
 SoftConsole v3.1

User’s Guide

http://www.actel.com/survey/rating/?f=[Filename].pdf
http://www.actel.com/survey/rating/?f=SoftConsole_UG.pdf

Actel Corporation, Mountain View, CA 94043

© 2010 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200177-2

Release: February 2010

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel, IGLOO, Actel Fusion, ProASIC, Libero, Pigeon Point and the associated logos are trademarks or
registered trademarks of Actel Corporation. All other trademarks and service marks are the property of
their respective owners.

Table of Contents
Introduction . 5
Key Features . 5

SoftConsole Package . 5

Software and Hardware Tool Flows . 7

Supported CPUs . 8

1 SoftConsole Environment . 11
Workbench . 11

Perspectives, Views, and Editors . 11

Workspace . 11

Project . 11

2 Software Installation . 13
System Requirements . 13

Installation Instructions . 13

Licensing . 15

Firmware Catalog Installation . 16

3 Creating Embedded Applications with SoftConsole 17
Setting Up the Workspace . 17

Setting Up a Project . 17

Importing Peripheral Drivers and CMSIS into SoftConsole (Cortex-M3) 23

Importing Peripheral Drivers and CMSIS into a Compiler (Cortex-M3) 24

Importing Firmware Drivers and Hardware Abstraction Layers into SoftConsole (Cortex-M1
andCore8051s) . 26

Importing Drivers and Hardware Abstraction Layers into a Compiler 26

Using the Editor to Create Source and Header Files . 26

4 Project Settings . 29
Project Settings for Cortex-M3 . 29

Project Settings for Cortex-M1 . 30

Project Settings for Core8051s . 36

5 Building a Project . 43
Creating the Release Version . 44

Types of Project Build Methods . 44

6 Debugging with SoftConsole . 47
Debug Perspective . 50

Debug View . 51

7 Programming Flash Memory in Cortex-M1 Systems 59
Overview . 59

Minimum Requirements . 59
 SoftConsole v3.1 User’s Guide 3

Table of Contents
Flash Memory Programming Flow . 59

A Appendix A – Programming Flash Memory in Cortex-M1 Systems 61
Overview . 61

Minimum Requirements . 61

Flash Memory Programming Flow Overview . 61

Setting Up SoftConsole . 64

Flash Programming Checklist . 74

B Appendix B – Configuring the Debug Utility for CoreMP7 Projects 75

C Appendix C – Reference Documents . 79
SoftConsole Documentation . 79

D Product Support . 81
Actel Customer Technical Support Center . 81

Actel Technical Support . 81

Website . 81

Contacting the Customer Technical Support Center . 81

Index . 83
4 SoftConsole v3.1 User’s Guide

Introduction

SoftConsole is a free software development environment that enables the rapid production of C executables for the
ARM® Cortex™-M3, Cortex-M1, CoreMP7, and Core8051s soft intellectual property (IP) processors. From a
SoftConsole project you can write software that is compiled for use in debugging or programming into a nonvolatile
memory device. SoftConsole includes a fully integrated debugger that offers easy access to memory contents, registers,
and single-instruction execution.

SoftConsole includes a flexible and easy to use graphical user interface (GUI) for managing software development
projects. The tool gives you the ability to organize files in a project, quickly develop and debug software programs,
implement them in Actel devices, simultaneous access multiple tool windows, and quickly switch editing and debug
views.

Key Features
• Eclipse-based integrated design environment (IDE)

• GNU C/C++ compiler (Cortex-M3, Cortex-M1 and CoreMP7)

• SDCC compiler (Core8051s)

• GDB debugger

• FlashPro4 debug interface

• Simultaneous access to multiple tool windows

• Quick switching between C/C++ and debug views

• One or more perspectives in a workbench window

• Perspectives can be customized by the user

• Direct integration with Actel’s Firmware Catalog

SoftConsole Package
The following tools are included in the SoftConsole package:

• SoftConsole Eclipse-based embedded software development environment

• GCC compiler

• SDCC compiler

• GDB debugger

• Debug support for Cortex-M3, Cortex-M1, CoreMP7, and Core8051s

• Support for programming and debugging with FlashPro4

Eclipse IDE
The SoftConsole v3.1 Eclipse platform includes:

• Eclipse IDE v3.3

• Eclipse CDT v4.0.3 (C/C++ development tools)

• Sun™ Java J2SE™ Runtime v6, update 7

SoftConsole is built around the open source Eclipse IDE. SoftConsole is structured as a collection of plug-ins, each of
which contains the code that provides some of SoftConsole’s functionality. The code and other files for a plug-in are
installed on the local computer and get activated automatically as required.
 SoftConsole v3.1 User’s Guide 5

Introduction
GCC Compiler
The SoftConsole v3.1 GCC compiler tools include the following:

• CodeSourcery™ Sourcery G++™ Lite (GNU Toolchain for ARM processors) 2008q1-126

• GCC (GNU Compiler Collection) v4.2.3

• Binutils (GNU binary utilities) v2.18

• GNU make v3.81

The CodeSourcery G++ GCC compiler in SoftConsole supports the Cortex-M3, Cortex-M1, and CoreMP7
processors. The G++ compiler includes everything you need to develop your application—optimizing GNU C/C++
compilers, a flexible assembler, a powerful linker, runtime libraries, and a source—assembly-level debugger, and a Debug
Sprite for hardware debugging using the FlashPro4 programmer.

SDCC Compiler
• SoftConsole v3.1 SDCC tools include:

• SDCC Small Device C Compiler v2.6.3

• CodeSourcery G++ Line 2008q1-126, integrating port changes from CodeSourcery Tools for 8051 v1.0-7

• Binutils (GNU binary utilities) v2.18

• CodeSourcery omf2elf 1.0-7

SDCC is a retargettable, optimizing ANSI C compiler that targets the 8051 in SoftConsole. SDCC in SoftConsole
supports a full range of functionality and has been set up to work with GDB and FlashPro4 to simplify the SoftConsole
environment.

GNU Debugger (GDB)
SoftConsole v3.1 GDB tools include:

• GDB (GNU Debugger) v6.7.50 for Cortex-M3, Cortex-M1, and CoreMP7

• GDB (GNU Debugger) v6.7.50

The GNU Debugger in SoftConsole is a command-line source-level debugger. In addition to breakpoints and
commands for controlling program execution, the SoftConsole GDB supports breakpoints and flash programming for
Cortex-M1, is fully integrated into SoftConsole, and works seamlessly with the GCC compiler and FlashPro4
programmer.

Debug Sprites
SoftConsole Debug Sprite tools include the following:

• Cortex-M3: CodeSourcery ARM Debug Sprite v1.0-7 + Actel 1.3.2-M3 + Flash Programming 1.2.2

• Cortex-M1: CodeSourcery ARM Debug Sprite v1.0-7 + Actel 1.3.2-M3 + Flash Programming 1.2.2

• Core8051s: Actel C8051 Debug Sprite v1.0-7 + Actel 1.5.0 + Flash Programming 1.2.2

• CoreMP7: FS2 In-Target System Analyzer for ARM Processor Cores v1.2.0

The SoftConsole Debug Sprites interfaces between the relevant target processor and GDB to facilitate hardware-based
debugging by translating between GDB Remote Serial Protocol and target processor-specific JTAG/debug commands/
responses. This enables utilization of the GDB debugger with the supported Actel processors (Cortex-M3, Cortex-M1,
CoreMP7, and Core8051s) in Actel devices. The sprites are automatically installed and configured as part of the
SoftConsole installation.
6 SoftConsole v3.1 User’s Guide

Software and Hardware Tool Flows
FlashPro4
FlashPro4 targets the latest generation of flash-based devices offered by Actel, including IGLOO®, ProASIC®3,
Fusion, SmartFusionTM and RT ProASIC3 families. FlashPro4 offers extremely high performance through USB 2.0
and is high-speed compliant for full use of the 480 Mbps bandwidth. Powered exclusively via USB, FlashPro4 provides
a VPUMP voltage of 3.3 V for programming these devices.

The FlashPro4 programmer can be used with SoftConsole to program both on-chip and off-chip flash memory (Cortex-
M3, Cortex-M1) and perform debugging (all devices). Support for Core8051s program download to Fusion NVM and
external flash given a suitable hardware platform.

Firmware Catalog
The Firmware Catalog is a standalone executable program that supports SoftConsole embedded processor development
toolchains targeting the ARM Cortex-M3, Cortex-M1, CoreMP7, and Core8051s processors. The Firmware Catalog
streamlines the locating and generating of firmware that is compatible with Intellectual Property (IP) cores used in Actel
FPGA designs.

Software and Hardware Tool Flows
Two development flows must be followed when building a design using a processor in an FPGA: the FPGA hardware
development flow using Libero® Integrated Design Environment (IDE) and the processor program (software)
development flow with SoftConsole. Figure 1 shows the two flows and the connections between them.

The hardware design is input with the editor or SmartDesign, place-and-route is performed, and then the design is
programmed into the device using FlashPro4.

The software is coded, compiled, and debugged with FlashPro4.The Libero IDE Firmware Catalog contains drivers or
other software components that are associated with the IP cores used in SmartDesign and these files are made available
to SoftConsole for the software designer to use in the coding stage. From this point the flows are independent until the
 SoftConsole v3.1 User’s Guide 7

Introduction
programming stage, when both the hardware and software are programmed to the device using the FlashPro4
programmer. Debugging of the hardware and software can also be accomplished through the FlashPro4.

Supported CPUs

Cortex-M3
The ARM Cortex-M3 processor is the industry-leading 32-bit processor for highly deterministic real-time applications
and has been specifically developed to enable partners to develop high-performance low-cost platforms for a broad range
of devices, including microcontrollers, automotive body systems, industrial control systems, wireless networking, and
sensors. The processor delivers outstanding computational performance and exceptional system response to events, while
meeting the challenges of low dynamic and static power constraints. The processor is highly configurable, enabling a
wide range of implementations from those requiring memory protection and powerful trace technology through to
extremely cost sensitive devices requiring minimal area.

Cortex-M1
Developed by ARM in collaboration with Actel, the 32-bit ARM Cortex-M1 processor is the first ARM processor
designed for FPGA implementation. With a balance between size and speed, the free Cortex-M1 processor operates at
up to 60 MHz and can be implemented in as few as 4,435 VersaTiles in M1 Fusion and M1 ProASIC3 flash-based
FPGAs. A streamlined three-stage pipeline solution, the Cortex-M1 processor runs a subset of the ARM Thumb®-2
instruction set, so existing Thumb code can be utilized without change. The configurable Cortex-M1 processor connects
to the advanced high performance bus (AHB), enabling designers to build their subsystem and add peripheral
functionality. In addition to SoftConsole from Actel and μVision®3 tools from KeilTM, third-party vendors offer
supporting tools from compilers and debuggers to RTOS solutions. Cortex-M1 is available for use in Actel M1 devices
free of charge with no license fees, royalties, or contracts to sign.

Figure 1 · Software and Hardware Tool Flows

Editor

SmartDesign

RTL and
Constraints

Netlist and
Constraints

RTL

Simulate

Synthesize

Layout

C/C++
Editor

.h

Program

Libero Integrated
Design Environment SoftConsole

Release

On-Chip Debug

Build

Simulate

Code

FlashPro4
8 SoftConsole v3.1 User’s Guide

Supported CPUs
Core8051s
Core8051s is an ASM51-compatible microcontroller core which contains the main 8051 core logic but no peripheral
logic. Core8051s has an advanced peripheral bus (APB) interface to expand the functionality of the core by connecting it
to existing APB IP peripherals. This allows users to configure the core with the peripheral functions (timers, UARTs,
and I/O ports) needed for the application. Core8051s is a pipelined architecture that can execute one 8051 instruction
per clock cycle and is available for free usage in Actel devices.

CoreMP7
ARM7™ is a 32-bit RISC microprocessor. Actel's CoreMP7 is a soft IP version of the ARM7TDMI-S™ and has been
optimized to maximize speed and minimize size in Actel's M7 Fusion and M7 ProASIC3 flash-based FPGAs.
CoreMP7 executes the ARMv4T instruction set architecture and implements all 32-bit ARM7 instructions and all
16-bit Thumb® instructions. The processor has a 3-stage pipeline, 32-bit artihmetic logic unit (ALU), 32-bit register
file, 32-bit external address and data bus interface, and JTAG debug interface. CoreMP7 is available for use in Actel M7
devices free of charge with no license fees, royalties, or contracts to sign.
 SoftConsole v3.1 User’s Guide 9

1
SoftConsole Environment

The following definitions will help familiarize you with the SoftConsole environment.

Workbench
The term workbench refers to the development environment for the Actel SoftConsole. The workbench is where you
edit, compile, and debug your application.

Perspectives, Views, and Editors
The workbench window contains one or more perspectives. A perspective is a group of views and editors in the
workbench window laid out in a specific way. One or more perspectives can exist in a single workbench window. Each
perspective can have a different set of views.

A view is a visual component within the workbench. It is typically used to navigate a list or hierarchy of information
(such as the resources in the workbench), or display properties for the active editor. Modifications made in a view are
saved immediately.

An editor is also a visual component within the workbench. It is typically used to edit source code, but it can be used to
view any text file. Typically, editors are launched by clicking on a resource in a view. Modifications made in an editor
follow an open-save-close lifecycle model.

Workspace
A workspace is the location on your machine where your work is stored. A workspace contains one or more SoftConsole
projects that are visible in the workbench.

Project
Code development using the SoftConsole IDE is organized into projects. A project can be defined as the logical
grouping of all the source files as well as the compiler, assembler, and linker settings required to compile and link a
program. Individual files are not required to be physically located within the project folder, however.
 SoftConsole v3.1 User’s Guide 11

2
Software Installation

System Requirements
SoftConsole can be run on the following Microsoft® Windows® operating systems:

• Microsoft Windows Vista® Business (U.S. Version)

• Windows XP Professional with SP3 (U.S. Version, cumulative)

Note: SoftConsole might run on other XP/Vista variants, but it is not supported on any platforms other than those listed
above. SoftConsole is not supported on any non-U.S. version of Windows.

Note: Administrator privileges are required in order to install SoftConsole on Windows Vista or XP.

The following are the minimum system requirements needed to support SoftConsole:

• Pentium 1.0 GHz processor

• NTFS, FAT32 file system

• 400 MB free disk space

• 128 MB RAM

• 1024 x 768 resolution monitor

Installation Instructions
SoftConsole is available for free download from the Actel website: www.actel.com/download/software/softconsole/
default.aspx.

To install SoftConsole:

1. Double-click the SoftConsole_vX_X_setup.exe file. This opens the installation wizard. Click Next.

2. Read through the license agreement, check the I accept the agreement radio button, and click Next.

3. If the default installation folder is okay, click Next. If you want to install SoftConsole in a different folder, either
browse to it or type in the path and click Next.
 SoftConsole v3.1 User’s Guide 13

http://www.actel.com/download/software/softconsole/default.aspx

Software Installation
4. By default, all SoftConsole components are selected (recommended) for installation. If you do not want to install a
component, clear the selection for it. Click Next. This opens the Core8051s and SDCC Tools page (Figure 2-1).

This installation page is for your information only. When you have finished reading it, click Next.

5. By default, SoftConsole creates a Start Menu folder named Actel SoftConsole vX.X. You can either accept the default
name or use your own name. If you want to rename the SoftConsole Start Menu folder, type in the new name or
browse to a folder that you would like to use. Click Next.

6. To have the installation program create a desktop or Quick Launch icon, select the appropriate check box. If no
additional icons are desired, clear the check box for both items. Click Next.

Figure 2-1 · Core8051s and SDCC Tools Page
14 SoftConsole v3.1 User’s Guide

Licensing
7. Click Install to complete the installation. During the installation, an information page appears (Figure 2-2). Click
Next.

8. Click Finish to complete the installation.

Licensing
SoftConsole is freely licensed for use with Actel processors and devices. SoftConsole contains Open Source elements.
Individual licenses for these elements are included in the SoftConsole License Agreement that is presented during the
installation process.

Figure 2-2 · SoftConsole Information Page
 SoftConsole v3.1 User’s Guide 15

Software Installation
Firmware Catalog Installation
Firmware Catalog is a tool that allows you to create firmware for software development. Typically, you
use the tool to select the firmware that you need and Firmware Catalog places the firmware into your
software development project (SoftConsole, IAR EWARM, or Keil).

Firmware Catalog is installed by default when Libero IDE is installed (v8.6 or newer) and it is integrated
with SoftConsole v3.1. Firmware Catalog can be launched from the Run menu in SoftConsole.

If you do not want to install Libero IDE, you can download the Firmware Catalog installation only from
Actel’s Downloads web page: www.actel.com/download/default.aspx.

Regardless of which installation method you use, Firmware Catalog is a standalone tool with its own
executable.
16 SoftConsole v3.1 User’s Guide

http://www.actel.com/download/default.aspx

3
Creating Embedded Applications with
SoftConsole

This chapter describes how to create an embedded application with SoftConsole.

Setting Up the Workspace
Start SoftConsole. SoftConsole will prompt you to select a workspace with the Workspace Launcher dialog box
(Figure 3-1). Use the Browse button to navigate to a workspace folder and click OK.

Note: The Workspace Launcher enables you to set the selected workspace as your default workspace. If you set a default
workspace, SoftConsole will not prompt you again for a workspace. To change workspaces, from the File menu,
choose Switch Workspace.

Setting Up a Project
At this point, you can either create a new project or import an existing project into your workspace.

Creating a New Project
1. From the File menu, choose New > C Project. The C Project box opens (Figure 3-2 on page 18).

2. Type the name of your project in the Project name box, select Executable (Managed Make) in the Project types box,
and select the appropriate toolchain in the Toolchain box. SoftConsole currently supports toolchains for the
Cortex-M3, Cortex-M1, Core8051s, and CoreMP7 microcontroller cores.

3. Click Next. Verify that Release and Debug configurations are checked. Click Finish.

Note: In an Executable (Managed Make) project, SoftConsole will manage the makefiles. Actel recommends this
option.

Figure 3-1 · Selecting a Workspace
 SoftConsole v3.1 User’s Guide 17

Creating Embedded Applications with SoftConsole

The next step in creating an application is to add some source and/or header files to the project. Files can be imported
from another place in your file system or created using the built-in editor. The memory map created by SmartDesign
provides useful information for creating header files. The <component>.xml file from the <$project>/component/work/
<component> folder can be opened to view the memory map of the FPGA design.

Figure 3-2 · Selecting Project Name, Type, and Toolchain
18 SoftConsole v3.1 User’s Guide

Setting Up a Project
4. From the File menu, choose Import. The Import box appears (Figure 3-3).

5. Select General to expand the options and select File System. Click Next. This opens the Import: File System
window (Figure 3-4 on page 20).

• Next, use the Browse button in the From directory box to select the folder that contains the source file(s). Click
OK. The right side box shows the files in the selected folder. Check the boxes in front of the files you want to
import.

• Click the Browse button in the Into folder box to specify the destination of the project folder. Verify that Create
selected folders only is selected in the options window. Click Finish.

Figure 3-3 · Selecting File System as the Entity to Import
 SoftConsole v3.1 User’s Guide 19

Creating Embedded Applications with SoftConsole

6. Expand the project by clicking the + sign next to the project name in the Project Explorer window (Figure 3-5). You
can view any of these files in the editor window by double-clicking the file name.

Figure 3-4 · Importing Files from a Project

Figure 3-5 · Imported Files
20 SoftConsole v3.1 User’s Guide

Setting Up a Project
Importing an Existing Project
1. From the File menu, choose Import. The Import box opens (Figure 3-6).

2. Select General to expand the options and then select Existing Projects into Workspace. Click Next.

This opens the Import: File System window

Figure 3-6 · Selecting Projects as the Type of Entity to Import
 SoftConsole v3.1 User’s Guide 21

Creating Embedded Applications with SoftConsole
3. Use the Browse button in the Select root directory box to navigate to the folder that contains the project(s) to import
and click OK. The project(s) are now listed in the Import Projects box (Figure 3-7). Select the projects you want to
import and press Finish.

Note: A single project can also be imported by browsing to the specific project folder (instead of a folder which
contains the project folder), selecting the project folder, and clicking Finish.

Checking the Copy projects into workspace box will make a copy of the project folder(s) inside the workspace
folder and use these folders for project activities. Otherwise, a link to the original project folder(s) will be
created.

Figure 3-7 · Importing Projects into the Workspace
22 SoftConsole v3.1 User’s Guide

Importing Peripheral Drivers and CMSIS into SoftConsole (Cortex-M3)
You can expand and view the project contents by clicking the + sign next to the project name in the Project Explorer
window. You can view any of these files in the editor window by double-clicking the file name (Figure 3-8).

Importing Peripheral Drivers and CMSIS into SoftConsole
(Cortex-M3)

The Cortex-M3 CMSIS is an abstraction layer that conforms to the ARM Cortex Microcontroller Software Interface
Standard. The MSS Configurator generates the CMSIS code and drivers for the selected Cortex-M3 microcontroller
peripherals. You will need to import the MSS peripheral drivers and CMSIS. If you launched the MSS Configurator
from within Libero IDE, these drivers and the CMSIS are in the firmware folder of your Libero project.

For more information on how to use MSS Configurator, refer to the Libero IDE online help.

To import firmware drivers and CMSIS into SoftConsole:

1. Use the MSS Configurator to generate the CMSIS PAL and drivers.

2. From the File menu, choose Import. The Import dialog box will open.

3. Expand the General folder, select File System, and click Next to continue. The Import dialog box will open.

4. Click the Browse button to the right of the From directory field to set the folder to the folder containing the CMSIS
and drivers. Click the + sign next to this folder to expand the path. Select the CMSIS and driver folders.

5. Click the Browse button for the Into folder field. Select the project name in the Import into Folder dialog box, and
then click OK.

6. Click Finish to import the firmware drivers and the CMSIS.

Figure 3-8 · Expanding the Imported Project Files
 SoftConsole v3.1 User’s Guide 23

Creating Embedded Applications with SoftConsole
Importing Peripheral Drivers and CMSIS into a Compiler
(Cortex-M3)

For more information on how to use MSS Configurator, refer to the Libero IDE online help.

To import peripheral drivers and CMSIS into a compiler:

1. Right-click the project and select Properties.

2. Expand C/C++ BUILD on the left and select Settings.

3. Click GNU C Compiler > Directories (Figure 3-9).

Figure 3-9 · GNU Compiler Directory Settings

4. Click the Add button in the include paths field.
24 SoftConsole v3.1 User’s Guide

Importing Peripheral Drivers and CMSIS into SoftConsole (Cortex-M3)
5. Click the Workspace button (Figure 3-10).

Figure 3-10 · SoftConsole Folder Selection Dialog Box

6. Expand the <project name> folder and select the CMSIS subdirectory.

7. Click OK in the Add directory path dialog box.

8. Repeat this process for all of the directories in the project . All of the directories in the project should be visible in
the Include paths windows of the Settings dialog box (Figure 3-11).

Figure 3-11 · Project Folder Settings
 SoftConsole v3.1 User’s Guide 25

Creating Embedded Applications with SoftConsole
Importing Firmware Drivers and Hardware Abstraction Layers
into SoftConsole (Cortex-M1 andCore8051s)

For information about accessing and generating drivers and Hardware Abstraction Layers (HAL), refer to the Firmware
Catalog online help.

To import firmware drivers and HALs into SoftConsole:

1. Launch Firmware Catalog from SoftConsole by selecting Run > Firmware Catalog.

1. The configuration dialogs are specific to the selected drivers. Configure the drivers according to the needs for your
design.

2. Generate the firmware cores and direct them into your project folder within the SoftConsole workspace. Close the
Firmware Catalog.

3. In SoftConsole, right-click the project and click the Refresh button. The HAL and Driver folders will now appear
in the Project Explorer.

Importing Drivers and Hardware Abstraction Layers into a
Compiler

To import firmware drivers and HALs into a compiler:

1. Right-click the project and select Properties.

2. Expand C/C++ BUILD on the left and select Settings.

3. Click GNU C Compiler > Directories.

4. Click the Add button.

5. Click the Workspace button.

6. Expand the <project name> and select the HAL subdirectory.

7. Click the OK button on the Add Directory Path window.

8. Click the Add button.

9. Click the Workspace button.

10. Expand the <project name> and select the HAL directory.

11. Open the HAL subdirectory and select the HAL/CortexM1 directory.

12. Repeat steps 7 to 9.

13. Repeat steps 4 to 6 and navigate to the HAL/CortexM1/GNU directory.

14. Repeat steps 7 to 9 but navigate to the Drivers directory, following the same sequence for all drivers within the
directory.

Using the Editor to Create Source and Header Files
The editor window can be used to create and edit header and source files.

To create a source file:

1. From the File menu, choose New > Source File. The new source file appears.

2. Use the Browse button to navigate to the folder where you want to save the source file and enter the name of the
source file with a file extension.

Note: SoftConsole does NOT automatically assign a file extension.
26 SoftConsole v3.1 User’s Guide

Using the Editor to Create Source and Header Files
3. Click Finish. If the source file was saved in your project folder, the Project Explorer file lists it. Double-click the file
name in the Project Explorer to edit the source file (Figure 3-12).

To create a header file:

From the File menu, select New > Header File. This opens the editor window.

The editor supports common Windows commands for highlighting, cutting, and pasting text, as well as some
development commands: automatic line numbering, block comment/uncomment, and line comment/uncomment.

Block comment/uncomment encloses a block of text between C-language comment markers ("/*" and "*/"). To add or
remove block comments, highlight the block of text, right-click, and select Source > Add Block Comment/Remove
Block Comment.

Line comment/uncomment will precede a line of text with the C++ line comment markers ("//"). To add or remove line
comments, highlight the lines of text, right-click and select Source > Comment / Uncomment.

Figure 3-12 · Editing a Source File
 SoftConsole v3.1 User’s Guide 27

4
Project Settings

This chapter explains how to configure the compiler to match a Cortex-M3, Cortex-M1 or Core8051s application.

Project Settings for Cortex-M3
Import the CMSIS and peripheral drivers into your project and set the include directory paths if not already performed.

1. Right-click the project and choose Properties.

2. In the Properties for <project_name> window, select Settings under C/C++ Build and then select Miscellaneous
under the GNU C Linker heading.

3. Enter -T../CMSIS/startup_gcc/debug-in-actel-smartfusion-esram.ld in the Linker Flags field (Figure 4-1. This
command directs SoftConsole to use a linker script that builds an executable that will run from the SmartFusion
internal SRAM.

Note: The main purpose of the linker script is to describe how the sections in the input files should be mapped into
the output file, and to control the memory layout of the output fie. The linker always uses a linker script. If
you do not supply one yourself, the linker will use a default script that is compiled into the linker executable.
You can supply your own linker script by using the “-T” command line option.

Figure 4-1 · Specifying the Linker Script

4. Click Apply then OK to close the Properties dialog box.
 SoftConsole v3.1 User’s Guide 29

Project Settings
5. Perform a clean build by selecting Clean from the Project menu. Accept the default settings in the Clean dialog box
and click OK (Figure 4-2).

Figure 4-2 · SoftConsole Clean Dialog Box

6. Confirm that there are no errors listed in the Problems View.

Project Settings for Cortex-M1

Cortex-M1 Hardware Abstraction Layer (HAL)
The Cortex-M1 HAL provided in the SoftConsole installation is used by the drivers. Therefore, you must include the
HAL in your project when using the Actel drivers and the flash programmer utility. There are three directories in the
HAL:

• hal

• hal/CortexM1

• hal/CortexM1/GNU

The HAL source code is in the <SoftConsole v3.1>\src\Cortex-M1\Cortex-M1_hal directory.

Linker Scripts for Specifying Program Code and Data Memories
Actel provides linker scripts you can use for a Cortex-M1 embedded processor target application. Table 4-1 gives
descriptions of the Cortex-M1 embedded processor linker scripts provided with SoftConsole.

Table 4-1 · Linker Scripts Provided with SoftConsole

Linker Script Description

boot-from-actel-coreahbnvm.ld
Used to build software images where the processor boots from internal NVM
(exists only in Actel Fusion® FPGA devices). Copies the code to RAM and
then runs from RAM.
30 SoftConsole v3.1 User’s Guide

Project Settings for Cortex-M1
All of the linker scripts place the processor data in RAM. You may have to modify the linker script to match your target
hardware system. Specifically, the address location and size of the program and data memory peripherals as well as the
stack size need to match your system. The only portion of the linker scripts that you need to modify is the board
customization section. As an example, the board customization section from the boot-from-actel-coreahbnvm.ld linker
script is shown below (Figure 4-3).

Flash Memory
The following comment in the linker script tells the flash programmer which type of flash you are targeting. Do not
modify this comment. There is a file which describes the flash commands in the installation of SoftConsole in the
<SoftConsole v3.1>\Sourcery-G++\share\sprite\flash directory. This file has the same name as the name in this comment
(actel-coreahbnvm.xml in this case).

Stack Size
The stack size is adjusted by modifying the value assigned to MAIN_STACK_SIZE.

boot-from-intel-flash.ld
Used to build software images where the processor boots from external flash
(Intel® JS28F640J3D). Copies the code to RAM and then runs from RAM.

only-ram-memory.ld
Used to build software for debugging code running from SRAM. The data
and program code are stored in SRAM.

run-from-actel-coreahbnvm.ld
Used to build software images where the processor boots and runs from
internal NVM (exists only in Actel Fusion FPGA devices). Only data is stored
in RAM.

run-from-intel-flash.ld
Used to build software images where the processor boots and runs from
external flash (Intel JS28F640J3D). Only data is stored in RAM.

Figure 4-3 · Linker Script Example

Table 4-1 · Linker Scripts Provided with SoftConsole
 SoftConsole v3.1 User’s Guide 31

Project Settings
Note: PROCESS_STACK_SIZE is only used with versions of Cortex-M1 that support OS extensions. OS extensions
are not currently available as part of the Actel Cortex-M1 implementation.

Memory Size
The nonvolatile memory size and location is specified by editing the following line:

rom (rx) : ORIGIN = 0x00000000, LENGTH = 1M

The RAM size and location is specified by editing the following line:

ram (rwx) : ORIGIN = 0x00000000, LENGTH = 1M

The values for RAM_START_ADDRESS and RAM_SIZE must also be edited so that they match the values specified
in the line above.

These linker scripts work in conjunction with the startup files and the flash programmer in SoftConsole. Based on the
contents of the linker script, SoftConsole creates a memory_map.xml file and stores it in the current active build
configuration. The flash programmer uses this file to learn the addresses of the flash (internal NVM or external flash)
and SRAM peripherals. Make sure that the debug configuration you are using points to the build configuration with the
current memory-map.xml file.

Specifying Linker Script
After you have modified the linker script to match your program code and data memory peripherals, you need to point
the linker to your linker script.

1. Right-click the project and choose Properties.

2. Navigate to C/C++ Build > Settings.
32 SoftConsole v3.1 User’s Guide

Project Settings for Cortex-M1
3. Highlight GNU C Linker > Miscellaneous and enter -T <path to linker script> in the Linker flags text box, as
shown in Figure 4-4.

Using boot-from-actel-coreahbnvm.ld and boot-from-intel-flash.ld
When using the boot-from-actel-coreahbnvm.ld or boot-from-intel-flash linker script, you must compile the project
using the -mlong-calls compiler flag. This is needed so the compiler can create the call to main() from within the _start()
function. These linker scripts are used when your boot code is at address 0x0 and the processor runs the application code
from another memory location; typically 0x10000000 or higher.

To add the compiler flag:

1. Right-click the project and choose Properties.

2. Select C/C++ Build > GCC C Compiler.

Figure 4-4 · Specifying LInker Script Location
 SoftConsole v3.1 User’s Guide 33

Project Settings
3. Add -mlong-calls at the end of the command, as shown in Figure 4-5.

Memory Map and Interrupt Numbers
You must create a system header file that contains the addresses of the peripherals in your system as well as the interrupt
numbers. While this is not strictly necessary to create a working Cortex-M1 system, Actel recommends this practice so
that application code is more readable and flexible in case any changes are needed. This information can be obtained by
looking at the system in SmartDesign. The <component>.xml file from the <$project>/component/work/<component>
folder can be opened to view the memory map of the FPGA design.

Startup Files
Cortex-M1 allows writing an application in C, including the boot code which usually requires some assembly code. The
code presented here replaces the usual GNU crt0 boot code. The boot code is split between three files:

• vector_table.s

• sys_boot.c

• default_handlers.c

The vector_table.s file contains the Cortex-M1 vector table. The vector table is implemented in assembly code. The
vector table contains the initial value of the Cortex-M1 stack pointer and the addresses of the various exception handlers.

The sys_boot.c file contains the _start() function, which is called on power-up and warm reset. The main() function is
called from _start() once the executable code has been relocated (if required), the data section has been initialized, and
the non-initialized variables have been set to 0.

Figure 4-5 · Setting –mlong-calls Compiler Flag
34 SoftConsole v3.1 User’s Guide

Project Settings for Cortex-M1
The sys_boot.c file is written to work in conjunction with one of five possible linker scripts:

• boot-from-actel-coreahbnvm.ld

• boot-from-intel-flash.ld

• only-ram-memory.ld

• run-from-actel-coreahbnvm.ld

• run-from-intel-flash.ld

These linker scripts provide symbols used in the sys_boot.c file for locating the various sections of the executable image.
The linker scripts are provided in the SoftConsole installation in the <SoftConsole v3.1>\src\Cortex-M1\linker-script-

examples directory. For information about the purpose of each linker script and how to modify them to match your
hardware, refer to “Linker Scripts for Specifying Program Code and Data Memories” on page 30.

The default_handlers.c file contains the implementation of the default exception handlers. The Cortex-M1 HAL uses
weak linking for exception handlers. This allows easy implementation of exception handlers without having to modify
the vector table. Using this method, an exception handler can simply be implemented by creating a function with a
predefined name. The address of the user-implemented exception handler is automatically included in the vector table as
long as the predefined handler function names are used. Table 4-2 lists the predefined exception handler names.

Note: The following exception sources are not available in the current Cortex-M1 implementation: system tick timer,
external interrupt 1 to 7.

Table 4-2 · Predefined Exception Handler Names

Exception Type Handler Function Name

NMI handler void cortex_nmi_handler(void)

Fault handler void cortex_fault_handler(void)

System service call with SVC instruction void cortex_sv_call(void)

Pendable request for system service void P cortex_pend_sv(void)

System tick timer void cortex_systick_isr(void)

External interrupt 0 void cortex_irq_0_isr(void)

External interrupt 1 void cortex_irq_1_isr(void)

External interrupt 2 void cortex_irq_2_isr(void)

External interrupt 3 void cortex_irq_3_isr(void)

External interrupt 4 void cortex_irq_4_isr(void)

External interrupt 5 void cortex_irq_5_isr(void)

External interrupt 6 void cortex_irq_6_isr(void)

External interrupt 7 void cortex_irq_7_isr(void)
 SoftConsole v3.1 User’s Guide 35

Project Settings
Project Settings for Core8051s
SoftConsole provides a way for you to specify options for the application. In the case of a Core8051s project, these
include paths for folders related to the code, memory models, and the memory limits for the target application. These
memory limits include the code memory size, the external data memory size, internal data RAM size, minimum stack
allocation, a pseudo stack, and whether to pack the internal data memory.

Setting Memory Limits
To set memory limit options:

1. Right-click the project name in the C/C++ Projects View box and select Properties.

2. Select and expand C/C++ Build in the Properties window.

3. Select Settings.

4. In the Tool Settings tab, under SDCC Compiler, select Memory Options (Figure 4-6).

5. Select the Pseudo Stack check box to enable the -xstack option. This option creates a pseudo stack in the first page
(256 bytes) of external data memory. Port2 (of a standard 8051) is used for the high byte of the address. Core8051s
maps the APB peripherals into the upper 4KB of external memory space and therefore is not compatible with this
option.

6. Select the Pack iram data check box to enable the -pack-iram option. This option tells the linker to use unused
register banks for data and to pack data, idata, and the stack together.

Figure 4-6 · Memory Options for 8051
36 SoftConsole v3.1 User’s Guide

Project Settings for Cortex-M1
7. To set the internal RAM limit, select the Check internal ram usage check box and type in the size of the internal
data memory. This should be 0x100 (256 bytes) for Core8051s. This causes the linker to check whether the internal
data memory usage is within this limit.

8. To set the external RAM limit, select the Check external ram usage check box and type in the size of the external
data memory (depends on your hardware design). Checking this box causes the linker to check whether the external
data memory usage is within this limit.

9. To set the code memory limit, select the Check code memory usage check box and type in the size of the code
memory (depends on your hardware design). Checking this box causes the linker to check whether the code memory
usage is within this limit.

10. To set the minimum stack limit, select the Check code stack usage check box and type in the size of the stack. This
causes the linker to check that there is at least the specified amount of space available for the stack.

Memory Models
In addition to these options, you can choose between a large and a small memory model. In the large model, all variables
declared without a storage class will be in external RAM. This includes all parameters and local variables (for non-
reentrant functions). When the small model is used, all variables declared without a storage class will be in internal
RAM.

The memory model size (large or small) must be selected in two places: for the compiler and for the linker.

To select the memory model size for the compiler:

1. Right-click the project name in the C/C++ Projects View box and select Properties.

2. Select and expand C/C++ Build in the Properties window. Select Settings.

3. In the Tool Settings tab, under SDCC Compiler, select Memory Options.

4. In the Memory Model box, use the pull-down menu and select either Large or Small (Figure 4-7).

5. Click Apply and OK.

Figure 4-7 · Setting the Compiler Memory Model To Large
 SoftConsole v3.1 User’s Guide 37

Project Settings
To select the memory model size for the linker:

1. Right-click the project name in the C/C++ Projects View box and select Properties.

2. Select and expand C/C++ Build in the Properties window. Select Settings.

3. In the Tool Settings tab, under SDCC Linker, select Memory Options.

4. In the Memory Model box, use the pull-down menu and select either Large or Small (Figure 4-8).

5. Click Apply and OK.

Both the compiler and the linker settings must be set to the same value. Setting different values can give unpredictable
results.

Figure 4-8 · Setting the Compiler Linker Option To Large
38 SoftConsole v3.1 User’s Guide

Project Settings for Cortex-M1
Setting Paths to Files
If you have source code or header files in folders other than the project folder (including folders inside the project folder)
it is necessary to set paths to these folders.

To set paths to files:

1. Right-click the project name in the C/C++ Projects View box and select Properties.

2. Select and expand C/C++ Build in the Properties window. Select Settings.

3. In the Tool Settings tab, under SDCC Compiler, select Directories.

4. Click the + icon to add a path. This will open the Add directory path box (Figure 4-9)

5. Click File system to specify a path outside of the workspace. Click Workspace to specify a path within your current
workspace.

You can click the X icon to delete a path.

Startup Files
The compiler triggers the linker to link certain initialization (startup) modules from the runtime library. Only the
necessary modules are linked. One of these modules performs static and global variable initialization before the function
main is invoked. In general, there is no user intervention required to link in startup files for the SDCC compiler.

Figure 4-9 · Setting the Directory Paths for the SDCC Compiler
 SoftConsole v3.1 User’s Guide 39

Project Settings
Using Libraries
The linker will normally link to standard C libraries to provide standard library functions. You simply need to reference
the appropriate header file(s) using #include statements.

You can disable the automatic linking in of startup and/or library files by selecting the SDCC Linker General setting in
the project properties box (Figure 4-10).

• Select the Do not use standard start files (-nostartfiles) check box to disable linking in of startup files.

• Select the Do not use default libraries (-nodefaultlibs) check box to disable linking in of standard library files.

• Select the No startup or default libs (-nostdlib) check box to disable linking of startup files and standard library files.

• Select the Omit all symbol information (-s) check box to disable all symbol information.

• Select the No shared libraries (-static) check box to disable the shared libraries.

Standard Library Functions for I/O (printf, scanf, etc.)
Standard library functions for I/O, such as printf and scanf, default to using the standard input (stdin) and standard
output (stdout) devices. The SDCC compiler has no knowledge of the intended stdin and stdout devices for any given
application. The software developer must write a getchar() routine for the stdin device and a putchar() routine for the
standard output device. Any initialization required of the stdin and stdout device(s), such as with a UART, must be
called prior to calling any function that uses stdin or stdout.

Figure 4-10 · General Linker Settings
40 SoftConsole v3.1 User’s Guide

Project Settings for Cortex-M1
Math Functions
The SDCC library includes math functions by default and it is only necessary to include the math.h header file in your
code.

Obtaining Header File Information from SmartDesign
Smart Design can be used to obtain information useful for making your header file for your I/O assignments.

1. In Libero IDE, open the SmartDesign component that contains Core8051s.

2. Click the SmartDesign tab from the main menu. Select Show Memory Map/Data Sheet. The datasheet and
memory map document will open.

3. Click Memory Map in the table of contents or scroll down to the memory map. The Base Address shown for the
peripherals is the base address of the peripheral on the APB3 bus, extended to 32 bits. However, note that on
Core8051s, the APB3 bus has an external memory address starting at 0xF000. The address of the peripheral in
external data memory space is the addition of the lower 16 bits of the APB3 base address (Figure 4-11) + 0xF000.

Figure 4-11 · Typical APB3 Memory Map from SmartDesign
 SoftConsole v3.1 User’s Guide 41

5
Building a Project

There are two types of output files created by the compiler: a debug version and a release version. The debug file includes
the your application code along with additional information used by the debugger. The debug option creates a file,
default.elf, and is placed in the Debug folder of the project. This code is used along with the FlashPro4 debugger to run
your application in debug mode.

To create the debug version:

1. Right-click the project name and scroll down to Build Configurations.

2. Scroll to Set Active.

3. Select Debug to select a debug build (Figure 5-1).

Figure 5-1 · Setting the Build Configuration
 SoftConsole v3.1 User’s Guide 43

Building a Project
Creating the Release Version
The release file contains your application code in hex format and has the extension *.ihx. This file is placed in the Release

folder of the project and should be used to program NVM code memory. The release file will have the name of the
project with the extension *.ihx.

To create the release version:

1. Right-click the project name and scroll down to Build Configurations.

2. Scroll to Set Active.

3. Select Release to select a release build.

Types of Project Build Methods
There are three options for building the project (in addition to changing from release to debug, etc.). These are Build
Project, Clean, or Build Automatically. These options are available from the Project pull-down menu.

• Build Automatically builds the project when you save a file. If this option is selected, the Build Project option is grayed
out. The build process is incremental and only the components affected by modified files in the project are built.

• Clean provides an option to build a single project or build all projects in the workspace. A clean build discards the
previously built state and rebuilds all components.

• Build Project builds the current project. This option is grayed out if Build Automatically is selected.

1. Set the build configuration to Release (see “Creating the Release Version”).

2. Perform a project clean by selecting Project from the SoftConsole menu, then selecting Clean (Figure 5-2)

Figure 5-2 · Project Clean
44 SoftConsole v3.1 User’s Guide

Types of Project Build Methods
3. The Clean box will open. You can clean all the projects in your workspace or only selected projects (Figure 5-3).

4. The project will be compiled and linked, with results indicated in the Console window (Figure 5-4).

Figure 5-3 · Cleaning Options

Figure 5-4 · Successful Completion of the Release Build
 SoftConsole v3.1 User’s Guide 45

6
Debugging with SoftConsole

This chapter shows you how to debug using SoftConsole.

1. In Project Explorer, right-click the project and choose Debug As.

2. Select Open Debug Dialog (Figure 6-1). The Debug window opens.

3. Right-click the relevant target (Actel Cortex-M3 eNVM Target, Actel Cortex-M3 RAM Target, Actel Cortex-M1
Target, or Actel Core8051s Target) and choose New (Figure 6-2 on page 48). SoftConsole automatically configures
the debug utility.

Figure 6-1 · Opening Debug Dialog
 SoftConsole v3.1 User’s Guide 47

Debugging with SoftConsole
Note: When targeting a CoreMP7 design, the debug utility must be configured manually. See “Appendix A –
Programming Flash Memory in Cortex-M1 Systems” on page 61.

4. Click the Debug button. The Debug window will close and the debug sprite will launch.

Figure 6-2 · Selecting the Debug Target
48 SoftConsole v3.1 User’s Guide

The sprite will begin to communicate with the debugger and results are displayed in the console view (Figure 6-3). The
exact communications will vary based on the target processor. The file loading status is shown in the lower right area of
the console view. (Figure 6-4).

After the file loads, the Debug window (shown in Figure 6-2 on page 48) will disappear and the Confirm Perspective
Switch window will open (Figure 6-5). Click the Yes button. The debug perspective will open.

Figure 6-3 · Console Communications

Figure 6-4 · File Loading Status

Figure 6-5 · Confirming Switch to Debug Perspective
 SoftConsole v3.1 User’s Guide 49

Debugging with SoftConsole
Debug Perspective
The debug perspective is shown in Figure 6-6. It consists of a number of views distributed over five regions of the
perspective. Each view has a tab with which to select that view.

The top left region of the debug perspective contains the debug view. The top right region of the debug perspective
contains the Variables, Breakpoints, Registers, and Modules views. The far right middle region contains the Outline
view. The middle left and center region of the debug perspective contains the Source Code view and Editor. The bottom
region of the debug perspective contains the Console, Tasks, Problems, and Memory views.

Figure 6-6 · Debug Perspective
50 SoftConsole v3.1 User’s Guide

Debug Perspective
Debug View
The debug view shows the debug utility in use (ActelCore8051s Target), the debugger in use (Embedded GDB), the
current thread (application code), and the debugger sprite (c8051-elf-gdb.exe). Figure 6-7 shows the ActelCore8051s
Target debug utility, the Embedded GDB debugger, the current application code thread (‘main ()’), and the c8051-elf-
gdb.exe debugger sprite.

Variables, Breakpoints, Registers, and Modules Views
The top right area of the debug perspective contains the Variables, Breakpoints, Registers, and Modules views.

The Variables view shows variables in your program (Figure 6-8). You can view and modify variables, which can be
useful for debugging code

The Breakpoints view shows breakpoints in your program and their current enabled/disabled status (Figure 6-9).

A breakpoint in your code is set by clicking on a line of code in the Editor (while the code is not executing). This
highlights the line of code. Double-click the line number to the left of the line of code. A checkmark and a circle appear
to the left of the line number and a breakpoint appears in the Breakpoints view.

Figure 6-7 · Debug View

Figure 6-8 · Variables View

Figure 6-9 · Breakpoints View
 SoftConsole v3.1 User’s Guide 51

Debugging with SoftConsole
A breakpoint shown in the Breakpoints view can be enabled or disabled by clicking its square icon in the Breakpoints
view, or by right-clicking its description in the Breakpoints view. Disabled breakpoints are indicated by a white circle.
Enabled breakpoints are indicated by a colored circle.

The Registers view shows information about processor registers. Values that have changed are highlighted in the
Registers view when your program stops.

The Modules view displays information about the modules loaded in the current debug session, including executables
and shared libraries (Figure 6-11). The view has two areas: the modules tree and a detail pane. The detail pane displays
the information for the selected module. Expanding a module enables you to view the module's internals functions,
global variables, and source files.

Figure 6-10 · Registers View

Figure 6-11 · Modules View
52 SoftConsole v3.1 User’s Guide

Debug Perspective
Source Code View
The middle left and center portion of the debug perspective contains the Source Code view and Editor (Figure 6-12).

This view displays the application’s source code. When the application code is not executing, the next statement in the
code to be executed is highlighted. This will be the case when the debugger has just been launched, when you have hit a
breakpoint, when you have clicked the Suspend icon, or when a single step operation has finished.

A breakpoint in your code is set by clicking a line of code (while the code is not executing). This highlights the line of
code. Double-click the line number to the left of the line of code. A checkmark and a circle appear to the left of the line
number and a breakpoint appears in the Breakpoint view.

The Debug view uses the same editor used in the C/C++ perspective of SoftConsole and thus has the same editing
capabilities.

Figure 6-12 · Source Code View
 SoftConsole v3.1 User’s Guide 53

Debugging with SoftConsole
Outline View
The middle far right side contains the Outline view (Figure 6-13).

The Outline view is associated with the editor in the Source Code view. An outline of the structure of the code shown in
the Source code view is shown in the Outline view. It contains references to include files, function prototypes, symbol
definitions, and functions. Clicking a reference in the Outline view causes the Source Code window to display the
portion of the source code that contains that item. It is a very quick way to advance the cursor to specific points in your
code.

Figure 6-13 · Outline View
54 SoftConsole v3.1 User’s Guide

Debug Perspective
Console, Tasks, Problems, and Memory Views
The bottom portion of the debug perspective contains the Console, Tasks, Problems, and Memory views.

The Console view shows status information when launching the debugger. You can enter GDB commands in the
Console view if the code is suspended by selecting arm-none-eabi-gdb in the Debug view. A list of GDB commands is
available under the SoftConsole installation: <SoftConsole install folder>\Sourcery-G++\share\doc\arm-2007q1-21-arm-
none-eabi\pdf\gdb.pdf.

The Task view is a place to store a list of tasks (Figure 6-14). You can add a task by right-clicking anywhere in the Task
field and selecting Add Task. Alternately you can click the ADD Task icon (clipboard with a + sign). The Add Task box
opens and allows you to enter a description of the task and set the priority to low, normal, or high. You can also mark the
task as completed in this box.

A task can be edited by clicking in any Task field other than Description. This highlights the task. Right-click and select
Properties to open the Add Task box. Edit the task in the ADD Task box.

A task can be deleted by highlighting the task field and using clicking the Delete icon or by right-clicking and selecting
Delete.

A task can be marked as completed by highlighting the task, right-clicking, and selecting Mark Completed”.

The Problems view displays system-generated information, warnings, or errors.

The Memory view of the Debug perspective lets you view and modify the contents memory (Figure 6-15). The Memory
view contains two panes: the Monitors pane and the Renderings pane.

Each monitor represents a section of memory specified by it' base address location. Each memory monitor’s data
(rendering) can be displayed in different data formats. The debugger supports five data formats, hexadecimal (default),
ascii, signed integer, and unsigned integer. The default format is displayed automatically in the monitor. It’s possible to
use expressions for the memory monitor.

The Monitors pane displays the list of memory monitors added to the debug session. The content of the Renderings
pane is controlled by the selection in the Monitors pane. The Memory Renderings pane can be configured to display two
renderings simultaneously.

Figure 6-14 · Task View

Figure 6-15 · Memory Monitor and Renderings Example
 SoftConsole v3.1 User’s Guide 55

Debugging with SoftConsole
Clicking the + sign in the Monitors pane opens the Memory Monitor box, allowing you to specify a base address for the
monitor. Clicking a monitor displays the memory contents for that monitor in the Renderings pane.

Clicking the X sign in the Monitors pane deletes the currently selected (highlighted) the memory monitor. Clicking the
XX sign in the Monitors pane deletes all the memory monitors.

Some processors used with SoftConsole have separate code and data memory. A prefix for the memory address might be
needed to distinguish between code and data memory spaces when using the memory monitors and renderings. Consult
the SoftConsole release notes for specific details, as such prefixes may be processor-specific.

Running the Application
The Resume, Suspend, and Terminate icons are to the right of the Debug view’s tab. Clicking the Resume icon
(Figure 6-16) causes your program to run from its current position.

Figure 6-16 · Resume, Suspend, and Terminate Icons

When the debugger is first started, the program counter is set to the first line of code in your application.

The Suspend icon (middle icon in Figure 6-16) causes your executing user program to stop running, returning control of
your application to the debugger.

The Terminate icon (right icon in Figure 6-16) stops your application code and the debug sprite from running.

Single Stepping
The single step icons (Figure 6-17) are located above the Debug view, to the right of the Resume, Suspend, and
Terminate icons.

Figure 6-17 · Step Into, Step Over, and Step Return Icons

Clicking the Step Into icon causes the debugger to execute the current line of code. If the current line of code is a
function call, the debugger advances to the first line of code in that function.

Clicking the Step Over icon executes the current line of code. If the current line of code is a function call, the function is
executed and the debugger advances to the next line of code after the function call. This allows you to step through a
block of code without having to step through all of the functions called from within that block.

The Step Return icon provides a method for finishing execution of a function and advancing the debugger to the next
line of code after the function call. It effectively converts a Step Into mode inside a function to a Step Over mode.
56 SoftConsole v3.1 User’s Guide

Debug Perspective
Viewing Assembly Code
Assembly code for the application can be viewed by selecting Window > Show View > Disassembly in the main toolbar
of the Debug perspective (Figure 6-18)

Figure 6-19 shows an example of the Disassembly view.

Figure 6-18 · Enabling Disassembly View

Figure 6-19 · Disassembly VIew
 SoftConsole v3.1 User’s Guide 57

Debugging with SoftConsole
Stepping in Assembly Code
Clicking the Instruction icon to the right of the Step icons (Figure 6-20) toggles the debugger between C language and
assembly language stepping.

Figure 6-20 · Stepping Instruction Icon

The Disassembly window opens, if it is not currently open, when assembly language stepping is chosen.

Modifying Code
The best strategy for modifying code is to suspend the debugger if the code is currently running. Then click the
Terminate icon to terminate the debugger sprite. Click the C/C++ button to revert to the code development perspective.
Make the code changes, compile, and launch the debugger.

Exiting the Debugger
Prior to exiting the debugger you should terminate the application by clicking the Terminate icon (above the Debug
view). Failure to do so can leave a debug sprite running and interfere with using the debugger later.
58 SoftConsole v3.1 User’s Guide

7
Programming Flash Memory in Cortex-M1
Systems

Overview
SoftConsole can load an executable file into the program memory of a Cortex-M1 target system, for the purposes of
debugging or executing the program on that system.

The program memory of the target system can be flash or SRAM program memory, whichever type is located at base
address 0x00000000 in the target system’s memory map. Flash memory can be external or embedded:

• External flash memory (external to the FPGA) accessed via CoreMemCtrl

• Actel Fusion embedded flash memory (eNVM) accessed vial CoreAhbNvm

Minimum Requirements
The minimum requirements for flash memory programming with SoftConsole are as follows:

• SoftConsole v3.1 or higher

• A Cortex-M1 target system with flash program memory at base address 0x00000000 (flash program memory
connected to CoreAHBLite slot 0)

• A GNU C linker script that accurately describes the location, size, and type of the flash program memory in the
Cortex-M1 target system. A number of example linker scripts are provided with SoftConsole.

• A flash device description file. This file describes the sequence of programming commands for a particular Flash device.
A number of Flash device description files are provided with SoftConsole.

Flash Memory Programming Flow
This section describes the flash memory programming flow using SoftConsole. Detailed step-by-step description of the
flash memory programming flow is included in “Appendix A – Programming Flash Memory in Cortex-M1 Systems” on
page 61.

Create a SoftConsole C Project
1. Create a SoftConsole C project.

• Project type: Executable

• Toolchain: Cortex-M1

2. Add the following files to the project:

• Any source files (C or assembler), or Actel IP core software drivers that may be required to build a Cortex-M1
application program

• The Actel Cortex-M1/GNU Hardware Abstraction Layer (HAL), which the drivers rely upon to access the
hardware and which also provides boot code for the Cortex-M1

• A suitable linker script. A number of example linker scripts are provided with SoftConsole. Each linker script is
compatible with the Cortex-M1/GNU HAL, and a typical Cortex-M1 target system. Each linker script specifies
a Flash device description file that is compatible with the target system’s program memory. Refer to “Linker
Scripts for Specifying Program Code and Data Memories” on page 30 for a description of linker scripts that are
included with SoftConsole and instructions on how to modify the linker scripts to match the memory in your
system.

3. Add include paths to the GNU C Compiler > Directories settings in the project properties for any HAL or Driver
subfolders that contain source files.
 SoftConsole v3.1 User’s Guide 59

Programming Flash Memory in Cortex-M1 Systems
4. Build the project and create the executable file. Building the project also creates a memory-map.xml file, which is
used to pass the structure of the memory map and the flash device to the GDB debugger and the Cortex-M1 sprite.

Create a Debug Launch Configuration for the Project
Create a debug launch configuration for the project, as described in “Debugging with SoftConsole” on page 47 to
support loading and debugging of programs for the Cortex-M1 processor via PlashPro3. The executable file must be
loaded into program memory before debugging can take place.

Load the Executable File to the Flash Program Memory
Launch a debug session to load the executable file to flash program memory. Messages in the Console view will indicate
that flash programming is in progress (Figure 7-1).

Run and Debug the Program in Flash Memory
When flash programming is complete, the Confirm Perspective Switch dialog box opens, as described in “Debugging
with SoftConsole” on page 47. The Debug perspective opens with the program ready to continue running from the
temporary main() breakpoint. All the usual debug operations are available, including stepping, setting and running to
breakpoints, viewing register and memory content, etc.

Notes:

1. Cortex-M1 supports the use of only two hardware breakpoints at any one time. So, when debugging a program that
is running from flash, you may set many breakpoints but you MUST ONLY ENABLE TWO BREAKPOINTS
AT ANY ONE TIME (that is, check only two breakpoints in the Breakpoints view). Remember also that GDB
Step commands use a breakpoint, which counts towards the limit of two hardware breakpoints.

2. Flash memory blocks are erased and rewritten only if there is any change to the contents. If no changes are made to
the executable between debug sessions, SoftConsole does not rewrite the flash memory. This reduces the level of
wear that the flash memory is subjected to over multiple debug sessions.

Figure 7-1 · Messages in Console View
60 SoftConsole v3.1 User’s Guide

A
Appendix A – Programming Flash Memory in
Cortex-M1 Systems

Overview
SoftConsole can load an executable file into the program memory of a Cortex-M1 target system, for the purposes of
debugging or executing the program on that system.

The program memory of the target system can be flash or SRAM program memory, whichever type is located at base
address 0x00000000 in the target system’s memory map. Flash memory can be external or embedded:

• External flash memory (external to the FPGA) accessed via CoreMemCtrl

• Actel Fusion embedded flash memory (eNVM) accessed vial CoreAhbNvm

Minimum Requirements
The minimum requirements for flash memory programming with SoftConsole are as follows:

• SoftConsole v3.1 or higher

• A Cortex-M1 target system with flash program memory at base address 0x00000000 (flash program memory
connected to CoreAHBLite slot 0)

• A GNU C linker script that accurately describes the location, size, and type of the flash program memory in the
Cortex-M1 target system. A number of example linker scripts are provided with SoftConsole.

• A flash device description file. This file describes the sequence of programming commands for a particular flash device.
A number of flash device description files are provided with SoftConsole.

Flash Memory Programming Flow Overview
This section provides an overview of the Flash Memory Programming Flow. For a more detailed step-by-step
description, see “Setting Up SoftConsole” on page 64.

Create a SoftConsole C Project
1. Create a SoftConsole C project

• Project type: Executable

• Toolchain: Cortex-M1

2. Add the following files to the project:

• Any source files (C or assembler), or Actel IP core software drivers that may be required to build a Cortex-M1
application program

• The Actel Cortex-M1/GNU Hardware Abstraction Layer, which the drivers rely upon to access the hardware and
which also provides boot code for the Cortex-M1

• Add include paths to the GNU C Compiler > Directories settings in the project properties for any HAL or Driver
subfolders that contain source files

Add a Linker Script and Build the Project
Before an executable file can be loaded to any type of program memory, it must first be created by building the
SoftConsole project. For most target systems, the GNU C Linker build settings must be modified to specify a linker
script that matches the memory map of the system.

For a system with flash program memory, the project must be set up as follows:

1. Add a suitable linker script to the project.
 SoftConsole v3.1 User’s Guide 61

2. Modify the MEMORY command section of the linker script to match the target system.

3. Specify the details of target system’s memory map, including the location and size of the flash memory.

4. Specify the flash device description file. This is the key enabler for flash memory programming with SoftConsole.

5. Use the -T linker option in the project properties to specify the linker script. Save the project properties.

6. Build the project. This creates the executable file. Building the project also creates a memory-map.xml file, which is
used to pass the structure of the memory map and the flash device to the GDB debugger and the Cortex-M1 sprite.

A number of example linker scripts are provided with SoftConsole. Each linker script is compatible with the
Cortex-M1/GNU HAL, and a typical Cortex-M1 target system. Each linker script specifies a flash device description
file that is compatible with the target system’s program memory.

The flash device description file name is specified with a commented USE: directive in the MEMORY section of the
linker script:

/* SOFTCONSOLE FLASH USE: */

The GNU C Linker ignores this directive, but SoftConsole recognizes it and uses the named flash device description file
to provide the sequence of commands for flash programming.

A set of flash device description files is provided with SoftConsole. The flash device description files include a
description file for the Actel Fusion eNVM (CoreAhbNvm), and a description file for the Intel 28F640 (J3 v.D) flash
device that is used on many Actel development kit boards. The flash device description files do not need to be imported
into the project; the appropriate file name should simply be specified in the linker script.

Create a Debug Launch Configuration for the Project
SoftConsole uses the GNU GDB debugger, in conjunction with the Cortex-M1 Sprite, to support loading and
debugging of programs for the Cortex-M1 processor. The executable file must be loaded into program memory before
debugging can take place.

For a Cortex-M1 system with SRAM program memory located at base address 0x00000000, this is simply a matter of
using the GDB load command. SoftConsole automatically inserts the load command (as one of the Initialize
commands) when the debug launch configuration for Cortex-M1 is first created, so that when the debug launch
configuration is subsequently run, it loads the executable file into SRAM at the start of the debug session.

For a Cortex-M1 system with flash program memory located at base address 0x00000000, loading the executable file to
program memory is typically not as straightforward as for SRAM program memory, because of the requirement to send
mode setup commands to the flash device. However, SoftConsole seeks to minimize this complexity by enabling the
GDB load command to load the executable file directly to flash program memory, for an appropriately configured
Cortex-M1 project.

To create a debug launch configuration for the project:

When the debug launch configuration is created, the Initialize commands box on the Commands tab is automatically
populated with the following:

target remote | "${eclipse_home}/../Sourcery-G++/bin/arm-none-eabi-sprite" flashpro:
"${build_loc}"

load

tb main
62 SoftConsole v3.1 User’s Guide

Flash Memory Programming Flow Overview
Figure A-1 shows the debug launch configuration.

The GDB target remote command launches the Cortex-M1 Sprite, through which GDB communicates with the target
system. The Cortex-M1 Sprite finds the memory-map.xml file in the current build folder (${build_loc}) and points it at
the Debug or Release folder, whichever is the current active build configuration. It uses this memory map description to
inform GDB that the target system is using flash program memory, so the specified flash device description file should
be used when programming the flash memory, and hardware breakpoints should be used when debugging.

The GDB load command directs the Cortex-M1 Sprite to load the executable file into flash program memory, using the
programming commands from the flash device description file.

Figure A-1 · Programming
 SoftConsole v3.1 User’s Guide 63

Load the Executable File to Flash Program Memory
To load the Executable file to flash program memory, launch a debug session. Messages in the Console view will
indicate that flash programming is in progress (Figure A-2).

Setting Up SoftConsole
This section describes the steps required to set up a SoftConsole project, so that the executable file, which is the output
of a Project Build, is automatically loaded into flash program memory when a debug session is launched.

Note: The description is based on using the Cortex-M1/GNU HAL and the set of example linker scripts supplied with
SoftConsole. However, any linker script and corresponding boot code may be used, as long as the linker script
includes the commented USE: directive to declare the flash device to be programmed.

Referenced Files
The description in this section contains several references to files provided with SoftConsole. The default install folder
for SoftConsole is typically C:\Program Files\Actel\SoftConsole vX.Y, where vX.Y refers to the version of SoftConsole (for
example, SoftConsole v3.1). The paths to the referenced files are listed here for convenience.

The example linker scripts are located in the following folder:

<SoftConsole install folder>\src\Cortex-M1\linker-script-examples

The flash device description files are located in the following folder:

<SoftConsole install folder>\Sourcery-G++\share\sprite\flash

The Cortex-M1/GNU HAL is located in the following folder:

<SoftConsole install folder>\src\Cortex-M1\Cortex-M1_hal

Create a SoftConsole Project
1. Open SoftConsole.

2. Select File > New > C Project from the SoftConsole menu to open the Create C project dialog.

3. Enter the project details on the C project dialog.

• Project name: Type a name for the project.

• Project types: Choose Executable (Managed Make)

• Toolchain: Choose Actel Cortex-M1 Tools

4. Click Next, and Finish.

5. Turn off Automatic Building.

On the Project menu, ensure that the Build Automatically check box is cleared.

6. Set the Active Build Configuration to Debug.

Figure A-2 · Flash Programming in Progress Console Message
64 SoftConsole v3.1 User’s Guide

Setting Up SoftConsole
On the Project menu, select Build Configurations > Set Active > Debug.

7. Add source files to the project.

• Select File > New > Source file to create new C files.

• Select File > Import to import existing source files.

Note: Alternatively, import an existing project, such as one of the example projects supplied with the Actel IP core
software drivers. These example projects already contain the Cortex-M1/GNU HAL, but the linker scripts
included with the HAL would have to be modified to enable flash memory programming, or replaced with
one of the example linker scripts provided with SoftConsole.

If the Active Build Configuration is set to Release, the executable will be built with high optimization and without
debug symbols. The executable may be loaded to flash program memory, but debugging will only be possible at the
assembler level.

Add a Linker Script to the Project
A number of example linker scripts are provided under the SoftConsole install folder. Each example linker script has a
detailed comment section at the top, which explains its purpose and how to use it in a SoftConsole project to support
flash memory programming and debugging.

The example linker scripts are located in the following folder:

<SoftConsole install folder>\src\Cortex-M1\linker-script-examples

The main example linker scripts provided are described below.

run-from-intel-flash.ld
This linker script supports a target system with 2x16-bit Intel 28F640 Flash devices, accessed via CoreMemCtrl, at base
address 0x00000000. The two flash devices are connected in parallel for a 32-bit data bus width. CoreMemCtrl is
configured for 32-bit flash data bus width.

run-from-actel-coreahbnvm.ld
This linker script supports a target system with Actel Fusion FPGA embedded flash memory (eNVM), accessed via
CoreAhbNvm, at base address 0x00000000.

only-ram-memory.ld
This linker script supports a target system with SRAM at base address 0x00000000. The SRAM can be Actel FPGA
embedded SRAM accessed via CoreAhbSram or external SRAM memory (external to the FPGA) accessed via
CoreMemCtrl.

Two additional example linker scripts are provided for use when program code is to be copied from flash to SRAM at
boot time, and then run from SRAM.

boot-from-intel-flash.ld
This linker script supports a target system with 2x16-bit Intel 28F640 flash devices, accessed via CoreMemCtrl, at base
address 0x00000000. The two flash devices are connected in parallel for a 32-bit data bus width. CoreMemCtrl is
configured for 32-bit flash data bus width.

boot-from-actel-coreahbnvm.ld
This linker script supports a target system with Actel Fusion FPGA embedded flash memory (eNVM), accessed via
CoreAhbNvm, at base address 0x00000000.

Choose the example linker script that most closely matches your target system memory map. For the most part, the
selection of the appropriate linker script is all that will be required and no editing of the linker script will be necessary.
 SoftConsole v3.1 User’s Guide 65

Import the Linker Script
1. Select the project in Project Explorer.

2. Select File > Import to open the Import dialog.

3. Expand General, select File System and then click the Next button.

4. Click the Browse button, navigate to the linker-script-examples folder, and click OK.

Folder location: <SoftConsole install folder>\src\Cortex-M1\linker-script-examples

5. Check the box beside the linker script (*.ld) of interest in the right-hand pane and select the Create selected folders
only radio button.

Alternatively check the box beside the linker-script-examples folder in the left-hand pane to import all of the
example linker scripts, and select the Create selected folders only radio button.

6. Click Finish. The selected linker script will appear in the Project Explorer view (Figure A-3).

Figure A-3 · Linker Script in Project Explorer View
66 SoftConsole v3.1 User’s Guide

Setting Up SoftConsole
Set Up the Memory Map in the Linker Script
The MEMORY command section of the linker script is crucial for successful programming and debugging from flash
memory. When using the example linker scripts provided with SoftConsole, there is, for the most part, no need to
modify the content of the linker script, if the memory map and flash device described by the MEMORY command
section matches the target system hardware.

However, if adjustment of the memory map is required, then the settings in the section between the /*Start of board
customization*/ and /*End of board customization*/ comments are likely to be the only edits necessary.

An example of the MEMORY command section from the run-from-intel-flash is shown here.

/***

 * Start of board customization.

 ***/

MEMORY

{

 /*

 * WARNING: The words "SOFTCONSOLE", "FLASH", and "USE", the colon

 * ":", and the name of the type of flash memory are all in

 * a specific order. Please do not modify that comment line,

 * in order to ensure debugging of your application will use

 * the flash memory correctly.

 */

 /* SOFTCONSOLE FLASH USE: intel-28f640-2x16 */

 rom (rx) : ORIGIN = 0x00000000, LENGTH = 1M

 /* Normal SRAM */

 ram (rwx) : ORIGIN = 0x10000000, LENGTH = 1M

}

RAM_START_ADDRESS = 0x10000000;/* Must be the same value as MEMORY region ram ORIGIN
above. */

RAM_SIZE = 1M;/* Must be the same value as MEMORY region ram LENGTH above. */

MAIN_STACK_SIZE = 256k;/* Cortex main stack size. */

PROCESS_STACK_SIZE= 16k;/* Cortex process stack size (only available with OS
extensions).*/

/** * End of board
customization.

 ***/

The following points should be noted if customization of the linker scripts is required:

The specifications of “rom” and “ram” in the MEMORY command section of the linker script must match the target
system memory map.

If the ORIGIN or LENGTH of the “ram” specification are changed, then the RAM_START_ADDRESS and
RAM_SIZE must be changed to match them.

The string “rom” must be used to specify the flash memory region in the MEMORY command section.

The commented directive /* SOFTCONSOLE FLASH USE:.... */ must appear on the line immediately preceding the
“rom” specification, with the appropriate flash device named.

The string used to name the flash device must be the name of the flash device description file for that flash device
(without the *.xml extension).
 SoftConsole v3.1 User’s Guide 67

The flash device description file is an XML file that describes the programming sequence and commands for a particular
flash device and the physical connectivity of the flash device (examples: 1x32-bit device, 1x16-bit device, 2x16-bit
device).

A number of flash device description files are provided with SoftConsole, for the flash devices that are supported for
flash memory programming. They are located in the following folder:

<SoftConsole install folder>\Sourcery-G++\share\sprite\flash

- actel-coreahbnvm.xml is for Actel Fusion FPGA embedded Flash memory (eNVM)

- intel-28f640-2x16.xml is for 2x16-bit Intel 28F640 Flash devices connected in parallel

DO NOT MOVE OR COPY the flash device description files from this folder into the project. It is only necessary to
specify the file name correctly (without the *.xml extension) in the commented USE: directive in the linker script and
SoftConsole will find the file in this folder.

Set up the Linker Script in the Project Build Settings
1. Select the project in Project Explorer.

2. From the File menu select Properties to open the project Properties dialog.

3. Select Debug from the Configuration drop-down menu.

4. Navigate to C/C++ Build > Settings.

5. On the Tool Settings tab, navigate to GNU C Linker > Miscellaneous.

6. In the Linker flags box, use the –T linker option to specify the linker script to be used (Figure A-4).

Figure A-4 · –T Linker Option

• For run-from-intel-flash.ld enter: -T../run-from-intel-flash.ld

• For run-from-actel-coreahbnvm.ld enter: -T../run-from-actel-coreahbnvm.ld

• For only-ram-memory.ld enter: -T../only-ram-memory.ld

7. Click Apply and OK.

Note: Do not specify the linker script as an -Xlinker option (in the Other options (-Xlinker [option]) box); this will
cause the compiler to use your linker script incorrectly.

Add the Actel Cortex-M1\GNU HAL to the Project
A copy of the Actel HAL, for the Cortex-M1 processor and the GNU toolchain, is provided under the SoftConsole
install folder. The HAL must be imported into the SoftConsole project and the project settings must be updated to
specify the HAL folders as Include paths to the GNU C Compiler. The HAL provides Cortex-M1 boot code, which is
required by the example linker scripts, and is used by the GNU C Linker when building the executable file.

Import the HAL
1. Select the project in Project Explorer.

2. Select Import from the File menu to open the Import dialog.

3. Expand General, select File System and then click the Next button.

4. Click the Browse button, navigate to the Cortex-M1_hal folder and click OK.

Folder location: <SoftConsole install folder>\src\Cortex-M1\Cortex-M1_hal

5. Select the Cortex-M1_hal check box and select the Create selected folders only radio button.

6. If the Into folder: box is empty, click the Browse… button beside it. Select the project and click OK.
68 SoftConsole v3.1 User’s Guide

Setting Up SoftConsole
7. Click Finish. The HAL folders and source files (hal, hal\CortexM1 and hal\CortexM1\GNU) will appear in the
SoftConsole Project Explorer view (Figure A-5).

Set up the HAL in the Project Build Settings
Specify the HAL folders as Include paths for the GNU C Compiler, to include the HAL source files in the
Compilation.

1. Select the project in Project Explorer.

2. From the File menu, select Properties to open the project Properties dialog.

3. Select Debug from the Configuration drop-down menu.

4. Navigate to C/C++ Build > Settings.

5. On the Tool Settings tab, navigate to GNU C Compiler > Directories.

6. Add the three HAL folders—hal, hal\CortexM1 and hal\CortexM1\GNU—to the Include paths (-I) box:

Click the Add (+) icon, and an Add directory path dialog will appear.

Click the Workspace button.

Click the + to expand the project. Select the hal folder. Click OK.

In the Add directory path dialog, click OK.

Repeat these steps to add the hal\CortexM1 and hal\CortexM1\GNU folders.

7. The Include paths (-I) box should now contain the following:

${workspace_loc:/<project name>/hal}

${workspace_loc:/<project name>/hal/CortexM1}

${workspace_loc:/<project name>/hal/CortexM1/GNU}

Figure A-5 · HAL Folders in Project Explorer View
 SoftConsole v3.1 User’s Guide 69

These are shown in Figure A-6.

8. Click Apply and OK to close the Properties dialog box.

Build the Project
1. Select the project in Project Explorer.

2. From the Project menu select Build Project.

3. The project should build, without reporting any errors in the Console view.

A Debug folder should appear under the project root folder (Figure A-7).

The Debug folder contains all the files generated by the build, including the executable file and a memory-map.xml file.
This memory-map.xml file is used by SoftConsole to direct the debugger (GDB and the Cortex-M1 Sprite) to program
the executable to the flash program memory, when the Debug session is launched. The memory-map.xml file also directs
GDB to use hardware breakpoints for debugging.

Figure A-6 · Include Paths

Figure A-7 · Debug Folder
70 SoftConsole v3.1 User’s Guide

Setting Up SoftConsole
Note: The project must be built so that the executable file and the memory-map.xml file are present in the current build
folder (Debug or Release folder, whichever is the current active build configuration), before a debug launch
configuration is set up for the project, or a configured debug session is launched.

Set Up the Debug Launch Configuration for the Project
1. Select the project in Project Explorer.

2. From the Run menu, select Open Debug Dialog.

3. Select the Actel Cortex-M1 Target and create a new debug launch configuration.

4. A debug configuration named <project name> Debug is created with all fields correctly populated.

The C/C++ Application box on the Main tab should contain the executable file (Figure A-8).

1. If the C/C++ Application box is empty, click the Search Project… button and select the executable file.

2. Click Apply if any changes were made.

3. Click Close.

Figure A-8 · Executable in C/C++ Application Box
 SoftConsole v3.1 User’s Guide 71

When the debug launch configuration is created, the Initialize commands box on the Commands tab is automatically
populated with the following commands:

target remote | "${eclipse_home}/../Sourcery-G++/bin/arm-none-eabi-sprite" flashpro:
"${build_loc}"

load

tb main

The GDB target remote command launches the Cortex-M1 Sprite, via which GDB communicates with the target
system. The Cortex-M1 Sprite finds the memory-map.xml file in the current build folder (${build_loc}) and points it at
the Debug or Release folder, whichever is the current active build configuration. It uses this memory map description to
inform GDB that the target system is using flash program memory, so the specified flash device description file should
be used when programming the flash memory, and hardware breakpoints should be used when debugging.

The GDB load command directs the Cortex-M1 Sprite to load the executable file into flash program memory, using the
programming commands from the flash device description file (Figure A-9).

These commands are executed by GDB when the debug session is launched.

Programming the Flash Memory
When the SoftConsole project is set up as described in the previous section, all that is required to program the flash
memory is to launch a Debug session. The load command is one of the Initialize commands for the debug launch
configuration. The debugger executes the load command as it starts up and begins the programming of the project’s
executable file to the flash memory. Prior to launching the debug session confirm the following:

• Power is applied to the target board.

• The FlashPro4 programmer is connected to the target board.

Figure A-9 · GDB Commands
72 SoftConsole v3.1 User’s Guide

Setting Up SoftConsole
Start a Debug Session to Program the Flash Memory
1. Select the project in Project Explorer. From the Run menu, select Open Debug Dialog.

2. Select the debug launch configuration that was previously created under Actel Cortex-M1 Target.

3. Click the Debug button.

The debug session is launched and the messages in the Console view should indicate that flash programming is in
progress, and eventually that it is completed (Figure A-10).

When flash programming is complete, the debugger processes any remaining Initialize commands for the debug
launch configuration and on completion, SoftConsole switches to the Debug perspective.

4. The Confirm Perspective Switch dialog may ask if you wish to switch to the Debug perspective. Click Yes.

5. The Debug perspective opens and the program (running from flash) suspends at the temporary main() breakpoint.

Run and Debug the Program in Flash Memory
Loading of the executable to the flash program memory is now complete and the program is ready to continue running
from the temporary main() breakpoint. All the usual debug operations are available, including stepping, setting and
running to breakpoints, and viewing register and memory content.

Note: Cortex-M1 supports the use of only two hardware breakpoints at any one time. So, when debugging a program
that is running from flash, you may set many breakpoints but you MUST ONLY ENABLE TWO
BREAKPOINTS AT ANY ONE TIME (that is, check only two breakpoints in the Breakpoints view).
Remember also that GDB Step commands use a breakpoint, which counts towards the limit of two hardware
breakpoints.

Note: Flash memory blocks are erased and rewritten only if there is any change to the contents. If no changes are made
to the executable between debug sessions, SoftConsole does not rewrite the flash memory. This reduces the level
of wear that the flash memory is subjected to over multiple debug sessions.

Figure A-10 · Console View Messages During Flash Programming
 SoftConsole v3.1 User’s Guide 73

Flash Programming Checklist
1. Are you using SoftConsole v3.1 or higher?

2. Is the project a Cortex-M1, Executable (Managed Make), C project?

3. Did you set the Active Build Configuration to Debug?

4. Did you add your application program source files to the project?

5. Did you add a linker script to the project?

6. Does the linker script match your target hardware system?

7. Does the linker script specify the correct flash memory?

8. Did you specify the linker script with the -T linker option in the project Properties?

9. Did you add the Cortex-M1/GNU HAL (or another source of Cortex-M1 boot code) to the project?

10. Did you specify the include paths to the Cortex-M1/GNU HAL folders in the project Properties?

11. If you are using your own Cortex-M1 boot code (that is, not using the Cortex-M1/GNU HAL), ensure that any
constants defining system memory origin and size are compatible with the MEMORY section of the linker script.

12. Did you build the project?

13. Did the project build proceed without reporting errors in the Console view?

14. Does the Debug folder contain the executable file (same name as the project, with no file extension)?

15. Does the Debug folder contain the memory-map.xml file?

16. Does the memory map description in the memory-map.xml file match the MEMORY section of the linker script?

17. Does the debug launch configuration point to the correct executable in the C/C++ Application box (Debug\<project
name>)?

18. Does the Console view report that flash programming has completed without reporting errors?

19. Does the Console view report that GDB is automatically using hardware breakpoints?

20. Has SoftConsole switched to the Debug view, with the program suspended at the main() breakpoint?

21. Are there at most two breakpoints enabled in the Breakpoints view?

Loading of the executable to the flash program memory should now be complete and all the usual debug operations
should be available, including stepping, setting and running to breakpoints, and viewing register and memory content.
74 SoftConsole v3.1 User’s Guide

B
Appendix B – Configuring the Debug Utility for
CoreMP7 Projects

The hardware target debug utility used for CoreMP7 requires manual configuration.

1. Select Run > Open Debug Dialog and select Actel CoreMP7 as a target.

1. Select Run> External Tools > Open External Tools Dialog box.

2. Click New Configuration.

3. In the External Tools, Create, manage, and run configurations box, change the Name (in the Name: rectangle) from
New_configuration to FlashPro4 debugger for MP7. The exact name does not matter, but it is useful to choose a
name that indicates the CPU.

4. For the location rectangle, indicate the location of the MP7 sprite. This should be <softconsole installation path>

\Arm\Bin\cliarm.exe.

5. For the working directory rectangle, indicate the directory of the MP7 sprite. Note that this is the same as the
Location without the filename specified (that is, leave off the \cliarm.exe).

6. In the Arguments box type initarm.tcl.

7. Click Apply.

8. Click Close.
 SoftConsole v3.1 User’s Guide 75

Figure B-1 shows an example of setting the Debug configuration.

Figure B-1 · Setting the Debug Configuration for CoreMP7
76 SoftConsole v3.1 User’s Guide

9. Select Run > External Tools > FlashPro4 for MP7 (or whatever you named your MP7 debug configuration), as
shown in Figure B-2.

10. On the C/C++ application, click Search project.

Figure B-2 · Launching the Debugger for CoreMP7
 SoftConsole v3.1 User’s Guide 77

11. Click the name of your project in the Binaries box (Figure B-3).

12. Click OK.

13. Click the Debug button.

14. Answer Yes to the Confirm Perspective Switch box.

Figure B-3 · Program Selection
78 SoftConsole v3.1 User’s Guide

C
Appendix C – Reference Documents

SoftConsole Quick Start Guide

www.actel.com/documents/SoftConsole_QS_UG.pdf

Libero User’s Guide

www.actel.com/documents/libero_ug.pdf

Cortex-M1 Handbook

www.actel.com/documents/CortexM1_HB.pdf

CoreMP7 Users Guide

www.actel.com/documents/CoreMP7_UG.pdf

Core8051s Handbook

www.actel.com/ipdocs/Core8051s_HB.pdf

SoftConsole Documentation
The following documentation is available on your PC after SoftConsole is installed.

Access the documents using Start > Programs > SoftConsole 3.1> Reference Documents.

• SDCC User’s Manual

• Cortex-M1 Bare Metal Boot Code Guide

• GNU Binutils manual

• GNU GCC Compiler Manual

• Programming Flash Memory Guide

• SDCC User Manual

Additional documents:

• GNU Linker Manual (ld.pdf) - contains a description of Linker scripts (<SoftConsole v3.1 install>\Sourcery-
G++\share\doc\arm-none-eabi\pdf)

• GNU binary utilities (binutils.pdf) - Page 28 lists options for objdump (<SoftConsole v3.1 install>\Sourcery-
G++\share\doc\arm-none-eabi\pdf)

• GNU Compiler Manual (gcc.pdf) (<SoftConsole v3.1 install>\Sourcery-G++\share\doc\arm-none-eabi\pdf\gcc)

• List of GDB commands (<SoftConsole install folder>\Sourcery-G++\share\doc\arm-2007q1-21-arm-none-
eabi\pdf\gdb.pdf)
 SoftConsole v3.1 User’s Guide 79

http://www.actel.com/documents/SoftConsole_QS_UG.pdf
http://www.actel.com/documents/SoftConsole_QS_UG.pdf
http://www.actel.com/documents/libero_ug.pdf
http://www.actel.com/documents/libero_ug.pdf
http://www.actel.com/documents/CortexM1_HB.pdf
http://www.actel.com/documents/CortexM1_HB.pdf
http://www.actel.com/documents/CoreMP7_UG.pdf
http://www.actel.com/documents/CoreMP7_UG.pdf
http://www.actel.com/ipdocs/Core8051s_HB.pdf
http://www.actel.com/ipdocs/Core8051s_HB.pdf

D
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/support/search/default.aspx) for more information and
support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other
resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
 SoftConsole v3.1 User’s Guide 81

http://www.actel.com/custsup/search.html
http://www.actel.com/support/search/default.aspx
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/company/contact/default.aspx.
82 SoftConsole v3.1 User’s Guide

http://www.actel.com/company/contact/default.aspx
http://www.actel.com/company/contact/default.aspx

Index
A
Actel

electronic mail 81
telephone 82
web-based technical support 81
website 81

assembly code 57
stepping 58

B
Breakpoints view 51
build methods 44

C
C project 59
compiler

configure to match Cortex-M1 application 30
GCC 6
SDCC 6

contacting Actel
customer service 81
electronic mail 81
telephone 82
web-based technical support 81

Core8051s 9
CoreMP7 9

debug utility 75
Cortex-M1 8

programming 59
CPUs supported 8
customer service 81

D
debug

CoreMP7 projects 75
create debug launch configuration 60
create debug version 43
sprites 6
start session 73
version 43
view 51

debug utility 51
debugger 6
debugging 47

E
Eclipse IDE 5
editors 11
exception handlers 35

F
features, key 5
flash

flash memory programming flow 61
programming 59

flash programming checklist 74
FlashPro3 7

G
GCC compiler 6
GDB debugger 6

H
HAL 30, 68

import 68
source code 30

header file
create 27
obtaining information 41

I
import project 21
installation 13
interrupt numbers 34

L
libraries 40
licensing 15
linker 32
linker scripts

add to project 65
example 31
examples 65
import 66
modification needed 31
program code and data memories 30
set up memory map 67

M
math function 41
MEMORY command section example 67
 SoftConsole v3.1 User’s Guide 83

Index
memory limits, setting 36
memory map 34

set up 67
memory model size 37
memory size 32
modifying code 58
Modules view 52

N
new project 17

O
output files 43

P
pack iram data 36
perspectives 11
Problems view 55
product support 81–82

customer service 81
electronic mail 81
technical support 81
telephone 82
website 81

programming
flash 59

project 11
build 70

project build
set up linker script 68

projects
build methods 44
C 59

pseudo stack 36

R
references 79
Registers view 52
release version 43

S
SDCC compiler 6
single stepping 56
SoftConsole

create embedded applications 17
documentation 79
environment 11
installation 13
licensing 15
referenced files 64
setting up 64

SoftConsole package 5
Source Code view 53
source file

create 26
sprite 63
startup files 34, 39
system requirements 13

T
Task view 55
technical support 81
tool flows 7

V
Variables view 51
vector table 34
version

release 44
views 11

W
web-based technical support 81
workbench 11
workspace 11

copy projects into 22
setting up 17

workspace launcher 17
84 SoftConsole v3.1 User’s Guide

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 • USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • http://jp.actel.com

Actel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200177-2/8.09

Actel is the leader in low-power FPGAs and mixed-signal FPGAs and offers the most comprehensive portfolio of
system and power management solutions. Power Matters. Learn more at www.actel.com.

http://www.actel.com
http://jp.actel.com
http://www.actel.com.cn

	Introduction
	Key Features
	SoftConsole Package
	Eclipse IDE
	GCC Compiler
	SDCC Compiler
	GNU Debugger (GDB)
	Debug Sprites
	FlashPro4
	Firmware Catalog

	Software and Hardware Tool Flows
	Supported CPUs
	Cortex-M3
	Cortex-M1
	Core8051s
	CoreMP7

	SoftConsole Environment
	Workbench
	Perspectives, Views, and Editors
	Workspace
	Project

	Software Installation
	System Requirements
	Installation Instructions
	Licensing
	Firmware Catalog Installation

	Creating Embedded Applications with SoftConsole
	Setting Up the Workspace
	Setting Up a Project
	Creating a New Project
	Importing an Existing Project

	Importing Peripheral Drivers and CMSIS into SoftConsole (Cortex-M3)
	Importing Peripheral Drivers and CMSIS into a Compiler (Cortex-M3)
	Importing Firmware Drivers and Hardware Abstraction Layers into SoftConsole (Cortex-M1 andCore8051s)
	Importing Drivers and Hardware Abstraction Layers into a Compiler
	Using the Editor to Create Source and Header Files

	Project Settings
	Project Settings for Cortex-M3
	Project Settings for Cortex-M1
	Cortex-M1 Hardware Abstraction Layer (HAL)
	Linker Scripts for Specifying Program Code and Data Memories
	Flash Memory
	Stack Size
	Memory Size
	Specifying Linker Script
	Using boot-from-actel-coreahbnvm.ld and boot-from-intel-flash.ld
	Memory Map and Interrupt Numbers
	Startup Files

	Project Settings for Core8051s
	Setting Memory Limits
	Memory Models
	Setting Paths to Files
	Startup Files
	Using Libraries
	Standard Library Functions for I/O (printf, scanf, etc.)
	Math Functions
	Obtaining Header File Information from SmartDesign

	Building a Project
	Creating the Release Version
	Types of Project Build Methods

	Debugging with SoftConsole
	Debug Perspective
	Debug View
	Variables, Breakpoints, Registers, and Modules Views
	Source Code View
	Outline View
	Console, Tasks, Problems, and Memory Views
	Running the Application
	Single Stepping
	Viewing Assembly Code
	Stepping in Assembly Code
	Modifying Code
	Exiting the Debugger

	Programming Flash Memory in Cortex-M1 Systems
	Overview
	Minimum Requirements
	Flash Memory Programming Flow
	Create a SoftConsole C Project
	Create a Debug Launch Configuration for the Project
	Load the Executable File to the Flash Program Memory
	Run and Debug the Program in Flash Memory

	Appendix A - Programming Flash Memory in Cortex-M1 Systems
	Overview
	Minimum Requirements
	Flash Memory Programming Flow Overview
	Create a SoftConsole C Project
	Add a Linker Script and Build the Project
	Create a Debug Launch Configuration for the Project
	Load the Executable File to Flash Program Memory

	Setting Up SoftConsole
	Referenced Files
	Create a SoftConsole Project
	Add a Linker Script to the Project
	Import the Linker Script
	Set Up the Memory Map in the Linker Script
	Set up the Linker Script in the Project Build Settings
	Add the Actel Cortex-M1\GNU HAL to the Project
	Import the HAL
	Set up the HAL in the Project Build Settings
	Build the Project
	Set Up the Debug Launch Configuration for the Project
	Programming the Flash Memory
	Start a Debug Session to Program the Flash Memory
	Run and Debug the Program in Flash Memory

	Flash Programming Checklist

	Appendix B - Configuring the Debug Utility for CoreMP7 Projects
	Appendix C - Reference Documents
	SoftConsole Documentation

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

