ZL38004 Design Manual

Part Number: ZL38004

Revision Number:

8.0

Issue Date:

November 2012

Design Manual

Features

- 100 MHz (200 MIPs) Microsemi voice processor with hardware accelerator.
- Dual $\Delta\Sigma$ ADCs with input buffer gain selection programmable to either 8 or 16 kHz sampling
- Dual $\Delta\Sigma$ DACs with output sampling of 8, 16, 44.1 and 48 kHz and internal output driver
- Dual function Inter-IC Sound (I²S) port
- PCM port supports TDM (ST BUS, GCI or McBSP framing) or SSI modes at bit rates of 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 Kb/sec
- Separate slave (microcontroller) and master (Flash) SPI ports, maximum clock rate = 25 MHz
- 11 General Purpose Input/Output (GPIO) pins
- · General purpose UART port
- Bootloadable for future Microsemi software upgrades
- · External oscillator or crystal/ceramic resonator

November 2012

Ordering Information

-40°C to +85°C						
*	Pb Free Matte Tin					
ZL38004GGG2	96 Pin VFBGA*	Trays, Bake & Drypack				
ZL38004QCG1	100 Pin LQFP*	Trays, Bake &				

- 1.2 V Core; 3.3 V IO with 5 V-tolerant inputs
- IEEE-1149.1 compatible JTAG port

Applications

- Hands-free car kits
- Full duplex speaker-phone for digital telephone
- Echo cancellation for video conferences
- Intercom Systems
- Security Systems

Figure 1 - Functional Block Diagram

Change Summary

Changes from August 2011 issue to November 2012 issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change
Multiple	Zarlink logo and name reference	Updated to Microsemi logo and name.

Changes from March 2011 issue to August 2011 issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change					
100	Package Drawing	Updated 96L VFBGA package drawing					

Changes from April 2008 issue to March 2011 issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change
56	"DC Electrical Characteristics"	Made changes to Junction-to-Ambient Thermal Resistance.

Changes from September 2007 issue to April 2008 issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change
9 & 10	Figure 2 & Figure 3	Added Port 1 TDM pin name.
15	Table 5	Added Port 1 TDM pin descriptions.

Changes from July 2007 issue to September 2007 issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change
14	Table 4	General Purpose I/O Zero (Input Internal Pull- Down/Tristate Output). Corrected BGA pin numbers and pin name.
14	Table 4	General Purpose I/O Five (Input Internal Pull-Up/Tristate Output). Corrected BGA pin numbers and Pin Name.
63	"AC Electrical Characteristics - CODEC DAC ITU G.722 Mode Parameters†"	Corrected DAC G.722 Frequency Response at 100 Hz spec. to be in line with design spec.

Changes from December 2006 issue to July 2007 issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change			
55	8.0, "AC/DC Electrical Characteristics"	Updated the AC/DC characteristics to reflect the characterization report.			
10, 11, 99	Figure 3, "Pin Description" Table and "Mechanical Drawings"	Added information on the BGA package.			
		Removed Section Watchdog Timer.			
		Removed Section on Auxiliary Timers.			
20	2.0, "Core DSP Functional Block"	Removed some information on the DSP core (i.e., the description of the hardware accelerators).			
2	Figure 1 -, "Functional Block Diagram"	Removed PLL and interrupts from Block Diagram.			
56	"AC Electrical Characteristics - CODEC ADC Parameters†"	Updated ADC $\Delta\Sigma$ converter input level for 0 dBm0 and 9 dBm0.			
61	"AC Electrical Characteristics - CODEC DAC Parameters†"	Updated DAC output level for 0 dBm0 and 9 dBm0.			

Table of Contents

1.0 Functional Description	19
2.0 Core DSP Functional Block	20
2.1 DSP	20
3.0 Codec[1:0]	20
3.1 Input Buffer	21
3.2 Reconstruction Filter and Driver (DAC Output)	22
4.0 PCM Port	23
4.1 PCM Port.	23
4.2 PCM Port Modes of Operation	27
4.3 TDM - ST-BUS, GCI & McBSP Operation (PCM Ports 0 and 1)	33
4.4 SSI Operation	35
4.5 I2S Port Description.	38
5.0 Host Microprocessor and Peripheral Interfaces	42
5.1 Master SPI (FLASH Port)	42
5.2 Slave SPI (Host Port)	43
5.3 UART	44
5.4 Host Interface Operation (Slave SPI and UART Ports)	45
5.5 GPIO	50
6.0 JTAG	50
7.0 Device Operation	51
7.1 Initialization	51
7.2 Boot	52
7.3 Timing Architecture and Mode Selection at Power-Up	52
8.0 AC/DC Electrical Characteristics	55
9.0 Applications	85
9.1 Power Supply	85
9.1.1 Power Sequencing.	85
9.1.2 Supply Isolation	86
9.2 External Clock Requirements	88
9.2.1 Crystal Oscillator Specification.	88
9.2.2 Clock Oscillator	89
9.3 FLASH Specification	90
9.4 Internal CODEC Interface	91
9.4.1 CODEC Microphone Amplifier ADC Circuit	91
9.4.2 CODEC Line Amplifier ADC Circuit	92
9.4.3 CODEC DAC Driver Circuit	93
9.4.4 CODEC BIas CIrcuit.	94
9.5 Host Microprocessor Access Examples	95
10.0 Mechanical Drawings	99

List of Figures

Figure 1 - Functional Block Diagram	2
Figure 2 - ZL38004QC 100-Lead LQFP 14 mm x 14 mm, 0.5 mm Pitch, JEDEC MO-026 (Top View)	9
Figure 3 - ZL38004 96 Ball CABGA 7 mm x 7 mm, 0.5 mm Pitch	. 10
Figure 4 - CODEC Block Diagram	. 21
Figure 5 - CODEC 0/1 ADC Microphone Amplifier Selected	. 21
Figure 6 - CODEC 0/1 ADC Line Amplifier Selected	. 22
Figure 7 - PCM Port Signal Configurations for Master/Slave Operation	. 24
Figure 8 - Clock Polarity versus Data Rate	. 25
Figure 9 - PCM Serial Data Input Sampling Points	. 25
Figure 10 - PCM and DSP Loopbacks	. 26
Figure 11 - SSI Mode: Separated Channels	. 28
Figure 12 - Mode 6 - SSI Slave with Automatic Rate Detection	28
Figure 13 - TDM - ST-BUS Slave/Master Functional Timing Diagram	33
Figure 14 - TDM - GCI Slave Functional Timing Diagram	34
Figure 15 - TDM - GCI Master Functional Timing Diagram	34
Figure 16 - TDM - McRSP Slave/Master Functional Timing Diagram	35
Figure 17 SSI Slave/Master Enable and Bit Clock Eurotional Timing	36
Figure 17 - SSI Slave/Master Ellable and Bit Clock Functional Timing	. 30
Figure 10 - SSI Mode: Separated Channels Functional Timing	. 37
Figure 19 - SSI Mode. Adjacent Channels Functional Timing	. 30
	. 39
	. 39
Figure 22 - 12S Audio Interface with Left Channel Enable Low/Right Channel Enable High	. 40
Figure 23 - I2S Audio Interface with Left Channel Enable High/Right Channel Enable Low	. 40
Figure 24 - Inter-IC Sound (I2S) Loopback	. 41
Figure 25 - Master SPI and Microwire Port Functional Timing.	. 42
Figure 26 - Slave SPI and Microwire Port Functional Timing	. 43
Figure 27 - Example of Some the Supported UART Interface Timing	. 44
Figure 28 - Slave SPI and UART Port Access	. 46
Figure 29 - Example of a Port Write Access to the Slave SPI Port (8-bit data)	. 47
Figure 30 - Example of a Port Read Access to the Slave SPI Port (8-bit data)	. 47
Figure 31 - Example of a Port Read Access to the Slave SPI Port (8-bit data)	. 48
Figure 32 - Example of a Read Access to the Slave UART Port	. 49
Figure 33 - Example of a Write Access to the Slave UART Port	. 49
Figure 34 - Initialization Timing	. 51
Figure 35 - ZL38004 Master/Slave Timing Selection and Clock Distribution	. 53
Figure 36 - Timing Parameter Measurement Digital Voltage Levels	. 67
Figure 37 - PCM SSI Slave Mode Timing Diagram	68
Figure 38 - PCM SSI Master Mode Timing Diagram	69
Figure 39 - TDM - ST-BUS PCMEP and PCM_CLKi_PCM_LBCi Input Timing	70
Figure 40 - TDM - GCI PCMEP and PCM_CLKi, PCM_LBCi Input Timing	70
Figure 41 - TDM - McBSP PCMEP and PCM_CLKi, PCM_LBCi Input Timing	71
Figure 42 TDM Slave Mode Timing Diagram (clock rate equals data rate)	. 7 1
Figure 42 - TDM Master Mode Timing Diagram (clock rate equals data rate)	. 72
Figure 43 - TDivitiviastel ivioue Tittiing Diagram (Gook Tate Equals Uata Tate)	. 13
Figure 44 - Output Tristate Timing III TDW Slave Mode	. 14
	. 74
Figure 46 - POWEP and POW_OLKO TOW Master Mode TIMIng.	. 76
Figure 47 - Slave SPI Timing (SSCPHA = 0)	. //
Figure 48 - Slave SPI Timing (SSCPHA = 1)	. 78

List of Figures

Figure 49 - Slave SPI Timing (Microwire mode)
Figure 50 - Master SPI Timing (MSCPHA = 0)
Figure 51 - Master SPI Timing (MSCPHA = 1) 80
Figure 52 - Slave I2S Timing
Figure 53 - I2S Master Clock (MCLK) Timing
Figure 54 - Master I2S Timing
Figure 55 - UART_Rx Timing
Figure 56 - UART_Tx Timing
Figure 57 - JTAG Test Port Timing
Figure 58 - Latch-Up Prevention Circuit Options
Figure 59 - Power Supply Isolation
Figure 60 - Crystal Application Circuit
Figure 61 - Crystal Oscillator Application Circuit
Figure 62 - FLASH Interface Circuit
Figure 63 - CODEC 0/1 ADC Differential Microphone Amplifier Circuit
Figure 64 - CODEC 0/1 ADC Differential Line Amplifier Circuit
Figure 65 - CODEC 0/1 DAC Differential Driver Circuit
Figure 66 - CODEC 0/1 DAC Single Ended Driver Circuit
Figure 67 - CODEC 0/1 Bias Circuit
Figure 68 - SSPI Write AAAAAAAAH to Register Address 02A1H
Figure 69 - SSPI Read Register Address 02A1H
Figure 70 - UART Write AAAAAAAAH to Register Address 02A1H
Figure 71 - UART Read Register Address 02A1H

List of Tables

Table 1 - JTAG and Reset Pin Description.	11
Table 2 - Codec[1:0] Pin Description	11
Table 3 - Clock and Oscillator Pin Description	14
Table 4 - UART and GPIO Pin Description	14
Table 5 - Inter-IC Sound and PCM Port One Pin Description	15
Table 6 - Master and Slave SPI Port Pin Descriptions	16
Table 7 - PCM Pin Description	17
Table 8 - Supply and Ground Pin Description	18
Table 9 - Internal Connect and No Connect Pin Description	19
Table 10 - PCM Port Bit Swapping.	26
Table 11 - Stream Data Rates and Associated 8-Bit Time Slot Numbering	27
Table 12 - PCM Port Mode Description	28
Table 13 - PCM Timing Mode 0 Output Clock and Data Rate Selection	29
Table 14 - PCM Timing Mode 1 Required Clock Rates for Port Inputs	29
Table 15 - PCM Timing Mode 2, Required Frame Signal and Clock Rates for Clock = Data Rates	30
Table 16 - PCM Timing Mode 3 Output Clock and Data Rate Selection	31
Table 17 - PCM Timing Mode 4 Required Clock Rates for PCM Port Inputs	31
Table 18 - PCM Timing Mode 6 Measured Clock Rate of PCM_LBCi or PCM_CLKi Input	32
Table 19 - TDM Frame Pulse Selection	33
Table 20 - TDM - ST-BUS, GCI and McBSP Selection	33
Table 21 - SSI Enable Start; Enable Finish Position Selection.	35
Table 22 - I2S Port Clock Rate and Mode Selection	38
Table 23 - JTAG ID.	50
Table 24 - ZL38004 Timing Reference Selection at Power-up.	54
Table 25 - Recommended Crystals	89
Table 26 - Recommended Crystal Oscillators	90
Table 27 - External FLASH Memory Requirements	91
Table 28 - Typical Line Amplifier Component Values Image: Componen Values Image: Component Values	92

Figure 2 - ZL38004QC 100-Lead LQFP 14 mm x 14 mm, 0.5 mm Pitch, JEDEC MO-026 (Top View)

Design Manual

	1	2	3	4	5	6	7	8	9	10	11
	C1_DACo+	C1_DACo-	C1_AV _{DD}	C1_ADCi-	C1_ADCi+	BIAS_RF-	C0_ADCi+	C0_ADCi-	C0_AV _{DD}	C0_DACo-	C0_DACo+
Α	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	TRST	NC	C1_AV _{SS}	C1_BFo+	C1_BFo-	BIAS_RF+	C0_BFo-	C0_BFo+	$C0_{AV_{SS}}$	DV _{DD} APLL	AV _{DD} APLL
в	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	TDI	TMS	TEST1	TEST2	NC	BIAS_VCM	AGUARD	NC	DV _{SS} APLI	AV _{SS} APLL	OSCi
С	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ТСК	RST	DGUARD						V _{SS} OSC	V _{DD} OSCIO	OSCo
D	\bigcirc	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc
	TDO	IC	V _{SS} CORE						V _{SS} DPLL	PCM_LBCi	PCM_CLKi
Е	\bigcirc	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc
	UART_Tx	UART_Rx	V _{SS} IO						V _{DD} OSC	V _{DD} DPLL	PCMCMi
F	\bigcirc	\bigcirc	\bigcirc						\bigcirc	\bigcirc	\bigcirc
	I ² S_SCK	I ² S_MCLK							NC		FP/ENA1
G			\bigcirc						\bigcirc	\bigcirc	\bigcirc
	I ² S_LRCK	I ² S_SDi/o	V10						NC		PCMo
Ц	PIFP/PIENA	1 P1PCMo							\bigcirc		
			\bigcirc	NO	V 10	N/ 10	V 00DE	NO			
	P1PCMi	GPIO[0]	NC	NC	V _{DD} IO	V _{SS} IO	V _{DD} CORE	NC	NC	V _{SS} IO	PCM_CLK0
J	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	GPIO[1]	GPIO[2]	GPIO[5]	SPIS_MOSI	SPIS_MISO	$V_{SS}CORE$	SPIM_MOSI	SPIM_CS[1]	V _{DD} IO	GPIO[7]	ENA2
κ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	GPIO[3]	GPIO[4]					SPIM_CS[0]			GPIO[9]	GPIO[10]
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Figure 3 - ZL38004 96 Ball CABGA 7 mm x 7 mm, 0.5 mm Pitch

Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
2	B1	TRST	Test Reset (Schmitt Trigger Input Internal Pull-Up). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin must be pulsed low after power-up to initialize the JTAG port and ensure its normal operational. This pin is internally pulled up to $V_{DD}IO$. It is to be low during normal device operation; high for JTAG TAP controller operation.
3	C1	TDI	Test Serial Data In (Input Internal Pull-Up). JTAG serial test instructions and data are shifted in on this pin on the rising edge of TCK. This pin is internally pulled up to V_{DD} IO and if not used, it should be left unconnected.
4	C2	TMS	Test Mode Select (Input Internal Pull-Up). This JTAG signal controls the state transitions of the TAP controller. This pin is internally pulled up to $V_{DD}IO$. If this pin is not used, it should be left unconnected.
5	D1	ТСК	Test Clock (Schmitt Trigger Input Internal Pull-Up). Provides the clock to the JTAG test logic. If this pin is not used, it should be left unconnected.
6	E1	TDO	Test Serial Data Out (Tristate Output). JTAG serial data is shifted out on this pin on the falling edge TCK. This pin is held in its high impedance state when JTAG scan is not enabled.
8	D2	RST	Reset (Schmitt Trigger Input). When low this device is in its reset state and all tristate outputs will be in a high impedance state. This input must be high for normal device operation.
			In order to properly initialize this device during power-on reset this input must be held low for the duration of the core power supply voltage rise to normal operating levels plus 0.5 msec.
			After the power-on reset this device may be asynchronously reset by making this input low for a minimum of 0.5 msec.

Table 1 - JTAG and Reset Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
7	D3	DGUARD	Digital Guard Ring. Codec digital substrate isolation. Connect to digital ground.
78	A11	C0_DACo+	Codec Zero Digital-to-Analog Converter Out Plus (Analog Output). This is the positive output signal of the differential analog output buffer for DAC zero. The complementary output signal of this differential pair is C0_DACo This output should be AC coupled to a maximum load (minimum impedance) of 10 K Ω .
79	A10	C0_DACo-	Codec Zero Digital-to-Analog Converter Out Minus (Analog Output). This is the negative output signal of the differential analog output buffer for DAC zero. The complementary output signal of this differential pair is C0_DACo+. This output should be AC coupled to a maximum load (minimum impedance) of 10 K Ω .

Table 2 - Codec[1:0] Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
82	B8	C0_BFo+	Codec Zero ADC Buffer Out Plus (Analog Output). Positive output of codec zero ADC input buffer. In MIC mode on-chip resistors are used to set the gain of this buffer stage.
			In LINE mode the gain of the ADC buffer is determined by an external resistor network connected between this signal and C0_ADCi
83	A8	C0_ADCi-	Codec Zero Analog-to-Digital Converter In Minus (Analog Input). This is the negative input signal of the differential analog input buffer for ADC zero. The complementary input signal of this differential pair is CO_ADCi+. This input should be AC coupled. In MIC mode on-chip resistors are used to set the gain of this buffer stage.
0.4			C0_BFo+.
84	Α/	C0_ADCi+	Codec Zero Analog-to-Digital Converter In Plus (Analog Input). This is the positive input signal of the differential analog input buffer for ADC zero. The complementary input signal of this differential pair is C0_ADCi This input should be AC coupled. In MIC mode on-chip resistors are used to set the gain of this buffer stage.
			In LINE mode this is the non-inverting input of the ADC buffer, the gain of which is determined by an external resistor network connected between this signal and C0_BFo
85	Β7	C0_BFo-	Codec Zero ADC Buffer Out Minus (Analog Output). Negative output of codec zero ADC input buffer. In MIC mode on-chip resistors are used to set the gain of this buffer stage.
			In LINE mode the gain of the ADC buffer is determined by an external resistor network connected between this signal and C0_ADCi+.
86	C7	AGUARD	Analog Guard Ring. Codec analog substrate isolation. Connect to analog ground.
87	C6	BIAS_VCM	Bias Voltage Common Mode (Analog Output). Common mode bias voltage output signal for the DAC output buffers. This signal is to be decoupled through a 0.1 μ F ceramic capacitor to analog ground. This output signal should not be used to bias external circuits. See 9.0, "Applications" on page 85 of this design manual.
88	B6	BIAS_RF+	Bias Reference Plus (Analog Output). Analog-to-digital converter reference voltage. Connect a 0.1 μ F ceramic capacitor between this signal and BIAS_RF Additionally, this signal may also be decoupled through a 0.1 μ F ceramic capacitor to analog ground. See 9.0, "Applications" on page 85 of this design manual.
89	A6	BIAS_RF-	Bias Reference Minus (Analog Output). Analog-to-digital converter reference voltage. Connect a 0.1 μ F ceramic capacitor between this signal and BIAS_RF+. Additionally, this signal may also be decoupled through a 0.1 μ F ceramic capacitor to analog ground. See 9.0, "Applications" on page 85 of this design manual.

Table 2 - Codec[1:0] Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
92	B5	C1_BFo-	Codec One ADC Buffer Out Minus (Analog Output). Negative output of codec one ADC input buffer. In MIC mode on-chip resistors are used to set the gain of this buffer stage.
			In LINE mode the gain of the ADC buffer is determined by an external resistor network connected between this signal and C1_ADCi+.
93	A5	C1_ADCi+	 Codec One Analog-to-Digital Converter In Plus (Analog Input). This is the positive input signal of the differential analog input buffer for ADC one. The complementary input signal of this differential pair is CO_ADCi This input should be AC coupled. In MIC mode on-chip resistors are used to set the gain of this buffer stage. In LINE mode this is the inverting input of the ADC buffer, the gain of which is
			C1_BFo
94	A4	C1_ADCi-	Codec One Analog-to-Digital Converter In Minus (Analog Input). This is the negative input signal of the differential analog input buffer for ADC one. The complementary input signal of this differential pair is CO_ADCi+. This input should be AC coupled. In MIC mode on-chip resistors are used to set the gain of this buffer stage. In LINE mode this is the inverting input of the ADC buffer, the gain of which is determined by an external resistor network connected between this signal and C1 BFo+.
95	B4	C1_BFo+	Codec One ADC Buffer Out Plus (Analog Output). Positive output of codec one ADC input buffer. In MIC mode on-chip resistors are used to set the gain of this buffer stage. In LINE mode the gain of the ADC buffer is determined by an external resistor network connected between this signal and C1 ADCi
98	A2	C1_DACo-	Codec One Digital-to-Analog Converter Out Minus (Analog Output). This is the negative output signal of the differential analog output buffer for DAC one. The complementary output signal of this differential pair is C1_DACo+. This output should be AC coupled to a maximum load (minimum impedance) of 10 K Ω .
99	A1	C1_DACo+	Codec One Digital-to-Analog Converter Out Plus (Analog Output). This is the positive output signal of the differential analog output buffer for DAC one. The complementary output signal of this differential pair is C1_DACo This output should be AC coupled to a maximum load (minimum impedance) of 10 K Ω .

Table 2 - Codec[1:0] Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
62	E10	PCM_LBCi	PCM Low Bit Rate Clock Input (Schmitt Trigger Input). This signal may be used as the Timing reference clock for applications where the PCM Bus interface must be synchronized to an external low bit rate clock (slave mode). An external oscillator or crystal must be used in this configuration. The acceptable frequency range of this signal is f <= 16.384 MHz. Its I/O supply domain is V_{DD} IO, which is separate from the V_{DD} OSCIO domain. This pin is to be tied low when PCM_CLKi is used as the PCM clock source.
65	E11	PCM_CLKi	PCM Clock Input (Schmitt Trigger Input). This signal may be used as the APLL and Timing reference clock for applications where the PCM Bus interface must be synchronized to an external clock (slave mode). An external oscillator or crystal are not used in this configuration. The acceptable frequency range of this signal is 2.048 MHz <= f <= 16.384 MHz. Its I/O supply domain is V _{DD} OSCIO, which is separate from the V _{DD} IO domain. This pin is to be low when PCM_LBCi is used as the PCM clock reference.
69	D11	OSCo	Oscillator Output (Output). Drive output for an external crystal to form a crystal oscillator circuit with the internal driver. The crystal is to be connected between OSCo and OSCi. This pin should be left open when an external oscillator is used instead of an external crystal. This signal is not tristated by the device RST function. See 9.2.1, "Crystal Oscillator Specification" on page 88.
70	C11	OSCi	Oscillator Input (Input). Input for an external crystal to form a crystal oscillator circuit with the internal driver. The crystal is to be connected between OSCo and OSCi. This pin is the oscillator input when an external $3.3 V + -10\%$ oscillator is used instead of an external crystal. See 9.2.2, "Clock Oscillator" on page 89 and 9.2.1, "Crystal Oscillator Specification" on page 88.

Table 5 - Clock and Oscillator i in Description	Table 3 - Cl	ock and Os	scillator Pin	Description
---	--------------	------------	---------------	-------------

LQFP Pin #	CABGA Ball #	Name	Description
10	F2	UART_Rx	Universal Asynchronous Receiver/Transmitter Receive (Schmitt Trigger Input). Receive serial data in. In slave mode this port (UART_Tx/Rx) functions as a peripheral interface for an external controller and supports access to the internal registers and memory of the device. The MiniCore3 may use this port in master mode to access external peripherals.
11	F1	UART_Tx	Universal Asynchronous Receiver/Transmitter Transmit (Tristate Output). Transmit serial data out. In slave mode this port (UART_Tx/Rx) functions as a peripheral interface for an external controller and supports access to the internal registers and memory of the device. The MiniCore3 may use this port in master mode to access external peripherals.
21 - 23, 27 & 28	J2,K1,K2, L1 & L2	GPIO[0:4]	General Purpose I/O Zero (Input Internal Pull-Down/Tristate Output). This pin can be configured as an input or output and is intended for low-frequency signalling.
29, 30, 44 - 47	K3, L3, K10, L9, L10, L11	GPIO[5:10]	General Purpose I/O Five (Input Internal Pull-Up/Tristate Output). This pin can be configured as an input or output and is intended for low-frequency signalling.

Table 4 - UART and GPIO Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
12	G1	I ² S_SCK/ P1ENA2	Inter-IC Sound Port Serial Clock (Schmitt Trigger Input/Tristate Output). This is the I ² S port bit clock and operates at selectable rates of 256, 512, 1024, 1411.2 and 1536 KHz, which is $32 \times f_S$ (sampling frequency) of the peripheral converter. In I ² S port master mode this clock is an output and drives the bit clock input of slave mode peripheral converters. In I ² S port slave mode this clock is an input and is driven from a converter operating in master mode. After power-up this signal is in I ² S slave mode, an input. Port One SSI Enable Strobe Two (Input/Tristate Output). This is an 8/16 kHz 8/16-bit wide enable strobe that operates in SSI mode only.
			This signal is an enable strobe input for applications where the Port 1 PCM Bus interface must be frame aligned to an external frame signal (slave mode). In master mode this signal is an enable strobe output. The default state of this signal is input after power up reset.
15	G2	I ² S_MCLK/ P1P_CLKi/o	 Inter-IC Sound Port Master Clock (Schmitt Trigger Input/Tristate Output). For I²S port master mode operation this is the master clock output for external codec or ADC's MCLK input. I²S_MCLK clock rates are selectable to be 2.048, 4.096, 8.192, 11.2896 and 12.288 MHz, which is 256 x f_S (sampling frequency) of the peripheral converter. When the I²S port is in slave mode, this signal is in a high impedance state. Port One PCM Clock Input/Output. When secondary TDM operation is selected this clock operates at 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 kHz and will be either equal or twice the data rate of signals SPCMi/o. In TDM master mode this clock is an output and in TDM slave mode this clock is an input.
18	H1	I ² S <u>LRC</u> K/ P1FP/ P1ENA1	 Inter-IC Sound Port Left/Right Clock (Input/Tristate Output). This is the I²S port left or right word select clock and operates at selectable rates of 8, 16, 32, 44.1 and 48 kHz, which is equal to the f_S (sampling frequency) of the peripheral converter. In I²S port master mode this clock is an output and drives the left/right clock input of slave mode peripheral converters. In I²S port slave mode this clock is an input and is driven from a converter operating in master mode. After power-up this signal is in I²S slave mode, an input. Port One PCM Bus Frame Pulse/Port One Enable Strobe One. This is an 8/16 kHz TDM frame alignment reference signal in TDM (ST BUS, GCI or McBSP framing) and in SSI modes. In SSI mode this signal is a 8/16 bit wide enable strobe. This signal may be used as a PCM frame reference input for applications where the PCM bus interface must be frame aligned to an external frame signal (slave mode). In master mode this signal is a frame pulse output. The default state of this signal is input after power up reset

Table 5 - Inter-IC Sound and PCM Port One Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
19	H2	I ² S_SDi/o/ P1PCMo	Inter-IC Sound Port Serial Data Input/Output (Input/Tristate Output). This is the I ² S port data input signal when the port is in master mode and configured to work with two ADC's. This is the I ² S port data output signal when the port is in master mode and configured to work with a single codec.
			Port One PCM Serial Stream Output. This serial data stream operates in either TDM (ST BUS, GCI or McBSP framing) or SSI modes at data rates of 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 Kb/s. Each 8 kHz frame supports 16, 32, 64, 128, 256, 512, 1024 or 2048 channels of 8 bits or half as many 16 bit channels. Two 8 or 16 bit channels may be processed per frame.
20	J1	I ² S_SDi/ P1PCMi	Inter-IC Sound Port Serial Data Input (Input). This is the I ² S port serial data input.
			Port One PCM Serial Stream Input (Input). This serial data stream operates in either TDM (ST BUS, GCI or McBSP framing) or SSI modes at data rates of 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 Kb/s. Each 8 kHz frame supports 16, 32, 64, 128, 256, 512, 1024 or 2048 channels of 8 bits or half as many 16 bit channels. Two 8 or 16 bit channels may be processed per frame.

Table 5 - Inter-IC Sound and PCM Port One Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
31	K4	SPIS_MOSI	Serial Peripheral Interface Slave Port Data Input (Input). Data input signal for the Slave SPI port.
32	L4	SPIS_CS	Serial Peripheral Interface Slave Chip Select (Input). This active low chip select signal activates the Slave SPI port. This port functions as a peripheral interface for an external controller and supports access to the internal registers and memory of the device.
33	K5	SPIS_MISO	Serial Peripheral Interface Slave Port Data Output (Tristate Output). Data output signal for the Slave SPI port.
34	L5	SPIS_CLK	Serial Peripheral Interface Slave Port Clock (Schmitt Trigger Input). Clock input for the Slave SPI port. Maximum frequency = 25 MHz.
37	L6	SPIM_CLK	Serial Peripheral Interface Master Port Clock (Tristate Output). Clock output for the Master SPI port. Maximum frequency = 25 MHz.
38	K7	SPIM_MOSI	Serial Peripheral Interface Master Port Data Input (Tristate Output). Data output signal for the Master SPI port.
41	L7	SPIM_CS[0]	Serial Peripheral Interface Master Port Select Zero (Tristate Output). This active low chip select is normally used to access an external peripheral such as FLASH memory.
42	K8	SPIM_CS[1]	Serial Peripheral Interface Master Port Select One (Tristate Output). This active low chip select may be used to access a peripheral device.

Table 6 - Master and Slave SPI Port Pin Descriptions

LQFP Pin #	CABGA Ball #	Name	Description
43	L8	SPIM_MISO	Serial Peripheral Interface Master Port Data Output (Input). Data input signal for the master SPI port.

Table 6 - Master and Slave SPI Port Pin Descriptions

LQFP Pin #	CABGA Ball #	Name	Description
48	K11	PCMENA2	SSI Enable Strobe Two (Input/Tristate Output). This is an 8/16 kHz 8/16 bit wide enable strobe that operates in SSI mode only.
			This signal is an enable strobe input for applications where the PCM Port Bus interface must be frame aligned to an external frame signal (slave mode). In master mode this signal is an enable strobe output. The default state of this signal is input after power up reset. If this signal is not used, it should be connected to digital ground.
55	J11	PCM_CLKo	PCM Bus Clock Output (Tristate Output). This clock is an output signal when the PCM Port is in master mode. It operates at 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 kHz and will be either equal or twice the data rate of signals PPCMi/o. The default state of this signal is high impedance after power up reset. When PCM Port is in slave mode its input clock will be either PCM_CLKi or PCM_LBC (Table 3).
56	H11	PCMo	PCM Serial Stream Output (Tristate Output). This serial data stream operates in either TDM (ST BUS, GCI or McBSP framing) or SSI modes at data rates of 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 Kb/s. Each 8 kHz frame supports 16, 32, 64, 128, 256, 512, 1024 or 2048 channels of 8 bits or half as many 16 bit channels. Two 8 or 16 bit channels may be processed per frame. The default state of this signal is high impedance after power up reset.
57	G11	PCMFP/ PCMENA1	PCM Bus Frame Pulse / Enable Strobe One (Input/Tristate Output). This is an 8/16 kHz TDM frame alignment reference signal in TDM (ST BUS, GCI or McBSP framing) and in SSI modes. In SSI mode this signal is a 8/16 bit wide enable strobe.
			This signal may be used as a PCM frame reference input for applications where the PCM bus interface must be frame aligned to an external frame signal (slave mode). In master mode this signal is a frame pulse output. The default state of this signal is input after power up reset. If this signal is not used, it should be connected to digital ground.
60	F11	PCMi	PCM Serial Stream Input (Input). This serial data stream operates in either TDM (ST BUS, GCI or McBSP framing) or SSI modes at data rates of 128, 256, 512, 1024, 2048, 4096, 8192 or 16384 Kb/s. Each 8 kHz frame supports 16, 32, 64, 128, 256, 512, 1024 or 2048 channels of 8 bits or half as many 16 bit channels. Two 8 or 16 bit channels may be processed per frame. If this signal is not used, it should be connected to digital ground.

Table 7 - PCM Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
13	E3	V _{SS} CORE	Core Ground. Connect to digital ground.
14	G3	V _{DD} CORE	Core Supply. Connect to +1.2 V ±5% core supply.
16	F3	V _{SS} IO	I/O Ground. Connect to digital ground.
17	H3	V _{DD} IO	I/O Supply. Connect to +3.3 V ±10% supply for Input/Output drivers.
35	J6	V _{SS} IO	I/O Ground. Connect to digital ground.
36	J5	V _{DD} IO	I/O Supply. Connect to +3.3 V ±10% supply for Input/Output drivers.
39	H10	V _{SS} CORE	Core Ground. Connect to digital ground.
40	G10	V _{DD} CORE	Core Supply. Connect to +1.2 V ±5% core supply.
53	J10	V _{SS} IO	I/O Ground. Connect to digital ground.
54	K9	V _{DD} IO	I/O Supply. Connect to +3.3 V ±10% supply for Input/Output drivers.
58	K6	V _{SS} CORE	Core Ground. Connect to digital ground.
59	J7	V _{DD} CORE	Core Supply. Connect to +1.2 V ±5% core supply.
63	E9	V _{SS} DPLL	Digital PLL Ground. Connect to digital ground.
64	F10	V _{DD} DPLL	Digital PLL Supply. Connect to +1.2 V ±5% DPLL supply.
66	F9	V _{DD} OSC	Oscillator Supply. Connect to +1.2 V ±5% oscillator supply.
67	D9	V _{SS} OSC	Oscillator Ground. Connect to digital ground.
68	D10	V _{DD} OSCIO	Oscillator I/O Supply. Connect to +3.3 V ±10% supply for oscillator Input/Output drivers.
71	C9	DV _{SS} APLL	Analog PLL Digital Ground. Connect to digital ground.
72	B10	DV _{DD} APLL	Analog PLL Digital Supply. Connect to $+1.2 \text{ V} \pm 5\%$ APLL digital supply.
73	C10	AV _{SS} APLL	Analog PLL Analog Ground. Connect to digital ground.
74	B11	AV _{DD} APLL	Analog PLL Analog Supply. Connect to +1.2 V ±5% APLL analog supply.
80	A9	C0_AV _{DD}	Codec Zero Analog Supply. Connect to $\pm 1.2 \text{ V} \pm 5\%$ voice codec [0] analog supply.
81	B9	$C0_{AV_{SS}}$	Codec Zero Analog Ground. Connect to analog ground.
96	B3	C1_AV _{SS}	Codec One Analog Ground. Connect analog ground.
97	A3	$C1_AV_{DD}$	Codec One Analog Supply. Connect to $+1.2 \text{ V} \pm 5\%$ voice codec [1] analog supply.

Table 8 - Supply and Ground Pin Description

LQFP Pin #	CABGA Ball #	Name	Description
90, 91	C4, C5	TEST1, TEST2	Test Pins. These pins are to be left unconnected.
9	E2	IC	Internal Connection (Input). Must be connected to digital ground for normal operation.
1, 24, 25, 26, 49, 50, 51, 52, 61, 75, 76, 77, & 100	B2, C3, C8, G9, H9, J3, J4, J8, & J9	NC	No Connection. These pins are to be left unconnected.

 Table 9 - Internal Connect and No Connect Pin Description

1.0 Functional Description

The ZL38004 is a hardware platform designed to support advanced acoustic echo canceller (with noise reduction) firmware applications available from Microsemi. These applications are resident in external memory and are downloaded by the ZL38004 resident boot code during initialization.

The firmware products and manuals available at the release of this data sheet are: ZLS38500: Acoustic Echo Canceller with Noise Reduction for Hands-Free Car Kits and ZLS38502 for advanced speakerphone applications. If these applications do not meet your requirements, please contact your local Microsemi CMPG Sales Office for the latest firmware releases.

The ZL38004 Advanced Acoustic Echo Canceller with Noise Reduction platform integrates Microsemi's Voice Processor (ZVP) DSP Core with a number of internal peripherals. These peripherals include the following:

- Two independent $\Delta\Sigma$ CODECs
- Two PCM ports ST BUS, GCI, McBSP or SSI operation
- An I²S interface port
- A 2048 tap Filter Co-processor (LMS, FIR and FAP realizations)
- Two Auxiliary Timers and a Watchdog Timer
- 11 GPIO pins
- A UART interface
- A Slave SPI port and a Master SPI port
- · A timing block that supports master and slave operation
- An IEEE 1149.1 compatible JTAG port

The DSP Core can process up to four 8-bit audio channels, two 16-bit audio channels or two 8-bit and one 16-bit audio channel. These audio channels may originate and terminate with the $\Sigma\Delta$ CODECs, or be communicated to and from the DSP Core through the PCM ports or the I²S port.

2.0 Core DSP Functional Block

\sub Microsemi

The ZL38004 DSP Core functional block, illustrated in Figure 1, is made up of a DSP Core, Interrupt Controller, Data RAM, Instruction RAM, BOOT ROM and a ButterFly Hardware Accelerator. This block controls the timing (APLL and Timing Generator), peripheral interfaces and Filter Co-processor through a peripheral address/data/control bus and 16 prioritized interrupts.

The ZL38004 implementation of DSP core and Filter Co-processor have been optimized to efficiently support voice processing applications. These applications are described in detail in the Firmware Manuals associated with this hardware platform.

2.1 DSP

The Core DSP is a 100 MIPS processor realized with two internal memory busses (Harvard architecture) to allow multiple accesses during the same instruction cycle. Instruction memory space consists of a 1 k x 24 bit Boot ROM (3 k bytes) and 8 k x 24 bits of RAM (24 k bytes). Data memory space consists of 1 k x 32 bits of register space (16 k bytes), plus 2 k x 16 bits and 2 k x 24 bits of RAM (26 k bytes) dedicated for the filter co processor that can be reused for different applications. Data memory RAM is 16/32 bit addressable.

The Filter Co-Processor is used by the application firmware to realize the LMS filters up to a maximum of 2048 coefficients (taps).

3.0 Codec[1:0]

The ZL38004 has two 16-bit fully differential $\Delta\Sigma$ CODECs (CODEC 0/1) that can be programmed for 48 kHz or 44.1 kHz sampling, or to meet G.712 requirements at 8 kHz sampling or G.722 at 16 kHz sampling, see Figure 4. The ADC path consists of input signal pins C0/1_ADCi+ and C0/1_ADCi- (buffer output pins C0/1_BF0+ and C0/1_BFo-), which feed selectable Microphone Amplifier or Line Amplifier options. Once past the buffer the analog signal goes through a low pass antialiasing filter and to a 4th order feed-forward $\Delta\Sigma$ Modulator that produces a Pulse Density Modulated (PDM) signal. Next the PDM signal goes through a Low Pass Decimation Filter and then is converted into a 16-bit parallel word that can be read by the ZL38004 DSP (ADCout[15:0], Figures 4).

The ZL38004 DSP will send 16-bit parallel word samples (DACin[15:0], Figure 4) to the DAC where they are converted to serial data and passed through an interpolation filter followed by a digital $\Delta\Sigma$ Modulator. The $\Delta\Sigma$ Modulator generates PDM data, which then passes through a 32-tap FIR reconstruction filter. The reconstructed analog signal is then passed to a unity voltage gain differential output driver and to pins C0/1_DACo+ and C0/1_DACo-.

The CODEC bias voltages are generated by an internal bandgap circuit (BIAS_VCM, BIAS_RF+ and BIAS_RF-). See 9.0, "Applications" on page 85 of this design manual for external circuit requirements.

Each ZL38004 CODEC has two loopbacks, see Firmware Manual. When activated, the input analog signal on pins C0/1_ADC+/- is looped around to C0/1_DAC+/-. Pulse Density Modulated (PDM) serial data from the ADC Analog $\Delta\Sigma$ Modulator output is looped around to the input of the DAC Reconstruction Filter. At the same time 16-bit parallel data is looped around from DACin[15:0] to ADCout[15:0]. PDM serial data from the DAC Digital $\Delta\Sigma$ Modulator is looped around to the input of the ADC output around from DACin[15:0] to ADCout[15:0].

When the Parallel Loopback is activated the input analog signal on pins C0/1_ADC+/- is looped around to the C0/1_DAC+/- output. 16-bit parallel data from the ADC Digital Low Pass Decimation Filter is looped around to the DAC Digital Low Pass Interpolation Filter. This data may be read by the DSP, but parallel data written to the DAC by the DSP will be lost.

CODEC0 and CODCE1 of the ZL38004 may be powered down if they are not required. See Firmware Manual.

Figure 4 - CODEC Block Diagram

3.1 Input Buffer

The internal differential input buffer of the ZL38004 CODECs can be configured to be either a Microphone Amplifier interface with internal gain or a Line Amplifier with external gain. With Microphone Amplifier operation, Figure 5, the internal feedback resister (R) is programmable for gain settings of 0, 6.02, 12.04, 18.06, 24.08 and 30.10 dB for an input maximum differential voltage of 800 to 25 mVppd. Full scale ADC input voltage is 800 mVppd (9 dBm0), which represents full scale 2s complement codes of \pm 32767. In this application C0/1_BFo+/- outputs should be left open and C0/1_ADCi+/- are to be capacitively coupled.

Figure 5 - CODEC 0/1 ADC Microphone Amplifier Selected

When internal CODEC0/1 is configured with a Line Amplifier input to the ADC, the amplifier voltage gain is determined by an external resister network. The usable range of gain that can be created with the Line Amplifier is from -18 dB to +18 dB, where the minimum external resister value is 15 K Ω . Full scale ADC input voltage is 800 mVppd (9 dBm0), which represents full scale 2s complement codes of ±32767. The Line Amplifier may also be configured as a single ended interface. See Section 9.0, "Applications" on page 85 of this design manual for details.

Figure 6 - CODEC 0/1 ADC Line Amplifier Selected

3.2 Reconstruction Filter and Driver (DAC Output)

The full scale DAC output voltage is 1200 mVppd (9 dBm0), which represents full scale 2s complement codes of \pm 32767 when driving a minimum load of 10 K Ω . See section 9.0, "Applications" on page 85 of this design manual for details.

The DAC reconstruction filter reduces the out of band noise at the DAC output caused by the DAC delta-sigma modulator. The modulator contributes very little noise up to 30 kHz. However, even with the reconstruction filter, the DAC output will look noisy when view on an oscilloscope due to residual out of band modulator noise. At 1 MHz, the noise contained within a 300 Hz band is less than -40 dBm0.

4.0 PCM Port

4.1 PCM Port

The PCM port support data communication between an external peripheral device and the ZL38004 DSP Core using separate input (PCMi) and output (PCMo) serial streams with TDM (i.e., ST-BUS, GCI or McBSP) or SSI interface timing. Access to the control and status registers associated with these ports is through the Slave SPI port (Pin Description Table 6) or UART (Pin Description Table 4). The PCM Port pin functions are described in Table 7. These port signals are either in their input or high impedance states after a power-on reset and outputs signals PCMo may be put in a high impedance state at any time during normal operation. Refer to the associated Firmware Manual for PCM port control, status and mode selection.

Figure 7 illustrates the signals associated with the Master and Slave timing modes of operation for PCM Port. Insert A: PCM port Master TDM (Mode 0), shows data clock (PCM_CLKo) and frame pulse (PCMFP) as outputs derived from the ZL38004 internal PLL. PCM_CLKo clocks data into the ZL38004 on PCMCMi and out of the ZL38004 on PCMo, and PCMFP delineates the 8 or 16 kHz frame boundaries for these signals. Insert B: PCM Master SSI (Mode3), functions the same way as the TDM Master except that selected channels are defined by enable outputs P0ENA1 and P0ENA2.

With slave operation the source of timing is not the ZL38004, so PCM_CLKi (or PCM_LBCi - see Pin Description Table 3) is the input clock and PCMFP is the 8 or 16 kHz input frame pulse. This is illustrated by Figure 7 C: PCM Port Slave TDM (Modes 1 & 2) and D: PCM Port Slave SSI (Modes 4, 5 & 6). See 4.2, "PCM Port Modes of Operation" for port mode descriptions.

Figure 7 - PCM Port Signal Configurations for Master/Slave Operation

The ZL38004 will process audio channels of up to 16 bits in length. Audio channel sizes are designated as either 8bit (Short) or 16-bit (Long) on the PCM interfaces. With TDM operation each audio channel is mapped on to one or more 8-bit time slots that are defined by the associated frame alignment signal. Each PCM port (0 & 1) supports from 1 to 4 Short Channels; 1 or 2 Short Channels and 1 Long (16-bit) Channel; or 2 Long Channels. Audio channels are defined as First and Second Long, and First, Second, Third and Fourth Short, see the Firmware Manual for assignment details. These channels may be assigned to different time slots on the input and output streams.

In SSI mode each PCM port supports 1 or 2 Short or Long channels, which are defined on PCMi/0 by the position and length of enable signals P0ENA1 and P0ENA2. Audio channels are defined as First and Second Long, and First and Third Short, see the Firmware Manual for assignment details. Channel positions and length are common to input and output signals.

The data clock rate (PCM_CLKi and PCM_LBCi) of the PCM interface may be selected to be either true and inverted polarity, see Figure 8. The frame rate may be selected to be either 8 kHz or 16 kHz.

Figure 8 - Clock Polarity versus Data Rate

Audio channel data clocked in on PCMi may be sampled at either the 1/2 or 2/2 bit positions.

Figure 9 - PCM Serial Data Input Sampling Points

The PCM Ports support two loopbacks, which function in both TDM and SSI modes of operation. That is, a PCM Port Loopack that loops the assigned input audio channels on PCMi to the assigned output audio channels on PCMo, see Figure 10. Throughput delay for specific audio channel bits from PCMi to PCMo is two frames when the data clock rate is twice the data rate and the number of clock cycles/frame \geq 42 or when the clock rate is the same as the data rate and the number of clock cycles/frame \geq 21, otherwise throughput delay is three frames. Audio channel data is also passed to the DSP Core input. The DSP Loopback loops the audio channel data output from the DSP Core to the DSP Core input. Audio channel data is also passed to the PCMo output.

Figure 10 - PCM and DSP Loopbacks

The bit sequence used for 8 and 16-bit audio channels may be reversed (swapped) between the PCM inputs/outputs and the DSP Core. Table 10 shows that when bit swapping is activated and b_{15}/b_7 is the bit transmitted first (MSB) on PCMi/o, the DSP Core will process audio channels as if b_0 is the Most Significant Bit (MSB).

Bit	Audio Channel	PCMi/o Transmission	DSP Core Processing
Swapping	Length (bits)	(First Last)	(MSB LSB)
De-activated	8	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀
	16	b ₁₅ b ₁₄ b ₁₃ b ₁₂ b ₁₁ b ₁₀ b ₉ b ₈ b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀	b ₁₅ b ₁₄ b ₁₃ b ₁₂ b ₁₁ b ₁₀ b ₉ b ₈ b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀
Activated	8	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ b ₁ b ₀	b ₀ b ₁ b ₂ b ₃ b ₄ b ₅ b ₆ b ₇
	16	$b_{15}b_{14}b_{13}b_{12}b_{11}b_{10}b_9b_8b_7b_6b_5b_4b_3\\b_2b_1b_0$	$b_0b_1b_2b_3b_4b_5b_6b_7b_8b_9b_{10}b_{11}b_{12}b_{13}$ $b_{14}b_{15}$

Table 10 - PCM Port Bit Swapping

4.2 PCM Port Modes of Operation

PCM ports 0 and 1 can function in any of seven operational modes numbered 0 to 6. These modes may be grouped into modes with pre-defined time slots (Modes 0, 1, 3 & 4), modes with flexible timing (Modes 2 & 5) and an automatic rate detection mode (Mode 6).

The modes with pre-defined time slots are TDM Master (0), TDM Slave (1), SSI Master (3) and SSI Slave (4), where Master/Slave refers to timing. The data rates, frame rates, bits/frame and 8-bit time slot numbering (TDM modes only) for these modes are listed in Table 11. In the TDM modes each short channel must be assigned to one of these unassigned 8-bit time slots. Each long channel must be assigned to two 8-bit unassigned contiguous time slots in SSI modes, or two 8-bit unassigned contiguous or non-contiguous time slots that do not straddle the physical frame boundaries defined by the frame pulse alignment signals PCMFP in TDM modes.

Data Rate	8-Bit Time Slot Numbering (Bits/frame)			
(kb/sec)	PCMFP or PCMENA1/2 = 8 kHz	PCMFP or PCMENA1/2 = 16 kHz		
128	0 - 1 (16)	0 (8)		
256	0 - 3 (32)	0 - 1 (16)		
512	0 - 7 (64)	0 - 3 (32)		
1024	0 - 15 (128)	0 - 7 (64)		
2048	0 - 31 (256)	0 - 15 (128)		
4096	0 - 63 (512)	0 - 31 (256)		
8192	0 - 127 (1024)	0 - 63 (512)		
16384	0 - 255 (2048)	0 - 127 (1024)		

Table 11 - Stream Data Rates and Associated 8-Bit Time Slot Numbering

Mode 2 is defined as TDM Slave operation with Flexible Clocks and mode 5 is SSI Slave operation with Flexible Clocks. In these modes the number of bits in an 8 kHz or 16 kHz frame is programmable. When the data rate is the same as the clock rate on inputs PCM_CLKi or PCM_LBi the number of clock/cycles per frame can be any number between 8 to 2047 inclusive. The number of clock/cycles per frame can be any even number between 16 and 2046 when the data rate is half the clock rate.

With mode 6, SSI Slave with Automatic Rate Detection, the clock rate must be programmed to be equal to the data rate. Other options that must be programmed are frame rate (8 or 16 kHz), clock polarity, enable signal polarity and the input bit sampling points on PCMi. The ZL38004 will automatically detect the number of clock cycles between consecutive active states of PCMENA1, the width of the active state of ENA1 to be either 8 or 16 bits, the width of the active state of PCMENA2 to be either 8 or 16 bits, and the number of bits between the end of the active state of PCMENA1 and the beginning of the active state of PCMENA2. This is illustrated by Figure 12. These variables are reported in the SSI Status registers for verification purposes and do not need to be written to other registers for normal mode 6 operation.

In SSI mode applications PCMENA1 must always be used. If two audio channels are to be processed, then PCMENA1 and PCMENA2 will both be used.

Figure 12 - Mode 6 - SSI Slave with Automatic Rate Detection

Table 12 shows the Control bit states that select each of the PCM modes. Refer to the Firmware Manual for programming specifics.

Mada	DCM Dart Timing Made Description	PCM Port Control Register			
Mode		Mstr/Slv	SSI Md	SSI Reg	Flx Clk
0	TDM Master	1	0	Х	0
1	TDM Slave	0	0	Х	0
2	TDM Slave with Flexible Clocks - see Table 15 to select number of clock cycles per frame.	0	0	Х	1
3	SSI Master	1	1	1	0
4	SSI Slave - see Table 17 for bits/frame	0	1	1	0
5	SSI Slave with Flexible Clocks - see Table 15 to select number of clock cycles per frame.	0	1	1	1
6	SSI Slave with Automatic Rate Detection - see Table 18 for expected bits/frame.	0	1	0	0
Not r	ecommended; not considered normal operation.	F	Remaining bit	combination	S

Table 12 - PCM Port Mode Description

It should be noted that the control bit PPCMRst (PCM Reset) should be programmed from low to high as the last register write when any of the control bits associated with the respective PCM ports is changed. See Firmware Manual for more details.

Mode 0 (TDM Master) - in this mode PCMFP and PCM_CLKo are output signals sourced from the ZL38004 internal timing block. They provide TDM frame, bit alignment and clocking for the time slots of signals PCMPCMi/o. PCMENA2 are in a high impedance state.

In this mode the PCM Port Control Register bits PPCMDR[2:0] and PCMfp16K[8] are used to establish the PCM data rates of PCMi/o, frame pulse rate of PCMFP and clock rate of PCM_CLKo. See Table 13 below.

Port PCM Control Register - Firmware Manual				
PPCMDR	Number of	f bits/frame	PCM_CLKo Clock	
[2:0]	PCMfp16K = 0 (bits)	PCMfp16K = 1 (bits)	Rates	
000	16*	8*	128	
001	32	16*	256	
010	64	32	512	
011	128	64	1024	
100	256	128	2048	
101	512	256	4096	
110	1024	512	8192	
111	2048	1024	16384	

Table 13 - PCM Timing Mode 0 Output Clock and Data Rate Selection

* It should be noted that when 8 bits/frame operation is selected only one short virtual channel can enabled; when 16 bits/frame operation is selected only two short or one long virtual channel can be enabled.

Mode 1 (TDM Slave) - in this mode $\overrightarrow{\text{PCMFP}}$ is an input, one of the PCM_LBCi or PCM_CLKi inputs is used as a clock signal (see Pin Description Table 3), and PCMi/o transports PCM data. PCMENA2 and PCM_CLKo are in a high impedance state. The functional relationship between control bits PCMDR[2:0], PCMfp16K and clock signals PCM_CLKi and PCM_LBCi are shown in Table 14. The frame pulse input must be either 8 kHz (PCMfp16K = 0) or 16 kHz (PCMfp16K = 1).

Port PCM Control Register - Firmware Manual					
PPCMDR [2:0]	Number of	bits/frame			
	PCMfp16K = 0 (bits)	fp16K = 1 (bits)	Clock Rates	Clock Rates	
000	16*	8*	128	NA	
001	32	16*	256	NA	
010	64	32	512	NA	
011	128	64	1024	NA	
100	256	128	2048	2048	
101	512	256	4096	4096	
110	1024	512	8192	8192	
111	2048	1024	16384	16384	

Table 14 - PCM Timing Mode 1 Required Clock Rates for Port Inputs

* It should be noted that when 8 bits/frame operation is selected only one short virtual channel can enabled; when 16 bits/frame operation is selected only two short or one long virtual channel can be enabled.

Mode 2 (TDM Slave with Flexible Clocks) - in this mode PCMFP in an input, one of the PCM_LBCi or PCM_CLKi inputs is used as a clock signal, and PPCMi/o transports PCM data. PENA2 and PPCM_CLKo are in a high impedance state.

In this mode Port PCM Control Register bits PPCMDR[2:0] and PCMfp16K[8] have no function. PCMi/o data rates are determined from the CCPF[10:0] control bits, the frame signal input PCMFP and input clocks PCM_LBi or PCM_CLKi. See Table 15 below.

The CCPF[10:0] can be any number from 8 to 2047 (00000008_{H} to $000007FF_{H}$), see Table 15.

CCPF[10:0] (Clock	(Mode 2) Input Signal PCMFP = 8 kHz/ (Mode 5) Input Signal PCMENA1/2 = 8 kHz			(Mode 2) Input Signal PCMFP = 16 kHz/ (Mode 5) Input Signal PCMENA1/2 = 16 kHz		
Cycles/ Frame)	PCMi/o (Kb/sec)	PCM_LBi (kHz)	PCM_CLKi (kHz)	PCMi/o (Kb/sec)	PCM_LBi (kHz)	PCM_CLKi (kHz)
8	64	64	NA	128	128	NA
9	72	72	NA	144	144	NA
10	80	80	NA	160	160	NA
						NA
127	1016	1016	NA	2032	2032	NA
128	1024	1024	1024	2048	2048	2048
129	1032	1032	NA	2064	2064	NA
255	2040	2040	NA	4080	4080	NA
256	2048	2048	2048	4096	4096	4096
257	2056	2056	NA	4112	4112	NA
511	4088	4088	NA	8176	8176	NA
512	4096	4096	4096	8192	8192	8192
513	4104	4104	NA	8208	8208	NA
1023	8184	8184	NA	16368	16368	NA
1024	8192	8192	8192	16384	16384	16384
1025	8200	8200	NA	NA	NA	NA
2046	16368	16368	NA	NA	NA	NA
2047	16376	16376	NA	NA	NA	NA

Table 15 - PCM Timing Mode 2, Required Frame Signal and Clock Rates for Clock = Data Rates

Mode 3 (SSI Master) - in this mode PCMENA1/2 and PCM_CLKo are output signals sourced from the ZL38004 internal timing block and PCMi/o transport PCM data, see Table 16. PCMENA1 and PCMENA2 are enable outputs that determine the positions of either 8 or 16 bit audio channels in the PCMi/o streams, see Firmware Manual for programming.

PCM port Control Register - Firmware Manual					
PPCMDR [2:0]	Number of	f bits/frame	PCM_CLKo Clock Rates (kHz)		
	PCMfp16K = 0 (bits)	PCMfp16K = 1 (bits)			
000	16*	8*	128		
001	32	16*	256		
010	64	32	512		
011	128	64	1024		
100	256	128	2048		
101	512	256	4096		
110	1024	512	8192		
111	2048	1024	16384		

Table 16 - PCM Timing Mode 3 Output Clock and Data Rate Selection

* It should be noted that when 8 bits/frame operation is selected only one short virtual channel can enabled; when 16 bits/frame operation is selected only two short or one long virtual channel can be enabled.

Mode 4 (SSI Slave) - in this mode PCMENA1/2 are inputs, one of the PCM_LBCi or PCM_CLKi inputs for PCM Port are used as clock signals (see Pin Description table), and PCMi/o transport PCM data. PCM_CLKo is in a high impedance state. The functional relationship between control bits PCMfp16K and clock signals PCM_CLKi and PCM_LBCi are shown in Table 17. The frame pulse input must be either 8 kHz (PCMfp16K = 0) or 16 kHz (PCMfp16K = 1).

PCM Port Control Register - Firmware Manual					
PPCMDR	Number of	bits/frame	PCM Port Clocks		
[2:0]	PCMfp16K = 0 (bits)	PCMfp16K = 1 (bits)	PCM_LBCi (kHz)	PCM_CLKi (kHz)	
000	16*	8*	128	NA	
001	32	16*	256	NA	
010	64	32	512	NA	
011	128	64	1024	NA	
100	256	128	2048	2048	
101	512	256	4096	4096	
110	1024	512	8192	8192	
111	2048	1024	16384	16384	

Table 17 - PCM Timing Mode 4 Required Clock Rates for PCM Port Inputs

* It should be noted that when 8 bits/frame operation is selected only one short virtual channel can enabled; when 16 bits/frame operation is selected only two short or one long virtual channel can be enabled.

In this mode the SSIDR[2:0] bits of the SSI Status Register (See Firmware Manual) can be used to monitor the number of bits per frame with 8 and 16 kHz strobe signals.

Mode 5 (SSI Slave with Flexible Clocks) - in this mode PCMENA1/2 are inputs, one of the PCM_LBCi or PCM_CLKi inputs for PCM Port are used as clock signals (see Pin Description table), and PCMi/o transport PCM data. PPCM_CLKo is in a high impedance state.

In this mode PCM Port Control Register bits PPCMDR[2:0] and PCMfp16K[8] have no function. PCMi/o data rates are determined from the CCPF[10:0] control bits (see Firmware Manual), the frame signal input ENA1, and input clocks PCM_LBi and PCM_CLKi. The PCMENA2 strobe input is used to delineate the second SSI short or long audio channel on PCMi/o. See Table 15.

Mode 6 (SSI Slave with Automatic Rate Detection) - in this mode PCMENA1/2 are inputs, one of the PCM_LBCi or PCM_CLKi inputs for PCM Port is used as a clock signal (see Pin Description table), and PCMi/o transports PCM data. PCM_CLKo is in a high impedance state. In this mode the PCM interface port will automatically detect the data rate, strobe positions, clock rate and virtual channel sizes. PPCMDR[2:0] have no function. The functional relationship between control bits PCMfp16K and clock signals PCM_CLKi and PCM_LBCi are shown in Table 18. It should be noted that the relationship between the Number of bits/frame and Clock Rates shown in Table 18 is only true when the PCMENA1 input strobe is either 8 or 16 kHz. When the PCMENA1 input signal is neither 8 or 16 kHz, the SSIDR[2:0] status register will indicate the number of bits (clock cycles) per frame.

PCM Port Control Register - Firmware Manual ZL38500					
SSIDR	Number of	bits/frame			
[2.0]	PCMfp16K = 0 (bits)	PCMfp16K = 1 (bits)	PCM_LBCi Clock Rates (kHz)	PCM_CLKi (kHz)	
000	16*	8*	128	NA	
001	32	16*	256	NA	
010	64	32	512	NA	
011	128	64	1024	NA	
100	256	128	2048	2048	
101	512	256	4096	4096	
110	1024	512	8192	8192	
111	2048	1024	16384	16384	

Table 18 - PCM Timing Mode 6 Measured Clock Rate of PCM_LBCi or PCM_CLKi Input

* It should be noted that when 8 bits/frame operation is selected only one short virtual channel can enabled; when 16 bits/frame operation is selected only two short or one long virtual channel can be enabled.

4.3 TDM - ST-BUS, GCI & McBSP Operation (PCM Ports 0 and 1)

Default frame pulse position is ST-BUS format with the active phase straddling the frame boundary, see Table 19. The frame pulse may also be programmed to have its active phase complete on the frame boundary for McBSP format; and to have its active phase begin on the frame boundary for GCI format. See Firmware Manual for the selection of frame pulse PCMfpS[1:0], clock polarity PCLKP, frame pulse polarity PCMfpP and data rate PPCMDR[2:0].

Frame Pulse PCMfpS[1:0]	Bus Format	Description
00	ST-BUS	Active phase straddles frame boundary.
01	GCI	Active phase starts at the frame boundary.
10	McBSP	Active phase starts one TDM clock cycle before the frame boundary.
11	Reserved	Reserved.

Table 19 - TDM Frame Pulse Selection

Figure 13 illustrates the ST-BUS format with master or slave timing (see Table 12). This requires selecting the frame pulse as ST-BUS, the frame pulse polarity must be active low (PCMfpP = 0), the PCM clock polarity must be set so the clock falling edge occurs on the frame boundary (PCLKP = 0). In this format frames are delineated by the last falling edge of the bit clock that occurs during the active low frame pulse, see AC Electrical Characteristics. The default frame pulse rate is 8 kHz (PCMfp16k = 0), but 16 kHz is also viable. This programming is shown in Table 20.

Bus Format	PCMfpS[1:0]	PCMfpP	PCLKP	PCMfp16k
ST-BUS	00	0	0	0
GCI	01	1	1	0
McBSP	10	1	1	0

Table 20 - TDM - ST-BUS, GCI and McBSP Selection

Master/Slave Clock PCLKP = 0		IJ	¦ ∢ _	 1						Fram	e Boui	ndary.							▶	Ĺſ
PCMFP PCMfpP = 0 PCMfpS[1:0] = 00			Channel 0								Channel N = $2^n - 1$, where: n = 0, 1 8; 0 \leq N \leq 255									
PCMi/o	1	0	7	6	5	4	3	2	1	0			6	5	4	3	2	1	0	7

Figure 13 - TDM - ST-BUS Slave/Master Functional Timing Diagram

Figure 14 illustrates the GCI format with slave timing (see Table 12). This requires selecting the frame pulse as GCI, the frame pulse polarity must be active high (PCMfpP = 1), the PCM clock polarity must be set so the clock rising edge occurs on the frame boundary (PCLKP = 1). In this format frames are delineated by the rising edge of the bit clock that occurs immediately before the first falling edge of the bit clock during the active high frame pulse, see AC Electrical Characteristics. The default frame pulse rate is 8 kHz (PCMfp16k = 0), but 16 kHz is also viable. This programming is shown in Table 20.

Figure 14 - TDM - GCI Slave Functional Timing Diagram

Figure 15 illustrates the GCI format with master timing (see Table 12). This requires selecting the frame pulse as GCI, the frame pulse polarity must be active high (PCMfpP = 1), the PCM clock polarity must be set so the clock rising edge occurs on the frame boundary (PCLKP = 1). In this format frames are delineated by the rising edge of the bit clock that coincides with the rising edge of the active high frame pulse, see AC Electrical Characteristics. The default frame pulse rate is 8 kHz (PCMfp16k = 0), but 16 kHz is also viable. This programming is shown in Table 20.

Figure 15 - TDM - GCI Master Functional Timing Diagram

Figure 16 illustrates the McBSP format with master and slave timing (see Table 12). This requires selecting the frame pulse as McBSP, the frame pulse polarity must be active high (PCMfpP = 1), the PCM clock polarity must be set so the clock rising edge occurs on the frame boundary (PCLKP = 1). In this format frames are delineated with slave timing by the last rising edge of the bit clock that occurs immediately after the last falling edge of the bit clock during the active high frame pulse. Frames are delineated in with master timing by the rising edge of the bit clock that coincides with the falling edge of the active high frame pulse, see AC Electrical Characteristics. The default frame pulse rate is 8 kHz (PCMfp16k = 0), but 16 kHz is also viable. This programming is shown in Table 20.

Figure 16 - TDM - McBSP Slave/Master Functional Timing Diagram

4.4 SSI Operation

Figure 17 illustrates the timing options for the SSI format enable signals PCMENA1 and PCMENA2, as well as the bit clock options. Programming for these options is shown in Table 21, the Firmware Manual. The polarity of the active portion of PCMENA1 is selected by control bit PCMfpP (1 for high; 0 for low) and the polarity of the active portion of PCMENA2 is selected by control bit PSSISSP (1 for high; 0 for low). Bit clock polarity is determined by control bit PCLKP.

PCMfpS [1:0]	Enable Active	PCMSSISF[1:0]	Enable Inactive				
00	1/2 clock cycle before beginning of bit cell	00	Coincident with end of bit cell				
01	1 clock cycle before beginning of bit cell	01	1/2 clock cycle after end of bit cell				
10	Coincident with beginning of bit cell	10	1/2 clock cycle before end of bit cell				
11	Reserved	11	Reserved				

Table 21 - SSI Enable Start; Enable Finish Position Selection

PCMENA1/2 PCMfpP = PCMfpS[1:0] = 00	01	PCMSSISF[1:0] = 10 00 01									
PCMENA1/2											
Master/Slave Clock PCLKP = 0											
Master/Slave Clock PCLKP = 1											
РСМі		7	6	5	4	3	2	1	0		
РСМо		7	6	5	4	3	2	1	0		
Master Clock - outpu	t clocks PCM	CLKo									
Slave Clock - input cl Note: PCMi/o are sho bit audio channels as	locks PCM_CI wn as 8-bit au s well	.Ki or PC dio chan	:M_LBCi inels; how	vever, the t	iming opti	ons illustra	ated here a	are applica	ble to 16-		

Figures 18 illustrates the SSI functional timing used when the two enable strobes (audio channels) are separated by a non-zero number of bit clock cycles. Here the enable signal polarities are active low (PCMfpP = PSSISSP = 0), either bit clock polarity may be selected (PCLKP = 1/0). In this format frames are delineated by the active edge of PCMENA1 minus 1/2 bit clock cycle. The default frame repetition rate is 8 kHz (PCMfp16k = 0), but 16 kHz is also viable. See Firmware Manual to program the positions of the Audio Channels within the 8/16 kHz frame.

Figure 18 - SSI Mode: Separated Channels Functional Timing

Figure 19 is similar to Figure 18 except for the audio channel positioning. Here the audio channels are adjacent and the associated enable signals overlap, see PCMfpS[1:0] and PCMSSISF[1:0] programming Table 21.

Figure 19 - SSI Mode: Adjacent Channels Functional Timing

4.5 I²S Port Description

The I²S (Inter-IC Sound) port and PCM Port One share the same physical pins of the ZL38004. Selection of either I²S port operation or PCM Port One operation is done through the Port One PCM/I²S Select Register. See Firmware Manual.

The I²S port can be used to connect external Analog-to-Digital Converters or CODECs to the internal DSP. This port can operate in master mode, where the ZL38004 is the source of the port clocks, or slave mode, where the bit and sampling clocks (I²S_SCK and I²S_LRCK) are inputs to the ZL38004. The master clock (I²S_MCLK) is always an output. In I²S port master mode the clock signal at output pin I²S_LRCK is the sampling frequency (f_S), the clock signal at output I²S_SCK is 32 x f_S, and the clock signal at output I²S_MCLK is 256 x f_S. In I²S port slave mode the relationship between the clock signal at input pin I²S_LRCK and the clock signal at input Pin I²S_MCLK is not mandatory, and the I²S_MCLK output pin will be in a high impedance state (see pin description Table 5). This is illustrated in Table 22. See Firmware Manual for I²S programming options.

М	aster Mode Operatio	Slave Mode Operation			
I ² S_LRCK output (f _S kHz)	l ² S_SCK output (32f _S kHz)	l ² S_MCLK output (256f _S kHz)	l ² S_LRCK input (f _S kHz)	l ² S_SCK input (32f _S kHz)	
8	256	2048	8	256	
16	512	4096	16	512	
32	1024	8192	32	1024	
44.1	1411.2	112896	44.1	1411.2	
48	1536	12288	48	1536	

Table 22 - I ² S	Port Clock	Rate and	Mode Selectio	'n
-----------------------------	------------	----------	---------------	----

The I²S interface can support two dual channel Analog-to-Digital Converters (Figure 20) or one dual channel CODEC (Figure 21). In Figure 20 pin I²S_SDi/o is configured as an input (control bit I²SSDi/oSel = 0) so that the four 16-bit channel processing capacity of the DSP is spread across the two input channels from Dual ADC (0) plus the two input channels from Dual ADC (1). See Firmware Manual for I²S port setup.

Figure 20 - Dual Analog-to-Digital Converter Configuration

In Figure 21 pin I^2S_SDi/o is configured as an output (control bit $I^2SSDi/oSel = 1$) so that the four 16-bit channel processing capacity of the DSP is spread across the two input channels from the ADCs of CODEC(0) and CODEC(1), as well as the two output channels from the ADCs of CODEC(0) and CODEC(1). See Firmware Manual for I^2S port setup.

Figure 21 - Dual CODEC Configuration

See section 9.0, "Applications" on page 85 of this design manual for more information about interfacing to specific external converters.

The format of the I²S bus port can be configured in one of two ways. Figure 22 illustrates the first format, which is left channel first associated with I²S_LRCK (Left/Right Clock signal) low, followed by the right channel associated with I²S_LRCK high (control bit I²SBF = 1). The MSB of the data is clocked out starting on the second falling edge of I²S_SCK (bit clock signal) following the I²S_LRCK transition and clocked in starting on the second rising edge of I²S_SCK (bit clock) following the I²S_LRCK transition. See Firmware Manual for I²S port setup.

Figure 22 - I²S Audio Interface with Left Channel Enable Low/Right Channel Enable High

The alternate format of the I²S bus (Figure 23) is left channel first associated with I²S_LRCK (Left/Right Clock signal) high, followed by the right channel associated with I²S_LRCK low (control bit I²SBF = 0). The MSB of the data is clocked out starting on the falling edge of I²S_SCK (bit clock signal) associated with the I²S_LRCK transition and clocked in starting on the first rising edge of I²S_SCK (bit clock) following the I²S_LRCK transition. See Firmware Manual for I²S port setup.

Figure 23 - I²S Audio Interface with Left Channel Enable High/Right Channel Enable Low

Figure 24 shows the activated I²S Loopback. In this state audio channel data output from the DSP Core is looped around to the DSP Core input (control bit I²SLp = 1). Audio channel data is also passed to the I²S_SDi/o pin, which must be configured as an output (control bit I²SSDi/oSel = 1). I²S_SDi has no function when this loopback is activated. See Firmware Manual for I²S port setup.

Figure 24 - Inter-IC Sound (I²S) Loopback

5.0 Host Microprocessor and Peripheral Interfaces

5.1 Master SPI (FLASH Port)

The Master SPI port is used by the ZL38004 to access one or two peripheral devices (chip select signals SPIM_CS[1:0]). It supports both SPI and MICROWIRE modes of operation and can write up to 40 bits or read up to 32 bits in a single access. The Chip Select output signals may be programmed for a single access or burst access. All communication is MSB first and all pins of the master SPI port are outputs controlled by the ZL38004, except SPIM_MISO, see Pin Description Table 6.

The functional timing of the Master SPI port is illustrated in Figure 25. Port reads and writes are similar to those described in the Slave SPI section of this design manual. That is, a write access consists of a port write Command + address/data/control (Figure 29), and a read access consists of a port write Command and port read dummy byte/bits + data (Figures 30 and 31).

The number of clock cycles that is transmitted by the master SPI on SPIM_CLK to communicate with a particular peripheral device is programmable. The total number of clock cycles for a port write and port read are as follows:

port write clocks cycles = (MSUpEn + MSTxWL[1:0] + 1) x 8, and

port read clocks cycles = (MSUpEn + MSTxWL[1:0] + 1 + MSRxWL) x 8 + MSMWR,

where: all variables are decimal equivalents of the binary values programmed in these registers.

See the Firmware Manual for details on programming the Master SPI port and the variables in the equations above. See section 9.0, "Applications" on page 85 of this design manual for further information on interfacing flash memory to the Master SPI port.

SPIM_CLK (MSCPOL = 0 & Microwire)
SPIM_CLK (MSCPOL = 1)
SPIM_MISO Sample (MSCPHA = 0 & Microwire) \downarrow
$SPIM_MOSI (MSCPHA = 0 & Microwire) - (MSB) - (6) - (5) - (4) - (3) - (2) - (1) - (LSB) - (-) -$
SPIM_MISO Sample (MSCPHA = 1) $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
$\begin{array}{c} \text{SPIM}_{\text{MOSI}} \\ (\text{MSCPHA} = 1) \end{array} \qquad $
SPIM_CS[1:0] (MSCSPOL = 0)
SPIM_CS[1:0] (MSCSPOL = 1)

Figure 25 - Master SPI and Microwire Port Functional Timing

5.2 Slave SPI (Host Port)

The slave SPI port may be used by an external host microprocessor to access (Read/Write) the ZL38004 internal control/status registers and memory. Access is initiated when the external host makes signal SPIS_CS low and is ended when this signal goes high. The host will then apply a clock (maximum 25 MHz) to signal SPIS_CLK to clock data out of SPIS_MISO and in on SPIS_MOSI.

Figure 26 - Slave SPI and Microwire Port Functional Timing

Figure 26 illustrates the Slave SPI Port operation and functional timing, which is determined by the control bits of the Slave SPI Control Register (See Firmware Manual). The following paragraphs describe these options. It should be noted that most accesses will be longer than the 8-bit example shown in Figure 26. An SPI port read access consists of a Command Word being clocked into SPIS_MOSI followed by a series of data bits clocked out of SPIS_MISO, see Figure 30. It will take 8 SPIS_CLK cycles for the ZL38004 to process the read data access function so the first 8 bits clocked out on SPIS_MISO are considered dummy bits. An SPI port write access consists of a Command Word followed by a series of data bits clocked into SPIS_MOSI, see Figure 29. SPIS_CLK may be either a gated or continuous clock.

SSCPOL = SSCPHA = 0 (Microwire)

In this mode of operation data is clocked in (SPIS_MOSI) on the first rising edge of SPIS_CLK after SPIS_CS becomes active. Data is clocked out (SPIS_MISO) on the falling edge of SPIS_CLK. When control bit SSMWR = 1 Microwire operation is activated. In Microwire operation only one dummy bit needs to be clocked out by the host between the end of the Command Word and the beginning of valid read data. When SSMWR = 0 the normal eight dummy bits need to be clocked out.

SSCPOL = 0; SSCPHA = 1

In this mode of operation data is clocked in (SPIS_MOSI) on the first falling edge of SPIS_CLK after SPIS_CS becomes active. Data is clocked out (SPIS_MISO) on the rising edge of SPIS_CLK.

SSCPOL = 1; SSCPHA = 0

In this mode of operation data is clocked in (SPIS_MOSI) on the first falling edge of SPIS_CLK after SPIS_CS becomes active. Data is clocked out (SPIS_MISO) on the rising edge of SPIS_CLK.

<u>SSCPOL = SSCPHA = 1</u>

In this mode of operation data is clocked in (SPIS_MOSI) on the first rising edge of SPIS_CLK after SPIS_CS becomes active. Data is clocked out (SPIS_MISO) on the falling edge of SPIS_CLK.

Flow and maintenance control bits, as well as status bits are described in the Firmware Manual.

5.3 UART

The UART (Universal Asynchronous Receiver Transmitter) port may be used by an external host microprocessor to access (Read/Write) the ZL38004 internal control/status registers and memory. The ZL38004 DSP will set up the initial parameters of this port (i.e., master/slave, baud rate, stop bits, parity bit...) during the Boot process. After the device has been booted these port options can be changed as per the Firmware Manual.

The UART port will support 8-bit data only with any combination of 1 start bit, 0 or 1 parity bit(s) and 1, 1.5 or 2 stop bit(s) as shown in Figure 27.

Figure 27 - Example of Some the Supported UART Interface Timing

Flow and maintenance control and status bits are described in the Firmware Manual.

5.4 Host Interface Operation (Slave SPI and UART Ports)

The control/status registers and memory of the ZL38004 can be accessed (R/W) by an external host through the Slave SPI and the UART ports. Register/Memory read and write accesses are carried out through a series of port read and write accesses as follows:

Write Access

- 1. Read Control Register determine if previous port access is complete i.e., If Start/Pending = 0 then step 2, else continue polling.
- 2. Write Address this is the ZL38004 register or memory address location.
- 3. Write Data this the data that will be written to the ZL38004.
- 4. Write Control Register make Start/Pending = 1 to initiate the write operation.

Read Access

- 1. Read Control Register determine if previous access is complete i.e., If Start/Pending = 0 then step 2, else continue polling.
- 2. Write Address this is the ZL38004 register or memory address location.
- 3. Write Control Register make Start/Pending = 1 to initiate the write operation.
- 4. Read Control Register determine if last access is complete i.e., Start/Pending = 0.
- 5. Read Data this is the data from the ZL38004 register or memory location.

Each Slave SPI and UART port access initiated by an external host consists of an 8-bit Command Byte followed by a series of one to four Address, Data or Control Bytes. This 8-bit Command Byte refers to the port access cycle only, not to the Register/Memory access of which it is a part. The Control Byte may be either 8 or 16 bits long and refers to the Register/Memory read or write access being performed.

Figures 28 shows the structure of each port access. The first two bits of every access must be 10_B for the access to be considered valid and carried out. The next bit is \overline{R}/W , which defines the current port access as a read or write operation. When $\overline{R}/W = 0$ (read) the Command Byte will be clocked in and data will be clocked out of the ZL38004 during this port access. When $\overline{R}/W = 1$ (write) the Command Byte followed by the Address, Data or Control Byte will be clocked into the ZL38004 during the port access. This is illustrated in Figure 29, Figure 30 and Figure 31 for the slave SPI interface port and in Figure 32 and Figure 33 for the UART interface port.

The next two bits of the Command Byte determine the number of valid bytes that will follow the Command Byte excluding dummy bytes and bits. The last three bits of the Command Byte determine the type of data that is being transferred immediately following the Command Byte. This can be a 16-bit address, up to 32 bits of read data, up to 32 bits of write data or 8/16 bits of Control. The most significant byte of the Control Word is 0000_000M, where M = 0 selects the Data RAM and Registers or M = 1 selects the Instruction RAM. If the state of this bit (M) does not need to change, then only the least significant byte of the Control Word needs to be sent.

The Start/Pending (P) bit of the Control Word initiates a Register/Memory read or write function. The ZL38004 will make this bit zero when a Register/Memory read or write is complete. The next two bits (WW) indicate the number of data bytes that are to be written or read to complete the Register/Memory access. The R bit determines if the Register/Memory access is read or write. See SPI and UART examples in the 9.0, "Applications" on page 85 of this design manual.

	Serial Bit Sequence
Command Byte	►
1 0 R/W Number of Bytes	Access Type 1 to 4 Address/Data/Control Bytes
1 0 - valid Command Byte.	
Number of Bytes - indicates the num	ber of Address/Data/Control Bytes that will follow the
Command Byte:	00 - 8 bits
	01 - 16 bits 10 - 24 bits
	11 - 32 bits
Access Type - indicates the type of d	data that will follow the Command Byte:
001 - Control Byte (16	6-bit, may be 8-bit if most significant bit do not change)
010 - Address Word (* 011 - Read Data (16, 2	16-Dit) 24 or 32 bit)
100 - Write Data (16, 2	24 or 32 bit)
000, 101, 110 & 111 - r	reserved.
1 to 4 Address/Data/Control Bytes:	Address - 0000_AAAA_AAAA_AAAA _B
Γ	Data - 16, 24 or 32 bits
C	Control - 16-bits - 0000_000M_0000_PBBR _B
where:	
A - address bit M - 0 for Data RAM a	and Register: 1 for Instruction RAM access
P - (Start/Pending) 1	to initiate access; 0 indicates access complete
B - number of Bytes	being transferred: 00 - 8 bits 01 - 16 bits
	10 - 24 bits
	11 - 32 bits
R - (R/W) 1 to write;	u to read
Control	Register Bit Functions
b15 b14 b13 b12 b1	1 b10 b0 b2 b7 b6 b5 b1 b2 b2 b1 b0
b ₀ = Memory Operation - write 0 for	read; 1 for write
b ₂ b ₁ = Memory Width - write 00 for	8 bits; 01 for 16 bits; 10 for 24 bits and 11 for 32 bits
b ₃ = Start/Pending - write 1 to start a	access; read 1 access pending; read 0 access is complete
b ₈ = Memory Select - write 0 to acce	ess Data RAM and Registers; 1 to access Instruction RAM
Write 0 to all other bits	

Phase	Command Byte	Address/Data/Control]				
SPIS_CS_B	7						
SPIS_CLK							
SPIS_MOSI	1 0 $\overline{R}WW_1W_0T_2$ T ₁ T ₀	D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0	x				
SPIS_MISO (SPI)	0		highz				
SPIS_MISO (Microwire)	higi	וב					
\overline{R} /W: determines read or write access (1 in this example) W_1 , W_0 : determines the access width (00 in this example) T_2 , T_1 , T_0 : indicates the type of data that follows: Address, Data or Control D_7 , D_6 ,, D_0 : data or control byte to be written (could be up to 32 bits)SSCPOL=0 / SSCPHA = 0 and Microwire							

Figure 29 - Example of a Port Write Access to the Slave SPI Port (8-bit data)

Figure 31 - Example of a Port Read Access to the Slave SPI Port (8-bit data)

When the UART port has been defined as a slave (see Firmware Manual) it can be used by an external host master to access the Data RAM, Registers and Instruction RAM. The UART interface port requires that data sampled on UART_Rx be 5 characters long and that transmit data on UART_Tx will be 4 characters long. The Command, Address, data and control bytes used with the UART interface are the same as for the SPI Slave interface, see Figure 28. Examples of UART Memory/Register read and write accesses are illustrated by Figure 32 and Figure 33. See SPI and UART examples in the 9.0, "Applications" on page 85 of this design manual.

The UART_Rx input must synchronized on the data from the host microprocessor. This is achieved by the host sending a series of at least 5 all ones characters (idle signal) to force re-synchronization. The first zero received after this all-ones sequence will be interpreted as a start bit of a character that contains a new Command Byte.

Flow and maintenance control bits, as well as status bits are described in the Firmware Manual.

Figure 32 - Example of a Read Access to the Slave UART Port

Figure 33 - Example of a Write Access to the Slave UART Port

5.5 GPIO

The ZL38004 has 11 GPIO (General Purpose Input/Output) pins that can be individually configured as either input or output, and have associated maskable interrupts. These pins are intended for low frequency signalling.

When a GPIO pin is defined as an input the state of that input pin is sampled with the internal master clock (Mclk = 100 MHz) and latched into the GPIO Read Register. This sampling can be stopped (Freeze) on an individual GPIO pin. The state of any GPIO input pin can be compared to a known state and cause an interrupt on a mismatch. Individual pins of GPIO[4:0] may have an internal pull-down resistor activated/deactivated and individual pins of GPIO[10:5] may have an internal pull-up activated/deactivated.

Immediately after a power-on reset (RST pin) the GPIO pins are defined as inputs and their state is captured in the GPIO Start-Up Status Register. The state of this register is used by the Boot program to determine the base functionality and programming options of the device. See the Operations section of this design manual and the Firmware Manual for further definition.

Individual GPIO pins may also be defined as outputs with associated enable/disable (active/high impedance) control. See the Firmware Manual for control and status programming.

6.0 JTAG

The JTAG port of the ZL38004 is implemented to meet the mandatory commands and requirements of IEEE 1140.1. Table 23 shows the ZL38004 32-bit JTAG ID. After power-up the TRST pin of the JTAG port is to be pulsed low and is to remain high for as long as the ZL38004 is in its JTAG test state.

32-bit JTAG ID Code [31:0]						
Version [31:28] Part Number [27:12] Manufacturer ID [11:1] LSB [0]						
0001	1001 0100 0111 0100	0001 0100 101	1			

Table 23 - JTAG ID

Instruction length is 17 bits and includes Bypass, Clamp, Extest, HighZ, IDcode, Preload and Sample. It should be noted that some pin names in the BSDL file differ from those in this design manual. Please refer to pin numbers for specific packages to avoid confusion.

Microsemi provides a Boundary Scan Description Language (BSDL) file that contains all the information required for a JTAG test system to access the boundary scan circuitry of the ZL38004. The file is available for download from the Microsemi website: www.microsemi.com.

7.0 Device Operation

7.1 Initialization

During power-up the ZL38004 must be held in reset, through the \overrightarrow{RST} pin, until after the power supplies have reached their power-on steady state, see "Power Sequencing" in the 9.0, "Applications" on page 85 of this design manual. Figure 34 illustrates the sequence of events beginning after the point when the \overrightarrow{RST} pin state returns high. From this point in time (assuming a steady state OSCi or PCM_CLKi signal exists) the ZL38004 APLL will take approximately 500 μ s to lock. The state of pins GPIO[4:0] determine which reference clock frequency and signal is to be used by the APLL. This selection is routed directly to the APLL so PLL lock may start immediately after \overrightarrow{RST} goes high. The Timing Mode Select signal latches this state into the APLL block later on in the sequence as shown in Figure 34. 1.5 μ s after the APLL locks the internal reset generator block will latch the states of pins GPIO[10:0] into the GPIO at Start-Up Status Register. The state of this register may be used by the Boot program to initialize the ZL38004 to a particular state, see "Boot" section of this design manual and the Firmware Manual appropriate to your application for details.

Figure 34 - Initialization Timing

0.4 μ s after the GPIO latch pulse occurs the Timing Mode Select signal latches the state of pins GPIO[4:0]. 0.6 μ s after this the device will come out of synchronous reset and begin executing Boot Code instructions starting at PC = 0 (Program Counter = 0). Synchronous reset will initialize all the control registers to their default values, See Firmware Manual.

It should be noted that a reset that is initiated by the expiration of the Watch Dog Time will not affect the $\overline{\text{RST}}$ or GPIO[10:0] Latch signals. Therefore, the GPIO at Start-Up Status Register will not be updated. This reset starts with the Timing Mode Select and Synchronous Reset signals.

The operation of the digital audio interfaces and CODEC[1:0] depend on clock signals from the Timing Generator. The Timing Generator contains a DPLL, which may take a maximum of 3 seconds to lock. This 3 seconds begins after the Synchronous Reset goes high.

During power-up the $\overline{\text{TRST}}$ pin of the JTAG port is to be pulled low and is to remain low for as long as the ZL38004 is in its normal operating state.

7.2 Boot

Once the ZL38004 comes out of synchronous reset it will begin executing Boot Code instructions at PC = 0. The Boot code will load the device firmware (normally stored in external Flash Memory) into the onboard instruction RAM, see "FLASH Specification" in the 9.0, "Applications" on page 85 of this design manual. Once this is complete the PC will jump to address 0x410 and start executing the firmware code. See Firmware Manuals for specific firmware load options at boot.

7.3 Timing Architecture and Mode Selection at Power-Up

The ZL38004 requires an external clock source connected to one of the following combinations of OSCi, OSCo and PCM_CLKi for normal operation. Figure 35 illustrates the ZL38004 functional clock architecture and examples of valid clock combinations are described as follows:

- ZL38004 Timing Master with external parallel mode crystal. This option requires that a parallel mode crystal be connected across OCSi and OCSo, see "Crystal Oscillator Specification" in the "Applications" of this design manual. Input pin PCM_CLKi is connected to ground (logic low) and PCM_LBCi should be connected to ground if it is not used. All master timing originates from the crystal. PCM Port can operate with slave timing (PCM_LBCi as external clock reference) or internal master timing. PCM Port One and the I²S port may operate with master or slave timing.
- 2. ZL38004 Timing Master with external oscillator. This option requires that an external 3.3 V TTL clock signal (V_{IH} min = 2.0 V & V_{IL} max = 0.8 V) be connected to input pin OSCi, see AC/DC Electrical Characteristics and "Clock Oscillator" section of this design manual. Input pin PCM_CLKi is connected to ground (logic low), OSCo must be left open and PCM_LBCi should be connected to ground if it is not used. All master timing originates from an external oscillator. PCM Port can operate with slave timing (PCM_LBCi as external clock reference) or internal master timing. PCM Port One and the I²S port may operate with master or slave timing.
- 3. ZL38004 Timing Slave with PCM_CLKi external clock and no external crystal or oscillator. This option requires that the ZL38004 be a digital audio port timing slave to another device in the application. A 2048, 4096, 8192 or 16384 kHz 3.3 V TTL clock reference signal from the timing source must be connected to input pin PCM_CLKi. An external crystal or oscillator is not required and input pin PCM_LBCi must be connected to ground (logic low). The slave timing reference for PCM Port in this example is PCM_CLKi so Timing Modes 2 and 5 (Flexible Clocks) cannot be used. PCM Ports Zero, One and the I²S port may operate with master or slave timing.
- 4. **ZL38004 Timing Slave with PCM_CLKi external clock and external crystal or oscillator.** This option, with PCM_LBCi connected to ground (logic low), is redundant. Use option 5 below.
- 5. ZL38004 Timing Slave with low bit rate clock (PCM_LBCi) and external crystal or oscillator. This option requires that the ZL38004 be a digital audio port timing slave to another device in the application. A (64 kHz ≤ frequency ≤ 16384 kHz) 3.3 V TTL clock reference signal from the timing source must be connected to input pin PCM_LBCi. In order for the APLL to have a reference clock a parallel mode crystal must be connected across OCSi and OCSo (see "Crystal Oscillator Specification" section of this design manual) or an external oscillator must be connected to OSCi (see AC/DC Electrical Characteristics and "Clock Oscillator" section of this design manual). Input pin PCM_CLKi must be connected to ground (logic low). PCM Ports Zero, One and the I²S port may operate with master or slave timing.

In order for the ZL38004 to function normally the APLL shown in Figure 35 must be locked to a stable reference as described by examples 1 to 5 above. This reference may come from either the OSC circuit or pin PCM_CLKi. If PCM_CLKi is selected, the input clock frequencies must be 2048, 4096, 8192 or 16384 kHz, which are compatible with the Selectable Divider values in the APLL feedback path to produce a 400 MHz output clock. The OSC circuit clock signal must be one of the values listed in Table 24 for the same reason. The APLL reference and feedback divider settings are selected during the power-on reset through GPIO[4:0]. This is discussed further on in this section.

The 400 MHz APLL output clock is divided by 4 to produce the 100 MHz internal MCLK, which is used to clock the DSP Core and internal peripheral functions. The 400 MHz clock is also the reference for the Timing Generator block, which generates a master clock for the CODEC[1:0] and ZL38004 digital audio interface ports (PCM Port and I²S). The Master/Slave (M/S) selection bits for these interface ports are found in the port control register sections of the application specific Firmware Manual.

Figure 35 - ZL38004 Master/Slave Timing Selection and Clock Distribution

The state of pins GPIO[4:0] selects the APLL timing reference for the ZL38004 immediately after power-on reset when pin RST goes high. The relationship between timing options and GPIO[4:0] states is shown in Table 24.

GPIO[4:0]	Clock Source					
Binary (Hex)	Source Pin	Freq (MHz)				
00000 (0x00)	OSCi	20.0				
00001 (0X01)	OSCi	25.0				
00010 (0X02)	OSCi	2.048				
00011 (0X03)	OSCi	4.096				
00100 (0X04)	OSCi	8.192				
00101 (0X05)	OSCi	12.288				
00110 (0X06)	OSCi	16.384				
00111 (0X07)	OSCi	24.576				
01000 (0X08)	PCM_CLKi	2.048				
01001 (0X09)	PCM_CLKi	4.096				
01010 (0X0A)	PCM_CLKi	8.192				
01011 (0X0B)	16.384					
01100 (0X0C) to	0 11111 (0X1F) inclu	sive - Reserved.				

Table 24 - ZL38004 Timing Reference Selection at Power-up

The state of GPIO[10:0] is also latched into the GPIO at Start-Up Status Register immediately after the completion of the power-up reset cycle (RST pin high). The GPIO states will not be latch into this register again until after the ZL38004 is reset again and pin RST returns high. This register is different from the GPIO status register used during normal operation (when RST is high), see Firmware Manual.

8.0 **AC/DC Electrical Characteristics**

Absolute Maximum Ratings¹

	Parameter	Symbol	Min.	Max.	Units
1	I/O Supply Voltage ²	V _{DD_IOmax}	-0.5	5.0	V
2	Core Supply Voltage ³	V _{DD_CRmax}	-0.5	1.5	V
3	Input Voltage ⁴	Vi	-0.5	7.0	V
4	Continuous Current at Digital Outputs	۱ _۵		15	mA
5	Package Power Dissipation	PD		1	W
6	Storage Temperature	Τ _S	-55	+125	°C

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

2. Includes $V_{DD}IO$ and $V_{DD}OSCIO$.

3. Includes V_{DD}^{--} CORE, V_{DD}^{--} OSC, AV_{DD}APLL, DV_{DD}APLL, V_{DD}DPLL, C1_AV_{DD} and C0_AV_{DD}.

4. All inputs are 5 voltage tolerant.

Recommended Operating Conditions¹

	Characteristics	Sym.	Min.	Typ. ²	Max.	Units
1	I/O Supply Voltages ³	V _{DD_IO}	3.0	3.3	3.6	V
2	Core Supply Voltage ⁴	$V_{DD_{CORE}}$	1.14	1.2	1.26	V
3	Codec Supply Voltage ⁵	V _{DD_CODEC}	1.14	1.2	1.26	V
4	Input Voltage	V _{I_5V}	0	3.3	5.5	V
5	Operating Temperature	T _{OP}	-40	25	+85	°C

1. Voltages are referenced to their respective ground (e.g., AV_{DD}APLL w.r.t. AV_{SS}APLL) unless otherwise stated.

2. Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.

3. Includes $V_{\text{DD}}\text{IO}$ and $V_{\text{DD}}\text{OSCIO}.$

4. Includes $V_{DD}CORE$, $V_{DD}OSC$, $AV_{DD}APLL$, $DV_{DD}APLL$ and $V_{DD}DPLL$. 5. Includes C1_AV_DD and C0_AV_DD.

DC Electrical Characteristics¹

	Characteristics	Sym.	Min.	Typ. ²	Max. ⁷	Units	Notes/Conditions
1	I/O Supply Current	I _{DD_IO}		4	5	mA	Outputs unloaded
2	Core Supply Current (8 KH Sampling)	I _{DD_CORE}		8	11	mA	Based on 30% DSP load
3	Core Supply Current (16 kHz Sampling)	I _{DD_CORE}		33	35	mA	Based on 100% DSP load
4	APLL Supply Current	I _{DD_APLL}		2.5	3	mA	
5	Codec Supply Current	I _{DD_CODEC}		5	6	mA	
6	Quiescent Current	I _{DDQ}		0.25	3	mA	Worst case is max V _{DD} and +85°C
7	Power Consumption	P _C		55	73	mW	PCM Ports 0 & 1 Slaves at 2048 KB/s
8	Input High Voltage	V _{IH}	2.0			V	All digital input
9	Input Low Voltage	V _{IL}			0.8	V	All digital inputs
10	Input Leakage (input pins) ³	١ _{١L}			5	μA	$0 \leq V_{IN} \leq 3.6 \ V$
11	Input Leakage (Bidirectional pins) ³	I _{BL}			5	μA	$0 \le V_{IN} \le 3.6 \ V$
12	Weak Pull-up Current	I _{PU}		-65		μA	Input at 0 V
13	Weak Pull-down Current	I _{PD}		65		μA	Input at VDD_IO
14	Input Pin Capacitance	CI		5		pF	
15	Output High Voltage	V _{OH}	2.4			V	At 2 mA ⁴ At 4 mA ⁵ At 8 mA ⁶
16	Output Low Voltage	V _{OL}			0.4	V	At 2 mA ⁴ At 4 mA ⁵ At 8 mA ⁶
17	Output High Impedance Leakage	I _{OZ}			5	μA	$0 \leq V_{IN} \leq 3.6 \ V$
18	Output & Input/Tristate Output Pin Capacitance	C _O		5		pF	
19	Junction-to-Ambient Thermal Resistance (100 pin LQFP Package)	Θ _{J-A}		40		°C/W	0 lfm air flow (natural convection airflow only)
20	Junction-to-Ambient Thermal Resistance (96 pin CABGA Package)	Θ _{J-A}		52.7		°C/W	0 lfm air flow (natural convection airflow only)

1. Voltages are referenced to their respective ground (e.g., AV_{DD}APLL w.r.t. AV_{SS}APLL) unless otherwise stated.

2. Typical figures are at 25°C at typical recommended voltages and are for design aid only: not guaranteed and not subject to production testing.

3. Maximum leakage on pins (input, output or high impedance state) is over an applied voltage (VIN).

4. 2 mA drive rating on JTAG output, TDO.

5. 4 mA drive rating on GPIOs and UART.

6. 8 mA drive rating on PCM Port interfaces, Master and Slave SPI interfaces, and I²S interface.

7. Worst case is max V_{DD} and +85°C

AC Electrical Characteristics - CODEC ADC Parameters[†]

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	ADC $\Delta\Sigma$ converter full scale input level (9 dBm0)	V _{iFS}		806.4		mVppd	ADC code = ±32767 linear.
2	ADC $\Delta\Sigma$ converter 0 dBm0 input level	V _{i0L}		286.1		mVppd	ADC code = ±11626 linear.
3	ADC $\Delta\Sigma$ converter 0dBm0 level accuracy (Notes 1 & 2)	LA _{ADC}	-0.4		+0.4	dB	Excludes Line Amp external component variation and Mic Amp gain accuracy. 1020 Hz test tone.
4	Mic Amp gain	G _M		0 6.0 12.0 18.0 24.0 30.0		dB	
5	Mic Amp Gain Accuracy for gains of 0, 6 and 12 dB	GA _{M1}	-0.25		+0.25	dB	See Note 1. 1020 Hz test tone.
6	Mic Amp Gain Accuracy for gains of 18, 24 and 30 dB	GA _{M2}	-0.40		+0.40	dB	See Note 1. 1020 Hz test tone.
7	Mic Amp mode input resistance to ground	R _i	11.4	15	19.2	KΩ	At each of C0/1_ADCi+/
8	Input Capacitance to ground	C _i		16		pF	At each of C0/1_ADCi+/ Mic or Line Amp mode.
9	Allowable capacitive load to ground	CL			25	pF	At each of C0/1_BFo+/ Mic or Line Amp mode.
10	Input common-mode voltage tolerance	V _{CMT}			250	mVpp	Mic and Line Amp gains = 0 to 12 dB. 180 Hz test tone.
11	Power supply rejection ratio (Note 3)	PSSR		70		dB	20 Hz - 100 kHz, 100 mVpp positive supply noise.

† Characteristics are over recommended operating conditions unless otherwise stated.

[‡] Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: When the Mic Amp is enabled, the total ADC path accuracy is the sum of the $\Sigma\Delta$ converter accuracy (LA_{ADC}) and the Mic Amp gain accuracy (GA_{M1} or GA_{M2}).

Note 2: When the Line Amp is enabled, the total ADC path accuracy is the sum of the $\Sigma\Delta$ converter accuracy (LA_{ADC}) and the gain accuracy resulting from external component variations.

Note 3: The voltage measured across BIAS_RF+/- and tolerance on this voltage are included in the ADC $\Delta\Sigma$ converter 0 dBm0 level and accuracy parameters, as well as the DAC 0 dBm0 output level and accuracy parameters. This parameter is not production tested.

AC Electrical Characteristics - CODEC ADC ITU G.712 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	Sample Rate	f _S		8		KS/s	3.072 MHz CODEC Clock.
2	Frequency Response: 0 to 60 Hz 100 to 199 Hz 200 Hz 201 to 299 Hz 300 to 3000 Hz 3001 to 3200 Hz 3201 to 3399 Hz 3400 Hz 4000 Hz 4600 to 72000 Hz	f _R	-3 -3 -0.25 -0.25 -0.35 -0.35		-30 0 0.25 0.25 0.25 0.25 0.25 0 0 -14 -32	dB	Gain relative to absolute gain at 1020 Hz. Analog input = 0 dBm0. Input buffer gain = 0 dB. High Pass Filter Enable bit C0/1AHFEn = 1. DC Blocking Frequency bits C0/1ADCB[1:0] = 10 or 11. Includes external AC decoupling.
3	Group Delay	GD			360	μS	Analog input = -10 dBm0. Measured at frequency of minimum delay.
4	Group Delay Distortion: 500 to 600 Hz 600 to 1000 Hz 1000 to 2600 Hz 2600 to 2800 Hz	GDD			750 380 130 750	μS	Analog input = -10 dBm0. Relative to frequency of minimum delay. Includes external AC decoupling.
5	Total Idle Channel Noise μ-law C-message A-law Psophometric	N _{IC}		-85 -80	-75 -70	dBm0C dBm0p	Analog input = 0 Vrms Input buffer gain = 0 to 12 dB. DAC input is G.711 quiet code with fixed sign bit.
6	Single Tone Idle Channel Noise: 300 to 3400 Hz Psophometric 10 to 4000 Hz unweighted	N _{ST}		-94 -94	-75 -66	dBm0p dBm0	Analog input = 0 Vrms Input buffer gain = 0 to 30 dB. DAC input is G.711 quiet code with fixed sign bit.
7	Single Frequency Distortion	D _{SF}		-94	-80	dB	Analog input = 0 dBm0, single frequency 700 to 1100 Hz. Input buffer gain = 0 to 12 dB. Digital output 300 to 3400 Hz each frequency other than input frequency.
8	Signal to total distortion: Analog input = -45 dBm0 Analog input = -40 dBm0 Analog input = -30 dBm0 Analog input = 0 dBm0	STD	24 34 40 40			dB	Analog input = 1020 Hz. Input buffer gain = 0 to 12 dB. Total distortion measured using psophometric weighting. Digital input is G.711 quiet code.

AC Electrical Characteristics - CODEC ADC ITU G.712 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
9	Gain tracking: +3 to -40 dBm0 -40 to -50 dBm0 -50 to -55 dBm0	GT	-0.1 -0.1 -0.35		0.1 0.1 0.35	dB	Relative to digital output for analog input = - 10 dBm0. Analog input = 1020 Hz. Input buffer gain = 0 to 12 dB.
10	Intrachannel crosstalk	XTIA		-90	-70	dB	From DAC of same CODEC. Aggressor digital input = 0 dBm0 at 1020 Hz. Victim analog input = 0 Vrms, input buffer gain = 30 dB. Unrelated CODEC analog input = 0 Vrms, digital input is G.711 quiet code.
11	Interchannel crosstalk from ADC of other CODEC	XT _{IR1}		-90	-70	dB	Aggressor CODEC: ADC input = 0 dBm0 at 1020 Hz, 0 dB input buffer gain; DAC input is G.711 quiet code. Victim CODEC: ADC input = 0 Vrms with 30 dB input buffer gain; DAC input is G.711 quiet code.
12	Interchannel crosstalk from DAC of other CODEC	XT _{IR2}		-90	-70	dB	Aggressor CODEC: DAC input = 0 dBm0 at 1020 Hz, ADC input = 0 Vrms with 0 dB input buffer gain. Victim CODEC: ADC input = 0 Vrms with 30 dB input buffer gain; DAC input is G.711 quiet code.

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: ADC 16-bit output is converted to 8-bit G.711 A-law or $\mu\text{-law}.$

AC Electrical Characteristics - CODEC ADC ITU G.722 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
1	Sample Rate	f _S		16		KS/s	3.072 MHz CODEC Clock.
2	Frequency response: 0 to 50 Hz 50 Hz 100 Hz 6400 Hz 7000 Hz 8000 Hz >9000 Hz	f _R	-0.65 -0.5 -0.5 -1.5		0 0.5 0.5 0.5 -25 -50	dB	Gain relative to absolute gain at 1020 Hz. Analog input = 0 dBm0. Input buffer gain = 0 dB. High Pass Filter Enable bit C0/1AHFEn = 0. DC Blocking Frequency bits C0/1ADCB[1:0] = 10 or 11. Includes external AC decoupling.
3	Group delay	GD			360	μS	Analog in = -10 dBm0. Measured at frequency of minimum delay.
4	Group delay distortion: 50 to 100 Hz 100 to 300 Hz 300 to 4000 Hz 4000 to 6400 Hz 6400 to 7000 Hz	GDD			2.0 0.5 0.125 0.5 1.0	ms	Analog input = -10 dBm0. Relative to frequency of minimum delay. Includes external AC decoupling.
5	Total idle channel noise	N _{IC}		-87	-74	dBm0	Measure 50 to 7000 Hz unweighted. Analog input = 0 Vrms Input buffer gain = 0 to 12 dB. DAC input is 16 bits all zeros.
6	Single tone idle channel noise	N _{ST}		-102	-73	dBm0	Any single tone from 10 to 8000 Hz unweighted. Analog input = 0 Vrms Input buffer gain = 0 to 30 dB. DAC input is 16-bit all zeros.
7	Signal to total distortion at 1020 Hz versus input level: Analog input = -56 dBm0 Analog input = -21 dBm0 Analog input = -11 to +8 dBm0	SDR1	18 53 63			dB	Measure total distortion from 50 to 7000 Hz unweighted. Input buffer gain = 0 to 12 dB. DAC input is 16 bits all zeros.
8	Signal to total distortion at 6010 Hz versus input level: Analog input = -56 dBm0 Analog input = -21 to +8 dBm0	SDR2	18 53			dB	Measure 50 to 7000 Hz unweighted. Input buffer gain = 0 to 12 dB. DAC input is 16 bits all zeros.

AC Electrical Characteristics - CODEC ADC ITU G.722 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
9	Signal to total distortion versus frequency: Analog input = 50 to 100 Hz Analog input = 100 to 4000 Hz Analog input = 6000 Hz Analog input = 7000 Hz	SDR3	58 63 60 58			dB	Measure 50 to 7000 Hz unweighted. Analog input = -10 dBm0. Analog input gain = 0 to 12 dB. Test frequency chosen to avoid simple harmonic relationship with 16 kHz. DAC input is 16 bits all zeros.
10	Gain tracking: +9 to -46 dBm0 -46 to -56 dBm0 -56 to -61 dBm0	GT	-0.1 -0.25 -0.75		0.1 0.25 0.75	dB	Relative to the digital output for analog input = -10 dBm0. Analog input = 1020 Hz. Input buffer gain = 0 to 12 dB.
11	Intrachannel crosstalk	XTIA		-92	-70	dB	From DAC of same CODEC. Aggressor digital input = 6 dBm0 at 1020 Hz. Victim analog input = 0 Vrms, input buffer gain = 30 dB. Unrelated CODEC is analog input = 0 Vrms, digital input = 16 bits all zeros.
12	Interchannel crosstalk from ADC of other CODEC	XT _{IR1}		-90	-76	dB	Aggressor CODEC: ADC input = 6 dBm0 at 1020 Hz, 0 dB input buffer gain, DAC input = 16 bits all zeros. Victim CODEC: ADC input = 0 Vrms with 30 dB input buffer gain, DAC input = 16 bits all zeros.
13	Interchannel crosstalk from DAC of other CODEC	XT _{IR2}		-90	-76	dB	Aggressor CODEC: DAC input = 6 dBm0 at 1020 Hz. ADC input = 0 Vrms with 0 dB input buffer gain. Victim CODEC: ADC input = 0 Vrms with 30 dB input buffer gain, DAC input = 16 bits all zeros.

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: ADC 16-bit output is converted into 14 bits (G.722).

AC Electrical Characteristics - CODEC DAC Parameters[†]

1							
	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	DAC full scale output level (9 dBm0)	V _{DACFS}		1200		mVppd	DAC code = ±32767 linear.
2	DAC 0 dBm0 output level	V _{DAC0}		425.8		mVppd	DAC code = ±11626 linear.
3	DAC 0dBm0 output level accuracy (Note 1)	LA _{DAC}	-0.5		+0.5	dB	DAC code =
4	Load Resistance	R _L	10			KΩ	Between C0/1_DACo+ and C0/1_DACo See Figures 65 and 66.
5	Allowable capacitive load to ground	CL			25	pF	At each of C0/1_DACo+/ Mic or Line Amp mode.
6	Power supply rejection ratio	PSSR	50	75		dB	20 Hz - 100 kHz, 100 mVpp positive supply noise.
7	Bias Reference Voltage	V _{Bias}		839		mV	Measured across pins BIAS_RF+ and BIAS_RF+.
8	Common Mode Bias Voltage	V _{CMB}		556		mV	Measured across pins BIAS_VCM and C0_AV _{SS} .

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: The total DAC path level accuracy is the sum of the converter gain accuracy (LA_{DAC}) and the gain accuracy resulting from external component variations. See Figure 66.

AC Electrical Characteristics - CODEC DAC ITU G.712 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
1	Sample Rate	f _S		8		KS/s	3.072 MHz CODEC Clock.
2	Frequency response: 0 to 200 Hz 201 to 3000 Hz 3001 to 3200 Hz 3201 to 3399 Hz 3400 Hz 3600 Hz 4000 Hz 4600 to 72000 Hz	f _R	-0.20 -0.3 -0.15 -0.3		0 0.20 0.250. 15 0 -14 -28	dB	Gain relative to the 1020 Hz absolute gain. Digital input = 0 dBm0. Includes external AC coupling. If AC coupling is excluded, the response is low pass.
3	Group delay	GD			240	μs	Digital input = -10 dBm0. Measured at frequency of minimum delay.
4	Group delay distortion: 500 to 600 Hz 600 to 1000 Hz 1000 to 2600 Hz 2600 to 2800 Hz	GDD			750 380 130 750	μs	Digital input = -10 dBm0. Relative to frequency of minimum delay. Includes external AC coupling.
5	Total idle channel noise: μ-law C-message A-law Psophometric	N _{IC}		-80 -80	-75 -75	dBm0C dBm0p	Digital input = G.711 quiet code with fixed sign bit. Analog input = 0 Vrms.
6	Single tone idle channel noise: 300 to 3400 Hz C-message 300 to 3400 Hz Psophometric	N _{ST}		-83 -83	-73 -53	dBm0C dBm0p	Digital input = G.711 quiet code with fixed sign bit. Analog input = 0 Vrms.
7	Single frequency distortion	D _{SF}		-50	-46	dBm0	Digital input = 0 dBm0 at 700 to 1100 Hz. Analog output = 300 to 3400 Hz each frequency other than input frequency.
8	Signal to total distortion: Analog input = -45 dBm0 Analog input = -40 dBm0 Analog input = -30 dBm0 Analog input = 0 dBm0	STD	25 33 40 40			dB	Digital input = 1020 Hz. Measure total distortion in the analog output using psophometric weighting.
9	Gain tracking: +3 to -40 dBm0 -40 to -50 dBm0 -50 to -55 dBm0	G _T	-0.1 -0.2 -0.2		0.1 0.2 0.2	dB	Relative to the analog output for digital input = -10 dBm0. Digital input = 1020 Hz.

AC Electrical Characteristics - CODEC DAC ITU G.712 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
10	Intrachannel crosstalk	XTIA		-104	-80	dB	From ADC of same CODEC. Aggressor analog input = 0 dBm0 at 1020 Hz with input buffer gain = 0 dB. Victim digital input is G.711 quiet code with fixed sign bit. Unrelated CODEC analog input = 0 Vrms, digital input = G.711 quiet code with fixed sign bit.
11	Interchannel crosstalk from ADC of other CODEC	XT _{IR1}		-109	-85	dB	Aggressor analog input = 0 dBm0 at 1020 Hz with 0 dB gain. Victim CODEC analog input = 0 Vrms with 0 dB gain. All digital inputs are G.711 quiet code with fixed sign bit.
12	Interchannel crosstalk from DAC of other CODEC	XT _{IR2}		-111	-85	dB	Aggressor digital input = 0 dBm0 at 1020 Hz. Victim CODEC digital input is G.711 quiet code with fixed sign bit. All analog inputs are 0 Vrms with 0 dB gain.

† Characteristics are over recommended operating conditions unless otherwise stated.

 \ddagger Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: DAC input is converted from 8-bit A/ μ -law to 16 bits.

AC Electrical Characteristics - CODEC DAC ITU G.722 Mode Parameters[†]

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
1	Sample Rate	f _S		16		KS/s	3.072 MHz CODEC Clock.
2	Frequency response: 0 to 50 Hz 100 Hz 6400 Hz 7000 Hz 8000 Hz 9000 Hz >14000 Hz	f _R	-0.5 -0.5 -1.5		0 0.5 0.5 1.5 -25 -50 -70	dB	Gain relative to the 1020 Hz absolute gain. Digital input = 0 dBm0. Includes external AC coupling. If AC coupling is excluded, the response is low pass.
3	Group delay	GD			240	μS	Digital in = -10 dBm0. Measured at frequency of minimum delay.
4	Group delay distortion: 50 to 100 Hz 100 to 300 Hz 300 to 4000 Hz 4000 to 6400 Hz 6400 to 7000 Hz	GDD			2.0 0.5 0.125 0.5 1.0	ms	Digital input = -10 dBm0. Relative to frequency of minimum delay. Includes external AC coupling.
5	Total idle channel noise: 50 to 7000 Hz unweighted 50 to 20000 Hz unweighted	N _{IC}		-80 -74	-75 -63	dBm0	Digital input = 16-bit all zeros. Analog input = 0 Vrms.
6	Single tone idle channel noise: 10 to 8000 Hz 8000 to 100000 Hz	N _{ST}		-91 -95	-73 -70	dBm0	Digital input = 16-bit all zeros. Analog input = 0 Vrms.
7	Signal to total distortion versus digital input level: Digital input = -56 dBm0 Digital input = -21 dBm0 Digital input = -11 to +8 dBm0	SDR1	18 53 63			dB	Measure total distortion from 50 to 7000 Hz unweighted. Analog input = 0 Vrms.
8	Signal to total distortion versus digital input level: Digital input = -56 dBm0 Digital input = -21 to +8 dBm0	SDR2	18 53			dB	Measure 50 to 7000 Hz unweighted. Analog input = 0 Vrms.
9	Signal to total distortion versus frequency: Digital input = 50 to 100 Hz Digital input = 100 to 4000 Hz Digital in = 6000 Hz Digital in = 7000 Hz	SDR3	58 63 60 58			dB	Digital input = -10 dBm0. Measure 50 to 7000 Hz unweighted. Analog input = 0 Vrms. Test frequency chosen to avoid simple harmonic relationship with 16 kHz.
10	Gain tracking: +9 to -46 dBm0 -46 to -56 dBm0 -56 to -61 dBm0	GT	-0.1 -0.2 -0.25		0.1 0.2 0.25	dB	Relative to the analog output for digital input = -10 dBm0. Digital input = 1020 Hz.

	Characteristic (Note 1)	Sym.	Min.	Тур.‡	Max.	Units	Notes/Conditions
11	Intrachannel crosstalk	XTIA		-100	-85	dB	From ADC of same CODEC. Aggressor analog input = 6 dBm0 at 1020 Hz with 0 dB input gain. All digital inputs = 16-bit all zeros. Unrelated CODEC analog input = 0 Vrms.
12	Interchannel crosstalk from ADC of other CODEC	XT _{IR1}		-110	-85	dB	Aggressor analog input = 6 dBm0 at 1020 Hz. Victim CODEC analog input = 0 Vrms. All analog input gains = 0 dB. All digital inputs = 16-bit all zeros.
13	Interchannel crosstalk from DAC of other CODEC	XT _{IR2}		-108	-85	dB	Aggressor digital input = 6 dBm0 at 1020 Hz. Victim CODEC digital input = 16-bits all zeros. All analog input = 0 Vrms. All digital input gain = 0 dB.

† Characteristics are over recommended operating conditions unless otherwise stated.

[‡] Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: DAC input is converted from 14-bit (G.722) to 16 bits.

AC Electrical Characteristics - CODEC DAC 44.1 and 48 kHz Mode Parameters[†]

	Characteristic (Note)	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	Sample Rate: 3.072 MHz CODEC Clock 2.8224 MHz CODEC Clock	f _S		48 44.1		KS/s	
2	Signal to Noise Ratio	SNR	85			dB	
3	Frequency Response: Sample rate = 48 KS/s Sample rate = 44.1 KS/s	f _R	20 18		20000 18300	Hz	3 dB Cutoff including effect of external AC coupling. If AC coupling is excluded, the response is low passe.
4	Total Harmonic Distortion	THD			0.02	%	Digital input = 0 dBm0. Bandwidth = 20 kHz
5	Group Delay	GD			1.0	ms	

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

ADC is not functional.

AC Electrical Characteristics - External Oscillator Requirements[†]

	Characteristic	Sym.	Min.	Тур.	Max.	Units	Notes/Conditions
1	External Oscillator Frequency Accuracy	A _{OSC}	-50		50	ppm	
2	External Oscillator Duty Cycle	DC _{OSC}	40		60	%	

+ Characteristics are over recommended operating conditions unless otherwise stated.

AC Electrical Characteristics - Output Jitter Generation (Unfiltered)[†]

	Characteristics	Max.	Units	Notes/Conditions
1	Jitter on PPCM_CLKo & SPCM_CLKi/o	4	ns _{pp}	

† Characteristics are over recommended operating conditions unless otherwise stated.

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	PCM_CLKi, PCM_LBCi Input Clock Period	t _{SCPS}	54			ns	
2	PCM_CLKi, PCM_LBCi Input Clock High Time	t _{SCHS}	27			ns	
3	PCM_CLKi, PCM_LBCi Input Clock Low Time	t _{SCLS}	27			ns	
4	PCMENA1/2 Input Strobe Start Delay	t _{SSSDS}	-10		10	ns	See Note 1
5	PCMENA1/2 Input Strobe Finish Delay	t _{SSFDS}	-10		10	ns	
6	PCMi Input Data Sampling Setup	t _{SDSS}	2			ns	
7	PCMi Input Data Sampling Hold	t _{SDHS}	5			ns	
8	PCMo Output Data Delay (Active to Active)	t _{SDDS}	0		10	ns	C _L = 30 pF
t							

AC Electrical Characteristics - PCM Port SSI Slave Mode Timing[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: When PCM Port 1 Control Register bits PCMfpS[1:0] = 00 (active frame pulse straddles the frame boundary) subtract 0.5*PCM_CLK period from the parameter value. When PCM Port Control Register bits PCMfpS[1:0] = 10 (active frame pulse starts one PCM clock cycle before the frame boundary) subtract a PCM_CLK period from the parameter value.

Figure 37 - PCM SSI Slave Mode Timing Diagram

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	PCM_CLKo Output Clock Period	t _{SCPM}	53		7820	ns	
2	PCM_CLKo Output Clock High Time	t _{SCHM}	25			ns	
3	PCM_CLKo Output Clock Low Time	t _{SCLM}	25			ns	
4	PCMENA1/2 Output Strobe Start Delay	t _{SSSDM}	-3.5		7.5	ns	See Note 1
5	PCMENA1/2 Output Strobe Finish Delay	t _{SSFDM}	-3.5		7.5	ns	See Note 2
6	PCMi Input Data Sampling Setup	t _{SDSM}	13			ns	
7	PCMi Input Data Sampling Hold	t _{SDHM}	4			ns	
8	PCMo Output Data Delay (Active to Active)	t _{SDDM}	-6		6	ns	C _L = 30 pF

AC Electrical Characteristics - PCM Port SSI Master Mode Timing[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: When PCM Port Control Register bits PCMfpS[1:0] = 00 (active frame pulse straddles the frame boundary) subtract 0.5*PCM_CLK period from the parameter value. When PCM Port Control Register bits PCMfpS[1:0] = 10 (active frame pulse starts one PCM clock cycle before the frame boundary) subtract a PCM_CLK period from the parameter value.

Note 2: When PCM Port Control Register bits PCMSSISF[1:0] = 01 (strobe inactive 1/2 clock cycle after the last data bit is inactive) add 0.5*PCM_CLK period from the parameter value. When PCM Port Control Register bits PCMSSISF[1:0] = 10 (strobe inactive 1/2 clock cycle before the last data bit is inactive) subtract 0.5*PCM_CLK period the parameter value.

Figure 38 - PCM SSI Master Mode Timing Diagram

AC Electrical Characteristics - PCM Port PCMFP and PCM_CLKi in TDM Slave Mode[†]

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	PCMFP Input Frame Pulse Width	t _{FPIW}	50			ns	
2	PCMFP Input Frame Pulse Setup Time	t _{FPIS}	2			ns	
3	PCMFP Input Frame Pulse Hold Time	t _{FPIH}	5			ns	
4	PCM_CLKi, PCM_LBCi Input Clock Period	t _{CKIP}	54			ns	
5	PCM_CLKi, PCM_LBCi Input Clock High Time	t _{СКІН}	27			ns	
6	PCM_CLKi, PCM_LBCi Input Clock Low Time	t _{CKIL}	27			ns	

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 40 - TDM - GCI PCMFP and PCM_CLKi, PCM_LBCi Input Timing

Figure 41 - TDM - McBSP PCMFP and PCM_CLKi, PCM_LBCi Input Timing

AC Electrical Characteristics - PCM Port TDM Slave Mode Timing †

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	PCMi Setup Time	t _{SIS}	2			ns	
2	PCMi Hold Time	t _{SIH}	5			ns	
3	PCMo Output Data Delay (Active to Active)	t _{SODSS}	0		10	ns	C _L = 30 pF

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 42 - TDM Slave Mode Timing Diagram (clock rate equals data rate)
$C_{1} = 30 \text{ pF}$

ns

6

-6

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	PCMi Setup Time	t _{SIS}	15			ns	
2	PCMi Hold Time	tsıн	15			ns	

t_{SIH}

^tSODSM

AC Electrical Characteristics - PCM Port TDM Master Mode Timing[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

PCMo Output Data Delay (Active to

3

Active)

[‡] Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 43 - TDM Master Mode Timing Diagram (clock rate equals data rate)

AC Electrical Characteristics - PCM Port TDM Mode Output Tristate Timing[†]

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	PCMo Delay - Active to High-Z PCMo Delay - High-Z to Active Slave Mode	t _{DZS} t _{ZDS}	0 0		15 15	ns ns	R _L = 1 k, C _L = 30 pF, See Note 1.
2	PCMo Delay - Active to High-Z PCMo Delay - High-Z to Active Master Mode	t _{DZM} t _{ZDM}	-6 -6		6 6	ns ns	

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: High impedance is measured by pulling the voltage to the appropriate rail with R_L , with timing corrected to remove the effect of C_L .

Figure 44 - Output Tristate Timing in TDM Slave Mode

Figure 45 - Output Tristate Timing in TDM Master Mode

AC Electrical Characteristics - PCM Port PCMFP and Output Clocks (TDM Master)[†]

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes
1	PCMFPOutput Pulse WidthPCM_CLKo = 16384 kHzPCM_CLKo = 8192 kHzPCM_CLKo = 4096 kHzPCM_CLKo = 2048 kHzPCM_CLKo = 1024 kHzPCM_CLKo = 512 kHzPCM_CLKo = 256 kHzPCM_CLKo = 128 kHz	t _{FPWO}	56 177 239 483 971 1948 3901 7807	61 122 244 488 977 1953 3906 7813	66 127 249 493 981 1958 3911781 7	ns	C _L = 30 pF
2	PCMFP Output Delay from the PCMFP falling edge to the frame boundary PCM_CLKo = 16384 kHz PCM_CLKo = 8192 kHz PCM_CLKo = 4096 kHz PCM_CLKo = 2048 kHz PCM_CLKo = 1024 kHz PCM_CLKo = 1024 kHz PCM_CLKo = 256 kHz PCM_CLKo = 128 kHz	t _{FODFO}	25 56 117 239 483 971 1948 3901		36 66 127 249 493 981 1958 3911	ns	C _L = 30 pF
3	PCMFP Output Delay from the frame boundary to the PCMFP rising edge PCM_CLKo = 16384 kHz PCM_CLKo = 8192 kHz PCM_CLKo = 4096 kHz PCM_CLKo = 2048 kHz PCM_CLKo = 1024 kHz PCM_CLKo = 512 kHz PCM_CLKo = 256 kHz PCM_CLKo = 128 kHz	t _{fodro}	25 56 117 239 483 971 1948 3901		36 66 127 249 493 981 1958 3911	ns	C _L = 30 pF
4	PCM_CLKo Output Clock Period PCM_CLKo = 16384 kHz PCM_CLKo = 8192 kHz PCM_CLKo = 4096 kHz PCM_CLKo = 2048 kHz PCM_CLKo = 1024 kHz PCM_CLKo = 512 kHz PCM_CLKo = 256 kHz PCM_CLKo = 128 kHz	t _{СКРО}	56 177 239 483 971 1948 3901 7807	61 122 244 488 977 1953 3906 7813	66 127 249 493 981 1958 3911781 7	ns	C _L = 30 pF

AC Electrical Characteristics - PCM Port PCMFP and Output Clocks (TDM Master)[†] (continued)

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes
5	PCM_CLKo Output High Time PCM_CLKo = 16384 kHz PCM_CLKo = 8192 kHz PCM_CLKo = 4096 kHz PCM_CLKo = 2048 kHz	t _{скно}	25 56 117		36 66 127	ns	C _L = 30 pF
	$PCM_CLK0 = 2048 \text{ kHz}$ $PCM_CLK0 = 1024 \text{ kHz}$ $PCM_CLK0 = 512 \text{ kHz}$ $PCM_CLK0 = 256 \text{ kHz}$ $PCM_CLK0 = 128 \text{ kHz}$		239 483 971 1948 3901		249 493 981 1958 3911		
6	PCM_CLKo Output Low Time PCM_CLKo = 16384 kHz PCM_CLKo = 8192 kHz PCM_CLKo = 4096 kHz PCM_CLKo = 2048 kHz PCM_CLKo = 1024 kHz PCM_CLKo = 512 kHz PCM_CLKo = 256 kHz PCM_CLKo = 128 kHz	t _{СКLО}	25 56 117 239 483 971 1948 3901		36 66 127 249 493 981 1958 3911	ns	C _L = 30 pF
7	PCM_CLKo Output Rise/Fall Time	t _{r/fCKO}	3		7	ns	C _L = 30 pF

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 46 - PCMFP and PCM_CLKo TDM Master Mode Timing

		j (•				-,	
	Characteristics	Sym.	Min.	Тур.∓	Max.	Units	Notes/Conditions
1	SPIS_CLK Clock Period	t _{SSCP}	40			ns	
2	SPIS_CLK Pulse Width High	t _{SSCH}	20	t _{SSCP} /2		ns	
3	SPIS_CLK Pulse Width Low	t _{SSCL}	20	t _{SSCP} /2		ns	
4	SPIS_MOSI Setup Time	t _{SSDS}	2			ns	
5	SPIS_MOSI Hold Time	t _{SSDH}	5			ns	
6	SPIS_CS Asserted to SPIS_CLK Sampling Edge	t _{sscc}	18	t _{SSCP} /2		ns	
7	SPIS_SCLK Driving Edge to SPIS_MISO Valid	t _{SSOD}			10	ns	C _L = 30 pF
8	SPIS_SCLK Driving Edge to SPIS_MISO Driven	t _{SSZD}	3		10	ns	C _L = 30 pF
9	SPIS_CS Falling Edge to SPIS_MISO Driven	t _{SSFD}	3		10	ns	C _L = 30 pF
10	SPIS_CS De-asserted to SPIS_MISO Tristate	t _{ssoz}	1		10	ns	C _L = 30 pF
11	SPIS_CS Pulse High	t _{SSCSH}	20	t _{SSCP} /2		ns	

AC Electrical Characteristics - Slave SPI Port Timing (see Figures 47, 48 and 49)[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 47 - Slave SPI Timing (SSCPHA = 0)

Figure 48 - Slave SPI Timing (SSCPHA = 1)

Figure 49 - Slave SPI Timing (Microwire mode)

	Characteristics	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	SPIM_CLK Clock Period	t _{MSCP}	40		333344	ns	Max. 25.0 MHz
2	SPIM_CLK Pulse Width High	t _{MSCH}	18		166672	ns	
3	SPIM_CLK Pulse Width Low	t _{MSCL}	18		166672	ns	
4	SPIM_MISO Setup Time	t _{MSDS}	6			ns	
5	SPIM_MISO Hold Time	t _{MSDH}	0			ns	
6	SPIM_CS_B Asserted to SPIM_CLK Sampling Edge	t _{MSCC}	18			ns	
7	SPIM_SCLK Driving Edge to SPIM_MOSI Valid	t _{MSOD}			5	ns	C _L = 30 pF
8	SPIM_CS_B Asserted to SPIM_MOSI Driven	t _{MSFD}	-10		0	ns	C _L = 30 pF
9	SPIM_CS_B De-asserted to SPIM_MOSI high impedance (See Note 2)	t _{MSOZ}	-17		0	ns	C _L = 30 pF
10	SPIM_CS[1:0] Pulse High (See Note 1)	t _{MSCSH}	18			ns	

AC Electrical Characteristics- Master SPI Timing (see Figures 50, 51)[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: The operation of this signal is controlled through the Master SPI Control Register.

Note 2: The minimum duration between the last edge of SPIM_CLK before SPIM_CS[1:0] becomes inactive and SPIM_MOSI becoming high impedance is 18 ns.

Figure 50 - Master SPI Timing (MSCPHA = 0)

Figure 51 - Master SPI Timing (MSCPHA = 1)

AC	Electrical	Characteristics	- Slave	l ² S	Timing [†]
----	------------	-----------------	---------	------------------	---------------------

	Characteristics		Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	I ² S_SCK Clock Period (Note1)	f _s = 48 kHz f _s = 8 kHz	t _{ISSCP}		651.04 3.91		ns μs	1/(32 x f _S)
2	I ² S_SCK Pulse Width High	f _s = 48 kHz f _s = 8 kHz	t _{ISSCH}	292.97 1.76		358.07 2.15	ns μS	0.45/(32 x f _S) 0.55/(32 x f _S)
3	I ² S_SCK Pulse Width Low	f _s = 48 kHz f _s = 8 kHz	t _{ISSCL}	292.97 1.76		358.07 2.15	ns μs	0.45/(32 x f _S) 0.55/(32 x f _S)
4	I ² S_SDi Setup Time		t _{ISDS}	2			ns	
5	I ² S_SDi/o (input) Setup Time (2 Dual Analog-to-Digital Conve	erters)	t _{ISDS}	2			ns	See Figure 20
6	I ² S_LRCK Setup Time		t _{ISDS}	2			ns	
7	I ² S_SDi Hold Time		t _{ISDH}	5			ns	
8	I ² S_SDi/o (input) Hold Time (2 Dual Analog-to-Digital Conve	erters)	t _{ISDH}	5			ns	See Figure 20
9	I ² S_LRCK Hold Time		t _{ISDH}	5			ns	
10	I ² S_SCK Falling Edge to I ² S_S Valid (2 Dual CODECs)	Di/o (output)	t _{ISOD}	3		17	ns	C _L = 30 pF See Figure 21

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: I^2S_SCK frequency is 32 x f_S, where f_S is the sampling frequency of the external converter.

Figure 52 - Slave I²S Timing

	Characteristics		Sym.	Min.	Тур. ‡	Max.	Units	Notes/Conditions
1	I ² S_MCLK Clock Period (Note 1)	f _s = 48 kHz f _s = 8 kHz	t _{IMMCP}		81.38 488.28		ns ns	1/(256 x f _S)
2	I ² S_MCLK Pulse Width High	f _s = 48 kHz f _s = 8 kHz	t _{IMMCH}	33.2 236.6		48.2 251.6	ns ns	$\begin{array}{l}(0.5/(256 \mbox{ x } f_{\rm S})) - 7.5 \\(0.5/(256 \mbox{ x } f_{\rm S})) + 7.5\end{array}$
3	I ² S_MCLK Pulse Width Low	f _s = 48 kHz f _s = 8 kHz	t _{IMMCL}	33.2 236.6		48.2 251.6	ns ns	$(0.5/(256 \text{ x f}_{\text{S}})) - 7.5$ $(0.5/(256 \text{ x f}_{\text{S}})) + 7.5$
4	I ² S_SCK Clock Period (Note 2)	f _s = 48 kHz f _s = 8 kHz	t _{IMSCP}		651.04 3.91		ns μs	1/(32 x f _S)
5	I ² S_SCK Pulse Width High	f _s = 48 kHz f _s = 8 kHz	t _{IMSCH}	318.0 1.95		333.0 1.96	ns μs	$\begin{array}{c} (0.5/(32 \ \text{x} \ \text{f}_{\text{S}})) \ \text{-} \ 7.5 \\ (0.5/(32 \ \text{x} \ \text{f}_{\text{S}})) \ \text{+} \ 7.5 \end{array}$
6	I ² S_SCK Pulse Width Low	f _s = 48 kHz f _s = 8 kHz	t _{IMSCL}	318.0 1.95		333.0 1.96	ns μs	(0.5/(32 x f _S)) - 7.5 (0.5/(32 x f _S)) + 7.5
7	I ² S_SDi Setup Time		t _{IMDS}	9			ns	
8	I ² S_SDi/o (input) Setup Time (Analog-to-Digital Converters)	2 Dual	t _{IMDS}	9			ns	See Figure 20
9	I ² S_SDi Hold Time		t _{IMDH}	0			ns	
10	I ² S_SDi/o (input) Hold Time (2 Analog-to-Digital Converters)	Dual	t _{IMDH}	0			ns	See Figure 20
11	I ² S_SCK falling to Edge to I ² S	_LRCK	t _{IMOD}	-7.5		7.5	ns	C _L = 30 pF
12	I ² S_SCK Falling Edge to I ² S_S (output) Valid (2 Dual CODEC	SDi/o S)	t _{IMOD}	-7.5		7.5	ns	C _L = 30 pF See Figure 21

AC Electrical Characteristics - Master I²S Timing[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Note 1: I^2S_MCLK frequency is 256 x f_S , where f_S is the sampling frequency of the external converter.

Note 2: I^2S_SCK frequency is 32 x f_S , where f_S is the sampling frequency of the external converter.

Figure 53 - I²S Master Clock (MCLK) Timing

Figure 54 - Master I²S Timing

AC Electrical Characteristics - UART Timing †

	Characteristics	Sym.	Min.	Тур. ‡	Max.	Units	Notes/Conditions
1	UART_Rx and UART_Tx bit width Baud rate = 9600 bps Baud rate = 115.2 kbps	t _{UP}		104.17 8.68		μs μs	
2	Time between two consecutive UART_Rx accesses	t _{UIA}	0				All baud rates

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 55 - UART_Rx Timing

Figure 56 - UART_Tx Timing

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes/Conditions
1	TCK Clock Period	t _{TCKP}	100			ns	
2	TCK Clock Frequency	f _{TCKF}			10	MHz	
3	TCK Clock Pulse Width High	t _{тскн}	20			ns	
4	TCK Clock Pulse Width Low	t _{TCKL}	20			ns	
5	TMS Set-up Time	t _{TMSS}	10			ns	
6	TMS Hold Time	t _{TMSH}	10			ns	
7	TDI Input Set-up Time	t _{TDIS}	20			ns	
8	TDI Input Hold Time	t _{TDIH}	60			ns	
9	TDO Output Delay	t _{TDOD}			20	ns	C _L = 30 pF
10	TRST pulse width	t _{TRSTW}	20			ns	
11	RST pulse width	t _{RSTW}	500			μS	

AC Electrical Characteristics - JTAG Port Timing[†]

† Characteristics are over recommended operating conditions unless otherwise stated.

‡ Typical figures are at 25°C and are for design aid only; not guaranteed and not subject to production testing.

Figure 57 - JTAG Test Port Timing

9.0 Applications

9.1 Power Supply

9.1.1 Power Sequencing

The ZL38004 requires external latch-up protection between the V_{DD}IO and V_{DD}CORE supplies. That is, the V_{DD}CORE voltage must not exceed V_{DD}IO voltage during power up and power down. Figure 58 illustrates two options (A & B) to meet this requirement. Option A uses a Schottky diode forward biased between V_{DD}1V2 (V_{DD}CORE) and V_{DD}IO. This ensures that the core voltage will never exceed the IO voltage by more than a few hundred millivolts, which is sufficient to meet the ZL38004 latch-up requirement.

Figure 58 - Latch-Up Prevention Circuit Options

Option B uses the Power Good (PG) output of the +3.3 V LDO regulator to enable the +1.2 V LDO regulator. During power up the PG signal will not enable the +1.2 V regulator until $V_{DD}IO$ reaches almost full nominal value (i.e., $V_{OnThreshold}$ = 80 to 100% of nominal voltage depending on the devices selected) plus a turn-on delay. During power down the PG signal will turn off the +1.2 V regulator when $V_{DD}IO$ drops below its $V_{OffThreshold}$ plus a turn-off delay.

There are no latch-up requirements for power sequencing between the +3.3 V IO or +1.2 V Core and +1.2 V Analog supplies.

9.1.2 Supply Isolation

An ZL38004 application should be designed with three separate isolated power planes as shown in Figure 59 (i.e., A: Core Power Plane; B: IO Power Plane; and C: CODEC Power Plane). Isolation is provided through separate voltage regulators that supply each plane, see also Figure 58. Each one of the Core supply pins ($V_{DD}CORE$, $V_{DD}OSC$, $AV_{DD}APLL$, $DV_{DD}APLL$ and $V_{DD}DPLL$) are further isolated from each other using inductors (L). The $V_{DD}OSCIO$ of the +3.3 V plane is isolated from the other IO supply pins using an inductor L as well.

The capacitors C are 0.1 μ F ceramic decoupling capacitors, which should be placed as close as possible to the V_{DD} pins to minimize impedance from V_{DD} to V_{SS}. Capacitors C1 are 1.0 μ F ceramic bypass capacitors. The value of Cout12A and additional capacitors from V_{System} to system ground are to be selected based on the system design requirements and selected voltage regulator stability requirements. Figure 59 also shows an example component number and manufacturer for L.

It should be noted that the isolation illustrated in Figure 59 may not be necessary for all applications. It is presented here as good engineering practice and a place to start. Also, the ground symbols used in Figure 59 should not be interpreted to mean that separate analog and digital ground planes are required for the ZL38004. A single (analog and digital) ground plan is adequate for the vast majority of applications. This is the case as long as the ground plane is homogeneous so that relatively large ground return currents are not forced through narrow channels.

Figure 59 - Power Supply Isolation

9.2 External Clock Requirements

In all modes of operation the ZL38004 requires an external clock source for the APLL, which is the source for internal timing signals including the 100 MHz MCLK. This external clock source may be either a crystal, crystal oscillator with a CMOS output or an external clock signal. The frequency of the APLL clock source may be any of the following: 2048, 4096, 8192, 12288, 16384, 20000, 24576 or 25000 kHz.

The accuracy of the external clock source is not critical for voice processing applications.

9.2.1 Crystal Oscillator Specification

Figure 60 - Crystal Application Circuit

The oscillator circuit that is created across pins OSCi and OSCo requires an external fundamental mode crystal that has a specified parallel resonance at one of the XTAL frequencies listed in Figure 60 with a load capacitance of C_L . Every oscillator circuit requires positive feedback (around 360 degrees of phase difference from output to input) to ensure that oscillations can build in the system. Every crystal has both a series and parallel resonance frequency of operation. The series resonant frequency (f_S) is determined from the motion parameters (Lm, Cm & Rm) of the crystal to be when XLm = -XCm resulting in a purely resistive circuit Rm and no phase change added to the circuit. Parallel resonance (f_P) is based on the series motion parameters Lm and Cm in parallel with Co. Co is the capacitance formed by the crystal, its mounting and lead interface. The effective value of Co must include the external capacitance in the circuit (C_L , C_{Pin} and C_{Trace}), which are illustrated in Figure 60. This is why parallel resonant crystals are always specified to operate at a specific F_P with a specific load. If the load changes f_P will be pulled off its intended frequency. Crystal manufacturers can provide data that will indicate the frequency deviation per pF of capacitance (ppm/pF) away from the ideal C_I for specific crystals.

Another effect of parallel resonance is a 90 degree phase shift. Therefore, the total phase shift in the circuit of Figure 60 is 180 degrees (inverter) + 90 degrees (parallel resonance) + 90 degrees (Load Capacitance C_L) = 360 degrees, which meets a basic requirement for oscillation.

Capacitors C1 in Figure 60 along with C_{Trace} and C_{Pin} make up the total load capacitance that the crystal will see. The two C1 capacitors are actually in series with the with Co of the crystal so the required load capacitance $C_L = (C'_L x C'_L)/(C'_L + C'_L)$ or $C'_L = 2C_L$. C_{Trace} and C_{Pin} are in parallel with C1 so they will reduce the required value of C1 = $C'_L - C_{Trace} - C_{Pin}$.

For example, if a crystal is selected that has a parallel resonance of 20.0 MHz with a C_L = 20.0 pF, then assuming typical values of C_{Pin} = 3.0 pf and C_{Trace} = 1.0 pf the following can be calculated:

C'L = 2CL = 2 x 20.0 = 40.0 pF; C1 = C'_L - C_{Trace} - C_{Pin} = 40.0 - 3.0 - 1.0 = 36.0 pF; Therefore: C1 = 36.0 pF.

The feedback resistor (R_f) biases the internal inverter in a high gain region, which ensure that there is a 180 degree phase difference between its input and output immediately after power up. An R_f = 1.0 M Ω is normally adequate.

It is important to make sure that the maximum drive level (crystal power dissipation) specified in the crystal design manual is not exceeded in the application circuit. Excessive power dissipation may result in unstable operation, accelerated aging rates and crystal failure. The crystal power dissipation (P_D) can be determined from the equation PD = Irms² x Rm, where a current probe is used to measure the Irms through the crystal during oscillation. An alternate method is to temporarily insert a sequence of resistors in series with the crystal until half the Vrms to ground, when the circuit is oscillating, is dropped across the resistor. The selected resistor value and voltage drop across it can be used to calculate the power that is being dissipated in the crystal ($P_D = 2Vrms^2/R$). Values of Rm normally range from 20 to 400 Ω .

Table 25 shows some crystals that may be used with the ZL38004.

20.0 MHz	Fox Electronics: FOXSD/200-20, ±50 ppm absolute, ±50 ppm (-10°C to +70°C), 20 pf, 32 Ω , 0.5 mW, HC49SD SMT holder.
25.0 MHz	Ecliptec: EC3SM-25.000M

 Table 25 - Recommended Crystals

9.2.2 Clock Oscillator

Figure 61 below illustrates the circuit that is used when the ZL38004 external clock source is a crystal oscillator. The output of the oscillator must be buffered to provide a nominal 3.3 V clock high signal relative to V_{SS} at OSCi (V_{IH} min = 2.0 V & V_{IL} max = 0.8 V), see DC Electrical Characteristics. Table 26 shows some crystal oscillators that may be used with the ZL38004.

Figure 61 - Crystal Oscillator Application Circuit

20.0 MHz	Raltron: COM2303-20.000, ±30 ppm (-10°C to +70°C), 10 ns rise and fall times, 40% to 60% duty cycle.
	CTS: CTS 03-41399-008 OXCO 20 MHz, ±4.6 ppm (-40°C to +85°C) for unit life, 40% to 60% duty cycle.

Table 26 - Recommended Crystal Oscillators

9.3 FLASH Specification

After power-up the ZL38004 will run its resident boot code, which establishes the initial setup of the Master SPI port and then downloads the firmware from external FLASH memory. This FLASH firmware establishes the modes of the of all the ZL38004 ports and then installs the resident application.

Figure 62 illustrates the connection of FLASH memory to the ZL38004 Master SPI port. The Master SPI port has two chip selects, which allows it to communication with two separate peripheral devices. This supports operations such as periodic code upgrades i.e., normally loads code from FLASH, but upgrades are from external port and then new code is down-loaded to FLASH.

Figure 62 - FLASH Interface Circuit

Table 27 shows the basic FLASH memory requirements. The read instruction requirement is necessary as this is the command that the ROM boot code will use initially to read data from external FLASH.

Read Instruction Code (Boot Requirement)	0000 0011	
Clock Frequency Range	780 to 50000 kHz	
Fast Read Mode	Not supported	
Tested Devices	STMicroelectronicsM25P05-A (512 Kbits)	
	STMicroelectronicsM25P10-A (1 Mbits)	
	STMicroelectronics M25P32 (32 Mbits)	
	STMicroelectronicsM25P64(64 Mbits)	
	Atmel AT25F512A (512 Kbits)	
	Atmel AT25F1024A (1 Mbits)	
	Atmel AT25F4096 (4 Mbits)	
	Winbond W25X10 (1 Mbits)	

Table 27 - External FLASH Memory Requirements

9.4 Internal CODEC Interface

9.4.1 CODEC Microphone Amplifier ADC Circuit

When a ZL38004 internal CODEC ADC input buffer is configured as a differential microphone amplifier it must be AC coupled as shown in Figure 63. The input impedance of the is 15 K Ω .

Figure 63 - CODEC 0/1 ADC Differential Microphone Amplifier Circuit

The Microphone Amplifier may also be configured for a single ended input by connecting Vin+ in Figure 63 to analog ground and Vin- to the single ended output of the previous stage.

9.4.2 CODEC Line Amplifier ADC Circuit

Figure 64 - CODEC 0/1 ADC Differential Line Amplifier Circuit

In Line Amplifier operation external components are used to determine the gain required for the analog-to-digital conversion. The maximum differential ADC input voltage is 800 mVppd (9 dBm0), which represents full scale 2s complement codes of ±32767. Some typical component values for specific gain values are listed in Table 28 for the circuit of Figure 64. It should be noted that operation above +18 dB or below -18 dB of gain is not recommended. Any gain between +18 dB and -18 dB can be implemented. C1 ensures that the ZL38004 is AC coupling for previous stages, R1 and R2 determine the gain of the Line Amplifier, and C2 ensures the circuit has enough phase margin to be stable.

Max Vin (mVppd)	Line Amp Gain (dB)	R1 (KΩ ± 1%)	R2 (KΩ ± 1%)	C2 (pF ±10%)
100	18	15	120	12
200	12	15	60	12
400	6	15	30	12
800	0	15	15	22
1600	-6	30	15	22
3200	-12	60	15	22
6400	-18	120	15	22

Table 28 - Typical Line Amplifier Component Values

The Line Amplifier may also be configured for a single ended input by connecting Vin+ in Figure 64 to analog ground and Vin- to the single ended output of the previous stage. In this configuration it is important to fit the same components (C1, C2, R1 and R2) on both the Vin+ and Vin- input legs, even though Vin+ is connected to analog ground. This insures that the ZL38004 differential Line Amplifier has similar impedance to AC ground on both its inputs. If this similar impedance is not maintained, the Differential Line Amp may introduce some distortion in the signal that is passed to the Antialiasing Filter.

9.4.3 CODEC DAC Driver Circuit

The minimum load impedance of the DAC differential output driver is 10 K Ω . C1 and R_L have been selected to implement a low pass filter with an acceptable corner frequency. The alternative component values have been selected as an example that will maintain both the load and low pass corner frequency requirements.

Figure 65 - CODEC 0/1 DAC Differential Driver Circuit

The minimum load impedance of the DAC differential output driver is 10 K Ω . This is maintained when interfacing to a single ended stage by splitting the impedance between the + and - outputs as shown in Figure 66 (i.e., 5 K Ω to ground for each output). If C is the same as in the differential circuit, Figure 65, R must be a minimum of 7.5 K Ω to maintain the same low pass cutoff frequency and load impedance. R = 7.5 K Ω , not 5 K Ω , because the voltage divider on the + input of the single ended stage creates a bias voltage on the - input of the single ended stage that will make the effective value of R = 0.67R. Therefore, R is increased to R/0.67 to compensate for this effect. Figure 66 also shows alternative components that have been selected to maintain the load impedance and low pass cutoff frequency requirements.

Figure 66 - CODEC 0/1 DAC Single Ended Driver Circuit

9.4.4 CODEC Bias Circuit

The common mode bias voltage output signal (BIAS_VCM) for the DAC output buffers is to be decoupled through a 0.1 μ F ceramic capacitor to analog ground. The + and - ADC reference voltage outputs (BIAS_RF+/-) must be connected together through a 0.1 μ F ceramic capacitor. These signals should also be decoupled to ground through 0.1 μ F ceramic capacitors as shown in Figure 67.

Figure 67 - CODEC 0/1 Bias Circuit

9.5 Host Microprocessor Access Examples

This section presents four examples that illustrate the steps required for an external microprocessor to access the status and control registers of the ZL38004. Figure 68 shows a data write to a register through the Slave SPI port, Figure 69 shows a register read through the Slave SPI port, Figure 70 shows a data write to a register through the UART port, and Figure 71 shows a register read through the UART port.

Figure 69 - SSPI Read Register Address 02A1_H

10.0 Mechanical Drawings

Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively "Microsemi") is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi.

This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi's conditions of sale which are available on request.

For more information about all Microsemi products visit our website at www.microsemi.com

TECHNICAL DOCUMENTATION - NOT FOR RESALE

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.