
Enhancement Mode Silicon Carbide JFET and Bipolar Transistors Driver

DESCRIPTION

The LX1780 is an extremely fast-switching Gate driver IC for driving normally-off silicon carbide JFET switches. It replaces several components compared to traditional applications, and delivers 15A from a single- supply.

KEY FEATURES

- One High Peak Current Drive: R_{SOURCE} 0.35 Ω , R_{SINK} 0.45 Ω , T_J = 25°C
- Positive and Negative Voltage Drive for extremely Fast switching
- Prevents spurious dV/dt (Miller Effect) turn-on by generating a negative drive
- 15A I_{PK} (Sourcing and Sinking) Drive Current
- Drive Stage Latch-up Immunity 2A (Minimum)
- Resistor Programmable High Current On-Time (50ns to 200ns)
- Switching Frequency up to 250 kHz
- Onboard Internal PWM Controller for Bias Current Regulation and Negative Supply Regulation (PWM more than 80% efficient)
- Wide Operating Voltage Range(±8V to ±18V)
- Non-Symmetrical Supply Operation Acceptable
- t_{RISE}, t_{FALL} < 12ns, t_{PROP} delay < 30ns
- Ambient -40°C to +125°C

BENEFITS

- Allows user to have a single supply voltage and smaller footprint
- Better utilization of SiC JFET investment, higher efficiency
- RoHS Compliant & Halogen Free

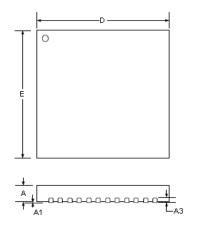
APPLICATIONS

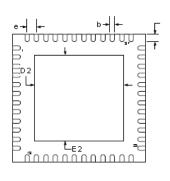
- Drives discrete and modular SiC Vertical JFETs
- Drives SiC Bipolars
- Rack-mount power systems
- High-power solar inverters
- Very high performance motor drives
- Extra high-efficiency converters

PRELIMINARY PRODUCT BRIEF (Subject to change) LX1780

Part Number	PACKAGE ORDER INFO	THERMAL DATA
LX1780QLQ	LQ Plastic 48 Pin 7x7 QFN	θJA = 27 °C/W θJC = 3 °C/W(ESTIMATED)

Application Note is available from Microsemi Marketing including guidance on calculating drive currents for various FET configurations. Single channel demo board is available now from Microsemi Marketing and Isolated two channel demo board will be available shortly.

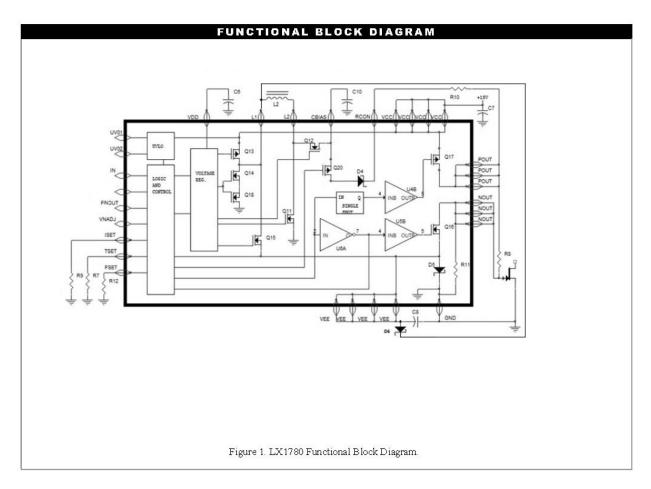

An updated list of Microsemi product and support contacts can be found at www.microsemi.com or by calling +1 (949)-380-6100


RECOMMENDED OPERATING CONDITIONS						
Parameters	Symbol	Min	Тур	Max	Units	
Positive Supply Voltage	V _{DCCD}	8	15	18	٧	
Negative Supply Voltage (Selectable, can be overridden by external power supply)	V _{EE}	-15	-12	-8	٧	
Average Bias (Conduction) Current	I _{BIAS}	50		300	mA	
Bias Current Ripple (Function of external L & C)			10		%	
Operating Ambient Temperature	TA	-40		125	°C	

PACKAGE DIMENSIONS

LO

48-Pin 7x7 mm QFN Package



	MILLIMETERS		INCHES		
Dim	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.031	0.039	
A1	0	0.05	0	0.002	
А3	0.20 REF		0.008 REF		
b	0.18	0.30	0.007	0.012	
D	7.00 BSC		0.276 BSC		
D2	5.00	5.25	0.197	0.207	
Е	7.00 BSC		0.276	BSC	
E2	5.00	5.25	0.197	0.207	
е	0.50 BSC		0.020 BSC		
L	0.30	0.50	0.012	0.020	

Note:

 Dimensions do not include mold flash or protrusions; these shall not exceed 0.155mm(.006") on any side. Lead dimension shall not include solder coverage.

ABSOLUTE MAXIMUM RATINGS	PACKAGE PIN OUT			
Supply Voltage (VEE)15V to +0.5V	T = Z 5 C . 7			
Supply Voltages(VCC)0.5V to +18V	VCC VCE PGND VCC VCC VCC VCC VCC VCC VCC VCC VCC VC			
Digital Inputs				
Digital Output Open Drain0.5V to 18V	FSET TO O (36) POUT			
Analog Inputs0.3V to VCC+0.3V	IN (3) (35) VCC (31) POUT			
Analog Outputs (except L1, POUT, NOUT)0.5V to VCC+0.3V	FN OUT (4) (53) VCC			
Analog Outputs (L1, POUT, NOUT)VEE-0.3V to VCC+0.3V	GND [5] (32) POUT			
Conduction Bias Current Peak (Set by Resistor to RCON)	VDD 6 LX1780 (31 VCC			
Peak Output Drive Current (Device design minimum)	DNU (7) YYWW (30 NOUT			
Power Dissipation (TJ = 125°C for FSW= 50kHz, 200ns pulse) 1550mW	DNU (18) (29) VEE			
Junction Temperature Range40°C to 150°C	L1 (B) (28 NOUT			
Storage Temperature Range65°C to 150°C	(10) (27) VEE			
Peak Package Solder Reflow Temperature (40 seconds maximum exposure) 260°C	(17) [(26] NOUT			
ESD (all pin, HBM)	(22) (a) (a) (a) (b) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a			
Lead Temperature. (Soldering 10 seconds)	VEE VEE BIASS 2 PGNU VEC VEC			
Notes: Exceeding these ratings could cause damage to the device. All voltages are with respect to	" C N S O " " "			
GND. Currents are positive into, negative out of specified terminal. These are stress ratings	LQ PACKAGE			
only and functional operation of the device at these or any other conditions beyond those	(Top View)			
indicated under "Recommended Operating Conditions" are not implied. Exposure to	yyww = Year/Week/ RoHS / Pb-free Matte Tin Pin Finish			
"Absolute Maximum Ratings" for extended periods may affect device reliability				

