Actel Fusion®

THE WORLD’S FIRST MIXED-SIGNAL FPGA
WITH OPTIONAL SOFT ARM® SUPPORT

Key Fusion Features

— Integrated Analog-to-Digital Converter (ADC) with 8-, 10-, and 12-Bit Resolution and 30 Scalable Analog Input Channels
  – Better than 1 Percent Accuracy for ADC
  – Current and Voltage Monitoring Blocks

— In-System Configurable Analog Supports a Wide Variety of Applications

— Up to 8 Mbits of User Flash Memory

— Extensive Clocking Resources:
  – Analog PLLs
  – 1 Percent RC Oscillator
  – Crystal Oscillator Circuit
  – Real-Time Counter (RTC)

— Flash FPGA Fabric
  – Low Power
  – Secure
  – Live at Power-Up (LAPU)
  – Firm-Error-Immune
  – Single Chip

Actel Fusion FPGAs are the world’s first mixed-signal FPGA family, integrating configurable analog, large flash memory blocks, comprehensive clock generation and management circuitry, and high-performance programmable logic in a monolithic device. Actel’s innovative Fusion architecture can be used with the Actel soft MCU core as well as the performance-maximized 32-bit ARM® Cortex™-M1 and CoreMP7 cores. Fusion is the definitive mixed-signal FPGA platform.

Solutions for Power Management

Engineers are constantly looking for an integrated system manager that offers several features, such as power supervision, sequencing, and multiple voltage rail monitoring in addition to current and temperature sensing. The Fusion mixed-signal FPGA offers features that support these needs in a highly integrated solution.

Actel flash-based Fusion devices exhibit industry-leading low-power characteristics, making them an ideal choice for power management applications.
Low Power
Built on a low-power, high-performance flash process, Fusion provides industry-leading low static and dynamic power. Fusion also offers several sleep and standby modes of operation to further extend battery life in portable applications. The Fusion real-time counter (RTC) offers a wide variety of functionality: sleep, standby, periodic wake-up, and low-speed/power operation.

The addition of both a 1 percent RC oscillator and a two-pin crystal oscillator circuit eliminates the need for expensive external clock sources.

Fusion allows customers to integrate several functions into a single-chip solution with lower overall system power. In addition to an overall reduction in chip count, the integration of several functions within Fusion prevents the introduction of lower accuracy and noise that comes with a multi-chip solution. All the above factors add up to a lower power profile that lends itself to other benefits, such as higher signal integrity and lower overall system cost.

One Chip Is All You Need
Until now, system designers were forced to choose costly and space-consuming discrete analog components with programmable logic or mixed-signal ASIC solutions and a processor to implement a typical system. Fixed architectures and other technology barriers prevented the integration of individual components into a single, low-cost chip that met all design requirements.

Accuracy Better Than 1 Percent
Calibration eliminates certain errors common to ADCs, such as offset and gain errors. If these errors are not adjusted, the measurements would be inaccurate and could impact the overall system performance. External components can be used to eliminate the offset and gain errors. However, this will add extra design complexity, noise and additional inaccuracy that in turn need to be eliminated. An ideal solution would be an integrated device that provides the high accuracy without penalty. Fusion mixed-signal FPGAs offer several features such as the analog quad, embedded flash, and flash FPGA logic, which can be used with a software calibration scheme to provide a highly integrated solution with better than 1 percent accuracy.

Live at Power-Up
Actel’s programmable logic devices, based on nonvolatile memory technologies, store their configuration in the logic gates, making the devices available to perform critical system setup tasks such as system configuration and supervision during voltage ramp-up. Additionally, rapid operation from ultra-low-power (typically <25 µW even for 3 M system gates) sleep mode is possible.

Real-World Interface
Fusion offers up to 30 high-voltage-tolerant analog inputs that enable direct connection to signals from ~10.5 V to +12 V, eliminating the need for signal preconditioning. The Fusion ADC is configurable and supports resolutions up to 12 bits with sample rates up to 600 k samples per second (ksps) in 8-bit mode. The overall ADC accuracy that can be achieved with the calibration solution is better than 1 percent. Fusion adds additional...
functionality with the inclusion of multiple differential input current monitor blocks, each with a built-in amplifier, increasing sensitivity and efficiency. The Fusion integrated temperature monitor circuitry allows for the monitoring of multiple remote temperatures with only an external diode. Up to ten high-current-drive outputs are ideal for metal oxide semiconductor field-effect transistor (MOSFET) control and/or pulse width modulation (PWM) functions such as direct fan control.

Dynamic System Configuration
The ability of Fusion devices to support many system-level functions in a single chip makes Fusion an ideal candidate for leading-edge system management protocols.

Fusion high-performance flash memory blocks provide nonvolatile memory flexibility to every aspect of your design. At system startup, the flash memory can be used to initialize the system. SRAMs and registers can be automatically loaded with data from the on-chip flash memory. Prior to system shutdown, the volatile values in SRAM or registers on the Fusion device can be saved back into the on-chip flash memory, preserving the state of the device for the next system startup (SAVE and RESTORE). Fusion flash memory also enables the dynamic changing of system parameters (CONTEXT switch). System boot codes can be stored in the flash memory for both on-chip and off-chip requirements. The flash memory can be configured to emulate EEPROM operation with an available endurance extender IP. The optional soft IP Common Flash Interface (CFI) core from Actel can use part of the flash memory for file storage.

Reconfiguring Systems
Inherent in the fabric of Fusion are the benefits of configurability and field reprogrammability from the successful Actel ProASIC³ family of flash FPGA devices. Fusion can be securely programmed late in the manufacturing process or after it is in the field. By enabling a single hardware platform to support multiple projects and products, Fusion allows designers to leverage economies of scale in purchasing while maintaining the ability to customize products for different markets. Both the firmware (flash memory) and the hardware can be updated in a single step.
Actel Mixed-Signal FPGA
Fusion—Mixed-Signal FPGA Architecture

1 Integrated Analog-to-Digital Converter (ADC)
For the first time, an FPGA supports an integrated ADC, eliminating the need for external mixed-signal support ICs. With resolutions up to 12 bits and frequencies up to 600 ksps, this configurable ADC supports a broad application space. When customers choose to use the calibration option with the Fusion device, they can achieve better than 1 percent accuracy, which makes it ideal for system management applications where this level of accuracy is required.

2 Fusion Supports Low Power
The Fusion real-time counter (RTC) includes a programmable 40-bit counter and match register (timer) that generates time-based match events. In addition to use models such as watchdog timer, device lifetime monitoring, and event timer, the RTC can be used to wake the Fusion device out of standby mode, enabling very low-power modes of operation. The No-Glitch MUX (NGMUX) allows the device switch between asynchronous clock domains to occur in a controlled manner. The device switches to a slower clock frequency during periods of relative inactivity, thereby reducing active power consumption.

3 Embedded Flash Memory
The Actel Fusion family is the only programmable logic solution to include up to 8 Mbits of embedded flash memory, arranged in 1,024-bit pages. This high-performance, configurable flash memory supports 100 MHz operation and data bus widths of 8, 16, and 32 bits. Utilizing an endurance extender IP block, sections of the flash memory can emulate an EEPROM device to on-chip or off-chip resources. When used in conjunction with either a soft MCU on-chip or an external MCU, the flash memory offers an excellent code space solution with the ability to execute in place, eliminating the need to shadow code in RAM. Increasing overall data reliability, the flash memory integrates error correction circuitry (ECC) with single-bit error-fix and two-bit error-detect capabilities.

4 Advanced I/O Standards
- 700 Mbps LVDS-, BLVDS-, and MLVDS-capable DDR I/Os
- Multiple I/O banks per device
- Single-ended I/O standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS 2.5 V / 5.0 V input
- Differential I/O standards: LVPECL, LVDS, BLVDS, and MLVDS
- Voltage-referenced I/O standards
- Registered I/Os
- Hot-swap-compliant I/Os

5 Charge Pumps
Fusion devices are designed to operate from a single 3.3 V supply. The Fusion devices supply all other voltages to write (program) the embedded flash memory and the FPGA core.

6 Analog Quads
Leveraging its high-voltage flash process, Fusion analog I/Os support direct connection from as low as –10.5 V up to +12 V. By eliminating the need for external components to scale down (or up) signals before and after processing, Fusion reduces cost, component count, and board space, while increasing reliability and ease of use. Differential current and temperature monitor blocks with integrated amplifiers increase accuracy and efficiency.

7 Flash FPGA VersaTile
The programmable logic VersaTile elements of Fusion allow synthesis and mapping tools to use any tile as a three-input lookup table equivalent, D-flip-flop, or latch (with or without enable). Fusion devices with VersaTiles offer an abundance of registers, so you can often choose a smaller device and still meet register requirements.

8 SRAM and FIFOs
Fusion devices have embedded dual-port SRAM and FIFO blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. Dedicated FIFO control logic enables flexible and efficient FIFO implementations.

9 Integrated Oscillators—Crystal and RC
Fusion devices include a complete collection of clocking resources: crystal oscillator circuit, 1 percent RC oscillator, RTC, NGMUX, and phase-locked loops (PLLs). Fusion devices can generate, multiply, divide, phase shift, and distribute clock signals for both on-chip and off-chip use, eliminating the need for external clock sources.

10 Routing Structure
Fusion provides millions of flash cell switches and an abundance of hierarchical routing resources, enabling extensive design and routing flexibility. VersaNet (segmented global) routing allows high-fanout nets to traverse small or large areas of the Fusion devices with flexibility and low skew. The VersaNet network is used automatically by the software tools to route clocks and high-fanout nets.

11 JTAG
Fusion devices use industry-standard JTAG programming (IEEE 1532). In addition, Fusion devices support board-level JTAG (IEEE 1149) I/O boundary scan.
Quickly Build Mixed-Signal Applications

A key benefit of the Actel Fusion mixed-signal FPGA is the time-to-market advantage it offers compared to mixed-signal ASIC development or a complex multi-chip solution. With a host of peripherals and over 90 cores available today, designers can quickly create any number of custom designs. Fusion Smart Peripherals include the analog-to-digital converter, high-voltage analog I/O, current monitor blocks, temperature monitor blocks, embedded flash memory, RTC, on-chip temperature probe, gate driver, voltage regulator, and oscillators. All IP can access Fusion Smart Peripherals directly through the Fusion Smart Backbone. Fusion can support a host of applications, including power management, thermal monitoring, motor control, SRAM initialization and configuration, and data acquisition and logging.

**Power Management**

Fusion is an exceptional solution for power management. Unlike today’s multi-voltage FPGA solutions, Fusion devices can be driven from a single 3.3 V supply, eliminating the need for special power-up sequencers. Fusion can be configured to monitor and sequence a multi-voltage system for voltage and current. The unique combination of single-voltage operation and power management capabilities makes Fusion an excellent candidate for system/board management applications.

**Thermal Management**

With Fusion, temperature control is built in. Fusion supports both on-chip (internal diode) and remote temperature monitoring capabilities. The Fusion device can flag the temperature and power at programmable thresholds to indicate a warning, turn on a fan, or shut down the system. Additionally, Fusion can use external temperature sensor inputs to control heating or cooling system elements.
Motor Control
The Fusion device is an excellent choice for motor control applications because it can monitor multiple voltage and current inputs and control multiple outputs, in the form of pulse width modulators, to control the speed of a motor. In larger motors, the Fusion device can monitor and store temperature data as well as set warning flags, and can even shut down the motor if necessary. Fusion can monitor current to understand the load on the device, and acquire and store vibration data for the motor.

SRAM FPGA Power Sequencing and Configuration
In addition to the system applications described above, the Fusion device can be used to configure SRAM FPGAs. Since it is live at power-up, Fusion can store the SRAM FPGA program in flash memory and transmit the bitstream to the volatile FPGA. It can also perform the complex power sequencing required for an SRAM FPGA, eliminating the need for multiple chips to provide the expensive support structure for SRAM FPGAs.

Fusion Design Creation
SmartGen, the Fusion graphical device configuration tool, simplifies design implementation by providing a graphical interface for generating SmartGen intellectual property code with the Analog System Builder and the Flash Memory System Builder features. The Analog System Builder creates SmartGen IP that can configure the device to monitor voltages, current, and temperature, as well as sequence the data samples and set maximum and minimum threshold values for these signals. The Flash Memory System Builder provides an interface to the memory and the analog system, and creates IP to perform memory initialization and enable data storage. With a common soft microcontroller core, such as Core8051, Fusion can enable all of the analog and memory capabilities described above with no additional logic use, in a familiar development environment, such as that used for the 8051.

Build Designs Quickly with Actel IP
Fusion users have a substantial amount of intellectual property and application information available to them, enabling easy creation of complex designs. Adding functionality to the Fusion flash memory blocks, Actel developed CoreFMEE and CoreCFI. CoreFMEE is a Flash Memory Endurance Extender that can extend the life of the Fusion device’s memory or make it operate as an EEPROM. CoreCFI is a Common Flash Interface core that allows external users to see Fusion flash memory as a standard memory device. As with all Actel silicon product families, there is a host of high-quality DirectCore intellectual property cores.

Additional Application Support
In addition to a host of DirectCore and CompanionCore intellectual property, there is extensive application support, including application briefs and application notes on a variety of applications discussed above. Actel Solution Partners add to the Fusion solution with additional products and services, and they have expertise in many application areas.
To support this groundbreaking technology, Actel has developed a series of major tool innovations to help maximize designer productivity. Implemented as extensions to the popular Actel Libero® Integrated Design Environment (IDE), these new tools allow designers to easily instantiate and configure peripherals within a design, establish links between peripherals, create or import building blocks (Fusion applets) or reference designs, and perform hardware verification. This tools suite also adds comprehensive hardware/software debug features as well as a suite of utilities to simplify development of embedded soft processor–based solutions.

**Hardware Design Creation**
Focusing on ease of use and time-to-market, Actel adopted an integrated approach for design generation, forgoing macro generators and application wrappers. Configuration tools offer designers the capability to select peripherals and configure and instantiate them into the backbone. Users can select from a variety of analog services, such as temperature and voltage, voltage monitoring, and flash memory services that include save, restore, and load. They can be included in the application without creating a single line of RTL code. These design creation tools will be tightly integrated and delivered through Libero IDE. This enables users to design their applications from prepackaged application generators and configuration tools with an unprecedented level of ease, cutting down design iteration time.

Maintaining the highest level of flexibility, these configuration engines are optional. System developers are free to configure and control the peripheral directly from their own user designs.

**Hardware Synthesis and Simulation**
The RTL created by a user or by application generators will seamlessly pass through logic and physical synthesis. Due to the added complexity and unprecedented integration of Actel Fusion technology, simulation plays a critical role in design verification. The Actel tool solution provides a full suite of simulation models, providing simulation support for all on-chip resources.

**Silicon Debug**
The unprecedented integration offered by Actel Fusion technology poses significant challenges for design verification through debugging methods. Actel solves this issue by offering tools that address debugging needs at multiple levels of application abstraction. Users can embed a logic analyzer into the desired blocks within the application, enabling real-time probing. It is also possible to embed these analyzers in the Fusion backbone and monitor the activity of the Fusion peripherals in real-time. Actel also offers additional invasive debug capability, enabling users to interactively access and modify information related to Fusion peripherals, register files, embedded SRAM, and flash memory.

**Software Design and Development Tools**
Actel supports tools required to create code for MCU units, ARM Cortex-M1, CoreMP7, and Core8051 cores. The tools from Actel and other vendors help users build applications in C that are efficient and optimized for MCU targets for Actel Fusion devices. Users can debug their program code with the help of software debuggers and fully integrated development environments.
All-Inclusive and Low-Cost

The low-cost Fusion Starter Kit contains everything you need to start using the advanced features of the Actel Fusion family. You can explore the various benefits of Fusion mixed-signal FPGAs, including ISP, device serialization, and FlashLock® on-chip system security. Additionally, this kit has many added features to allow designers to fully experiment with Fusion capabilities.

The Fusion evaluation board has on-board voltage regulation, enabling you to independently set the I/O voltages to 1.5 V or 3.3 V on each of two I/O banks. Two of the remaining three I/O banks are fixed at 3.3 V. The remaining I/O bank is for high-voltage analog I/Os that support direct connection to voltages that can range from –10.5 V to +12 V. These I/Os support current monitoring, temperature monitoring, and MOSFET driver outputs.

System clock generation, manipulation, and distribution are enabled with an on-chip RC oscillator, crystal oscillator circuit, and PLLs. Eight LEDs and four switches provide simple inputs and outputs to the system. The Fusion flash memory can support multiple functions, including state saving of volatile RAM and registers prior to power-down, initialization of RAM and registers at power-up, boot code storage, and data logging. The on-board LCD can be used to display values of converted analog signals (voltage, current, or temperature) and flash memory contents.

Prototyping headers connect to all the Fusion device pins, enabling you to add components to the evaluation board easily. The board is equipped with a prototyping area to enable design experimentation with the addition of components. External temperature sensors and current sensing circuitry for power control applications are provided.

The Fusion evaluation board features a high-brightness, multicolor LED for illustrating temperature changes and PWM fan control by varying the brightness of the LED. The board is also equipped with a 40-pin daughtercard connector for use with system boards developed by Actel, customers, or third-party partners, allowing users to easily and cost-effectively add functionality or connect to larger target systems. Two programming headers on the board support ISP of single and JTAG-chained boards using FlashPro3.
FlashPro3 is targeted at the latest generation of flash devices to be offered by Actel: Fusion and M1/M7 Fusion devices. FlashPro3 offers extremely high-speed performance through the use of USB 2.0 and is high-speed-compliant for full use of the 480 Mbps bandwidth. Powered exclusively via USB, FlashPro3 provides the programming voltage of 3.3 V. Multiple FlashPro3 programmers can be connected together via USB hubs to enable multiple systems to be programmed in parallel using just one PC with the FlashPro software. As with all programmers in the FlashPro series, multiple devices can be connected together in a JTAG chain.

The addition of Fusion high-performance flash memory blocks supports multiple functions, including state saving of volatile RAM and registers prior to power-down, initialization of RAM and registers at power-up, boot code storage, data logging, and configuration data for the analog peripherals. The embedded FlashROM offers another programmable space, supporting use models such as device serialization.

Inherent in the Fusion programmable logic fabric are the benefits of configurability and field reprogrammability shared by the successful Actel ProASIC3 family of flash FPGA devices. The flash memory of Fusion devices can be easily programmed and reprogrammed with the FlashPro3 programmer. FlashPro3 supports a robust programming solution for the three regions of the Fusion device (FPGA core, flash memory blocks, and FlashROM).

All three regions can be programmed in a single step, such as on a manufacturing line, when only a single device configuration is needed. However, each region can be programmed separately from the other two, increasing programming efficiency and enabling independent updates of design (FPGA code), firmware (flash memory blocks), or ROM (FlashROM).

Programming can be done in conjunction with the embedded AES decryption engine, enabling secure programming both on the factory floor and in the field. Using an encrypted file for field upgrades enables the file to be sent over unsecured networks (such as the Internet) while keeping the contents of the file secure. This method can be used on both design file upgrades and firmware upgrades. The embedded flash memory blocks can be programmed with the data while still encrypted, and decrypted only when needed by the system.

**Debug Tools**

Designs programmed into Fusion or ARM Cortex-M1-/CoreMP7-enabled Fusion devices can be debugged using logic analyzer software, working through the interface provided by the FlashPro3 programmer.

The Logic Navigator software from Actel also allows control and exercise of the architecture-specific features of Fusion, such as the ADC, the flash memory blocks, and the RTC, with no need to program a design into the FPGA core fabric itself. As a complete programming and debugging tool chain, FlashPro3 keeps development costs down by eliminating the need for additional hardware debug solutions.

**Availability**

FlashPro3 is available as part of the low-cost Fusion Starter Kit.
System management continues to gain importance in the design of all electronic systems. Smaller process geometries drive more multi-volt devices and are more susceptible to voltage and temperature fluctuations. Whereas system management designs can run to hundreds of discrete components, Fusion FPGAs, the industry’s only mixed-signal FPGA solution, can integrate these system management functions and provide programmable flexibility and system-level integration—all in a single chip. Unprecedented integration in Fusion devices can offer cost and space savings of 50 percent or greater relative to current implementations.

Actel, the world’s only supplier of mixed-signal FPGAs, now offers the only single-chip system management solution. Fusion mixed-signal FPGAs integrate configurable analog, large flash memory blocks, comprehensive clock generation and management circuitry, and high-performance programmable logic in a monolithic device. Actel has developed turn-key solutions, including a development kit and a software GUI for system management. This level of integration, configurability, and support establishes Fusion as the definitive system management solution.

### Key Tasks

- Low-power operation
- Power management
  - Up to 10 power supplies
  - –10.5 V to +12 V
  - Power-on detection and reset
  - Power-up sequencing
  - Voltage monitoring
  - Current monitoring
- Thermal management
  - Track and control up to 10 remote sensors
- System clocking
  - Backup system clock
- SRAM FPGA management
- Boot loader for MCU
- Remote communications
- Error/alarm recovery
- Diagnostics/prognostics
- Identification/authentication
### Actel Fusion Product Table

<table>
<thead>
<tr>
<th>Fusion Devices</th>
<th>Cortex-M1</th>
<th>M1AFS250</th>
<th>M1AFS600</th>
<th>M1AFS1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM-Enabled</td>
<td>AFS090</td>
<td>AFS250</td>
<td>AFS600</td>
<td>AFS1500</td>
</tr>
<tr>
<td>ARM-Enabled</td>
<td>Device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Gates</td>
<td>90 k</td>
<td>250 k</td>
<td>600 k</td>
<td>1.5 M</td>
</tr>
<tr>
<td>Tiles (D-Flip-Flops)</td>
<td>2,304</td>
<td>6,144</td>
<td>13,824</td>
<td>38,400</td>
</tr>
<tr>
<td>Secure (AES) ISP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PLLs</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Global</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Flash Memory Blocks (2 Mbits)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total Flash Memory (Mbits)</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>FlashROM (kbits)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>RAM Blocks (4,608 bits)</td>
<td>6</td>
<td>8</td>
<td>24</td>
<td>60</td>
</tr>
<tr>
<td>RAM (kbits)</td>
<td>27</td>
<td>36</td>
<td>108</td>
<td>270</td>
</tr>
<tr>
<td>Analog Quads</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Analog Input Channels</td>
<td>15</td>
<td>18</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Gate Driver Outputs</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>I/O Banks (+ JTAG)</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Digital I/Os</td>
<td>75</td>
<td>114</td>
<td>172</td>
<td>252</td>
</tr>
<tr>
<td>Analog I/Os</td>
<td>20</td>
<td>24</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>I/O Single-Ended (analog)</td>
<td>37/9 (16)</td>
<td>60/16 (20)</td>
<td>65/15 (24)</td>
<td>95/46 (40)</td>
</tr>
<tr>
<td>QN108</td>
<td>75/22 (20)</td>
<td>114/37 (24)</td>
<td>119/58 (40)</td>
<td>119/58 (40)</td>
</tr>
<tr>
<td>QN180</td>
<td>172/86 (40)</td>
<td>223/109 (40)</td>
<td>252/126 (40)</td>
<td></td>
</tr>
<tr>
<td>PQ208</td>
<td>25/26 (24)</td>
<td>93/26 (24)</td>
<td>95/46 (40)</td>
<td></td>
</tr>
<tr>
<td>FG256</td>
<td>25/26 (24)</td>
<td>93/26 (24)</td>
<td>95/46 (40)</td>
<td></td>
</tr>
<tr>
<td>FG484</td>
<td>25/26 (24)</td>
<td>93/26 (24)</td>
<td>95/46 (40)</td>
<td></td>
</tr>
<tr>
<td>FG676</td>
<td>25/26 (24)</td>
<td>93/26 (24)</td>
<td>95/46 (40)</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**
1. These packages are available only as RoHS-compliant.
2. AFS250 and AFS600 PQ208 devices are not pin-compatible.
3. Available in RoHS-compliant and standard leaded packages.

For more information regarding Actel's Fusion mixed-signal FPGA family, please visit the Actel website at [www.actel.com](http://www.actel.com) or contact your local sales representative.