
Platform8051 Development Kit

User’s Guide

Actel Corporation, Mountain View, CA 94043

© 2004 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200045-0

Release: December 2004

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any
implied warranties of merchantability or fitness for a particular purpose. Information
in this document is subject to change without notice. Actel assumes no responsibility
for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be
disclosed to any unauthorized person without prior written consent of Actel
Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Table of Contents
Introduction . 5

1 Platform8051 PCB . 7
APA600 Overview . 8

2 8051 Implementation . 13
Core8051 Memory Map Considerations . 13

Core8051 Clock Configuration for Platform8051 17

Core8051 FPGA Resource Utilization . 18

Core8051 OCI Debugger Interface Implementation 19

3 Core10/100 Implementation . 25
Core10/100 Overview . 25

4 Platform8051 Design Development 29
The Suggested Design/Verification Flow . 29

How to Obtain RTL or Netlists for Core8051 and Core10/100 30

Working with Synplicity® . 30

Design Layout . 31

Programming the Design into the FPGA . 32

Available Simulation Testbenches . 34

5 Software Development Tools Setup 35
Installing and Configuring the C Compiler and Debugging Tools 35

Setting Up a Project in Keil µVision2 . 37

Real Time Operating Systems (RTOS) and the Core8051 39

Special Non-Standard C for 8051 . 39

6 Downloading Software . 43
Downloading and Debugging from SRAM with FS2 43

Downloading and Debugging from SRAM with Keil µVision2 44

Copying Code from SRAM to Flash in Example Designs 45

Debugging from Flash . 46
Platform8051 Development Kit User’s Guide User’s Guide iii

Table of Contents
7 Platform8051 Demonstration Projects 47
Common Design Aspects – LCD and ADC Implementation 47

Basic Platform8051 Demonstration Project . 51

Web Server Demonstration Project . 59

A Platform8051 FPGA Design Pinout (u1) 71

B PCD Daughter Card Connections (j23) 75

C References . 79

D Product Support . 81
Customer Service . 81

Actel Customer Technical Support Center . 81

Actel Technical Support . 81

Website . 81

Contacting the Customer Technical Support Center 82
iv Platform8051 Development Kit User’s Guide User’s Guide

Introduction

The Platform8051 Development Kit is intended as a demonstration and evaluation medium for
Actel's Core8051 Microcontroller IP and Core10/100 Ethernet MAC IP. The kit is delivered pre-
programmed with a simple web server demonstration project (running over the Ethernet
connection). However, Platform8051 is not limited to this application. The Flash-based
ProASICPLUS FPGA that is at the core of the design may be reprogrammed and used to evaluate
other Actel-based intellectual property (IP) or to implement any number of possible designs that
may or may not make use of Actel IP.

Using This Document
This User's Guide describes the contents, architecture, and guidelines for working with the
Platform8051 Development Kit. Use this document for the following:

• Installation and setup instructions for Platform8051 and related tools

• Detailed user information and description of Platform8051 example designs

• Detailed reference material to be used when implementing a new design using Platform8051,
Platform8051 Development Kit, and/or Core8051

Platform8051 Development Kit Contents
• ProASICPLUS-based Platform8051 board

• All cables and power supplies

• Actel Libero® Integrated Design Environment (IDE) software, evaluation license (a full license
may be purchased separately from Actel)

• Programming files for example FPGA designs (source files and IP for designs must be purchased
separately)

• Programming and source files for Platform8051 example software designs

• FS2® CD with 8051 debugger software and Windows® drivers

• Keil Software® µVision2™/C51 C compiler/debugger, evaluation license (a full license may be
purchased separately from Keil Software)

Recommended Additional Products
• Actel FlashPro Lite (Actel ordering code “FlashPro Lite”)

• Core8051 IP license (Actel ordering code “Core8051-SN/AN/AR”)

• Core10/100 IP license (Actel ordering code “Core10/100-SN/AN/AR”)
Platform8051 Development Kit User’s Guide User’s Guide 5

Introduction
• Actel Libero software license (Actel ordering code “Libero-Platinum-PC-N-1year”)

• Optional: Keil µVision2 software license (Keil part number “PK51,” “DK51,” or “C51” see
www.keil.com)

• Optional: FS2 Debugger Upgrades (www.fs2.com)

Actel Platform8051 Development Kit CD ROM
Along with CDs for Actel and third-party EDA tools, the Platform8051 Development Kit includes
a CD containing Actel example files, documentation, and programming files for the example design.
(See Figure 1.) This CD contains folders for the Platform8051 Development Kit documentation
(including a QuickStart guide, Testing and Programming Procedure, and this User’s Guide). Other
folders contain printed circuit board (PCB) information (schematic and bill of material), example
design software (C-based projects and source code), and FPGA example designs source files for the
hardware design (minus the Core8051 and Core10/100 IP, which must be purchased separately).
While all the source code for the FPGA designs is not on the CD, the top-level netlist is a useful
reference for understanding and evaluating the components of Platform8051. The FPGA design
folder also contains a bitstream subfolder. This is where a copy of the programming files for the
example FPGA designs can be found.

Figure 1. Contents of PF8051 Development Kit v2.1 CD
6 Platform8051 Development Kit User’s Guide User’s Guide

http://www.keil.com/default.asp
http://www.fs2.com/

1
Platform8051 PCB

The Platform8051 Development Kit is intended as a demonstration and evaluation medium for a
variety of Actel IP, including Core8051, Core10/100, CoreSPI, CoreI2C, CoreSDLC, Core16X50,
CoreUART, and the Utopia family cores (slight modification required). With the daughter card it is
a versatile board that can demonstrate a variety of other cores, including Core1553BRM. See Figure
1-1.

Figure 1-1. PF8051 Development Board

The Platfom8051 board contains the following:

• ProASICPLUS APA600-FG676

• 4 MB SRAM memory

• 32 MB Flash memory

• 10/100 Ethernet PHY (Physical Layer Device)

• RS-232 serial interface

• LCD display

• 10-bit ADC

All subsystems can be addressed by the APA600. In addition, there are several unpopulated
component footprints on the Platform8051 board, including locations for a second Ethernet PHY, a
Platform8051 Development Kit User’s Guide 7

Platform8051 PCB
1553B Transceiver, and USB circuitry. A complete bill-of-material and schematic are on the
Platform8051 CD under the PCB folder. A block diagram of the PCB is shown in Figure 1-2.

Figure 1-2. Platform8051 Development Board Block Diagram

APA600 Overview
The Platform8051 Development Kit is based on Actel's second-generation Flash product family,
ProASICPLUS. ProASICPLUS expands on all the features and benefits offered by the ProASIC
500K family. Based on 4 LM .22 µ Flash technology, ProASICPLUS offers the combination of
reprogrammability and nonvolatility in a 75,000- to 1 million-system gates programmable logic
product. ProASICPLUS combines the advantages of ASICs with the benefits of FPGAs, enabling
engineers to leverage their existing ASIC or FPGA design flows and tools.

ProASICPLUS key features:

• Reprogrammable (In-System Programming, or ISP) and nonvolatile

• FlashLock™ security

• Live at power-up

• Low power

• ASIC design flow

APA600-FG676

ADC
RS-232

Transceiver
USB

Transciever

Ethernet
PHY

SPI
EEPROM

12C
EEPROM

Temperature
Sensor

FLASH
ROM

SRAM

Key Pad

IRDA
Transceiver

Flash Pro/lite
Connector LCD

1553B
Transceiver
8 Platform8051 Development Kit User’s Guide

APA600 Overview
The ProASICPLUS APA600 device used in Platform8051 has 600,000 available system gates,
21,504 registers, 126 kbits of RAM, and four global clock networks, with up to 56 total low-skew
clock segments. More detailed information about ProASICPLUS devices is available in the
ProASICPLUS Flash Family FPGA Data Sheet.

LCD Display
The on-board, 1 x 16 LCD display is controlled through a simple memory-mapped interface. The
LCD controller is contained in the LCD module. See “LCD Command and Data Register” on page
47 for details of how the Core8051 interfaces with the LCD display.

ADC
An analog-to-digital converter (ADC) is also part of the Platform8051 Development Board and is
controlled through a register-mapped interface inside the FPGA.

DIP Switches
A bank of eight DIP switches is also on the board. These switches are wired to inputs of the FPGA
so that open will correspond to logic 1 (4.6 k pull-up to 3.3 V) and closed will correspond to logic 0
(GND). In the example designs, these inputs to the FPGA are used to determine which of four
possible memory configurations the Core8051 will use. See “Basic Platform8051 Demonstration
Project” on page 51 and “Web Server Demonstration Project” on page 59 for more details on
available memory configurations.

Jumpers
There are a variety of jumpers and headers on the board used for configuration and debugging
purposes. The functions of these jumpers are defined in Table 1-1 on page 10.
Platform8051 Development Kit User’s Guide 9

http://www.actel.com/documents/ProASICPlusDS.pdf
http://www.actel.com/documents/ProASICPlusDS.pdf

Platform8051 PCB
Table 1-1. Jumpers and Headers

Jumper Signal Description Function

J1 V2.5
Connects 2.5 V power
to APA600 core

Always connect pins 1 and 2.

J2

{8:1} =
VJTAG_RCK,
TMS,
TDO,
TDI,
TCK,
GND,
VPN_AD24_IO
VPP_Y20

Aux. JTAG Auxiliary JTAG head. In parallel to J3

J3 FlashPro JTAG header
FlashPro or FlashPro Lite connection for
APA600 programming and in-system debugging
of Core8051

J4

{6:1} =
BUIP_IO_GLMX_P22
BUIP_IO_GLMX_N3
AUIP_PPECL_P24
AUIP_PPECL_P5
AUIN_NPECL_N24
AUIN_NPECL_N5

PECL inputs to
APA600

Optional additional clock inputs to FPGA

J10 AN_EN Configures Ethernet
PHY U13

Pin 1 = VCC,
Pin 3 = GND,
Pin 2 = signal

See Table 1-2 on page 11.

J11 AN_1

J12 AN_2
10 Platform8051 Development Kit User’s Guide

APA600 Overview
J14 AN_EN Configures Ethernet
PHY U14

Pin 1 = VCC,
Pin 3 = GND,
Pin 2 = signal

See Table 1-2.

J15 AN_1

J16 AN_0

J17

{12,14,16,18,22} =
FPGA_HDR_TRST,
FPGA_HDR_TMS,
FPGA_HDR_TDO,
FPGA_HDR_TDI,
FPGA_HDR_TCK

Spare FlashPro JTAG
header for
FS2CLAM®

{22} = APA600 pin# L5
{18} = APA600 pin# L4
{16} = APA600 pin# L3
{14} = APA600 pin# L2
{12} = APA600 pin# L1

J22
{4:1} =
FPGA_OPPINS[4:1]

OPPINS

{4} = APA600 pin# K4
{3} = APA600 pin# K3
{2} = APA600 pin# K2
{1} = APA600 pin# K1

Table 1-1. Jumpers and Headers (Continued)

Jumper Signal Description Function

Table 1-2. Jumper J10-J16 Function Description

AN_EN AN1 AN0 Forced Mode

0 0 0 10Base-T, Half-Duplex

0 0 1 10Base-T, Full-Duplex

0 1 0 100Base-TX, Half-Duplex

0 1 1 100Base-TX, Full-Duplex

AN_EN AN1 AN0 Advertised Mode

1 0 0 10Base-T, Half/Full-Duplex

1 0 1 100Base-T, Half/Full-Duplex

1 1 0
10Base-T, Half-Duplex
100Base-TX, Half-Duplex

1 1 1
10Base-T, Half/Full-Duplex
100Base-TX, Half/Full-Duplex
Platform8051 Development Kit User’s Guide 11

2
8051 Implementation

There are many design decisions that must be made in configuring the Core8051 and peripheral
components in Platform8051 implementation. General information about configuring Core8051 is
defined in this section. Specific information about the configuration used in the Platform8051
example projects can be found in sections “Basic Platform8051 Demonstration Project” on page 51
and “Web Server Demonstration Project” on page 59.

Core8051 Memory Map Considerations
A brief explanation of the 8051 memory configuration options is provided in this document. The
design engineer will need to understand both this and the specific requirements of the application to
plan the design of the memory map.

There are four separate memory regions used in a Core8051:

• DATA – 256 bytes x 8 bits wide – used for dynamic storage of program data (registers, stack,
variables)

• CODE – 64 k bytes x 8 bits wide – used for program storage and interrupt vectors

• XDATA – 64 k bytes x 8 bits wide – used for storage of large data sets, custom-designed
peripherals, and extended stack space, if necessary

• SFR – 128 bytes x 8 bits wide – a combination of internal (to the core) and external memory for
special function registers

CODE, DATA, and XDATA memory spaces are not a part of Core8051 and therefore must be
implemented by the user, either internal or external to the FPGA. The SFR memory space consists
of two parts: internal to the core and external. The internal SFR memory space is implemented in
the core. The user must implement the optional, external SFR memory space outside the core.

The Core8051 memory spaces can be implemented either as synchronous or asynchronous. The
recommended mode when using RAM that is inside of ProASICPLUS devices is to make them
synchronous on write and asynchronous on read. This is the default configuration that should be
considered first. Use the same clock source as the Core8051 for the RAM WCLOCK. Some
designs have improved timing by changing to synchronous reads as well as writes. When using off-
chip RAM, the timing between the Write Enable, Output Enable, and Data should be carefully
considered and reviewed after layout.

CODE and XDATA Memory Implementation
The CODE memory space is 64 k bytes x 8 bits wide, and is used for program storage and interrupt
vectors. After reset, Core8051 always starts at address 0x0000 in the CODE space. The XDATA
memory space is also 64 k bytes x 8 bits wide and is used for storage of large data sets, custom-
Platform8051 Development Kit User’s Guide 13

8051 Implementation
designed peripherals, and extended stack space, if necessary. XDATA and CODE can be
constructed to consume less than the entire 64 k memory map, allowing for more efficient memory
usage. However, the user must ensure that sufficient memory space is allocated for the program. The
Keil compiler/debugger always fills the CODE space, starting at 0x0000 (or 0x0800 in the eval
version) and goes upward. The upper limit of CODE space is dependent on the size of the
application. Similarly, the size of XDATA RAM needed is defined by the application code.

The Core8051, DATA, XDATA, and CODE each have their own write-enable (WR) and
read-enable (RD) signals (see Table 2-1). It is feasible and common practice to combine the CODE
and XDATA memory spaces into the same physical memory. In some applications, XDATA and
CODE are even overlaid in the same physical memory region. In these cases, the user must prevent
the CODE memory space from being overwritten by XDATA variables.

Core8051 treats the CODE memory space as read only. The CODE memory can only be written by
the OCI® (On-Chip Instrumentation) debug circuitry. If the OCI is not used, the application
designer will have to develop his own method of loading the CODE memory. Intentionally
mapping XDATA over CODE memory space so that the 8051 can update all or part of its own code
is an advanced application that is beyond the scope of this document. Code/data banking, the use of

Table 2-1. Core8051 Memory Bus Signal Summary

Memory
Space

Data Bus Address Bus
RD/WR
Control

Other
Controls

Description

XDATA

memdatao[7:0]
– output
memdatai[7:0]
– input

memaddr[15:0]

memwr
– write enable
memrd
– read enable

memacki
– acknowledge
(for multi-cycle
operation)

Memory bus for large
data sets in RAM, Flash
programming, or
custom 8051 peripherals

CODE

memdatao[7:0]
– output
memdatai[7:0]
– input

memaddr[15:0]

dbgmempswr
– write enable
mempsrd
– read enable

mempsacki
– acknowledge
(for multi-cycle
operation)

Memory bus for
program code memory
in RAM or Flash

DATA

ramdatao[7:0]
– output
ramdatai[7:0]
– input

ramaddr[7:0]

ramwe
– write enable
ramoe
– read enable

Memory bus for
internal Core8051
registers and stack space
in RAM

XSFR

sfrdatao[7:0]
– output
sfrdatai[7:0]
– input

sfraddr[6:0]

sfrwe
– write enable
sfrre
– read enable

(Optional) Bus for
mapping custom
peripherals into
Core8051 SFR space
14 Platform8051 Development Kit User’s Guide

Core8051 Memory Map Considerations
additional 64 k blocks for CODE or XDATA memory space to accommodate applications with
large code or data requirements, can be easily implemented with Core8051. This is due to the
flexibility of Actel FPGAs to create chip select signals differentiating between 64 k banks. However,
code/data banking is not covered in this document.

The Platform8051 demo board has a switch in the run-time library (RTL) that enables the memory
map to be changed by either the P3 register from Core8051 or from DIP switches on the board. By
default, XDATA and CODE share common space overlaying the address ranges.

DATA Memory Implementation
Internal Data (DATA) may be created on-chip or off-chip. However, it requires single-cycle access.
This may be a determining factor in your final system clock speed. DATA must always be kept in a
separate memory as it may be accessed in the same cycle as CODE or XDATA. It is common to
create DATA memory as 128 or 256 bytes. The lower 128 bytes are required in all Core8051 designs
and respond to direct or indirect addressing. The upper 128 bytes provide additional space for
variables and the Core8051 stack, however, it can only be addressed indirectly. Direct addressing to
the upper 128 bytes will result in an SFR access, not a DATA access. (An example of indirect
addressing is an instruction where the target address is stored in a register. Direct addressing is when
the address is explicitly expressed in the instruction.)

Customizations to SFR Memory
The SFR internal memory region in Core8051 gives the user access to various functions of the core
such as data pointers, timers, interrupts, etc. These registers are defined in the RTL code for
Core8051 and no additional logic needs to be added by the user for implementation. See the
Core8051 Datasheet for more information.

External SFR (XSFR) memory is an optional feature that provides a means for connecting custom
peripherals or for implementing custom features into Core8051. An alternative method for
integrating custom features is to construct them so that they respond to external data (XDATA)
memory addresses. The choice between creating custom memory mapped features in XDATA vs.
XSFR is up to the designer.

The ways in which SFR memory is used by a standard Core8051 system are limited to the registers
listed in Table 2-2 on page 16. All other SFR memory addresses may be decoded and used to
implement custom peripherals. If an address is chosen that is already implemented inside Core8051,
the external register will be ignored.
Platform8051 Development Kit User’s Guide 15

http://www.actel.com/ipdocs/Core8051DS.pdf

8051 Implementation
Table 2-2. SFR Register List

Register Address Description

p0 80h Port 0

Sp 81h Stack Pointer

dpl 82h Data Pointer Low 0

dph 83h Data Pointer High 0

dpl1 84h Dual Data Pointer Low

dph1 85h Dual Data Pointer High

pcon 87h Power Control

tcon 88h Timer/Counter Control

tmod 89h Timer Mode Control

tl0 8Ah Timer 0, low byte

tl1 8Bh Timer 1, high byte

th0 8Ch Timer 0, low byte

th1 8Dh Timer 1, high byte

ckcon 8Eh Clock Control

p1 90h Port 1

dps 92h Data Pointer Select Register

scon 98h Serial Port 0, Control Register

sbuf 99h Serial Port 0, Data Buffer

p2 A0h Port 2

ien0 A8h Interrupt Enable Register

ip0 A9h Interrupt Enable Register

p3 B0h Port 3
16 Platform8051 Development Kit User’s Guide

Core8051 Clock Configuration for Platform8051
Core8051 Clock Configuration for Platform8051
To ensure proper operation of Core8051, the input clocks must be placed on low-skew global
buffers, such as RCLK or HCLK in Actel's antifuse devices, or on clock spines in Actel's
ProASICPLUS devices. One method for ensuring proper placement of the input clocks is to use the
set_global command in the ProASICPLUS GCF constraints file used by Actel's Designer software.

Core8051 has three clock inputs: CLK, CLKPER, and CLKCPU. The most efficient way to
implement the Core8051 clocking is to drive all three of these inputs with the same global signal, as
in Figure 2-1 on page 18. Combining all clocks will save FPGA resources and ensure a high-speed
design with easy-to-analyze timing. However, unifying the three clocks has the drawback of
disabling the Core8051's low power modes IDLE and STOP. The IDLE and STOP modes depend
on having three independent clocks inputs.

If IDLE and/or STOP modes are required, then CLKPER and CLKCPU must be implemented as
shown in Figure 2-2 on page 18. This will make cross-clock domain skew analysis more difficult and
consume more of the FPGA’s global clock resources (all three clock inputs to Core8051 must be on
low-skew global buffers or clock spines).

ien1 B8h Interrupt Enable Register

ip1 B9h Interrupt Enable Register

psw D0h Program Status Word

Table 2-2. SFR Register List (Continued)

Register Address Description
Platform8051 Development Kit User’s Guide 17

8051 Implementation
Peripherals in the FPGA that are related to Core8051, but not part of it, should use the same clock
as the CLKPER input. If unified clocking is used, then that one clock should be used for all user
logic. If the gated clocking is used, then the gated clock CLKPER should be used for user logic.

Figure 2-1. Core8051 with Unified Clocks (no IDLE/STOP mode)

Figure 2-2. Core8051 with Gated Clocks (enables IDLE/STOP modes)

Core8051 FPGA Resource Utilization
The performance numbers in the Core8051 datasheet are based on timing analysis of the Core8051
in a device without any memories or additional logic (Table 2-3 on page 19). In most ProASICPLUS
Platform8051 designs, it will be advantageous to use the RAM resources embedded in the FPGA.
In these designs (such as the demonstration projects), the memory access time is the limiting factor

Idle
Stop

Interrupt
Request

clk

clkper_en

clkcpu_en

clkcpu
clkper Core8051

Idle
Stop

Interrupt
Request

clk

clkper_en

clkcpu_en

clkcpu
clkper Core8051
18 Platform8051 Development Kit User’s Guide

Core8051 OCI Debugger Interface Implementation
for core performance. Of course, any additional logic, such as a memory controller, will also affect
the size and utilization of the design.

Core8051 OCI Debugger Interface Implementation

Introduction
The On-Chip Instrumentation extension to the Actel Core8051 enhances the CPU core
functionality, providing run-time control, memory and register visibility, complex breakpoint
capability, and a trace history feature, all without using any resources from the core CPU.

OCI Features
The OCI module inside Core8051 has many powerful capabilities, including the following:

• Control via a 4-pin IEEE-1149.1 (JTAG) port, compatible with daisy-chained multi-core systems

• Start/stop run control through debugreq/debugack signals to core

• Unlimited number of software breakpoints available via 0xA5 opcode

• Single-step by assembly instruction

• Access to all 8051 registers and memory spaces (CODE, XDATA, SFR, and DATA)

• Scalable number of hardware breakpoints (zero to four) consisting of one address/data value and
one of the following modes:

• Code memory execution

Table 2-3. Device Utilization for Core8051 (only)

Family Cells or Tiles Utilization Performance

Sequential Combinational Device Total

ProASICPLUS 547 3994 APA150-STD 74% 16 MHz

Axcelerator® 690 2560 AX250-3 77% 45 MHz

SX-A 685 2790 A54SX72A-3 58% 30 MHz

RTSX-S 685 2790 RT54SX72S-2 58% 12 MHz
Platform8051 Development Kit User’s Guide 19

8051 Implementation
• Code memory read or write

• External data memory read or write

• SFR read or write

• Ability to read and write to internal data memory

• Capability to combine two hardware breakpoints to form an address range (lower and upper
bound) and masked data value

• Hardware breakpoints may be configured to break emulation, start or stop the trace, or assert a
trigger-out signal

• Optional break bus can be used to synchronize operation of multiple Core8051 devices connected
in a multi-core configuration

• Optional AuxOut signal available to control on-chip test modes or other system-specific functions

• Optional trace history of the most recent branch points allows software reconstruction of
execution flow. Memory is configurable in powers of two from 2 to 256 frames. Branches record
both branch-from and branch-to addresses. Trace start/stop actions from the trigger also allocate
a trace frame

• Support for code memory bank switching systems. Additional bits denoting the bank number are
supplied by user logic and participate in breakpoint decisions and trace

• Presence of the OCI does not impact processor performance significantly (see the Core8051
Datasheet for detailed performance estimates)

Configuring the OCI
Actel customers who purchase either the complete Core8051 source code or Core8051 netlist have
access to the OCI module (see the Core8051 User's Guide on the CD for details). FPGA resources
can be saved by omitting the OCI from the design; however, this will prevent in-system debugging.
Omitting the OCI will also force the user to implement another means of programming the CODE
memory (which is normally done through the debugger and OCI). Netlist customers are provided
netlists with and without the OCI module included.
20 Platform8051 Development Kit User’s Guide

http://www.actel.com/ipdocs/Core8051DS.pdf
http://www.actel.com/ipdocs/Core8051DS.pdf

Core8051 OCI Debugger Interface Implementation
Note: The number of triggers and trace memory size is encoded into the netlist name, as described
in Figure 2-3.

Figure 2-3. Core8051 Netlist Naming Conventions

The demonstration projects for the Platform8051 Development Kit have been created using the file
core8051_oci1_trace8_trig1_withoutio_apa.vhd. This gives the design an OCI with one hardware
breakpoint, 256-line x 20-bit trace buffer.

Customers working from the source RTL (rather than netlists) must set the generic parameters for
Core8051 appropriately for their needs. These map directly to the netlist options and are defined in
great detail in the Core8051 Datasheet, and the Core8051 User's Guide (located on the CD). The
generic parameters used by RTL customers to configure Core8051 are defined in the following code
segment:

component CORE8051
generic (
-- set this to 1 to instantiate OCI logic
USE_OCI : integer := 0;
-- set this to 1 to use ProASIC+ UJTAG macro for OCI logic
USE_UJTAG: integer := 0;
-- TRACE_DEPTH

core8051_oci1_trace8_trig2_withoutio_apa.v

Actel FPGA family:
APA
AX
SXA

IO pads in Netlist:
withio
withoutio

Number of OCI Triggers:
0
1
2
3
4

Size of Trace Memory:
Memory 2^n
1,2,3,4,6,7,8 = size of trace

OCI included:
OCI1 = OCI is present
OCI0 = no OCI in this netlist

V = Verilog
vhd = VHDL

Netlist Language:
Platform8051 Development Kit User’s Guide 21

http://www.actel.com/ipdocs/Core8051DS.pdf

8051 Implementation
-- no trace: Set value to 0
-- 256 depth: Set value to 8
TRACE_DEPTH: integer := 0;
-- TRIG_NUM
-- no triggers: set value to 0
-- 1 trigger: set value to 1
-- 2 triggers: set value to 2
-- 4 triggers: set value to 4
TRIG_NUM: integer := 0;
-- set this to 1 to make nrsto an output from here
NRSTOUT : integer := 0;
-- set this to 1 to enable flip-flop optimizations (default is 0)
EN_FF_OPTS: integer := 0
);

...

JTAG Interface

The JTAG connection for the debug interface to the Core8051 OCI is dependent on the device
family. For ProASICPLUS devices, the designer should connect the Core8051 JTAG ports (TCK,
TDI, TDO, TMS, TRSTB) to top-level ports in the design. These will pass through synthesis as
ports/pins to the design. However, when imported into Actel's Designer software, these ports will be
deleted automatically, as the software will detect the internal connection to User JTAG (UJTAG).
UJTAG is a special JTAG connection internal to the FPGA that makes use of the same external
JTAG pins as the FlashPro Lite interface.

In Antifuse FPGAs, UJTAG does not exist. The JTAG ports of Core8051 must be treated as user I/O
pins and placed at pin locations appropriate to the board design.

If the OCI will not be used for downloading or debugging code in this design, then the JTAG pins
should be driven with constant values (within the RTL code):

Limitations and Getting Access to FS2 Value-Added OCI Features
When using the OCI in-system debugger for Core8051, there are two types of breakpoints:
software and hardware.

TCLK <= 1

TMS <= 0

TDI <= 0

TRSTB <= 1

TDO => unconnected
22 Platform8051 Development Kit User’s Guide

Core8051 OCI Debugger Interface Implementation
Software breakpoints are generated by exchanging the opcode at a particular line in memory with a
breakpoint symbol 0xA5. When the Core8051 reaches one of these symbols, it halts operation and
waits for the debugger to take control. The debugger tool (either Keil µVision2 or FS2) monitors
core operation for occurrences of these software breakpoints, and when one is encountered, the
normal opcode is exchanged for the breakpoint symbol. The debugger relinquishes control to the
Core8051, which will resume operation with the normal opcode that replaced the breakpoint
symbol. The number of software breakpoints that can be placed in an application at one time is only
limited by the amount of CODE space allocated to the application.

Note: Software breakpoints cannot be used when the CODE memory space is placed in FLASH
memory. This is due to the fact that FLASH memory cannot be easily rewritten to swap
opcodes.

Hardware breakpoints are generated by special hardware in the OCI that monitors the address bus
and halts Core8051 operation when a particular CODE address is fetched. In the Core8051 OCI
block, hardware breakpoints are implemented using triggers (a set of registers that can cause a
breakpoint or tracepoint by matching either an address or data bus pattern). Hardware breakpoints
have the advantage of working well no matter what type of memory is used to store CODE. The
disadvantage is that debugger support becomes more complicated, and only a limited number of
hardware breakpoints are available (a maximum of four).

The number of breakpoints and trace memory size available is based upon the type of FS2 license.
With the standard FS2 license only a single breakpoint with no trace functionality is available. For
users to gain access to multiple hardware breakpoints with trace memory, an enhanced license from
FS2 is required. Contact FS2 (www.fs2.com) directly to purchase an upgrade. The maximum for all
users is four hardware breakpoints and 256 lines of trace memory.
Platform8051 Development Kit User’s Guide 23

http://www.fs2.com

3
Core10/100 Implementation

Core10/100 Overview
Core10/100 is an Ethernet Media Access Controller that connects Local Area Networks at data
rates of 10 or 100 Mb/s (see Figure 3-1 and Figure 3-2 on page 26). It has a Media Independent
Interface (MII) for physical connection and implements Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) algorithms per IEEE 802.3. Ethernet is a common standard,
which is used in computer, communications, industrial, and other applications.

Figure 3-1. Overview of a Typical Core10/100 System

Shared
RAM

Transmit
RAM

CPU
(8-, 16-, or 32-Bit)

Address
RAM

Receive
RAM

Core10/100 PHY
Data Interface Bus

Control Interface Bus
MII Interface
Platform8051 Development Kit User’s Guide 25

Core10/100 Implementation
Figure 3-2. Detailed Core10/100 Block Diagram

Detailed Core10/100 information is available in Ethernet Media Access Controller Core10/100 data
sheet.

The sections Transmit Process and Receive Process in the Actel Core10/100 data sheet provide an
overview of the operation of Core10/100.

Ethernet PHYs
The MII interface to Core10/100 works with most Ethernet PHY chips. Due to the analog circuit
requirements of an Ethernet PHY, this cannot be implemented in an Actel FPGA.

clkdma

Data
Interface

csr
interface

int

rst

clkcsr

Transmit Data
RAM

CSR
(Control & Status Registers

and Control Logic

tps

rps

MII Managment
Interface

Serial ROM
Interface

RSTC

clkt

Transmit
MII

clkr

Receive
MII

External Address
Filtering Interface

Address
RAM

Receive Data
RAM

RLSM

DMA

TC

RC

TLSM TFIFO

RFIFO

Data
Controller

BD
26 Platform8051 Development Kit User’s Guide

http://www.actel.com/ipdocs/Core10100DS.pdf
http://www.actel.com/ipdocs/Core10100DS.pdf
http://www.actel.com/ipdocs/Core10100DS.pdf

Core10/100 Overview
On the Platform8051 Development Board, a DP83846AVHG PHY from National Semiconductor
is used. Additional outputs and jumpers for the PHY are described in Table 3-1.

Table 3-1. Additional Ethernet PHY Circuitry

LED Color Signal Description

D1 Green LED_FDPLX
Full Duplex LED Status; indicates
Full-Duplex status

D2 Green LED_COL
Collision LED Status; indicates collision
activity in Half-Duplex mode

D3 Green LED_SPEED
Speed LED Status; indicates link speed –
high for 100 MB/sec, low for 10 MB/sec

D4 Green LED_RX
Receive LED Status; indicates receive
activity. LED is on for activity, off for no
activity.

J9 Left Green LED_TX
Transmit LED Status; indicates transmit
activity. LED is on for activity, off for no
activity.

J9 Right Green LED_GCLNK
Good Link LED Status; indicates good
link status for 10BaseT and 100BaseT
Platform8051 Development Kit User’s Guide 27

4
Platform8051 Design Development

Actel recommends that the user run one of the two demonstration projects described in
“Platform8051 Demonstration Projects” on page 47 to achieve confidence in the tools and gain
familiarity with the Core8051 and debug environment before developing a Platform8051 design.
This section covers a suggested design flow (Figure 4-1) for users wishing to develop their own
evaluation or product design.

The Suggested Design/Verification Flow

Figure 4-1. Design Flow

Once familiarity has been gained with the core and related tools, RTL coding of an original
evaluation design can begin. Simulation can be greatly assisted by referencing the User Testbench
that is delivered to Core8051 license holders. Ideally, simulation should be done both before and
after layout. As a minimum, post-layout simulation including timing back-annotation should be
performed. It is further recommended that the user complete a static timing analysis.

Example Design
(on PF8051 Dev Kit)

User Testbench
(Core8051)

Generate
Design-Specific

Testbench

Logic Design
in RTL (Incorporating

Actel IP)

Simulation of RTL

Start

Definition and
Specification

of Design

SW Development
for Target

Application

Code Simulation
in Compiler/Debugger

Tool

Insystem
Debugging on PF8051

Example HW

Compile/
Assemble/Link

Create and
Compile Simple SW

Project for HW Verification
and Bring-Up

Application Test
and Continued

SW Development

Final Product
Testing

Timing Analysis
in Designer or Other

Timing Tool

Do Layout in
Actel Designer

Post Layout
Simulation of RTL

with Timing

Design and
Assembly of Target Board

(or PF8051 Dev Board,
if Applicable)

Download Design
to Target Board
Platform8051 Development Kit User’s Guide 29

Platform8051 Design Development
Software development can be started in parallel with hardware design. Initially software can be
tested using a software simulator. Using the RTL simulation for software development is not
recommended. If this is attempted, it is important that the test code be kept extremely simple.
Running large amounts of code in simulation will be extremely slow. RTL simulation of a Core8051
system is best restricted to individual specific features. Full system verification is best accomplished
by testing the actual hardware.

When the customized RTL is completed and downloaded to a board for the first time, it is highly
recommended that a very simple software program be used to test out the hardware features before a
complex application code is loaded into the Core8051 memory. System debug can then be
accomplished using the OCI module and either the Keil or FS2 debugger.

A flow chart for this suggested development flow is shown in Figure 4-1 on page 29.

How to Obtain RTL or Netlists for Core8051 and
Core10/100

Contact Actel's worldwide staff of sales professionals who are ready to assist you with the purchase
of the IP or the evaluation kit, and help you instantiate your design on an Actel FPGA.
“Recommended Additional Products” on page 5 lists the full part numbers and ordering codes for
single-use netlists and RTL (-SN, -SR) and multiple-use netlists and RTL (-AN, -SN). In the
numbering scheme, S represents single-use, A represents multiple-use on Actel devices, N
represents netlists, and R represents RTL source code.

RTL or Netlist versions of Core8051 have the same OCI functionality. However, each netlist has
fixed parameters and cannot be adjusted. Netlist customers will receive netlists with a variety of OCI
parameter settings and targeting all supported Actel device families. If a specific set of parameters is
not in the default netlist release, it may be requested from Actel. However, new parameters or
changes to the design beyond the defined parameters will not be an option. All of the Core8051
parameters can be controlled by customers in the RTL version.

Working with Synplicity®

The PF8051 CD includes the folder /FPGA_design/src, which contains the top-level netlist and
Synplicity project files. However, these files cannot be compiled without the Core8051 and Core10/100
sub-modules, which are not included on the CD and must be purchased separately. The top-level netlist
is a useful reference for how to create memories, both on- and off-chip, as well as integrating other parts
of the Platform8051 system.

For more information about working with Synplicity, see the Core8051 User's Guide (located on the
CD). Also, more Synplicity information specific to the demonstration designs is available in “Basic
Platform8051 Demonstration Project” on page 51.
30 Platform8051 Development Kit User’s Guide

Design Layout
Design Layout
As with Synthesis, layout can only be performed by Actel customers who have purchased either
netlist or RTL versions of Core8051 and/or Platform8051. The source code (netlist or RTL) is not
included in the Platform8051 Development Kit.

After synthesizing the design, use Actel's Designer software to place-and-route the FPGA. During
the layout process, Designer will compile, place, route, and generate device-specific programming
files for physical implementation of the design into an Actel FPGA. Refer to the Designer User’s
Guide for details on using the Designer software.

Tcl and GCF Files
Along with the EDIF netlist that is generated by Synplicity, Actel's Designer software can also take
Tcl scripts and GCF constraints files as inputs. To facilitate layout and provide a step-by-step
example, a Tcl script (*.tcl) is included on the PF8051 CD for each of the example projects. See
“Basic Platform8051 Demonstration Project” on page 51 for example project details.

To run a Tcl script in Designer, go to the File menu and select Execute Script… This will open the
Execute Script dialog box shown in Figure 4-2. Select platform.tcl and click Run. No arguments are
typically necessary.

Figure 4-2. Execute Script... Dialog in Designer

The Tcl script will re-import the EDIF netlist, apply the *.gcf constraints file, and run Layout. The
*.gcf constraints file will set the timing constraints and place the I/Os to the appropriate fixed pin
locations to match the board design.

Layout for Core8051 Netlist and RTL Customers
The netlist and RTL releases of Core8051 include the layout directory, which contains example
ADB (Actel Database) files for fully placed-and-routed versions of the macro in each of the
following supported Actel device families:

• ProASICPLUS
Platform8051 Development Kit User’s Guide 31

http://www.actel.com/documents/designerUG.pdf
http://www.actel.com/documents/designerUG.pdf

Platform8051 Design Development
• Axcelerator

• SX-A

• RTSX-S

The example layout files included with the netlist and RTL releases of Core8051 are listed in Table
4-1.

The netlists directory is also included with the netlist and RTL releases of Core8051, and contains
the corresponding netlist file of each ADB file in the layout directory. For example, the file netlists/
core8051_oci1_trace8_trig1_withio_ax.v corresponds to the layout database file layout/
core8051_oci1_trace8_trig1_ax.adb.

Note: The netlist files that contain “_withio_” in their names in the netlists directory are for use as
stand-alone versions of the Core8051 macro. They are not for use within a design since they
already have I/O pads inserted. To integrate the netlist version of the Core8051 macro into a
design, use the netlist files that contain “_withoutio_” in their names.

Programming the Design into the FPGA
The Platform8051 Development Kit is centered around an Actel APA600 device. This Flash-based
FPGA can be reprogrammed to contain any design the user wishes to develop using standard Actel
tools (an evaluation copy of the Actel Libero FPGA design tool is provided with the Platform8051
Development Kit). In addition, a FlashPro Lite download cable must be purchased separately to
reprogram the FPGA or use the 8051 development/debug tools.

Although the FlashPro Lite is used both to program the FPGA and to load application code
compiled for the Core8051, the two processes should not be confused.

To program the ProASICPLUS FPGA on the Platform8051 Development Board:

1. Connect a FlashPro Lite to the parallel port of your PC.

Table 4-1. Core8051 Example Layout Files

Core8051 Layout

layout/core8051_oci1_trace8_trig1_apa.adb

layout/core8051_oci1_trace8_trig1_ax.adb

layout/core8051_oci1_trace8_trig1_sxa.adb

layout/core8051_oci1_trace8_trig1_sxs.adb
32 Platform8051 Development Kit User’s Guide

Programming the Design into the FPGA
2. Connect the FlashPro Lite ribbon cable to header J3 on the Platform8051 Development Board.

3. Start the Actel FlashPro programming software on the PC.

4. Select Connect… from the File menu.

5. Ensure that the Configuration value is set to ProASICPLUS, and click Connect (Figure 4-3).

Figure 4-3. FlashPro “Connect...” Dialog

6. Select Analyze Chain from the File menu. Verify that an APA600 device is identified.

7. Select Open STAPL File… from the File menu. Find the *.stp file for the design you intend to
program and click Open.

8. In the main FlashPro window, set the Action field to Program (Figure 4-4).

Figure 4-4. FlashPro, Connected, Chain Established, Ready to Program
Platform8051 Development Kit User’s Guide 33

Platform8051 Design Development
9. Click on the Execute button to initiate programming.

Available Simulation Testbenches
Testbenches are an essential part of the design process. The deliverables of Core8051 include two
comprehensive testbenches:

• One originally designed for verification of the 8051 core. This is naturally the more
comprehensive and provides fault coverage near 100%.

• The second is intended for use by the designer. This testbench is easier to modify into a form that
will test a typical system implementation. It exercises more of the system submodules that would
be typically created outside the Core8051 and is simple and easy to understand.

The Core8051 testbenches are constructed to execute a series of 8051 instructions and verify the
resulting operation of the core. However, while possible, modifying the application code in the
simulation is beyond the scope of this document.

Core10/100 has its own separate testbenches. These are not integrated with the Core8051
testbenches.

Note: There is one difference between the simulation packages delivered with the netlist and the
RTL versions of Core8051. With the netlist version, the more comprehensive verification
testbench is pre-compiled and cannot be modified (no source code is provided). RTL
customers are provided the source code to the verification testbench.

Once hardware simulation and verification has been completed, the task of verifying the application
code can begin. For application code simulation, a C compiler with simulation capabilities, for
example Keil µVision2, is highly recommended.

See the Core8051 User's Guide (located on the CD) for detailed information about hardware
simulation files.
34 Platform8051 Development Kit User’s Guide

5
Software Development Tools Setup

Core8051 will run the same code and will use the same compilers and assemblers as most other
8051-compatible microcontrollers. Typically, the user will write code in C and then use a compiler
to create a Hex or OMF file. Either of these files can be downloaded to the CODE memory space
to be run by Core8051.

Alternatively, the user may choose to write code in assembly language. In this case, the input to the
compiler/assembler will be a set of ASM51 assembly language commands. The legal opcodes and
their functions are listed in the Core8051 Datasheet. Further documentation on 8051 opcodes and
the syntax of assembly language can be found in the compiler/assembler manuals.

Actel recommends the Keil (www.keil.com/dd/cl/actel/8051.htm) or SDCC (http://
sdcc.sourceforge.net) compilers and assembler for Core8051. While others may work, only the Keil
and SDCC compilers and assemblers have been tested and verified by Actel.

For in-system debugging of application code, either Keil or FS2 (www.fs2.com) tools may be used.
FS2's ISA-Actel51 Debugger is included with the purchase of Core8051 or the Platform8051
Development Kit. An evaluation version of Keil µVision2 is included in the development kit (or can
be downloaded directly from Keil), however, this version has limited functionality. Limitations of
the Keil evaluation version are published at www.keil.com/demo/limits.htm. The Keil µVision2
simulator is instruction- and cycle-accurate with Core8051 (not all 8051s are supported with cycle-
accurate simulation).

Note: Actel has two solution partners who distribute Keil software at a substantial discount: FS2 and
Capital Automation. Contact your Actel sales representative for more information.

Installing and Configuring the C Compiler and
Debugging Tools

Keil µVision2 Installation
Follow the Keil installation instructions for the µVision2 C51 compiler. The Keil compiler should
be installed prior to installing the FS2 ISA-ACTEL51 software. The µVision2 compiler may be
used independently; however, if the µVision2 debugger is desired, it requires the FS2 ISA-
ACTEL51 parallel port drivers and software translation layer be installed. For assistance with
installation or general use of Keil tools, contact Keil at www.keil.com or call (800) 348-8051.

SDCC Installation
The SDCC C compiler for 8051 is available at http://sdcc.sourceforge.net. Directions and product
support are available from SDCC. There are no special requirements or features for using SDCC
with Actel Core8051 or Platform8051.
Platform8051 Development Kit User’s Guide 35

http://www.actel.com/ipdocs/Core8051DS.pdf
http://www.keil.com/dd/cl/actel/8051.htm
http://www.keil.com/dd/cl/actel/8051.htm
http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/
http://www.fs2.com
http://www.fs2.com
http://www.keil.com/demo/limits.htm
http://www.keil.com/
http://sdcc.sourceforge.net/

Software Development Tools Setup
FS2 ISA-Actel51 Installation
Again, if FS2 tools are to be used in conjunction with the Keil µVision2 compiler/debugger, it is
important that µVision2 be installed first.

To install ISA-Actel51:

1. Run Setup.exe from the FS2 ISA-ACTEL51 CD

2. When prompted, enter one of the two setup passwords printed on the CD case (Figure 5-1).
Use the With Keil password if the Keil µVision2 has previously been installed, or the Without Keil
password if the Keil software is not being used.

Figure 5-1. FS2 Installation Password Dialog

3. Click Next to complete the installation process.

Note: For assistance in installing the FS2 tools, contact support@fs2.com, or call (503) 292-6730.
36 Platform8051 Development Kit User’s Guide

mailto:support@fs2.com

Setting Up a Project in Keil µVision2
Setting Up a Project in Keil µVision2
When a new project is created in µVision2, the first step is to select a target device (Figure 5-2).
Early versions of µVision2 do not have a selection for Actel Core8051. While targeting a similar
8051 may work, it is highly recommended that µVision2 version 7.07 or later be used to target
Core8051 specifically.

Figure 5-2. Select Target Device, Creating New Project

After selecting the target device, the Options for Target…, settings under the Project menu must be
modified.

1. On the Output tab, Create HEX File must be selected with the Hex Format set to HEX-80. If the
name for the output files (either Hex or OMF) is different from the project name, it should be
typed into the Name of Executable field. The Debug Information, Browse Information, and Create
Executable check boxes should be selected. (See Figure 5-3 on page 38.)
Platform8051 Development Kit User’s Guide 37

Software Development Tools Setup
Figure 5-3. Keil µVision2 Options for Target, Output Tab

2. On the Debug tab, select the proper driver for communicating with the target board. Select Fs2/
Keil ISA-Actel51 Driver from the drop-down list and ensure that the Use button next to it is
selected (otherwise the debugger will open the simulator instead of connecting to the target
board). Load Application at Startup should also be selected. (See Figure 5-4 on page 39.) If the
FS2 driver is not present in the drop-down list, exit the Keil software and reinstall the FS2 tools.
38 Platform8051 Development Kit User’s Guide

Real Time Operating Systems (RTOS) and the Core8051
Figure 5-4. Keil µVision2 Options for Target, Debug Tab

Real Time Operating Systems (RTOS) and the Core8051
There are several RTOSs available for 8051 processors. These can be useful in some cases; however,
it should be remembered that the 8051 is a small and relatively limited microcontroller. Limitations
in its ability to manage memory, large stacks, and overall data throughput can make an RTOS a
substantial limiter in system performance. The vast majority of Core8051 applications can be
implemented without an RTOS.

Some common RTOSs are listed at www.keil.com/rtos/default.htm.

Special Non-Standard C for 8051
The complexity of the 8051 memory map, and the lack of an operating system place unusual
requirements on C compilers written for the 8051. Some ANSI rules must be violated in order to
accommodate this processor. Detailed information about these syntax variances should be obtained
from the compiler vendor.
Platform8051 Development Kit User’s Guide 39

http://www.keil.com/rtos/default.htm

Software Development Tools Setup
Some frequently used C syntax is defined in the following sections.

Placing Variables or Constants in Different Memory Spaces
By default, any globally defined variable or constant will be placed in the DATA memory space.
However, it is possible to define it in either DATA, XDATA, or CODE memory spaces as well.

Example:

int i1; /* will be placed in default memory space (DATA)*/
data int i2; /* will be placed in DATA explicitly */
xdata int i3; /* will be placed in XDATA explicitly */
code const int i4=0; /* will be placed in CODE explicitly (READ ONLY) */

Placing Variables at Specific Addresses
Along with selecting the memory space for variables, it is often required that a variable be placed at a
specific address (to correspond to a memory-mapped register). This is typically done with the _at_
syntax.

Example:

data char LCD_DATA_REG _at_ 0xF101;
/*defines LCD_DATA_REG at xdata address 0xF101 */

This can also be accomplished by casting pointers or setting linker commands, but the _at_ syntax is
often the most convenient.

Stack Placement
In a normal C application, all local variables are stored either in registers or in the stack. This is not
always the case when working with the 8051. The 8051 normally keeps its stack near the top of
DATA space. DATA space is only 128 bytes total (for the stack, registers, and global variables). In
some cases, DATA space can be extended to 256 bytes, but is still not large enough to fit the large
stacks that most non-8051 C compilers tend to require.

In an 8051 application, the stack is kept as small as possible by keeping many of the local variables in
special data structures in DATA space. Complex graph-coloring algorithms are used to determine
exactly when the variables must be kept in scope and when they can be overwritten. This can be
much more efficient in terms of performance and stack space than typical C compilers.

Another option for designers that require large amounts of stack space is moving the stack into
XDATA. This makes a great deal of space available, but limits performance. DATA stacks can be
accessed in one instruction/cycle. XDATA may take up to three or four instructions/cycles to access.
40 Platform8051 Development Kit User’s Guide

Special Non-Standard C for 8051
Recursive or Re-entrant Code

Because of the way the stack is handled, recursive or re-entrant code is not recommended in
Core8051 applications. Many 8051 C compilers (including Keil) will detect re-entrant functions
and create an error message. If there is no alternative, the keyword reentrant must be added to the
function definition to force all of its variables to be stored in the stack. In this case, careful analysis
should be done to guarantee the stack space will not overflow.

Example:

void my_recursive_function () reentrant {
my_recursive_function();
…
}

Pointer types

Due to the complexity of the 8051 memory space, compilers must manage unusual pointer types. A
pointer must not only contain an address, but also a memory space.

Example:

int *i; /* GENERIC POINTER: the pointer "i" will be 3 bytes in size, the
first byte will be a representation of the memory space (XDATA, CODE, DATA),
the next to will be the 16-bit address */

xdata int *i2; /* SPACE SPECIFIC POINTER: the pointer "i2" will be 2 bytes
in size, just a 16-bit address, the type is always XDATA * for this pointer
*/
Platform8051 Development Kit User’s Guide 41

6
Downloading Software

After the application code has been compiled, downloading to the target device is accomplished
with either FS2 ISA-Actel51 or Keil µVision2. Either of these tools can also be used to do
in-system debugging with single-step, breakpoint, register, and data control. This section gives an
overview of the use of these tools as well as some specific information related to the Platform8051
Development Board.

Downloading and Debugging from SRAM with FS2
Before opening the debugger, the Platform8051 Development Board should be powered on and
connected to the PC through a FlashPro Lite. In addition, the FPGA must be programmed with a
Core8051 with OCI design prior to attempting to download code (see “Programming the Design
into the FPGA” on page 32). Before downloading code into the design, the DIP switches must be
verified to be in the debug memory map mode: Switch[1:8] = 00000011**.

Note: **These switches are wired to inputs of the FPGA so that open will correspond to a logic 1
(4.6 k pull-up to 3.3 V) and closed will correspond to a logic 0 (GND).

To download the code to the target device:

1. Open FS2 ISA-Actel51 Debugger. This application is typically found under the FS2 folder in
the Windows Start menu. The first window that should be visible is shown in Figure 6-1. If this
window does not open, but the warning “Parallel port device does not support IEEE-1284
negotiation protocol” is displayed, check the connections and try again.

Figure 6-1. ISA-Actel51 Debugger Startup Window

2. After establishing a connection to Core8051, the application code should be downloaded. Code
is outputted by the compiler as either a Hex, or OMF file that contains the raw binary as well as
symbols necessary for conducting source-level debugging. The compiler output can be
Platform8051 Development Kit User’s Guide 43

Downloading Software
downloaded into Core8051 CODE memory space by selecting the Load Hex… or Load OMF…
commands under the Tools menu. The Hex file will have an extension of.ihx or .hex, depending
on what compiler you have used. The OMF file typically does not have an extension. When
using the Keil compiler, the OMF file will be the project name with no extension. Browse to find
this file and click OK (Figure 6-2).

Figure 6-2. ISA-Actel51 Debugger Load OMF Dialog

This will load the CODE and reset the Core8051. The debugger is now ready for normal
operations such as single stepping, inserting breakpoints, clearing breakpoints, and watching
data values.

For details on debugging with ISA-Actel51 Debugger, see the ISA-Actel51 help files or the
ISA-Actel51 Getting Started Manual, both of which are installed along with the ISA-
Actel51software. Additional assistance can be obtained by contacting FS2 directly (www.fs2.com).

Downloading and Debugging from SRAM with Keil
µVision2

Before opening the debugger, the Platform8051 Development Board should be powered on and
connected to the PC through a FlashPro Lite. In addition, the FPGA must be programmed with a
Core8051 with OCI design prior to attempting to download the code. (see “Programming the
Design into the FPGA” on page 32). Before downloading code into the design, the DIP switches
must be verified to be in the debug memory map mode: Switch[1:8] = 00000011**.

Note: **These switches are wired to inputs of the FPGA so that open will correspond to a logic 1
(4.6 k pull-up to 3.3 V) and closed will correspond to a logic 0 (GND).

The Keil µVision2 project should be set up as described in “Setting Up a Project in Keil µVision2”
on page 37. Also, the debug options must be set to use FS2/Keil ISA-Actel51 Driver.
44 Platform8051 Development Kit User’s Guide

http://www.fs2.com/
http://www.fs2.com/actel_download/8051/Actel51-GettingStarted.pdf

Copying Code from SRAM to Flash in Example Designs
After successfully compiling the code and generating a Hex file, click the Debug icon (Figure
6-3) to start the debugger (or select Start/Stop Debug Session from the Debug menu).

Figure 6-3. Keil µVision2

Starting the debug session will automatically download the code to the device, reset the Core8051,
and start an interactive debug window. The debugger is now ready for normal operations such as
single stepping, inserting breakpoints, clearing breakpoints, and watching data values. For details on
debugging with µVision2, use the Help menu, or contact Keil directly for support (www.keil.com).

Copying Code from SRAM to Flash in Example Designs
The Keil and FS2 debuggers do not support Flash programming for code download. If the
application requires that the code be stored in Flash memory, the application design must create
Flash programming routines.

In the Platform8051 example designs, a Flash programming algorithm has been included in the
code. To copy the code into Flash using this example, first download to SRAM (in Debug memory
mode). Then set DIP switch [1] to open. This input is connected to the Port2 inputs and monitored
by the Core8051 during application startup. Next press the Reset button once (SW2). This will
restart the code (detecting the change to Port2) and start the Flash programming algorithm. Wait at
least 10 seconds for the Flash programming to complete.
Platform8051 Development Kit User’s Guide 45

http://www.keil.com/

Downloading Software
Once the Flash is programmed, the DIP switches may be set to 00000000 (all closed). When reset is
pressed again, or the board power-cycled, it will restart in Shadow mode (see section “Memory Map
Architecture Implementation in Basic Platform8051 Example Design” on page 52 for details).

To copy the code into Flash using this example:

1. Set DIP switches [1:8] to 00000011 and download the application code to SRAM.

2. Switch DIP switch [1] to 1. This input is connected to Port2 inputs and monitored by the
Core8051 during application startup.

3. Press Reset (SW2) once. This will restart the Core8051 (detecting the change to the DIP
switch) and initiate the Flash programming sub-routine.

4. Wait at least 10 seconds for the Flash Programming to complete.

5. Set DIP switches [1:8] to 00000000 and power-cycle the board.

Debugging from Flash
The FS2 and Keil debuggers will debug code from Flash memory in the same manner as with
internal memory. The exceptions are that code updates cannot be accomplished as easily (as
described in “Copying Code from SRAM to Flash in Example Designs” on page 45), and only one
break point is available. The limitation to the number of available breakpoints is because software
breakpoints cannot be used in Flash memory and only a limited number of OCI triggers are
available (see “Core8051 OCI Debugger Interface Implementation” on page 19 for details).
46 Platform8051 Development Kit User’s Guide

7
Platform8051 Demonstration Projects

The Platform8051 CD contains two demonstration projects for use with the Platform8051 board
and Core8051:

• Basic Terminal Server

• Web Server

The terminal server project connects via RS-232 to a PC COM port (running HyperTerminal or
similar text-based terminal window). The server will run the PC terminal, display terminal data on
the Platform8051 LCD screen, and read back data from the on-board ADC. This project is used to
illustrate the interaction between Actel Libero design tools, Actel Platform/Core8051, and
third-party tools for microcontroller application compilation and debugging.

The web server project connects to a PC via Ethernet and provides voltage, power, and temp data
from the board via a simple web page. This project is designed to demonstrate the various features
and capabilities of the Platform8051.

Common Design Aspects – LCD and ADC
Implementation

The Platform8051 Development Board has an LCD display. This display is controlled by a simple
register-mapped interface design inside the APA600 FPGA. The commands for this interface are
defined in this section. The LCD drivers are not contained in the FPGA, just the XDATA register
interface.

An analog-to-digital converter (ADC) is also part of the Platform8051 Development Board.
Similarly to the LCD implementation, the ADC is not part of the APA600 FPGA. Instead the
ADC is on the board as a separate component that is controlled through a register-mapped interface
design inside the FPGA.

LCD Command and Data Register
Core8051 will write LCD instructions to the LCD Command Register (0xF100) and LCD data to
the LCD Data Register (0xF101). Table 7-1 on page 48 lists all LCD commands. Table 7-2 on page
49 lists the LCD module instruction bit descriptions. Data written to the LCD data register will be
transferred to the LCD's Data RAM at the address pointed to by the Data Address counter in the
LCD module.

Reading from the LCD command address returns the LCD Status. Bit 7 shows the Busy-Flag (BF)
indicating internal operation. If this bit is 1, the LCD's internal operation is in progress and it is
Busy. During this time the LCD cannot accept any instruction or data.
Platform8051 Development Kit User’s Guide 47

Platform8051 Demonstration Projects
Table 7-1. LCD Module Instruction Set

D7 D6 D5 D4 D3 D2 D1 D0 Instruction Description

0 0 0 0 0 0 0 1 Clear Display
Clear display and returns
cursor to the home position

0 0 0 0 0 0 1 * Cursor Home
Returns cursor to home
position

0 0 0 0 0 1 I/D S Entry Mode Set
Set Cursor Move direction
(I/D), specifies to shift the
display (S)

0 0 0 0 1 D C B Display On/Off
Sets On/Off of Display (D),
Cursor (C), and blink of
cursor position (B)

0 0 0 1 S/C R/L * * Cursor/Display shift
Set cursor-move or display-
shift (S/C)

0 0 1 DL N F * * Function Set
Sets interface data length
(DL), number of display line
(N), and character font (F)

0 1 CGRAM Address
Set CGRAM
address

Sets the CGRAM address

1 DDRAM Address
Set DDRAM
address

Sets the DDRAM address

* Value can be either 0 or 1.
48 Platform8051 Development Kit User’s Guide

Common Design Aspects – LCD and ADC Implementation
Table 7-2. LCD Module Instruction Bit Description

Bit Name Settings

I/D 0 = Decrement cursor position 1 = Increment cursor position

S 0 = No display shift 1 = Display shift

D 0 = Display off 1 = Display on

C 0 = Cursor off 1 = Cursor on

B 0 = Cursor blink off 1 = Cursor blink on

S/C 0 = Move cursor 1 = Shift display

R/L 0 = Shift left 1 = Shift right

DL 0 = 4-bit interface 1 = 8-bit interface

N 0 = 1 Line 1 = 2 Lines

F 0 = 5x7 dots 1 = 5x10 dots
Platform8051 Development Kit User’s Guide 49

Platform8051 Demonstration Projects
ADCIN and ADCOUT registers
Core8051 can read and write the ADCIN register at 0xF200. Table 7-3 describes the meaning of
each bit in this register.

The ADCOUT register returns 10-bit values of ADC output. ADCOUT1 (0xF201 in the example
designs) returns the eight MSB bits of ADC out, and ADCOUT0 (0xF202 in the example designs)
returns the two LSB bits (see Table 7-4).

Table 7-3. ADCIN Register Field Definition

Mnemonic Bits Default R/W Description

CHNSEL 7:5 3'h0 R/W Channel Number. ADC channel number

UNIBIP 4 1'h1 R/W UNI BIP bit. Unipolar, Bipolar bit

SGLDIF 3 1'h1 R/W SGL BIP. Single-Ended Differential

PD 2:1 2'h2 R/W Power Down Mode. Power-down mode

START 0 1'h0 R/W
Start Bit. Start ADC read. This bit will
reset after ADC read is completed.

Table 7-4. ADCOUT Register Contents

ADCOUT1 ADCOUT0

9 8 7 6 5 4 3 2 1 0 - - - - - -
50 Platform8051 Development Kit User’s Guide

Basic Platform8051 Demonstration Project
Basic Platform8051 Demonstration Project
This project illustrates the interaction between Actel Libero design tools, Actel Platform/Core8051,
and third-party tools for microcontroller application compilation and debugging. The design is
downloaded onto a Platform8051 development board where it can be run from on-board SRAM or
Flash.

Once the example application has been downloaded, it will act as a simple terminal server via
RS-232 to a PC COM port running HyperTerminal or a similar text-based terminal window
(Figure 7-1). The server will run the PC terminal, display terminal data on the Platform8051 LCD
screen, and read back data from the Platform8051 ADC.

Figure 7-1. Overview for Basic Core8051 Demonstration Project

Application Terminal

Software Debugger

Platform8051 Dev Board

>>pf8051ADC

FLASH

SRAM

ADC
Ctrl

Flash
IF

SRAM
IF

OCI

Core8051 LCD
IF

Rs232

JTAG

IRAM

FlashPro/FlashPro Lite

Temperature
Sensor

Power Sources
Platform8051 Development Kit User’s Guide 51

Platform8051 Demonstration Projects
Memory Map Details

Memory Map Architecture Implementation in Basic Platform8051
Example Design

Core8051's memory map is implemented in four different operating modes to support all possible
configurations. These modes will be selected by memmode[1:0] signal in the FPGA design. The
following sections describe the detailed operation of the memory map modes.

Memory Map Mode Selection

Memory mode will be generated by using Core8051's Port3 [7:5] outputs and external User Switch
[8:7] settings. When the Core8051 drives Port3 [7] output to HIGH (default/reset state),
memmode will be controlled by the external switch settings. When Port3 [7] is LOW, memmode
will be generated by Port3 [6:5], which allows the user to switch between all possible memory map
modes by software control. Table 7-6 on page 53 shows the memory map modes.

There are four possible memory modes in the demonstration designs:

• Shadow - Used when running the application code from Flash

• Normal - Application code is in SRAM, peripherals are all mapped in XDATA space

• Flash Program - Used to copy application code from SRAM to Flash (while CODE space is
mapped and running from SRAM)

• Debug - Both XDATA and CODE are overlaid in SRAM

Memory Resource Mapping

Table 7-5 on page 53 describes the mapping of the memory resources modes of operation.

Resources available on-board for Platform8051 design are:

• 64 kbytes of Flash

• 64 kbytes of LRAM (lower part of SRAM)

• 64 kbytes of URAM (upper part of SRAM)
52 Platform8051 Development Kit User’s Guide

Basic Platform8051 Demonstration Project
Table 7-5. Memory Map Mode Definitions

Mode
8051 Program

Memory (64 Kbytes)
8051 Data Memory (64 Kbytes)

Shadow 0000:FFFF – Flash 0000:FFFF – LRAM

Normal 0000:FFFF – LRAM

0000:CFFF – URAM (52 kbytes)
D000:EFFF – TX, RX memory for Core10/100
(8 kbytes)
F000:FFFF – ADC/LCD registers (4 kbytes)

Flash
Program

0000:FFFF – LRAM 0000:FFFF – Flash

Debug 0000:FFFF – LRAM 0000:FFFF – LRAM

Table 7-6. Memory Map Modes

Port 3[7] Port 3[6:5]
**User

SW[8:7]
Memmode[1:0] Memory Map Mode

1 XX 00 00 Shadow

1 XX 01 01 Normal

1 XX 10 10 Flash Program

1 XX 11 11 Debug

0 00 XX 00 Shadow

0 01 XX 01 Normal

0 10 XX 10 Flash Program

0 11 XX 11 Debug

**These switches are wired to inputs of the FPGA so that open will correspond to a logic 1
(4.6 k pull-up to 3.3 V) and closed will correspond to a logic 0 (GND).
Platform8051 Development Kit User’s Guide 53

Platform8051 Demonstration Projects
Memory Map for Normal Operation Mode

Core8051's Program Memory will be mapped to an external SRAM's lower 64 kbytes of memory
space during normal operation mode. Data memory is mapped to various memories and registers as
shown in Table 7-7.

Address range 0x0000 to 0xCFFF accesses the external SRAM's upper portion of 128 kbytes.

Clock Configuration in the Platform8051 Basic Example Design
The Platform8051 Web Server Example Design is implemented using a unified clock (as shown in
Figure 2-1 on page 18). This makes IDLE and STOP modes not available in this design. Modules
in the example designs, which are peripheral to the Core8051, are driven by the main system clock.
Minimizing the number or clocks enables easy timing analysis and increased performance.

The clock input to the APA600 in the Platform8051 example projects is divided by two inside the
chip before being used. The design is running at 8 MHz, not the 16 MHz being supplied by the
crystal oscillator on the board.

Design Files
The design files for this project can be found on the PF8051 CD. This includes a software C code
project and source files for hardware design (minus the Core8051 and Core10/100, which must be
purchased separately). Constraints files and scripts for layout and synthesis are also provided.

Below is the Synplicity project file (platform_act.prj). This defines all the files and operations
necessary to synthesize this project.

Table 7-7. Memory Map for Normal Operation

Data Address Memory R/W Description

0000:CFFF
(52 kbytes)

URAM R/W Upper portion on external SRAM

F100 LCD Command R/W LCD Command register

F101 LCD Data R/W LCD Data register

F102:F1FF Reserved – Reserved for future use

F200 ADCIN (1 byte) R/W ADC In register

F201:F202 ADCOUT(2 bytes) R ADC Out register

F203:FFFF Reserved – Reserved for future use
54 Platform8051 Development Kit User’s Guide

Basic Platform8051 Demonstration Project
#-- Synplicity, Inc.
#-- Version 7.3
#-- Project file
C:\Actelprj\8051\8051demo_UART_LCD\FPGA_design\synplify\platform_act.prj
#-- Written on Wed Mar 24 15:08:23 2004

#add_file options
add_file -vhdl -lib work "$LIB/proasic/proasicplus.vhd"
add_file -vhdl -lib work "../src/top/user_ram.vhd"
add_file -vhdl -lib work "../src/top/adc_def_pkg.vhd"
add_file -vhdl -lib work "../src/top/adc_regbank.vhd"
add_file -vhdl -lib work "../src/top/adcctrl.vhd"
add_file -vhdl -lib work "../src/top/addrdatactrl.vhd"
add_file -vhdl -lib work "../src/top/clkgen.vhd"
add_file -vhdl -lib work "../src/top/phyclk.vhd"
add_file -vhdl -lib work "../src/top/csrctrl.vhd"
add_file -vhdl -lib work "../src/top/datamux.vhd"
add_file -vhdl -lib work "../src/top/dpram2kx8.vhd"
add_file -vhdl -lib work "../src/top/dpram4kx8.vhd"
add_file -vhdl -lib work "../src/top/dpram64x16.vhd"
add_file -vhdl -lib work "../src/top/flashctrl.vhd"
add_file -vhdl -lib work "../src/top/lcdctrl.vhd"
add_file -vhdl -lib work "../src/top/memopmode.vhd"
add_file -vhdl -lib work "../src/top/ram256x20.vhd"
add_file -vhdl -lib work "../src/top/rs232ctrl.vhd"
add_file -vhdl -lib work "../src/top/sramctrl.vhd"
add_file -vhdl -lib work "../src/top/txdatamem.vhd"
add_file -vhdl -lib work "../src/top/rxdatamem.vhd"
add_file -vhdl -lib work "../src/top/waitctrl.vhd"
add_file -vhdl -lib work "../src/top/traceram.vhd"
add_file -vhdl -lib work "../src/oci/ujtag_syn.vhd"
add_file -vhdl -lib work "../src/core8051/
core8051_oci1_trace8_trig1_withoutio_apa.vhd"
add_file -vhdl -lib work "../src/top/sfr_misc.vhd"
add_file -vhdl -lib work "../src/top/platform8051_act.vhd"
add_file -constraint "platform_act.sdc"
add_file -constraint "core8051.sdc"

#implementation: "synplify"
impl -add synplify
Platform8051 Development Kit User’s Guide 55

Platform8051 Demonstration Projects
#device options
set_option -technology PA
set_option -part APA600
set_option -speed_grade Std

#compilation/mapping options
set_option -default_enum_encoding default
set_option -symbolic_fsm_compiler 1
set_option -resource_sharing 1

#map options
set_option -frequency 100.000
set_option -fanout_limit 12
set_option -maxfan_hard 0
set_option -disable_io_insertion 0
set_option -retiming 0
set_option -report_path 4000

#simulation options
set_option -write_verilog 0
set_option -write_vhdl 0

#automatic place and route (vendor) options
set_option -write_apr_constraint 1

#set result format/file last
project -result_file "./platform8051_act.edn"

#implementation attributes
set_option -vlog_std v2001
impl -active "synplify"

After synthesis, the Actel Designer software tool must be used for layout. The following Tcl script
(platform.tcl) can be run inside Designer to complete layout of the design. See “Design Layout” on
page 31 for more information about this process.

##
platform.tcl - Designer Tcl script to compile & place & route
Platform8051 design
TFB 9/22/03
##
56 Platform8051 Development Kit User’s Guide

Basic Platform8051 Demonstration Project
set design_base "platform"
set design_gcf_file $design_base.gcf
set design_adb_file $design_base.adb
set design_log_file $design_base.log
set design_netlist_in "../synplify/platform8051_act.edn"

setup various clocks

import, compile, setup timing constraints
new_design -name $design_base -family "PA" -path {.}
set_device -die "APA600" -package "676 FBGA" -speed "STD" \
-voltage "2.5" -jtag "yes" -trst "yes" -temprange "COM" -voltrange "COM"
import_source -format "edif" -edif_flavor "GENERIC" $design_netlist_in \
-format "gcf" $design_gcf_file
compile
save_design $design_adb_file
layout -placer "On" -place_incremental "Off" -router "Off" -timing_driven
save_design $design_adb_file
layout -placer "Off" -router "On" -route_incremental "Off" -timing_driven
save_design $design_adb_file
export -format "log" $design_log_file

Downloading and Running the Basic Platform8051 Demonstration
Project

Required Software Tools, and Hardware

To fully run this example design the following is required:

• HyperTerminal or similar terminal server PC software (settings: 1200 bps, 8-bit, no parity, one
stop bit, no flow control)

• ISA-Actel51 Debugger software package

• Actel Libero IDE (design software for customizing the logic (if desired))

• FlashPro software for programming the Platform8051 board

• Platform8051 Development Board

• FlashPro Lite Programmer

• Windows PC (with ISA-Actel51 Debugger and Libero installed)

• Serial port

• Null modem cable
Platform8051 Development Kit User’s Guide 57

Platform8051 Demonstration Projects
Downloading the Design

To download the design, program the FPGA image first:

1. Open the FlashPro PC software.

2. From the File menu, select Connect…

3. From the File menu, select Analyze Chain.

4. From the File menu, select Open STAPL File.

5. Select 8051demo_UART_LCD\FPGA_design\designer\platform.stp and click Open.

6. Set Action to Program and click the Play button.

Downloading the Application

To download the application:

1. Set DIP switch S1 [1:8] to 00000011, where 0 is closed and 1 is open.

2. Open the FS2 ISA-Actel51 Debugger software.

3. Set Port to the appropriate port – usually LPT1.

4. Accept the default TckRate, Tvcc threshold.

5. From the Tools menu, select Load Hex…

6. Set the address to load at as 0x0000x.

7. Set the Filename as /8051demo_UART_LCD/demo_software/keil/pf8051_LCD_UART.hex.

8. Click Okay.

Running the Design

To run the design:

1. Open HyperTerminal and connect a null modem cable to the PC serial port with the following
settings: 1200 bps, 8-bit, no parity, one stopbit, no flow control.

2. In the FS2 ISA-Actel51 Debugger click GO.

In the HyperTerminal window, the following information and command prompt will appear:

Actel Platform 8051 v1.01
 commands:
 E <> : echo to LCD
 C : clear LCD
 R : report status
 H : help
58 Platform8051 Development Kit User’s Guide

Web Server Demonstration Project
T : read ADC temp
pf8051>

To echo text from the PC onto the LCD screen, use the “E <arg>” command:

1. At the pf8051 prompt, type E hello world! and press return.

“hello world!” will then be displayed on the LCD screen.

pf8051> E hello world!
E hello world!
pf8051>

Web Server Demonstration Project
This project illustrates the many features of the Platform8051 Development Kit (Figure 7-2). The
design is downloaded onto a Platform8051 development board where it can be run from on-board
SRAM or Flash. Once downloaded and run, the supplied C code will act as a web server over the
Ethernet connection, supplying temperature, power, and voltage data from the on-board ADC.

Figure 7-2. The FPGA Block Diagram of the Web Server Design

Ethernet
PHY

ADC

Core
10/100

TX
RAM

Shared
RAM

Temperature Sensor
and

Power Sources

ADC
Ctrl

FLASH

SRAM

LCD FlashPro/FlashPro Lite

LCD
Ctrl

SRAM
IF

Flash
IF

Core8051

JTAG

OCI

RX
RAM

Addr
RAM

IRAM

APA600-FG676
Platform8051 Development Kit User’s Guide 59

Platform8051 Demonstration Projects
Memory Map Details

Memory Map Architecture Implementation in Platform8051 Web
Server Example Design

Core8051's memory map is implemented in four different operating modes to support all possible
configurations. These modes will be selected by memmode[1:0] signal in the FPGA design. The
following sections describe the detailed operation of the memory map modes.

Memory Map Mode Selection

Memory mode will be generated by using Core8051's Port3 [7:5] outputs and external User Switch
[8:7] settings. When the Core8051 drives Port3 [7] output to HIGH (default/reset state),
memmode will be controlled by the external switch settings. When Port3 [7] is LOW, memmode
will be generated by Port3 [6:5], which allows the designer to switch between all possible memory
map modes by software control.

There are four possible memory modes in the demonstration designs:

• Shadow – Used when running the application code from Flash

• Normal – Application code is in SRAM, peripherals are all mapped in XDATA space

• Flash Program – Used to copy application code from SRAM to Flash (while CODE space is
mapped and running from SRAM)

• Debug – Both XDATA and CODE are overlaid in SRAM

Memory Resource Mapping

Table 7-8 on page 61 and Table 7-9 on page 61 describe the mapping of the memory resources
modes of operation.

Resources available on board for Platform8051 design are:

• 64 kbytes of Flash

• 64 kbytes of LRAM (lower part of SRAM)

• 64 kbytes of URAM (upper part of SRAM)
60 Platform8051 Development Kit User’s Guide

Web Server Demonstration Project
Table 7-8. Memory Map Mode Definitions

Mode
8051 Program

Memory (64 Kbytes) 8051 Data Memory (64 Kbytes)

Shadow 0000:FFFF – Flash 0000:FFFF – LRAM

Normal 0000:FFFF – LRAM

0000:CFFF – URAM (52 kbytes)
D000:EFFF – TX, RX memory for Core10/100
(8 kbytes)
F000:FFFF – ADC/LCD registers (4 kbytes)

Flash
Program

0000:FFFF – LRAM 0000:FFFF – Flash

Debug 0000:FFFF – LRAM 0000:FFFF – LRAM

Table 7-9. Memory Map Modes

Port 3[7] Port 3[6:5]
**User

SW[8:7] Memmode[1:0] Memory Map Mode

1 XX 00 00 Shadow

1 XX 01 01 Normal

1 XX 10 10 Flash Program

1 XX 11 11 Debug

0 00 XX 00 Shadow

0 01 XX 01 Normal

0 10 XX 10 Flash Program

0 11 XX 11 Debug

**These switches are wired to inputs of the FPGA so that open will correspond to a logic 1
(4.6 k pull-up to 3.3 V) and closed will correspond to a logic 0 (GND).
Platform8051 Development Kit User’s Guide 61

Platform8051 Demonstration Projects
Memory Map for Normal Operation Mode

Core8051’s Program Memory will be mapped to the External SRAM’s lower 64 kbytes of memory
space during normal operation mode. Data memory is mapped to various memories and registers, as
shown in Table 7-10.

Address range 0x0000 to 0xCFFF accesses the external SRAM’s upper portion of 128 kbytes. Eight
kbytes of internal dual-port memory is shared between Core8051 and Core10/100 to store receive
and transmit Ethernet data. This internal dual-port memory can be accessed by Core8051 at address
0xD000 to 0xEFFF. Core8051 will be able access the Core10/100 MAC’s CSR registers at address
range 0xF000 and 0xF0FF. See the MAC user document [Is this doc on the CD?] for more details
about the CSR registers.

Clock Configuration in the Platform8051 Web Server Example Design
The Platform8051 Web Server Example Design is implemented using a unified clock (as shown in
Figure 2-1 on page 18). This makes IDLE and STOP modes unavailable in this design. Modules in
the example designs, which are peripheral to Core8051, are driven by the main system clock.
Minimizing the number of clocks enables easy timing analysis and increased performance.

Table 7-10. Memory Map for Normal Operation

Data Address Memory R/W Description

0000:CFFF (52 kbytes) URAM R/W Upper portion on External SRAM

D000:DFFF (4 kbytes) RX (MAC) Memory R/W MAC Receive Shared Memory

E000:EFFF (4 kbytes) TX (MAC) Memory R/W MAC Transmit Shared Memory

F000:F0FF (256 Bytes) CSR (MAC) Registers R/W MAC CSR registers.

F100 LCD Command R/W LCD command register

F101 LCD Data R/W LCD data register.

F102:F1FF Reserved – Reserved for future use

F200 ADCIN(1 Byte) R/W ADC IN register

F201:F202 ADCOUT(2 Bytes) R ADC Out register

F203:FFFF Reserved – Reserved for future use
62 Platform8051 Development Kit User’s Guide

Web Server Demonstration Project
The clock input to the APA600 in the Platform8051 example projects is divided by two inside the
chip before being used. The design is running at 8 MHz, not the 16 MHz being supplied by the
crystal oscillator on the board.

A second 25-MHz clock is used in this design for the Core10/100 only, and is also placed on a
global clock buffer.

Core10/100 Configuration in Platform8051 Web Server Example
Design

The Core10/100 supports various 8-, 16-, and 32-bit host interfaces and TX/RX FIFO sizes as
required by the system. In the web server demonstration project, the 8-bit interface of Core10/100
was chosen because Core8051 has an 8-bit bus. In addition, the 8 kbytes XDATA memory space is
shared with the Core10/100. More specifically, 4 kbytes of the 8 kbytes shared RAM space is
allocated for transmit data, and the other 4 kbytes of the 8 kbytes shared RAM space is allocated for
receive data. The TX FIFO is configured to use 2 kbytes of embedded FPGA RAM. Similarly, the
RX FIFO is also configured to use 2 kbytes of embedded FPGA RAM. The Address RAM uses a
192 lines of 16-bit word-embedded FPGA RAM.

Table 7-11 shows the Core10/100 RTL parameters used for the web server demonstration project
design.

Detailed Core10/100 information is available in Ethernet Media Access Controller Core10/100 data

sheet.

Table 7-11. Core10/100 Parameters in Web Server Example

Core Parameter Value Description

CSRWIDTH 8 CSR interface data width

DATAWIDTH 8 DATA interface data width

DATADEPTH 13 DATA interface address width, support 8 kbytes

TFIFODEPTH 11 TX DATA RAM address width, support 2 kbytes

RFIFODEPTH 11 RX DATA RAM address width, support 2 kbytes
Platform8051 Development Kit User’s Guide 63

http://www.actel.com/ipdocs/Core10100DS.pdf
http://www.actel.com/ipdocs/Core10100DS.pdf

Platform8051 Demonstration Projects
Core10/100 Memory Map in Platform8051 Web Server Example Design

The Core10/100 related resources can be reached when the Platform8051 Example Design is
running in Normal mode (Normal mode is defined in “Memory Map Details” on page 52). The
Core8051 memory map for Ethernet drivers is defined in Table 7-12.

Detailed information about Core10/100 Control and Status Registers (CSR registers) is available in
the Ethernet Media Access Controller Core10/100 data sheet.

Table 7-12. Ethernet Related Memory Addresses

Data Address Memory R/W Description

D000:DFFF (4 kbytes) Shared Memory R/W MAC Receive Shared Memory

E000:EFFF (4 kbytes) Shared Memory R/W MAC Transmit Shared Memory

F000:F003 CSR0 R/W MAC Bus mode

F008:F00B CSR1 R/W MAC Transmit poll demand

F010:F013 CSR2 R/W MAC Receive poll demand

F018:F01B CSR3 R/W MAC Receive list base address

F020:F023 CSR4 R/W MAC Transmit list base address

F028:F02B CSR5 R/W MAC Status

F030:F033 CSR6 R/W MAC Operation mode

F038:F03B CSR7 R/W MAC Interrupt enable

F040:F043 CSR8 R/W
MAC Missed frames and
overflow counters

F048:F048 CSR9 R/W MAC MII management

F058:F05B CSR11 R/W
MAC Timer and interrupt
mitigation control
64 Platform8051 Development Kit User’s Guide

http://www.actel.com/ipdocs/Core10100DS.pdf

Web Server Demonstration Project
Design Files
The design files for this project can be found on the PF8051 CD. These files include a C code
project and source files for the hardware design (minus the Core8051 and Core10/100, which must
be licensed separately). Constraints files and scripts for layout and synthesis are also provided.

Below is the Synplicity project file (platform_act.prj). This defines all the files and operations
necessary to synthesize this project. Table 7-13 on page 68 contains a summary of the resources used
when the below script is followed to perform the layout of the example project.

#-- Synplicity, Inc.
#-- Version 7.3.4
#-- Project file
Y:\deleons\master\pf8051devkit2.1\FPGA_design\synplify\platform_act.prj
#-- Written on Thu May 27 14:03:07 2004

#add_file options
add_file -vhdl -lib work "$LIB/proasic/proasicplus.vhd"
add_file -vhdl -lib work "../src/top/user_ram.vhd"
add_file -vhdl -lib work "../src/top/adc_def_pkg.vhd"
add_file -vhdl -lib work "../src/top/adc_regbank.vhd"
add_file -vhdl -lib work "../src/top/adcctrl.vhd"
add_file -vhdl -lib work "../src/top/addrdatactrl.vhd"
add_file -vhdl -lib work "../src/top/addrfiforam.vhd"
add_file -vhdl -lib work "../src/top/clkdiv.vhd"
add_file -vhdl -lib work "../src/top/csrctrl.vhd"
add_file -vhdl -lib work "../src/top/datamux.vhd"
add_file -vhdl -lib work "../src/top/macshmemctrl.vhd"
add_file -vhdl -lib work "../src/top/dpram2kx8.vhd"
add_file -vhdl -lib work "../src/top/dpram4kx8.vhd"
add_file -vhdl -lib work "../src/top/dpram64x16.vhd"
add_file -vhdl -lib work "../src/top/flashctrl.vhd"
add_file -vhdl -lib work "../src/top/idataram.vhd"
add_file -vhdl -lib work "../src/top/lcdctrl.vhd"
add_file -vhdl -lib work "../src/top/lcdfsm.vhd"
add_file -vhdl -lib work "../src/top/memopmode.vhd"
add_file -vhdl -lib work "../src/top/ram256x8.vhd"
add_file -vhdl -lib work "../src/top/ram256x20.vhd"
add_file -vhdl -lib work "../src/top/rs232ctrl.vhd"
add_file -vhdl -lib work "../src/top/rxfiforam.vhd"
add_file -vhdl -lib work "../src/top/sramctrl.vhd"
add_file -vhdl -lib work "../src/top/txdatamem.vhd"
Platform8051 Development Kit User’s Guide 65

Platform8051 Demonstration Projects
add_file -vhdl -lib work "../src/top/rxdatamem.vhd"
add_file -vhdl -lib work "../src/top/txfiforam.vhd"
add_file -vhdl -lib work "../src/top/waitctrl.vhd"
add_file -vhdl -lib work "../src/top/traceram.vhd"
add_file -vhdl -lib MAC_LIB "../src/core10100/
Core10100_synplify_PROASICPLUS_noio_scb.vhd"
add_file -vhdl -lib work "../src/core8051/
core8051_oci1_trace8_trig4_withoutio_apa.vhd"
add_file -vhdl -lib work "../src/top/sfr_misc.vhd"
add_file -vhdl -lib work "../src/top/platform8051_act.vhd"
add_file -constraint "platform_act.sdc"

#implementation: "synplify"
impl -add synplify

#device options
set_option -technology PA
set_option -part APA600
set_option -speed_grade Std

#compilation/mapping options
set_option -default_enum_encoding default
set_option -symbolic_fsm_compiler 1
set_option -resource_sharing 1

#map options
set_option -frequency 25.000
set_option -fanout_limit 12
set_option -maxfan_hard 0
set_option -disable_io_insertion 0
set_option -report_path 4000

#simulation options
set_option -write_verilog 0
set_option -write_vhdl 0

#automatic place and route (vendor) options
set_option -write_apr_constraint 1

#set result format/file last
project -result_file "./platform_act.edn"
66 Platform8051 Development Kit User’s Guide

Web Server Demonstration Project
#implementation attributes
set_option -vlog_std v2001
impl -active "synplify"

After synthesis, the Actel Designer software tool must be used for layout. The following Tcl script
(platform.tcl) can be run inside Designer to complete layout of the design. See “Design Layout” on
page 31 for more information about this process.

##
platform.tcl - Designer Tcl script to compile & place & route
Platform8051 design
TFB 9/22/03
##
set design_base "platform"
set design_gcf_file $design_base.gcf
set design_adb_file $design_base.adb
set design_log_file $design_base.log
set design_netlist_in "../synplify/platform8051_act.edn"

setup various clocks

import, compile, setup timing constraints
new_design -name $design_base -family "PA" -path {.}
set_device -die "APA600" -package "676 FBGA" -speed "STD" \
-voltage "2.5" -jtag "yes" -trst "yes" -temprange "COM" -voltrange "COM"
import_source -format "edif" -edif_flavor "GENERIC" $design_netlist_in \
-format "gcf" $design_gcf_file
compile
save_design $design_adb_file
layout -placer "On" -place_incremental "Off" -router "Off" -timing_driven
save_design $design_adb_file
layout -placer "Off" -router "On" -route_incremental "Off" -timing_driven
save_design $design_adb_file
export -format "log" $design_log_file
Platform8051 Development Kit User’s Guide 67

Platform8051 Demonstration Projects
Changing the Ethernet MAC Address
If more then one Platform8051 web server demonstration project needs to be run on the same
Ethernet LAN, it may be necessary to change the Ethernet MAC address in the project. To
generate a design with a different MAC address, search for my_mac in the file pf8051_demo.c, change
the values to reflect a unique MAC address, and then re-compile the code.

Downloading and Running the Web Server Demonstration Project

Directions for Running the Web Server over a LAN with a DHCP Server

Follow these instructions when you connect the Platform8051 development board to your
company's Ethernet network. Your Ethernet network must have an active DHCP server.

1. Connect the power plug into the power connector of the board.

2. Connect the Ethernet Cat5 cable to an Ethernet RJ-45 jack.

3. The position of the DIP switch should be set to all open.

4. Turn on the power switch of the board; the default address (10.0.0.198) is displayed on the
LCD.

5. Wait for up to 2-3 minutes, until the IP address <A.B.C.D> obtained from the DHCP server
appears on the LCD display.

6. Enter the following http request in your web browser according to the IP address shown on the
LCD of the board:

 http://A.B.C.D, e.g. http://190.10.15.118

7. The web page shown in Figure 7-3 on page 70 will appear.

8. Enter a text string in the Text to display in LCD text box in the web page and click the Submit
button. The entered text string should be displayed on the LCD of the board. The maximum
number of the characters you can enter is 16.

Table 7-13. Device Utilization for Platform8051 Demo Design (Core8051 + Core10/100)

Family Cells or Tiles Utilization Performance

Sequential RAM Combinatorial Device Total

ProASICPLUS 2789 432 12528 APA600-STD 62% 16 MHz
68 Platform8051 Development Kit User’s Guide

Web Server Demonstration Project
Directions for Directly Connecting the Web Server to a PC

Follow these instructions when connecting the Platform8051 development board to your PC
directly without using a DHCP server:

1. Connect the power plug into the power connector of the board.

2. Connect the Ethernet Cat5 cable to the crossover adaptor and then to your PC. Or connect the
Ethernet crossover cable to your PC's Ethernet jack directly.

3. The position of the DIP switch should be set to all open.

4. Turn on the power switch of the board; the default address (10.0.0.198) is displayed on the
LCD.

5. Wait for 2-3 minutes.

6. Enter the following http request in your web browser: http://10.0.0.198.

7. The web page shown in Figure 7-3 on page 70 will appear.

8. Enter a text string in the Text to display in LCD text box in the web page and click the Submit
button. The entered text string should be displayed on the LCD of the board. The maximum
number of the characters you can enter is 16.

Web Server Application Description

A sample web server application is included in the Platform8051 Development Kit to demonstrate
the functionality of a Core8051 system.

Actel IP Core8051 and Core10/100 are used in the demonstration design shown in Figure 7-2 on
page 59.

Top-level source code for the FPGA design can be found on the Platform8051 Development Kit
CD.

Core8051 obtains analog readings from eight analog channels, as listed below:

• Channel 0 for FPGA power consumption estimation

• Channel 1 for 2.5 V source

• Channel 2 for 3.3 V source

• Channel 3 for input power voltage

• Channel 4 for 5.0 V source

• Channel 5 and 6 are connected to daughter board area

• Channel 7 for temperature sensor

The web server displays the above information on a user web page.
Platform8051 Development Kit User’s Guide 69

Web Server Software

The web server software is written in C and provided on the Platform8051 Development Kit CD. It
is example code and is not supported or warranted by Actel. The Platform8051 Web Server user
interface is a web page shown in Figure 7-3.

Figure 7-3. The Web Page Served by the Example Design

A
Platform8051 FPGA Design Pinout (u1)

Pin Report - Date: Mon May 10 15:41:57 2004 Pinchecksum: NOT-AVAILABLE
 Design Name: platform Family: PA Die: APA600 Package: 676 FBGA

Name Number FixedTypeDescription
------------ ---------- ---------------------

ADC_CSn J24 FIXEDOutADC Chip Select
ADC_DIN J22 FIXEDInADC Data Input
ADC_DOUT J25 FIXEDInADC Data Output
ADC_SCLK J23 FIXEDOutADC Clock
ADC_SSTRB J26 FIXEDInADC Strobe
CLK_16MHZ N22 FIXEDIn16Mhz Input Clock
COL A6 FIXEDInMAC Collision Detect
CRS A5 FIXEDInMAC Carrier Sense
FLASH_BYTE M5 FIXEDOutFlash Word/Byte Detect
FLASH_CE M1 FIXEDOutFlash Chip Enable, Active Low
FLASH_OE M2 FIXEDOutFlash Output Enable, Active Low
FLASH_RP M4 FIXEDOutFlash Reset, Active Low
FLASH_WE M3 FIXEDOutFlash Write Enable, Active Low
KEYPAD(0) AF23 FIXEDInPushbutton Kewpad Switch Input
KEYPAD(1) AF24 FIXEDIn
KEYPAD(2) AF22 FIXEDIn
KEYPAD(3) AF21 FIXEDIn
KEYPAD(4) AF20 FIXEDIn
LCD_DB(0) AB18 FIXEDIn/OutLCD Data Bus
LCD_DB(1) AB17 FIXEDIn/Out
LCD_DB(2) AB16 FIXEDIn/Out
LCD_DB(3) AB15 FIXEDIn/Out
LCD_DB(4) AB14 FIXEDIn/Out
LCD_DB(5) AA19 FIXEDIn/Out
LCD_DB(6) AA18 FIXEDIn/Out
LCD_DB(7) AA17 FIXEDIn/Out
LCD_E AA14 FIXEDOutLCD Enable
LCD_RS Y16 FIXEDOutLCD Data/Instruction Control Signal
LCD_RWn Y18 FIXEDOutLCD Read/Write
LCD_TR Y14 FIXEDOutLCD Data Bus Direction Control
LED_OUT(0) AF14 FIXEDOutLED Output
LED_OUT(1) AF15 FIXEDOut
LED_OUT(2) AF16 FIXEDOut
Platform8051 Development Kit User’s Guide 71

LED_OUT(3) AF17 FIXEDOut
LED_OUT(4) AF18 FIXEDOut
LED_OUT(5) AF19 FIXEDOut
MAC_RESETn B12 FIXEDOut
MDC A3 FIXEDOutMAC Management Clock
MDIO A4 FIXEDIn/OutMAC Management Data I/O
MEM_ADDR(0) P3 FIXEDOutExternal Memory Address Bus
MEM_ADDR(1) P4 FIXED Out
MEM_ADDR(2) P6 FIXED Out
MEM_ADDR(3) P7 FIXED Out
MEM_ADDR(4) R1 FIXED Out
MEM_ADDR(5) R2 FIXED Out
MEM_ADDR(6) R3 FIXED Out
MEM_ADDR(7) R4 FIXED Out
MEM_ADDR(8) R5 FIXED Out
MEM_ADDR(9) R6 FIXED Out
MEM_ADDR(10) T1 FIXED Out
MEM_ADDR(11) T2 FIXED Out
MEM_ADDR(12) T3 FIXED Out
MEM_ADDR(13) T4 FIXED Out
MEM_ADDR(14) T5 FIXED Out
MEM_ADDR(15) T6 FIXED Out
MEM_ADDR(16) T7 FIXED Out
MEM_ADDR(17) U1 FIXED Out
MEM_ADDR(18) U2 FIXED Out
MEM_ADDR(19) U3 FIXED Out
MEM_ADDR(20) U4 FIXED Out
MEM_ADDR(21) U5 FIXED Out
MEM_DATA(0) U6 FIXED In/OutExternal Memory Data Bus
MEM_DATA(1) V1 FIXED In/Out
MEM_DATA(2) V2 FIXED In/Out
MEM_DATA(3) V3 FIXED In/Out
MEM_DATA(4) V4 FIXED In/Out
MEM_DATA(5) V5 FIXED In/Out
MEM_DATA(6) V6 FIXED In/Out
MEM_DATA(7) V7 FIXED In/Out
RESETn P1 FIXED InGlobal Hardware Reset Input, Active Low
RS232_RTS D25 FIXEDOutRTS for RS232/UART port
RS232_RXDATA C25 FIXEDInIncoming Data for RS232/UART
RS232_TXDATA D24 FIXEDOutOutgoing Data for RS232/UART
RXCLK B5 FIXEDInMAC Receive Clock
RXDATA(0) B9 FIXEDInMAC Receive Data
72 Platform8051 Development Kit User’s Guide

RXDATA(1) B8 FIXEDIn
RXDATA(2) B7 FIXEDIn
RXDATA(3) B6 FIXEDIn
RXDV B11 FIXEDInMAC Receive Data Valid
RXER B10 FIXEDInMAC Receive Error
SRAM_ADSC AF8 FIXEDOutSRAM Address Strobe, Active Low
SRAM_ADSP AF9 FIXEDOutSRAM Address Strobe, Active Low
SRAM_ADV AF10 FIXEDOutSRAM Advance Enable, Active Low
SRAM_BA AE11 FIXEDOutSRAM Byte Write Enable A, Active Low
SRAM_BB AE12 FIXED OutSRAM Byte Write Enable B, Active Low
SRAM_BC AE13 FIXED OutSRAM Byte Write Enable C, Active Low
SRAM_BD AF5 FIXED OutSRAM Byte Write Enable D, Active Low
SRAM_BW AF6 FIXEDOutSRAM Byte Write Enable, Active Low
SRAM_CLK AF13 FIXEDOutSRAM Clock Input, Active High
SRAM_E AE9 FIXEDOutSRAM Chip Enable, Active High
SRAM_FT AE8 FIXEDOutSRAM PipeLine/FlowThrough Mode
SRAM_G AE10 FIXEDOutSRAM Output Enable, Active Low
SRAM_GW AF7 FIXEDOutSRAM Global Write Enable, Active Low
SRAM_LBO AF12 FIXEDOutSRAM Linear Burst Order Mode, Active Low
SRAM_ZZ AF11 FIXEDOutSRAM Sleep Mode Control, Active High
TXCLK A7 FIXEDInMAC Transmit Clock
TXDATA(0) A11 FIXEDOutMAC Transmit Data
TXDATA(1) A10 FIXED Out
TXDATA(2) A9 FIXEDOut
TXDATA(3) A8 FIXEDOut
TXEN A12 FIXEDOutMAC Transmit Enable
TXER A13 FIXEDOutMAC Transmit Error
USER_SW(0) AC10 FIXEDInDIP Switch Input
USER_SW(1) AC11 FIXEDIn
USER_SW(2) AC12 FIXEDIn
USER_SW(3) AC13 FIXEDIn
USER_SW(4) AD4 FIXEDIn
USER_SW(5) AD5 FIXEDIn
USER_SW(6) AD6 FIXEDIn
USER_SW(7) AD7 FIXEDIn
Platform8051 Development Kit User’s Guide 73

B
PCD Daughter Card Connections (j23)

PIN NAME CONNECTED TO
--- --
1 GND
2 GND
3 CLK_25MHZ_2u22 74LVT245 pin# 4 (u21 XTALOSC)
4 GND
5 GND
6 GND
7 V2.5
8 V2.5
9 FPGA_DBC_IO1u1a APA600 pin# AD26
10 FPGA_DBC_IO2u1a APA600 pin# AD25
11 FPGA_DBC_IO3u1a APA600 pin# AC26
12 FPGA_DBC_IO4u1a APA600 pin# AC25
13 FPGA_DBC_IO5u1a APA600 pin# AB26
14 FPGA_DBC_IO6u1a APA600 pin# AB25
15 FPGA_DBC_IO7u1a APA600 pin# AB24
16 FPGA_DBC_IO8u1a APA600 pin# AA26
17 FPGA_DBC_IO9u1a APA600 pin# AA25
18 FPGA_DBC_IO10u1a APA600 pin# AA24
19 FPGA_DBC_IO11u1a APA600 pin# Y26
20 FPGA_DBC_IO12u1a APA600 pin# Y25
21 FPGA_DBC_IO13u1a APA600 pin# Y24
22 FPGA_DBC_IO14u1a APA600 pin# Y23
23 FPGA_DBC_IO15u1a APA600 pin# W26
24 FPGA_DBC_IO16u1a APA600 pin# W25
25 FPGA_DBC_IO17u1a APA600 pin# W24
26 FPGA_DBC_IO18u1a APA600 pin# W23
27 FPGA_DBC_IO19u1a APA600 pin# W22
28 FPGA_DBC_IO20u1a APA600 pin# W21
29 FPGA_DBC_IO21u1a APA600 pin# V26
30 FPGA_DBC_IO22u1a APA600 pin# V25
31 FPGA_DBC_IO23u1a APA600 pin# V24
32 FPGA_DBC_IO24u1a APA600 pin# V23
33 FPGA_DBC_IO25u1a APA600 pin# V22
34 FPGA_DBC_IO26u1a APA600 pin# V21
35 FPGA_DBC_IO27u1a APA600 pin# V20
36 FPGA_DBC_IO28u1a APA600 pin# U26
37 FPGA_DBC_IO29u1a APA600 pin# U25
38 FPGA_DBC_IO30u1a APA600 pin# U24
39 FPGA_DBC_IO31u1a APA600 pin# U23
Platform8051 Development Kit User’s Guide 75

40 FPGA_DBC_IO32u1a APA600 pin# U22
41 FPGA_DBC_IO33u1a APA600 pin# U21
42 FPGA_DBC_IO34u1a APA600 pin# T26
43 FPGA_DBC_IO35u1a APA600 pin# T25
44 FPGA_DBC_IO36u1a APA600 pin# T24
45 FPGA_DBC_IO37u1a APA600 pin# T23
46 FPGA_DBC_IO38u1a APA600 pin# T22
47 FPGA_DBC_IO39u1a APA600 pin# T21
48 FPGA_DBC_IO40u1a APA600 pin# T20
49 FPGA_DBC_IO41u1a APA600 pin# R26
50 FPGA_DBC_IO42u1a APA600 pin# R25
51 FPGA_DBC_IO43u1a APA600 pin# R24
52 FPGA_DBC_IO44u1a APA600 pin# R23
53 FPGA_DBC_IO45u1a APA600 pin# R22
54 FPGA_DBC_IO46u1a APA600 pin# R21
55 FPGA_DBC_IO47u1a APA600 pin# P23
56 FPGA_DBC_IO48u1a APA600 pin# P21
57 FPGA_DBC_IO49u1a APA600 pin# P20
58 FPGA_DBC_IO50u1a APA600 pin# N26
59 FPGA_DBC_IO51u1a APA600 pin# N23
60 FPGA_DBC_IO52u1a APA600 pin# N21
61 FPGA_DBC_IO53u1a APA600 pin# M26
62 FPGA_DBC_IO54u1a APA600 pin# M25
63 FPGA_DBC_IO55u1a APA600 pin# M24
64 FPGA_DBC_IO56u1a APA600 pin# M23
65 FPGA_DBC_IO57u1a APA600 pin# M22
66 FPGA_DBC_IO58u1a APA600 pin# M21
67 FPGA_DBC_IO59u1a APA600 pin# M20
68 FPGA_DBC_IO60u1a APA600 pin# L26
69 DBC_IO5VOUT0u19 74LVT245 pin#18 (u1a APA600 pin# L25)
70 DBC_IO5VOUT1u19 74LVT245 pin#17 (u1a APA600 pin# L24)
71 DBC_IO5VOUT2u19 74LVT245 pin#16 (u1a APA600 pin# L23)
72 DBC_IO5VOUT3u19 74LVT245 pin#15 (u1a APA600 pin# L22)
73 DBC_IO5VIN0u18 74LVT245 pin#18 (u1a APA600 pin# L21)
74 DBC_IO5VIN1u18 74LVT245 pin#17 (u1a APA600 pin# K26)
75 DBC_IO5VIN2u18 74LVT245 pin#16 (u1a APA600 pin# K25)
76 DBC_IO5VIN3u18 74LVT245 pin#15 (u1a APA600 pin# K24)
77 ADC_CH5_DBC_P77u31 MAX1204 pin# 6
78 ADC_CH6_DBC_P78 u31 MAX1204 pin# 7
79 CLK_16MHZ_2u22 74LVT245 pin# 8 (u23 XTALOSC)
80 CLK_USERu22 74LVT245 pin# 9 (u25)
81 FPGA_EE_I2C_SCLu12 M24256 pin# 6
76 Platform8051 Development Kit User’s Guide

82 FPGA_EE_I2C_SDA u12 M24256 pin# 5
83 NC
84 NC
85 NC
86 NC
87 VCC
88 FPGA_DBC_GCLKu1c APA600 pin# N25
89 V3.3
90 V3.3
Platform8051 Development Kit User’s Guide 77

C
References

Core8051 Data Sheet

www.actel.com/ipdocs/Core8051DS.pdf

Core8051 Instruction Set User's Guide

PF8051 CD: /docs/Core8051UG.pdf

www.actel.com/ipdocs/Core8051UG.pdf

Core8051 User’s Guide

PF8051_CD: /docs/Core8051_UG.pdf

Core10/100 Data Sheet

www.actel.com/ipdocs/Core10100DS.pdf

Core10/100 User’s Guide

PF8051_CD: /docs/Core10/100UG.pdf

Platform8051 Development Kit Quick Start Guide

PF8051_CD: /docs/Platform8051_devkit_QuickStart.pdf

Platform8051 Programming and Testing Procedure

PF8051_CD: /docs/Platform8051_programming_testing_procedure10.pdf

ProASICPLUS Flash Family FPGA Data Sheet

www.actel.com/documents/ProASICPLUSDS.pdf

Designer User’s Guide

www.actel.com/documents/designerUG.pdf

Actel Application Notes

www.actel.com/techdocs/appnotes/index.html
Platform8051 Development Kit User’s Guide 79

http://www.actel.com/ipdocs/Core8051DS.pdf
http://www.actel.com/ipdocs/Core8051UG.pdf
http://www.actel.com/ipdocs/Core8051UG.pdf
http://www.actel.com/documents/ProASICPlusDS.pdf
http://www.actel.com/documents/designerUG.pdf
http://www.actel.com/techdocs/appnotes/index.html

D
Product Support

Actel backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0)1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650. 318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center
spends a great deal of time creating application notes and answers to FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.
Platform8051 Development Kit User’s Guide 81

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific
Time, Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by
email, fax, or phone. Also, if you have design problems, you can email your design files to receive
assistance. We constantly monitor the email account throughout the day. When sending your
request to us, please be sure to include your full name, company name, and your contact information
for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your
name, company name, phone number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available application engineer receives the
data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via
email (tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/contact/offices/index.html.
82 Platform8051 Development Kit User’s Guide

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
µVision2 5, 23

A
Actel

web site 81
web-based technical support 81

ADC 9, 47
implementation 47

APA600 9, 47, 63

B
basic terminal server

See demonstration project
breakpoints

hardware 19, 23
software 19, 23

buffers, global 17

C
CD 6
clock

configuration 17, 62
inputs 17

compiler 14
connections, daughter card 75
Contacting Actel

customer service 81
electronic mail 82
telephone 82
web-based technical support 81

Core10/100 5, 6, 7, 25
Core8051 5, 6, 7
Customer service 81

D
daughter card, connections 75

debugger 14
debugging

from Flash 46
in-system 43

demonstration project
basic terminal server 47, 51
web server 47

design
example 5, 45
files 54, 65
pinout 71

Designer software 67
DIP switches 9, 15, 43, 44
documentation 6
downloading and debugging

with µVision2 44
with FS2 43

downloading software 43
dual-port memory 62

E
electronic mail 82
example

designs 5, 45
files 6

external data memory 20

F
files

design 54, 65
example 6

Flash memory 45
debugging from 46

Flash programming 45
FPGA 5, 6, 9
FS2 5, 23
Platform8051 Development Kit User’s Guide User’s Guide 83

Index
G
global buffers 17

H
headers 9
Hex 43
HyperTerminal 47, 51, 57

I
internal data memory 20
ISA-Actel51 Debugger 43, 57

J
JTAG 19, 22
jumpers 9

K
Keil Software 5
Kit Contents 5

L
layout 13, 54
LCD 7, 9, 47

command register 47
implementation 47
instructions 47

Libero 5, 47, 51, 57

M
MAC address, changing 68
memory

dual-port 62
Flash 45

memory map 13
architecture 52

operating modes 52
web server example design 60

memory regions 13
memory spaces 19

asynchronous 13
CODE 13
DATA 13
SFR 13
synchronous 13
XDATA 13

N
netlist 6, 20
null modem cable 57

O
OCI 14, 19, 21, 22
OMF 43
On-Chip Instrumentation 14, 19

P
Platform8051 Development Kit 5, 7, 21
pointer types 41
printed circuit board 6
Product Support 81–82

customer service 81
Product support

electronic mail 82
technical support 81
web site 81

programming files 6

R
RAM 13
references 79
RS-232 7, 47, 51
84 Platform8051 Development Kit User’s Guide User’s Guide

Index
RTL 15, 21

S
software, downloading 43
Synplicity 65
synthesis 54, 67

T
TCL 67
timing 13
triggers 46

U
UJTAG 22

See also JTAG

W
web server

application description 69
demonstration project 5
software 70

Web-based technical support 81
Platform8051 Development Kit User’s Guide User’s Guide 85

For more information about Actel’s products, visit our website at
http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • Dunlop House, Riverside Way • Camberley, Surrey GU15 3YL • United Kingdom

Phone +44 (0)1276 401 452 • Fax +44 (0)1276 401 490

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 Fax +81.03.3445.7668

Actel Hong Kong • 39th Floor, One Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852.227.35712 Fax +852.227.35999

50200045-0/12.04

	Introduction
	Using This Document
	Platform8051 Development Kit Contents
	Recommended Additional Products
	Actel Platform8051 Development Kit CD ROM
	Figure 1. Contents of PF8051 Development Kit v2.1 CD

	Platform8051 PCB
	Figure 1-1. PF8051 Development Board
	Figure 1-2. Platform8051 Development Board Block Diagram
	APA600 Overview
	LCD Display
	ADC
	DIP Switches
	Jumpers
	Table 1-1. Jumpers and Headers
	Table 1-2. Jumper J10-J16 Function Description

	8051 Implementation
	Core8051 Memory Map Considerations
	CODE and XDATA Memory Implementation
	Table 2-1. Core8051 Memory Bus Signal Summary

	DATA Memory Implementation
	Customizations to SFR Memory
	Table 2-2. SFR Register List

	Core8051 Clock Configuration for Platform8051
	Figure 2-1. Core8051 with Unified Clocks (no IDLE/STOP mode)
	Figure 2-2. Core8051 with Gated Clocks (enables IDLE/STOP modes)

	Core8051 FPGA Resource Utilization
	Table 2-3. Device Utilization for Core8051 (only)

	Core8051 OCI Debugger Interface Implementation
	Introduction
	OCI Features
	Configuring the OCI
	Figure 2-3. Core8051 Netlist Naming Conventions

	Limitations and Getting Access to FS2 Value-Added OCI Features

	Core10/100 Implementation
	Core10/100 Overview
	Figure 3-1. Overview of a Typical Core10/100 System
	Figure 3-2. Detailed Core10/100 Block Diagram
	Ethernet PHYs
	Table 3-1. Additional Ethernet PHY Circuitry

	Platform8051 Design Development
	The Suggested Design/Verification Flow
	Figure 4-1. Design Flow

	How to Obtain RTL or Netlists for Core8051 and Core10/100
	Working with Synplicity®
	Design Layout
	Tcl and GCF Files
	Figure 4-2. Execute Script... Dialog in Designer

	Layout for Core8051 Netlist and RTL Customers
	Table 4-1. Core8051 Example Layout Files

	Programming the Design into the FPGA
	Figure 4-3. FlashPro “Connect...” Dialog
	Figure 4-4. FlashPro, Connected, Chain Established, Ready to Program

	Available Simulation Testbenches

	Software Development Tools Setup
	Installing and Configuring the C Compiler and Debugging Tools
	Keil µVision2 Installation
	SDCC Installation
	FS2 ISA-Actel51 Installation
	Figure 5-1. FS2 Installation Password Dialog

	Setting Up a Project in Keil µVision2
	Figure 5-2. Select Target Device, Creating New Project
	Figure 5-3. Keil µVision2 Options for Target, Output Tab
	Figure 5-4. Keil µVision2 Options for Target, Debug Tab

	Real Time Operating Systems (RTOS) and the Core8051
	Special Non-Standard C for 8051
	Placing Variables or Constants in Different Memory Spaces
	Placing Variables at Specific Addresses
	Stack Placement

	Downloading Software
	Downloading and Debugging from SRAM with FS2
	Figure 6-1. ISA-Actel51 Debugger Startup Window
	Figure 6-2. ISA-Actel51 Debugger Load OMF Dialog

	Downloading and Debugging from SRAM with Keil µVision2
	Figure 6-3. Keil µVision2

	Copying Code from SRAM to Flash in Example Designs
	Debugging from Flash

	Platform8051 Demonstration Projects
	Common Design Aspects - LCD and ADC Implementation
	LCD Command and Data Register
	Table 7-1. LCD Module Instruction Set
	Table 7-2. LCD Module Instruction Bit Description

	ADCIN and ADCOUT registers
	Table 7-3. ADCIN Register Field Definition
	Table 7-4. ADCOUT Register Contents

	Basic Platform8051 Demonstration Project
	Figure 7-1. Overview for Basic Core8051 Demonstration Project
	Memory Map Details
	Table 7-5. Memory Map Mode Definitions
	Table 7-6. Memory Map Modes
	Table 7-7. Memory Map for Normal Operation

	Clock Configuration in the Platform8051 Basic Example Design
	Design Files
	Downloading and Running the Basic Platform8051 Demonstration Project

	Web Server Demonstration Project
	Figure 7-2. The FPGA Block Diagram of the Web Server Design
	Memory Map Details
	Table 7-8. Memory Map Mode Definitions
	Table 7-9. Memory Map Modes
	Table 7-10. Memory Map for Normal Operation

	Clock Configuration in the Platform8051 Web Server Example Design
	Core10/100 Configuration in Platform8051 Web Server Example Design
	Table 7-11. Core10/100 Parameters in Web Server Example
	Table 7-12. Ethernet Related Memory Addresses

	Design Files
	Table 7-13. Device Utilization for Platform8051 Demo Design (Core8051 + Core10/100)

	Changing the Ethernet MAC Address
	Downloading and Running the Web Server Demonstration Project
	Figure 7-3. The Web Page Served by the Example Design

	Platform8051 FPGA Design Pinout (u1)
	PCD Daughter Card Connections (j23)
	References
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

