you how to filter out the unwanted messages from the
display, instead of just sorting it as described in Checking Results in the
Message Viewer, on page 243. For the command line equivalent of this
procedure, see Filtering Messages from the Command Line, on page 248.

1. Open the message viewer by clicking the Messages tab in the Tcl window
as previously described.

2. Click Filter in the message window.

The Warning Filter spreadsheet opens, where you can set up filtering
expressions. Each line is one filter expression.

Warning Filter 2|
® Hide Filter Matches () Show Filker Matched | Apply | I Close I | Synkax Help |
Enable Type j(n] Message Source Location Log Location Time: Report [
1 |
2
3 @
=
<] LI

3. Set your display preferences.

— To hide your filtered choices from the list of messages, click Hide Filter
Matches in the Warning Filter window.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 245

Chapter 8: Synthesizing and Analyzing the Log Results Handling Messages

To display your filtered choices, click Show Filter Matches.

4. Set the filtering criteria.

Set the columns to reflect the criteria you want to filter. You can
either select from the pull-down menus or type your criteria. If you
have multiple synthesis runs, the pull-down menu might contain
selections that are not relevant to your design.

The first line in the following example sets the criteria to show all
warnings (Type column) with message ID FA188 (ID). The second set of
criteria displays all notes that begin with MF.

W arning Filter 7] x|
(@) Hide Filter Matches () Show Filker Matched | Apply | | Clase | I Syntax Help |
Enable Type i) Message Source Location Log Location Time Report |[*
1 Warning Fa188 |
z Mote MF*
: @
-
< | (]

Use multiple fields and operators to refine filtering. You can use
wildcards in the field, as in line 2 of the example. Wildcards are case-
sensitive and space-sensitive. You can also use ! as a negative
operator. For example, if you set the ID in line 2 to IMF*, the message
list would show all notes except those that begin with MF.

Click Apply when you have finished setting the criteria. This
automatically enables the Apply Filter button in the messages window,
and the list of messages is updated to match the criteria.

The synthesis tool interprets the criteria on each line in the Warning
Filter window as a set of AND operations (Warning and FA188), and the
lines as a set of OR operations (Warning and FA188 or Note and MF¥).

To close the Warning Filter window, click Close.

S. To save your message filters and reuse them, do the following:

Save the project. The synthesis tool generates a Tcl file called
projectName.pfl (Project Filter Log) in the same location as the main
project file. The following is an example of the information in this file:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
246

February 2013

Handling Messages

Chapter 8: Synthesizing and Analyzing the Log Results

Synplify Pro for Microsemi Edition User Guide

February 2013

log filter -hide matches

log filter -field type==Warning
-field message==*Una*
-field source loc==sendpacket.v
-field log loc==usbHostSlave.srr
-field report=="Compiler Report"

log filter
log filter
log filter
log filter
log filter

-field
-field
-field
-field
-field

type==Note
1d==BN132
id==CL169

message=="Input *"
report=="Compiler Report"

Copyright © 2013 Synopsys, Inc.
247

Chapter 8: Synthesizing and Analyzing the Log Results Handling Messages

— When you want to reuse the filters, source the projectName.pfl file.

You can also include this file in a synhooks Tcl script to automate your
process.

Filtering Messages from the Command Line

The following procedure shows you how to use Tcl commands to filter out
unwanted messages. If you want to use the GUI, see Filtering Messages in the
Message Viewer, on page 245.

1. Type your filter expressions in the Tcl window using the log_filter
command. For details of the syntax, see log filter Tcl Command, on
page 1131 in the Reference Manual.

For example, to hide all the notes and print only errors and warnings,
type the following:

log filter -enable
log filter -hide matches
log filter -field type==Note

2. To save and reuse the filter commands, do the following:
— Type the log_filter commands in a Tcl file.

— Source the file when you want to reuse the filters you set up.

3. To print the results of the log_filter commands to a file, add the log_report
command at the end of a list of log_filter commands.

log report -print filteredMsg.txt

This command prints the results of the preceding log_filter commands to
the specified text file, and puts the file in the same directory as the main
project file. The file contains the filtered messages, for example:

@N MF138 Rom slaveControlSel 1 mapped in logic. Mapper Report
wishbonebi.v (156) usbHostSlave.srr (819) 05:22:06 Mon Oct 18

@N (2) MO106 Found ROM, 'slaveControlSel 1', 15 words by 1 bits
Mapper Report wishbonebi.v (156) usbHostSlave.srr (820)
05:22:06 Mon Oct 18

@N MO106 Found ROM, 'slaveControlSel 1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (820) 05:22:06 Mon
Oct 18

@N MF138 Rom hostControlSel 1 mapped in logic. Mapper Report
wishbonebi.v (156) usbHostSlave.srr (821) 05:22:06 Mon Oct 18

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
248 February 2013

Handling Messages Chapter 8: Synthesizing and Analyzing the Log Results

@N MO106 Found ROM, 'hostControlSel 1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (822) 05:22:06 Mon
Oct 18

@N Synthesizing module writeUSBWireData Compiler Report
writeusbwiredata.v (59) usbHostSlave.srr (704) 05:22:06 Mon Oct 18

Automating Message Filtering with a Tcl Script

The following example shows you how to use a synhooks Tcl script to automat-
ically load a message filter file when a project opens and to send email with
the messages after a run.

1. Create a message filter file like the following. (See Filtering Messages in
the Message Viewer, on page 245 or Filtering Messages from the
Command Line, on page 248 for details about creating this file.)

log filter -clear

log filter -hide matches

log filter -field report=="ProASIC3E MAPPER"
log filter -field type==NOTE

log filter -field message=="Input *"

log filter -field message=="Pruning *"

puts "DONE!"

2. Copy the synhooks.tcl file and set the environment variable as described
in Automating Flows with synhooks.tcl, on page 479.

3. Edit the synhooks.tcl file so that it reads like the following example. For
syntax details, see synhooks File Syntax, on page 1129 in the Reference
Manual.

— The following loads the message filter file when the project is opened.
Specify the name of the message filter file you created in step 1. Note
that you must source the file.

proc syn on open project {project path} {
set filter filterFilename

puts "FILTER $filter IS BEING APPLIED"
source d:/tcl/filters/$filterFilename

}

— Add the following to print messages to a file after synthesis is done:

proc syn on end run {runName run dir implName} {
set warningFileName "messageFilename"

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 249

Chapter 8: Synthesizing and Analyzing the Log Results Handling Messages

if {$runName == "synthesis"} {

puts "Mapper Done!"

log report -print $warningFileName
set £ [open [lindex $warningFileName] r]
set msg ""
while {[gets $f warningLine]>=0} {

puts $warningLine

append msg SwarningLine\n

close sf

— Continue by specifying that the messages be sent in email. You can
obtain the smtp email packages off the web.

source "d:/tcl/smtp setup.tcl"
proc send simple message {recipient email server subject body}{
set token [mime::initialize -canonical text/plain -string
$body]
mime: :setheader $token Subject $subject
smtp: : sendmessage $token -recipients S$recipient -servers
Semail server
mime: :finalize S$token

}

puts "Sending email..."

send simple message {addressl,address2}
yourEmailServer subjectText> emailText

}
}
When the script runs, an email with all the warnings from the synthesis
run is automatically sent to the specified email addresses.

Log File Message Controls

The log file message control feature allows messages in the current session to
be elevated in severity (for example, promoted to an error from a warning),
lowered in severity (for example, demoting a warning to a note), or suppressed
from the log file after the next run through the Log File Filter dialog box. This
dialog box is displayed by opening the log file in HTML mode and selecting
Log File Message Filter from the popup menu with the right mouse button.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
250 February 2013

Handling Messages Chapter 8: Synthesizing and Analyzing the Log Results

Type o / Log File Messages -
note BM114 Removing instance gen_gdk_rst.gen_dram_dk.genblk1}, genblk 1\, xcv5_gen_dra...
note BM116 Removing sequential instance bramerr_r[0] of view:UNILIB.FDR(PRIM) because t...
warning BM132 Removing instance bramerr_r[3], because itis equivalent to instance bramerr _r[2]
note BM225 Writing default property annotation file C:\testcases\9000277699 \top_1P_bram. ...
warning CG133 Mo assignment to mem_cmd.ret_index.I -
warning CG134 Mo assignment to bit 0 of rparity -

| 1| Suppress Message | | 1l Make Error | | 1l Make warning | | 1l Make Note | | || Remave Qverride

Type Qverride D / Suppressed Messages and Message Type Overrides
note suppress | CG334 Read directive translate_off

select messages from top list and press buttons to suppress or override message type in the 5RK log file. Fress

Remave huttan tn delete averrides.

| OK | | Cancel

Log File Filter Dialog Box

The Log File Filter dialog box is the primary control for changing a message
priority or suppressing a message. When you initially open the dialog box, all
of the messages from the log (srr) file for the active implementation are
displayed in the upper section and the lower section is empty. To use the dialog
box:

1. Select (highlight) the message to be promoted, demoted, or suppressed
from the messages displayed in the upper section.

2. Select the Suppress Message, Make Error, Make Warning, or Make Note button
to move the selected message from the upper section to the lower
section. The selected message is repopulated in the lower section with
the Override column reflecting the disposition of the message according
to the button selected.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 251

Chapter 8: Synthesizing and Analyzing the Log Results Handling Messages

Allowed Severity Changes

Allowed severity levels and preference settings for warning, note, and
advisory messages are:

* Promote — warning to error, note to warning, note to error
* Demote — warning to note

* Suppress — suppress warning, suppress note, suppress advisory

Note: Normal error messages (messages generated by default) cannot
be suppressed or changed to a lesser severity level.

When using the dialog box:
* Use the control and shift keys to select multiple messages.

¢ If an srr file is not present (for example, if you are starting a new project)
the table will be empty. Run the design at least once to generate an srr
file.

* Clicking the OK button saves the message status changes to the project-
Name.pfl file in the project directory.

Message Reporting

The compiler and mapper must be rerun before the impact of the message
status changes can be seen in the updated log file.

When a projectName.pfl input file is present at the start of the run, the
message-status changes in the file are forwarded to the mapper and compiler
which generate an updated log file. Depending on the changes specified:

¢ Ifan ID is promoted to an error, the mapper/compiler stops execution at
the first occurrence of the message and prints the message in the
@E:msgID :messageText format

¢ Ifan ID is promoted to a warning, the mapper/compiler prints the
message in the @W:msgID :messageText format.

* Ifan ID is demoted to a note, the mapper/compiler prints the message
in the @N:msgID :messageText format.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
252 February 2013

Handling Messages Chapter 8: Synthesizing and Analyzing the Log Results

e Ifan ID is suppressed, the mapper/compiler excludes the message from
the srr file.

Note: The online, error-message help documentation is unchanged by
any message modification performed by the filtering mechanism.
If a message is initially categorized as a warning in the synthesis
tool, it continues to be reported as a warning in error-message
help irrespective its promotion/demotion status.

Updating the projectName.pfl file

The projectName.pfl file in the top-level project directory stores the user
message filter settings from the Log File Filter dialog box for that project. This
file can be edited with a text editor. The file entry syntax is:

message_override -suppress /D [ID ...] | -error ID [ID ...] | -warning /D [ID ...]
| -note ID [ID ...]

For example, to override the default message definition for note FX702 as a
warning, enter:

message override -warning FX702

Note: After editing the pfl file, close and reopen the project to update
the overrides.

Handling Warnings
If you get warnings (@W prefix) after a synthesis run, do the following:

* Read the warning message and decide if it is something you need to act
on, or whether you can ignore it.

* If the message is not self-explanatory or if you are unsure about how to
handle the error, click the message ID in either the message window or
HTML log file or double click the message ID in the ASCII text log file.
These actions take you to online information about the condition that
generated the warning.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 253

Chapter 8: Synthesizing and Analyzing the Log Results Handling Messages

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
254 February 2013

SYNOPSYs

celerating Innovation

CHAPTER 9

Analyzing with HDL Analyst and FSM Viewer

This chapter describes how to analyze logic in the HDL Analyst and FSM
Viewer.

See the following for detailed procedures:
* Working in the Schematic Views, on page 256
* Exploring Design Hierarchy, on page 270
* Finding Objects, on page 278
* Crossprobing, on page 291
* Analyzing With the HDL Analyst Tool, on page 299
* Using the FSM Viewer, on page 315

For information about analyzing timing, see Chapter 10, Analyzing Timing.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 255

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Working in the Schematic Views

The HDL Analyst includes the RTL and Technology views, which are
schematic views used to graphically analyze your design.

For detailed descriptions of these views, see Chapter 2 of the Reference
Manual. This section describes basic procedures you use in the RTL and
Technology views. The information is organized into these topics:

¢ Differentiating Between the Views, on page 257

* Opening the Views, on page 257

* Viewing Object Properties, on page 258

* Selecting Objects in the RTL/Technology Views, on page 263
* Working with Multisheet Schematics, on page 265

* Moving Between Views in a Schematic Window, on page 266
* Setting Schematic View Preferences, on page 267

* Managing Windows, on page 269

For information on specific tasks like analyzing critical paths, see the
following sections:

¢ Exploring Object Hierarchy by Pushing/Popping, on page 271

* Exploring Object Hierarchy of Transparent Instances, on page 277
* Browsing to Find Objects in HDL Analyst Views, on page 278

* Crossprobing, on page 291

* Analyzing With the HDL Analyst Tool, on page 299

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
256 February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Differentiating Between the Views

The difference between the RTL and Technology views is that the RTL
view is the view generated after compilation, while the Technology view
is the view generated after mapping. The RTL view displays your design
as a high-level, technology-independent schematic. At this high level of
abstraction, the design is represented with technology-independent
components like variable-width adders, registers, large muxes, state
machines, and so on. This view corresponds to the srs netlist file gener-
ated by the software in the Synopsys proprietary format. For a detailed
description, see Chapter 2 of the Reference Manual.

The Technology view contains technology-specific primitives. It shows
low-level, vendor-specific components such as look-up tables, cascade
and carry chains, muxes, and flip-flops, which can vary with the vendor
and the technology. This view corresponds to the srm netlist file, gener-
ated by the software in the Synopsys proprietary format. For a detailed
description, see Chapter 2 of the Reference Manual.

Opening the Views

The procedure for opening an RTL or Technology view is similar; the main
difference is the design stage at which these views are available.

To open an RTL Start with a compiled design.

view...

To open a hierarchical RTL view, do one of the following:

¢ Select HDL Analyst->RTL->Hierarchical View.

¢ Click the RTL View icon () (a plus sign inside a circle).

* Double-click the srs file in the Implementation Results view.

To open a flattened RTL view, select HDL Analyst->RTL->Flattened
View.

To open a Start with a mapped (synthesized) design.

Technology To open a hierarchical Technology view, do one of the following:
view...

¢ Select HDL Analyst ->Technology->Hierarchical View.
¢ Click the Technology View icon (NAND gate icon).
* Double-click the srm file in the Implementation Results view.

To open a flattened Technology view, select HDL Analyst->
Technology->Flattened View.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 257

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

All RTL and Technology views have the schematic on the right and a pane on
the left that contains a hierarchical list of the objects in the design. This pane
is called the Hierarchy Browser. The bar at the top of the window contains the
name of the view, the kind of view, hierarchical level, and the number of
sheets in the schematic. See Hierarchy Browser, on page 70 in the Reference
Manual for a description of the Hierarchy Browser.

RTL View

Sheet 1 of 1 - pragments [of module pram_cnotr] [BTL View] _frev_1/spel regs srs

= Q Instances (3} -
@ Primitives
- f} decode (ins_decode)
- L} dmux {data_mux)
- I a_buff (o)
- £} pramcntr (pragm_cntr)
B [Mets (36)
- @ Forts (6}
= Q Primitives
b 43 pef10:0](d...
& pe_in24 (an...
pC_inZ5 (an
pC_inZ6 (an...
pe_in[10:0]...
pe_sel41[0]...
pr_sel4Z[0]
pe_sel43[0]...
pe_sel44[0]...
oc_sel45M0l...

@-E-E-E-

BBOO OO0

Technology View

Sheet 1 of 4 - uc_alu|[of module alu) (Technology View) 500K: ASDOKOSD. .. /iev_1/spel_icgs.sim
- [F Instances (38)
[Primitives Y ﬂ]:lL I 1
8 decode (ins_decode) FH]_Ei:F 'zD—:
T dmux (data_nux) E‘h—ﬂr Ml ﬂ“ﬂ e
@ pramentr (prom_entr) —=
T regs (reg_fi) —H
L] T
T uc_slu (alu) Area; 157 pu—
- hets (50) ﬂﬂ El:l‘ ED ﬁ ﬂ
B [Forts (10) — s —
B [Primitives 1]':" =
B [Ports (5) ED
B [Nets (201) e L]
Ll

Viewing Object Properties
There are a few ways in which you can view the properties of objects.

1. To temporarily display the properties of a particular object, hold the
cursor over the object. A tooltip temporarily displays the information at
the cursor and in the status bar at the bottom of the tool window.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
258 February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

2. Select the object, right-click, and select Properties. The properties and
their values are displayed in a table.

If you select an instance, you can view the properties of the associated
pins by selecting the pin from the list. Similarly, if you select a port, you
can view the properties on individual bits.

P Vizual Properties 2 x|
| data_in_in[30] |~]
Froperty Yalue = Set this field to the pin
name to see pin properties
arrival_time 0.000 pin prop
hier_rtl_name data_in[63:0] I uni3_peplus1[10:0] l*'l
| un3_pcplusi[10:0]
. . oo[o]
19 s]
inout_pin_coun Ba[1]
:) Dafz2]
input_pin_counk 1 oora]
) o Do[4]
is_combinational 1 Do[s]
= Dios]
leakage_power 0.000 |~ | Do[7]
h l—f@EM
| arrival_time

3. To flag objects by property, do the following with an open
RTL/Technology view:

— Set the properties you want to see by selecting Options->HDL Analyst
Options->Visual Properties, and selecting the properties from the pull-
down list. Some properties are only available in certain views.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 259

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Wisual Properties

Shiows Properky RTL E;E ELT;? ﬂ
1 slow N N
2 [
3 [
4 [
5 [
6 0
|Click on a property For & description

— Close the HDL Analyst Options dialog box.

— Enable View->Visual Properties. If you do not enable this, the software
does not display the property flags in the schematics. The HDL
Analyst annotates all objects in the current view that have the
specified property with a rectangular flag that contains the property
name and value. The software uses different colors for different
properties, so you can enable and view many properties at the same

time.

Example: Slow and New Properties

You can view objects with the slow property when you are analyzing your
critical path. All objects with this property do not meet the timing criteria.
The following figure shows a filtered view of a critical path, with slow instances

flagged in blue.

Copyright © 2013 Synopsys, Inc.
260

Synplify Pro for Microsemi Edition User Guide
February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

taar

— = !

Slow property

(i

G_50_230

it

G_43

| IHH

Prgm Crtr

LTt

[

llllll’

DECODE —"_

When you are working with filtered views, you can use the New property to
quickly identify objects that have been added to the current schematic with
commands like Expand. You can step through successive filtered views to
determine what was added at each step. This can be useful when you are
debugging your design.

The following figure expands one of the pins from the previous filtered view.
The new instance added to the view has two flags: new and slow.

11T T

BE
- e
G TH H T -
- = ——— PogmCarPC_1_repi
e ¥ [=
[Prgme air
DECODE
4
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 261

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

Using the orig_inst_of Property for Parameterized Modules

The compiler automatically uniquifies parameterized modules or instances.
Properties are available to identify the RTL names of both uniquified and
original modules or instances.

* inst_of property — identifies module or instance by uniquified name

¢ orig_inst_of property — identifies module or instance by its original name
before it was uniquified

In the following example, top-level module (top) instantiates the module sub
multiple times using different parameter values. The compiler uniquifies the
module sub as: sub_3s, sub_1s, and sub_4s.

Top.v
module top (input clk, [7:0] din, output [7:0] dout);
sub #(.W(3)) UUT1 (.clk, .din(din[2:0]), .dout(dout[2:0]));
sub #(.W(1)) UUT2 (.clk, .din(din[3]), .dout (dout[3])) ;
sub #(.W(4)) UUT3 (.clk, .din(din[7:4]), .dout(dout[7:4]1));
endmodule

module sub #(parameter W = 0) (
input clk,
input [W-1:0] din,
output logic [W-1:0] dout);

always@ (posedge clk)

begin
dout <= din;
end
endmodule
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
262 February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

RTL View

sub_3s
= -~
uinLUIUT1(sub_3s)
|s_uer|log =1
orig_inst_of = sub
W=3
sub 1s
uuT2
sub_ds
o | ——
]
uuT3

TCL Command Example

Use the get_prop command with the orig_inst_of property to identify the
original RTL name for the module:

% get_prop -prop orig_inst_of {visub_3s}
sub

% get_prop -prop orig_inst_of {i:UUT3}
sub

Selecting Objects in the RTL/Technology Views

For mouse selection, standard object selection rules apply: In selection mode,
the pointer is shaped like a crosshair.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 263

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

To select...

Single objects

Multiple objects

Objects by type
(instances,
ports, nets)

All objects of a
certain type
(instances,
ports, nets)

No objects
(deselect all
currently
selected objects)

Do this...

Click on the object in the RTL or Technology schematic, or click
the object name in the Hierarchy Browser.

Use one of these methods:
* Draw a rectangle around the objects.

* Select an object, press Ctrl, and click other objects you want to
select.

* Select multiple objects in the Hierarchy Browser. See
Browsing With the Hierarchy Browser, on page 278.

» Use Find to select the objects you want. See Using Find for
Hierarchical and Restricted Searches, on page 280.

Use Edit->Find to select the objects (see Browsing With the Find
Command, on page 280), or use the Hierarchy Browser, which
lists objects by type.

To select all objects of a certain type, do either of the following:

¢ Right-click and choose the appropriate command from the
Select All Schematic/Current Sheet popup menus.

* Select the objects in the Hierarchy Browser.

Click the left mouse button in a blank area of the schematic or
click the right mouse button to bring up the pop-up menu and
choose Unselect All. Deselected objects are no longer
highlighted.

The HDL Analyst view highlights selected objects in red. If the object you
select is on another sheet of the schematic, the schematic tracks to the
appropriate sheet. If you have other windows open, the selected object is
highlighted in the other windows as well (crossprobing), but the other
windows do not track to the correct sheet. Selected nets that span different
hierarchical levels are highlighted on all the levels. See Crossprobing, on
page 291 for more information about crossprobing.

Some commands affect selection by adding to the selected set of objects: the
Expand commands, the Select All commands, and the Select Net Driver and Select
Net Instances commands.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
264

February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Working with Multisheet Schematics

The title bar of the RTL or Technology view indicates the number of sheets in
that schematic. In a multisheet schematic, nets that span multiple sheets are
indicated by sheet connector symbols, which you can use for navigation.

1. To reduce the number of sheets in a schematic, select Options->HDL
Analyst Options and increase the values set for Sheet Size Options - Instances
and Sheet Size Options - Filtered Instances. To display fewer objects per sheet
(increase the number of sheets), increase the values.

These options set a limit on the number of objects displayed on an unfil-
tered and filtered schematic sheet, respectively. A low Filtered Instances
value can cause lower-level logic inside a transparent instance to be
displayed on a separate sheet. The sheet numbers are indicated inside
the empty transparent instance.

2. To navigate through a multisheet schematic, refer to this table. It
summarizes common operations and ways to navigate.

To view...

Next sheet or
previous sheet

A specific sheet
number

Lower-level logic
of a transparent
instance on

separate sheets

Use one of these methods...

Select View->Next/Previous Sheet.

Press the right mouse button and draw a horizontal mouse
stroke (left to right for next sheet, right to left for previous
sheet).

Click the icons: Next Sheet (|'&) or Previous Sheet (4 |)
Press Shift-right arrow (Next Sheet) or Shift-left arrow (Previous sheet).

Navigate with View->Back and View ->Forward if the next/previous
sheets are part of the display history.

Select View->View Sheets and select the sheet.

Click the right mouse button, select View Sheets from the popup
menu, and then select the sheet you want.

Press Ctrl-g and select the sheet you want.
Check the sheet numbers indicated inside the empty

transparent instance. Use the sheet navigation commands like
Next Sheet or View Sheets to move to the sheet you need.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
265

February 2013

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

To view...

All objects of a
certain type

Selected items
only

A net across
sheets

Sheet Connector Symbol

Use one of these methods...

To highlight all the objects of the same type in the schematic,
right-click and select the appropriate command from the Select
All Schematic popup menu.

To highlight all the objects of the same type on the current
sheet, right-click and select the appropriate command from the
Select All Sheet popup menu.

Filter the schematic as described in Filtering Schematics, on
page 303.

If there are no sheet numbers displayed in a hexagon at the
end of the sheet connector, select Options ->HDL Analyst Options
and enable Show Sheet Connector Index. Right-click the sheet
connector and select the sheet number from the popup as
shown in the following figure.

= __special rer"é'h'e'e*t1:"‘ b7 0]< a4
special regs port int b[7:0]< a1 Shest 4
Connected sheet numbers Sheet connector with multisheet popup menu

Moving Between Views in a Schematic Window

When you filter or expand your design, you move through a number of
different design views in the same schematic window. For example, you might
start with a view of the entire design, zoom in on an area, then filter an object,
and finally expand a connection in the filtered view, for a total of four views.

1. To move back to the previous view, click the Back icon or draw the
appropriate mouse stroke.

The software displays the last view, including the zoom factor. This does
not work in a newly generated view (for example, after flattening)
because there is no history.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
266

February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

2. To move forward again, click the Forward icon or draw the appropriate
mouse stroke.

The software displays the next view in the display history.

Setting Schematic View Preferences

You can set various preferences for the RTL and Technology views from the
user interface.

1. Select Options->HDL Analyst Options. For a description of all the options on
this form, see HDL Analyst Options Command, on page 260 in the
Reference Manual.

2. The following table details some common operations:

To... Do this...

Display the Hierarchy Browser = Enable Show Hierarchy Browser (General tab).

Control crossprobing from an Enable Enhanced Text Crossprobing. (General

object to a P&R text file tab)

Determine the number of Set the value with Maximum Instances on the

objects displayed on a sheet. Sheet Size tab. Increase the value to display
more objects per sheet.

Determine the number of Set the value with Maximum Filtered Instances

objects displayed on a sheet in on the Sheet Size tab. Increase the number to

a filtered view. display more objects per sheet. You cannot

set this option to a value less than the
Maximum Instances value.

Some of these options do not take effect in the current view, but are
visible in the next schematic view you open.

3. To view hierarchy within a cell, enable the General->Show Cell Interiors
option.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 267

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Working in the Schematic Views

—L2L 1 datas [2] a .
—1clk
sl regout |- ena

ena

_
gglr

Show Cell Interior off Show Cell Interior on

4. To control the display of labels, first enable the Text->Show Text option,
and then enable the Label Options you want. The following figure
illustrates the label that each option controls.

— Show Symbol Name ——>INS_Decode

ALUOP_D
IMST 3 ALUIOF_i_3 Show Pin Name
Show Conn Name INST 2 ALUOP i1
= ALUOF_i_D
IMST_0 '
G_188_j =
IMET_1
AT 4 N_25_i_0_0
- unl7_alub_sel_0_0 —=
IMST_10
MST B unt21_alub_sel_0_0 —
e OPCODE_GOTO —
= OPCODE_CALL
Show Port Name INST_B BCODE RETLW L
I] SKIP_INST —
IMST_11 o
. ESTATUS_C_WRITE —
- RIS TRIS_WE —
apex20ke_io OPT — resetr_t =
adio combout e glock_g oo oLIVRITE
P = Wi Reg MWyrite —
clock_in US|

‘L DECCDE
Show J

For a more detailed information about some of these options, see
Schematic Objects and Their Display, on page 310 in the Reference
Manual.

S. Click OK on the HDL Analyst Options form.

The software writes the preferences you set to the ini file, and they
remain in effect until you change them.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
268 February 2013

Working in the Schematic Views Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Managing Windows

As you work on a project, you open different windows. For example, you
might have two Technology views, an RTL view, and a source code window
open. The following guidelines help you manage the different windows you
have open. For information about cycling through the display history in a
single schematic, see Moving Between Views in a Schematic Window, on
page 266.

1.

Toggle on View->Workbook Mode.

Below the Project view, you see tabs like the following for each open
view. The tab for the current view is on top. The symbols in front of the
view name on the tab help identify the kind of view.

l B proj_L.prj |ld:') spel_regs.srs |3D‘ spcl_regs.srm l@ ALU_cp.sdc *]’

. To bring an open view to the front, if the window is not visible, click its

tab. If part of the window is visible, click in any part of the window.

If you previously minimized the view, it will be in minimized form.
Double-click the minimized view to open it.

. To bring the next view to the front, click Ctrl-F6 in that window:.

Order the display of open views with the commands from the Window
menu. You can cascade the views (stack them, slightly offset), or tile
them horizontally or vertically.

. To close a view, press Ctrl-F4 in that window or select File->Close.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 269

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

Exploring Design Hierarchy

Schematics generally have a certain amount of design hierarchy. You can
move between hierarchical levels using the Hierarchy Browser or Push/Pop
mode. For additional information, see Analyzing With the HDL Analyst Tool,
on page 299. The topics include:

¢ Traversing Design Hierarchy with the Hierarchy Browser, on page 270
* Exploring Object Hierarchy by Pushing/Popping, on page 271

¢ Exploring Object Hierarchy of Transparent Instances, on page 277

Traversing Design Hierarchy with the Hierarchy Browser

The Hierarchy Browser is the list of objects on the left side of the RTL and
Technology views. It is best used to get an overview, or when you need to

browse and find an object. If you want to move between design levels of a
particular object, Push/Pop mode is more direct. Refer to Exploring Object

Hierarchy by Pushing/Popping, on page 271 for details.

The hierarchy browser allows you to traverse and select the following:
* Instances and submodules
¢ Ports
* Internal nets

* Clock trees (in an RTL view)

The browser lists the objects by type. A plus sign in a square icon indicates
that there is hierarchy under that object and a minus sign indicates that the
design hierarchy has been expanded. To see lower-level hierarchy, click on
the plus sign for the object. To ascend the hierarchy, click on the minus sign.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
270 February 2013

Exploring Design Hierarchy Chapter 9: Analyzing with HDL Analyst and FSM Viewer

=8 Q Instances (3)
|5 Primitives
-} decode (ins_decode)
-} dmux (data_mux)
-4} io_buff fio)
- L} prgrcntr (prgm_cntt)
-} regs (reg_file)
-} rom (ins_rom)
- L} special_regs (spcl_regs)
- I uc_alu(alg)
B [mets (30)
Click to collapse list B [Ports (9)
i b 1 oalu_couk
: ®» glua[7:0]
®» alub[7:0]
®» aluop[3:0]
© aluout[7:0]

Click to expand and see
lower-level hierarchy

0-E-E-E-E-E-E-E-

- B resetn
i e @ statusD
- E’j Primitives
Ports (5)
Meks (38)
Clock Tree

R

Refer to Hierarchy Browser Symbols, on page 71 in the Reference Manual for
an explanation of the symbols.

Exploring Object Hierarchy by Pushing/Popping

To view the internal hierarchy of a specific object, it is best to use Push/Pop
mode or examine transparent instances, instead of using the Hierarchy
Browser described in Traversing Design Hierarchy with the Hierarchy
Browser, on page 270. You can access Push/Pop mode with the Push/Pop
Hierarchy icon, the Push/Pop Hierarchy command, or mouse strokes.

When combined with other commands like filtering and expansion
commands, Push/Pop mode can be a very powerful tool for isolating and
analyzing logic. See Filtering Schematics, on page 303, Expanding Pin and
Net Logic, on page 305, and Expanding and Viewing Connections, on

page 309 for details about filtering and expansion. See the following sections
for information about pushing down and popping up in hierarchical design
objects:

— Pushing into Objects, on page 272, next
— Popping up a Hierarchical Level, on page 275

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 271

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

Pushing into Objects

In the schematic views, you can push into objects and view the lower-level
hierarchy. You can use a mouse stroke, the command, or the icon to push
into objects:

1. To move down a level (push into an object) with a mouse stroke, put
your cursor near the top of the object, hold down the right mouse
button, and draw a vertical stroke from top to bottom. You can push
into the following objects; see step 3 for examples of pushing into
different types of objects.

— Hierarchical instances. They can be displayed as pale yellow boxes
(opaque instances) or hollow boxes with internal logic displayed
(transparent instances). You cannot push into a hierarchical instance
that is hidden with the Hide Instance command (internal logic is
hidden).

[

Hierarchical object Press right mouse button and draw downward
to push into an object

— Technology-specific primitives. The primitives are listed in the
Hierarchy Browser in the Technology view, under Instances - Primitives.

— Inferred ROMs and state machines.

The remaining steps show you how to use the icon or command to push
into an object.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
272 February 2013

Exploring Design Hierarchy Chapter 9: Analyzing with HDL Analyst and FSM Viewer

2. Enable Push/Pop mode by doing one of the following:
— Select View->Push/Pop Hierarchy.

— Right-click in the Technology view and select Push/Pop Hierarchy from
the popup menu.

— Click the Push/Pop Hierarchy icon (@) in the toolbar (two arrows
pointing up and down).
— Press F2.

The cursor changes to an arrow. The direction of the arrow indicates the
underlying hierarchy, as shown in the following figure. The status bar at
the bottom of the window reports information about the objects over
which you move your cursor.

ROMZ2XA

Up arrow {hierarchy above) -

. -

?F& el eurT — -/@ L
— _IL_/ i / lu 1\
[ratd_1end_ri0 Datq_1en0_0tri0 [rata_10_0
Dowen arrow (hierarchy below) X" arrow where Push/Pop Mode
i5 unavallable

3. To push (descend) into an object, click on the hierarchical object. For a
transparent instance, you must click on the pale yellow border. The
following figure shows the result of pushing into a ROM.

When you descend into a ROM, you can push into it one more time to
see the ROM data table. The information is in a view-only text file called
rom.info.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 273

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

111

FH

3
|
FEat

3

rom
A[10:0] DOUT[:0) |0 e datal 110
data[11:0]

Similarly, you can push into a state machine. When you push into an
FSM from the RTL view, you open the FSM viewer where you can graph-
ically view the transitions. For more information, see Using the FSM
Viewer, on page 315. If you push into a state machine from the
Technology view, you see the underlying logic.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
274 February 2013

Exploring Design Hierarchy Chapter 9: Analyzing with HDL Analyst and FSM Viewer

”-“Jd?““

T}

fu_subN
g e s ;
[[el
// H——
Fe, B i
= i J T
i e
Eamind B ™' T
ey
'\.‘"ﬂ: _’
e L :r—
% =
W
From State To State Condition =
1 |10 10 inst[&]
2 |10 10 inst[10]
3 |10 10 inst[9] =
Transitions RTL Encodings | Mapped Encodings]

Popping up a Hierarchical Level

1. To move up a level (pop up a level), put your cursor anywhere in the
design, hold down the right mouse button, and draw a vertical mouse
stroke, moving from the bottom upwards.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 275

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Exploring Design Hierarchy

!
i
|

%:’_ Press the right mouse button

L B and draw an upward stroke to
pop up a level

The software moves up a level, and displays the next level of hierarchy.

2. To pop (ascend) a level using the commands or icon, do the following:

Select the command or icon if you are not already in Push /Pop mode.
See Pushing into Objects, on page 272 for details.

Move your cursor to a blank area and click.

3. To exit Push/Pop mode, do one of the following:

Click the right mouse button in a blank area of the view.
Deselect View->Push/Pop Hierarchy.

Deselect the Push/Pop Hierarchy icon.

Press F2.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
276

February 2013

Exploring Design Hierarchy Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Exploring Object Hierarchy of Transparent Instances

Examining a transparent instance is one way of exploring the design
hierarchy of an object. The following table compares this method with
pushing (described in Exploring Object Hierarchy by Pushing/Popping, on

page 271).
Pushing
User You initiate the operation
control through the command or
icon.
Design Context lost; the lower-
context level logic is shown in a

separate view

Synplify Pro for Microsemi Edition User Guide
February 2013

Transparent Instance

You have no direct control; the transparent
instance is automatically generated by
some commands that result in a filtered
view.

Context maintained; lower-level logic is
displayed inside a hollow yellow box at the
hierarchical level of the parent.

Copyright © 2013 Synopsys, Inc.
277

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Finding Objects
In the schematic views, you can use the Hierarchy Browser or the Find
command to find objects, as explained in these sections:
¢ Browsing to Find Objects in HDL Analyst Views, on page 278
* Using Find for Hierarchical and Restricted Searches, on page 280
* Using Wildcards with the Find Command, on page 283
* Using Find to Search the Output Netlist, on page 288

For information about the Tcl Find command, which you use to locate objects,
and create collections, see find Command (Batch), on page 1115 in the Refer-
ence Manual.

Browsing to Find Objects in HDL Analyst Views

You can always zoom in to find an object in the RTL and Technology
schematics. The following procedure shows you how to browse through
design objects and find an object at any level of the design hierarchy. You can
use the Hierarchy Browser or the Find command to do this. If you are familiar
with the design hierarchy, the Hierarchy Browser can be the quickest method
to locate an object. The Find command is best used to graphically browse and
locate the object you want.

Browsing With the Hierarchy Browser

1. In the Hierarchy Browser, click the name of the net, port, or instance
you want to select.

The object is highlighted in the schematic.

2. To select a range of objects, select the first object in the range. Then,
scroll to display the last object in the range. Press and hold the Shift key
while clicking the last object in the range.

The software selects and highlights all the objects in the range.

3. If the object is on a lower hierarchical level, do either of the following:

— Expand the appropriate higher-level object by clicking the plus
symbol next to it, and then select the object you want.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
278 February 2013

Finding Objects Chapter 9: Analyzing with HDL Analyst and FSM Viewer

— Push down into the higher-level object, and then select the object
from the Hierarchy Browser.

The selected object is highlighted in the schematic. The following
example shows how moving down the object hierarchy and selecting an
object causes the schematic to move to the sheet and level that contains
the selected object.

& eight_bit_uc : Impl-rev_1 [RTL View] - sheet 1 of 1 = E3 |
[+ © Mets(32)

L[+ < Instances [9)

Expand Instances
and select an

object on a lower
hierarchical level.

1ol
. < Purtz[9] J

@O Instances (9]

El {1 DECODE (INS_Decode]

" < Hetz[102]

[+ © Ports[16]

" D DECODE.ALUB_SEL[D:1] (pro.

- DECODE.ALUOF] :

[£} DECODE.FWE [difi]

.. {1} DECODE.OPCODE_CALL [dffr

[+]- {1 DECODE.OPCODE_GOTO [dff

[+ £} DECODE.OPCODE_RETLW [cv
1| | 3

Schematic pushes
down to the correct
level to show the
selected object.

4. To select all objects of the same type, select them from the Hierarchy
Browser. For example, you can find all the nets in your design.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 279

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Browsing With the Find Command

1. In a schematic view, select HDL Analyst->Find or press Ctrl-f to open the
Object Query dialog box.

2. Do the following in the dialog box:

— Select objects in the selection box on the left. You can select all the
objects or a smaller set of objects to browse. If length makes it hard to
read a name, click the name in the list to cause the software to
display the entire name in the field at the bottom of the dialog box.

— Click the arrow to move the selected objects over to the box on the
right.

The software highlights the selected objects.
3. In the Object Query dialog box, click on an object in the box on the right.

The software tracks to the schematic page with that object.

Using Find for Hierarchical and Restricted Searches

You can always zoom in to find an object in the RTL and Technology
schematics or use the Hierarchy Browser (see Browsing to Find Objects in
HDL Analyst Views, on page 278). This procedure shows you how to use the
Find command to do hierarchical object searches or restrict the search to the
current level or the current level and its underlying hierarchy.

Note that Find only adds to the current selection; it does not deselect anything
that is already selected. you can use successive searches to build up exactly
the selection you need, before filtering.

1. If needed, restrict the range of the search by filtering the view.

See Viewing Design Hierarchy and Context, on page 300 and Filtering
Schematics, on page 303 for details. With a filtered view, the software
only searches the filtered instances, unless you set the scope of the
search to Entire Design, as described below, in which case Find searches
the entire design.

You can use the filtering technique to restrict your search to just one
schematic sheet. Select all the objects on one sheet and filter the view.
Continue with the procedure.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
280 February 2013

Finding Objects Chapter 9: Analyzing with HDL Analyst and FSM Viewer

2. To further restrict the range of the search, hide instances you do not
need.

You can do this in addition to filtering the view, or instead of filtering the
view. Hidden instances and their hierarchy are excluded from the
search. When you have finished the search, use the Unhide Instances
command to make the hierarchy visible again.

3. Open the Object Query dialog box.

— Do one of the following: right click in the RTL or Technology view and
select Find from the popup menu, press Ctrl-f, or click the Find icon

(6Q)-

— Reposition the dialog box so you can see both your schematic and the

dialog box.
Instances | sSymbols | Mets | Paorts
—Search
() Entire Design () Current Level and Below (@ Current Level Only
UnHighlighted: 0 of 36 | Highlighted: 0 of 0
clock_pad
decods e
1z
17
H_2605_i -
=T Al -=
porta_pad[o] -
porta_pad[1]
porta_pad[2] @
ootta padl3]
Highlight Search {*7): Un-Highlight Selection (*#}:
k [-] l -]
—Mame Space
| Done | | Firnd Al | ® Tech view Jump ko location
) Metlisk

4. Select the tab for the type of object. The Unhighlighted box on the left lists
all objects of that type (instances, symbols, nets, or ports).

For fastest results, search by Instances rather than Nets. When you select
Nets, the software loads the whole design, which could take some time.

5. Click one of these buttons to set the hierarchical range for the search:
Entire Design, Current Level & Below, or Current Level Only, depending on the
hierarchical level of the design to which you want to restrict your search.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 281

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Finding Objects

The range setting is especially important when you use wildcards. See
Effect of Hierarchy and Range on Wildcard Searches, on page 284 for
details. Current Level Only or Current Level & Below are useful for searching
filtered schematics or critical path schematics.

The lower-level details of a transparent instance appear at the current
level and are included in the search when you set it to Current Level Only.
To exclude them, temporarily hide the transparent instances, as
described in step 2.

Use Entire Design to hierarchically search the whole design. For large
hierarchical designs, reduce the scope of the search by using the
techniques described in the first step.

The Unhighlighted box shows available objects within the scope you set.
Objects are listed in alphabetical order, not hierarchical order.

6. To search for objects in the mapped database or the output netlist, set
the Name Space option.

The name of an object might be changed because of synthesis optimiza-
tions or to match the place-and-route tool conventions, so that the
object name may no longer match the name in the original netlist.
Setting the Name Space option ensures that the Find command searches
the correct database for the object. For example, if you set this option to
Tech View, the tool searches the mapped database (srm) for the object
name you specify. For information about using this feature to find
objects from an output netlist, see Using Find to Search the Output
Netlist, on page 288.

7. Do the following to select objects from the list. To use wildcards in the
selection, see the next step.

— Click on the objects you want from the list. If length makes it hard to
read a name, click the name in the list to cause the software to
display the entire name in the field at the bottom of the dialog box.

— Click Find 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

— Click the right arrow to move the objects into the box on the right, or
double-click individual names.

The schematic displays highlighted objects in red.
8. Do the following to select objects using patterns or wildcards.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
282 February 2013

Finding Objects Chapter 9: Analyzing with HDL Analyst and FSM Viewer

— Type a pattern in the Highlight Wildcard field. See Using Wildcards with
the Find Command, on page 283 for a detailed discussion of
wildcards.

The Unhighlighted list shows the objects that match the wildcard
criteria. If length makes it hard to read a name, click the name in the
list to cause the software to display the entire name in the field at the
bottom of the form.

— Click the right arrow to move the selections to the box on the right, or
double-click individual names. The schematic displays highlighted
objects in red.

You can use wildcards to avoid typing long pathnames. Start with a
general pattern, and then make it more specific. The following example
browses and uses wildcards successively to narrow the search.

Find all instances three levels down * ok Lx
Narrow search to find instances that begin with i_ i *.ox %
Narrow search to find instances that begin with un2 after the i *.*.un2x

second hierarchy separator

Note that there are some differences when you specify the find command
in the RTL view, Technology view, or the constraint file.

9. You can leave the dialog box open to do successive Find operations. Click
OK or Cancel to close the dialog box when you are done.

For detailed information about the Find command and the Object Query
dialog box, see Find Command (HDL Analyst), on page 126 of the Reference
Manual.

Using Wildcards with the Find Command
Use the following wildcards when you search the schematics:

* The asterisk matches any sequence of characters.

? The question mark matches any single character.

The dot explicitly matches a hierarchy separator, so type one dot for each level
of hierarchy. To use the dot as a pattern and not a hierarchy separator, type a
backslash before the dot: \.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 283

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Finding Objects

Effect of Hierarchy and Range on Wildcard Searches

The asterisk and question mark wildcards do not cross hierarchical bound-
aries, but search each level of hierarchy individually with the search pattern.
This default is affected by the following:

* Hierarchical separators

Dots match hierarchy separators, unless you use the backslash escape
character in front of the dot (\.). Hierarchical search patterns with a dot
(1*.*) are repeated at each level included in the scope. If you use the *.*
pattern with Current Level, the software matches non-hierarchical names
at the current level that include a dot.

* Search range

The scope of the search determines the starting point for the searches.
Some times the starting point might make it appear as if the wildcards
cross hierarchical boundaries. If you are at 2A in the following figure
and the scope of the search is set to Current Level and Below, separate
searches start at 2A, 3A1, and 3A2. Each search does not cross hierar-
chical boundaries. If the scope of the search is Entire Design, the wildcard
searches run from each hierarchical point (1, 2A, 2B, 3A1, 3A2, 3B1,
3B2, and 3B3). The result of an asterisk search (*) with Entire Design is a
list of all matches in the design, regardless of the current level.

4 1 N

\ Entire Design
Current op ~ Current 2B
Level and Level
Below ’\
3A1 3A2 3B1 3B2 3B3

- /

See Wildcard Search Examples, on page 285 for examples.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
284 February 2013

Finding Objects Chapter 9: Analyzing with HDL Analyst and FSM Viewer

How a Wildcard Search Works

1. The starting point of a wildcard search depends on the range set for the
search.

Entire Design Starts at top level and uses the pattern to search from that
level. It then moves to any child levels below the top level and
searches them. The software repeats the search pattern at
each hierarchical point in the design until it searches the
entire design.

Current Level Starts at the current hierarchical level and searches that level
only. A search started at 2A only covers 2A.

Current Level Starts at the current hierarchical level and searches that level.
and Below It then moves to any child levels below the starting point and
conducts separate searches from each of these starting points.

2. The software applies the wildcard pattern to all applicable objects within
the range. For Current Level and Current Level and Below, the current level
determines the starting point.

Dots match hierarchy separators, unless you use the backslash escape
character in front of the dot (\.). Hierarchical search patterns with a dot
(I*.*) are repeated at each level included in the scope. See Effect of
Hierarchy and Range on Wildcard Searches, on page 284 and Wildcard
Search Examples, on page 285 for details and examples, respectively. If
you use the *.* pattern with Current Level, the software matches non-
hierarchical names at the current level that include a dot.

Wildcard Search Examples

The figure shows a design with three hierarchical levels, and the table shows
the results of some searches on this design.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 285

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

2A

ey

3A1 3A2

/

2B

N

3B1 3B2 3B3

Scope Pattern Starting

Entire *
Design

* . *
Current *
Level

* . *
Current *
Level and -
Below .

* . *

* . *

Copyright © 2013 Synopsys,
286

Point

3A1

2B

2B

2A

2B
3A2

Inc.

Finds Matches in...

1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3 (* at all
levels)
2A and 2B (*.* from 1)

3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and
2B)

No matches in 1 (because of the hierarchical dot),
unless a name includes a non-hierarchical dot.

1 only (no hierarchical boundary crossing)

2B only. No search of lower levels even though
the dot is specified, because the scope is Current
Level. No matches, unless a 2B name includes a
non-hierarchical dot.

2A only (no hierarchical boundary crossing)

2A and 2B (*.* from 1)

3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and
2B)

No matches from 1, because the dot is specified.
3B1, 3B2, and 3B3 (*.* from 2B)
No matches (no hierarchy below 3A2)

3A1, 3A2, 3B1, 3B2, and 3B3 (*.*.* from 1)

Search ends because there is no hierarchy two
levels below 2A and 2B.

Synplify Pro for Microsemi Edition User Guide
February 2013

Finding Objects

Finding Objects Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Difference from Tcl Search

In a simple Tcl search, no character (except the backslash, \) has special
meaning. This means that the asterisk matches everything in a string. The
FPGA synthesis tools and Synopsys TimeQuest and Design Compiler
products confine the simple search to within one level of hierarchy. The
following command searches each level of hierarchy individually for the speci-
fied pattern:

find -hier *abc*addr reg[*]

If you want to go through the hierarchy, you must add the hierarchy separa-
tors to the search pattern:

find {*.*.abc.*.*.addr reg[*]}

Find Command Differences in HDL Analyst Views and Constraint File

There are some slight differences when you use the Find command in the RTL
view, Technology view, and the constraint files:

* You cannot use find to search for bit registers of a bit array in the RTL or
Technology views, but you can specify it in a constraint file, where the
following command will work:

find -seqg {i:modulex inst.gb[7]}

In a HDL Analyst view, you cannot find {i:modulex_inst.gb[7]}, but you can
specify and find {i:modulex_inst.qgb[7:0]}.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 287

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Finding Objects

* By default, the following Tcl command does not find objects in the RTL
view, although it does find objects in the Technology view:

-hier -seq * -filter @clock == clk75

To make this work in an RTL view, you must turn on Annotated Properties
for Analyst in the Device tab of the Implementation Options dialog box, recom-
pile the design, and then open a new RTL view.

Combining Find with Filtering to Refine Searches

You can combine the Find command with the filtering commands to better
effect. Depending on what you want to do, use the Find command first, or a
filtering command.
1. To limit the range of a search, do the following:
— Filter the design.
— Use the Find command on the filtered view, but set the search range
to Current Level Only.
2. Select objects for a filtered view.
— Use the Find command to browse and select objects.

— Filter the objects to display them.

Using Find to Search the Output Netlist

When the synthesis tool creates an output netlist like an edf file, some names
are optimized for use in the P&R tool. When you debug your design for place
and route looking for a particular object, use the Name Space option in the
Object Query dialog box to locate the optimized names in the output netlist.
The following procedure shows you how to locate an object, highlight and
filter it in the Technology view, and crossprobe to the source code for editing.

1. Select the output netlist file option in the Implementations Results tab of the
Implementation Options dialog box.

2. After you synthesize your design, open your output netlist file and select
the name of the object you want to find.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
288 February 2013

Finding Objects

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

1

B [z /tools/tempfrey. 47prep?_ 2 vgm

defparam DATAQ cl.lut mask=64'hO000E£££0000££00;
defparam DATAD cl.shared arith="off";
defparam DATALD cl.extended lut="off";
L1

straviziii_leell cous(DATAD o3

il

./

Copy Name

-sumout (DATAD o2 sumcout]
-cout (DATAD o3 _cout),
.dataf (VCC),

.datae (VCC),

-datad (DATAD internal 23,
.datac (GND) ,

.datah (VCO),

.dataa (VCC),

-datag(VCC),

-cin(DATAQ cZ cout)

g

(<]

[<Iv]

(I

1 ol

1 Tatal|

ez [|

3. Copy the name and open a Technology view.

4. In the Technology view, press Ctrl-f or select Edit->Find to open the Object
Query dialog box and do the following:

— Paste the object name you copied into the Highlight Search field.

— Set the Name Space option to Netlist and click Find All.

Instances | Symbols | Nets | Ports |

Search
{ Entire Design) Current

LevelandBelow @ Current Level Orlly]

Instances | Symbols | Mets | Ports |

Search

7 Entire Design Current Level and Below @ Current Level Only

| Unkighightec: 0 of 36 - | Highiighted: 0 of 0 | Unhighlighted: 0 of 36 Highlighted: 0 of 0
cinrk_pad tl:ck e

decods e

dmue Uz _
12 12 —
7 17

N_2808_ N_2608

et pad(i] ot pacl?)
porta_pad[1] porta_pad1] 9
porta_pad(2] porta_padle] -
porta_pad3] porta_pad[3] B

Highlight: Search (*7):

Un-Highlight Selection (*7):

Highlight Search (*7): Un-Highlight Selection (*7):

@ [

[

[[[[

[Done:][Fndan |

-fame Space

@ Tech View Jurp ba location

,
[Name Space

[Done Il Find 4l] O Tech Wiew Jump to location

[

[pd

d

d

Search by Tech View

Synplify Pro for Microsemi Edition User Guide

February 2013

Search by Netlist

Copyright © 2013 Synopsys, Inc.
289

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Finding Objects

If you leave the Name Space option set to the default of Tech View, the
tool does not find the name because it is searching the mapped
database instead of the output netlist.

— Double click the name to move it into the Highlighted field and close the
dialog box.

In the Technology view, the name is highlighted in the schematic.

5. Select HDL Analyst->Filter Schematic to view only the highlighted portion of
the schematic.

T THR T ||
| sl
s T P 1 _]_inst1
— s TN =
. compare_output_NEO(C_0)
._j slow
Alias: compare_output_NEO_cZ

compare_output_ NED
inst1

Filtered View

The tooltip shows the equivalent name in the Technology view.

6. Double click the filtered schematic to crossprobe to the corresponding
code in the HDL file.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
290 February 2013

Crossprobing Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Crossprobing

Crossprobing is the process of selecting an object in one view and having the
object or the corresponding logic automatically highlighted in other views.
Highlighting a line of text, for example, highlights the corresponding logic in
the schematic views. Crossprobing helps you visualize where coding changes
or timing constraints might help to reduce area or improve performance.

You can crossprobe between the RTL view, Technology view, the FSM Viewer,
the log file, the source files, and some external text files from place-and-route
tools. However, not all objects or source code crossprobe to other views,
because some source code and RTL view logic is optimized away during the
compilation or mapping processes.

This section describes how to crossprobe from different views. It includes the
following:

* Crossprobing within an RTL/Technology View, on page 291
* Crossprobing from the RTL/Technology View, on page 292
* Crossprobing from the Text Editor Window, on page 294

* Crossprobing from the Tcl Script Window, on page 297

* Crossprobing from the FSM Viewer, on page 298

Crossprobing within an RTL/Technology View

Selecting an object name in the Hierarchy Browser highlights the object in
the schematic, and vice versa.

Selected Object Highlighted Object

Instance in schematic (single-click) Module icon in Hierarchy Browser

Net in schematic Net icon in Hierarchy Browser

Port in schematic Port icon in Hierarchy Browser

Logic icon in Hierarchy Browser Instance in schematic

Net icon in Hierarchy Browser Net in schematic

Port icon in Hierarchy Browser Port in schematic
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 291

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Crossprobing

In this example, when you select the DECODE module in the Hierarchy
Browser, the DECODE module is automatically selected in the RTL view.

Sheet 1 of 1 - top level [of module eight_bit_uc] [RTL Yiew]| . frev_1/spcl regs.srs

Priritives

EJ ﬁ Instances ()

Mets (118)

) Parts(18)

[ﬁ Primitives

T dmusx (data_mu)

T io_buff {io)

T pramentr (prgm_cntr)
1} regs (req_file)

T rom (ins_rom)

T special_regs (spel_re...
- T uc_alu{alg)

- Ports (5)

- [Mets (38) ==

Clock Tree

gm_cnik

Ingd eccde

e

=

)

deade

Crossprobing from the RTL/Technology View

1. To crossprobe from an RTL or Technology views to other open views,
select the object by clicking on it.

The software automatically highlights the object in all open views. If the
open view is a schematic, the software highlights the object in the
Hierarchy Browser on the left as well as in the schematic. If the
highlighted object is on another sheet of a multi-sheet schematic, the
view does not automatically track to the page. If the crossprobed object
is inside a hidden instance, the hidden instance is highlighted in the
schematic.

If the open view is a source file, the software tracks to the appropriate
code and highlights it. The following figure shows crossprobing between
the RTL, Technology, and Text Editor (source code) views.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
292 February 2013

Crossprobing Chapter 9: Analyzing with HDL Analyst and FSM Viewer

RTL View

Sheet 1 of 1 - top level [of module eight_bit_uc] [RTL ¥Yiew] /ey 1/spcl regs.sis

Eh @ Instances (3)

; TrEs
{1 decade (in...
i IF dmux (dat...
H- T io_buff (jo)
T promentr [
-

m =]
!
iﬂ/!
HJ&”LH_U
L1} H
il
I
PR
L]

=0 Nets (..
B3 Ports (91 |«
=1 eet 1 o op leve! [of, module ight_b echnolpgy Vie 00K: AS00K05] 2

g

=2 % Instances {38)
Bl @ Primitives
B+ fF decode {in...

T dmux (dat..

pramentr |

i I} regs (req_...

G- L} special_re...

M- b diuc A

- 28 rﬂ Ports (%) ’
-
=

=
|
[llIIlllIIlﬁ]

FErrrrrerrel

73 ;/ instancis)
74

Text Editor

eren

HI][III][IIIII[II

Technology View [A]]

2. To crossprobe from the RTL or Technology view to the source file when
the source file is not open, double-click on the object in the RTL or
Technology view.

Double-clicking automatically opens the appropriate source code file
and highlights the appropriate code. For example, if you double-click an
object in a Technology view, the HDL Analyst tool automatically opens
an editor window with the source code and highlights the code that
contains the selected register.

The following table summarizes the crossprobing capability from the RTL or
Technology view.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 293

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

From

RTL

To

Source code

Procedure

Crossprobing

Double-click an object. If the source code file is not
open, the software opens the Text Editor window to
the appropriate section of code. If the source file is
already open, the software scrolls to the correct
section of the code and highlights it.

RTL Technology The Technology view must be open. Click the object

to highlight and crossprobe.

RTL FSM Viewer The FSM view must be open. The state machine

must be coded with a onehot encoding style. Click
the FSM to highlight and crossprobe.

Technology Source code If the source code file is already, open, the software

scrolls to the correct section of the code and
highlights it.

If the source code file is not open, double-click an
object in the Technology view to open the source
code file.

Technology RTL The RTL view must be open. Click the object to

highlight and crossprobe.

Crossprobing from the Text Editor Window

To crossprobe from a source code window or from the log file to an RTL,
Technology, or FSM view, use this procedure. You can use this method to
crossprobe from any text file with objects that have the same instance names
as in the synthesis software. For example, you can crossprobe from place-
and-route files. See Example of Crossprobing a Path from a Text File, on
page 295 for a practical example of how to use crossprobing.

1. Open the RTL, FSM, or Technology view to which you want to
crossprobe.

2. To crossprobe from an error, warning, or note in the html log file, click
on the file name to open the corresponding source code in another Text
Editor window; to crossprobe from a text log file, double-click on the text
of the error, warning, or note.

3. To crossprobe from a third-party text file (not source code or a log file),
select Options->HDL Analyst Options->General, and enable Enhanced text
crossprobing.

Synplify Pro for Microsemi Edition User Guide

Copyright © 2013 Synopsys, Inc.
294 February 2013

Crossprobing Chapter 9: Analyzing with HDL Analyst and FSM Viewer

4. Select the appropriate portion of text in the Text Editor window. In some
cases, it may be necessary to select an entire block of text to crossprobe.

The software highlights the objects corresponding to the selected code in
all the open windows. For example, if you select a state name in the
code, it highlights the state in the FSM viewer. If an object is on another
schematic sheet or on another hierarchical level, the highlighting might
not be obvious. If you filter the RTL or schematic view (right-click in the
source code window with the selected text and select Filter Schematic from
the popup menu), you can isolate the highlighted objects for easy
viewing.

Example of Crossprobing a Path from a Text File

This example selects a path in a log file and crossprobes it in the Technology
view. You can use the same technique to crossprobe from other text files like
place-and-route files, as long as the instance names in the text file match the
instance names in the synthesis tool.

1. Open the log file, the RTL, and Technology views.

2. Select the path objects in the log file.

— Select the column by pressing Alt and dragging the cursor to the end
of the column. On the Linux platform, use the key to which the Alt
function is mapped; this is usually the Ctrl-Alt key combination.

— To select all the objects in the path, right-click and choose Selectin
Analyst from the popup menu. Alternatively, you can select certain
objects only, as described next.

The software selects the objects in the column, and highlights the path
in the open RTL and Technology views.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 295

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Crossprobing

Text Editor

Iain

rev_1 (spcl_r
Compiler Repd

Timing Report
Performance Su

Clock Relationzh

Interface Infomm:

Dietailed Report
Starting Puoints!
Ending Paints

Dietailed Report {
Starting Points)

Log File Link|*

Worst Path Inf— /|

Clock

alual0]
aluall]
alualZz]
alual3]
alual4]

Worst Path Informat)

il
e a ||[Fiew Worst Path in |
- View Worst Path in |
1 1 O 1 ——

Systen
Svysten
Systen
Systen
Svstem
Systenm
Systen

LFFC
DFFC
DFFC
DFFC
DFFC
DFFC
LFFC

oouooooyg

Technology View

gz ® Sheet 3 of 4 - dmux, [of module data, mux]| [Technology ¥Yiew] 500C

S

= -
= ‘DE!LB o
| UL i
I 1 Py I
. .5, e [
e
1} °
1 h

bl
T
%

%

Iy

o
][

— To further filter the objects in the path, right-click and choose Select
From from the popup menu. On the form, check the objects you want,
and click OK. Only the corresponding objects are highlighted.

Copyright © 2013 Synopsys, Inc.
296

Synplify Pro for Microsemi Edition User Guide
February 2013

Crossprobing Chapter 9: Analyzing with HDL Analyst and FSM Viewer

=i
E

B Select Objects

[o]4

D Chject Instance Part

[«

1 | special_regs.inst[4] Cancel

[«

2 | special_regs.inst[3] Select All

3 |decode. decodes[6] Deselect Al

[&]

4 | special_regs.inst[&] All Instances

<]

& | special_reqgs.inst[7] &l Parts

40

[Filter

3. To isolate and view only the selected objects, do this in the Technology
view: press F12, or right-click and select the Filter Schematic command
from the popup menu.

You see just the selected objects.

Crossprobing from the Tcl Script Window

Crossprobing from the Tcl script window is useful for debugging error
messages.

To crossprobe from the Tcl Script window to the source code, double-click a
line in the Tcl window. To crossprobe a warning or error, first click the
Messages tab and then double-click the warning or error. The software opens
the relevant source code file and highlights the corresponding code.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 297

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Crossprobing

Crossprobing from the FSM Viewer

You can crossprobe to the FSM Viewer if you have the FSM view open. You
can crossprobe from an RTL, Technology, or source code window.

To crossprobe from the FSM Viewer, do the following:

1. Open the view to which you want to crossprobe: RTL/Technology view,
or the source code file.

2. Do the following in the open FSM view:

— For FSMs with a onehot encoding style, click the state bubbles in the
bubble diagram or the states in the FSM transition table.

— For all other FSMs, click the states in the bubble diagram. You
cannot use the transition table because with these encoding styles,
the number of registers in the RTL or Technology views do not match
the number of registers in the FSM Viewer.

The software highlights the corresponding code or object in the open
views. You can only crossprobe from a state in the FSM table if you used
a onehot encoding style.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
298 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Analyzing With the HDL Analyst Tool

The HDL Analyst tool is a graphical productivity tool that helps you visualize
your synthesis results. It consists of RTL-level and technology-primitive level
schematics that let you graphically view and analyze your design.

RTL View

Using BEST® (Behavior Extracting Synthesis Technology) in the RTL
view, the software keeps a high-level of abstraction and makes the RTL
view easy to view and debug. High-level structures like RAMs, ROMs,
operators, and FSMs are kept as abstractions in this view instead of
being converted to gates. You can examine the high-level structure, or
push into a component and view the gate-level structure.

Technology View

The software uses module generators to implement the high-level struc-
tures from the RTL view, and maps them to technology-specific
resources.

To analyze information, compare the current view with the information in the
RTL /Technology view, the log file, the FSM view, and the source code, you
can use techniques like crossprobing, flattening, and filtering. See the
following for more information about analysis techniques.

Viewing Design Hierarchy and Context, on page 300

Filtering Schematics, on page 303

Expanding Pin and Net Logic, on page 305

Expanding and Viewing Connections, on page 309

Flattening Schematic Hierarchy, on page 310

Minimizing Memory Usage While Analyzing Designs, on page 315

For additional information about navigating the HDL Analyst views or using
other techniques like crossprobing, see the following:

Working in the Schematic Views, on page 256
Exploring Design Hierarchy, on page 270
Finding Objects, on page 278

Crossprobing, on page 291

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 299

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Viewing Design Hierarchy and Context

Most large designs are hierarchical, so the synthesis software provides tools
that help you view hierarchy details or put the details in context. Alterna-
tively, you can browse and navigate hierarchy with Push/Pop mode, or flatten
the design to view internal hierarchy.

This section describes how to use interactive hierarchical viewing operations
to better analyze your design. Automatic hierarchy viewing operations that
are built into other commands are described in the context in which they
appear. For example, Viewing Critical Paths, on page 325 describes how the
software automatically traces a critical path through different hierarchical
levels using hollow boxes with nested internal logic (transparent instances) to
indicate levels in hierarchical instances.

1. To view the internal logic of primitives in your design, do either of the
following:

— To view the logic of an individual primitive, push into it. This
generates a new schematic view with the internal details. Click the
Back icon to return to the previous view.

— To view the logic of all primitives in the design, select Options->HDL
Analyst Options->General, and enable Show Cell Interior. This command
lets you see internal logic in context, by adding the internal details to
the current schematic view and all subsequent views. If the view is
too cluttered with this option on, filter the view (see Filtering
Schematics, on page 303) or push into the primitive. Click the Back
icon to return to the previous view after filtering or pushing into the
object.

The following figure compares these two methods:

Result of pushing into a primitive (new view G_37
of lower-level logic)

Result of enabling Show Cell Interior
option (same view with internal logic)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
300 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

2. To hide selected hierarchy, select the instance whose hierarchy you
want to exclude, and then select Hide Instances from the HDL Analyst menu
or the right-click popup menu in the schematic view.

You can hide opaque (solid yellow) or transparent (hollow) instances.
The software marks hidden instances with an H in the lower left. Hidden
instances are like black boxes; their hierarchy is excluded from filtering,
expanding, dissolving, or searching in the current window, although
they can be crossprobed. An instance is only hidden in the current view
window; other view windows are not affected. Temporarily hiding unnec-
essary hierarchy focuses analysis and saves time in large designs.

ins_decode reg_file

—

!

regs

clock _~==
resetn ==

| NN

‘H’ indicates a
hidden instance

b
—
b
—
b

decode

Before you save a design with hidden instances, select Unhide Instances
from the HDL Analyst menu or the right-click popup menu and make the
hidden internal hierarchy accessible again. Otherwise, the hidden
instances are saved as black boxes, without their internal logic.
Conversely, you can use this feature to reduce the scope of analysis in a
large design by hiding instances you do not need, saving the reduced
design to a new name, and then analyzing it.

3. To view the internal logic of a hierarchical instance, you can push into
the instance, dissolve the selected instance with the Dissolve Instances
command, or flatten the design. You cannot use these methods to view
the internal logic of a hidden instance.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 301

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Pushing into Generates a view that shows only the internal logic. You do not

an instance see the internal hierarchy in context. To return to the previous
view, click Back. See Exploring Object Hierarchy by
Pushing/Popping, on page 271 for details.

Flattening Opens a new view where the entire design is flattened, except
the entire for hidden hierarchy. Large flattened designs can be
design overwhelming. See Flattening Schematic Hierarchy, on

page 310 for details about flattening designs.

Because this is a new view, you cannot use Back to return to
the previous view. To return to the top-level unflattened
schematic, right-click in the view and select Unflatten Schematic.

Flattening Generates a view where the hierarchy of the selected instances

an instance is flattened, but the rest of the design is unaffected. This

by dissolving provides context. See Flattening Schematic Hierarchy, on
page 310 for details about dissolving instances.

4. If the result of filtering or dissolving is a hollow box with no internal
logic, try either of the following, as appropriate, to view the internal
hierarchy:

— Select Options->HDL Analyst Options->Sheet Size and increase the value of
Maximum Filtered Instances. Use this option if the view is not too
cluttered.

— Use the sheet navigation commands to go to the sheets indicated in
the hollow box.

If there is too much internal logic to display in the current view, the
software puts the internal hierarchy on separate schematic sheets. It
displays a hollow box with no internal logic and indicates the schematic
sheets that contain the internal logic.

5. To view the design context of an instance in a filtered view, select the
instance, right-click, and select Show Context from the popup menu.

The software displays an unfiltered view of the hierarchical level that
contains the selected object, with the instance highlighted. This is useful
when you have to go back and forth between different views during
analysis. The context differs from the Expand commands, which show
connections. To return to the original filtered view, click Back.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
302 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Filtering Schematics

Filtering is a useful first step in analysis, because it focuses analysis on the
relevant parts of the design. Some commands, like the Expand commands,
automatically generate filtered views; this procedure only discusses manual
filtering, where you use the Filter Schematic command to isolate selected
objects. See Chapter 3 of the Reference Manual for details about these
commands.

This table lists the advantages of using filtering over flattening:

Filter Schematic Command Flatten Commands

Loads part of the design; better Loads entire design
memory usage

Combine filtering with Push/Pop = Must use Unflatten Schematic to return to top
mode, and history buttons (Back level, and flatten the design again to see lower
and Forward) to move freely levels. Cannot return to previous view if the
between hierarchical levels previous view is not the top-level view.

1. Select the objects that you want to isolate. For example, you can select
two connected objects.

If you filter a hidden instance, the software does not display its internal
hierarchy when you filter the design. The following example illustrates
this.

reg_file
ing_decode

rami

regs.addr4:0] i “

regs

regz.mem_regFile[T:0]

|
|
e

m decode

2. Select the Filter Schematic command, using one of these methods:
— Select Filter Schematic from the HDL Analyst menu or the right-click
popup menu.
— Click the Filter Schematic icon (buffer gate) ().

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 303

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

— Press F12.

— Press the right mouse button and draw a narrow V-shaped mouse
stroke in the schematic window. See Help->Mouse Stroke Tutor for
details.

The software filters the design and displays the selected objects in a
filtered view. The title bar indicates that it is a filtered view. Hidden
instances have an H in the lower left. The view displays other hierar-
chical instances as hollow boxes with nested internal logic (transparent
instances). For descriptions of filtered views and transparent instances,
see Filtered and Unfiltered Schematic Views, on page 308 and Trans-
parent and Opaque Display of Hierarchical Instances, on page 314 in the
Reference Manual. If the transparent instance does not display internal
logic, use one of the alternatives described in Viewing Design Hierarchy
and Context, on page 300, step 4.

pram_critr

Of Lresetn ==

prgmentr

req_file

[

Filtered view

regs

3. If the filtered view does not display the pin names of technology
primitives and transparent instances that you want to see, do the
following:

— Select Options->HDL Analyst Options->Text and enable Show Pin Name.

— To temporarily display a pin name, move the cursor over the pin. The
name is displayed as long as the cursor remains over the pin.
Alternatively, select a pin. The software displays the pin name until
you make another selection. Either of these options can be applied to

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
304 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

individual pins. Use them to view just the pin names you need and
keep design clutter to a minimum.

— To see all the hierarchical pins, select the instance, right-click, and
select Show All Hier Pins.

You can now analyze the problem, and do operations like the following:

Trace paths, build up logic See Expanding Pin and Net Logic, on page 305
and Expanding and Viewing Connections, on

page 309
Filter further Select objects and filter again
Find objects See Finding Objects, on page 278

Flatten, or hide and flatten See Flattening Schematic Hierarchy, on
page 310. You can hide transparent or opaque
instances.

Crossprobe from filtered See Crossprobing from the RTL/Technology
view View, on page 292

4. To return to the previous schematic view, click the Back icon. If you
flattened the hierarchy, right-click and select Unflatten Schematic to return
to the top-level unflattened view.

For additional information about filtering schematics, see Filtering
Schematics, on page 303 and Flattening Schematic Hierarchy, on page 310.

Expanding Pin and Net Logic

When you are working in a filtered view, you might need to include more logic
in your selected set to debug your design. This section describes commands
that expand logic fanning out from pins or nets; to expand paths, see
Expanding and Viewing Connections, on page 309.

Use the Expand commands with the Filter Schematic, Hide Instances, and Flatten
commands to isolate just the logic that you want to examine. Filtering
isolates logic, flattening removes hierarchy, and hiding instances prevents
their internal hierarchy from being expanded. See Filtering Schematics, on
page 303 and Flattening Schematic Hierarchy, on page 310 for details.

1. To expand logic from a pin hierarchically across boundaries, use the
following commands.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 305

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

To... Do this (HDL Analyst->Hierarchical/Popup menu)...

See all cells connected Select a pin and select Expand. See Expanding
to a pin Filtered Logic Example, on page 307.

See all cells that are Select a pin and select Expand to Register/Port. See
connected to a pin, Expanding Filtered Logic to Register/Port
up to the next register Example, on page 308.

See internal cells Select a pin and select Expand Inwards. The software

connected to a pin filters the schematic and displays the internal cells
closest to the port. See Expanding Inwards
Example, on page 308.

The software expands the logic as specified, working on the current level
and below or working up the hierarchy, crossing hierarchical bound-
aries as needed. Hierarchical levels are shown nested in hollow
bounding boxes. The internal hierarchy of hidden instances is not
displayed.

For descriptions of the Expand commands, see HDL Analyst Menu, on
page 235 of the Reference Manual.

2. To expand logic from a pin at the current level only, do the following:

— Select a pin, and go to the HDL Analyst->Current Level menu or the right-
click popup menu->Current Level.

— Select Expand or Expand to Register/Ports. The commands work as
described in the previous step, but they do not cross hierarchical
boundaries.

3. To expand logic from a net, use the commands shown in the following
table.

— To expand at the current level and below, select the commands from
the HDL Analyst->Hierarchical menu or the right-click popup menu.

— To expand at the current level only, select the commands from the
HDL Analyst->Current Level menu or the right-click popup menu->Current
Level.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
306 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

To... Do this...
Select the driver of Select a net and select Select Net Driver. The result is a
a net filtered view with the net driver selected (Selecting the Net

Driver Example, on page 309).

Trace the driver, across Select a net and select Go to Net Driver. The software shows
sheets if needed a view that includes the net driver.

Select all instances on Select a net and select Select Net Instances. You see a filtered
a net view of all instances connected to the selected net.

Expanding Filtered Logic Example

spcl_regs L
|resetn é = ' w - = e =
S ‘-‘;J—:.whﬂi’ll
[lock == Ut D[7:0] Q[7:0] o]
— E
special_regs trisa[7:0]
special_regs
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 307

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Analyzing With the HDL Analyst Tool

Expanding Filtered Logic to Register/Port Example

[resetn

alock
resetn

spel_regs e
il !
4 o, e .
3 g ;
17 e DO Q) | 701 g . :E' ‘ - ey
—E E— X
Cl i
— W)
special reqs trisal7:0] [I .
P —red in babEoaaEdparls H
‘ = Terealabia
b B gerly
; ..“E....L ‘ = =
>]E%J] ‘
P
i ..“E...zt.l.,.‘,
in_haFFandd --I“
i keFEanl_parls
Licpess—
Expanding Inwards Example
Lo SHb[T =Sl T (715
g~ Eona 70 ; data_mux
dlata_mux
ok
resetn et 10 1] 7] i 201
— bdpel R e
B r{7.0] .
[raretn ~=— il
o rtco[7.0] A dmuz.alual7:0]
P pc10] | -
e status[7:0] e
o portalF:0]]
e oo S]] ”"““F: |
D) o IR el
P r2file_cout[7:0] fing.0) =]
S il
——— :'l—
T £el[4:0] :I‘_
T 5luscin[7:01] .::
T 113_z2[10] M
T iuh_z2[10] M
Dt £_ritss[2:01] L
dimus i
Ll porte[F0] "=
dmux
il e 7]
partt[7:0]

Copyright © 2013 Synopsys, Inc.
308

Synplify Pro for Microsemi Edition User Guide

February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Selecting the Net Driver Example

S_LUT_ABOBE L, | 5-DFF

e ' —_—> o 5_LUT_ABOE

] e auT] [recetn = . CLRN oy -

I FRM | ol
13 N

DECODE.ALUOP_i[3]
UC_ALU longg_1_7[7] _ UC_ALU lanaq_1_7[]

s _1_

Expanding and Viewing Connections

This section describes commands that expand logic between two or more
objects; to expand logic out from a net or pin, see Expanding Pin and Net
Logic, on page 305. You can also isolate the critical path or use the Timing
Analyst to generate a schematic for a path between objects, as described in
Analyzing Timing in Schematic Views, on page 322.

Use the following path commands with the Filter Schematic and Hide Instances
commands to isolate just the logic that you want to examine. The two
techniques described here differ: Expand Paths expands connections between
selected objects, while Isolate Paths pares down the current view to only
display connections to and from the selected instance.

For detailed descriptions of the commands mentioned here, see Commands
That Result in Filtered Schematics, on page 336 in the Reference Manual.

1. To expand and view connections between selected objects, do the
following:
— Select two or more points.

— To expand the logic at the current level only, select HDL Analyst->
Current Level->Expand Paths or popup menu->Current Level Expand Paths.

— To expand the logic at the current level and below, select HDL Analyst->
Hierarchical->Expand Paths or popup menu->Expand Paths.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 309

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

inz_decode

FDC

decode decodes[7]
—_

decode

spcl_regs

FDC

special_regs inst[3]
| S |
special_regs v

el tege Iis_decoce

[

LUTH_MES

SRy

koodks_h_06 Onoodks_h 65

LUTW_EELE

spranl ngs

&
‘_'[U G|

BinE

I
E-T
(R ool

[

@o00ee_h_T02

ook

2. To view connections from all pins of a selected instance, right-click and
select Isolate Paths from the popup menu.

Starting Point The Filtered View Traces Paths (Forward and Back) From All
Pins of the Selected Instance...

Filtered view Traces through all sheets of the filtered view, up to the next
port, register, hierarchical instance, or black box.

Unfiltered view Traces paths on the current schematic sheet only, up to the
next port, register, hierarchical instance, or black box.

Unlike the Expand Paths command, the connections are based on the
schematic used as the starting point; the software does not add any
objects that were not in the starting schematic.

Flattening Schematic Hierarchy

Flattening removes hierarchy so you can view the logic without hierarchical
levels. In most cases, you do not have to flatten your hierarchical schematic
to debug and analyze your design, because you can use a combination of

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
310 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

filtering, Push/Pop mode, and expanding to view logic at different levels.
However, if you must flatten the design, use the following techniques., which
include flattening, dissolving, and hiding instances.

1. To flatten an entire design down to logic cells, use one of the following
commands:

— For an RTL view, select HDL Analyst->RTL->Flattened View. This flattens
the design to generic logic cells.

— For a Technology view, select Flattened View or Flattened to Gates View
from the HDL Analyst->Technology menu. Use the former command to
flatten the design to the technology primitive level, and the latter
command to flatten it further to the equivalent Boolean logic.

The software flattens the top-level design and displays it in a new
window. To return to the top-level design, right-click and select Unflatten
Schematic.

Unless you really require the entire design to be flattened, use Push/Pop
mode and the filtering commands (Filtering Schematics, on page 303) to
view the hierarchy. Alternatively, you can use one of the selective
flattening techniques described in subsequent steps.

2. To selectively flatten transparent instances when you analyze critical
paths or use the Expand commands, select Flatten Current Schematic from
the HDL Analyst menu, or select Flatten Schematic from the right-click
popup menu.

The software generates a new view of the current schematic in the same
window, with all transparent instances at the current level and below
flattened. RTL schematics are flattened down to generic logic cells and
Technology views down to technology primitives. To control the number
of hierarchical levels that are flattened, use the Dissolve Instances
command described in step 4.

If your view only contains hidden hierarchical instances or pale yellow
(opaque) hierarchical instances, nothing is flattened. If you flatten an
unfiltered (usually the top-level design) view, the software flattens all
hierarchical instances (transparent and opaque) at the current level and
below. The following figure shows flattened transparent instances.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 31

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

rami

i ing 4. o
| a1 req_File
E] mem_regfile [T:0]
E — i Opagque hierarchical
™ e instance is unaffected.
T L
— (=
. p—
Flatten Schematic —
flattens unhidden
transparent instance. —
T -
L
ami t 0
- Com
Ire_decede [& — e
LT
E mem_regile[? O]
Hidden transparent e -
instance is not " o s
flattened. w

Y

decode

Because the flattened view is a new view, you cannot use Back to return
to the unflattened view or the views before it. Use Unflatten Schematic to
return to the unflattened top-level view.

3. To selectively flatten the design by hiding instances, select hierarchical
instances whose hierarchy you do not want to flatten, right-click, and
select Hide Instances. Then flatten the hierarchy using one of the Flatten
commands described above.

Use this technique if you want to flatten most of your design. If you want
to flatten only part of your design, use the approach described in the
next step.

When you hide instances, the software generates a new view where the
hidden instances are not flattened, but marked with an H in the lower
left corner. The rest of the design is flattened. If unhidden hierarchical
instances are not flattened by this procedure, use the Flattened View or
Flattened to Gates View commands described in step 1 instead of the Flatten

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
312 February 2013

Analyzing With the HDL Analyst Tool Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Current Schematic command described in step 2, which only flattens trans-
parent instances in filtered views.

You can select the hidden instances, right-click, and select Unhide
Instances to make their hierarchy accessible again. To return to the
unflattened top-level view, right-click in the schematic and select
Unflatten Schematic.

4. To selectively flatten some hierarchical instances in your design by
dissolving them, do the following:

— If you want to flatten more than one level, select Options->HDL Analyst
Options and change the value of Dissolve Levels. If you want to flatten
just one level, leave the default setting.

— Select the instances to be flattened.

— Right-click and select Dissolve Instances.

The results differ slightly, depending on the kind of view from which you
dissolve instances.

Starting View Software Generates a...

Filtered Filtered view with the internal logic of dissolved instances
displayed within hollow bounding boxes (transparent
instances), and the hierarchy of the rest of the design
unchanged. If the transparent instance does not display
internal logic, use one of the alternatives described in step 4
of Viewing Design Hierarchy and Context, on page 300. Use
the Back button to return to the undissolved view.

Unfiltered New, flattened view with the dissolved instances flattened in
place (no nesting) to Boolean logic, and the hierarchy of the
rest of the design unchanged. Select Unflatten Schematic to
return to the top-level unflattened view. You cannot use the
Back button to return to previous views because this is a new
view.

The following figure illustrates this.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 313

Chapter 9: Analyzing with HDL Analyst and FSM Viewer Analyzing With the HDL Analyst Tool

Dissolved logic for prgmentr shown nested when started from filtered view

Gk

/

Use this technique if you only want to flatten part of your design while
retaining the hierarchical context. If you want to flatten most of the
design, use the technique described in the previous step. Instead of
dissolving instances, you can use a combination of the filtering
commands and Push/Pop mode.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
314 February 2013

Using the FSM Viewer Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Minimizing Memory Usage While Analyzing Designs

When working with large hierarchical designs, use the following techniques
to use memory resources efficiently.

Before you do any analysis operations such as searching, flattening,
expanding, or pushing/popping, hide (HDL Analyst->Hide Instances) the
hierarchical instances you do not need. This saves memory resources,
because the software does not load the hierarchy of the hidden
instances.

Temporarily divide your design into smaller working files. Before you do
any analysis, hide the instances you do not need. Save the design. The
srs and srm files generated are smaller because the software does not
save the hidden hierarchy. Close any open HDL Analyst windows to free
all memory from the large design. In the Implementation Results view,
double-click one of the smaller files to open the RTL or Technology
schematic. Analyze the design using the smaller, working schematics.

Filter your design instead of flattening it. If you must flatten your design,
hide the instances whose hierarchy you do not need before flattening, or
use the Dissolve Instances command. See Flattening Schematic Hierarchy,
on page 310 for details. For more information on the Expand Paths and
Isolate Paths commands, see RTL View and Technology View Popup Menu
Commands, on page 297 of the Reference Manual.

When searching your design, search by instance rather than by net.
Searching by net loads the entire design, which uses memory.

Limit the scope of a search by hiding instances you do not need to
analyze. You can limit the scope further by filtering the schematic in
addition to hiding the instances you do not want to search.

Using the FSM Viewer

The FSM viewer displays state transition bubble diagrams for

FSMs in the design, along with additional information about the FSM. You
can use this viewer to view state machines implemented by either the FSM
Compiler or the FSM Explorer. For more information, see Running the FSM
Compiler, on page 221 and Running the FSM Explorer, on page 224, respec-
tively.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 315

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Using the FSM Viewer

1. To start the FSM viewer, open the RTL view and either

— Select the FSM instance, click the right mouse button and select View
FSM from the popup menu.

— Push down into the FSM instance (Push/Pop icon).

The FSM viewer opens. The viewer consists of a transition bubble
diagram and a table for the encodings and transitions. If you used
Verilog to define the FSMs, the viewer displays binary values for the
state machines if you defined them with the ‘define keyword, and actual
names if you used the parameter keyword.

FSM| Yiewer - present._state[4:0]

From State

Ta State

Condition

LAND

LAND

lis_landed

CM_MISSION

CM_MISSION

LALNCH

alw|r|—

CM_MISSION

SEQUEMCE

LALINCH

lent[0J2lent[1 J2l ent[2]alent[3]

Transitions [RTL Encodings | Mapped Encodings J

2. The following table summarizes basic viewing operations.

Copyright © 2013 Synopsys, Inc.
316

Synplify Pro for Microsemi Edition User Guide

February 2013

Using the FSM Viewer Chapter 9: Analyzing with HDL Analyst and FSM Viewer

To view...

from and to states, and conditions
for each transition

the correspondence between the
states and the FSM registers in the
RTL view

the correspondence between the
states and the registers in the
Technology View

only the transition diagram without
the table

Do...

Click the Transitions tab at the
bottom of the table.

Click the RTL Encoding tab.

Click the Mapped Encodings tab
(available after synthesis).

Select View->FSM table or click the
FSM Table icon. You might have to
scroll to the right to see it.

This figure shows you the mapping information for a state machine. The
Transitions tab shows you simple equations for conditions for each state.
The RTL Encodings tab has a State column that shows the state names in
the source code, and a Registers column for the corresponding RTL
encoding. The Mapped Encoding tab shows the state names in the code

mapped to actual values.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
317

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Using the FSM Viewer

Mapped Encoding

3. To view just one selected state,

— Select the state by clicking on its bubble. The state is highlighted.

From State| To State Condition

1 Laplizplay |LapDizplay |LapleveldlReset

2 Zero LapDisplay |Lap&StartsReset

3 StopSecond |StopSecond |LapdlStart&iReset

4 StopFirst StopSecond |LapilStant&Reset

3 CountCont |StopSecond | Stant&Reset

E StopSecond | StopDiff Lap&l=tant&Reset

7 StopDiff StopDift ILap&lStart&Reset

g StopFirst StopFirst ILap&lstart&lReset

9 CourtFirst | StopFirst Start&Reset

10 StopSecond |CountCont | Stant&Reset

States and Conditions
State cur_state[6] | cur_state[5] | cur_state[4] | cur_state[3] | cur_state[2] | cur_state[1] | cur_state[d] State Register

Fero 1] 1] 1] 1] u] 1] 1 Zera cur_state[0]
CourtFirst |0 1} 0 0 0 1 0 CourdFirst |cur_state[1]
CountCont |0 a o o 1 o o CountCort | cur_state[2]
StopFirst |0 1} 0 1 0 0 0 StopFirst | cur_state[3]
StopDiff 0 1} 1 0 0 0 0 StopDiff cur_state(4]
StopSecond |0 1 o o o o o StopSecond |cur_state[S]
LapDisplay |1 1} 1] 1] 0 1] i} LapDisplay |cur_state[6]

RTL Encoding

— Click the right mouse button and select the filtering criteria from the
popup menu: output, input, or any transition.

The transition diagram now shows only the filtered states you set. The
following figure shows filtered views for output and input transitions for
one state.

Copyright © 2013 Synopsys, Inc.
318

Synplify Pro for Microsemi Edition User Guide

February 2013

Using the FSM Viewer Chapter 9: Analyzing with HDL Analyst and FSM Viewer

CountCont state filtered by input transitions

CountCont state filtered by output transitions

Similarly, you can check the relationship between two or more states by
selecting the states, filtering them, and checking their properties.

4. To view the properties for a state,
— Select the state.

— Click the right mouse button and select Properties from the popup
menu. A form shows you the properties for that state.

To view the properties for the entire state machine like encoding style,
number of states, and total number of transitions between states,
deselect any selected states, click the right mouse button outside the
diagram area, and select Properties from the popup menu.

S. To view the FSM description in text format, select the state machine in
the RTL view and View FSM Info File from the right mouse popup. This is
an example of the FSM Info File, statemachine.info.

State Machine: work.Control (verilog) -cur state[6:0]
No selected encoding - Synplify will choose

Number of states: 7

Number of inputs: 4

Inputs:
0: Laplevel
1: Lap
2: Start
3: Reset
Clock: Clk
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, :I3n1%

February 2013

Chapter 9: Analyzing with HDL Analyst and FSM Viewer

Using the FSM Viewer

Transitions:

-100 SO
--10 SO
---1 S0
-00- SO
--10 S1
-100 S1
-000 S1
---1 81
--10 S2
-000 Ss2
-100 S2
---1 Ss2
-100 S3
-000 S3
--10 S3
---1 83
-000 sS4
--1- S4
-1-- S4
---1 S4
-000 S5
-100 S5
--10 S5
---1 S5
1--0 Se6
---1 S6
0--- S6

Copyright © 2013 Synopsys, Inc.
320

S6
S2
S0
S0
S3
S2
S1
SO
S5
S2
S1
SO
S5
S3
S1
S0
S4
SO
SO
SO
S5
S4
S2
SO
S6
SO
S0

(input,

start state,

destination state)

Synplify Pro for Microsemi Edition User Guide
February 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 10

Analyzing Timing

This chapter describes typical analysis tasks. It describes graphical analysis
with the HDL Analyst tool as well as interpretation of the text log file. It covers
the following:

* Analyzing Timing in Schematic Views, on page 322
* Generating Custom Timing Reports with STA, on page 329
* Using Analysis Design Constraints, on page 332

* Using Auto Constraints, on page 339

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 321

Chapter 10: Analyzing Timing Analyzing Timing in Schematic Views

Analyzing Timing in Schematic Views

You can use the Timing Analyst and HDL Analyst functionality to analyze
timing. This section describes the following:

Viewing Timing Information, on page 322

Annotating Timing Information in the Schematic Views, on page 323
Analyzing Clock Trees in the RTL View, on page 325

Viewing Critical Paths, on page 325

Handling Negative Slack, on page 328

Generating Custom Timing Reports with STA, on page 329

Viewing Timing Information

Some commands, like Show Critical Path, Hierarchical Critical Path, Flattened Critical
Path, automatically enable Show Timing Information and display the timing infor-
mation. The following procedure shows you how to do so manually.

1. To analyze timing, enable HDL Analyst->Show Timing Information.

This displays the timing numbers for all instances in a Technology view.
It shows the following:

Delay This is the first number displayed.

¢ Combinational logic
This first number is the cumulative path delay to the output of
the instance, which includes the net delay of the output.

¢ Flip-flops
This first number is the path delay attributed to the flip-flop. The
delay can be associated with either the input or output path,
whichever is worse, because the flip-flop is the end of one path
and the start of another.

Slack This is the second number, and it is the slack time of the worst
Time path that goes through the instance. A negative value indicates
that timing constraints can not be met.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
322

February 2013

Analyzing Timing in Schematic Views Chapter 10: Analyzing Timing

Annotating Timing Information in the Schematic Views

You can annotate the schematic views with timing information for the compo-
nents in the design. Once the design is annotated, you can search for these
properties and their associated instances.

1. On the Device tab of the Implementation Options dialog box, enable Annotated
Properties for Analyst.

Option E“\ |‘u‘a|ue 3
Fanout Guide - | 24 ;
Disable /O Insertion O I
Update Compile Point Timing Data [l
Promote Global Buffer Threshold 50]
Operating Conditions COMWC
Annotated Properties for Analyst
Max number of critical paths in SDF 4000 =
Conservative Register Optimization [l z
Crmnbon Bivend Dirivenee — bl :

For each synthesis implementation and each place-and-route implementa-
tion, the tool generates properties and stores them in two files located in the
project folder:

.sap Synplify Annotated Properties
Contains the annotated design properties generated after compilation,
like clock pins.

.tap Timing Annotated Properties
Contains the annotated timing properties generated after compilation.

2. To view the annotated timing, open an RTL or Technology view.

3. To view the timing information from another associated implementation,
do the following:

— Open an RTL or Technology view. It displays the timing information
for that implementation.

— Select HDL Analyst->Select Timing, and select another implementation
from the list. The list contains the main implementation and all

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 323

Chapter 10: Analyzing Timing Analyzing Timing in Schematic Views

associated place-and-route implementations. The timing numbers in
the current Analyst view change to reflect the numbers from the
selected implementation.

In the following example, an RTL View shows timing data from the test
implementation and the test/pr_1 (place and route) implementation.

E Shav Eritical Eath | il i _reg|2.0]jdt)

el Tl -'_l_... shck = 10,000
Select Timing test chock = ok
T Timing Analyst... test/pr_1 = c.uhfv; ?Q‘i.':'ﬁs. .
LG T

. (=13 0
@ Find... IS 03] Torn b
ts—: Eilter Sehematic R mod0.outD_3[3:0]
14, Push/Pop Hierarch i '
14 PushiPop Hierarchy (a1 med0 in0_reg[3:0]
Select Al Schematic 4 —_—
Select All Shest » I
Wirseleet(
Flatten Schematic = maoe.In0_regl2.0fjdm|
UnFlatten S chematic 1 iﬁt E'EI'H]
HOL Analyzt Options... 1 :.:bfrt elﬂegcci:;n“:‘l-‘m

l

ok = -
SCOPE N s e L oz L apao) e [
R mod 0ot 03 [3:0]

o |
[el= mod0.in0_reg[3:0]
—
|

4. Once you have annotated your design, you can filter searches using
these properties with the find command.

— Use the find -filter {@propName>=propValue} command for the searches.
See Find Filter Properties, on page 1124 in the Reference Manual for a
list of properties. For information about the find command, see find
Command (Batch), on page 1115 in the Reference Manual.

— Precede the property name with the @ symbol.

For example, to find fanouts larger than 60, specify find -filter
{@fanout>=60}.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
324 February 2013

Analyzing Timing in Schematic Views Chapter 10: Analyzing Timing

Analyzing Clock Trees in the RTL View
To analyze clock trees in the RTL view, do the following:

1. In the Hierarchy Browser, expand Clock Tree, select all the clocks, and
filter the design.

The Hierarchy Browser lists all clocks and the instances that drive them
under Clock Tree. The filtered view shows the selected objects.

2. If necessary, use the filter and expand commands to trace clock
connections back to the ports and check them.

For details about the commands for filtering and expanding paths, see
Filtering Schematics, on page 303, Expanding Pin and Net Logic, on
page 305 and Expanding and Viewing Connections, on page 309.

3. Check that your defined clock constraints cover the objects in the
design.

If you do not define your clock constraints accurately, you might not get
the best possible synthesis optimizations.

Viewing Critical Paths

The HDL Analyst tool makes it simple to find and examine critical paths and
the relevant source code. The following procedure shows you how to filter and
analyze a critical path. You can also use the procedure described in Gener-
ating Custom Timing Reports with STA, on page 329 to view this and other
paths.

1. If needed, set the slack time for your design.
— Select HDL Analyst->Set Slack Margin.
— To view only instances with the worst-case slack time, enter a zero.

— To set a slack margin range, type a value for the slack margin, and
click OK. The software gets a range by subtracting this number from
the slack time, and the Technology view displays instances within
this range. For example, if your slack time is -10 ns, and you set a
slack margin of 4 ns, the command displays all instances with slack
times between -6 ns and -10 ns. If your slack margin is 6 ns, you see
all instances with slack times between -4 ns and -10 ns.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 325

Chapter 10: Analyzing Timing Analyzing Timing in Schematic Views

2. Display the critical path using one of the following methods. The
Technology view displays a hierarchical view that highlights the
instances and nets in the most critical path of your design.

— To generate a hierarchical view of the critical path, click the Show
Critical Path icon (stopwatch icon (), select HDL Analyst->Technology-
>Hierarchical Critical Path, or select the command from the popup menu.
This is a filtered view in the same window, with hierarchical logic
shown in transparent instances. History commands apply, so you
can return to the previous view by clicking Back.

— To flatten the hierarchical critical path described above, right-click
and select Flatten Schematic. The software generates a new view in the
current window, and flattens only the transparent instances needed
to show the critical path; the rest of the design remains hierarchical.
Click Back to go the top-level design.

— To generate a flattened critical path in a new window, select HDL
Analyst->Technology->Flattened Critical Path. This command uses more
memory because it flattens the entire design and generates a new
view for the flattened critical path in a new window. Click Back in this
window to go to the flattened top-level design or to return to the
previous window.

Flattened Critical Path

I e 1 S e
Hierarchical Critical Path |

3. Use the timing numbers displayed above each instance to analyze the
path. If no numbers are displayed, enable HDL Analyst->Show Timing
Information. Interpret the numbers as follows:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
326 February 2013

Analyzing Timing in Schematic Views Chapter 10: Analyzing Timing

Delay Slack time

For combinational logic, it is the cumulative delay to Slack of the worst path that
the output of the instance, including the net delay of goes through the instance. A
the output. For flip-flops, it is the portion of the path negative value indicates that
delay attributed to the flip-flop. The delay can be timing has not been met.

associated with either the input path or output path,
whichever is worse, because the flip-flop is the end of
one path and the start of another.

8.8,

4. View instances in the critical path that have less than the worst-case
slack time. For additional information on handling slack times, see
Handling Negative Slack, on page 328.

If necessary change the slack margin and regenerate the critical path.

5. Crossprobe and check the RTL view and source code. Analyze the code
and the schematic to determine how to address the problem. You can
add more constraints or make code changes.

6. Click the Back icon to return to the previous view. If you flattened your
design during analysis, select Unflatten Schematic to return to the top-level
design.

There is no need to regenerate the critical path, unless you flattened
your design during analysis or changed the slack margin. When you
flatten your design, the view is regenerated so the history commands do
not apply and you must click the Critical Path icon again to see the critical
path view.

7. Rerun synthesis, and check your results.

If you have fixed the path, the window displays the next most critical
path when you click the icon.

Repeat this procedure and fix the design for the remaining critical paths.
When you are within 5-10 percent of your desired results, place and
route your design to see if you meet your goal. If so, you are done. If your
vendor provides timing-driven place and route, you might improve your
results further by adding timing constraints to place and route.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 327

Chapter 10: Analyzing Timing Analyzing Timing in Schematic Views

Handling Negative Slack

Positive slack time values (greater than or equal to O ns) are good, while
negative slack time values (less than O ns) indicate the design has not met
timing requirements. The negative slack value indicates the amount by which
the timing is off because of delays in the critical paths of your design.

The following procedure shows you how to add constraints to correct negative
slack values. Timing constraints can improve your design by 10 to 20
percent.

1. Display the critical path in a filtered Technology view.

— For a hierarchical critical path, either click the Critical Path icon, select
HDL Analyst->Show Critical Path, or select HDL Analyst->Technology->
Hierarchical Critical Path.

— For a flat path, select HDL Analyst->Technology->Flattened Critical Path.

2. Analyze the critical path.

— Check the end points of the path. The start point can be a primary
input or a flip-flop. The end point can be a primary output or a flip-
flop.

— Examine the instances. Use the commands described in Expanding
Pin and Net Logic, on page 305 and Expanding and Viewing
Connections, on page 309. For more information on filtering
schematics, see Filtering Schematics, on page 303.

3. Determine whether there is a timing exception, like a false or multicycle
path. If this is the cause of the negative slack, set the appropriate timing
constraint.

If there are fewer start points, pick a start point to add the constraint. If
there are fewer end points, add the constraint to an end point.

4. If your design does not meet timing by 20 percent or more, you may
need to make structural changes. You could do this by doing either of
the following:

— Enabling options like retiming (Retiming, on page 196), FSM
exploration (Running the FSM Explorer, on page 224), or resource
sharing (Sharing Resources, on page 213).

— Modifying the source code.

5. Rerun synthesis and check your results.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
328 February 2013

Generating Custom Timing Reports with STA Chapter 10: Analyzing Timing

Generating Custom Timing Reports with STA

The log file generated after synthesis includes a timing report and default
timing information. Use the stand-alone timing analyst (STA) when you need
to generate a customized timing report (ta) for the following situations:

* You need more details about a specific path

* You want results for paths other than the top five timing paths (log file
default)

* You want to modify constraints and analyze, without resynthesizing. See
Using Analysis Design Constraints, on page 332 for details.

The following procedure shows you how to generate a custom report:
1. Select Analysis->Timing Analyst or click on the Timing Analyst icon(Zy").

2. Fill in the parameters.

— You can type in the from/to or through points, or you can cut and paste
or drag and drop valid objects from the Technology view (not the RTL
view) into the fields. See Timing Report Generation Parameters, on
page 224 in the Reference Manual for details on timing analysis
parameters and how they can be filtered.

— Set options for clock reports as needed.

— Specify a name for the output timing report (ta).

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 329

Chapter 10: Analyzing Timing

Generating Custom Timing Reports with STA

Timing Report Generation

Fitters

From: [

Through: [

2%
| e
o]

] Cancel

To: [

[_] Generate Asynchronous Clock Report

Async Clock Report File: [

Limit Number of Critical Start/End Points To: [5

Limit Number of Paths To: [5

] Enable Slack Margin (ns): [

Open Report Open Schematic

Quiput Files

Generate

Timing Analyzer Result File: [tutorial.m

[_] SRM File: [(:'-._5‘,;|7|Jllr",a'_|3|D'-._tutnl|a|'-._|'e‘.-_1‘-._-3|ght bit_uc_fa.srm] B

Constraint Files

|Se\|

3. Click Generate to run the report.

The software generates a custom report file called projectName.ta, located
in the implementation directory (the directory you specified for synthesis
results). The software also generates a corresponding output netlist file,

with an srm extension.

4. Analyze results.

— View the report (Open Report) in the Text Editor. The following figure is
a sample report showing analysis results based on maximum delay

for the worst paths.

Copyright © 2013 Synopsys, Inc.
330

Synplify Pro for Microsemi Edition User Guide
February 2013

Generating Custom Timing Reports with STA

Chapter 10: Analyzing Timing

##¥ges START OF TIMING REPORT #####[

Timing REeport written on Mon Jun 05 11:0
*

Top view: =

REequested Frequency: 10.0 MHz

Tire load mode: top

Paths requested 8

from 1:swmultZo[l1l]

Constraint Filei=)

Worst From—To Path Information

Path information for path number 1:
Requested Period:
— Setup time:
= Required time:

— Propagation time:
= Black

Humber of logic level(s):
Starting point

Ending point:

The start point is clocked by

5:33 2006

100,000

12

swnult2o[11] ~ regout

o o[l12] # datain

clk_1 [rising] on pin clhk

The end point is clocked by clk_i [ri=ing] on pin clk
Instance - Nst Pin Fin Arrival Ho. of
Hamne Type Hame Dir Delay Tine Fan Out(s)
swmult2o[11] stratizii_lcell_ff regout Qut 0.094 0.094 -
swnult2o[11] Het - - 0.311 - 2
swmu}tlfcarryﬁ? stratixiif}ce}!fcomb dataf ;n - Q.QUS -

— View the netlist (View Critical Path) in a Technology view. This
Technology view, labeled Timing View in the title bar, shows only the
paths you specified in the Timing Analyst dialog box. Note that the
Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are disabled whenever the Timing View is active.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
331

Chapter 10: Analyzing Timing Using Analysis Design Constraints

Using Analysis Design Constraints

Besides generating custom timing reports (see Generating Custom Timing
Reports with STA, on page 329), you can also use the Stand-alone Timing
Analyst to create constraints in an adc file. You can use these constraints to
experiment with different timing values, or to add or modify timing
constraints.

The advantage to using analysis design constraints (ADC) is that you do not
have to resynthesize the whole design. This reduces debugging time because
you can get a quick estimate, or try out different values. The Standalone
Timing Analyst (STA) puts these constraints in an Analysis Design
Constraints file (adc). The process for using this file is summarized in the
following flow diagram:

RTL

+ l Original SDCfile

¥ Stand-alone ¥ ADC
Output files: netlist Timing - file
& timing constraints, Anahrst I\-J
* edf/* vgm,
* ucf/*.scf

Output files:
*.5rm, *.ta

* Scenarios for Using Analysis Design Constraints, on page 333

See the following for details:

* Creating an ADC File, on page 334
* Using Object Names Correctly in the adc File, on page 338

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
332 February 2013

Using Analysis Design Constraints Chapter 10: Analyzing Timing

Scenarios for Using Analysis Design Constraints

The following describe situations where you can effectively use adc
constraints to debug, explore options or modify constraints. For details about
creating these constraints, see Creating an ADC File, on page 334.

* What-if analysis of design performance
If your design meets the target frequency, you can use adc constraints to
analyze higher target frequencies, or analyze performance of a module in
a different design/technology/target device.

* Constraints on enable registers
Similarly, you can apply syn_reference_clock on enable registers to analyze
if the enables have a regular pattern like clock, or if they operate on a
frequency other than clock. For example:

FDC create clock {clk} -name {clk} -freg 100 -clockgroup
clk grp 0

ADC define attribute {n:en} syn reference clock {clk2}
create clock {clk2} -name {clk2} -freq 50 -clockgroup
clk grp 1

* Adding additional timing exceptions
When you analyze the results of the first synthesis run, you often find
functional or clock-to-clock timing exceptions, and you can handle these
with adc constraints. For example:

— Applying false paths on synchronization circuitry
— Adding false paths between clocks belonging to different clock groups

You must add these constraints to see more critical paths in the design.
The adc constraints let you add these constraints on the fly, and helps
you debug designs faster.

* Modifying timing exceptions that were previously applied
For example you might want to set a multicycle path constraint for a
path that was defined as a false path in the constraint file or vice versa.
To modify the timing exception, you must first ignore or reset the timing
exception that was set in the constraint file, as described in Using
Analysis Design Constraints, on page 332, step 3.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 333

Chapter 10: Analyzing Timing Using Analysis Design Constraints

Creating an ADC File

The following procedure explains how to create an adc file.
1. Select File->New.

2. Do the following in the dialog box that opens:

— Select Analysis Constraint File.

T New)

File Type:(Select a type)

i Verilog File
4 VHDL File
g Text File
T Tel Script

Bl _EpPCA Dacion-Concteaints
== i |

=t
LU=) HcH St S

B! Analysis Design Constraints
B Project File (Project)

Cancel

Add To Project

News File Name:

[

File Location:

[C:\switutorialy,

Full Path:
[Chswitutoriall,

— Type a name and location for the file. The tool automatically assigns
the adc extension to the filename.

— Enable Add to Project, and click OK. This opens the text editor where
you can specify the new constraints.

3. Type in the constraints you want and save the file. Remember the
following when you enter the constraints:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
334 February 2013

Using Analysis Design Constraints Chapter 10: Analyzing Timing

— Keep in mind that the original f£dc file has already been applied to the
design. Any timing exception constraints in this file must not conflict
with constraints that are already in effect. For example, if there is a
conflict when multiple timing exceptions (false path, path delay, and
multicycle timing constraints) are applied to the same path, the tool
uses this order to resolve conflicts: false path, multicycle path, max
delay. See Conflict Resolution for Timing Exceptions, on page 402 for
details about how the tool prioritizes timing exceptions.

— The object names must be mapped object names, so use names from

" 2 software'test.adc {analysis_constraint) * — | m] |5|

0001 define_multicvycle path —to {i:c 5_[12]1} 2 j
0002 defins multicycle _path —to {dmantn[=]} 3 =

Line 2, Col42 [4

the Technology view, not names from the RTL view. Unlike the
constraint file (RTL view), the adc constraints apply to the mapped
database because the database is not remapped with this flow. For
more information, see Using Object Names Correctly in the adc File,
on page 338.

— If you want to modify an existing constraint for a timing exception,
you must first reset the original fdc constraint, and then apply the
new constraint. In the following example the multicycle path
constraint was changed to 3:

Original FDC set_multicycle_path —to [get_cells{a_reg*}] 2

ADC reset_path —to {get_cells{a_reg*}]
set_multicycle_path —to [get_cells{a_reg*}] 3

— When you are done, save and close the file. This adds the file to your
project.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 335

Chapter 10: Analyzing Timing Using Analysis Design Constraints

Add Files to Project ﬂﬂ
Laook in: | [ciidesigns v| o D Q0 [ﬁa E]
My Computer Crev_t

File: name: [springc.adc]
(Files of type: |.C\nalysis Design Constraint Files (*, adc) vl)
VHDLb: | |+
Files ko add ko project: (1 file(s) selected) Use relative paths || Add files ta Folders
C:ldesignsispringe, adc == add all

<- Add

Remave All -

Remove -=

]

Zancel

&

— You can create multiple adc files for different purposes. For example,
you might want to keep timing exception constraints, I/0 constraints,
and clock constraints in separate files. If you have an existing adc file,
use the Add File command to add this file to your project. Select
Analysis Design Constraint Files (*.adc) as the file type.

4. Run timing analysis.

— Select Analysis->Timing Analyst or click the Timing Analyst icon (g).
The Timing Analyst window will look like the example below, with
pointers to the srm file, the original fdc and the new adc files you
created.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
336 February 2013

Using Analysis Design Constraints

Chapter 10: Analyzing Timing

Timing Report Generation

Filters

From:

K

Through: [

2]
| Lo

To: [

] Generate Asynchronous Clock Report

Async Clock Report File: [

Limit Mumber of Critical Start/End Points To: [5

Limit Mumber of Paths To: [5

] Enable Slack Margin (ns): [

Open Report Open Schematic

Output Files

Generate

Timing Analyzer Result File: [tutorial.ta

[] SRM File: [C:'-._s‘,.-'npIiF',a'_pro'-._tuto|'iaI'-._|'e‘.-'_2'-._eight bit_uc_ta.srm

Constraint Files

Sel File

springc.adc)
/

— If you have multiple adc files, enable the ones you want.

— If you have a previous run and want to save that report, type a new
name for the output ta file. If you do not specify a name, the tool

overwrites the previous report.

— Fill in other parameters as appropriate, and click Generate.

The tool runs static timing analysis in the same implementation direc-
tory as the original implementation. The tool applies the adc constraints
on top of the fdc constraints. Therefore, adc constraints affect timing
results only if there are no conflicts with fdc constraints.

The tool generates a timing report called *_adc.ta and an *_adc.srm file by
default. It does not change any synthesis outputs, like the output netlist

or timing constraints for place and route.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
337

Chapter 10: Analyzing Timing Using Analysis Design Constraints

S. Analyze the results in the timing report and *_adc.srm file.

6. If you need to resynthesize after analysis, add the adc constraints as an
fdc file to the project and rerun synthesis.

Using Object Names Correctly in the adc File

Constraints and collections applied in the constraint file reference the RTL-
level database. Synthesis optimizations such as retiming and replication can
change object names during mapping because objects may be merged.

The standalone timing analyst does not map objects. It just reads the gate-
level object names from the post-mapping database; this is reflected in the
Technology view. Therefore, you must define objects either explicitly or with
collections from the Technology view when you enter constraints into the adc
file. Do not use RTL names when you create these constraints (see Creating
an ADC File, on page 334 for details of that process).

Example

Assume that register en_reg is replicated during mapping to reduce fanout.
Further, registers en_reg and en_reg_rep2 connect to register dataout[31:0]. In
this case, if you define the following false path constraint in the adc file, then
the standalone timing analyzer does not automatically treat paths from the
replicated register en_reg _rep2 as false paths.

set false path -from {{i:en reg}} -to {{i:dataocut[31:0]}}

Unlike constraints in the fdc file, you must specify this replicated register
explicitly or as a collection. Only then are all paths properly treated as false
paths. So in this example, you must define the following constraints in the
adc file:

set false path -from {{i:en reg}} -to {{i:dataout[31:0]}}

set false path -from {{i:en reg rep2}}
-to {{i:dataout[31:0]}}

or

define scope collection en regs {find -seq {i:en reg*}
-filter (@name == en reg || @name == en reg rep2)}

set false path -from {{$en regs}} -to {{i:dataout[31:0]}}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
338 February 2013

Using Auto Constraints Chapter 10: Analyzing Timing

Using Auto Constraints

Auto constraining lets you synthesize with automatic constraints as a first
step to get an idea of what you can achieve. Automatic constraints generate
the fastest design implementation, so they force the timing engine to work
harder. Based on the results from auto-constraining, you can refine the
constraints manually later. For an explanation of how auto constraints work,
see Results of Auto Constraints, on page 341.

1. To automatically constrain your design, first do the following:

— Set your device to a technology that supports auto-constraining. With
supported technologies, the Auto Constrain button under Frequency in
the Project view is available.

() Auto Conskrain

— Do not define any clocks. If you define clocks using the SCOPE
window or a constraint file, or set the frequency in the Project view,
the software uses the user-defined create_clock constraints instead of
auto constraints.

— Make sure any multi-cycle or false path constraints are specified on
registers.

2. Enable the Auto Constrain button on the left side of the Project view.
Alternatively, select Project->Implementation Options->Constraints, and enable
the Auto Constrain option there.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 339

Chapter 10: Analyzing Timing

Using Auto Constraints

" Constrainks ',
~ Frequency(MHz):

100

Frequeancy (MHz)

-

® [1.0000 E

® Auto Constrain

Ao Constran (Opbimae to obkain masdmum frequency)

[#] Usa cleck pariod For unconstrained 1O
Corstrant Files

Check files bo apply to this implementation

| sl |
|1.|' proj_1. fdc

|+ A e fde
|prof_2. £ ¢

3. If you want to auto constrain I/O paths, select Project->Implementation
Options->Constraints and enable Use Clock Period for Unconstrained 10.

If you do not enable this option, the software only auto constrains flop-
to-flop paths. Even when the software auto constrains the I/O paths, it
does not generate these constraints for forward-annotation.

4. Synthesize the design.

The software puts each clock in a separate clock group and adjusts the
timing of each clock individually. At different points during synthesis it
adjusts the clock period of each clock to be a target percentage of the

current clock period, usually 15% - 25%.

After the clocks, the timing engine constrains I/O paths by setting the
default combinational path delay for each I/O path to be one clock

period.

The software writes out the generated constraints in a file called
AutoConstraint_designName.sdc in the run directory. It also forward-
annotates these constraints to the place-and-route tools.

5. Check the results in AutoConstraint_designName.sdc and the log file. To
open the constraint file as a text file, right-click on the file in the
Implementation Results view and select Open as Text.

Copyright © 2013 Synopsys, Inc.
340

Synplify Pro for Microsemi Edition User Guide
February 2013

Using Auto Constraints Chapter 10: Analyzing Timing

The flop-to-flop constraints use syntax like the following:

create clock -name {c:leon|clk} -period 13.327 -clockgroup
Autoconstr clkgroup 0 -rise 0.000 -fall 6.664 -route 0.000

6. You can now add this generated constraint file to the project and rerun
synthesis with these constraints.

Results of Auto Constraints

This section contains information about the following:
* Stages of the Auto Constrain Algorithm, on page 341
* I/0O Constraints and Timing Exceptions, on page 342
* Reports and Forward-annotation, on page 342

* Repeatability of Results, on page 343

Stages of the Auto Constrain Algorithm

To auto constrain, do not define any clocks. When you enable the Auto
Constrain option, the synthesis software goes through these stages:

1. It infers every clock in the design.
2. It puts each clock in its own clock group.

3. It invokes mapper optimizations in stages and generates the best
possible synthesis results.

— You should only use Auto Constrain early in the synthesis process to get
a general idea of how fast your design runs. This option is not meant
to be a substitute for declaring clocks.

4. For each clock, including the system clock, the software maintains a
negative slack of between 15 and 25 percent of the requested frequency.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 341

Chapter 10: Analyzing Timing Using Auto Constraints

1/0 Constraints and Timing Exceptions

The auto constrain algorithm infers all the clocks, because none are defined.
It handles the following timing situations as described below:

* I/0O constraints

You can auto constrain I/O paths as well as flop-to-flop paths by
selecting Project->Implementation Options->Constraints and enabling Use Clock
Period for Unconstrained |10. The software does not write out these I/O
constraints.

* Timing exceptions like multicycle and false paths

The auto constraint algorithm honors SCOPE multicycle and false path
constraints that are specified as constraints on registers.

Auto Constrain Limitations

The Auto Constrain feature over constrains designs with output critical paths.

Reports and Forward-annotation

In the log file, the software reports the Requested and Estimated Frequency or
Requested and Estimated Period and the negative slack for each clock it infers.
The log file contains all the details.

The software also generates a constraint file in the run directory called
AutoConstraint_designName.fdc, which contains the auto constraints generated.
The following is an example of an auto constraint file:

#Begin clock constraint

create clock -name {c:leon|clk} -period 13.327 -rise 0.000 -fall
6.664

#End clock constraint

The software forward-annotates the create_clock constraints, writing out the
appropriate file for the place-and-route tool.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
342 February 2013

Using Auto Constraints Chapter 10: Analyzing Timing

Repeatability of Results

If you use the requested frequency resulting from the Auto constrain option as
the requested frequency for a regular synthesis run, you might not get the
same results as you did with auto constraints. This is because the software
invokes the mapper optimizations in stages when it auto constrains. The
results from a previous stage are used to drive the next stage. As the interim
optimization results vary, there is no guarantee that the final results will stay
the same.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 343

Chapter 10: Analyzing Timing Using Auto Constraints

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
344 February 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 11

Optimizing for Microsemi Designs

This chapter covers techniques for optimizing your design for various
vendors. The information in this chapter is intended to be used together with
the information in Chapter 6, Inferring High-Level Objects.

Refer to the design tips for the following Microsemi-specific procedures:
* Using Predefined Microsemi Black Boxes, on page 346
* Using Smartgen Macros, on page 347
* Working with Radhard Designs, on page 347
* Specifying syn_radhardlevel in the Source Code, on page 348

For additional Microsemi-specific information, see Passing Information to the
P&R Tools, on page 352 and Generating Vendor-Specific Output, on
page 354.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 345

Chapter 11: Optimizing for Microsemi Designs Optimizing Microsemi Designs

Optimizing Microsemi Designs
The Synplify Pro synthesis tool supports Microsemi designs. The following
procedures Microsemi-specific design tips.
* Using Predefined Microsemi Black Boxes, on page 346
* Using Smartgen Macros, on page 347
* Working with Radhard Designs, on page 347
* Specifying syn_radhardlevel in the Source Code, on page 348

For additional Microsemi-specific information, see Passing Information to the
P&R Tools, on page 352 and Generating Vendor-Specific Output, on
page 354.

Using Predefined Microsemi Black Boxes

The Microsemi macro libraries contain predefined black boxes for Microsemi
macros so that you can manually instantiate them in your design. For infor-
mation about using ACTGen macros, see Using Smartgen Macros, on

page 347. For general information about working with black boxes, see
Defining Black Boxes for Synthesis, on page 166.

To instantiate an Microsemi macro, use the following procedure.

1. Locate the Microsemi macro library file appropriate to your technology
and language (v or vhd) in one of these subdirectories under
installDirectory/lib.

proasic ProASIC3/3E/3L, Fusion/SmartFusion, and
IGLOO/IGLOO+/IGLOOe macros

microsemi Macros for all other Microsemi technologies.

Use the macro file that corresponds to your target architecture.

2. Add the Microsemi macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
346 February 2013

Optimizing Microsemi Designs Chapter 11: Optimizing for Microsemi Designs

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

library family;
use family.components.all ;

Specify the appropriate technology in family.

Using Smartgen Macros

The Smartgen macros replace the ACTgen macros, which were available in
the previous Designer 6.x place-and-route tool. The following procedure
shows you how to include Smartgen macros in your design. For information
about using Microsemi macro libraries, see Using Predefined Microsemi Black
Boxes, on page 346. For general information about working with black boxes,
see Defining Black Boxes for Synthesis, on page 166.

1. In Smartgen, generate the function you want to include.

2. For Verilog macros, do the following:

— Include the appropriate Microsemi macro library file for your target
architecture in your the source files list for your project.

— Include the Verilog version of the Smartgen result in your source file
list. Make sure that the Microsemi macro library is first in the source
files list, followed by the Smartgen Verilog files, followed by the other
source files.

3. Synthesize your design as usual.

Working with Radhard Designs

The following procedure outlines how to specify radhard values for a design
with the syn_radhardlevel attribute. Remember that the attribute is not recur-
sive. It only applies to all registers at the level where it is set and does not
affect lower-level registers.

You specify radhard values in modules and architecture in both the Attri-
butes panel in SCOPE and in the source code. However, for registers, it must
be specified in the source code only.

1. Add to your project the Microsemi macro files appropriate to the radhard
values you plan to set in the design. The macro files are in
installDirectory /lib /microsemi:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 347

Chapter 11: Optimizing for Microsemi Designs Optimizing Microsemi Designs

Radhard Value Verilog Macro File VHDL Macro File
cc cc.v cc.vhd

tmr tmr.v tmr.vhd

tmr_cc tmr_cc.v tmr_cc.vhd

For ProASIC3/3E devices only, you do not need to add the Microsemi
macro file to your project.

2. To set a global or default syn_radhardlevel attribute, do the following:

— Set the value in the source file for the module. The following sets all
registers of module_b to tmr:

VHDL Verilog

library synplify; module module b (a, b, sub,
use synplify.attributes.all; clk, rst) /*synthesis
attribute syn radhardlevel of syn radhardlevel="tmr"*/;

behav: architecture is "tmr";

— Make sure that the corresponding Microsemi macro file from step 1 is
the first file listed in the project, if required.

Specifying syn_radhardlevel in the Source Code

For a module, you can attach the syn_radhardlevel attribute either in the Attri-
butes panel of the SCOPE window or in the source code. For a register, you
can only apply this attribute in the source code.

To set attributes in SCOPE, see How Attributes and Directives are Specified,
on page 914. The following procedure outlines how to set this attribute in the
source code.

1. To set a global or default value, make sure that the corresponding
Microsemi macro file is the first file listed in the project, if required.

2. To set a syn_radhardlevel value for all the registers of a module, do the
following:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
348 February 2013

Optimizing Microsemi Designs Chapter 11: Optimizing for Microsemi Designs

— Set the value in the source file. The following sets all registers of
module_b to tmr:

VHDL Verilog

library synplify; module module b (a, b, sub,
use synplify.attributes.all; clk, rst) /*synthesis
attribute syn radhardlevel of syn radhardlevel="tmr"*/;

behav: architecture is "tmr";

— Add the appropriate Microsemi macro file (tmr.v or tmr.vhd) to the
project, unless you are working with a ProASIC3, ProASIC3E, or
ProASIC3L target. You do not need to add the Microsemi macro file to
your project for these devices. The macro files are in the
installDirectory /lib /microsemi.

The attribute is not recursive. When used at the module or architecture
level, it only applies to the registers at that level, and does not affect
lower-level registers.

3. To set a syn_radhardlevel value on a per-register basis, do the following:

— Set the value on the register in the source file for the module. For
example, to set the value of register bl_int to tmr, enter the following in
the module source file:

VHDL Verilog

library synplify; reg [15:0] al int, bl int
use synplify.attributes.all; /* synthesis syn radhardlevel
attribute syn radhardlevel of = "tmr" */;

bl int: signal is "tmr"

— Add the appropriate Microsemi macro file (tmr.v or tmr.vhd for this
example) to the project, unless you are working with a ProASIC3,
ProASIC3E, or ProASIC3L target. You do not need to add the
Microsemi macro file to your project for these devices.

Use a register-level attribute to override a default value with another
value, or set it to none to ensure that a global default value is not applied
to the register.

4. To prevent a default from being applied to a register or module/entity,
set syn_radhardlevel to none for that register, module, or entity.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 349

Chapter 11: Optimizing for Microsemi Designs Optimizing Microsemi Designs

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
350 February 2013

SYNOPSys

Innova

CHAPTER 12

Working with Synthesis Output

This chapter covers techniques for optimizing your design for various
vendors. The information in this chapter is intended to be used together with
the information in Chapter 6, Inferring High-Level Objects.

This chapter describes the following:
* Passing Information to the P&R Tools, on page 352
* Generating Vendor-Specific Output, on page 354

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 351

Chapter 12: Working with Synthesis Output Passing Information to the P&R Tools

Passing Information to the P&R Tools

The following procedures show you how to pass information to the place-and-
route tool; this information generally has no impact on synthesis. Typically,
you use attributes to pass this information to the place-and-route tools. This
section describes the following:

* Specifying Pin Locations, on page 352
* Specifying Locations for Microsemi Bus Ports, on page 353

* Specifying Macro and Register Placement, on page 353

Specifying Pin Locations

In certain technologies you can specify pin locations that are forward-
annotated to the corresponding place-and-route tool. The following procedure
shows you how to specify the appropriate attributes. For information about
other placement properties, see Specifying Macro and Register Placement, on
page 353.

1. Start with a design using one of the following vendors and technologies:
Microsemi families.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Microsemi bus port locations, see
Specifying Locations for Microsemi Bus Ports, on page 353.

— To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

— To add the attribute in the source files, use the appropriate attribute
and syntax. See the Reference Manual for syntax details.

Family Attribute and Value
Microsemi syn loc {pin number}
or

alspin {pin number}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
352 February 2013

Passing Information to the P&R Tools Chapter 12: Working with Synthesis Output

Specifying Locations for Microsemi Bus Ports

You can specify pin locations for Microsemi bus ports. To assign pin numbers
to a bus port, or to a single- or multiple-bit slice of a bus port, do the
following:

1. Open the constraint file an add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define global attribute syn noarrayports {1};

3. Use the alspin attribute to specify pin locations for individual bus bits.
This example shows locations specified for individual bits of bus
ADDRESSO.

define attribute {ADDRESSO
define attribute {ADDRESSO

{ [4]} alspin
{ (3]
define attribute {ADDRESSO [2]
{ [1]
(ol

} {
} alspin {
} alspin {
} alspin {
} alspin {40}

define attribute {ADDRESSO
define attribute {ADDRESSO

The software forward-annotates these pin locations to the place-and-
route software.

Specifying Macro and Register Placement

You can use attributes to specify macro and register placement in Microsemi
designs. The information here supplements the pin placement information
described in Specifying Pin Locations, on page 352 and bus pin placement
information described in Specifying Locations for Microsemi Bus Ports, on
page 353.

For... Use...

Relative placement of Microsemi alsloc Attribute

macros and IP blocks define_attribute {u1} alsloc {R15C6}
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 353

Chapter 12: Working with Synthesis Output Generating Vendor-Specific Output

Generating Vendor-Specific Output

The following topics describe generating vendor-specific output in the
synthesis tools.

¢ Targeting Output to Your Vendor, on page 354

* Customizing Netlist Formats, on page 355

Targeting Output to Your Vendor
You can generate output targeted to your vendor.
1. To specify the output, click the Implementation Options button.
2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
vendors, and shows the P&R tools for which the output is intended.

Vendor Output Netlist P&R Tool
Microsemi EDIF (.edn or .edf) Libero SoC
* sdc.sdc

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

See Specifying Result Options, on page 134 for details about setting the
option. For more information about constraint file output formats and
how constraints get forward-annotated, see Generating Constraint Files
for Forward Annotation, on page 47.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
354 February 2013

Generating Vendor-Specific Output Chapter 12: Working with Synthesis Output

Customizing Netlist Formats

The following table lists some attributes for customizing your Microsemi
output netlists:

For... Use...

Netlist formatting syn_netlist_hierarchy Attribute (Microsemi)
define_global_attribute syn_netlist_hierarchy {0}

Bus specification syn_noarrayports Attribute (Microsemi)
define_global_attribute syn_noarrayports {1}

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 355

Chapter 12: Working with Synthesis Output Generating Vendor-Specific Output

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
356 February 2013

SYNOPSys

CHAPTER 13

Running Post-Synthesis Operations

The following describe post-synthesis operations:
* Running Place-and-Route after Synthesis, on page 358
* Working with the Identify Tool Set, on page 359
* Simulating with the VCS Tool, on page 366

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 357

Chapter 13: Running Post-Synthesis Operations Running Place-and-Route after Synthesis

Running Place-and-Route after Synthesis

You can run place-and-route from within the tool or in batch mode.

Note: To run place and route successfully, first set the environment
variable PATH for the place-and-route tool.

You can run the place-and-route tool for your target technology automatically
after synthesis.

1. Check the Release Notes and make sure that you are using the correct
version of the P&R tool.

2. To automatically run the P&R tool after synthesis completes, do the
following:

— Click the Add P&R Implementation button. In the dialog box, select the
P&R implementation you want to run and enable Run Place & Route
following synthesis.

— Synthesize the design.

The tool automatically runs P&R after synthesis.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
358 February 2013

Working with the Identify Tool Set Chapter 13: Running Post-Synthesis Operations

Working with the Identify Tool Set

The Synopsys Identify tool set is a dual-component system that is a valuable
part of the HDL design flow process. The system consists of the Identify
instrumentor and Identify debugger.

* The Identify instrumentor allows you to select your design instrumenta-
tion at the HDL level and then create an on-chip hardware probe.

* The Identify debugger interacts with the on-chip hardware probe and
lets you do live debugging of the design.

The combination of these tools allows you to probe your HDL design in the
target environment. The combined system allows you to debug your design
faster, easier, and more efficiently.

The Synplify Pro tool has integrated the Identify instrumentor into the
synthesis user interface. This section describes how to take advantage of this
integration and use the Identify instrumentor:

* Launching from the Synplify Pro Tool, on page 359

* Handling Problems with Launching Identify, on page 361
* Using the Identify Tool, on page 362

* Using Compile Points with the Identify Tool, on page 364

Launching from the Synplify Pro Tool

Define a Synplify Pro project that you can pass to and launch in the Identify
instrumentor. For the Synplify Pro tool, you must create an Identify imple-
mentation in order to run the Identify instrumentor. If you already have an
Identify implementation, open it and use the Identify tool as described in
Using the Identify Tool, on page 362.

Do the following to add an Identify implementation:
1. In the synthesis interface, open the design you want to debug.

2. Do one of the following tasks to add an Identify implementation:

— With the project implementation selected, right-click and select New
Identify Implementation from the pop-up menu.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 359

Chapter 13: Running Post-Synthesis Operations Working with the Identify Tool Set

= Fn i fDesigns,ramiCkrl_prodfram. pri
-- f) Werilog
B [wHDL
-- |'§ Conskraink

. Implementation Options...
Change Implementation Mame...
Show Compile Paoints. .

Edit Design Plan
Copy Implementation...

Remaove Implementatiar... DEL

Mew [dentify [mplementatio * .
£l RTL Wiew
1 Technology iew

Add Place & Route Job...

Run

— Select Project->New Identify Implementation.

An Implementation Options dialog box appears where you can set the
options for your implementation. An Identify implementation is
created.

= @ [tutorial] - C:\sw\tutorial\tutorial.prj
& VHDL
#- [Veriog
= Constraint

3. To run Identify instrumentor, select the Launch Identify Instrumentor icon
(@) in the toolbar or select Run->ldentify Instrumentor.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
360 February 2013

Working with the Identify Tool Set Chapter 13: Running Post-Synthesis Operations

The Identify interface opens. You can now use the Identify tool as
described in Using the Identify Tool, on page 362 For complete details,
consult the Identify documentation.

If you run into problems while launching the Identify instrumentor, refer to
Handling Problems with Launching Identify, on page 361.

Handling Problems with Launching Identify

If you have not installed Identify correctly, you might run into problems when
you try to launch it from the synthesis tools. The following describe some
situations:

* If the Launch Identify Instrumentor icon (%)and the Run->Identify Instrumentor
menu command are inaccessible, you are either on an unsupported
platform or you are using a technology that does not support this
feature.

* If you have the Identify software installed but the synthesis application
cannot find it, select Options->Configure Identify Launch.

Locate Identify

® Use Current Identify Installation

[C:'nS\,rnDpsys'n,Idenﬁfy_FZD 12035P1 l

Locate Identify Installation (identify_instrumentor)
C:\Synopsys\Identify _F201203 D
Identify License Option

® Use current synthesis license

Use separate Identify license

Ok, | | Cancel
In the resulting dialog box, either:
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 361

Chapter 13: Running Post-Synthesis Operations Working with the Identify Tool Set

— check the Use Current Identify Installation entry. This entry is set by the
SYN_IDENTIFY_EXE environment variable to point to the Identify
installation. If this path is incorrect, change the environment variable
setting and restart the synthesis tool. button and specify the correct
location in the Locate Identify Installation field. You can use the Browse
button to open the Select Identify Installation Directory dialog box and
navigate to your current Identify installation directory.

* click the Locate Identify Installation button and specify the correct location in
the corresponding field. Use the browse button to open the Select Identify
Installation Directory dialog box and navigate to your current Identify instal-
lation directory.

Using the Identify Tool

This procedure provides an overview of how to use the Identify instrumentor.
For detailed information about the tool, refer to the Identify RTL debugger
documentation.

1. The Identify instrumentor software interface opens, with an Identify
project automatically set up for the design to be instrumented and
debugged (IICE tab). The following figure shows the main project window.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
362 February 2013

Working with the Identify Tool Set Chapter 13: Running Post-Synthesis Operations

e T~
File Edt Actions Options ‘Window Help
DEdd e i

Mews Project @ proj 21 |~ Instrumentation Options for fnstf ——————————————————
el Frojec ’ -
] verilog .
Open Project, aluy Device farily: Iganenc j
7 data_rius v

eight_bit_uc. JTAG port [sott =
Add Files.. ine_decode.v
_— ing_rom.y I™ Usze skew resistant hardware

New Instr. oy
prngcntr ¥ — Campile Option:
Make Incremental reg_file.v

’_ spol_regs.y Top level unit spol_regs
insti
New IICE Top level language: © yhdl & verilog
ok liorary: work,

I Blackbox all entities/modules with errors

T Compile |

¥ UseYerilog macros alobally
Al [

o [(@ce |

2. Do the following in the Identify instrumentor interface:

— Instrument the design. For details of using the Identify instrumentor,
refer to the Identify RTL debugger documentation.

— Save the instrumented design.

The Identify instrumentor tool exports the instrumented design to the
synthesis software. It creates an instrumentation subdirectory under
your synthesis working directory called designName_instr, which
contains the following:

— A synthesis project file
— An instr sources subdirectory for the instrumented HDL files

— Tcl scripts for loading the instrumented design

3. Return to the synthesis interface and view the instrumented design that
contains the debugging logic.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 363

Chapter 13: Running Post-Synthesis Operations Working with the Identify Tool Set

— In the synthesis interface, open the project file for the instrumented
design, which is in the instr sources subdirectory listed in the
Implementations Results view for your original synthesis project.

— Synthesize the design.
— Open the RTL view to see the inserted debugging logic.

4. Place and route the instrumented design after synthesis.

5. Use the Identify debugger tool to debug the instrumented design.

Using Compile Points with the Identify Tool

You can use compile points to run incrementally. This can reduce runtime
while running synthesis, and also while running the Identify flow. The
following figure illustrates this:

Incremental FPGA Implementation with
Synthesis Compile Points

Create [dentify Implementation

.

+ Incremental Instrument Desian
! Instrumentation I

Compile

Synthesize, Place, and Route
I

Generate Bitfile and Program Yes
I
. ! Design or
\‘ Debug with ldentify Debugger , instrumentation change?
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
364 February 2013

Working with the Identify Tool Set Chapter 13: Running Post-Synthesis Operations

When you use Identify instrumentation, the tool creates extra IICE logic at
the top level of the design and the corresponding interface to the signals that
need to be debugged. If you define compile points, the tool need only rerun
the compile points that have changed because of the insertion of this logic.
On subsequent runs, it can incrementally re-instrument only those compile
points where there are instrumentation changes or design modifications.The
following procedure describes the steps to follow to implement the flow and
take advantage of incremental synthesis and instrumentation:

1. Create a synthesis implementation with compile points.

2. Set up the Identify implementation:

— Generate the Identify implementation by right-clicking the FPGA
synthesis implementation and selecting New Identify Implementation from
the popup menu.

— Copy the compile point subdirectories manually to the new Identify
implementation directory.
3. Run the tools.
— Run synthesis.

— Before running the Identify tool, enable the top-level constraint file
and all compile point constraint files in the Identify implementation.

— Instrument the design. The tool inserts additional logic for
instrumentation.

4. Resynthesize the design.

The tool runs incrementally, only resynthesizing the compile points
affected by the inserted instrumentation logic. If you make any other
design changes, the tool incrementally synthesizes the affected compile
points.

5. Rerun instrumentation.

The tool runs incrementally, and only re-instruments the affected
compile points.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 365

Chapter 13: Running Post-Synthesis Operations Simulating with the VCS Tool

Simulating with the VCS Tool

The Synopsys VCS® tool is a high-performance, high-capacity Verilog
simulator that incorporates advanced, high-level abstraction verification
technologies into a single, open, native platform. You can launch this simula-
tion tool from the synthesis tools on Linux and Unix platforms by following
the steps below. The VCS tool does not run under the Windows operating
system.

1. Set up the tools.

— Install the VCS software and set up the $YCS_HOME environment
variable to define the location of the software.

— Set up the place-and-route tool.

— In the synthesis software, either select Run->Configure and Launch VCS
Simulator, or click the ¥g icon.

If you did not set up the $VCS_HOME environment variable, you are
prompted to define it. The Run VCS Simulator dialog box opens. For
descriptions of the options in this dialog box, see Configure and Launch
VCS Simulator Command, on page 213 of the Reference Manual.

2. Choose the category Simulation Type in the dialog box to configure the
simulation options.

— Specify the kind of simulation you want to run.

RTL simulation Enable Pre-Synthesis
Post-synthesis netlist simulation Enable Post-Synthesis

Post-P&R netlist simulation Enable Post P&R

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
366 February 2013

Simulating with the VCS Tool Chapter 13: Running Post-Synthesis Operations

rl Run V(S Pre-Synthesis Simulation 2lx|
Choose a Catego
gory Simulation Type

W Simulation Type (Pre-Synthesis)

W Top Level Module (test_bench) @ Presynthesis Post-Synthesis Post PAR Run

W VCS Options

viendor Viersion

Libraries View Script

W Test Bench Files

Loy

Post P&R Netiist Close
MNote: The simulation type affects your libraries and run directory. These are
recorded separately for each smulation type. Restore Defaults

— Choose the category VCS Options in the dialog box to set options such
as the following VCS commands.

To set... Type the option in...

VLOGAN command options for compiling and Verilog Compile
analyzing Verilog, like the -q option

VHDLAN options for compiling and analyzing VHDL VHDL Compile
VCS command options Elaboration

SIMV command options, like -debug Simulation

The options you set are written out as VCS commands in the script. If
you leave the default settings the VCS tool uses the FPGA version of VCS
and opens with the debugger (DVE) GUI and the waveform viewer. See
the VCS documentation for details of command options.

3. If your project has Verilog files with ~include statements, you must use
the +incdir+ fileName argument when you specify the vliogan command.
You enter the +incdir+ in the Verilog Compile field in the VCS Options dialog
box, as shown below:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 367

Chapter 13: Running Post-Synthesis Operations

Simulating with the VCS Tool

ﬂ Run VCS Pre-Synthesis Simulation

Choose a Category

W Simulation Type (Pre-Synthesis)
W Top Level Module (test_bench)
W VCS Options

Veendor Version

Libraries

W Test Bench Files

W Run Directory

Post P&R Netlist

21
VCS Options
Verilog Compile [+incdir+ Jfinclude_dir 1 +incdir + . finclude _dir2] Run
VHDL Compie []
Elaboration [] et
Simulation [] Close
Use the FPGA version of VCS
Open the VCS GUI following simulation _
Mote: the "FPGA™ and "GUI" options will be saved for future default values. RechneDeralls

Example Verilog File:

“include "component.v"
module Top (input a, output x);

endmodule

The syntax for the VCS commands must reflect the relative location of

the Verilog files:

— If the Verilog files are in the same directory as the top.v file, specify:

- vlogan -work work Top.v

+incdir+ ./

— Ifthe Verilog files are in the a directory above the top . v file, specify:

- vlogan -work work Top.v
../ include2

+incdir+ ../includel +incdir+

— If the Verilog files are in directories below and above the top . v file, specify:

- vlogan -work work Top.v

+incdir../include dir2

+incdir+ ./include dirl

4. Specify the libraries and test bench files, if you are using them.

Copyright © 2013 Synopsys, Inc.
368

Synplify Pro for Microsemi Edition User Guide
February 2013

Simulating with the VCS Tool Chapter 13: Running Post-Synthesis Operations

— To specify a library, click the green Add button, and specify the library

in the dialog box that opens. Use the full path to the libraries. For
pre-synthesis simulation, specifying libraries is optional.

Add R 2
|) =)

Type ® Verilog VHDL Other

Edit

Library ['.\‘ork] -

Options []

Delete

For post-synthesis and post-P&R synthesis, by default the dialog box
displays the UNISIM and SIMPRIM libraries in the P&R tool path. You
can add and delete libraries or edit them, using the buttons on the
side. To restore the defaults, click the Verilog Defaults or VHDL Defaults
button, according to the language you are using.

If you have test bench files, choose the category Test Bench Files in the
dialog box to specify them. Use the buttons on the side to add, delete,
or edit the files.

5. Specify the top-level module and run directory.

— Choose the category Top Level Module in the dialog box to specify the

top-level module or modules for the simulation.

— If necessary, choose the category Run Directory near the bottom of the

dialog box to edit the default run directory listed in the field. The
default location is in the implementation results directory.

6. Generate the VCS script.

— To view the script before generating it, click the View Script button on

the top right of the dialog box. A window opens with the specified VCS
commands and options.

— To generate the VCS script, click Save As, or run VCS by clicking the

Run button in the upper right. The tool generates the XML script in
the directory specified.

7. To run VCS from the synthesis tool interface, do the following:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
369

February 2013

Chapter 13: Running Post-Synthesis Operations Simulating with the VCS Tool

— If you do not already have it open, open the Run VCS Simulator dialog
box by clicking the ygs icon.

— To use an existing script, click the Load From button on the lower right
and select the script in the dialog box that opens. Then click Run in
the Run VCS Simulator dialog box.

— If you do not have an existing script, specify the VCS options, as
described in the previous five steps. Click Run.

The tool invokes VCS from the synthesis interface, using the commands
in the script.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
370 February 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 14

Working with IP Input

This chapter describes how to work with IP from different sources. It
describes the following:

* Generating IP with SYNCore, on page 372
* Using Hyper Source, on page 424

* Working with Encrypted IP, on page 415
* Using Hyper Source, on page 424

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 371

Chapter 14: Working with IP Input Generating IP with SYNCore

Generating IP with SYNCore

You can use the SYNCore IP wizard to generate FIFO, RAM, ROM,
adder/subtractor, and counter implementations. See the following for more
information.

¢ Specifying FIFOs with SYNCore, on page 372

* Specifying RAMs with SYNCore, on page 378

* Specifying Byte-Enable RAMs with SYNCore, on page 385
* Specifying ROMs with SYNCore, on page 391

* Specifying Adder/Subtractors with SYNCore, on page 396
* Specifying Counters with SYNCore, on page 403

Specifying FIFOs with SYNCore

The SYNCore IP Wizard helps you generate Verilog code for your FIFO imple-
mentations. The following procedure shows you how to generate Verilog code
for a FIFO using the SYNCore IP wizard.

Note: The SYNCore FIFO model uses Verilog 2001. When adding a FIFO
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
372 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

[

e SYNCore

rithmetic
- addnsub SYNCore is the Synplify IP Core Wizard. This tool
- addnsub_model simplifies the building of HDL models for IP blocks. The
= counter Verilog models it generates can be synthesized and
- counter_model simulated.
- fifos
. & fifo To get started, double-click the kind of model you want to
.. gfifo_model create. This starts the wizard, which takes you through
B memoaries what you need to do to generate the model you want.

£l byte_enable_ram
- byte_en_ram_model

For detailed information about the models, use the
following:

* Use Info buttons in the respective core wizard
* Synplicity online help for the synthesis tool @

— In the window that opens, select sfifo_model and click Ok. This opens
the first screen of the wizard.

FIFORarameters | Core Owerview | Cantack |

Sync Fifo Compiler

Component Mame [l

Directory [H Browmse, .. ‘

Filename [H Erowse, ., ‘

Sync FIFO Size

Width E | valid Range 1..256

Depth [16 | valid Range 8..16384

2. Specify the parameters you need in the five pages of the wizard. For
details, refer to Specifying SYNCore FIFO Parameters, on page 376.

The FIFO symbol on the left reflects the parameters you set.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 373

Chapter 14: Working with IP Input Generating IP with SYNCore

3. After you have specified all the parameters you need, click the Generate
button (lower left).

The tool displays a confirmation message (TCL execution successful!) and
writes the required files to the directory you specified in the parameters.
The HDL code is in Verilog.

The FIFO generated is a synchronous FIFO with symmetric ports and
with the same clock controlling both the read and write operations. Data
is written or read on the rising edge of the clock. All resets are synchro-
nous with the clock. All edges (clock, enable, and reset) are considered
positive.

SYNCore also generates a testbench for the FIFO that you can use for
simulation. The testbench covers a limited set of vectors for testing.

You can now close the SYNCore wizard.

4. Add the FIFO you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_sfifo.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following shows a
template file (in red text) inserted into a top-level module.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
374 February 2013

Generating IP with SYNCore

Chapter 14: Working with IP Input

module top (

input Clk,
input [15:0] Dataln,
input WrEn,
input RdEn,

output Full,

output Empty,

output [15:0] DataOut
)

fifo a32 <instanceName> (
.Clock (Clock)
, .Din(Din)

, -Write enable (Write enable)
, -Read enable (Read enable)

, .Dout (Dout)
, .Full (Full)
, -Empty (Empty)

endmodule

template

Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

Synplify Pro for Microsemi Edition User Guide

February 2013

Copyright © 2013 Synopsys, Inc.
375

Chapter 14: Working with IP Input Generating IP with SYNCore

module top (

input Clk,
input [15:0] Dataln,
input WrEn,
input RdEn,

output Full,

output Empty,

output [15:0] DataOut
)i

fifo a32 busfifo(
.Clock (Clk)

, .Din (DatalIn)

, -Write enable (WrEn)
, -Read_enable (RAEn)
, .Dout (DataOut)

, -Full (Full)

, - Empty (Empty)

endmodule

Note that currently the FIFO models will not be implemented with the
dedicated FIFO blocks available in certain technologies.

Specifying SYNCore FIFO Parameters

The following elaborates on the parameter settings for SYNCore FIFOs. The
status, handshaking, and programmable flags are optional. For descriptions
of the parameters, see SYNCore FIFO Wizard, on page 186 in the Reference
Manual. For timing diagrams, see Synplicity Archive Utility, on page 778in the
Reference Manual.

1. Start the SYNCore wizard, as described in Specifying FIFOs with
SYNCore, on page 372.

2. Do the following on page 1 of the FIFO wizard:
— In Component Name, specify a name for the FIFO. Do not use spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
376 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

— In Filename, specify a name for the Verilog output file with the FIFO
specifications. Do not use spaces.

— Click Next. The wizard opens another page where you can set
parameters.

3. For a FIFO with no status, handshaking, or programmable flags, use the
default settings. You can generate the FIFO, as described in Specifying
FIFOs with SYNCore, on page 372.

4. To set an almost full status flag, do the following on page 2 of the FIFO
wizard:
— Enable Almost Full.

— Set associated handshaking flags for the signal as desired, with the
Overflow Flag and Write Acknowledge options.

— Click Next when you are done.

5. To set an almost empty status flag, do the following on page 3:
— Enable Almost Empty.

— Set associated handshaking flags for the signal as desired, with the
Underflow Flag and Read Acknowledge options.

— Click Next when you are done.

6. To set a programmable full flag, do the following:

— Make sure you have enabled Full on page 2 of the wizard and set any
handshaking flags you require.

— Go to page 4 and enable Programmable Full.

— Select one of the four mutually exclusive configurations for
Programmable Full on page 4. See Programmable Full, on page 790 in
the Reference Manual for details.

— Click Next when you are done.

7. To set a programmable empty flag, do the following:

— Make sure you have enabled Empty on page 3 of the wizard and set
any handshaking flags you require.

— Go to page 5 and enable Programmable Empty.

— Select one of the four mutually exclusive configurations for
Programmable Empty on page 5. See Programmable Empty, on
page 793 in the Reference Manual for details.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 377

Chapter 14: Working with IP Input Generating IP with SYNCore

You can now generate the FIFO and add it to the design, as described in
Specifying FIFOs with SYNCore, on page 372.

Specifying RAMs with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your RAM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a RAM using the SYNCore IP wizard.

Note: The SYNCore RAM model uses Verilog 2001. When adding a RAM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

ok SYNCore e

El-tarithmetic
- B addnsub SYNCore is the Synplify IP Core Wizard. This tool

- addnsub_model simplifies the building of HDL models for IP blocks. The
g- counter Verilog models it generates can be synthesized and
- counter_model simulated.
&1~ fifos
. B sfifo To get started, doubleclick the kind of model you want to
... gfifo_model create. This starts the wizard, which takes you through
B} memories what you need to do to generate the model you want.

El- byte_enable_ram

.. byte_en_ram_model For detailed information about the models, use the

E! ram following: .

“ ram_model * Use Info buttons in the respective core wizard

E- rom el * Synplicity online help for the synthesis tool @
“ rom_mode

— In the window that opens, select ram_model and click Ok. This opens
the first screen of the wizard.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
378 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

Parameters Core Crverview Contack

Memory Compiler

Component Mams []

Directory []| Erowse... |

Filenarne []| Browse... |

Memoty Size

Data width [16 | “alid Range 1..256

ddress width [| “alid Range 2..256

How will ywou be using the RAM?

® Single Part Dual Port

wWhich clacking method da you want ta use?

® Single Clock () Separate Clocks For Each Port

| Generate || Cancel || RAM Info.., |

2. Specify the parameters you need in the wizard.

— For details about the parameters for a single-port RAM, see
Specifying Parameters for Single-Port RAM, on page 381.

— For details about the parameters for a dual-port RAM, see Specifying
Parameters for Dual-Port RAM, on page 382. Note that dual-port
implementations are only supported for some technologies.

The RAM symbol on the left reflects the parameters you set.

The default settings for the tool implement a block RAM with synchro-
nous resets, and where all edges (clock, enable, and reset) are considered
positive.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message is displayed (TCL execution
successfull) and writes the required files to the directory you specified in
the parameters. The HDL code is in Verilog.

SYNCore also generates a testbench for the RAM. The testbench covers a
limited set of vectors.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 379

Chapter 14: Working with IP Input Generating IP with SYNCore

You can now close the SYNCore Memory Compiler.
4. Edit the RAM files if necessary.

— The default RAM has a no_rw_check attribute enabled. If you do not
want this, edit syncore_ram.v and comment out the "define
SYN_MULTI_PORT_RAM statement, or use "undef
SYN_MULTI_PORT_RAM.

— If you want to use the synchronous RAMs available in the target
technology, make sure to register either the read address or the
outputs.

S. Add the RAM you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_ram.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following figure
shows a template file (in red text) inserted into a top-level module.

module top (

input Clka,

input [7:0] AddrA,
input [15:0] DatalnA,
input WrEna,

output [15:0] DataOutA
)

myram2 <InstanceName> (
.PortAClk (PortAClk)

, .PortAAddr (PortAAddr)
, .PortADataln (PortADataln) template
, .PortAWriteEnable (PortAWriteEnable)
, .PortADataOut (PortADatalut)

endmodule

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
380 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

— Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

module top (

input Clka,

input [7:0] Addra,
input [15:0] DataInAa,
input WrEnAa,

output [15:0] DataOutA

)

myram2 decoderram (
.PortAClk (Clka)

, .PortAAddr (AddrA)

, .PortADataln (DataInA)

, .PortAWriteEnable (WrEnA)
, .PortADataOut (DataOuth)

endmodule

Specifying Parameters for Single-Port RAM

To create a single-port RAM with the SYNCore Memory Compiler, you need to
specify a single read/write address (single port) and a single clock. You only
need to configure Port A. The following procedure lists what you need to
specify. For descriptions of each parameter, refer to SYNCore RAM Wizard, on
page 195 in the Reference Manual.

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 378.

2. Do the following on page 1 of the RAM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 381

Chapter 14: Working with IP Input Generating IP with SYNCore

— In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

— Enter data and address widths.

— Enable Single Port, to specify that you want to generate a single-port
RAM. This automatically enables Single Clock.

— Click Next. The wizard opens another page where you can set
parameters for Port A.

The RAM symbol dynamically updates to reflect the parameters you set.

3. Do the following on page 2 of the RAM wizard:
— Set Use Write Enable to the setting you want.
— Set Register Read Address to the setting you want.

— Set Synchronous Reset to the setting you want. Register Outputs is
always enabled

— Specify the read access you require for the RAM.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 378. You do not need to specify
any parameters on page 3, as this is a single-port RAM and you do not
need to specify Port B. All output files are in the directory you specified
on the first page of the wizard.

For details about setting dual-port RAM parameters, see Specifying
Parameters for Dual-Port RAM, on page 382. For read/write timing
diagrams, see Read/ Write Timing Sequences, on page 803 of the Refer-
ence Manual.

Specifying Parameters for Dual-Port RAM

The following procedure shows you how to set parameters for dual-port
memory in the SYNCore wizard. Dual-port RAMs are only supported for some
technologies. For information about generating single-port RAMs, see Speci-
fying Parameters for Single-Port RAM, on page 381. It shows you how to
generate these common RAM configurations:

* One read access and one write access
* Two read accesses and one write access

* Two read accesses and two write accesses

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
382 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

For the corresponding read/write timing diagrams, see Read/ Write Timing
Sequences, on page 803 of the Reference Manual.

1. Start the SYNCore RAM wizard, as described in Generating IP with
SYNCore, on page 372.
2. Do the following on page 1 of the RAM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

— Enter data and address widths.

— Enable Dual Port, to specify that you want to generate a dual-port
RAM.

— Specify the clocks.

For a single clock... Enable Single Clock.

For separate clocks for Enable Separate Clocks For Each Port.
each of the ports...

— Click Next. The wizard opens another page where you can set
parameters for Port A.

3. Do the following on page 2 of the RAM wizard to specify settings for Port

A:
— Set parameters according to the kind of memory you want to
generate:
One read & one write Enable Read Only Access.
Two reads & one write Enable Read and Write Access.
Specify a setting for Use Write Enable.
Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a read access option for Port A.
— Specify a setting for Register Read Address.
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 383

Chapter 14: Working with IP Input Generating IP with SYNCore

— Set Synchronous Reset to the setting you want. Register Outputs is
always enabled.

— Click Next. The wizard opens another page where you can set
parameters for Port B. The page and the parameters are identical to
the previous page, except that the settings are for Port B instead of
Port A.

4. Specify the settings for Port B on page 3 of the wizard according to the
kind of memory you want to generate:

One read & one write Enable Write Only Access.
Set Use Write Enable to the setting you want.

Two reads & one write Enable Read Only Access.
Specify a setting for Register Read Address.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a setting for Register Read Address.
Set Synchronous Reset to the setting you want.
Note that Register Outputs is always enabled.
Select a read access option for Port B.

The RAM symbol on the left reflects the parameters you set. All output
files are written to the directory you specified on the first page of the
wizard.

You can now generate the RAM by clicking Generate, as described in
Generating IP with SYNCore, on page 372, and add it to your design.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
384 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

Specifying Byte-Enable RAMs with SYNCore

The SYNCore IP wizard helps you generate SystemVerilog code for your byte-
enable RAM implementation requirements. The following procedure shows
you how to generate SystemVerilog code for a byte-enable RAM using the
SYNCore IP wizard.

Note: The SYNCore byte-enable RAM model uses SystemVerilog. When
adding a byte-enable RAM to your design, be sure to enable the
System Verilog check box on the Verilog tab of the Implementation Options
dialog box or include a set option -vlog_std sysv statement in your
project file to prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

kol SYNCore =

EHiarithmetic

! SYNCore is the Synplify IP Core Wizard. This tool
- addnsub_model simplifies the building of HDL models for IP blocks. The

- counter Verilog models it generates can be synthesized and
- counter_model simulated.
- fifos
B sfifo To get started, double-click the kind of model you want to
i . sfifo_model create. This starts the wizard, which takes you through
Bl memories what you need to do to generate the model you want.

El- byte_enable_ram - :
' byte_en_ram_model Faor dgtaﬂed information about the models, use the ||
following:

- ram

: - ram_model ¢ Use Info buttons in the respective core wizard
£l rom # Synplicity online help for the synthesis tool
- rom_muodel

— In the window that opens, select byte_en_ram_model and click Ok to
open the first page (pagel) of the wizard.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 385

Chapter 14: Working with IP Input Generating IP with SYNCore

BYTE ENABLE RAM Parameters l

Byte Enable Ram Compiler

Component Hame []

Clka Directory [I | Browse... |
File Mame [I | Browse... |
AddrA
—Memaory Si
Dot Address Width [2 | valid Range 2...28
Data Width IZ] valid range 2..256
BYTE ENABLE RAM
GEBEETN | write Enable Width [2 | valid Range 2...256

—How will you be using the RAM?

@ Single Port () Dual Port

SynCore BYTE ENABLE RAM Next Page 1 of 3

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Byte-Enable RAM Parameters, on page 389.
The BYTE ENABLE RAM symbol on the left reflects any parameters you
set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successful!) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in SystemVerilog.

SYNCore also generates a test bench for the byte-enable RAM compo-
nent. The test bench covers a limited set of vectors. You can now close
the SYNCore byte-enable RAM compiler.

4. Edit the generated files for the byte-enable RAM component if necessary.

5. Add the byte-enable RAM that you generated to your design.

— On the Verilog tab of the Implementation Options dialog box, make
sure that SystemVerilog is enabled.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
386 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

— Use the Add File command to add the Verilog design file that was
generated (the filename entered on page 1 of the wizard) and the
syncore_*.v file to your project. These files are in the directory for
output files that you specified on page 1 of the wizard.

— Use a text editor to open the instantiation_file.vin template file. This file is
located in the same output files directory. Copy the lines that define
the byte-enable RAM and paste them into your top-level module.

— Edit the template port connections so that they agree with the port
definitions in the top-level module; also change the instantiation
name to agree with the component name entered on page 1. The
following figure shows a template file inserted into a top-level module
with the updated component name and port connections in red.

module top
(input Clocka,
input [3:0] AddA
input [31:0] Dataln
input WrEnA,
input Reset
output [31:0] DataOut
)

INST TAG

SP_RAM #

(.ADD WIDTH(4),
.WE_WIDTH(2),
.RADDR_LTNCY A(1)
.RDATA LTNCY A(1),
.RST_TYPE A(1), //
.RST RDATA A({32{1
.DATA WIDTH (32)

)

// 0 - No Latency , 1 - 1 Cycle Latency
// 0 - No Latency , 1 - 1 Cycle Latency
0
b

’

- No Reset , 1 synchronous

'b1}}),

4x32spram
(// Output Ports
.RdDataA (DatalIn),
// Input Ports
.WrDataA (DatalOut) ,

.WenA (WeEnA) ,
.AddrA (AddAn) ,
.ResetA (Reset),
.ClkA (Clocka)
)i
Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 387

Chapter 14: Working with IP Input Generating IP with SYNCore

Port List

Port A interface signals are applicable for both single-port and dual-port
configurations; Port B signals are applicable for dual-port configuration only.

Name Type Description
CIkA Input Clock input for Port A
WenA Input Write enable for Port A; present when Port
A is in write mode
AddrA Input Memory access address for Port A
ResetA Input Reset for memory and all registers in core;

present with registered read data when
Reset is enabled; active low (cannot be

changed)

WrDataA Input Write data to memory for Port A; present
when Port A is in write mode

RdDataA Output Read data output for Port A; present when
Port A is in read or read /write mode

ClkB Input Clock input for Port B; present in dual-
port mode

WenB Input Write enable for Port B; present in dual-

port mode when Port B is in write mode

AddrB Input Memory access address for Port B; present
in dual-port mode

ResetB Input Reset for memory and all registers in core;
present in dual-port mode when read data
is registered and Reset is enabled; active
low (cannot be changed)

WrDataB Input Write data to memory for Port B; present
in dual-port mode when Port B is in write
mode

RdDataB Output Read data output for Port B; present in

dual-port mode when Port B is in read or
read/write mode

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
388 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

Specifying Byte-Enable RAM Parameters

When creating a single-port, byte-enable RAM with the SYNCore IP wizard,
you must specify a single read address and a single clock; you only need to
configure the Port A parameters on page 2 of the wizard.

When creating a dual-port, byte-enable RAM, you must additionally configure
the Port B parameters on page 3 of the wizard.

The following procedure lists the parameters you need to specify. For descrip-
tions of each parameter, refer to Parameter List, on page 810 in the Reference
Manual.

1. Start the SYNCore byte-enable RAM wizard as described in Specifying
Byte-Enable RAMs with SYNCore, on page 385.

2. Do the following on page 1 of the byte-enable RAM wizard:

Specify a name for the memory in the Component Name field; do not
use spaces.

Specify a directory name in the Directory field where you want the
output files to be written; do not use spaces.

Specify a name in the File Name field for the SystemVerilog file to be
generated with the byte-enable RAM specifications; do not use
spaces.

Enter a value for the address width of the byte-enable RAM; the
maximum depth of memory is limited to 2/256.

Enter a value for the data width for the byte-enable RAM; data width
values range from 2 to 256.

Enter a value for the write enable width; write-enable width values
range from 1 to 4.

Select Single Port to generate a single-port, byte-enable RAM or select
Dual Port to generate a dual-port, byte-enable RAM.

Click Next to open page 2 of the wizard.

The Byte Enable RAM symbol dynamically updates to reflect the param-
eters that you set.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
389

February 2013

Chapter 14: Working with IP Input

Generating IP with SYNCore

3. Do the following on page 2 (configuring Port A) of the wizard:

Select the Port A configuration. Only Read and Write Access mode is
valid for single-port configurations; this mode is selected by default.

Set Pipelining Address Bus and Output Data according to your
application. By default, read data is registered; you can register both
the address and data registers.

Set the Configure Reset Options. Enabling the checkbox enables the
synchronous reset for read data. This option is enabled only when the
read data is registered. Reset is active low and cannot be changed.

Configure output reset data value options under Specify output data
on reset; reset data can be set to default value of all '1' s or to a user-
defined decimal value. Reset data value options are disabled when
the reset is not enabled for Port A.

Set Write Enable for Port A value; default for the write-enable level is
active high.

4. If you are generating a dual-port, byte-enable RAM, set the Port B
parameters on page 3 (note that the Port B parameters are only enabled
when Dual Port is selected on page 1).

The Port B parameters are identical to the Port A parameters on page 2.
When using the dual-port configuration, when one port is configured for
read access, the other port can only be configured for read /write access
or write access.

S. Generate the byte-enable RAM by clicking Generate. Add the file to your
project and edit the template file as described in Specifying Byte-Enable
RAMs with SYNCore, on page 385. For read/write timing diagrams, see
Read/ Write Timing Sequences, on page 807 of the Reference Manual.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
390

February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

Specifying ROMs with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your ROM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a ROM using the SYNCore IP wizard.

Note: The SYNCore ROM model uses Verilog 2001. When adding a ROM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Fie List SYNCore Rom Model =

- arithmetic
i [addnsub

The SYMCore Rom compiler helps you creste Rom models for your

=" . atddnsub_model designs. These Rom models are written out in Yerilog and can be
C?an:urnter model synthesized as well as simulated. &testhench iz generated for this
B fifos - purpoze.
Bl sfifo . i ;
.. efifa model For mare information about the SYMCore Rom compiler, refer to the
El- memories following:
- ram

* The built-in Rom Compiler document, which you access
from the ROM Info hutton.

® The Synplicity tool synthesis tool online help, where you
can access information for the following from the online

help Contents:
-
F——————— .@

“e ram_model

— In the window that opens, select rom_model and click Ok to open page
1 of the wizard.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 391

Chapter 14: Working with IP Input Generating IP with SYNCore

Parameters

Rom Compiler

Component Mame []

Directory []l Browse, .. |

File: Mame: []l Browse, ., |

—ROM 5

Read Data width & | valid Range 1..256

ROM address width [10 | valid Range 2..256

~— Configuring the ROM

(@) Single Pork Rom () Dual Port Ram

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying ROM Parameters, on page 395. The ROM
symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successful!) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in Verilog.

SYNCore also generates a testbench for the ROM. The testbench covers
a limited set of vectors.

You can now close the SYNCore ROM Compiler.

4. Edit the ROM files if necessary. If you want to use the synchronous
ROMs available in the target technology, make sure to register either the
read address or the outputs.

5. Add the ROM you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_rom.v file to your project. These files are in

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
392 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file. This file
is located in the same output files directory. Copy the lines that
define the ROM, and paste them into your top-level module. The

following figure shows a template file (in red text) inserted into a top-
level module.

module test rom style(z,a,clk,en,rst);
input clk,en,rst;

output reg [3:0] z;

input [6:0] a;

my1lstROM <InstanceName> (
// Output Ports
.DataA (Dataad) ,

// Input Ports template
.ClkA (ClkAn),
.EnA (Ena) ,
.ResetA (Reseth) ,
.AddrA (AddrA)
) ; -

— Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 393

Chapter 14: Working with IP Input Generating IP with SYNCore

module test rom style(z,a,clk,en,rst);
input clk,en,rst;

output reg [3:0] z;

input [6:0] a;

mylstROM decode rom(
// Output Ports
.DataA(z),

// Input Ports
.ClkA (clk),
.EnA(en),
.ResetA(rst),
.AddrA (a)

Port List

PortA interface signals are applicable for both single-port and dual-port
configurations; PortB signals are applicable for dual-port configuration only.

Name Type Description

CIkA Input Clock input for Port A

EnA Input Enable input for Port A

AddrA Input Read address for Port A

ResetA Input Reset or interface disable pin for Port A

DataA Output Read data output for Port A

ClkB Input Clock input for Port B

EnB Input Enable input for Port B

AddrB Input Read address for Port B

ResetB Input Reset or interface disable pin for Port B

DataB Output Read data output for Port B
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
394 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

Specifying ROM Parameters

If you are creating a single-port ROM with the SYNCore IP wizard, you need to
specify a single read address and a single clock, and you only need to
configure the Port A parameters on page 2. If you are creating a dual-port
ROM, you must additionally configure the Port B parameters on page 3. The
following procedure lists what you need to specify. For descriptions of each
parameter, refer to SYNCore RAM Wizard, on page 195 in the Reference
Manual.

1. Start the SYNCore ROM wizard, as described in Specifying ROMs with
SYNCore, on page 391.

2. Do the following on page 1 of the ROM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the ROM specifications. Do not use spaces.

— Enter values for Read Data width and ROM address width (minimum depth
value is 2; maximum depth of the memory is limited to 27256).

— Select Single Port Rom to indicate that you want to generate a single-
port ROM or select Dual Port Rom to generate a dual-port ROM.

— Click Next. The wizard opens page 2 where you set parameters for Port
A.

The ROM symbol dynamically updates to reflect any parameters you set.

3. Do the following on page 2 (Configuring Port A) of the RAM wizard:

— For synchronous ROMs, select Register address bus AddrA and/or
Register output data bus DataA to register the read address and/or the
outputs. Selecting either checkbox enables the Enable for Port A
checkbox which is used to select the Enable level.

— Set the Configure Reset Options. Enabling the checkbox enables the type
of reset (asynchronous or synchronous) and allows an output data
pattern (all 1’s or a specified pattern) to be defined on page 4.

4. If you are generating a dual-port ROM, set the port B parameters on
page 3 (the page 3 parameters are only enabled when Dual Port Rom is
selected on page 1).

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 395

Chapter 14: Working with IP Input Generating IP with SYNCore

S. On page 4, specify the location of the ROM initialization file and the data
format (Hexadecimal or Binary). ROM initialization is supported using
memory-coefficient files. The data format is either binary or hexadecimal
with each data entry on a new line in the memory-coefficient file
(specified by parameter INIT_FILE). Supported file types are txt, mem, dat,
and init (recommended).

6. Generate the ROM by clicking Generate, as described in Specifying ROMs
with SYNCore, on page 391 and add it to your design. All output files are
in the directory you specified on page 1 of the wizard.

For read/write timing diagrams, see Read/Write Timing Sequences, on
page 803 of the Reference Manual.

Specifying Adder/Subtractors with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your
adder/subtractor implementation requirements. The following procedure
shows you how to generate Verilog code for an adder/subtractor using the
SYNCore IP wizard.

Note: The SYNCore adder/subtractor models use Verilog 2001. When
adding an adder/subtractor model to a Verilog-95 design, be sure to
enable the Verilog 2001 check box on the Verilog tab of the Implementation
Options dialog box or include a set_option -viog_std v2001 statement in
your project file to prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
396 February 2013

Generating IP with SYNCore

Chapter 14: Working with IP Input

File: List

[l arithmetic

i [addnsub
{addnsub_
=l counter
- counter_madel

El- fifos
. E-sfifo
; o sfifo_model
- mematies
El-ram
- ram_model

-

SYNCore AddnSub Model

The SYNCore AddnSub compiler helps you creste AddnSub models
for your designs. These AddnSub models are written out in Verilog
and can be synthesized az well a3 simulated. Atestbench is
generated for thiz purpoze.

For more information about the SYMCore AddnSub compiler, refer
to the following:

The buit-in AddnSub Compiler document, which you
access from the ADDNSUB Info button .

e vom model ® The Synplicity tool synthesis tool online help, where you
- can access information for the followving from the online
help Contents:
@
r e ———— = — 1
| [¢]3 | | Cancel |

— In the window that opens, select addnsub_model and click Ok to open

pagel of the wizard.

ADDNSUE Parameters Core Overview

Contack

AddnSub Compiler

Component Mame [

Direckory [

]l Browse. .. |

File Name [

]l Browese. .. |

Configure the Mode of Operation

(@) Adder
() Subtractar

() Adder/Subtractor

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
397

Chapter 14: Working with IP Input Generating IP with SYNCore

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Adder/Subtractor Parameters, on page 401.
The ADDnSUB symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

The SYNCore wizard also generates a testbench for your
adder/subtractor. The testbench covers a limited set of vectors. You can
now close the wizard.

4. Add the adder/subtractor you generated to your design.
— Edit the adder/subtractor files if necessary.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the adder/subtractor and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a top-
level module.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
398 February 2013

Generating IP with SYNCore Chapter 14: Working with IP Input

module top |
output [15 @ 0] Out,
input Clk,
input [15 : 0] A4,
input CEL,
input RSTA,|
input [15 : 0] E,
input CEE,
input R3TE,
input CECut,
input R3STOut,
input ADDKRSTUE,
input CarrvIn 1:

My ADDnIUE <TInstancelame: |

FF output Porta
TortCut (Poroiat) ,

5 Inmput Porta
DHortClE(PortoClk)
LPortiA{Portd),
PortCEA(PoroZELAY
LPortRITA(POrtRITAY template
FPortE(ForthE) ,
FortCEE(PortoZEE)
LEPortRATE (P orth3TE)
LPorcCECut { PorcCECAT) ,
LPortRATout (PortRSTO0T)
LPortADDnSUE (PortADDnSUE) |
PortCarryIn(PortcCareyIng 3:

endmodule

— Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

module top (

output [15 : 0] Out,
input Clk,

input [15 : 0] A,
input CEA,

input RSTA,

input [15 : 0] B,
input CEB,

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 399

Chapter 14: Working with IP Input Generating IP with SYNCore

input RSTB,
input CEOut,
input RSTOut,
input ADDnSUB,
input CarryIn);

My ADDnSUB ADDnSUB_inst (
// Output Ports
.PortOut (Out) ,
// Input Ports
.PortClk (Clk),
.PortA(a),
.PortCEA (CER) ,
.PortRSTA (RSTA) ,
.PortB(B),
.PortCEB (CEB) ,
.PortRSTB (RSTB) ,
. PortCEOut (CEOut) ,
.PortRSTOut (RSTOuUt) ,
. Port ADDnSUB (ADDNnSUB) ,
.PortCarryIn(CarryIn));
endmodule

Port List

The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Port Name Description Required/Optional
PortA Data input for Always present
adder/subtractor

Parameterized width and
pipeline stages

PortB Data input for Not present if
adder/subtractor adder/subtractor is
Parameterized width and configured as a constant
pipeline stages adder/subtractor
PortClk Primary clock input; clocks all Always present
registers in the unit
PortRstA Reset input for port A pipeline Not present if pipeline stage
registers (active high) for port Ais O
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
400 February 2013

Generating IP with SYNCore

Chapter 14: Working with IP Input

Port Name Description Required/Optional
PortRstB Reset input for port B pipeline Not present if pipeline stage
registers (active high) for port B is O or for constant
adder/subtractor
PortADDnSUB Selection port for dynamic Not present if
operation adder/subtractor configured
as standalone adder or
subtractor
PortRstOut Reset input for output register Not present if output pipeline
(active high) stage is O
PortCEA Clock enable for port A Not present if pipeline stage
pipeline registers (active high) for port A is O
PortCEB Clock enable for port B Not present if pipeline stage
pipeline registers (active high) for port B is O or for constant
adder/subtractor
PortCarryin Carry input for Always present
adder/subtractor
PortCEOut Clock enable for output Not present if output pipeline
register (active high) stage is O
PortOut Data output Always present

Specifying Adder/Subtractor Parameters

The SYNCore adder/subtractor can be configured as any of the following:

¢ Adder

Synplify Pro for Microsemi Edition User Guide
February 2013

* Subtractor

* Dynamic Adder/Subtractor

If you are creating a constant input adder, subtractor, or a dynamic
adder/subtractor with the SYNCore IP wizard, you must select Constant Value
Input and specify a value for port B in the Constant Value/Port B Width field on
page 2 of the parameters. The following procedure lists the parameters you
need to define when generating an adder/subtractor. For descriptions of each
parameter, see SYNCore Adder/ Subtractor Wizard, on page 206 in the Refer-
ence Manual.

Copyright © 2013 Synopsys, Inc.
401

Chapter 14: Working with IP Input Generating IP with SYNCore

1. Start the SYNCore adder/subtractor wizard as described in Specifying
Adder/ Subtractors with SYNCore, on page 396.
2. Enter the following on page 1 of the wizard:

— In the Component Name field, specify a name for your
adder/subtractor. Do not use spaces.

— In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

— In the Filename field, specify a name for the Verilog file that will be
generated with the adder/subtractor definitions. Do not use spaces.

— Select the appropriate configuration in Configure the Mode of Operation.
3. Click Next. The wizard opens page 2 where you set parameters for port A
and port B.
4. Configure Port A and B.
— In the Configure Port A section, enter a value in the Port A Width field.

— If you are defining a synchronous adder/subtractor, check Register
Input A and then check Clock Enable for Register A and /or Reset for Register
A.

— To configure port B as a constant port, go to the Configure Port B
section and check Constant Value Input. Enter the constant value in the
Constant Value/Port B Width field.

— To configure port B as a dynamic port, go to the Configure Port B
section and check Enable Port B and enter the port width in the
Constant Value/Port B Width field.

— To define a synchronous adder/subtractor, check Register Input B and
then check Clock Enable for Register B and/or Reset for Register B.
5. In the Configure Output Port section:
— Enter a value in the Output port Width field.
— If you are registering the output port, check Register output Port.
— Ifyou are defining a synchronous adder/subtractor check Clock Enable

for Register PortOut and /or Reset for Register PortOut.

6. In the Configure Reset type for all Reset Signal section, click Synchronous Reset
or Asynchronous Reset as appropriate.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
402 February 2013

Generating IP with SYNCore

Chapter 14: Working with IP Input

As you enter the page 2 parameters, the ADDnSUB symbol dynamically
updates to reflect the parameters you set.

7. Generate the adder/subtractor by clicking the Generate button as
described in Specifying Adder/Subtractors with SYNCore, on page 396
and add it to your design. All output files are in the directory you
specified on page 1 of the wizard.

Specifying Counters with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your counter
implementation requirements. The following procedure shows you how to
generate Verilog code for a counter using the SYNCore IP wizard.

Note: The SYNCore counter model uses Verilog 2001. When adding a
counter model to a Verilog-95 design, be sure to enable the Verilog
2001 check box on the Verilog tab of the Implementation Options dialog box

or include a set_option -vlog_std v2001 statement in your project file to
prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Fle List SYNCore Counter Model
- arithmetic
& a::ldnsdudb — The S¥RCore Courter compiler helps you create Counter models
G i nsub_maode for your designs. These Counter models are wiitten out in Yerilog
; = '|r|h=-r model d |and can be synthesized az wel as simulated. A testhench iz
=) Ffos i 1| generated for this purposze.
i [sfifa . . .
H .. sfifo model For more |!1f0rmat|on about the SY¥MCore Counter compiler, refer to
= memaries the: followwing:
g ram vam model ® The kuitt-in Courter Comgiler document, which you access
B rom from the COUNTER Info buttan.
L rom model * The Synplicity tool synthesis tool online help, where you
- can access information for the following from the online
help Contents:
—— F———a——— .E
I Ok I | Cancel I

— In the window that opens, select counter_model and click Ok to open

pagel of the wizard.

Synplify Pro for Microsemi Edition User Guide

February 2013

Copyright © 2013 Synopsys, Inc.
403

Chapter 14: Working with IP Input Generating IP with SYNCore

COUMTER. Parameters Care Overview Conkact

Counter Compiler

Component Mame []

Direckory []l Erowse.. . |

File: Name []l Browse,.. |

~Configure the Counter Parameter:

‘Width of Counter []

Counter Step Value []

COUNTER —Caonfigure the Mode of Counter
PartCount

@ Up Counter

() Down Caunter

() UpDown Counter

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Counter Parameters, on page 407. The
COUNTER symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

The SYNCore wizard also generates a testbench for your counter. The
testbench covers a limited set of vectors. You can now close the wizard.

4. Add the counter you generated to your design.

— Edit the counter files if necessary.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
404 February 2013

Generating IP with SYNCore

Chapter 14: Working with IP Input

— Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the counter and paste them into your top-level module. The following
figure shows a template file (in red text) inserted into a top-level

module.

krn:ldule counter #|

paraweter COONT WIDTH = I,
paramweter STEP = 2,
paraumeter BEIET TYFE = 0O,
parameter LOLD = 2,
pararweter MODE = "Dynsmic®

[

Ad Output Ports
output wire

£ Input Ports
input wire
input wire
input wire
input wire
input wire
input wire

Clock,
Reset,
Up Dowrn,
Load,

Enahle | ;

SynCoreCounter #(
JCOUNT WIDTH(COUNT WIDTH) ,
.STEF(STEF), -
.RESET TYPE(RESET TYPE],
LLOAD {LOAD ,
JHODE (MODE))

SynCoreCfounter insl |
.PortCount (FortCount) ,
FortClk(PFortClE)
PortBAT (FOortR3IT)

LPortlp nbown (Forclp nbomm) .

PortLoad(PortLoad) ,

PortloadiValue (PortLoadVWalus=) ,

PortCE([PortCE)]) :

endmodul e

[WIDTH-1:0] Count,

[WIDTH-1:0] LoadValue,

template

Edit the template port connections so that they agree with the port
definitions in the top-level module as shown in the example below.
You can also assign a unique name to each instantiation.

Synplify Pro for Microsemi Edition User Guide
February 2013

Copyright © 2013 Synopsys, Inc.
405

Chapter 14: Working with IP Input

Generating IP with SYNCore

module counter # (

(

parameter COUNT WIDTH = 5,
parameter STEP = 2,
parameter RESET TYPE = O,
parameter LOAD = 2,
parameter MODE = "Dynamic")

// Output Ports

output wire [WIDTH-1:0] Count,

// Input Ports

input wire Clock,

input wire Reset,

input wire Up_ Down,

input wire Load,

input wire [WIDTH-1:0] LoadValue,
input wire Enable);

SynCoreCounter # (

.COUNT WIDTH (COUNT WIDTH),
.STEP (STEP) ,

.RESET TYPE (RESET TYPE),
.LOAD (LOAD) ,

.MODE (MODE))

SynCoreCounter insl (

.PortCount (PortCount) ,
.PortClk (Clock),

.PortRST (Reset) ,
.PortUp nDown (Up_Down) ,
.PortLoad (Load) ,
.PortLoadValue (LoadValue) ,
.PortCE (Enable));

endmodule

Port List

The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Copyright © 2013 Synopsys, Inc.
406

Synplify Pro for Microsemi Edition User Guide

February 2013

Generating IP with SYNCore

Chapter 14: Working with IP Input

Port Name Description Required/Optional

PortCE Count Enable input pin with Always present
size one (active high)

PortClk Primary clock input Always present

PortLoad Load Enable input which Not present for parameter
loads the counter (active high). LOAD=0

PortLoadValue Load value primary input Not present for parameter
(active high) LOAD=0 and LOAD=1

PortRST Reset input which resets the Always present

PortUp_nDown

PortCount

counter (active high)

Primary input which
determines the counter mode.
0 = Up counter

1 = Down counter

Counter primary output

Specifying Counter Parameters

Present only for
MODE="Dynamic”

Always present

The SYNCore counter can be configured for any of the following functions:

* Up Counter

¢ Down Counter

* Dynamic Up/Down Counter

The counter core can have a constant or variable input load or no load value.
If you are creating a constant-load counter, you will need to select Enable Load
and Load Constant Value on page 2 of the wizard. If you are creating a variable-
load counter, you will need to select Enable Load and Use Variable Port Load on
page 2. The following procedure lists the parameters you need to define when
generating a counter. For descriptions of each parameter, see SYNCore
Counter Wizard, on page 210 of the Reference Manual.

1. Start the SYNCore counter wizard, as described in Specifying Counters
with SYNCore, on page 403.

2. Enter the following on page 1 of the wizard:

Synplify Pro for Microsemi Edition User Guide

Copyright © 2013 Synopsys, Inc.
February 2013 407

Chapter 14: Working with IP Input Generating IP with SYNCore

— In the Component Name field, specify a name for your counter. Do not
use spaces.

— In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

— In the Filename field, specify a name for the Verilog file that will be
generated with the counter definitions. Do not use spaces.

— Enter the width and depth of the counter in the Configure the Counter
Parameters section.

— Select the appropriate configuration in the Configure the Mode of Counter
section.

3. Click Next. The wizard opens page 2 where you set parameters for
PortLoad and PortLoadValue.

— Select Enable Load option and the required load option in Configure Load
Value section.

— Select the required reset type in the Configure Reset type section.

The COUNTER symbol dynamically updates to reflect the parameters you
set.

4. Generate the counter core by clicking Generate button. All output files
are written to the directory you specified on pagel of the wizard.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
408 February 2013

The Synopsys FPGA IP Encryption Flow Chapter 14: Working with IP Input

The Synopsys FPGA IP Encryption Flow

The Synopsys FPGA IP encryption flow is a design flow that encourages
interoperability while protecting IP implementations using encryp-

tion/decryption technologies. This flow offers the following advantages:
interoperability, protection of IP, reuse of IP, and a standard flow for IP

encryption. Currently, Synopsys FPGA synthesis products support the
following encryption technologies:

P1735 with key-block embedded rights information (Version 1)
* OpenlP

Overview of the Synopsys FPGA IP Flow

The complete flow for protecting IP requires a partnership between the IP
vendor, Synopsys, and the silicon vendor as illustrated in the following figure.
However, depending on the level of agreement between Synopsys and the
silicon vendor downstream, the re-encryption of IP following synthesis can
vary from the ideal flow shown in the figure.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 409

Chapter 14: Working with IP Input The Synopsys FPGA IP Encryption Flow

P
Vendor

Encrypt

Lo

Synthesis Synthesize
.
Place & | ‘
Route

%

For further details of the hand-offs between vendors and how encryption and
decryption are handled, see Encryption and Decryption, on page 410.

Encryption and Decryption

There are two major classes of encryption/decryption algorithms: symmetric,
and asymmetric (see Encryption and Decryption Methodologies, on page 834
in the Reference Manual for details). Each has its own advantages and disad-
vantages. The approach for the Synopsys FPGA IP flow is a hybrid scheme
that uses both asymmetric and symmetric encryption to leverage the
strengths of each scheme. The methodology described here can also be used
for other design handoffs. For example, for a handoff from synthesis to place-
and-route, the synthesis tool would be in the upstream position occupied by
the IP vendor in this flow, and the FPGA vendor would be in the downstream
position occupied by the synthesis tool.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
410 February 2013

The Synopsys FPGA IP Encryption Flow Chapter 14: Working with IP Input

The following figure illustrates the steps in this encryption/decryption

methodology, showing the handoff from an IP vendor to a Synopsys FPGA
synthesis tool.

Unencrypted IP %ENDOR
source data

Y

1. Encrypt with [P vendor's
symmetric data key

2. Encrypt data key with
Synplicity public key

Symmetrlcally symmetrlcall
encrypted encrypted key
data block bIDCk

Y

3. Bundle data block and
key blocks in one file

4. Decode data key with
Synplicity private key

Syrnmetrically
encrypted
data block

5. Decode data block with
decrypted data key

Y
Unencrypted
source data

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 411

Chapter 14: Working with IP Input The Synopsys FPGA IP Encryption Flow

The following describes each of the phases shown in the figure. Note that
Synopsys provides the following scripts to simplify and automate the process
of encrypting data for the IP vendor.

* P1735
* OpenlP

Data Encryption - Step 1

The IP vendor encrypts the IP data using their own symmetric key. This key is
called the data key. The result of encoding is a data block. Using symmetric
encryption offers two advantages to the IP vendor: fast data encryption
because it is symmetric encryption, and freedom to use any symmetric
scheme they choose.

sSource
Data

Encrypted
Data

Data Key Encryption - Step 2

Next, the IP vendor encrypts the data key used to encode the IP block, and
generates a key block. For this operation, the vendor uses RSA asymmetric
encryption and the public key provided by Synopsys.

Fublic ey
Source ‘%ﬂﬂ[@ * | Encrypted
Data Data
* |
Frivate Key

Asymmetric encryption offers the following advantages:
* Although asymmetric encryption is compute-intensive, the data key

itself is small, so this is not time-intensive.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
412 February 2013

The Synopsys FPGA IP Encryption Flow Chapter 14: Working with IP Input

* The IP vendor can use public keys from different vendors to encrypt the
same block for different EDA vendors. This capability ensures that IP
consistency is maintained, because there is no need for multiple copies.

* Only the public key from the downstream vendor needs to be passed to
the IP vendor.

Bundling of Encrypted Data Block and Data Key - Step 3

The IP vendor bundles the encrypted data block with the key block into one
file for handoff to the EDA vendor. Note that this methodology allows the IP
vendor to create just one version of the IP which includes the key blocks for
all the downstream vendors it supports; for example, a synthesis tool and a
simulation tool. Also, this approach eliminates the need to securely transmit
the symmetric key, because this is included in the file. Security is maintained
because both the key and the data are encrypted.

In the figure, this is the point at which the IP vendor hands off the IP to the
synthesis tool.

Data Key Decryption - Step 4

Decryption is a two-stage process. The first step is to decrypt the symmetric
data key from the IP vendor, which was encrypted using the asymmetric
public key provided. To decode this key, use the private key counterpart to
the public key and extract the data key.

Data Decryption - Step 5

The second step is to use the extracted data key to access the IP data. As the
data key is the original symmetric key used to encode the IP, the process is
quick. The synthesis tools can now synthesize the unencrypted IP.

After synthesis, the IP can be re-encrypted if the vendor has adopted one of
the Synopsys methodologies. See Output Methods for encryptIP, on page 845
in the Reference Manual for a description of the choices available.

Re-Encryption in the Synopsys FPGA IP Flow

Re-encryption of the synthesized IP for FPGA vendors downstream requires
that the FPGA vendor supply Synopsys with a public key. When the input file
includes a downstream key block, the re-encrypted data is accessible to the

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 413

Chapter 14: Working with IP Input The Synopsys FPGA IP Encryption Flow

downstream tool. If such an agreement is not in place, the IP is treated as a
black box. Accordingly, you can have an IP flow that outputs black boxes in
the netlists, plaintext netlists, or encrypted netlists.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
414 February 2013

Working with Encrypted IP Chapter 14: Working with IP Input

Working with Encrypted IP

The Synopsys FPGA IP encryption schemes available to Synplify Pro include:
e P1735
* OpenlP

With either of these approaches, the IP vendor can encrypt and control distri-
bution of the IP from their own website. The synthesis user will have access
from the synthesis tool to the IP that the vendor makes available for
download and evaluation within a synthesis design.

The following sections describe how to encrypt and package your IP for evalu-
ation if you are an IP vendor, and how to access and evaluate available IP, if
you are an end-user.

* Encrypting Your IP, on page 415
* Preparing the IP Package, on page 421

Encrypting Your IP

IP vendors can use either of the supported Synopsys FPGA IP schemes to
provide IP for synthesis users to evaluate and use. Both schemes uses a two-
stage encryption process:

* First, encrypt your IP files using a symmetric encryption algorithm and
your own session or data key to create an encrypted data block.

* Next, encrypt the session key for the encrypted data block using an
asymmetric algorithm and the Synopsys public key. All of the Synopsys
encryption methodologies support RSA encryption.

Synopsys provides scripts to simplify this process. See the following proce-
dures for details on script usage.

Preparing and Encrypting Your IP

To prepare and encrypt your IP, do the following:

1. Gather your RTL files.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 415

Chapter 14: Working with IP Input Working with Encrypted IP

You only encrypt the RTL. You can encrypt any number of Verilog and
VHDL (or mixed) RTL files to form your encrypted IP, and each file can
be encrypted in its entirety.

2. Determine your file setup for each IP.

— Create a single set of files for the IP (for use with all supported
FPGAs), if your IP has no vendor-specific or vendor-optimized content
and if the output method is supported by all intended consumers
(blackbox or plaintext).

— Create multiple versions of your protected IP if you have specific
FPGA vendors or specific FPGA vendor families; if you are using FPGA
device-family specific RTL like architecture-specific instantiations; or
if you optimized your RTL or constraints for use with a specific FPGA
vendor device family or FPGA vendor.

3. Encrypt the files with the appropriate encryption script as described in
one of the following subsections:

— Encrypting IP with the encryptP1735.pl Script, on page 416
— Encrypting IP with the encryptIP Script, on page 418.

4. Package your IP, as described in Preparing the IP Package, on page 421.

5. Verify that your IP works with the synthesis tools by going through the
procedure that the user would use.

— Start the synthesis tool and load the IP with the Import IP->Import IP
Package command. You can load your IP into an existing Synplify
project.

— For system-level IP, run it through System Designer™ and ensure
bus-model compatibility between your IP and any other IP to which it
interfaces. See the System Designer documentation for details on
using this tool.

— Run synthesis.

Encrypting IP with the encryptP1735.pl Script

The encryptP1735.pl script supports the P1735 proposed standard with limited
interoperability and rights information embedded in the key block. The
encryptP1735.pl script accepts inputs from three sources: command line
arguments, the RTL input file containing one or more encryption envelopes,
and a file containing the public keys.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
416 February 2013

Working with Encrypted IP Chapter 14: Working with IP Input

A keys.txt file, which contains the public key for consumption by Synopsys
FPGA tools, is included with the script. Add other public keys to this file
when the IP is to be consumed by additional EDA tools.

The following procedure shows you how to encrypt your data with the
encryptP1735.pl script. This script automates the two-stage encryption process
described in the Synopsys FPGA IP scheme (Using Hyper Source, on

page 424). The encryptP1735.pl script:

* First encrypts your IP files using a symmetric encryption algorithm and
your own session or data key to create an encrypted data block.

* Next encrypts the session key for the encrypted data block using an
asymmetric algorithm and the Synopsys public key. Synplify currently
supports RSA encryption.

The encryptP1735.pl script is located in the installDir/lib directory and requires
the installation of Perl on your machine. You cannot run the script if you do
not have Perl installed. The following examples show typical script applica-
tions. For more information on the script and the command line arguments,
see Syntax for Running encryptP1735, on page 835 in the Reference Manual.

Example 1
To encrypt a file using a random key:

perl encryptPl1735.pl -input plain_ip.v -output protected ip.v
-output method plaintext

Example 2

To encrypt a file using a user-specified key:

perl encryptPl1735.pl -input plain_ip.v -output protected ip.v
-output method plaintext -key mySpecifiedKey

In the above examples, the -input (or -) argument specifies the name of the file
to be encrypted, and the -output (or -0) argument specifies the name of the
resultant encrypted file. The -output_method (or -om) argument accepts the
following values:

* plaintext indicates that the synthesis output netlist for the IP will be in
plaintext format

* encrypted indicates that the synthesis output netlist for the IP will be

encrypted using the same session key as input

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 417

Chapter 14: Working with IP Input Working with Encrypted IP

* blackbox indicates that the synthesis output netlist for the IP will not be
written (that is, the IP will be black-boxed).

The -key (or -k) argument is optional and specifies the session key in text
format.

Encrypting IP with the encryptIP Script

The following procedure shows you how to encrypt your data with the
encryptlP (OpenlP) script. The encryptlP script automates the two-stage encryp-
tion process proposed in the Synopsys FPGA IP scheme (Using Hyper Source,
on page 424).

* First, it encrypts your IP files using a symmetric encryption algorithm
and your own session or data key. This creates an encrypted data block.

* Next, it encrypts the session key for the encrypted data block using an
asymmetric algorithm and the Synopsys public key. Synplify currently
supports RSA encryption.

1. Install the encryptlP Perl script.

— You can download the encryptlP Perl script from SolvNet. See the
article published at:

https:/ /solvnet.synopsys.com/retrieve /03234 3.html

— Install Perl on your machine. You cannot run the script if you do not
have Perl installed.

2. Make sure that the encryptlP script specifies the decryption key and the
matching key length:

— Specify the symmetric data decryption key with the -k option.
Optionally, you can also specify a symmetric encryption key in
hexadecimal format with the -kx option.

— Make sure you specify the right key length for the encryption
algorithm with the -c option. For example, TEST1234 becomes a 64-bit
key, so you specify the des-cbc algorithm.

See Syntax for Running encryptIP, on page 844 in the Reference Manual
for full details of the encryptip syntax.

3. Make sure you specify the appropriate output method (-om) when you
run the script.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
418 February 2013

https://solvnet.synopsys.com/retrieve/032343.html

Working with Encrypted IP Chapter 14: Working with IP Input

This is important because the output method (-om) determines what is
encrypted to the user. When the example above is synthesized, the user
can view the output netlist because the output method specified is plain-
text, which means that the synthesis output netlist includes the IP
netlist in an unencrypted and readable form. See Specifying the Script
Output Method, on page 419 for more information.

The script encrypts the IP with the standard symmetric encryption
algorithm you specified, and produces a data_block. The data key used for
encrypting the HDL is then encrypted with an asymmetric algorithm and
the Synopsys public key, and produces a key_block. The data_block and
the key_block are combined with the appropriate pragmas for the flow
being used, and the script creates an encrypted HDL file. For a detailed
figure, see Encryption and Decryption, on page 410.

All other output files from synthesis, including srm and srs files, are
encrypted using the same encryption method specified for the input to
synthesis. Output constraints are not encrypted.

4. Run the encryptlP script on each RTL file you want to encrypt.

The following example encrypts the Verilog plain_ip.v file into an
encrypted file called protected_ip.v, using AES128-cbc encryption. The
session key is MY_AES_SAMPLEKEY. See Syntax for Running encryptIP,
on page 844 in the Reference Manual for details about the syntax and
required parameters.

perl encryptIP -in plain ip.v -out protected ip.v -c aesl28-cbc
-k MY AES SAMPLEKEY -bd 160CT2007 -om plaintext -v

S. Check the encrypted RTL file to make sure that there is only one key
block present.

Specifying the Script Output Method

You can control access to the IP by setting the appropriate output method.
You specify the output method using the -om parameter, as described in
Syntax for Running encryptIP, on page 844 or Syntax for Running
encryptP1735, on page 835 in the Reference Manual .

The output method mainly affects the output netlist. The following are guide-
lines for setting the output method for the encryptlP script, and detail the
effects of different settings:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 419

Chapter 14: Working with IP Input Working with Encrypted IP

1. When using the encryptlP script, set -om to persistent_key if you have an
agreement in place with Synopsys and want the output netlist to be
encrypted

2. Set -om to plaintext in the following cases if you want the IP to be freely
optimized by the synthesis tools. Although IP cores are already
optimized, the synthesis tools can effect additional optimizations based
on the design context in which it will be used. When the synthesis tool is
allowed to optimize the IP, it can prune away IP logic that is unused or
unnecessary in the current design context. Or take the case where the
output of an instantiated IP core is timing-critical because it drives
hundreds of user loads. If the synthesis tool can freely optimize, it can
replicate sources within the core and fix the problem.

3. To let the IP be incorporated in a logic synthesis design, set -om to
plaintext or blackbox.

Setting the output method to plaintext allows the tool to synthesize, run
gate-level simulations, place and route, and implement an FPGA (that
includes the IP) on a board. Setting the output method to blackbox does
not allow the tool to run gate-level simulations or place and route the IP,
because it only uses the port and connectivity information.

4. If you have set -om to plaintext and you want to specify individual cores as
white boxes, set the syn_macro directive to 1 on the view for the IP.

Note that you must set this on the view, not the instance. When this is
set, the tool treats the IP as a white box and only uses the timing and
connection information from the IP. The synthesis tool maintains the IP
boundary and only trims unused logic inside the IP.

5. During synthesis, the IP contents appear as a black box in the RTL view,
irrespective of the output method selected. When the output method is
set to plaintext, you can push down into the IP from the Technology view.

6. After synthesis, the output method affects the results in the following
ways:
— Output constraints for an IP are in the standard Synopsys format and
are not encrypted.

— The output method affects the contents of the output netlist and its
format. This table summarizes the encryptlP or encryptP1735 behavior
with different output methods.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
420 February 2013

Working with Encrypted IP Chapter 14: Working with IP Input

Method (-om) Output Netlist After Synthesis

blackbox The output netlist contains the IP interface only, and no IP
contents. It only includes IP ports and connections. The IPs are
treated as black boxes, and there are no nets or instances shown
inside the IP. This applies to all the netlist formats generated for
different vendors, whether it is HDL (vm or vhm), EDIF (edf or
edn), or vam.

plaintext The output netlist contains your unencrypted synthesized IP,

which is completely readable (nothing is encrypted).
persistent_key The output netlist includes encrypted versions of the IP.
(encryptlP only)

Preparing the IP Package

Do the following to package your IP and make it accessible from the synthesis
tools:
1. Collect the files for the package.

— Encrypt the files you need, as described in Encrypting Your IP, on
page 415.

— Make sure your package includes the files listed in IP Package File
List, on page 422.

— Structure the files.
2. If your IP package is intended for synthesis only, without subsystem

assembly, create a compressed package for download, using one of these
methods:

— Create a compressed tarball (.tar.gz), which is a tar archive
compressed with the gzip utility, using one of these commands:

tar cf -fileList | gzip -c > compressed-tarball
gtar -cf compressed-tarball fileList

Preserve the directory structure when you run gzip.

— Create a zip file (zip) by running WinZip. WinZip archives and
preserves your directory hierarchy.

3. Post the packaged IP on your website for downloading.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 421

Chapter 14: Working with IP Input Working with Encrypted IP

The user generally untars or unzips the IP package into a top-level direc-
tory after downloading it. The synthesis tools can then read the contents
of the directory.

4. Supply Synopsys with the following:
— The URL for the download package.

— Vendor and advertising information you wish to display on the
Synopsys website. See Supplying Vendor Information, on page 422
for details.

IP Package File List

Your IP package should contain the following files:

Files Description

ipinfo.txt Text file that lists the name of the IP, the version, restrictions
for use, support contact information, and an email alias to
request a licence for the full RTL for your IP.

Documentation, Documents the IP, and includes detailed information about

preferably a PDF usage restrictions like vendor, device family, etc.

Readme An optional text file that contains instructions on use of the IP
for assembly and/or synthesis, and hints on how to use it
correctly.

Encrypted HDL or Protected RTL for the IP, created using the Synopsys encryptlP

EDIF script. See the documentation for details.

SDC constraints Unencrypted design constraints for the IP.

SPIRIT IP-XACT System-level models for your IP. This allows the synthesis

v1.4 models tools to include your IP in a system-level design by stitching

the IP together using bus architectures.

Supplying Vendor Information

To make your IP accessible for downloads and evaluation from the Synopsys
synthesis tools, you must supply Synopsys with some vendor information as
well as information for each of the cores or IPs to be used.

1. Supply Synopsys with the following general information to advertise
your company and IP on the Synopsys website:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
422 February 2013

Working with Encrypted IP

Chapter 14: Working with IP Input

IP vendor name and logo Your vendor name and logo for display.

Optional IP description Short paragraph describing the IP and key

Email alias

Website URL

features.

Synopsys sends leads to this alias when evaluation
cores are requested on the Synopsys IP website.

Unique URL for accessing IP. After the user has
filled out lead information on the website, the
Synopsys tool directs the user to this URL to
download the IP. The lead form on your website can
be pre-filled by prior arrangement with Synopsys
Marketing.

2. Supply Synopsys with the following information about each core or IP to

be used:

IP name

IP short
description

IP paragraph
description

Notes about usage

Core datasheet
(HTML or PDF)

Supported FPGA
vendors and
devices

IP-XACT
compatibility
information

Synplify Pro for Microsemi Edition User Guide

February 2013

Name of the IP.

Sentence describing the IP, which is displayed in the
summary view on the Synopsys website.

More detailed description of the IP, covering functional
description and compatibility with other cores or
peripherals.

Any other information, like licensing requirements

Information about the characteristics, features,
functions, and interfaces.

List of the targeted vendors and devices that the core
supports.

List of the IP-XACT version number supported, the IP-
XACT VLNV, and the IP-XACT VLNVs of all the bus
definitions required for the core, along with a link to
download each of these bus definitions.

Copyright © 2013 Synopsys, Inc.
423

Chapter 14: Working with IP Input Using Hyper Source

Using Hyper Source

Hyper source is a useful feature that lets you prototype ASIC designs that use
one or more FPGAs. You can also use it to validate and debug the RTL for IP
designs. See the following for more information:

* Using Hyper Source for Prototyping, on page 424
¢ Using Hyper Source for IP Designs, on page 424
* Threading Signals Through the Design Hierarchy of an IP, on page 425

Using Hyper Source for Prototyping

For prototyping, use hyper source to address the following issues:

* Use it to efficiently thread nets across multiple modules to the top-level
design to support Time Domain Multiplexing (TDM).

* Use it to easily replace an ASIC RAM with an FPGA RAM.
Follow these guidelines to replace an ASIC RAM with an FPGA RAM:

1. Change the RTL for the RAM instantiation.

2. Add an extra clock signal to all the module interfaces.

Hyper source reduces the number of modified RTL modules to two: one
for the RAM and one for the top level.

Using Hyper Source for IP Designs

For IP designs, hyper source is useful for validating and debugging the RTL,
without directly modifying the RTL. After the RTL has been fully tested with
complete QoR results, use hyper source to debug. For example:

* Add some instrumentation logic that is not part of the original design,
such as a cache profiler that counts cache misses or bus monitor that
might count statistics about bus contention. The cache or bus might be
buried deep inside the RTL; accessing the cache or the bus means ports
might need to be added through several levels of hierarchy in the RTL.
The instrumentation logic can be included anywhere in the design, so
you can use hyper source and hyper connect to easily thread the neces-
sary connections during synthesis.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
424 February 2013

Using Hyper Source Chapter 14: Working with IP Input

* Insert other hyper sourcing inside the IP to probe, monitor, and verify
correct operation of known signals within the IP.

Threading Signals Through the Design Hierarchy of an IP

Use this mechanism to thread a signal through the design hierarchy of a user
IP. This signal can be threaded to a top-level port or signal. This works even if
the Verilog or VHDL is compiled separately. The tool automatically adds ports
and signals between the source and the connection. Otherwise, these connec-
tions must be manually added to the RTL code.

The following procedure describes a method for using hyper source, using the
example HDL shown in Hyper Source Example, on page 426.

1. Define how to connect to the signal source. The following apply to this
example:

— Signal syn_hyper_source (in1) module defines the source, with a width of
1.

— The tag name "tag_name" is the global name for the hyper source.
2. Define how to access the hyper source which drives the local signal or
port. The following apply to this example:

— Signal syn_hyper_connect (out1) module defines the connection. The
signal width of 1 matches the source.

— Tag name can be the global name or the instance path to the hyper
source.
3. In this hierarchical design, note the following about hyper source:
— Applies to the module lower_module.

— Signal syn_hyper_source my_source(din) module is defined for the source
with a width of 8.

— The tag name of "probe_sig" must match the name used in the hyper
connect block to thread the signal properly.
4. In this hierarchical design, note the following about the hyper connect:
— Applies to the top-level module top, but can be any level of hierarchy.

— Signal syn_hyper_connect connect_block (probe) module is defined for the
connection with a width of 8.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 425

Chapter 14: Working with IP Input Using Hyper Source

— Tag name of "probe_sig" must match the name used in the hyper
source block to thread the signal properly.

S. After you run synthesis, the following message appears in the log file:

Arwailable hyper_ sources - for debuy and ip models
HyperSrc label subZ module.subl _module. lower module.probe sig

Making comnections to hyper_source modules
BH: : hyper example.w(f4) | Connected syn_hyper connect hstdm training done comnect, lakel probe_siyg
Finished RTL optimizations {(Time elapsed Oh:00m:0ls; Memory used current: 1Z2ZME peak: 1Z235ME)

Hyper Source Example

/* connect to a signal you want to export example : inl*/
module syn hyper source(inl) /*synthesis syn black box=1 syn noprune=1 */;
parameter w = 1;

parameter label = "tag name"; /* global name of hyper source */
input [w-1:0] inl;
endmodule

/* use to access hyper source and drive a local signal or port example
:outl */

module syn hyper connect (outl) /* synthesis syn black box=1 syn noprune=1
*/;

parameter w = 1; /* width must match source */

parameter label = "tag name"; /* global name or instance path to

hyper source */

parameter dflt = 0;

parameter mustconnect = 1'bl;

output [w-1:0] outl;

endmodule

/* Example hierarchical design which uses hyper source */
module lower module (clk, dout, dinl, din2, we);

output reg [7:0] dout;

input clk, we;

input [7:0] dinl, din2;

wire [7:0] din;

syn hyper source my_ source (din) ;

defparam my source.label = "probe sig"; /* to thread the signal this
tag name must match to name used in the hyper connect block */
defparam my source.w = 8;

always @(posedge clk)

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
426 February 2013

Using Hyper Source Chapter 14: Working with IP Input

if (we)

dout <= din;
assign din = dinl & din2;
endmodule

module subl module (clk, dout, dinl, din2, we);

output [7:0] dout;

input clk, we;

input [7:0] dinl, din2;

lower module lower module (clk, dout, dinl, din2, we);
endmodule

module sub2 module (clk, dout, dinl, din2, we);
output [7:0] dout;

input clk, we;

input [7:0] dinl, din2;

subl module subl module (clk, dout, dinl, din2, we);
endmodule

module top (clk, dout, dinl, din2, we, probe) ;
output [7:0] dout;

output [7:0] probe;

input clk, we;

input [7:0] dinl, din2;

syn _hyper connect connect block (probe) ;

defparam connect block.label = "probe sig"; /* to thread the signal this
tag name must match to name used in the hyper connect block */

defparam connect block.w = 8;

sub2 module sub2 module (clk, dout, dinl, din2, we);

endmodule

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 427

Chapter 14: Working with IP Input

Using Hyper Source

The following figures show how the hyper source signal automatically gets
connected through the hierarchy of the IP in the HDL Analyst views.

RTL View

@ Sheet 1 of 1 - OUT OF DATE! sub2__module.subl_modulelower.module (of module lower_module) (RTL ¥iew) ../rev_1/hyp...

=3 w iInstances (21 -

B [Primitives (1)
= £ subz_module (sub2_modulg
B3 @ Mets (5)
Ports (5)
Primitives {0}
T subi_module (subi_md
B [Mets (5)
@ Parts (5)
[Primiives (0)
El- L lower_madule (lowe
Bl [Mets (6)
i e @ clk, Fanout
B ® dinl, Fanot
- - dinz, Fano
- 2 dout, Fano
|

o B we, Fanoul

B @ Parts (5) @

[

=

4 il

AT _hyper _source S5 _probe_sh

my_seuce

Technology View

® sheet 1 of 1 - OUT OF DATE! subZ_module.subl_modulelower. module (ofmodule lower. module) {Technology, ¥iew) ¥irtex...

B Eﬁ Ports (6)
Lo m gk

din1[7:0]

dinz[7:0]

dout[7:0]

probe[7:0]

e

ks (13)

clk, Fanout=1

clk_r, Fanout=0
clk_ibuf _iso, Fanout=1
din1, Fanout=1

dinl _c, Fanout=0
dinZ, Fanout=1
dinZ_c, Fanout=0
daout, Fanout=1
daout_c, Fanout=1
probe, Fanout=1

LAN-N A

=

we, Fanout=1
we_c, Fanouk=0

Ivloioiviviin

Copyright © 2013 Synopsys, Inc.
428

]
CH O o o1 oo oo o B

Synplify Pro for Microsemi Edition User Guide
February 2013

SYNOPSYS

Accelerating Innovation

CHAPTER 15

Working with Compile Points

The following sections describe compile points and how to use them in logic
synthesis iterative flows:

* Compile Point Basics, on page 430

* Compile Point Synthesis Basics, on page 439

* Synthesizing Compile Points, on page 449

* Using Compile Points with Other Features, on page 460
* Resynthesizing Incrementally, on page 461

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 429

Chapter 15: Working with Compile Points Compile Point Basics

Compile Point Basics

Compile points are RTL partitions of the design that you define before synthe-
sizing the design. Compile points can be defined manually, or the tool can
generate them automatically. The software treats each compile point as a
block, and can synthesize, optimize, place, and route the compile points
independently. Compile points can be nested.

See the following topics for some details about compile points:
* Advantages of Compile Point Design, next
* Nested Compile Points, on page 433
* Compile Point Types, on page 435

Advantages of Compile Point Design

Designing with compile points makes it more efficient to work with the
increasingly larger designs of today and the corresponding team approach to
design. They offer several advantages, which are described here:

* Compile Points and Design Flows, next
* Runtime Savings, on page 431

* Design Preservation, on page 431

Compile Points and Design Flows

Compile points improve the efficacy of both top-down and bottom-up design
flows:

* In a traditional bottom-up design flow, compile points make it possible
to easily divide up the design effort between designers or design teams.
The compile points can be worked on separately and individually. The
compile point synthesis flow eliminates the need to maintain the
complex error-prone scripts for stitching, modeling, and ordering
required by the traditional bottom-up design flow.

* From a top-down design flow perspective, compile points make it easier
to work on the top-level design. You can mark compile points that are
still being developed as black boxes, and synthesize the top level with
what you have. You can also customize the compile point type settings

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
430 February 2013

Compile Point Basics Chapter 15: Working with Compile Points

for individual compile points to take advantage of cross-boundary

optimizations.

You can also synthesize incrementally, because the tool does not resyn-
thesize compile points that are unchanged when you resynthesize the

design. This saves runtime and also preserves parts of the design that
are done while the rest of the design is completed.

See Compile Point Synthesis, on page 445 for a description of the synthesis
process with compile points.

Runtime Savings

Compile points are the required foundation for multiprocessing and incre-
mental synthesis, both of which translate directly to runtime savings:

Multiprocessing runs synthesis as multiple parallel processes, using the
compile points as the partitions that are synthesized in parallel on
different processors. See Combining Compile Points with Multipro-
cessing, on page 460.

Incremental synthesis uses compile points to determine which portions
of the design to resynthesize, only resynthesizing the compile points that
have been modified. See Resynthesizing Compile Points Incrementally,
on page 461.

Design Preservation

Using compile points addresses the need to maintain the overall stability of a
design while portions of the design evolve. When you use compile points to
partition the design, you can isolate one part from another. This lets you
preserve some compile points, and only resynthesize those that need to be
rerun. These scenarios describe some design situations where compile points
can be used to isolate parts of the design and run incremental synthesis:

During the initial design phase, design modules are still being designed.
Use compile points to preserve unchanged design modules and evaluate
the effects of modifications to parts of the design that are still changing.

During design integration, use compile points to preserve the main
design modules and only allow the glue logic to be remapped.

If your design contains IP, synthesize the IP, and use compile points to
preserve them while you run incremental synthesis on the rest of the
design.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 431

Chapter 15: Working with Compile Points Compile Point Basics

* In the final stages of the design, use compile points to preserve design
modules that do not need to be updated while you work through minor
RTL changes in some other part of the design.

Manual Compile Points

Manual compile points require more setup, but provide more control because
they let you define the partition boundaries and constraints instead of the
tool.

* Manual compile points (MCP)

Manual compile points provide more control. You can specify boundary
constraints for each compile point individually. You can separate
completed parts of the design from parts that are still being designed, or
fine-tune the compile points to take advantage of as many cross-
boundary optimizations as possible. For example, you can ensure that a
critical path does not cross a compile point boundary, thus ensuring
synthesis results with optimal performance.

Guidelines for Using Manual Compile Points

Determine the kind of compile point to use based on what the design
requires. The table lists some guidelines:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
432 February 2013

Compile Point Basics Chapter 15: Working with Compile Points

Use Manual Compile Points...

When you know the design in detail.

Create manual compile points to get better QoR.
Good candidates for manual compile points
include the following:

* Completed modules with registered interfaces,
where you want to preserve the design

* Modules created to include an entire critical
path, so as to get the best performance.

* Modules that are less likely to be affected by
cross boundary optimizations like constant
propagation and register absorption.

When you do not want further optimizations to a
completed compile point.

When you want more control to determine
cross-boundary optimizations on an individual
basis.

Nested Compile Points

A design can have any number of compile points, and compile points can be
nested inside other compile points. In the following figure, compile point CP6
is nested inside compile point CP5, which is nested inside compile point CP4.

To simplify things, the term child is used to refer to a compile point that is
contained inside another compile point; the term parent is used to refer to a
container compile point that contains a child. These terms are not used in
their strict sense of direct, immediate containment: If a compile point A is
nested in B, which is nested in C, then A and B are both considered children
of C, and C is a parent of both A and B. The top level is considered the parent
of all compile points. In the figure above, both CP5 and CP6 are children of
CP4; both CP4 and CP5 are parents of CP6; CP5 is an immediate child of CP4
and an immediate parent of CP6.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 433

Chapter 15: Working with Compile Points

Compile Point Basics

Top Level
CP1 CP4
CP5
CP2
CP6
cP3 CP7

Copyright © 2013 Synopsys, Inc.
434

The top level is a parent of all compile points.
It is an immediate parent of CP1, CP2, CP3,
and CP4, and parent to all other compile points.

CP5 is nested inside CP4.

CP5 is an immediate child of CP4.

CP4 is the immediate parent of CP5.
CP4 is also the parent of CP6 and CP7.

CP6 & CP7 are nested inside CP5.

CP5 is the immediate parent of CP6 & CP7.
CP6 & CP7 are immediate children of CP5.

CP6 & CP7 are children of both CP4 & CP5.
CP4 & CP5 are parents of CP6 & CP7.

Synplify Pro for Microsemi Edition User Guide
February 2013

Compile Point Basics Chapter 15: Working with Compile Points

Compile Point Types

Compile point designs do not have as good QoR as designs without them
because the boundaries limit optimizations. Cross-boundary optimizations
typically improve area and timing, at the expense of runtime. The compile
point type determines whether boundary optimizations are allowed. For
manual compile points, you define the type. See Defining the Compile Point
Type, on page 455 for details.

These are descriptions of the soft, hard, and locked compile types:

Soft

Compile point boundaries can be reoptimized during top-level mapping.
Timing optimizations like sizing, buffering, and DRC logic optimizations
can modify boundary instances of the compile point and combine them
with functions from the next higher level of the design. The compile
point interface can also be modified. Multiple instances are uniquified.
Any optimization changes can propagate both ways: into the compile
point and from the compile point to its parent.

Using soft mode usually yields the best quality of results, because the
software can utilize boundary optimizations. On the other hand, soft
compile points can take a longer time to run than the same design with
hard or locked compile points.

The following figure shows the soft compile point with a dotted boundary
to show that logic can be moved in or out of the compile point.

TOP

Optimization of entire logic cone across boundary
Hard

For hard compile points, the compile point boundary can be reoptimized
during top-level mapping and instances on both sides of the boundary
can be modified by timing and DRC optimizations using top-level

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 435

Chapter 15: Working with Compile Points Compile Point Basics

constraints. However, the boundary is not modified. Any changes can
propagate in either direction while the compile point boundary
(port/interface) remains unchanged. Multiple instances are uniquified.
For performance improvements, constant propagation and removal of
unused logic optimizations are performed across hard compile points.

In the following figure, the solid boundary on the hard compile point
indicates that no logic can be moved in or out of the compile point.

TOP
compile_point = hard
) — . —
L] \ L3
O b
-~ . © - . %
}

Optimization on both sides

The hard compile point type allows for optimizations on both sides of the
boundary without changing the boundary. There is a trade-off in quality
of results to keep the boundaries. Using hard also allows for hierarchical
equivalence checking for the compile point module.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
436 February 2013

Compile Point Basics Chapter 15: Working with Compile Points

* Locked

This is the default compile point type. With a locked compile point, the
tool does not make any interface changes or reoptimize the compile
point during top-level mapping. An interface logic model (ILM) of the
compile point is created (see Interface Logic Models, on page 442) and
included for the top-level mapping. The ILM remains unchanged during
top-level mapping.

The locked value indicates that all instances of the same compile point
are identical and unaffected by top-level constraints or critical paths. As
a result, multiple instances of the compile point module remain identical
even though the compile point is uniquified. The Technology view (srm
file) shows unique names for the multiple instances, but in the final
Verilog netlist (vma file) the original module names for the multiple
instances are restored.

Timing optimization can only modify instances outside the compile
point. Although the compile point is used to time the top-level netlist,
changes do not propagate into or out of a locked compile point. The
following figure shows a solid boundary for the locked compile point to
indicate that no logic is moved in or out of the compile point during top-
level mapping.

TOP
compile_point = locked
_—
O %
- . — <

!

No optimization inside compile point

This mode has the largest trade-off in terms of QoR, because there are
no boundary optimizations. So, it is very important to provide accurate
constraints for locked compile points. The following table lists some
advantages and limitations with the locked compile point:

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 437

Chapter 15: Working with Compile Points Compile Point Basics

Advantages Limitations

Consumes smallest amount of memory. Interface timing
Used for large designs because of this
memory advantage.

Provides most runtime advantage Constant propagation
compared to other compile point types.

Allows for obtaining stable results for a
completed part of the design.

Allows for hierarchical place and route with GSR hookup
multiple output netlists for each compile
point and the top-level output netlist.

Allows for hierarchical simulation. IO pads, like IBUFs and OBUFs,
should not be instantiated
within compile points

Compile Point Type Summary

The following table summarizes how the tool handles different compile points
during synthesis:

Features Compile Point Type
Soft Hard Locked

Boundary optimizations Yes Limited No

Uniquification of multiple Yes Yes Limited

instance modules

Compile point interface (port Modified Not modified Not modified

definitions)

Hierarchical simulation No no Yes

Hierarchical equivalence No Yes Yes

checking

Interface Logic Model No No Yes

(created /used)
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
438 February 2013

Compile Point Synthesis Basics Chapter 15: Working with Compile Points

Compile Point Synthesis Basics

This section describes the compile point constraint files and timing models,
and describes the steps the tool goes through to synthesize compile points.
See the following for details:

* Compile Point Constraint Files, on page 439

* Interface Logic Models, on page 442

* Interface Timing for Compile Points, on page 442

* Compile Point Synthesis, on page 445

* Incremental Compile Point Synthesis, on page 448

* Forward-annotation of Compile Point Timing Constraints, on page 449

For step-by-step information about how to use compile points, see Synthe-
sizing Compile Points, on page 449.

Compile Point Constraint Files

A compile point design can contain two levels of constraint files, as described
below:

* The constraint file at the top level

This is a required file, and contains constraints that apply to the entire
design. This file also contains the definitions of the compile points in the
design. The define_compile_point command is automatically written to the
top-level constraint file for each compile point you define.

The following figure shows that this design has one locked compile
point, pgrm_cntr. It uses the following syntax to define the compile point:

define compile point {v:work.prgm cntr} -type {locked}

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 439

Chapter 15: Working with Compile Points Compile Point Synthesis Basics

BEGIN Collections — (Populated from tabk in SCOPE, do mot edit)
END Collections

17 §g§§—— BEGIN Clocks - {(Populated from tab in SCOPE, do not edit)
18 creste_clock {[p:clock} {10}

19

20 g§gg———— END Clocks

BEGIN "Generated Clocks™ - (Populated from tab in SCOPE, do not edit)
END "Generated Clocks™

= BEFIN Inputs/Cutputs — (Populated from tabk in SCOPE, do not edit)
END Inputs/Cutputs

BEGIN "Delay Paths™ - (Populated from tab im SCOPE, do not edit)
END "Delay Paths™

BEGIN Attributes - (Populated from tab in S5C0FE, do mot edit)
END AZttributes

BEGIN "I/0 Standards™ — (Populated from tab in SCOPE, do not edit)
END "I/0 Standards™

BEGIN "Compile Points™ - (Populated from tak in SCOPE, do not edit)
ne ccmpile point {v:iwork.prgm cntr} {locked}
39 §gf=—— END "Compile Points™

* Constraint files at the compile point level

These constraint files are optional, and are used for better control over
manual compile points.

The compile point constraints are specific to the compile point and only
apply within it. If your design has manual compile points, you can
define corresponding compile point constraint files for them. See Setting
Constraints at the Compile Point Level, on page 456 for a step-by-step
procedure.

When compile point constraints are defined, the tool uses them to
synthesize the compile point, not automatic interface timing. Note that
depending on the compile point type, the tool might further optimize the
compile points during top-down synthesis of the top level to improve
timing performance and overall design results, but the compile point
itself is synthesized with the defined compile point constraints.

The first command in a compile point constraint file is
define_current_design, and it specifies the compile point module for the

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
440 February 2013

Compile Point Synthesis Basics Chapter 15: Working with Compile Points

contained constraints. This command sets the context for the constraint
file. The remainder of the file is similar to the top-level constraint file.
For example:

define current design {work.pgrm cntr}

12 define current_design {work_prgm cntr}
15 g8% END Header
14
15 g8 BEGIN Collections — (Populated from tabk in SCOPE, do mot edit)
16 gg# END Collections
17
18 g8 BEGIN Clocks - (Populated from tab in SCOPE, do not edit)
19 create_clock ({p:clock} -periocd {11.1111}
20
21 g END Clocks
22
23 gEd BEGIN "Generated Clocks™ - (Populated from tabk in SCOPE, do not edit)
21 83 END "Generated Clocks™
25
26 ggd BEGIN Inmputs/0utputs — (Populated from tabk imn SCOPE, do not edit)
2T ggs END Inputs/Outputs
28
9 g8 BEGIN "Delay Paths™ - (Populated from tab in SCOPE, do not edit)
30 g8 END "Delay Paths"
3
ggE BEGIN Attributes — (Populated from tab in SCOPE, do mnot edic)
§§f§——— END Attributes
BEGIN "I/0 Standards™ - (Populated from tabk in SCOPE, do not edit)

END "I/0 Standards™

32
33

34

35 s2:
36 g8t
37
33

BEGIN "Compile Points™ - (Populated from tab in SC0PE, do not edit)
END "Compile Points™

g8
39 g&s

If your design has some compile points with their own constraint files and
others without them, the tool uses the defined compile point constraints
when it synthesizes those compile points. For the other compile points
without defined constraints, it uses automatic interface timing, as described
in Interface Timing for Compile Points, on page 442.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 441

Chapter 15: Working with Compile Points Compile Point Synthesis Basics

Interface Logic Models

The interface logic model (ILM) of a locked compile point is a timing model that
contains only the interface logic necessary for accurate timing. An ILM is a
partial gate-level netlist that represents the original design accurately while
requiring less memory during mapping. Using ILMs improves the runtime for
static timing analysis without compromising timing accuracy.

The tool does not do any timing optimizations on an ILM. The interface logic
is preserved with no modifications. All logic required to recreate timing at the
top level is included in the ILM. ILM logic includes any paths from an
input/inout port to an internal register, an internal register to an
output/inout port, and an input/inout port to an output/inout port.

The tool removes internal register-to-register paths, as shown in this
example. In this design, and_a is not included in the ILM because the timing
path that goes through and_a is an internal register-to-register path.

CP 1

Gates included in ILM

and_a and_/
and_c

ERANE
.

ot

[>
[>

Gate ngt included
in ILM

Interface Timing for Compile Points

By default, the synthesis tool automatically infers timing constraints for all
compile points from the top-level constraints. However, if a compile point has
its own constraint file, the tool applies those compile point-specific
constraints to synthesize the compile point.

* For automatic interface timing, the tool derives constraints from the top
level and uses them to synthesize the compile point. It then synthesizes
the top level, and applies top-level constraints to the compile points.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
442 February 2013

Compile Point Synthesis Basics Chapter 15: Working with Compile Points

* When there are compile point constraint files, the tool first synthesizes
the compile point using the constraints in the compile point constraints
file and then synthesizes the top level using the top-level constraints.

When it synthesizes a compile point, the tool considers all other compile
points as black boxes and only uses their interface timing information. In the
following figure, when the tool is synthesizing compile point A, it applies
relevant timing information to the boundary registers of B and C, because it
treats them as black boxes.

L
L
L
L
L
L

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 443

Chapter 15: Working with Compile Points Compile Point Synthesis Basics

Interface Timing Example

The design below shows how the interface timing works on compile points.

temp1 ' b
[ui

Contents of level1 Module

temp22

Interface Timing Off

Interface timing is off for a compile point when you define constraints for it in
a compile point constraints file. In this example, the following frequencies are
defined for the level1 compile point shown above:

Clock Period Constraints File
Top-level clock 10 ns Top-level constraint file
Compile point-level clock 20 ns Compile point constraint file

When interface timing is off, the compile point log file (srr) reports the clock
period for the compile point as 20 ns, which is the compile point period.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
444 February 2013

Compile Point Synthesis Basics Chapter 15: Working with Compile Points

B File Edit View Project Import Rum Analysis HDL-Analyst Options Window Tech-Support Web Help

BEgO®DEP - BEaomde ¥R e i @3 69y 5|
PE - P RBRA T YePoflem

127

128 Worst slack im design: 18,865

129
130 Reguasted srimat egueated Estimared
131 Starcing Cleck Fregquency Fr W Perio Pericd

Interface Timing On

For automatic interface timing to run on a compile point (interface timing on),
there must not be a compile-point level constraints file. When interface
timing is on, the compile point log file (srr) reports the clock period for the
top-level design, which is 10 ns:

T & File Edit View Project Import Run Analysis HDL-Analyst Options Window Tech-Support Web Help

L O T N Eaaa e Folfl e daa8 69 ¢y 4k
B Eoal @A R TR WD o REm

1]l Performance Susmary

137 sesessssssnnansnnnn

13

124

Estimaced

131 system
132
133
134

Compile Point Synthesis

During synthesis, the tool first synthesizes the compile points and then maps
the top level. The rest of this section describes the process that the tool goes
through to synthesize compile points; for step-by-step information about
what you need to do to use compile points, see Synthesizing Compile Points,
on page 449.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 445

Chapter 15: Working with Compile Points Compile Point Synthesis Basics

Stage 1: Bottom-up Compile Point Synthesis

The tool synthesizes compile points individually from the bottom up. If you
have enabled multiprocessing, it synthesizes the compile points in parallel
using multiple processing jobs. For nested compile points, it starts with the
compile point at the lowest level of hierarchy and works up the hierarchy.

A compile point stands on its own, and is optimized separately from its parent
environment (the compile point container or the top level). This means that
critical paths from a higher level do not propagate downwards, and they are
unaffected by them.

If you have specified compile point-level constraints, the tool uses them to
synthesize the compile point; if not, it uses automatic interface timing propa-
gated from the top level. For compile point synthesis, the tool assumes that
all other compile points are black boxes, and only uses the interface informa-
tion.

When defined, compile point constraints apply within the compile point. For
manual compile points, it is recommended that you set constraints on locked
compile points, but setting constraints is optional for soft and hard compile
points.

By default, synthesis stops if the tool encounters an error while synthesizing
a compile point. You can specify that the tool ignore the error and continue
synthesizing other compile points. See Continue on Error Mode, on page 447.

Stage 2: Top-Level Synthesis

Once all the compile points have been synthesized, the tool synthesizes the
entire design from the top down, using the model information generated for
each compile point and constraints defined in the top-level constraints file.
You do not need to duplicate compile point constraints at a higher level,
because the tool takes the compile point timing models into account when it
synthesizes a higher level. Note that if you run standalone timing analysis on
a compile point, the timing report reflects the top-level constraints and not
the compile point constraints, although the tool used compile point level
constraints to synthesize the compile point.

The software writes out a single output netlist and one constraint file for the
entire design. See Forward-annotation of Compile Point Timing Constraints,
on page 449 for a description of the constraints that are forward-annotated.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
446 February 2013

Compile Point Synthesis Basics Chapter 15: Working with Compile Points

Continue on Error Mode

By default, the tool stops the synthesis process if it encounters an error
within a compile point. If you want to be able to continue compile-point
synthesis with another compile point, do any of the following:

* select Options->Configure Compile Point Process from the top menu and
enable the Continue on Error checkbox

* select the Options panel on the Implementation Options dialog box and
enable the Continue on Error checkbox

* check the Continue on Error checkbox on the left side of the Project view

* enter a set_option -continue_on_error option with a value of 1 at the Tcl
script prompt

Configure Compile Point Process x|

Maximum number of parallel synthesis jobs: [1 =

Note: One license is used for each synthesis job.
(] Continue on Error)

View the application note about Multiprocessing 0K | | Cancel

With this setting, when the tool encounters a mapper error it black boxes the
affected compile point and continues to synthesize other compile points. The
log file report after synthesis contains warnings like the following for the
ignored errors:

@W:: ml.v(1l) | Mapping of compile point ml - Unsuccessful

Note the following about the scope of this setting:

* The setting applies to both mapper errors. All compiler errors, however,
must be corrected before synthesis can proceed.

* In Synplify Pro, the setting only applies to compile-point mapper errors.
Top-level design errors terminate synthesis, and the tool does not
generate an output netlist.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 447

Chapter 15: Working with Compile Points Compile Point Synthesis Basics

Incremental Compile Point Synthesis

The tool treats compile points as blocks for incremental synthesis. On subse-
quent synthesis runs, the tool runs incrementally and only resynthesizes
those compile points that have changed, and the top level. The synthesis tool
automatically detects design changes and resynthesizes compile points only if
necessary. For example, it does not resynthesize a compile point if you only
add or change a source code comment, because this change does not really
affect the design functionality.

The tool resynthesizes a compile point that has already been synthesized, in
any of these cases:

* The HDL source code defining the compile point is changed in such a
way that the design logic is changed.

* The constraints applied to the compile point are changed.

* Any of the options on the Device panel of the Implementation Options dialog
box, except Update Compile Point Timing Data, are changed. In this case the
entire design is resynthesized, including all compile points.

* You intentionally force the resynthesis of your entire design, including
all compile points, with the Run -> Resynthesize All command.

* The Update Compile Point Timing Data device mapping option is enabled and
at least one child of the compile point (at any level) has been remapped.
The option requires that the parent compile point be resynthesized using
the updated timing model of the child. This includes the possibility that
the child was remapped earlier, while the option was disabled. The
newly enabled option requires that the updated timing model of the
child be taken into account, by resynthesizing the parent.

For each compile point, the software creates a subdirectory named for the
compile point, in which it stores intermediate files that contain hierarchical
interface timing and resource information that is used to synthesize the next
level. Once generated, the model file is not updated unless there is an inter-
face design change or you explicitly specify it. If you happen to delete these
files, the associated compile point will be resynthesized and the files regener-
ated.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
448 February 2013

Synthesizing Compile Points Chapter 15: Working with Compile Points

Forward-annotation of Compile Point Timing Constraints

In addition to a top-level constraint file, each compile point can have its own
constraint file. Constraints are forward-annotated to placement and routing
from the top-level as well as the compile point-level files. However, not all
compile point constraints are forward-annotated, as explained below. For
example, constraints on top-level ports are always forward annotated, but
compile point port constraints are not forward annotated.

* Top-level constraints are forward-annotated.

* Constraints applied to the interface (ports and bit ports) of the compile
point are not forward-annotated.
These include input_delays, output_delays, and clock definitions on the
ports. Such constraints are only used to map the compile point itself,
not its parents. They are not used in the final timing report, and they are
not forward-annotated.

* Constraints applied to instances inside the compile point are forward-
annotated
Constraints like timing exceptions and internal clocks are used to map
the compile point and its parents. They are used in the final timing
report, and they are forward-annotated.

Synthesizing Compile Points
This section describes the synthesis process with manual compile points in
your design:
* The Manual Compile Point Flow, on page 450
* Creating a Top-Level Constraints File for Compile Points, on page 452
* Defining Manual Compile Points, on page 453
* Setting Constraints at the Compile Point Level, on page 456
* Analyzing Compile Point Results, on page 458

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 449

Chapter 15: Working with Compile Points Synthesizing Compile Points

The Manual Compile Point Flow

Using manual compile points is most advantageous in the following situa-
tions, where you

Have to work with a large design
Experience long runtimes, or need to reduce synthesis runtime
Require the maximum QoR from logic synthesis

Can adjust design methodology to get the best results from the tools

The following figure summarizes the process for using manual compile points
in your design.

| Setup Project

| Define Compile Point
| Set Implementation Options Top-Level |
| ConstraintFile
Set Compile Point Type
| Compile -
|
Define Compile Points gsmr:f fie? Set Compile Point Constraints
Top-Level | Constraint File

ConstraintFile

P
Add Compile Point
| Constraints File to Project

Set Top-Level Constraints

‘ Synthesize
B

‘ Analyze

Goals met? 1 Modify and Resynthesize

Done

This procedure describes the steps in more detail:

1. Set up the project.
— Create the project and add RTL and IP files to the project, as usual.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
450 February 2013

Synthesizing Compile Points

Chapter 15: Working with Compile Points

— Target a device and technology for which compile points are
supported. This includes most of the newer Microsemi device

families.

— Set other options as usual.

2. Compile the design (F7) to initialize the constraints file.

3. Do the following in the top-level constraint file:

— Define compile points in the top-level constraint file. See Creating a
Top-Level Constraints File for Compile Points, on page 452. Note that
by default, the tool automatically calculates the interface timing for
all compile points.

— Set timing constraints and attributes in the top-level constraint file:

Constraint
Clock

I/0
constraints

Timing
exceptions

Attributes

Apply to...
All clocks in the design.

All top-level port constraints.
Register the compile point I/O
boundaries to improve timing.

All timing exceptions that are
outside the compile point
module, or that might be
partially in the compile point
modules.

All attributes that are
applicable to the rest of the
design, not within the compile
points.

Example

create_clock {p:clk} -name clk -period
100 -clockgroup cg1

set_input_delay {p:a} {1} -clock {clk:r}

set_false_path -from {i:reg1} -to
{i:reg2}

define_attribute {i:statemachine_1}
syn_encoding {sequential}

4. Set compile point-specific constraints as needed in a separate, compile
point-level constraint file.

See Setting Constraints at the Compile Point Level, on page 456 for a
step-by-step procedure. After setting the compile point constraints, add
the compile point constraint file to the project.

5. If you do not want to interrupt synthesis for compiler errors, select
Options->Configure Compile Point Process and enable the Continue on Error

option.

Synplify Pro for Microsemi Edition User Guide

February 2013

Copyright © 2013 Synopsys, Inc.
451

Chapter 15: Working with Compile Points Synthesizing Compile Points

With this option enabled, the tool black boxes any compile points that
have mapper errors and continues to synthesize the rest of the design.
See Continue on Error Mode, on page 447 for more information about
this mode.

6. Synthesize the design.

The tool synthesizes the compile points separately and then synthesizes
the top level. See Compile Point Synthesis, on page 445 for details about
the process.

— The first time it runs synthesis, the tool maps the entire design.

— For subsequent synthesis runs, the tool only maps compile points
that were modified since the last run. It preserves unchanged compile
points.

You can also run synthesis on individual compile points, without
synthesizing the whole design.

7. Analyze the synthesis results using the top-level sir log file.
See Analyzing Compile Point Results, on page 458 for details.

8. If you do not meet your design goals, make necessary changes to the
RTL, constraints, or synthesis controls, and re-synthesize the design.

The tool runs incremental synthesis on the modified parts of the design,
as described in Incremental Compile Point Synthesis, on page 448. See
Resynthesizing Compile Points Incrementally, on page 461 for a detailed
procedure.

Creating a Top-Level Constraints File for Compile Points

All compile points require a top-level constraints file. If you have manual
compile points, define them in this file. The top-level file also contains design-
level constraints. The following procedure describes how to create a top-level
constraints file for a compile point design.

1. Create the top-level constraints file.

— To define compile points in an existing top-level constraint file, open a
SCOPE window by double-clicking the file in the Project view.

— To define compile points in a new top-level constraint file, click the
SCOPE icon. Click the FPGA Constraints (SCOPE) button.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
452 February 2013

Synthesizing Compile Points Chapter 15: Working with Compile Points

The SCOPE window opens. It includes a Current Design field, where you
can specify constraints for the top-level design from the drop-down
menu and define manual compile points.

Chcompile_points\tutorial_1.fdc ™

Current Design: |<To|:| Levels v| |"JJ Check Constraints |

| Enable | View | Type | Comment l;

Clocks Generated Clocks Collections Inputs/Outputs Delay Paths Attributes 1/0 Standards Compile Points E

2. Set top-level constraints like input/output delays, clock frequencies or
multicycle paths.

You do not have to redefine compile point constraints at the top level as
the tool uses them to synthesize the compile points.

3. Define manual compile points if needed.

See Defining Manual Compile Points, on page 453 for details.

4. Save the top-level constraints file and add it to the project.

Defining Manual Compile Points

Compile points and constraints are both saved in a constraint file, so this
step can be combined with the setting of constraints, as convenient. This
procedure only describes how to define compile points. You define compile
points in a top-level constraint file. You can add the compile point definitions
to an existing top-level constraints file or create a new file.

1. From the Current Design field, select the module for which you want to
create the compile point.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 453

Chapter 15: Working with Compile Points Synthesizing Compile Points

Current Design: | <Top Level = "| |r0’4 Check Constraints
=Top Level= [3
. work, INS_ROM Type |

work.alu

W work.data_mux
work.ins_decode
work.io
work.mult
work.prep4
{work.pram_cnir
work.reg_file

[« |

1

2 |
3 |
4 |
5 |

2. Click the Compile Points tab in the top-level constraints file.

See Creating a Top-Level Constraints File for Compile Points, on
page 452 if you need information about creating this file.

3. Set the module you want as a compile point.

Do this by either selecting a module from the drop-down list in the View
column, or dragging the instance from the HDL Analyst RTL view to the
View column. The equivalent Tcl command is define_compile_point, as
shown in this example:

define_compile_point {v:.work.m3} -type {soft}

You can get a list of all the modules from which you can select and
designate compile points with the Tcl find command, as shown here:

c_print [find -hier -view {*} -filter ((@is_verilog == 1 || @is_vhdl == 1))] -file view.txt

4. Set the Type to locked, hard, or soft, according to your design goals. See
Defining the Compile Point Type, on page 455 for details.

This tags the module as a compile point. The following figure shows the
prgm_cntr module set as a locked compile point:

5. Save the top-level constraint file.

You can now open the compile point constraint file and define constraints for
the compile point, as needed for manual compile points. See Setting
Constraints at the Compile Point Level, on page 456 for details.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
454 February 2013

Synthesizing Compile Points Chapter 15: Working with Compile Points

Defining the Compile Point Type

The compile point type you select depends on your design goals. For descrip-
tions of the various compile point types, see Compile Point Types, on

page 435. This procedure shows you how to set the compile point type in the
top-level constraint file when you define the compile points:

1. When runtime is the main objective and QoR is not a primary concern,
set the compile point type as follows on the SCOPE Compile Points tab:

Situation Compile Point Type

RTL is almost ready locked

The following example shows the Tcl command and the equivalent
version in the in the SCOPE GUTI:

define_compile_point {v:work.user_top} -type {locked}

| | Enabled | Module | Type

1 wiwork, user_top locked -

2. When runtime and QoR are both important, do the following to ensure
the best performance while still saving runtime:

— Register the I/O boundaries for the compile points.

— As far as possible, put the entire critical path into the same compile
point.

— Set each compile point type individually, using these compile point

types:
Situation Compile Point Type
Need boundary optimizations soft
Do not need boundary optimizations locked

3. If your goal is design preservation, set the compile point you want to
preserve to locked.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 455

Chapter 15: Working with Compile Points Synthesizing Compile Points

Setting Constraints at the Compile Point Level

You can specify constraints for each compile point in individual constraint
files. (See Compile Point Constraint Files, on page 439 for a description of the
files.) It is recommended that you specify constraints for each locked manual
compile point, but you do not need to set them for soft and hard compile
points.

When you specify compile point constraints, the tool synthesizes the compile
point using the compile point timing models instead of automatic interface
timing from the top level. This procedure explains how to create a (compile
point constraint file, and set constraints for the compile point:

1. In an open project, click the SCOPE icon ([-]). Click the FPGA Constraints
(SCOPE) button. The New Constraints File dialog box opens.

2. From the Current Design field, select the module for which you want to
create the compile point.

Current Design: | <Top Level= v| |FJJ Check Constraints

=<Top Level=

work, IMS_ROM Type |
work.alu

w work, data_mux
work.ins_decode
work.io
work,mult
work. prep4
iwork, pram_ontr
work.reg_file

[«

goj

N

3. Check that you are in the right file.

A default name for the compile point file appears in the banner of the
SCOPE window. Unlike the top-level constraint file, the Compile Point tab
in the SCOPE Ul is greyed out when the constraint file is for a compile
point.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
456 February 2013

Synthesizing Compile Points Chapter 15: Working with Compile Points

" e ompile_pointa\butonal_1id: *
Current Design: | werk.orgn_cnir '| |"'_Ch=l:l Ewrshoﬂh=|

Enale | bame | obet | Perod |wovom | st | cockbeowm | istensy | uncertuny c:ummenl:E

1 |+ pickck 4333, <defauks

3

Cocks | GeneratedOocks | Coleciors | [nputsjCutpuls | DeloyPathe | Attrbutes | L0 Stadards | Comple foi o] 4 v

4. Set constraints for the compile point. In particular, do the following:
— Define clocks for the compile point.

— Specify I/O delay constraints for non-registered I/O paths that may
be critical or near critical.

— Set port constraints for the compile point that are needed for top-level
mapping.

The tool uses the compile point constraints you define to synthesize the
compile point. Compile point port constraints are not used at the parent
level, because compile point ports do not exist at that level.

You can specify SCOPE attributes for the compile point as usual. See
Using Attributes with Compile Points, on page 457 for some exceptions.

5. Save the file and add it to the project. When prompted, click Yes to add
the constraint file to the top-level design project.

Otherwise, use Save As to write a file such as, moduleName.fdc to the
current directory. The hierarchical paths for compile point modules in
the constraint file are specified at the compile point level; not the top-
level design.

Using Attributes with Compile Points

You can use attributes as usual when you set constraints for compile points.
The following sections describe some caveats and exceptions:

* syn_hier

When you use syn_hier on a compile point, the only valid value is flatten.
All other values of this attribute are ignored for compile points. The
syn_hier attribute behaves normally for all other module boundaries that
are not defined as compile points.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 457

Chapter 15: Working with Compile Points Synthesizing Compile Points

syn_allowed_resources

Apply the syn_allowed_resources attribute globally or to a compile point to
specify its allowed resources. When a compile point is synthesized, the
resources of its siblings and parents cannot be taken into account
because it stands alone as an independent synthesis unit. This attribute
limits dedicated resources such as block RAMs or DSPs that the compile
point can use, so that there are adequate resources available during the
top-down flow.

Analyzing Compile Point Results

The software writes all timing and area results to a single log file in the imple-
mentation directory. You can check this file and the RTL and Technology
views to determine if your design has met the goals for area and performance.
You can also view and isolate the critical paths, search for and highlight
design objects and crossprobe between the schematics and source files.

1.

Check that the design meets the target frequency for the design. Use the
Watch window or check the log file.

. Open the log file and check the following:

— Check top-level and compile point boundary timing. You can also
check this visually using the RTL and Technology view schematics. If
you find negative slack, check the critical path. If the critical path
crosses the compile point boundary, you might need to improve the
compile point constraints.

— If the design was resynthesized, check the Summary of Compile Points
section to see if compile points were preserved or remapped.

Smmary of Cowpile Poiks :

PrddEiEtittRERERFI IR IR LR

(]

Srakus Reston vt Tiwe Bed Tiwa Pealtiug CHI Tiue

5B Lo RBezzpped Nepedng options chemped Now e 14 Ddz43:48 Z0LL Bow Max 1€ [4o4d:E7 2011 O e £k Oke: (e 33

Note that this section reports black box compile points as Not Mapped,
and lists the reason as Black Box.

— Review all warnings and determine which should be addressed and
which can be ignored.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
458

February 2013

Synthesizing Compile Points Chapter 15: Working with Compile Points

— Review the area report in the log file and determine if the cell usage is
acceptable for your design.

— Check all DRC information.
3. Check other files:

— Check the individual compile point module log files. The tool creates a
separate directory for each compile point module under the
implementation directory. Check the compile point log file in this
directory for synthesis information about the compile point synthesis
run.

— Check the compile point timing report. This report is located in the
compile point results directory of the implementation directory for
each compile point.

4. Check the RTL and Technology view schematics for a graphic view of the
design logic. Even though instantiations of compile points do not have
unique names in the output netlist, they have unique names in the
Technology view. This is to facilitate timing analysis and the viewing of
critical paths.

Note: Compile point of type {hard} is easily located in the Technology view
with the color green.

IBUF

= I N
a_jbuf temp:
E=
ul(levell)
IBUFG BUFG is_verilog =1
IBUF orig_inst_of = levell
; COMPILE_POINT = hard
E ™~ ™ syn_compile_point = 1
E= = L ’ syn_hier = hard
o ibuf
di_ibuf_iso cle_ibuf

5. Fix any errors.

Remember that the mapper reports an error if synthesis at a parent level
requires that interface changes be made to a locked compile point. The
software does not change the compile point interface, even if changes
are required to fix DRC violations.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 459

Chapter 15: Working with Compile Points Using Compile Points with Other Features

Using Compile Points with Other Features

You can effectively combine compile points with other synthesis features for
better runtime. The following sections describe how you can use compile
points with multiprocessing:

* Combining Compile Points with Multiprocessing, on page 460

Combining Compile Points with Multiprocessing
To use compile points with multiprocessing, do the following.
1. Set up the project with compile points.

2. Specify the number of parallel jobs to run with the Options->Configure
Compile Point Process command.

Alternatively, you can set this with the set option -max parallel jobs
Tcl command, or in the ini file.

3. Run synthesis.

The software synthesizes the compile points as separate processor jobs.
Parallel processing reduces runtime.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
460 February 2013

Resynthesizing Incrementally Chapter 15: Working with Compile Points

Resynthesizing Incrementally

Incremental synthesis can significantly reduce runtime on subsequent runs.
It can also help with design stabilization and preservation. The following
describe the incremental synthesis process, and how compile points are used
in incremental synthesis within the tool and with other tools:

* Incremental Compile Point Synthesis, on page 448

* Resynthesizing Compile Points Incrementally, on page 461

Resynthesizing Compile Points Incrementally

The following figure illustrates how compile points (CP) are used in incre-
mental synthesis.

Previous Synthesis Results
(with Compile Points)

‘ Make Small Modifications

‘ Synthesize
Incremental Synthesis Process
‘ Unaffected CPs Preserved
‘ Affected CPs Resynthesized
Analyze
Results OK? Mo { Modify

Yes

Place and Route

1. To synthesize a design incrementally, make the changes you need to fix
errors or improve your design.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 461

Chapter 15: Working with Compile Points Resynthesizing Incrementally

— Define new compile point constraints or modify existing constraints
in the existing constraint file or in a new constraint file for the
compile point. Save the file.

— If necessary, reset implementation options. Click Implementation Options
and modify the settings (operating conditions, optimization switches,
and global frequency).

To obtain the best results, define any required constraints and set the
proper implementation options for the compile point before resynthe-
sizing.

2. Click Run to resynthesize the design.

When a design is resynthesized, compile points are not resynthesized
unless source code logic, implementation options, or constraints have
been modified. If there are no compile point interface changes, the
software synthesizes the immediate parent using the previously gener-
ated model file for the compile point. See Incremental Compile Point
Synthesis, on page 448 for details.

3. Check the log file for changes.

The following figure illustrates incremental synthesis by comparing
compile point summaries. After the first run, a syntax change was made
in the mult module, and a logic change in the comb_logic module. The
figure shows that incremental synthesis resynthesizes comb_logic (logic
change), but does not resynthesize mult because the logic did not change
even though there was a syntax change. Incremental synthesis re-uses
the mapped file generated from the previous run to incrementally
synthesize the top level.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
462 February 2013

Resynthesizing Incrementally Chapter 15: Working with Compile Points

First Run Log Summary

Sunmary of Compile Points

Name Status Feason
Guate —)—mappea tio davabase
Mapped Mo database

alu Mapped Mo database))
eight bit uc Mapped No database Summary of Compile Points

Incremental Run Log Summary

Name Status Feason
Syntax changes only; not resynthesized mult Uncharged -
4|—>cnm.h_logic Remapped Design changed
Logic changes; compile alu Urchanged -
point resynthesized eight_bit uc Unchanged -

4. To force the software to generate a new model file for the compile point,
click Implementation Options on the Device tab and enable Update Compile
Point Timing Data. Click Run.

The software regenerates the model file for each compile point when it
synthesizes the compile points. The new model file is used to synthesize
the parent. The option remains in effect until you disable it.

5. To override incremental synthesis and force the software to resynthesize
all compile points whether or not there have been changes made, use
the Run->Resynthesize All command.

You might want to force resynthesis to propagate changes from a locked
compile point to its environment, or resynthesize compile points one last
time before tape out. When you use this option, incremental synthesis is
disabled for the current run only. The Resynthesize All command does not
regenerate model files for the compile points unless there are interface
changes. If you enable Update Compile Point Timing Data and select Resynthe-
size All, you can resynthesize the entire design and regenerate the
compile point model files, but synthesis will take longer than an incre-
mental synthesis run.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 463

Chapter 15: Working with Compile Points Resynthesizing Incrementally

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
464 February 2013

SYNOPSys

CHAPTER 16

Process Optimization and Automation

This chapter covers topics that can help the advanced user improve produc-
tivity and inter operability with other tools. It includes the following:

* Using Batch Mode, on page 466
* Working with Tcl Scripts and Commands, on page 472
* Automating Flows with synhooks.tcl, on page 479

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 465

Chapter 16: Process Optimization and Automation Using Batch Mode

Using Batch Mode

Batch mode is a command-line mode in which you run scripts from the
command line. You might want to set up multiple synthesis runs with a
batch script. You can run in batch mode if you have a floating license, but
not with a node-locked license.

Batch scripts are in Tcl format. For more information about Tcl syntax and
commands, see Working with Tcl Scripts and Commands, on page 472.

This section describes the following operations:
* Running Batch Mode on a Project File, on page 466
* Running Batch Mode with a Tcl Script, on page 467

¢ License Queuing, on page 468

Running Batch Mode on a Project File

Use this procedure to run batch mode if you already have a project file set up.
You can also run batch mode from a Tcl script, as described in Running
Batch Mode with a Tcl Script, on page 467.

1. Make sure you have a project file (prj) set up with the implementation
options. For more information about creating this Tcl file, see Creating a
Tcl Synthesis Script, on page 474.

2. From a command prompt, go to the directory where the project files are
located, and type one of the following, depending on which product you
are using:

synplify pro -batch project file name.prj

The software runs synthesis in batch mode. Use absolute path names or
a variable instead of a relative path name.

The software returns the following codes after the batch run:

0 - OK

2 - logical error

3 - startup failure

4 - licensing failure

S - batch not available

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
466 February 2013

Using Batch Mode Chapter 16: Process Optimization and Automation

6 - duplicate-user error

7 - project-load error

8 - command-line error

9 - Tcl-script error

20 - graphic-resource error

21 - Tcl-initialization error

22 - job-configuration error

23 - parts error

24 - product-configuration error
25 - multiple top levels

3. If there are errors in the source files, check the standard output for
messages. On Linux systems, this is generally the monitor; on Windows
systems, it is the stdout.log file.

4. After synthesis, check the resultFile.srr log file for error messages about
the run.

Running Batch Mode with a Tcl Script

The following procedure shows you how to create a Tcl batch script for
running synthesis. If you already have a project file set up, use the procedure
described in Running Batch Mode on a Project File, on page 466.

1. Create a Tcl batch script. See Creating a Tcl Synthesis Script, on
page 474 for details.

2. Save the file with a tcl extension to the directory that contains your
source files and other project files.

3. From a command prompt, go to the directory with the files and type the
following:

synplify pro -batch Tcl script.tcl

The software runs synthesis in batch mode. The synthesis (compilation
and mapping) status results and errors are written to the log file result-
File.srr for each implementation. The synthesis tool also reports success
and failure return codes.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 467

Chapter 16: Process Optimization and Automation Using Batch Mode

4. Check for errors.

— For source file or Tcl script errors, check the standard output for
messages. On Linux systems, this is generally the monitor in addition
to the stdout.log file; on Windows systems, it is the stdout.log file.

— For synthesis run errors, check the resultFile.srr log file. The software
uses the following error codes:

0 -OK

2 - logical error

3 - startup failure

4 - licensing failure

S - batch not available

6 - duplicate-user error

7 - project-load error

8 - command-line error

9 - Tcl-script error

20 - graphic-resource error
21 - Tcl-initialization error
22 - job-configuration error
23 - parts error

24 - product-configuration error
25 - multiple top levels

License Queuing

A common problem when running in batch mode is that the run fails because
all of the available licenses are in use. License queuing allows a batch run to
walit for the next available license when a license is not immediately available.
You can use the following types of license queuing:

* Blocking-style Queuing
* Non Blocking-style Queuing

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
468 February 2013

Using Batch Mode Chapter 16: Process Optimization and Automation

Blocking-style Queuing

When blocking-style queuing is enabled and the requested license feature is
on the server but not available, the tool waits until the license becomes avail-
able.

To enable blocking-style license queuing, either:

* Set environment variable toolName_ LICENSE_WAIT=1 (toolName is the
name of the FPGA synthesis tool)

* Include a -license_wait command-line argument when launching batch
mode as shown in the following example:

synplify pro -batch -license wait Tcl script.tcl

For blocking-style license queuing, the following message is generated to
stdout.log or the Tcl window:

Waiting for license: toolName
For example:

Waiting for license: synplifypro

Queuing Considerations
When using queuing:

* A blocking-style queuing is used; license checkout does not exit until a
license becomes available.

* There is no maximum wait time; once initiated, the tool can wait indefi-
nitely for a license.

e If the server shuts down while the tool is waiting, a checkout failure is
reported.

* When two licenses are required, queuing waits only until the first license
becomes available (and not the second) to avoid holding a license unnec-
essarily.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 469

Chapter 16: Process Optimization and Automation Using Batch Mode

Non Blocking-style Queuing

When non blocking-style queuing is enabled and the requested license
feature is on the server but not available, the tool waits up to the maximum
wait time specified in seconds for the license to become available.

To enable non blocking-style license queuing, you can:

* Set environment variable toolName LICENSE_WAIT=waitTime
(toolName is the name of the FPGA synthesis tool and waitTime is the
maximum wait time in seconds). For example:

SYNPLIFYPRO LICENSE WATT=180

* Include a -license_wait waitTime command-line argument when
launching batch mode as shown in the following examples:

synplify pro -batch -license wait waitTime Tcl script.tcl

For non blocking-style license queuing, the following message is generated to
stdout.log or the Tcl window:

Waiting up to n seconds for license: toolName
For example:
Waiting up to 230 seconds for license: synplifypro

Non blocking-style license queuing behavior for the environment variable
toolName_ LICENSE WAIT=waitTime or -license_wait waitTime command-line
argument is shown in the following tables.

Environment Variable Queuing Behavior
SYNPLIFYPRO_LICENSE_WAIT (undefined) Queuing off
SYNPLIFYPRO_LICENSE_WAIT=0 Queuing off
SYNPLIFYPRO_LICENSE_WAIT=1 Queuing on; wait indefinitely
SYNPLIFYPRO_LICENSE_WAIT=n (n>1) Queuing on; wait up to n seconds
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
470 February 2013

Using Batch Mode Chapter 16: Process Optimization and Automation

Command Line Argument Queuing Behavior

synplifypro -license_wait arguments Queuing on; wait indefinitely
synplifypro -license_wait 1 arguments Queuing on; wait indefinitely
synplifypro license_wait n (n>1) Queuing on; wait up to n seconds
synplifypro arguments Queuing off

synplifypro -license_wait 0 arguments Queuing off

* Specify a list of features to wait for using batch mode:

synplify pro -batch -license wait -licensetype
synplifypro:synplifypro microsemi name of project.prj

* Specify feature names to wait for using the toolName_ LICENSE TYPE
environment variable:

SYNPLIFYPRO LICENSE TYPE=synplifypro:synplifypro microsemi

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 471

Chapter 16: Process Optimization and Automation Working with Tcl Scripts and Commands

Working with Tcl Scripts and Commands

The software uses extensions to the popular Tcl (Tool Command Language)
scripting language to control synthesis and for constraint files. See the
following for more information:

Using Tcl Commands and Scripts, next

Generating a Job Script, on page 473

Setting Number of Parallel Jobs, on page 473

Creating a Tcl Synthesis Script, on page 474

Using Tcl Variables to Try Different Clock Frequencies, on page 476

Using Tcl Variables to Try Several Target Technologies, on page 478

Running Bottom-up Synthesis with a Script, on page 479

You can also use synhooks Tcl scripts, as described in Automating Flows with
synhooks.tcl, on page 479.

Using Tcl Commands and Scripts

1. To get help on Tcl syntax, do any of the following:
— Refer to the online help (Help->Tcl Help) for general information about
Tcl syntax.
— Refer to the Reference Manual for information about the synthesis
commands.
— Enter help * in the Tcl window for a list of all the Tcl synthesis
commands.
— Enter help commandName in the Tcl window to see the syntax for an
individual command.
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
472 February 2013

Working with Tcl Scripts and Commands Chapter 16: Process Optimization and Automation

2. To run a Tcl script, do the following:

— Create a Tcl script. Refer to Generating a Job Script, on page 473 and
Creating a Tcl Synthesis Script, on page 474.

— Run the Tcl script by either entering source Tcl_scriptfile in the Tcl
script window, or by selecting File->Run Tcl Script, selecting the Tcl file,
and clicking Open.

The software runs the selected script by executing each command in
sequence. For more information about Tcl scripts, refer to the following
sections.

Generating a Job Script

You can record Tcl commands from the interface and use it to generate job
scripts.

1. In the Tcl script window, enter recording -file logfile to write out a Tcl log
file.

2. Work through a synthesis session.

The software saves the commands from this session into a Tcl file that
you can use as a job script or as a starting point for creating other
Tcl files.

For the command syntax, see recording, on page 1078 in the Reference
manual.

Setting Number of Parallel Jobs

You can set the maximum number of parallel jobs by setting a variable in the
ini file, by defining a Tcl variable, or specifying the maximum number in the
GUIL

1. To set the maximum number of parallel jobs in the ini file, do the
following:
— Open the ini file for the synthesis tool. For example, synplify_pro.ini.

— Add the MaxParallelJobs variable to the ini file, as follows:

[JobSetting]
MaxParallelJobs=<n>

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 473

Chapter 16: Process Optimization and Automation Working with Tcl Scripts and Commands

The tool uses the MaxParallelJobs value from the ini file as the default for
both the UI (Project->Options) and batch mode. This value remains in
effect until you reset it in the ini file or from the GUI, as described in the
next step. To locate this configuration and initialization file (ini), see
Input Files, on page 426.

2. To set or change the maximum number of parallel jobs from the GUI, do
the following:

— Select Project->Options->Configure Compile Point Process.

— Set the value you want in the Maximum number of parallel synthesis jobs
field, and click OK. This field shows the current ini value, but you
can reset it, and it will remain in effect until you change it again. The
value you set is saved to the ini file.

3. To set a Tcl variable for the maximum number of parallel jobs, do the
following:

— Determine where you are going to define the variable. You can do this
in the project file, or a Tcl file, or you can type it in the Tcl window. If
you specify it in a Tcl file, you must source the file. If you specify it in
the Tcl window, the tool does not save the value, and it will be lost
when you end the current session.

— Specify the max_parallel_jobs variable with the set_option Tcl command:
set option -max parallel jobs value

The tool applies the max_parallel_jobs value specified to all project files
and their respective implementations. This is a global option. The
maximum number of parallel jobs remains in effect until you specify a
new value. This new value takes effect immediately, going forward.
However, when you set this option from the Tcl command window, the
max_parallel_jobs value is not saved and will be lost when you exit the
application.

Creating a Tcl Synthesis Script

Tcl scripts are text files with a tcl extension. You can use the graphic user
interface to help you create a Tcl script. Interactive commands that you use
actually execute Tcl commands, which are displayed in the Tcl window as
they are run. You can copy the command text and paste it into a text file that
you build to run as a Tcl script. For example:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
474 February 2013

Working with Tcl Scripts and Commands Chapter 16: Process Optimization and Automation

add_file prep2.v

set _option -technology PROASIC3
set option -part A3P400
set option -package FBGAl44
set option -speed grade -Std

project -run

The following procedure covers general guidelines for creating a synthesis
script.

1.

Use a text file editor or select File->New, click the Tcl Script option, and type
a name for your Tcl script.

. Start the script by specifying the project with the project -new command.

For an existing project, use project -load project.prj.

. Add files using the add_file command. The files are added to their

appropriate directories based on their file name extensions (see add_file,
on page 1052 in the Reference Manual). Make sure the top-level file is
last in the file list:

add file statemach.vhd
add_file rotate.vhd
add file memory.vhd
add file top level.vhd
add file design.fdc

For information on constraints and vendor-specific attributes, see , on
page 46 for details about constraint files.
Set the design synthesis controls and the output:

— Use the set option command for setting implementation options and
vendor-specific controls as needed. See the appropriate vendor
chapter in the Reference Manual for details.

— Set the output file information with project -result_file and project -log_file.

. Set the file and run options:

— Save the project with a project -save command
— Run the project with a project -run command

— Open the RTL and Technology views:

open file -rtl view
open file -technology view

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 475

Chapter 16: Process Optimization and Automation Working with Tcl Scripts and Commands

6. Check the syntax.
— Check case (Tcl commands are case-sensitive).
— Start all comments with a hash mark (#).

— Always use a forward slash (/) in directory and pathnames, even on
the Windows platform.

Using Tcl Variables to Try Different Clock Frequencies

To create a single script for multiple synthesis runs with different clock
frequencies, you need to create a Tcl variable for the different settings you
want to try. For example, you might want to try different target technologies.

1. To create a variable, use this syntax:

set variable name {
first option to try
second option to try

-}

2. Create a foreach loop that runs through each option in the list, using the
appropriate Tcl commands. The following example shows a variable set
up to synthesize a design with different frequencies. It also creates a
separate log file for each run.

Set of frequencies °S© try_freq {

totry 90.0
92.0 Tcl commands that set the

0

0

frequency, create separate log files
for each run, and run synthesis

)
Foreach loop —» foreach frequency $try freqg {
set _option -frequency $frequency
project -log file S$frequency.srr
project -run}

The following code shows the complete script:

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
476 February 2013

Working with Tcl Scripts and Commands

Chapter 16: Process Optimization and Automation

project -load design.prj

set try these {
20.
24 .
28.
32.
36.
40.

}

0

O O O oo

foreach frequency $try these {
set option -frequency $frequency
project -log file S$frequency.srr

project -run

open file -edit file $frequency.srr

Synplify Pro for Microsemi Edition User Guide

February 2013

Copyright © 2013 Synopsys, Inc.
477

Chapter 16: Process Optimization and Automation Working with Tcl Scripts and Commands

Using Tcl Variables to Try Several Target Technologies

This technique used here to run multiple synthesis implementations with
different target technologies is similar to the one described in Using Tcl
Variables to Try Different Clock Frequencies, on page 476. As in that section,

you use a variable to define the target technologies you want to try.
1. Create a variable called try_these with a list of the technologies.
set try these (

PROASIC3 PROASIC3E # list of technologies

}

2. Add a foreach loop that creates a new implementation for each

technology and opens the RTL view for each implementation.

foreach technology $try these {
impl -add
set _option -technology $technology
project -run -fg
open file -rtl view

}

The following code example shows the script:

Open a new project, set frequency, and add files.
project -new
set option -frequency 33.3
add file -verilog D:/test/simpletest/prep2 2.v

Create the Tcl variable to try different target technologies.

set try these
IGLOO IGLOOE FUSION # list of technologies
}

Loop through synthesis for each target technology.
foreach technology $try these {
impl -add
set _option -technology $technology
project -run -fg
open file -rtl view

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
478

February 2013

Automating Flows with synhooks.tcl Chapter 16: Process Optimization and Automation

Running Bottom-up Synthesis with a Script

To run bottom-up synthesis, you create Tcl scripts for individual logic blocks,
and a script for the top level that reads the other Tcl scripts.

1. Create a Tcl script for each logic block. The Tcl script must synthesize
the block. See Creating a Tcl Synthesis Script, on page 474 for details.

2. Create a top-level script that reads the block scripts. Create the script
with the with the project -new command.

3. Add the top-level data:
— Add source and constraint files with the add_file command.
— Set the top-level options with the set_option command.
— Set the output file information with project -result_file and project -log_file.
— Save the project with a project -save command.

— Run the project with a project -run command.
4. Save the top-level script, and then run it using this syntax:

source block_script . tcl

When you run this command, the entire design is synthesized, begin-
ning with the lower-level logic blocks specified in the sourced files, and
then the top level.

Automating Flows with synhooks.tcl

This procedure provides the advanced user with callbacks that let you
customize your design flow or integrate with other products. For example,
you might use the callbacks to send yourself email when a job is done (see
Automating Message Filtering with a Tcl Script, on page 249), or to automati-
cally copy files to another location after mapping. You can use the callback
functions to integrate with a version control system, or generate the files
needed to run formal verification with the Cadence Conformal tool. The
procedure is based on a file called synhooks.tcl, which contains the Tcl
callbacks.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 479

Chapter 16: Process Optimization and Automation Automating Flows with synhooks.tcl

1. Copy the synhooks.tcl file from the installDirectory/examples directory to a
new location.

You must copy the file to a new location so that it does not get
overwritten by subsequent product installations and you can maintain
your customizations from version to version. For example, copy it to
C:/work/synhooks.tcl.

2. Define an environment variable called SYN_TCL_HOOKS, and point it to
the location of the synhooks.tcl file.

3. Open the synhooks.tcl file in a text editor, and edit the file so that the
commands reflect what you want to do. The default file contains
examples of the callbacks, which provide you with hooks at various
points of the design process.

— Customize the file by deleting the ones you do not need and by adding
your customized code to the callbacks you want to use. The following
table summarizes the various design phases where you can use the
callbacks and lists the corresponding functions. For details of the
syntax, refer to synhooks File Syntax, on page 1129 in the Reference
Manual.

Design Phase Tcl Callback Function
Project Setup Callbacks

Settings defaults for projects proc syn_on_set_project_template

Creating projects proc syn_on_new_project
Opening projects proc syn_on_open_project
Closing projects proc syn_on_close_project

Application Callbacks

Starting the application after proc syn_on_start application
opening a project

Exiting the application proc syn_on_exit_application
Run Callbacks

Starting a run. See Example: proc syn_on_start_run
proc syn_on_start run, on

page 481.

Ending a run proc syn_on_end_run
Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
480 February 2013

Automating Flows with synhooks.tcl Chapter 16: Process Optimization and Automation

Design Phase Tcl Callback Function
Key Assignment Callbacks

Setting an operation for Ctrl- proc syn_on_press_ctrl_f8
F8. See Example: proc

syn_on_press_ctrl {8, on

page 482.

Setting an operation for Ctrl- proc syn_on_press_ctrl_f9
F9

Setting an operation for Ctrl- proc syn_on_press_ctrl_f11
F1l1

— Save the file.

As you synthesize your design, the software automatically executes the
function callbacks you defined at the appropriate points in the design
flow.

Example: proc syn_on_start_run

The following code example gets selected files from the project browser at the
start of a run:

proc syn on start run {compile c:/work/prep2.prj rev 1} {
set sel files [get selected files -browser]
while {[expr [llength $sel files] > 0]} {
set file name [lindex $sel files 0]
puts $file name
set sel files [lrange $sel files 1 end]

}

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 481

Chapter 16: Process Optimization and Automation Automating Flows with synhooks.tcl

Example: proc syn_on_press_ctrl_f8

The following code example gets all the selected files from the project browser
and project directory when the Ctrl-F8 key combination is pressed:

proc syn on press ctrl f8 {} {
set sel files [get selected files]
while {[expr [llength $sel files] > 0]} {
set file name [lindex $sel files 0]
puts S$file name
set sel files [lrange $sel files 1 end]

}

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
482 February 2013

SYNOPSYs

celerating Innovation

CHAPTER 17

Using Multiprocessing

The following sections describe how to use multiprocessing to run parallel
synthesis jobs and improve runtime:

* Multiprocessing With Compile Points, on page 484
— Setting Maximum Parallel Jobs, on page 484

— License Utilization, on page 485

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 483

Chapter 17: Using Multiprocessing Multiprocessing With Compile Points

Multiprocessing With Compile Points

Use the Configure Compile Point Process command to run multiprocessing with
compile points. This option allows the synthesis software to run multiple,
independent compile point jobs simultaneously, providing additional runtime
improvements for the logical compile point synthesis flows. On the Configure
Compile Point Process dialog box, specify the maximum number of synthesis
jobs you can run in parallel. Note, one license is used for each job. For a
description of how to set the maximum number of parallel synthesis jobs, see
Setting Maximum Parallel Jobs, on page 484.

To use multiprocessing in the Logical Compile Point Synthesis flows for the
Synplify Pro tool, see Chapter 15, Working with Compile Points.

Setting Maximum Parallel Jobs

You can set maximum number of parallel jobs in the following ways:
* INI Variable — MaxParallelJobs

* Tcl Variable — max_parallel_jobs

INI Variable — MaxParallelJobs

The maximum number of parallel jobs is set in the product ini file. The
following commands are set in the product.ini file (for example, synplify_pro.ini):

[JobSetting]

MaxParallelJobs=<n>

The MaxParallelJobs value is used by the UI as well as in batch mode. This
value is effective until you specify a new value. To change the number of
parallel jobs you can run, use the Options->Configure Compile Point Process
command from the Project view menu. On the Configure Compile Point Process
dialog box, in the Maximum number of parallel synthesis jobs field you will see the
current ini value. You can specify a new MaxParallelJobs value which is effec-
tive until you change it again. Once you click OK, the new value is saved in
the ini file. For a description of the dialog box, see Configure Compile Point
Process Command, on page 248.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
484 February 2013

Multiprocessing With Compile Points Chapter 17: Using Multiprocessing

Tcl Variable — max_parallel_jobs

You can also manually set an override value for the maximum number of
parallel jobs. To do this, use the Tcl command:

set_option -max_parallel_jobs numberJobs
You can choose to:
* Source the Tcl file containing this option.
* Add this option to the Project file.

* Set this option from the Tcl command window.

This max_parallel_jobs value is applied to all project files and their respective
implementations. This is a global option. The maximum number of parallel
jobs remains in effect until you specify a new value. This new value takes
affect immediately going forward. However, when you set this option from the
Tcl command window, the max_parallel_jobs value is not saved and will be lost
when you exit the application.

License Utilization

When you decide to run parallel synthesis jobs, a license is used for each
compile point job that runs. For example, if you set the Maximum number of
parallel synthesis jobs to 4, then the synthesis tool consumes one license and
three additional licenses are utilized to run the parallel jobs if they are avail-
able for your computing environment. Licenses are released as jobs complete,
and then consumed by new jobs which need to run.

The actual number of licenses utilized depends on the:

1. Synthesis software scheme for the compile point requirements used to
determine the maximum number of parallel jobs or licenses a particular
design tries to use.

2. Value set on the Configure Compile Point Process dialog box.

3. Number of licenses actually available. You can use Help->Preferred License
Selection to check the number of available license. If you need to increase
the number of available licenses, you can specify multiple license types.
For more information, see Specifying License Types, on page 486.

Synplify Pro for Microsemi Edition User Guide Copyright © 2013 Synopsys, Inc.
February 2013 485

Chapter 17: Using Multiprocessing Multiprocessing With Compile Points

Factors 1 and 3 above can change during a single synthesis run. The number
of jobs equals the number of licenses; which then equates the lowest value of
these three factors.

Specifying License Types

You can specify multiple license types to increase the total number of licenses
available for multiprocessing. To do this, you can either:

* Use the -licensetype command line option when you execute your tool.

For example, suppose you have two synplifypro licenses, two
synplifypro_allvendor licenses, and three synplifypro_microsemi licenses. Type
the following at the command line:

synplify pro.exe -licensetype
"synplifypro:synplifypro allvendor:synplifypro microsemi"

* Use the following environment variables specified with the license type:

— SYNPLIFYPRO_LICENSE_TYPE (Synplify Pro tool)

setenv SYNPLIFYPRO LICENSE TYPE=
"synplifypro:synplifypro allvendor:synplifypro microsemi"

Multiprocessing can access any of these license types for additional licenses.

Copyright © 2013 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
486 February 2013

Index

Symbols

.adc file 334
fdc file 52

.ini file
parallel jobs 473

A

ACTgen macros 347
adc constraints 334

adc file
creating 334
object names 338

adc file, using 332

adders
SYNCore 396

alspin
bus port pin numbers 353

Alt key
column editing 34
mapping 295
analysis design constraint file (.adc) 334

analysis design constraints
design scenarios 333

analysis design constraints (adc) 332

analysis design constraints (adc), using
with fdc 335

archive utility
using 153
archiving projects 153
area, optimizing 193
asterisk wildcard
Find command 283

attributes
adding 141
adding in constraint files 44
adding in SCOPE 145

Synplify Pro for Microsemi Edition User Guide
February 2013

adding in Verilog 144

adding in VHDL 143

effects of retiming 200

for FSMs 177, 224

syn_hier (on compile points) 457

VHDL package 143
audience for the document 19
auto constraints, using 339

AutoConstraint_design_name.fdc 342

B

B.E.S.T 299

backslash
escaping dot wildcard in Find
command 283
batch mode 466

Behavior Extracting Synthesis
Technology. See B.E.S.T
black boxes 166
adding constraints 170
adding constraints in SCOPE 173
adding constraints in Verilog 172
adding constraints in VHDL 171
instantiating in Verilog 166
instantiating in VHDL 168
passing VHDL boolean generics 41
passing VHDL integer generics 42
pin attributes 174
timing constraints 170

blocking-style license queuing 469

bookmarks
in source files 34
using in log files 240

bottom-up design flow
compile point advantages 430

browsers 270

buffering
controlling 211

byte-enable RAMs

Copyright © 2013 Synopsys, Inc.
487

Index

SYNCore 385

C

c_diff command, examples 79
c_intersect command, examples 80

c_list command
different from c_print 84
example 87
using 86
c_print command
different from c_list 85
using 86
c_symdiff command, examples 80
c_union command, examples 79

callback functions, customizing flow 479

case sensitivity
Find command (Tcl) 82

clock constraints
edge-to-edge delay 95
false paths 106
setting 58, 95

clock domains
clock enables 102
setting up 103

clock enables

defining with multicycle path
constraints 101

negative slack 101

clock groups
effect on false path constraints 73, 106
for global frequency clocks 97

clock trees 325

clocks
asymmetrical 98
defining 97
frequency 98
gated. See gated clocks
implicit false path 73, 106
limited resources 103
overriding false paths 106
start zfluaéi end points for clock enables

collections
adding objects 78
concatenating 78
constraints 77

Copyright © 2013 Synopsys, Inc.
488

copying 86
creating from common objects 78
creating from other collections 77
creating in SCOPE 75
creating in Tcl 78
crossprobing objects 76
definition 74
diffing 78
highlighting in HDL Analyst views 84
iterating through objects 87
listing objects 86
listing objects and properties 85
listing objects in a file 86
listing objects in columnar format 85
listing objects with c_list 84
special characters 80
Tcl window and SCOPE comparison 74
using Tcl expand command 83
using Tcl find command 81
viewing 84
column editing 34

comments
source files 34
compile point types
hard 435
locked 437

compile points
advantages 430
analyzing results 458
automatic timing budgeting 442
child 433
constraint files 439
constraints for forward-annotation 449
constraints, internal 449
creating constraint file 456
defined 430
defining in constraint files 453
feature summary 438
Identify flow 364
incremental synthesis 461
manual compile point flow 450
multiprocessing 460
nested 433
optimization 446
order of synthesis 446
parent 433
preserving with syn_hier 457
resynthesis 448
setting constraints 456
setting type 455

Synplify Pro for Microsemi Edition User Guide
February 2013

Index

syn_hier 457

synthesis process 445

synthesizing 449

types 435

using4s3én_allowed_resources attribute
5

compile-point synthesis
interface logic models 442

compile-point synthesis flow
defining compile points 453
setting constraints 456

compiler directives 30
using 30

compiler directives (Verilog)
specifying 138

constants
extracting from VHDL source code 140

constraint files 43
applying to a collection 77
black box 170
compile point 439, 449
creating in a text editor 44
defining clocks 90
defining register delays 91
editing 64
effects of retiming 200
opening 52
options 133
setting for compile points 456
specifying through points 69
types of 92
vendor-specific 47
when to use 43

context
for object in filtered view 302

context help editor 30
SystemVerilog 30

continue on error 132

counters
SYNCore 403

critical paths
delay 326
flat view 326
hierarchical view 326
negative slack on clock enables 101
slack time 326
using -route 195
viewing 325

Synplify Pro for Microsemi Edition User Guide
February 2013

crossprobing 291
and retiming 200
collection objects 76
filtering text objects for 296
from FSM viewer 298
from log file 240
from message viewer 245
from text files 294
Hierarchy Browser 291
importance of encoding style 298
paths 295
RTL view 292
Technology view 292
Text Editor view 292
text file example 295
to FSM Viewer 298
to place-and-route file 267
Verilog file 292
VHDL file 292
within RTL and Technology views 291

current level
expanding logic from net 306
expanding logic from pin 306
searching current level and below 280

custom folders
creating 117
hierarchy management 117

customization
callback functions 479

D

data block 412

data key 412

default enum encoding 140

define attribute 148

define_clock constraint 90
define_false_paths constraint 91
define_input_delay constraint 91
define_multicycle_path constraint 91
define_output_delay constraint 91
define_reg input_delay constraint 91
define_reg output_delay constraint 91

design flow
customizing with callback functions 479

design guidelines 192

Copyright © 2013 Synopsys, Inc.
489

Index

design hierarchy
viewing 300
design size
amount displayed on a sheet 267

design views
moving between views 266

device options
See also implementation options

directives
adding 141
adding in Verilog 144
adding in VHDL 143
black box 171, 172
for FSMs 177
specifying for Verilog compiler 138
syn_state_machine 223
syn_tco 172
adding black box constraints 171
syn_tpd 172
adding black box constraints 171
syn_tsu 172
adding black box constraints 171

dissolving instances for flattening
hierarchy 313

dot wildcard
Find command 283

drivers
preserving duplicates with syn_keep
203

selecting 309

dual-port RAMs
SYNCore parameters 382

E

Editing window 32

editor
compiler directives 30

editor view
context help 30

emacs text editor 37

encoding styles
and crossprobing 298
default VHDL 140
FSM Compiler 221

encryption flow. See ReadylP, encryptIP
encryptip output constraints 420

Copyright © 2013 Synopsys, Inc.
490

encryptip output method
effect on output netlists 420

encryptIP script
controlling output 419
encrypting IP 418
output methods 419

environment variables
SYN_TCL_HOOKS 480

error codes 466

errors
continuing 132
definition 32
filtering 244
sorting 244
source files 32
Verilog 32
VHDL 32

Expand command
connection logic 309
pin and net logic 305
using 306

expand command
different from Tcl search 287

expand command (Tcl). See Tcl expand
command

Expand Inwards command
using 306

Expand Paths command
different from Isolate Paths 309

Expand to Register/Port command
using 306

expanding
connections 309
pin and net logic 305

F

false paths

defining between clocks 106

1/0O paths 73, 106

impact of clock group assignments
73, 106

overriding 106

ports 73, 105

registers 73, 105

setting constraints 73, 105

fanouts

Synplify Pro for Microsemi Edition User Guide
February 2013

Index

buffering vs replication 211

hard limits 210

soft global limit 209

soft module-level limit 210

using syn_keep for replication 204
using syn_maxfan 209

feature comparison
FPGA tools 16

FIFOs
compiling with SYNCore 372

files
.fdc 52
.prf file 246
filtered messages 248
fsm.info 222
log 237
message filter (prf) 246
output 354
rom.info 273
searching 150
statemachine.info 319
synhooks.tcl 480
Tcl 472

See also Tcl commands

Tcl batch script 467

Filter Schematic command, using 303
Filter Schematic icon, using 303

filtering 303
advantages over flattening 303
using to restrict search 280

Find command
280
browsing with 280
hierarchical search 281
long names 280
message viewer 244
reading long names 283
search scope, effect of 284
search scope, setting 281
searching the mapped database 282
searching the output netlist 288
setting limit for results 282
using in RTL and Technology views 280
using wildcards 283
wildcard examples 285
find command

different from Tcl search 287
hierarchy 287

Synplify Pro for Microsemi Edition User Guide
February 2013

nuances and differences 287

Find command (Tcl)
See also Tcl find command

finding information
information organization 20

Flatten Current Schematic command
transparent instances 311
using 311

Flatten Schematic command
using 311

flattening 310
See also dissolving
compared to filtering 303
dissolving instances 313
hidden instances 312
transparent instances 311
using syn_hier 207
using syn_netlist_hierarchy 207
foreach command 87

foreach_in_collection loops, converting
87
forward annotation
vendor-specific constraint files 47
forward-annotation
compile point constraints 449
FPGA Design Constraints Editor
using TCL View 61
frequency
clocks 98
defining for non-clock signals 99
internal clocks 99
setting global 132
from constraints
specifying 69
FSM Compiler
advantages 220
enabling 221
FSM encoding
user-defined 178
using syn_enum_encoding 178
FSM Explorer 219
running 225
when to use 219
FSM view
crossprobing from source file 294

FSM Viewer 315

Copyright © 2013 Synopsys, Inc.
491

Index

crossprobing 298
fsm.info file 222

FSMs
See also FSM Compiler, FSM Explorer
attributes and directives 177
defining in Verilog 175
defining in VHDL 176
definition 175
optimizing with FSM Compiler 218
properties 319
state encodings 318
transition diagram 316
viewing 316

G

gated clocks
defining 103

generics
extracting from VHDL source code 140
passing boolean 41
passing integer 42

global optimization options 131

H

HDL Analyst

See also RTL view, Technology view

critical paths 325

crossprobing 291

filtering schematics 303

Push/Pop mode 273, 276

traversing hierarchy with mouse
strokes 271

traversing hierarchy with Push/Pop
mode 273
using 299

HDL Analyst tool
deselecting objects 264
selecting/deselecting objects 263

HDL Analyst views
highlighting collections 84

HDL views, annotating timing
information 323

help
information organization 20

hidden instances
consequences of saving 301

Copyright © 2013 Synopsys, Inc.
492

flattening 312

restricting search by hiding 281

specifying 301

status in other views 301
hierarchical design

expanding logic from nets 306

expanding logic from pins 305
hierarchical instances

dissolving 313

hiding. See hidden instances, Hide

Instances command

multiple sheets for internal logic 302

pin name display 304

viewing internal logic 301
hierarchical objects

pushing into with mouse stroke 272
traversing with Push/Pop mode 273

hierarchical search 280

hierarchy
flattening 311
traversing 270
hierarchy browser
clock trees 325
controlling display 267
crossprobing from 291
defined 270
finding objects 278
traversing hierarchy 270

hierarchy management (custom folders)
117

hyper source
example 426
for IPs 424
for prototyping 424
IP design hierarchy 424
threading signals 425

I/O insertion 218
I/O pads

specifying I/O standards 61
I/O paths

false path constraint 73, 106
I/O standards 61
I/0s

auto-constraining 340

Synplify Pro for Microsemi Edition User Guide
February 2013

Index

constraining 60, 104
Verilog black boxes 166
VHDL black boxes 168

Identify
compile points 364

implementation options 128
device 128
global frequency 132
global optimization 131
part selection 128
specifying results 134

implementations
copying 125
deleting 125
multiple. See multiple
implementations.
overwriting 125
renaming 125

incremental synthesis
compile points 461

input constraints, setting 59, 104

instances
preserving with syn_noprune 203
properties 258
properties of pins 259

ILM See interface logic models
interface logic models 442
interface timing 442
IP
encryption-decryption flow 410
re-encryption 413

IP design hierarchy
hyper source 424

IP encryption flow overview 409
IP encryption scheme 415

IP vendors
encrypting IP 415
package file list for ecnypted IP flow 422
packaging for evaluation 421
supplying vendor information 422

IPs
encrypting 415
encryption flow 409
SYNCore 372
SYNCore byte-enable RAMs 385
SYNCore counters 403

Synplify Pro for Microsemi Edition User Guide
February 2013

SYNCore FIFOs 372

SYNCore RAMs 378

SYNCore ROMs 391

SYNCore subtractors 396

using hyper source for debug 424

Isolate Paths command
different from Expand Paths 309, 310

J

job management
up-to-date checking 232

K

key assignments
customizing 481

key block 412

keywords
completing words in Text Editor 33

L

license queuing 468
blocking-style 469
non blocking-style 470

log files
checking FSM descriptions 226
checking information 237
retiming report 199
setting default display 237
state machine descriptions 221
viewing 237

logic
expanding between objects 309
expanding from net 306
expanding from pin 305

logic preservation
syn_hier 207
syn_keep for nets 203
syn_keep for registers 203
syn_noprune 203
syn_preserve 203

logical folders
creating 117

Copyright © 2013 Synopsys, Inc.
493

Index

manual compile points
flow 450

max_parallel jobs variable 474
maximum parallel jobs 473, 484
MaxParallelJobs variable 473

memory usage
maximizing with HDL Analyst 315

Message viewer
filtering messages 245
keyboard shortcuts 244
saving filter expressions 246
searching 244
using 243
using the F3 key to search forward 244
using the Shift-F3 key to search
backward 244
messages
demoting 250
filtering 245
promoting 250
saving filter information from command
line 248
saving filter information from GUI 246
severity levels 252
suppressing 250
writing messages to file 248
Microsemi
ACTgen macros 347
output netlist 354
pin numbers for bus ports 353

Microsemil
macro libraries 346

mixed designs
troubleshooting 41

mixed language files 38
mouse strokes
pushing/popping objects 271

multicycle constraints
clock enables 101

multicycle paths
setting constraints 58, 96

multiple implementations 124
running from project 125
running from workspace 127

Copyright © 2013 Synopsys, Inc.
494

multiprocessing
compile points 460
maximum parallel jobs 473, 484

multisheet schematics 265
for nested internal logic 302
searching just one sheet 280
transparent instances 265

N

name spaces
output netlist 288
technology view 282

navigating among design views 266
netlists for different vendors 354

nets
expanding logic from 306
prese%ié'lg for probing with syn_probe
preserving with syn_keep 203
properties 258
selecting drivers 309

New property 261
non blocking-style license queuing 470
notes

filtering 244
sorting 244

notes, definition 32

(0

objects
finding on current sheet 280
flagging by property 259
selecting/deselecting 263
optimization
for area 193
for timing 194
logic preservation. See logic
preservation.
preserving hierarchy 207
preserving objects 203
tips for 192

OR 71

orig inst_of property 262

output constraints, setting 59, 104
output files 354

Synplify Pro for Microsemi Edition User Guide
February 2013

Index

specifying 134
output netlists
finding objects 288

P

package library, adding 110

pad types
industry standards 61

parallel jobs 473

parameter passing 42
boolean generics 41

parameters
extracting from Verilog source code 137

part selection options 128

path constraints
false paths 73, 105

pathnames
using wildcards for long names (Find)

paths
crossprobing 295
tracing between objects 309
tracing from net 306
tracing from pin 305

pattern matching
Find command (Tcl) 82
pattern searching 150
PDF
cutting from 34
pin names, displaying 304
pins
expanding logic from 305
properties 258
ports
false path constraint 73, 105
properties 258
POS interface
using 69
post-synthesis constraints with adc 333
preferences
crossprobing to place-and-route file 267
displaying Hierarchy Browser 267
displaying labels 268
RTL and Technology views 267

Synplify Pro for Microsemi Edition User Guide
February 2013

sheet size (UI) 267
primitives
pin name display 304
pushing into with mouse stroke 272
viewing internal hierarchy 300

probes
adding in source code 227
definition 227
retiming 201
Product of Sums interface. See POS
interface

project command
archiving projects 153
copying projects 160
unarchiving projects 157

project file hierarchy 117

project files
adding files 112
adding source files 108
batch mode 466
creating 108
definition 108
deleting files from 112
opening 111
replacing files in 112
updating include paths 116
VHDL file order 111
VHDL library 110

projects
archiving 153
copying 160
restoring archives 157
properties
displaying with tooltip 258
finding objects with Tcl Find 82
orig_inst_of 262
reporting for collections 85
viewing for individual objects 259
prototyping
using hyper source threading 424
Push/Pop mode
HDL Analyst 271
keyboard shortcut 273
using 271, 273

Copyright © 2013 Synopsys, Inc.
495

Index

Q

question mark wildcard, Find command
283

R

RAMs
compiling with SYNCore 378
initializing 185
SYNCore 378
SYNCore, byte-enable 385

RAMs, inferring 179
advantages 179

register balancing. See retiming
register constraints, setting 95

registers
false path constraint 73, 105

replication
controlling 211

resource sharing
optimization technique 193
overriding option with syn_sharing 213
results example 213
using 213

resynthesis
compile points 448
forcing with Resynthesize All 448
forcing with Update Compile Point
Timing Data 448
retiming
effect on attributes and constraints 200
example 198
overview 196
probes 201
report 199
simulation behavior 201

return codes 466
rom.info file 273

ROMs
SYNCore 391
viewing data table 273

RTL view
See also HDL Analyst
analyzing clock trees 325
crossprobing collection objects 76
crossprobing description 291

Copyright © 2013 Synopsys, Inc.
496

crossprobing from 292

crossprobing from Text Editor 294

defined 257

description 256

filtering 303

finding objects with Find 280

finding objects with Hierarchy Browser
278

flattening hierarchy 311

highlighting collections 84

opening 258

selecting/deselecting objects 263

setting preferences 267

state machine implementation 222

traversing hierarchy 270

S

schematics

multisheet. See multisheet schematics
page size 267
selecting/deselecting objects 263

SCOPE

adding attributes 145

adding probe insertion attribute 228

case sensitivity for Verilog designs 82

collections compared to Tcl script
window 74

creating compile-point constraint file
456

defining compile points 452

drag and drop 65

editing operations 66

I/0O pad type 61

multicycle paths 72

setting compile point constraints 456
setting constraints (FDC) 50

state machine attributes 177

scope of the document 19
search

browsing objects with the Find
command 280
browsing with the Hierarchy Browser

finding objects on current sheet 280

setting limit for results 282

setting scope 281

using the Find command in HDL
Analyst views 280

See also search

Synplify Pro for Microsemi Edition User Guide
February 2013

Index

set command
collections 86

set_option command 130

sheet connectors
navigating with 266

sheet size
setting number of objects 267

Shift-F3 key
Message Viewer 244

Show Cell Interior option 300

Show Context command
different from Expand 302
using 302

signals
threading with hyper source. See hyper
source
simulation, effect of retiming 201

single-port RAMs
SYNCore parameters 381

slack 328
setting margins 325

slack time display 322
Slow property 260

source code
commenting with synthesis on/off 141
crossprobing from Tcl window 297
defining FSMs 175
fixing errors 35
opening automatically to crossprobe
293

optimizing 192

when to use for constraints 43
source files

See also Verilog, VHDL.

adding comments 34

adding files 108

checking 31

column editing 34

copying examples from PDF 34

creating 28

crossprobing 294

editing 33

editing operations 33

mixed language 38

specifying default encoding style 140

specifying top level file for mixed

language projects 39

Synplify Pro for Microsemi Edition User Guide
February 2013

specifying top level in Project view 111
specifying top-level file 140

state machine attributes 177

using bookmarks 34

special characters
Tcl collections 80

STA 329
STA, generating custom timing reports
329

STA, using analysis design constraints
(adc) 332

stand-alone timing analyst. See STA

state machines
See also FSM Compiler, FSM Explorer,
FSM viewer, FSMs.
attributes 177
descriptions in log file 221
implementation 222
parameter and ’define comparison 176

statemachine.info file 319
subtractors
SYNCore 396
syn_allow_retiming
compile points 458
using for retiming 197

syn_allowed_resources
compile points 458

syn_encoding attribute 177

syn_enum_encoding directive
FSM encoding 178

syn_hier attribute
controlling flattening 207
preserving hierarchy 207
using with compile points 457

syn_isclock

black box clock pins 174
syn_keep

replicating redundant logic 204
syn_keep attribute

preserving nets 203

preserving shared registers 203
syn_keep directive

effect on buffering 211
syn_macro

specifying encrypted IP as white box 420

Copyright © 2013 Synopsys, Inc.
497

Index

syn_maxfan attribute
setting fanout limits 209

syn_noarrayports attribute
use with alspin 353

syn_noprune directive
preserving instances 203

syn_preserve
effect on buffering 211
preserving power-on for retiming 197

syn_preserve directive
preserving FSMs from optimization 177
preserving logic 203
syn_probe attribute 227
inserting probes 227
preserving nets 203
syn_ramstyle attribute
multi-port RAM inference 183

syn_reference_clock

defining non-clock signal frequencies
99

syn_reference_clock constraint 90

syn_replicate attribute

using buffering 211
syn_sharing directive

overriding default 213
syn_state_machine directive

using with value=0 223
SYN_TCL_HOOKS environment variable

480

syn_tco attribute

adding in SCOPE 173
syn_tco directive 172

adding black box constraints 171
syn_tpd attribute

adding in SCOPE 173
syn_tpd directive 172

adding black box constraints 171
syn_tsu attribute

adding in SCOPE 173
syn_tsu directive 172

adding black box constraints 171

syn_useioff
preventing flops from moving during
retiming 198

SYNCore

Copyright © 2013 Synopsys, Inc.
498

adders 396

counters 403

FIFO compiler 372

RAMs 378

RAMs, byte-enable 385

RAMs, dual-port parameters 382
RAMs, single-port parameters 381
ROMs 391

ROMs, parameters 395
subtractors 396

synhooks
automating message filtering 249

synhooks.tcl file 480
Synopsys
FPGA product family 14

Synplify Pro synthesis tool
overview 14

synplify_pro UNIX command 20

syntax
checking source files 31

syntax check 31
synthesis check 31

synthesis_on/off
using 141

SystemVerilog keywords
context help 30

T

Tcl
max_parallel jobs variable 474

tcl callbacks
customizing key assignments 481

Tcl commands
batch script 467
entering in SCOPE 96
running 472

Tcl expand command
crossprobing objects 76
usage tips 83
using in SCOPE 75

Tcl files 472
creating 474
for bottom-up synthesis 479
guidelines 45
naming conventions 45
recording from commands 473

Synplify Pro for Microsemi Edition User Guide
February 2013

Index

synhooks.tcl 480
using variables 476
wildcards 45

Tcl find command
annotating properties 82
case sensitivity 82
crossprobing objects 76
database differences 76
examples of filtering 83
pattern matching 82
Tcl window vs SCOPE 74
usage tips 81
using in SCOPE 75

Tcl Script window
crossprobing 297
message viewer 243

Tcl script window
collections compared to SCOPE 74

Tcl scripts
See Tcl files.

TCL View 61

Technology view
See also HDL Analyst
critical paths 325
crossprobing 291, 292
crossprobing collection objects 76
crossprobing from source file 294
filtering 303
finding objects 282
finding objects with Find 280
finding objects with Hierarchy Browser

278

flattening hierarchy 311

general description 256

highlighting collections 84

opening 258

selecting/deselecting objects 263
setting preferences 267

state machine implementation in 222
traversing hierarchy 270

text editor
built-in 32
external 37
using 32
Text Editor view
crossprobing 292
Text Editor window
colors 35

Synplify Pro for Microsemi Edition User Guide
February 2013

crossprobing 35
fonts 35

text files
crossprobing 294

The Synopsys FPGA Product Family 14

through constraints 69
AND lists 71
OR lists 69

time stamp, checking on files 113
timing analysis 322
timing analysis using STA 329
timing budgeting

compile points 442
timing constraints 44, 90

timing exceptions, adding constraints
after synthesis 333

timing exceptions, modifying with adc
333

timing failures 328
timing information commands 322
timing information in HDL views 323
timing information, critical paths 326
timing optimization 194
timing reports
specifying format options 136
timing reports, custom 329
tips
memory usage 315
to constraints
specifying 69
top level
specifying 139
top-down design flow
compile point advantages 430

transparent instances
flattening 311
lower-level logic on multiple sheets 265

U

UNIX commands
synplify_pro 20

up-to-date checking 232
copying job logs to log file 234

Copyright © 2013 Synopsys, Inc.
499

Index

limitations 236

Vv

vendor-specific netlists 354

Verilog

‘define statements 138

adding attributes and directives 144

adding probes 227

black boxes 166

black boxes, instantiating 166

case sensitivity for Tcl Find command
82

checking source files 31

choosing a compiler 137

creating source files 28

crossprobing from HDL Analyst view
292

defining FSMs 175

defining state machines with parameter
and ’define 176

editing operations 33

extracting parameters 137

include paths, updating 116

initializing RAMs 185

Microsemi ACTgen macros 347

mixed language files 38

RAM structures for inference 180

specifying compiler directives 138

specifying top-level module 139

Verilog 2001

setting global option from the Project
view 137

setting option per file 137

Verilog macro libraries
Microsemi 346

Verilog model (.vmd) 442

VHDL
adding attributes and directives 143
adding probes 227
black boxes 168
black boxes, instantiating 168
case sensitivity for Tcl Find command
82
checking source file 31
constants 140
creating source files 28

crossprobing from HDL Analyst view
292
defining FSMs 176

Copyright © 2013 Synopsys, Inc.
500

editing operations 33

extracting generics 140

file order in mixed designs 41

global signals in mixed designs 41

initializing RAMs with variable
declarations 188

initializing with signal declarations 186

macro libraries, Microsemi 346

mixed language files 38

RAM structures for inference 180

specifying top-level entity 139

VHDL files

adding library 110

adding third-party package library 110

order in project file 111

ordering automatically 111

vi text editor 37
virtual clock, setting 95

w

warning messages
definition 32

warnings
feedback muxes 195
filtering 244
handling 253
sorting 244

Watch window 241
moving 241, 243
multiple implementations 125
resizing 241, 243

wildcards
effect of search scope 284
Find command (Tcl) 82
message filter 246

wildcards (Find)
examples 285
how they work 283

workspaces
creating 126
using 127

Synplify Pro for Microsemi Edition User Guide
February 2013

	Synopsys FPGA Synthesis Synplify Pro for Microsemi Edition
	Introduction
	Synopsys FPGA and Prototyping Products
	FPGA Implementation Tools
	Synopsys FPGA Tool Features

	Scope of the Document
	The Document Set
	Audience

	Getting Started
	Starting the Software
	Getting Help

	User Interface Overview

	FPGA Synthesis Design Flows
	Logic Synthesis Design Flow

	Preparing the Input
	Setting Up HDL Source Files
	Creating HDL Source Files
	Using the Context Help Editor
	Checking HDL Source Files
	Editing HDL Source Files with the Built-in Text Editor
	Setting Editing Window Preferences
	Using an External Text Editor

	Using Mixed Language Source Files
	Working with Constraint Files
	When to Use Constraint Files over Source Code
	Using a Text Editor for Constraint Files (Legacy)
	Tcl Syntax Guidelines for Constraint Files
	Checking Constraint Files
	Generating Constraint Files for Forward Annotation

	Specifying Constraints
	Using the SCOPE Editor
	Creating Constraints in the SCOPE Editor

	Specifying SCOPE Constraints
	Entering and Editing Scope Constraints
	Setting Clock and Path Constraints
	Specifying Standard I/O Pad Types
	Using the TCL View of SCOPE GUI
	Guidelines for Entering and Editing Constraints

	Specifying Timing Exceptions
	Defining From/To/Through Points for Timing Exceptions
	Defining Multicycle Paths
	Defining False Paths

	Using Collections
	Comparing Methods for Defining Collections
	Creating and Using Collections (SCOPE Window)
	Creating Collections (Tcl Commands)
	Using the Tcl Find Command to Define Collections
	Using the Expand Tcl Command to Define Collections
	Viewing and Manipulating Collections (Tcl Commands)

	Converting SDC to FDC
	Using the SCOPE Editor (Legacy)
	Entering and Editing SCOPE Constraints (Legacy)
	Specifying SCOPE Timing Constraints (Legacy)
	Entering Default Constraints
	Setting Clock and Path Constraints
	Defining Clocks
	Defining Input and Output Constraints (Legacy)
	Defining False Paths (Legacy)

	Setting up a Logic Synthesis Project
	Setting Up Project Files
	Creating a Project File
	Opening an Existing Project File
	Making Changes to a Project
	Setting Project View Display Preferences
	Updating Verilog Include Paths in Older Project Files

	Project File Hierarchy Management
	Creating Custom Folders
	Other Custom Folder Operations
	Other Custom File Operations

	Setting Up Implementations and Workspaces
	Working with Multiple Implementations
	Creating Workspaces
	Using Workspaces

	Setting Logic Synthesis Implementation Options
	Setting Device Options
	Setting Optimization Options
	Specifying Global Frequency and Constraint Files
	Specifying Result Options
	Specifying Timing Report Output
	Setting Verilog and VHDL Options

	Specifying Attributes and Directives
	Specifying Attributes and Directives in VHDL
	Specifying Attributes and Directives in Verilog
	Specifying Attributes Using the SCOPE Editor
	Specifying Attributes in the Constraints File

	Searching Files
	Identifying the Files to Search
	Filtering the Files to Search
	Initiating the Search
	Search Results

	Archiving Files and Projects
	Archive a Project
	Un-Archive a Project
	Copy a Project

	Inferring High-Level Objects
	Defining Black Boxes for Synthesis
	Instantiating Black Boxes and I/Os in Verilog
	Instantiating Black Boxes and I/Os in VHDL
	Adding Black Box Timing Constraints
	Adding Other Black Box Attributes

	Defining State Machines for Synthesis
	Defining State Machines in Verilog
	Defining State Machines in VHDL
	Specifying FSMs with Attributes and Directives

	Inferring RAMs
	Inference Versus Instantiation
	Basic Guidelines for Coding RAMs
	Specifying RAM Implementation Styles

	Initializing RAMs
	Initializing RAMs in Verilog
	Initializing RAMs in VHDL

	Specifying Design-Level Optimizations
	Tips for Optimization
	General Optimization Tips
	Optimizing for Area
	Optimizing for Timing

	Retiming
	Controlling Retiming
	Retiming Example
	Retiming Report
	How Retiming Works

	Preserving Objects from Optimization
	Using syn_keep for Preservation or Replication
	Controlling Hierarchy Flattening
	Preserving Hierarchy

	Optimizing Fanout
	Setting Fanout Limits
	Controlling Buffering and Replication

	Sharing Resources
	Inserting I/Os
	Optimizing State Machines
	Deciding when to Optimize State Machines
	Running the FSM Compiler
	Running the FSM Explorer

	Inserting Probes
	Specifying Probes in the Source Code
	Adding Probe Attributes Interactively

	Synthesizing and Analyzing the Log Results
	Synthesizing Your Design
	Running Logic Synthesis
	Using Up-to-date Checking for Job Management

	Checking Log Results
	Viewing the Log File
	Analyzing Results Using the Log File Reports
	Using the Watch Window

	Handling Messages
	Checking Results in the Message Viewer
	Filtering Messages in the Message Viewer
	Filtering Messages from the Command Line
	Automating Message Filtering with a Tcl Script
	Log File Message Controls
	Handling Warnings

	Analyzing with HDL Analyst and FSM Viewer
	Working in the Schematic Views
	Differentiating Between the Views
	Opening the Views
	Viewing Object Properties
	Selecting Objects in the RTL/Technology Views
	Working with Multisheet Schematics
	Moving Between Views in a Schematic Window
	Setting Schematic View Preferences
	Managing Windows

	Exploring Design Hierarchy
	Traversing Design Hierarchy with the Hierarchy Browser
	Exploring Object Hierarchy by Pushing/Popping
	Exploring Object Hierarchy of Transparent Instances

	Finding Objects
	Browsing to Find Objects in HDL Analyst Views
	Using Find for Hierarchical and Restricted Searches
	Using Wildcards with the Find Command
	Combining Find with Filtering to Refine Searches
	Using Find to Search the Output Netlist

	Crossprobing
	Crossprobing within an RTL/Technology View
	Crossprobing from the RTL/Technology View
	Crossprobing from the Text Editor Window
	Crossprobing from the Tcl Script Window
	Crossprobing from the FSM Viewer

	Analyzing With the HDL Analyst Tool
	Viewing Design Hierarchy and Context
	Filtering Schematics
	Expanding Pin and Net Logic
	Expanding and Viewing Connections
	Flattening Schematic Hierarchy
	Minimizing Memory Usage While Analyzing Designs

	Using the FSM Viewer

	Analyzing Timing
	Analyzing Timing in Schematic Views
	Viewing Timing Information
	Annotating Timing Information in the Schematic Views
	Analyzing Clock Trees in the RTL View
	Viewing Critical Paths
	Handling Negative Slack

	Generating Custom Timing Reports with STA
	Using Analysis Design Constraints
	Scenarios for Using Analysis Design Constraints
	Creating an ADC File
	Using Object Names Correctly in the adc File

	Using Auto Constraints
	Results of Auto Constraints

	Optimizing for Microsemi Designs
	Optimizing Microsemi Designs
	Using Predefined Microsemi Black Boxes
	Using Smartgen Macros
	Working with Radhard Designs
	Specifying syn_radhardlevel in the Source Code

	Working with Synthesis Output
	Passing Information to the P&R Tools
	Specifying Pin Locations
	Specifying Locations for Microsemi Bus Ports
	Specifying Macro and Register Placement

	Generating Vendor-Specific Output
	Targeting Output to Your Vendor
	Customizing Netlist Formats

	Running Post-Synthesis Operations
	Running Place-and-Route after Synthesis
	Working with the Identify Tool Set
	Launching from the Synplify Pro Tool
	Handling Problems with Launching Identify
	Using the Identify Tool
	Using Compile Points with the Identify Tool

	Simulating with the VCS Tool

	Working with IP Input
	Generating IP with SYNCore
	Specifying FIFOs with SYNCore
	Specifying RAMs with SYNCore
	Specifying Byte-Enable RAMs with SYNCore
	Specifying ROMs with SYNCore
	Specifying Adder/Subtractors with SYNCore
	Specifying Counters with SYNCore

	The Synopsys FPGA IP Encryption Flow
	Overview of the Synopsys FPGA IP Flow
	Encryption and Decryption

	Working with Encrypted IP
	Encrypting Your IP
	Encrypting IP with the encryptP1735.pl Script
	Encrypting IP with the encryptIP Script
	Specifying the Script Output Method
	Preparing the IP Package

	Using Hyper Source
	Using Hyper Source for Prototyping
	Using Hyper Source for IP Designs
	Threading Signals Through the Design Hierarchy of an IP

	Working with Compile Points
	Compile Point Basics
	Advantages of Compile Point Design
	Manual Compile Points
	Nested Compile Points
	Compile Point Types

	Compile Point Synthesis Basics
	Compile Point Constraint Files
	Interface Logic Models
	Interface Timing for Compile Points
	Compile Point Synthesis
	Incremental Compile Point Synthesis
	Forward-annotation of Compile Point Timing Constraints

	Synthesizing Compile Points
	The Manual Compile Point Flow
	Creating a Top-Level Constraints File for Compile Points
	Defining Manual Compile Points
	Setting Constraints at the Compile Point Level
	Analyzing Compile Point Results

	Using Compile Points with Other Features
	Combining Compile Points with Multiprocessing

	Resynthesizing Incrementally
	Resynthesizing Compile Points Incrementally

	Process Optimization and Automation
	Using Batch Mode
	Running Batch Mode on a Project File
	Running Batch Mode with a Tcl Script
	License Queuing

	Working with Tcl Scripts and Commands
	Using Tcl Commands and Scripts
	Generating a Job Script
	Setting Number of Parallel Jobs
	Creating a Tcl Synthesis Script
	Using Tcl Variables to Try Different Clock Frequencies
	Using Tcl Variables to Try Several Target Technologies
	Running Bottom-up Synthesis with a Script

	Automating Flows with synhooks.tcl

	Using Multiprocessing
	Multiprocessing With Compile Points
	Setting Maximum Parallel Jobs
	License Utilization

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

