

 SPI-DirectC v2021.1 User Guide

Introduction
SPI-DirectC is designed to support an embedded In-System Programming for Microchip devices. In-System
Programming refers to an external processor on-board programming one of the IGLOO®2, SmartFusion®2, PolarFire®

or PolarFire SoC devices using a SPI peripheral interface.

SPI-DirectC supports systems with direct and indirect access to the memory space containing the data file image.
With paging support, it is possible to implement the embedded ISP using SPI-DirectC on systems with no direct
access to the entire memory space containing the data. Paging support is accomplished by making modifications to
the data communication functions defined in dpuser.h, dpcom.c, and dpcom.h.

To use SPI-DirectC v2021.1, you must make some minor modifications to the source code, add the necessary
API, and compile the source code and the API together to create a binary executable. The binary executable is
downloaded to the system along with the programming data file. The programming data file is a binary file that can
be generated by Libero® SoC Design Suite version 11.2 or later. For more information on detailed specification of the
programming file, see 4. Data File Format.

Supported Device Family
This document describes how to enable microprocessor-based embedded In-System Programming (ISP) on the
supported Microchip devices. The following table lists the Microchip devices SPI-DirectC supports.
Table 1. Device Family Supported by SPI-DirectC

Device Family Description
PolarFire® PolarFire FPGAs deliver the industry’s lowest power at mid-range densities with exceptional

security and reliability.
PolarFire SoC PolarFire SoC is the first SoC FPGA with a deterministic, coherent RISC-V CPU cluster, and a

deterministic L2 memory subsystem enabling Linux and real-time applications.
SmartFusion®2 SmartFusion2 addresses fundamental requirements for advanced security, high reliability, and

low power in critical industrial, military, aviation, communications, and medical applications.
IGLOO®2 IGLOO2 is a low-power mixed-signal programmable solution.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 1

https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas/polarfire-mid-range-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas/polarfire-soc-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/smartfusion-2-fpgas
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#overview

Table of Contents

Introduction...1

1. System Overview.. 3

1.1. Systems with Direct Access to Memory... 3
1.2. Systems with Indirect Access to Memory...4
1.3. Motorola SPI Protocol.. 5

2. Generating Data Files and Integrating SPI-DirectC Code...8

2.1. SPI-DirectC Code Integration...8

3. Required Source Code Modifications..10

3.1. Compiler Switches..10
3.2. Hardware Interface Components... 10

4. Data File Format... 15

4.1. DAT File Description for M2GL, M2S, MPF and MPF SoC Devices.. 15

5. Source File Description... 17

6. Data File Bit Orientation.. 18

7. Sample Project..19

7.1. Project Requirements...19
7.2. Procedure...19

8. Error Messages and Troubleshooting Tips..21

9. SmartFusion2 and IGLOO2 SPI-Slave Programming Waveform Analysis... 23

9.1. Read ID Code Waveform... 23
9.2. Read FSN waveform..42
9.3. Program Frame Waveform...67

10. Revision History.. 105

Microchip FPGA Support..106

The Microchip Website...106

Product Change Notification Service..106

Customer Support.. 106

Microchip Devices Code Protection Feature.. 106

Legal Notice... 107

Trademarks.. 107

Quality Management System... 108

Worldwide Sales and Service...109

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 2

1. System Overview
The system must contain the following parameters to perform the In-System Programming (ISP) for the FPGA.

• A microprocessor with at least 8192 bytes of RAM or a softcore processor implemented in another FPGA.
• SPI IP to interface with the target device. SPI Mode 3 must be used.
• Access to the data file containing the programming data.
• Memory to store and run SPI-DirectC code.

For more information on power requirements for Vpump and other power supplies, see your device product device
datasheet.

The following table lists the memory requirements.

Table 1-1. Code Memory Requirements- SPI-DirectC Code Size on CM3 16-Bit Mode

Compile Options Enabled Units are in Bytes

ROM Code1 ROM Data2 Read/Write Data3

ENABLE_G4_SUPPORT 16902 608 12578

ENABLE_G5_SUPPORT 20242 1570 12851

All the above 30414 1576 13639

Notes: 
1. ROM Code— This is the compiled code size memory requirements.
2. ROM Data— This is the block started by Symbol allocation for variables that do not yet have values, that is,

uninitialized data. It is part of the overall data size.
3. Read/Write Data— This is the run time memory requirement, that is, the free data memory space required to

execute the code.

1.1 Systems with Direct Access to Memory
The following figure shows the overview of a typical system with direct access to the memory space holding the data
file.

Figure 1-1. System with Direct Access to Memory

A3P/AFS/M2S

Microprocessor

Internal RAM

On Board
Memory
Device

.dat file

I/O Functions

JTAG Bus

Target Device

Internal/External
Memory Running
DirectC

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 3

The following table lists the data storage memory requirements.

Table 1-2. Data Storage Memory Requirements - Data Image Size

Data Image Size

Device Core/FPGA Array -
Encrypt (kB)

Embedded Flash Memory
Block - Encrypt (kB)

Core/FPGA Array and
Security - Encrypt (kB)

M2GL005 297 133 851

M2GL010 557 267 1639

M2GL025 1197 267 2918

M2GL050 2364 267 5253

M2GL090 3564 532 8178

M2GL150 5997 531 13046

M2S005 297 137 860

M2S010 557 272 1648

M2S025 1197 272 2926

M2S050 2364 272 5261

M2S090 3564 536 8186

M2S150 5997 535 13054

MPF100 3447 N/A N/A

MPF200 5992 N/A N/A

MPF300 9256 N/A N/A

MPF500 14739 N/A N/A

MPFS250T 9542 N/A N/A

Note:  The total image size is the sum of all the corresponding enabled blocks for the specific target device.

1.2 Systems with Indirect Access to Memory
The following figure is an overview of a system with no direct access to the memory space holding the data file. For
example, the programming data might be received via a communication interface peripheral that exists between the
processor memory and the remote system holding the data file dpcom.h and dpcom.c must be modified to interface
with the communication peripheral.

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 4

Figure 1-2. System With Indirect Access to Memory

1.3 Motorola SPI Protocol
Motorola SPI Mode 3 is required to communicate with SmartFusion2, IGLOO2, PolarFire, and PolarFire SoC devices
using a dedicated system controller SPI port. See Motorola SPI standard for more information.

The Motorola SPI is a full duplex, four-wire synchronous transfer protocol, which supports programmable clock
polarity (SPO) and clock phase (SPH). The state of SPO and SPH control bits decides the data transfer modes as
listed in the following table.

Table 1-3. Data Transfer Modes

Data Transfer Mode SPO SPH

Mode 0 0 0

Mode 1 0 1

Mode 2 1 0

Mode 3 1 1

The SPH control bit determines the clock edge that captures the data.

• When SPH is low, data is captured on the first clock transition.
– Data is captured on the falling edge of SPI_CLK when SPO = 1.
– Data is captured on the rising edge of SPI_CLK when SPO = 0.

• When SPH is high, data is captured on the second clock transition (rising edge if SPO = 1).
– Data is captured on the rising edge of SPI_CLK when SPO = 1.
– Data is captured on the falling edge of SPI_CLK when SPO = 0.

The SPO control bit determines the polarity of the clock and SPS defines the slave select behavior.

• When SPO is low and no data is transferred, SPI_CLK is driven to low.
• When SPO is high and no data is transferred, SPI_CLK is driven to high.

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 5

Table 1-4. Summary of the Clock Active Edges in Various SPI Master Modes

Mode SPS SPO SPH Clock in
Idle

Sample Edge Shift Edge Select in
Idle

Select
Between
Frames

Motorola 0 0 0 Low Rising Falling High Pulses between
all frames

0 1 0 High Falling Rising High

0 0 1 Low Falling Rising High Does not pulse
between back-
to-back frames.
Pulses if
transmit FIFO
empties.

0 1 1 High Rising Falling High Does not pulse
between back-
to-back frames.
Pulses if
transmit FIFO
empties.

1 0 0 Low Rising Falling High Stays active
until all the
frames set by
frame counter
are transmitted.

1 0 1 Low Falling Rising High

1 1 0 High Falling Rising High

1 1 1 High Rising Falling High

Single Frame Transfer - Mode 0: SPO = 0, SPH = 0
The following figure illustrates the single frame transfer using Mode 0 data transfer mode with programmable clock
polarity 0 and clock phase 0.

Figure 1-3. Motorola SPI Mode 0

Multiple Frame Transfer - Mode 0: SPO = 0, SPH = 0
The following figure illustrates the multiple frame transfer using the Mode 0 data transfer mode with programmable
clock polarity 0 and clock phase 0.

Figure 1-4. Motorola SPI Mode 0 Multiple Frame Transfer

Notes:

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 6

• Between frames, the slave selects (SPI_SS[x]) a signal that is asserted for the duration of the clock pulse.
• Between frames, the clock (SPI_CLK) is low.
• Data is transferred to Most Significant Bit (MSB) first.
• The output enables (SPI_DOE_N) a signal that is asserted during the transmission and deasserted at the end of

the transfer (after the last frame is sent).

Single Frame Transfer - Mode 1: SPO = 0, SPH = 1
The following figure illustrates the single frame transfer using the Mode 1 data transfer mode with programmable
clock polarity 0 and clock phase 1.

Figure 1-5. Motorola SPI Mode 1

Single Frame Transfer - Mode 2: SPO = 1, SPH = 0
The following figure illustrates the single frame transfer using the Mode 2 data transfer mode with programmable
clock polarity 1 and clock phase 0.

Figure 1-6. Motorola SPI Mode 2

Single Frame Transfer - Mode 3: SPO = 1, SPH = 1
The following figure illustrates the single frame transfer using the Mode 3 data transfer mode with programmable
clock polarity 1 and clock phase 1.

Figure 1-7. Motorola SPI Mode 3

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 7

2. Generating Data Files and Integrating SPI-DirectC Code
The following chapter describes the flows for data file generation and SPI-DirectC code integration. To generate the
DAT file:

1. Launch the Libero SoC Design Suite and open the project.
2. Expand the Handoff Design for Production tree on the Design Flow tab.
3. Double click Export Bitstream. The Export Bitstream dialog box opens. The dialog box options depend on

the device family, Custom Security settings, and Permanent Locks for the production settings. For more
information on working with the Export Bitstream, see the Libero SoC Design Flow User Guide.

4. Program the DAT file into the storage memory.

2.1 SPI-DirectC Code Integration
The following figure shows the SPI-DirectC integration use flow.

Figure 2-1. Importing SPI-DirectC Files

 Start

Identify and connnect the
processor SPI port to the
dedicated SPI port of the
targeted device

Generate DAT file

 Integrate the processor
SPI driver into your

application

Program the DAT file into

the system memory

Define memory interface
functions dp_get_data and

dp_get_page_data if
paging is required

Call dp_top_g4m function
to initiate the desired

action

Compile source code and
download to microprocessor

Done

Generating Data Files and Integrating ...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 8

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/libero_ecf_ug.pdf

To use SPI-DirectC code integration:

1. Import the SPI-DirectC files into your development environment as shown in the following figure.
Figure 2-2. SPI-DirectC Files to Import into your Development Environment

2. Modify the SPI-DirectC code.
– Add the SPI driver (available with the processor used to run SPI-DirectC).
– Modify the hardware interface functions (do_SPI_SCAN_in and do_SPI_SCAN_out) to use the

hardware API functions designed to control the SPI port.
– Modify memory access functions to access the data blocks within the image file programmed into the

system memory. See 6. Data File Bit Orientation for more details.
– Call dp_top with the action code desired.

3. Compile the source code. This creates a binary executable that is downloaded to the system for execution.

Generating Data Files and Integrating ...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 9

3. Required Source Code Modifications
You must modify the dpuser.h, dpDUTspi.c, dpcom.c, and dputil.c files when using the SPI-DirectC source
code, which contains a short description of SPI-DirectC source code and their functions.

The following table lists the functions that must be modified.

Table 3-1. Modified Functions

Function Source File Purpose

do_SPI_SCAN_in dpspi.c Hardware interface function used to
scan data in using the SPI driver

do_SPI_SCAN_out dpspi.c Hardware interface function used to
scan data out using the SPI driver

dp_get_page_data dpcom.c Programming file interface function

dp_display_text dpuser.c Function to display text to an output
device

dp_display_value dpuser.c Function to display value of a
variable to an output device

dp_delay dputil.c Delay function

3.1 Compiler Switches
The following table lists the compiler switches.

Table 3-2. Compiler Switches

Function Source File Purpose

USE_PAGING dpuser.h Enables paging implementation for
memory access.

ENABLE_G4M_SUPPORT dpuser.h Enables M2S/M2GL programming
support.

ENABLE_G5M_SUPPORT dpuser.h Enables MPF/MPF SoC
programming support.

PERFORM_CRC_CHECK dpuser.h Enables CRC check of the
programming data prior to performing
the desired action.

ENABLE_DISPLAY dpuser.h Enables display to hyper terminal or
other output devices.

3.2 Hardware Interface Components

3.2.1 Hardware Interface Function (dpDUTspi.c)
do_SPI_SCAN_in and do_SPI_SCAN_out functions are used to interface with the SPI port to clock data into and
out of the target device.
Note:  These functions must use the SPI driver API available for the targeted device processor.

dp_SPI_SCAN_in Function
This function takes three arguments:

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 10

• Command: 8-bit variable holding the command value.
• Data_bits: The number of bits to clock into the device.
• input_buffer: Pointer to the buffer which holds valid data to be clocked into the device.

dp_SPI_SCAN_OUT Function
This function takes four arguments:

• Command bits: The number of bits to clock in for the command portion of the frame. This value must be 8 as all
SPI commands are 8 bit long.

• Command: 8-bit variable holding the command value
• Data_bits: The number of bits to read from the device.
• Ouput_buffer: Pointer to the buffer to hold the data read from the targeted device.

3.2.2 Display Functions
Four functions, dp_display_array, dp_display_array_reverse, dp_display_text, and
dp_display_value are available to display text as well as numeric values.
Note:  You must modify dp_display_text and dp_display_value functions for proper operation.

3.2.3 Memory Interface Functions
All accesses to the memory blocks within the data file are done through the dp_get_data function within the
DirectC code. This is true for all system types.

This function returns an address pointer to the byte containing the first requested bit. The dp_get_data function
takes two arguments:

• var_ID: An integer variable, which contains an identifier specifying which block within the data file needs to be
accessed.

• bit_index: The bit index addressing the bit to address within the data block specified in Var_ID. Upon
completion of the function, it is expected that return_bytes indicates the total number of valid bytes available
for the client of the function.

See 3.2.4 Systems with Direct Access to the Memory Containing the Data File and 3.2.5 Systems with Indirect
Access to the Data File for more details.

3.2.4 Systems with Direct Access to the Memory Containing the Data File
The memory space holding the data file is accessible by the microprocessor. It can be treated as an array of
unsigned characters. In this case:

1. Disable the USE_PAGING compiler switch.
2. Assign the physical address pointer to the first element of the data memory location (image_buffer defined

in dpcom.c). Image_buffer is used as the base memory for accessing the information in the programming
data in storage memory.

The dp_get_data function calculates the address offset to the requested data and adds it to image_buffer.
Return_bytes is the requested data.

Example 3-1. dp_get_data Function Implementation

DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)
{
DPULONG image_requested_address;
if (var_ID == Header_ID)current_block_address = 0;
else
dp_get_data_block_address(var_ID);
if ((current_block_address ==0) && (var_ID != Header_ID))
{
return_bytes = 0;
return NULL;
}
/* Calculating the relative address of the data block needed within the image
*/

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 11

image_requested_address = current_block_address + bit_index / 8;
return_bytes=image_size - image_requested_address;
return image_buffer+image_requested_address;
}

3.2.5 Systems with Indirect Access to the Data File
These systems access programming data indirectly via a paging mechanism. Paging is a method of copying a certain
range of data from the memory containing the data file and pasting it into a limited size memory buffer that DirectC
can access.

To implement paging:

1. Enable the USE_PAGING compiler option.
2. Define Page_buffer_size. The minimum buffer size is 16 bytes.
3. Modify the dp_get_page_data function.

This function copies the requested data from the external memory device into the page buffer. See 6. Data File Bit
Orientation for additional information. For correct operation:

1. Fill the entire page buffer unless the end of the image is reached. See 4. Data File Format.
2. Update return_bytes to reflect the number of valid bytes in the page.

Every time access to a data block within the image data file is needed, SPI-DirectC programming functions call the
dp_get_data function. The dp_get_data function calculates the relative address location of the requested data
and checks, if it already exists in the current page data. The paging mechanism is triggered, if the requested data is
not within the page buffer.

3.2.6 dp_get_page_data Function Implementation
dp_get_page_data is the only function that must interface with the communication peripheral of the image data
file. As the requested data blocks may not be contiguous, it must have random access to the data blocks. Its purpose
is to fill the page buffer with valid data.

In addition, this function must maintain start_page_address, end_page_address, and return_bytes. These
global variables contain the range of data currently in the page as well as the number of valid bytes.

dp_get_page_data takes one argument:

• address_offset— Contains the relative address of the needed element within the data block of the image
file.

Example 3-2. dp_get_page_data Function Implementation

void dp_get_page_data(DPULONG image_requested_address)
{
DPULONG image_address_index;
start_page_address=0;
image_address_index=image_requested_address;
return_bytes = PAGE_BUFFER_SIZE;
if (image_requested_address + return_bytes > image_size)
return_bytes = image_size - image_requested_address;
while (image_address_index < image_requested_address + return_bytes)
{
page_global_buffer[start_page_address]=image_buffer[image_address_index];
start_page_address++;
image_address_index++;
}
start_page_address = image_requested_address;
end_page_address = image_requested_address + return_bytes - 1;
return;
}

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 12

3.2.7 Main Entry Function
The main entry function is dp_top defined in dpalg.c. It must be called to initiate the programming operation. Prior
to calling the function, a global variable Action_code must be assigned a value as defined in dpuser.h. Action
codes are listed in the following codeblock.

#define DP_DEVICE_INFO_ACTION_CODE 1
#define DP_READ_IDCODE_ACTION_CODE 2
#define DP_ERASE_ACTION_CODE 3
#define DP_PROGRAM_ACTION_CODE 4
#define DP_VERIFY_ACTION_CODE 5
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 6
#define DP_VERIFY_DIGEST_ACTION_CODE 7
#define DP_READ_DEVICE_CERTIFICATE_ACTION_CODE 30u
#define DP_ZEROIZE_LIKE_NEW_ACTION_CODE 31u
#define DP_ZEROIZE_UNRECOVERABLE_ACTION_CODE 32u

Note: 
Programming of individual blocks, such as array only, eNVM only, or security only is not possible with one data file
because of how the data is constructed. If you wish to use such a feature, you must generate multiple data files.

3.2.8 Data Type Definitions
Microchip uses DPUCHAR, DPUSHORT, DPUINT, DPULONG, DPBOOL, DPCHAR, DPINT, and DPLONG in the SPI-DirectC
source code. Change the corresponding variable definition, if different data type names are used.

/***/
/* DPCHAR -- 8-bit Windows (ANSI) character */
/* that is 8-bit signed integer */
/* DPINT -- 16-bit signed integer */
/* DPLONG -- 32-bit signed integer */
/* DPBOOL -- boolean variable (0 or 1) */
/* DPUCHAR -- 8-bit unsigned integer */
/* DPUSHORT -- 16-bit unsigned integer */
/* DPUINT -- 16-bit unsigned integer */
/* DPULONG -- 32-bit unsigned integer */
\/***/
typedef unsigned char DPUCHAR;
typedef unsigned short DPUSHORT;
typedef unsigned int DPUINT;
typedef unsigned long DPULONG;
typedef unsigned char DPBOOL;
typedef char DPCHAR;
typedef int DPINT;
typedef long DPLONG;

3.2.9 Supported Actions
The following table lists the supported actions and devices.

Table 3-3. Supported Actions and Devices

Action Supported Devices Description

DP_DEVICE_INFO_ACTION All Displays device security settings.

DP_READ_IDCODE_ACTION All Reads and displays the content of the IDCODE
register.

DP_ERASE_ACTION All Erases all supported blocks in the data file.

DP_PROGRAM_ACTION All Performs erase, program and verify operations
for all the supported blocks in the data file.

DP_VERIFY_ACTION All Performs verify operation for all the supported
blocks in the data file.

DP_ENC_DATA_AUTHENTICATION_AC
TION

All Performs data authentication of the bitstream
within the data file.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 13

...........continued
Action Supported Devices Description

DP_VERIFY_DIGEST_ACTION_CODE All Checks the digest of a programmed target
device.

DP_READ_DEVICE_CERTIFICATE_ACTI
ON_CODE

All Reads and displays device certificate.

DP_ZEROIZE_LIKE_NEW_ACTION_CO
DE

PolarFire/PolarFire
Soc

Performs zeroization action. Device is
recoverable.

DP_ZEROIZE_UNRECOVERABLE_ACTI
ON_CODE

PolarFire/PolarFire
Soc

Performs zeroization action. Device is not
recoverable.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 14

4. Data File Format
The following chapter contains information related to data file format.

4.1 DAT File Description for M2GL, M2S, MPF and MPF SoC Devices
The data file contains the following sections:

Header Block
Contains information identifying the type of the binary file and data size blocks.

Table 4-1. DAT Image Description

Header Section of DAT File

Information # of Bytes

Designer Version Number 24

Header Size 1

Image Size 4

DAT File Version 1

Tools Version Number 2

Map Version Number 2

Feature Flag 2

Device Family 1

Constant Data Block
Includes device ID, silicon signature, and other information needed for programming.

Table 4-2. DAT Image Description

Constant Data Block

Information # of Bytes

Device ID 4

Device ID Mask 4

Silicon Signature 4

Checksum 2

Number of BSR Bits 2

Number of Components 2

Data Size 2

Erase Data Size 2

Verify Data Size 2

ENVM Data Size 2

ENVM Verify Data Size 2

UEK1_EXISTS 1

Data File Format

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 15

...........continued
Constant Data Block

Information # of Bytes

UEK2_EXISTS 1

SEC_ERASE 1

UEK3_EXISTS (M2S, M2GL only) 1

Number of Records 1

Data Lookup Table
Contains records identifying the starting relative location of all the different data blocks used in the SPI-DirectC code
and data size of each block. The following table lists the format.

Table 4-3. DAT Image Description

Look-Up-Table

Information # of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block
section

4

Of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block
section

4

Of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block
section

4

Of bytes of data x 4

Data Block
Contains the raw data for all the different variables specified in the look-up-table.

Table 4-4. DAT Image Description

Data Block

Information # of Bytes

Binary Data Variable

CRC of the entire image 2

Data File Format

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 16

5. Source File Description
dpuser.h Contains definitions of all action codes as well as possible error codes that are reported

within SPI-DirectC code.

dpalg.c and dpalg.h Contain the main entry function dp_top and device ID check function.

dpg4alg.c and
dpg4alg.h

Contain the main entry function dp_top_g4 and all other functions common to M2S and
MGL families.

dpg5alg.c and
dpg5alg.h

Contain the main entry function dp_top_g5 and all other functions common to the MPF
and MPF SoC family of devices.

dpdutspi.c and
dpdutspi.h

Contain the SPI interface function declaration and definition to the target device. SPI
Mode 3 must be used to program the target device. See SPI IP block used for proper
initialization.

dpg4spi.c and
dpg4spi.h

Contain the SPI interface function declaration and definition to the target device specific
to M2S and M2GL device families.

dpg5spi.c and
dpg5spi.h

Contain the SPI interface function declaration and definition to the target device specific
to MPF and MPF SoC device families.

dputil.c and dputil.h Contain utility functions needed in the SPI-DirectC code.

Source File Description

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 17

6. Data File Bit Orientation
This chapter specifies the data orientation of the binary data file generated by the Libero SoC Design Suite. The
SPI-DirectC implementation must be in sync with the specified data orientation. The following table lists how the data
is stored in the binary data file. For more information, see 4. Data File Format.

Table 6-1. Binary Data File Example

Byte 0 Byte 1 Byte 2 Byte 3 Byte N

Bit7.Bit0 Bit15.Bit8 Bit23.Bit16 Bit35.Bit24 Bit(8N+7).Bit(8
N)

Valid Data Valid Data Valid Data Valid Data o <-Valid Data

If the number of bits in a data block is not a multiple of eight, the rest of the Most Significant Bit (MSB) in the last byte
are filled with zeros. The following example shows a given 70-bit data to be shifted into the target shift register from
the Least Significant Bit (LSB) to the Most Significant Bit (MSB).

The following figure shows a binary representation of the same data.
Figure 6-1. Binary representation of data

Bit 0

 20E60A9AB06FAC78A6 tdi

10000011100110 00001010100110101011000001101111101011000111100010100110 tdi
Bit 69

This data is stored in the data block section. The following table lists how the data is stored in the data block.

Table 6-2. Data Block Section Example

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 .. Byte 8

Bit7...Bit0 Bit15.Bit8 Bit23.Bit16 Bit31.Bit24 Bit43.Bit32 .. Bit71..Bit64

10100110 01111000 10101100 01101111 10110000 - 00100000

A6 78 AC 6F B0 - 20

Data File Bit Orientation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 18

7. Sample Project
The sample project, IAR_SPI_SlaveDirectC.zip, available with this release of SPI-DirectC is based on IAR
Embedded Workbench version 7.40. It is designed to work on M2GL_M2S-EVAL-KIT with SmartFusion2 M2S025-
FGG484 device.

7.1 Project Requirements
You need the following hardware and software to run the sample project:

• Hardware:
a. SmartFusion2 Security Evaluation Kit with SmartFusion2 M2S090-FGG484 device
b. jLink from IAR
c. Target board with Microchip device to be programmed

• Software:
a. IAR Embedded Workbench version 7.4
b. UART Host Loader available with this release package

7.2 Procedure
1. Program the evaluation kit with SPI_DC_top.job file included under M2S Eval Kit Files directory. The

M2S090 design connects SPI1 port to certain pins of J1 header. Although not needed for this project, it also
maps out specific MSS IOs to other J1 header pins for JTAG access.

2. Connect the SPI pins as described in HeaderPinAssignment.xlsx available under M2S Eval Kit Files
directory. Ignore JTAG portion of the header.

3. Connect the Mini USB (J18) to your PC. The mini-USB is connected to FTDI FT4232h device used as a USB
to UART bridge.

4. Make sure the appropriate drivers are installed on your PC to communicate with this chip.
5. Run UARTHostLoader application available with this release package.
6. There should be four com ports available in the serial port setup window. Select the fourth one from the

list and configure the Baud Rate as shown in the following figure. If more than four ports are available,
disconnect the J18 header and refresh the com ports in the UARTHostLoader application to identify exiting
ports. Reconnect the J18 header and refresh the USB ports. Select the fourth port from the newly generated
port list.

7. Click Initialize Port to establish connection with the selected COM port.
8. Select the programming file and desired action.
9. Click Run. The UARTHostLoader application waits for data from the SmartFusion2 evaluation kit.
10. The programming file programmed into the evaluation kit has a SPI-DirectC sample project that supports

SmartFusion2, IGLOO2, PolarFire, and PolarFire SoC devices. Resetting the board runs the embedded
application and performs the action selected. To run another action or select a different programming file,
select it from the UARTHostLoader. Click Run.

11. To make changes to the embedded project, run IAR workbench and modify the compile options as required.
You can download the embedded application using jLink as follows:
a. Connect jLink to RVI/IAR header.
b. Set the JTAG select jumper low.
c. Click download and run from IAR.

Sample Project

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 19

Figure 7-1. UART Host Loader

Sample Project

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 20

8. Error Messages and Troubleshooting Tips
The information in this chapter may help you solve or identify a problem when using SPI-DirectC code. See the
following table for a description of exit codes and their solutions.

Table 8-1. Exit Code

Exit Code Error Message Action/Solution

0 This code does not indicate an error. This message indicates success

2 Data processing failed. Solution:
• Check the Vpump level.
• Try with a new device.
• Measure SPI pins and noise or

reflection.
• Load the correct DAT file.

6 The IDCODE of the target device does not match the
expected value in the DAT file image.

Possible Causes:
• The data file loaded is compiled

for a different device. Example:
M2S010 DAT file loaded to
program M2S050 device.

• Noise or reflections on one or
more of the SPI pins causing
incorrect read-back of the SDO
bits.

Solution:

• Choose the correct DAT file for
the target device.

• Cut down the extra length of
ground connection.

7 Device polling error. Solution:
• Check the Vpump level
• Try with a new device
• Measure SPI pins and noise or

reflection.
• Load the correct DAT file.

8 FPGA failed during the Erase operation. Possible Causes:
• The device is secured, and

the corresponding data file is
not loaded. The device has
been permanently secured and
cannot be unlocked.

Solution:

• Load the correct DAT file.

10 Failed to program device. Solution:
• Check Vpump level.
• Try with a new device.
• Measure the SPI pins and noise

or reflection.

Error Messages and Troubleshooting Tips

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 21

...........continued
Exit Code Error Message Action/Solution

11 FPGA failed verify. Possible Cause:
• The device is secured, and the

corresponding DAT file is not
loaded.

• The device is programmed with
an incorrect design.

Solution:

• Load the correct DAT file.
• Check Vpump level.
• Measure the SPI pins and noise

or reflection.

18 Failed to authenticate the encrypted data. Make sure the AES key used to
encrypt the data matches the AES
key programmed in the device.

25 Device initialization failure. Solution:
• Check Vpump level.
• Try with a new device.
• Measure the SPI pins and noise

or reflection.

100 CRC data error. Data file is corrupted or pro- gramming on
system board is not successful.

Solution:
• Regenerate data file.
• Reprogram data file into system

memory.

150 Request action is not found. Check spelling.

151 Action is not supported because required data block is
missing from the data file.

Regenerate DAT file with the needed
block/feature support.

Error Messages and Troubleshooting Tips

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 22

9. SmartFusion2 and IGLOO2 SPI-Slave Programming Waveform
Analysis

9.1 Read ID Code Waveform
1. Checking hardware status.

Figure 9-1. Hardware Status Check

2. Checking hardware status.
Figure 9-2. Hardware Status Check

3. Clocking in read_id command.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 23

Figure 9-3. Clock in read_id Command (0x21)

4. Clocking in 16 bytes of zero values - Byte 0
Figure 9-4. Clock in 16 Bytes of Zero Values - Byte 0

5. Clock in 16 bytes of zero values - Byte 1.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 24

Figure 9-5. Clock in 16 Bytes of Zero Values - Byte 1

6. Clocking in 16 bytes of zero values - Byte 2.
Figure 9-6. Clock in 16 Bytes of Zero Values - Byte 2

7. Clocking in 16 Bytes of Zero Values - Byte 3.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 25

Figure 9-7. Clock in 16 bytes of zero values - Byte 3

8. Clocking in 16 bytes of zero values - Byte 4.
Figure 9-8. Clock in 16 Bytes of Zero Values - Byte 4

9. Clocking in 16 bytes of zero values - Byte 5.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 26

Figure 9-9. Clock in 16 Bytes of Zero Values - Byte 5

10. Clocking in 16 bytes of zero values - Byte 6.
Figure 9-10. Clock in 16 Bytes of Zero Values - Byte 6

11. Clocking in 16 bytes of zero values - Byte 7.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 27

Figure 9-11. Clock in 16 Bytes of Zero Values - Byte 7

12. Clocking in 16 bytes of zero values - Byte 8.
Figure 9-12. Clock in 16 Bytes of Zero Values - Byte 8

13. Clocking in 16 bytes of zero values - Byte 9.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 28

Figure 9-13. Clock in 16 Bytes of Zero Values - Byte 9

14. Clocking in 16 bytes of zero values - Byte 10.
Figure 9-14. Clock in 16 Bytes of Zero Values - Byte 10

15. Clocking in 16 bytes of zero values - Byte 11.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 29

Figure 9-15. Clock in 16 Bytes of Zero Values - Byte 11

16. Clock in 16 bytes of zero values - Byte 12.
Figure 9-16. Clock in 16 bytes of Zero Values - Byte 12

17. Clock in 16 bytes of zero values - Byte 13.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 30

Figure 9-17. Clock in 16 Bytes of Zero Values - Byte 13

18. Clock in 16 bytes of zero values - Byte 14.
Figure 9-18. Clock in 16 Bytes of Zero Values - Byte 14

19. Clock in 16 bytes of zero values - Byte 15.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 31

Figure 9-19. Clock in 16 Bytes of Zero Values - Byte 15

20. Checking hardware status.
Figure 9-20. Hardware Status Check

21. Checking hardware status.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 32

Figure 9-21. Hardware Status Check

22. Checking hardware status.
Figure 9-22. Hardware Status Check

23. Clocking in read command (0x5).

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 33

Figure 9-23. Clock in Read Command (0x5)

24. Reading out 16 Bytes of data – Byte 0 = 0xCF
Figure 9-24. Reading out 16 Bytes of Data – Byte 0 = 0xCF

25. Reading out 16 Bytes of data – Byte 1 = 0x21.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 34

Figure 9-25. Reading out 16 Bytes of Data – Byte 1 = 0x21

26. Reading out 16 Bytes of data – Byte 2 = 0x80.
Figure 9-26. Reading out 16 Bytes of Data – Byte 2 = 0x80

27. Reading out 16 Bytes of data – Byte 3 = 0x3F.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 35

Figure 9-27. Reading out 16 Bytes of Data – Byte 3 = 0x3F

28. Reading out 16 Bytes of data – Byte 4 = 0x0.
Figure 9-28. Reading out 16 Bytes of Data – Byte 4 = 0x0

29. Reading out 16 Bytes of data – Byte 5 = 0x0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 36

Figure 9-29. Reading out 16 Bytes of Data – Byte 5 = 0x0

30. Reading out 16 Bytes of data – Byte 6 = 0x0.
Figure 9-30. Reading out 16 Bytes of Data – Byte 6 = 0x0

31. Reading out 16 Bytes of data – Byte 7 = 0x0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 37

Figure 9-31. Reading out 16 Bytes of Data – Byte 7 = 0x0

32. Reading out 16 Bytes of data – Byte 8 = 0x0.
Figure 9-32. Reading out 16 Bytes of Data – Byte 8 = 0x0

33. Reading out 16 Bytes of data – Byte 9 = 0x0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 38

Figure 9-33. Reading out 16 Bytes of Data – Byte 9 = 0x0

34. Reading out 16 Bytes of data – Byte 10 = 0x0.
Figure 9-34. Reading out 16 Bytes of Data – Byte 10 = 0x0

35. Reading out 16 Bytes of data – Byte 11 = 0x0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 39

Figure 9-35. Reading out 16 Bytes of Data – Byte 11 = 0x0

36. Reading out 16 Bytes of data – Byte 12 = 0x0.
Figure 9-36. Reading out 16 Bytes of Data – Byte 12 = 0x0

37. Reading out 16 Bytes of data – Byte 13 = 0x0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 40

Figure 9-37. Reading out 16 Bytes of Data – Byte 13 = 0x0

38. Reading out 16 Bytes of data – Byte 14 = 0x0.
Figure 9-38. Reading out 16 Bytes of Data – Byte 14 = 0x0

39. Reading out 16 Bytes of data – Byte 15 = 0x0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 41

Figure 9-39. Reading out 16 Bytes of Data – Byte 15 = 0x0

9.2 Read FSN waveform
1. Checking hardware status.

Figure 9-40. Hardware Status Check

2. Checking hardware status.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 42

Figure 9-41. Hardware Status Check

3. Clocking in read_FSN command (0x18).
Figure 9-42. Clock in read_FSN command (0x18)

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 43

4. Clocking in 16 bytes of zero values - Byte 0.
Figure 9-43. Clock in 16 Bytes of Zero Values - Byte 0

5. Clocking in 16 bytes of zero values - Byte 1.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 44

Figure 9-44. Clock in 16 Bytes of Zero Values - Byte 1

6. Clocking in 16 bytes of zero values - Byte 2.
Figure 9-45. Clock in 16 Bytes of Zero Values - Byte 2

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 45

7. Clocking in 16 bytes of zero values - Byte 3.
Figure 9-46. Clock in 16 Bytes of Zero Values - Byte 3

8. Clocking in 16 bytes of zero values - Byte 4.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 46

Figure 9-47. Clock in 16 Bytes of Zero Values - Byte 4

9. Clocking in 16 bytes of zero values - Byte 5.
Figure 9-48. Clock in 16 Bytes of Zero Values - Byte 5

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 47

10. Clocking in 16 bytes of zero values - Byte 6.
Figure 9-49. Clock in 16 Bytes of Zero Values - Byte 6

11. Clocking in 16 bytes of zero values - Byte 7.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 48

Figure 9-50. Clock in 16 bytes of zero values - Byte 7

12. Clocking in 16 bytes of zero values - Byte 8.
Figure 9-51. Clock in 16 Bytes of Zero Values - Byte 8

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 49

13. Clocking in 16 bytes of zero values - Byte 9.
Figure 9-52. Clock in 16 Bytes of Zero Values - Byte 9

14. Clocking in 16 bytes of zero values - Byte 10.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 50

Figure 9-53. Clock in 16 Bytes of Zero Values - Byte 10

15. Clocking in 16 bytes of zero values - Byte 11.
Figure 9-54. Clock in 16 Bytes of Zero Values - Byte 11

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 51

16. Clocking in 16 bytes of zero values - Byte 12.
Figure 9-55. Clock in 16 Bytes of Zero Values - Byte 12

17. Clocking in 16 bytes of zero values - Byte 13.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 52

Figure 9-56. Clock in 16 Bytes of Zero Values - Byte 13

18. Clocking in 16 bytes of zero values - Byte 14.
Figure 9-57. Clock in 16 Bytes of Zero Values - Byte 14

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 53

19. Clocking in 16 bytes of zero values - Byte 15.
Figure 9-58. Clock in 16 Bytes of Zero Values - Byte 15

20. Checking hardware status.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 54

Figure 9-59. Hardware Status Check

21. Checking hardware status.
Figure 9-60. Hardware Status Check

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 55

22. Clock in read command (0x5).
Figure 9-61. Clock in Read Command (0x5)

23. Reading out 16 Bytes of FSN data – Byte 0 = 0x14.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 56

Figure 9-62. Reading out 16 Bytes of FSN Data – Byte 0 = 0x14

24. Reading out 16 Bytes of FSN data – Byte 1 = 0x0.
Figure 9-63. Reading out 16 Bytes of FSN Data – Byte 1 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 57

25. Reading out 16 Bytes of FSN data – Byte 2 = 0x12.
Figure 9-64. Reading out 16 Bytes of FSN Data – Byte 2 = 0x12

26. Reading out 16 Bytes of FSN data – Byte 3 = 0x.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 58

Figure 9-65. Reading out 16 Bytes of FSN Data – Byte 3 = 0x

27. Reading out 16 Bytes of FSN data – Byte 4 = 0x13.
Figure 9-66. Reading out 16 Bytes of FSN Data – Byte 4 = 0x13

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 59

28. Reading out 16 Bytes of FSN data – Byte 5 = 0x0.
Figure 9-67. Reading out 16 Bytes of FSN Data – Byte 5 = 0x0

29. Reading out 16 Bytes of FSN data – Byte 6 = 0x44.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 60

Figure 9-68. Reading out 16 Bytes of FSN Data – Byte 6 = 0x44

30. Reading out 16 Bytes of FSN data – Byte 7 = 0x0.
Figure 9-69. Reading out 16 Bytes of FSN Data – Byte 7 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 61

31. Reading out 16 Bytes of FSN data – Byte 8 = 0x5A
Figure 9-70. Reading out 16 Bytes of FSN Data – Byte 8 = 0x5A

32. Reading out 16 Bytes of FSN data – Byte 9 = 0xCD.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 62

Figure 9-71. Reading out 16 Bytes of FSN Data – Byte 9 = 0xCD

33. Reading out 16 Bytes of FSN data – Byte 10 = 0x0.
Figure 9-72. Reading out 16 Bytes of FSN Data – Byte 10 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 63

34. Reading out 16 Bytes of FSN data – Byte 11 = 0x0.
Figure 9-73. Reading out 16 Bytes of FSN Data – Byte 11 = 0x0

35. Reading out 16 Bytes of FSN data – Byte 12 = 0x4.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 64

Figure 9-74. Reading out 16 Bytes of FSN Data – Byte 12 = 0x4

36. Reading out 16 Bytes of FSN data – Byte 13 = 0xD8.
Figure 9-75. Reading out 16 Bytes of FSN Data – Byte 13 = 0xD8

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 65

37. Reading out 16 Bytes of FSN data – Byte 14 = 0x88.
Figure 9-76. Reading out 16 Bytes of FSN Data – Byte 14 = 0x88

38. Reading out 16 Bytes of FSN data – Byte 15 = 0x13.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 66

Figure 9-77. Reading out 16 Bytes of FSN Data – Byte 15 = 0x13

9.3 Program Frame Waveform
When performing Program, Verify or Authenticate actions, the data is clocked into the device starts at the beginning
of the datastream block as shown in the following figure. This data is different depending on the device and the
design, but in all cases, the data is clocked in 16 bytes at a time.

The following scope plots show how the first data frame is clocked.

Figure 9-78. Datastream Block

In this example, the following data is clocked.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 67

Table 9-1. Clocked Data

Bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

7C 5D 1C 2B 3D 75 19 B3 92 4A AB EE 4E D5 6C 62

Mode 3 of the SPI mode is used and the data is clocked byte 0 MSB first. Note the following:

1. Before performing any data shift, the target device SPI buffer status is checked by shifting 0xff. This is the only
instruction that is 8 bit long, and the data is read out at the same time as it is shifted in. The result of the first
shift is ignored.

2. When shifting data, into the device, the first byte is the command followed by 16 bytes of data. 16 bytes of
zero value must be shifted for commands that do not require data.

3. Shifting data out from the device is a two steps operation. The command is clocked into the device first and
then the data is clocked out using a read command of 0x5.

4. All operations except for SPI hardware status check are made of one byte of command followed by 16 bytes of
data. Chip Select (CS) line must be driven low before clocking the command and should remain low until the
last bit of data is shifted in. Then, it must be driven high to execute the loaded instruction.
Note:  1, 2, and 3 are taken care of by the programming algorithm.

1. Checking hardware status.
Figure 9-79. Hardware Status Check

2. Checking hardware status.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 68

Figure 9-80. Hardware Status Check

3. Shift in the first frame. Command = 0x1. Data to follow. Note CS signal.
Figure 9-81. Shift in the First Frame. Command = 0x1. Data to Follow. Note CS Signal

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 69

4. Data Byte 0 = 0x7C
Figure 9-82. Data Byte 0 = 0x7C

5. Data Byte 1 = 0x5D

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 70

Figure 9-83. Data Byte 1 = 0x5D

6. Data Byte 2 = 0x1C
Figure 9-84. Data Byte 2 = 0x1C

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 71

7. Data Byte 3 = 0x2B
Figure 9-85. Data Byte 3 = 0x2B

8. Data Byte 4 = 0x3D

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 72

Figure 9-86. Data Byte 4 = 0x3D

9. Data Byte 5 = 0x75
Figure 9-87. Data Byte 5 = 0x75

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 73

10. Data Byte 6 = 0x19
Figure 9-88. Data Byte 6 = 0x19

11. Data Byte 7 = 0xB3
Figure 9-89. Data Byte 7 = 0xB3

12. Data Byte 8 = 0x92

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 74

Figure 9-90. Data Byte 8 = 0x92

13. Data Byte 9 = 0x4A
Figure 9-91. Data Byte 9 = 0x4A

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 75

14. Data Byte 10 = 0xAB
Figure 9-92. Data Byte 10 = 0xAB

15. Data Byte 11 = 0xEE

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 76

Figure 9-93. Data Byte 11 = 0xEE

16. Data Byte 12 = 0x4E
Figure 9-94. Data Byte 12 = 0x4E

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 77

17. Data Byte 13 = 0xD5
Figure 9-95. Data Byte 13 = 0xD5

18. Data Byte 14 = 0x6C

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 78

Figure 9-96. Data Byte 14 = 0x6C

19. At this point, the first frame of data is clocked in. The next operation is to check the status.
Figure 9-97. Data Byte 15 = 0x62. Note CS signal

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 79

20. Checking hardware status.
Figure 9-98. Hardware Status Check

21. Framing status command. Command = 0x4. Note CS signal.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 80

Figure 9-99. Frame Status command. Command = 0x4. Note CS signal

22. Framing status command. Command = 0x4. Note CS signal.
Figure 9-100. Frame Status Command. Command = 0x4. Note CS signal

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 81

23. Data Byte 0 = 0x0
Figure 9-101. Data Byte 0 = 0x0

24. Data Byte 1 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 82

Figure 9-102. Data Byte 1 = 0x0

25. Data Byte 2 = 0x0
Figure 9-103. Data Byte 2 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 83

26. Data Byte 3 = 0x0
Figure 9-104. Data Byte 3 = 0x0

27. Data Byte 4 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 84

Figure 9-105. Data Byte 4 = 0x0

28. Data Byte 5 = 0x0
Figure 9-106. Data Byte 5 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 85

29. Data Byte 6 = 0x0
Figure 9-107. Data Byte 6 = 0x0

30. Data Byte 7 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 86

Figure 9-108. Data Byte 7 = 0x0

31. Data Byte 8 = 0x0
Figure 9-109. Data Byte 8 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 87

32. Data Byte 9 = 0x0
Figure 9-110. Data Byte 9 = 0x0

33. Data Byte 10 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 88

Figure 9-111. Data Byte 10 = 0x0

34. Data Byte 11 = 0x0
Figure 9-112. Data Byte 11 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 89

35. Data Byte 12 = 0x0
Figure 9-113. Data Byte 12 = 0x0

36. Data Byte 13 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 90

Figure 9-114. Data Byte 13 = 0x0

37. Data Byte 14 = 0x0
Figure 9-115. Data Byte 14 = 0x0

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 91

38. Data Byte 15 = 0x0
Figure 9-116. Data Byte 15 = 0x0

39. Instruction is loaded. Issue read instruction using 0x5 command.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 92

Figure 9-117. Hardware Status Check

40. Checking hardware status.
Figure 9-118. Hardware Status Check

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 93

41. Reading command. Command = 0x5. Note CS signal.
Figure 9-119. Read Command. Command = 0x5. Note CS signal

42. Reading Data Byte 0.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 94

Figure 9-120. Data Byte 0 read

43. Reading Data Byte 1.
Figure 9-121. Data Byte 1 read

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 95

44. Reading Data Byte 2.
Figure 9-122. Data Byte 2 read

45. Reading Data Byte 3.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 96

Figure 9-123. Data Byte 3 Read

46. Reading Data Byte 4.
Figure 9-124. Data Byte 4 Read

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 97

47. Reading Data Byte 5.
Figure 9-125. Data Byte 5 Read

48. Reading Data Byte 6.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 98

Figure 9-126. Data Byte 6 Read

49. Reading Data Byte 7.
Figure 9-127. Data Byte7 Read

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 99

50. Reading Data Byte 8.
Figure 9-128. Data Byte 8 Read

51. Reading Data Byte 9.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 100

Figure 9-129. Data Byte 9 Read

52. Reading Data Byte 10.
Figure 9-130. Data Byte 10 Read

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 101

53. Reading Data Byte 11 read
Figure 9-131. Data Byte 11 Read

54. Reading Data Byte 12.

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 102

Figure 9-132. Data Byte 12 Read

55. Reading Data Byte 13.
Figure 9-133. Reading Data Byte 13

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 103

56. Reading Data Byte 14.
Figure 9-134. Data Byte 14 Read

57. Reading Data Byte 15.
Figure 9-135. Data Byte 15 Read

SmartFusion2 and IGLOO2 SPI-Slave Programming Wave...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 104

10. Revision History
Revision Date Description

A 09/2021 • Migrated to the Microchip standard template format.
• Updated for the new version numbering schema (v202x.x) for DirectC

solutions.

Revision History

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 105

Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 106

http://www.microchip.com/support
http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 107

VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8876-7

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 108

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003193A-page 109

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. System Overview
	1.1. Systems with Direct Access to Memory
	1.2. Systems with Indirect Access to Memory
	1.3. Motorola SPI Protocol

	2. Generating Data Files and Integrating SPI-DirectC Code
	2.1. SPI-DirectC Code Integration

	3. Required Source Code Modifications
	3.1. Compiler Switches
	3.2. Hardware Interface Components
	3.2.1. Hardware Interface Function (dpDUTspi.c)
	3.2.2. Display Functions
	3.2.3. Memory Interface Functions
	3.2.4. Systems with Direct Access to the Memory Containing the Data File
	3.2.5. Systems with Indirect Access to the Data File
	3.2.6. dp_get_page_data Function Implementation
	3.2.7. Main Entry Function
	3.2.8. Data Type Definitions
	3.2.9. Supported Actions

	4. Data File Format
	4.1. DAT File Description for M2GL, M2S, MPF and MPF SoC Devices

	5. Source File Description
	6. Data File Bit Orientation
	7. Sample Project
	7.1. Project Requirements
	7.2. Procedure

	8. Error Messages and Troubleshooting Tips
	9. SmartFusion2 and IGLOO2 SPI-Slave Programming Waveform Analysis
	9.1. Read ID Code Waveform
	9.2. Read FSN waveform
	9.3. Program Frame Waveform

	10. Revision History
	Microchip FPGA Support
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

