

 JTAG-DirectC User Guide

Introduction
JTAG-DirectC is designed to support embedded In-System Programming for Microchip devices and contains several
compile options to reduce the code size as much as possible. The compile options enable you to disable support for
specific device families and features that are not needed for compilation.

JTAG-DirectC supports systems with direct and indirect access to the memory space containing the data file image.
With paging support, it is possible to implement the embedded ISP using JTAG-DirectC on systems with no direct
access to the entire memory space containing the data. You can enable paging support by modifying the data
communication functions defined in dpuser.h, dpuser.c, dpcom.c, and dpcom.h.

Supported Device Family
This document describes how to enable microprocessor-based embedded In-System Programming (ISP) on the
supported Microchip devices. The following table lists the Microchip devices JTAG-DirectC supports.
Table 1. Device Family Supported by JTAG-DirectC

Device Family Description
PolarFire® PolarFire FPGAs deliver the industry’s lowest power at mid-range densities with exceptional

security and reliability.
PolarFire SoC PolarFire SoC is the first SoC FPGA with a deterministic, coherent RISC-V CPU cluster, and a

deterministic L2 memory subsystem enabling Linux and real-time applications.
SmartFusion®2 SmartFusion2 addresses fundamental requirements for advanced security, high reliability, and

low power in critical industrial, military, aviation, communications, and medical applications.
IGLOO®2 IGLOO2 is a low-power mixed-signal programmable solution.
RTG4™ RTG4 is Microchip's family of radiation-tolerant FPGAs.

Note:  This version of JTAG-DirectC supports RTG4 family of devices with Avionics mode.
When enabled, the Avionics mode prevents you from programming. To disable this mode, the
JTAG_TRST pin must be held HIGH and DEVRST_N pin must be toggled. Alternatively, you
can use the dp_exit_avionics_mode function, defined in the dpuser.c file, to disable the
Avionics mode. The function must be modified to set the JTAG_TRST pin HIGH and toggle the
DEVRST_N pin.

ProASIC®3
(including
ProASIC3 nano)

The ProASIC3 FPGAs support portable, consumer, industrial, communications and medical
applications with commercial and industrial temperature devices. They also offer specialized
screening for automotive and military systems.

IGLOO® (including
IGLOO nano)

IGLOO FPGA family devices are designed to meet the demand of low power and small foot print
requirements of today's portable and power-conscious electronics.

SmartFusion® SmartFusion System on Chip (SoC) FPGAs offers the benefits of full customization and IP
protection, while still being easy to use.

Fusion® Fusion mixed-signal FPGAs integrate configurable analog, large Flash memory blocks,
comprehensive clock generation and management circuitry, and high-performance, Flash-based
programmable logic in a monolithic device.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 1

https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas/polarfire-mid-range-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas/polarfire-soc-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/smartfusion-2-fpgas
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#overview
https://www.microchip.com/en-us/products/fpgas-and-plds/radiation-tolerant-fpgas/rtg4-radiation-tolerant-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/proasic-3-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/igloo-fpgas
https://www.microsemi.com/product-directory/soc-fpgas/1693-smartfusion#overview
https://www.microsemi.com/product-directory/fpgas/1691-fusion

Table of Contents

Introduction...1

1. System Overview.. 3

1.1. Systems with Direct Access to Memory... 3

2. Generating Data Files and Integrating with JTAG-DirectC..7

2.1. Data File Compatibility... 7
2.2. JTAG-DirectC Code Integration..7

3. Required Source Code Modifications..10

3.1. Compiler Switches..10
3.2. Hardware Interface Components... 12

4. Chain Programming.. 18

4.1. Example... 19

5. Data File Format... 21

5.1. DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and A2F Devices...........................21
5.2. DAT File Description for M2GL, M2S, RTG4, MPF, and MPFS Devices....................................22

6. Source File Description... 25

7. Disabled Features with ENABLE_CODE_SPACE_OPTIMIZATION...26

8. Data File Bit Orientation.. 27

9. Sample Project..28

10. Error Messages and Troubleshooting Tips..30

11. Revision History.. 34

Microchip FPGA Support..35

The Microchip Website...35

Product Change Notification Service..35

Customer Support.. 35

Microchip Devices Code Protection Feature.. 35

Legal Notice... 36

Trademarks.. 36

Quality Management System... 37

Worldwide Sales and Service...38

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 2

1. System Overview
The system must contain the following parameters to perform the In-System Programming (ISP) for the FPGA.

• Control logic (a microprocessor or a softcore microprocessor implemented in another FPGA).
• JTAG interface to the target device.
• Access to the data file containing the programming data.
• Memory to store and run JTAG-DirectC code.

Note:  For information on power requirements for Vpump and other supplies, see your product device datasheet.

Memory requirements depend on the options that are enabled. The following table is an example of the code size
and run time memory required to support the different device families. For more information on available compiler
switches, see 3. Required Source Code Modifications.

Table 1-1. Code Memory Requirements- JTAG DirectC Code Size on CM3 in Thumb Mode

Compile Options Enabled Units are in Bytes

ROM Code1 ROM Data3 Read/Write Data2

ENABLE_G3_SUPPORT 26760 1944 4697

ENABLE_G4_SUPPORT 18882 492 9529

ENABLE_G5_SUPPORT 21174 494 9802

ENABLE_RTG4_SUPPORT 14334 494 9435

All the above 59644 1948 11414

Notes: 
1. ROM Code - This is the compiled code size memory requirements.
2. ROM Data - This is the Block Started by Symbol allocation for variables that do not yet have values, that is

uninitialized data. It is part of the overall data size.
3. Read/Write Data - This is the run time memory requirement, that is the free data memory space required to

execute the code.

Note:  All compile options for conserving code space are relevant to A3P, AGL, Fusion, and SmartFusion device
support. If the ENABLE_G3_SUPPORT compile option is not defined, these compile options do not make a difference
in reducing the memory size required to support SmartFusion2, IGLOO2, RTG4, PolarFire, and PolarFire SoC
devices. For details about all compile options, see 3. Required Source Code Modifications.

1.1 Systems with Direct Access to Memory
The following figure shows the overview of a typical system with direct access to the memory space holding the data
file. For generating DAT files, see 2. Generating Data Files and Integrating with JTAG-DirectC and the following table
for data storage memory requirements.

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 3

Figure 1-1. Systems with Direct Access to Memory

A3P/AFS/M2S

Microprocessor

Internal RAM

On Board
Memory
Device

.dat file

I/O Functions

JTAG Bus

Target Device

Internal/External
Memory Running
DirectC

The following figure is an overview of a system with no direct access to the memory space holding the data file. For
example, the programming data may be received via a communication interface peripheral that exists between the
processor memory and the remote system holds the data file. dpcom.h and dpcom.c must be modified to interface
with the communication peripheral.

Figure 1-2. System With Indirect Access to Memory

Memory
Running

Internal/
External

JTAG-DirectC

Microprocessor

Internal RAM

IO Functions

Communication
Peripheral

 Bidirectional

Link

External
Memory
Device
(Remote
location)
DAT File

JTAG Bus

Target
Device

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 4

Table 1-2. Data Storage Memory Requirements Data Image Size

Data Image Size

Device Core/FPGA Array FROM Embedded Flash
Memory Block

Security (kB)

Plain(kB) Encrypt
(kB)

Plain (kB) Encrypt
(kB)

Plain (kB) Encrypt
(kB)

A3PE600 526 647 1 1 N/A N/A 1

A3PE1500* 1434 1765 1 1 N/A N/A 1

A3PE3000 / L 2790 3433 1 1 N/A N/A 1

A3P015 32 N/A 1 N/A N/A N/A 1

A3P030 32 N/A 1 N/A N/A N/A 1

A3P060 64 79 1 1 N/A N/A 1

A3P125 127 156 1 1 N/A N/A 1

A3P250 235 288 1 1 N/A N/A 1

A3P400 351 432 1 1 N/A N/A 1

A3P600 523 647 1 1 N/A N/A 1

A3P1000 915 1126 1 1 N/A N/A 1

AFS090 96 117 1 1 256 545 1

AFS250 234 288 1 1 256 545 1

AFS600 526 647 1 1 512 1090 1

AFS1500 1434 1765 1 1 2048 2180 1

A2F200M3F 181 222 1 1 256 545 1

A2F500M3G 455 560 1 1 512 1090 1

M2GL010 N/A 557 N/A N/A N/A 267 N/S

M2GL025 N/A 1197 N/A N/A N/A 267 N/S

M2GL050 N/A 2364 N/A N/A N/A 267 N/S

M2S005 N/A 297 N/A N/A N/A 137 N/S

M2S010 N/A 557 N/A N/A N/A 272 N/S

M2S025 N/A 1197 N/A N/A N/A 272 N/S

M2S050 N/A 2364 N/A N/A N/A 272 N/S

RT4G150 4992 N/A N/A N/A N/A N/A N/A

MPFS250T N/A 9542 N/A N/A N/A N/A N/A

MPF100 N/A 3447 N/A N/A N/A N/A N/A

MPF200 N/A 5992 N/A N/A N/A N/A N/A

MPF300 N/A 9256 N/A N/A N/A N/A N/A

MPF500 N/A 14739 N/A N/A N/A N/A N/A

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 5

...........continued
Data Image Size

Device Core/FPGA Array FROM Embedded Flash
Memory Block

Security (kB)

Plain(kB) Encrypt
(kB)

Plain (kB) Encrypt
(kB)

Plain (kB) Encrypt
(kB)

• *A3PE1500 is not supported with an 8-bit processor.
• INA - Information not available currently.
• N/A - Not applicable
• N/S - Not supported
• Data in the table for base FPGA devices applies equally to the M1, M7, P1, and U1 encrypted versions of the

devices. For example, data for AFS1500 is equally applicable to M1AFS1500, P1AFS1500, and U1AFS1500.
Not all combinations of M1, M7, P1, and U1 are available for all devices. See the product datasheets for
available devices.

• The total image size is the sum of all the corresponding enabled blocks for the specific target device.

System Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 6

2. Generating Data Files and Integrating with JTAG-DirectC
This chapter describes how to generate a data file and integrating it with JTAG-DirectC. To generate the DAT file:

1. Launch the Libero SoC Design Suite and open the project.
2. Expand the Handoff Design for Production tree on the Design Flow tab.
3. Double click Export Bitstream. The Export Bitstream dialog box opens. The dialog box options depend on

the device family, Custom Security settings, and Permanent Locks for the production settings. For more
information on working with the Export Bitstream, see the Libero SoC Design Flow User Guide.

4. Program the DAT file into the storage memory.

2.1 Data File Compatibility
DirectC data files can be generated from Designer v8.5 and later. Data files generated from Designer v8.5 are
identical to the files generated by the original DatGen tool except for the file title. However, data files generated
by Designer v8.6 are enhanced to support nano devices. JTAG-DirectC can detect the version of the file used and
handles it accordingly.

2.2 JTAG-DirectC Code Integration
The following figure shows the JTAG-DirectC integration use flow.

Generating Data Files and Integrating with JTAG-Di...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 7

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/libero_ecf_ug.pdf

Figure 2-1. Integrating DirectC Files

Define delay function dp_delay and
dp_exit_avionics if applicable

Start

Define JTAG bit position in
the I/O register; discrete
toggling is required

Generate DAT file

Define JTAG interface
functions JTAG_INP and

JTAG_OUTP

Program the DAT file into

the system memory

Define memory interface
functions dp_get_data and

dp_get_page_data if
paging is required

Call dp_top function to
initiate desired action

Compile source code and
download to microprocessor

Done

To use JTAG-DirectC code integration, follow the steps below:

1. Import the JTAG-DirectC files into your development environment, as shown in the following figure.

Generating Data Files and Integrating with JTAG-Di...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 8

Figure 2-2. JTAG-DirectC Files to Import into your Development Environment

2. Modify the JTAG-DirectC code.
a. Define JTAG pin bit locations in the I/O register.

Note:  For RTG4, assign an additional pin bit to control the devrst pin.
b. Add API to support discrete toggling of the individual JTAG pins.
c. Modify the hardware interface functions (jtag_inp and jtag_outp) to use the hardware API functions

designed to control the JTAG port.
d. Modify the delay function (dp_delay).
e. Modify memory access functions to access the data blocks within the image file programmed into the

system memory. See 8. Data File Bit Orientation.
f. Call dp_top function with the action code desired.

3. Compile the source code. This creates a binary executable that is downloaded for execution.

Generating Data Files and Integrating with JTAG-Di...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 9

3. Required Source Code Modifications
You must modify the dpuser.h, dpuser.c, dpcom.c, dpcom.h, and dpG3alg.h (if applicable) files when using
the JTAG-DirectC source code. See 6. Source File Description for a short description of the JTAG-DirectC source
code and their function. Functions that must be modified are listed in the following table.

Table 3-1. Functions to be Modified by the User

Function Source File Purpose

jtag_inp dpuser.c Hardware interface function used to
set JTAG pins and read TDO.

jtag_outp dpuser.c Hardware interface function used to
set JTAG pins.

dp_get_page_data dpcom.c Programming file interface function.

dp_delay dpuser.c Delay function.

dp_display_text dpuser.c Function to display text to an output
device. ENABLE_DISPLAY
compile option must be defined.

dp_display_value dpuser.c Function to display value of a
variable to an output device.
ENABLE_DISPLAY compile option
must be defined.

dp_exit_avionics_mode dpuser.c Function to exit Avionics Mode for
RTG4 devices.

3.1 Compiler Switches
The compiler switches in the following table are designed to allow you to easily adjust the compiled code size
by enabling or disabling specific support in JTAG-DirectC. For example, to enable FPGA Array (Core) plain text
programming, CORE_SUPPORT and CORE_PLAIN must be defined. The following table lists the available compiler
switches in the project.

Table 3-2. Compiler Switches

Compiler Switch Source File Purpose

CORE_SUPPORT dpG3alg.h Enables FPGA Array Programming
support.

CORE_ENCRYPT dpG3alg.h Specify to include FPGA Array
Encrypted programming support.

CORE_PLAIN dpG3alg.h Specify to include FPGA Array Plain
Text programming support.

FROM_SUPPORT dpG3alg.h Enables FlashROM Programming
support.

FROM_ENCRYPT dpG3alg.h Specify to include FlashROM
Encrypted programming support.

FROM_PLAIN dpG3alg.h Specify to include FlashROM Plain
Text programming support.

NVM_SUPPORT dpG3alg.h Enables eNVM Programming
support.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 10

...........continued
Compiler Switch Source File Purpose

NVM_ENCRYPT dpG3alg.h Specify to include eNVM Encrypted
programming support.

NVM_PLAIN dpG3alg.h Specify to include eNVM Plain Text
programming support.

SECURITY_SUPPORT dpG3alg.h Enables Security Programming
support.

SILSIG_SUPPORT dpG3alg.h Enables SILSIG Programming
support

ENABLE_DAS_SUPPORT dpG3alg.h Enables support for A3PE1500 rev
A devices. This feature is not
supported in 8-bit microcontrollers
because of Run Time Memory
requirements.

ENABLE_GPIO_SUPPORT dpuser.h This switch must be defined to
enable external device programming.

ENABLE_G3_SUPPORT dpuser.h Enables support for AGL, AFS,
A3PL, A3PEL, A3P/E, and A2F
devices.

ENABLE_G4_SUPPORT dpuser.h Enables support for M2S and MGL
devices.

ENABLE_G5_SUPPORT dpuser.h Enables support for MPF and MPFS
devices.

ENABLE_RTG4_SUPPORT dpuser.h Enables support for RTG4 devices.

ENABLE_DISPLAY dpuser.h Enables display functions.

USE_PAGING dpuser.h Used to enable paging
implementation for memory access.

CHAIN_SUPPORT dpuser.h Used to enable support for chain
programming.

BSR_SAMPLE dpuser.h This option is only applicable for
AGL, AFS, A3PL, A3PEL, A3P/E,
and A2F devices. Enable this option
to maintain the last known I/O
states during programming. BSR
loading and BSR_SAMPLE are not
supported for IAP. Maintaining the
last know IO state for the rest of
the device families is data driven.
It needs to be enabled while
generating the dat file.

ENABLE_CODE_SPACE_OPTIMIZAT
ION

dpG3alg.h See 7. Disabled Features with
ENABLE_CODE_SPACE_OPTIMIZA
TION

DISABLE_CORE_SPECIFIC_ACTIO
NS

dpG3alg.h For code size reduction. This option
will disable array specific actions
such as erase, program, and verify
array actions.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 11

...........continued
Compiler Switch Source File Purpose

DISABLE_FROM_SPECIFIC_ACTIO
NS

dpG3alg.h For code size reduction. This option
disables FROM specific actions such
as erase, program, and verify FROM
actions.

DISABLE_NVM_SPECIFIC_ACTION
S

dpG3alg.h For code size reduction. This option
disables NVM specific actions such
as program and verify NVM actions.

DISABLE_SEC_SPECIFIC_ACTION
S

dpG3alg.h For code size reduction. This option
disables security specific actions
such as erase and program security
actions.

PERFORM_CRC_CHECK dpuser.h Enables CRC check of the
programming data prior to performing
the desired action.

Note: 
Make sure that the appropriate compiler options are enabled to support all features available in the STAPL/DAT file.
Otherwise, JTAG-DirectC may report an error depending on the requested action. The number of options selected
incrementally increases the number of variables that need to be maintained and the amount of memory that is used.
Compiler options defined in dpG3alg.h are specific to the AGL, AFS, A3PL, A3PEL, A3P/E, and A2F families of
devices, whereas compiler switches defined in dpuser.h are common to all devices.

3.2 Hardware Interface Components
This section contains information about the hardware interface components.

3.2.1 Define JTAG Hardware Bit Assignments (dpuser.h)
Define the JTAG bits corresponding to each JTAG pin. This is usually the bit location of the I/O register controlling the
JTAG port of the target device.

#define TCK 0x1 /* ... user code goes here ... */
#define TDI 0x2 /* ... user code goes here ... */
#define TMS 0x4 /*... user code goes here ... */
#define TRST 0x0 /* ... user code goes here ... set to zero if does not exist !!!*/
#define TDO 0x80 /*.. user code goes here ... */

3.2.2 Hardware Interface Function (dpuser.c)
jtag_inp and jtag_outp functions are used to interface with the JTAG port. jtag_port_reg is an 8-bit register
defined in JTAG-DirectC. JTAG-DirectC uses it to track the logical states of all the JTAG pins.

jtag_inp Function

This function returns the logical state of the TDO pin. If the logic level is zero, then this function must return to zero. If
the logical state is 1, then it must return 0x80.

jag_outp Function

This function takes one argument that is the value of the JTAG port register containing the states of all the JTAG pins.
It sets the JTAG pins to the values in this argument.

3.2.3 Delay Function (dpuser.c)
The dp_delay function takes one argument, which is the amount of time in microseconds. The purpose of it is to
pause for a minimum of time passed in the argument. Longer delay time does not impact programming operation
other than programming time.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 12

3.2.4 Display Functions (dpuser.c)
Display functions are only enabled if the ENABLE_DISPLAY compiler switch is enabled. Four functions,
dp_display_array_reverse, dp_display_array, dp_display_text, and dp_display_value are
available to display text as well as numeric values. You must modify dp_display_array, and dp_display_text
functions for operation.

3.2.5 Memory Interface Functions (dpuser.c)
All access to the memory blocks within the data file is done through the dp_get_data function within the JTAG-
DirectC code. This is true for all system types. This function returns an address pointer to the byte containing the first
requested bit.

The dp_get_data function takes two arguments as follows:

• var_ID: An integer variable with an identifier specifying the block within the data file that needs to be accessed.
• bit_index: The bit index addressing the bit to address within the data block specified in Var_ID. Upon

completion of this function, the return_bytes variable must hold the total number of valid bytes available for the
calling function.

For more details, see 3.2.6 Systems with Direct Access to the Memory with Data File and 3.2.7 Systems with
Indirect Access to the Data File.

3.2.6 Systems with Direct Access to the Memory with Data File
Since the memory space holding the data file that is accessible by the microprocessor, it could be treated as an array
of unsigned characters. In this case, complete these steps:

1. Disable USE_PAGING compiler switch. For more details, see 3.1 Compiler Switches.
2. Assign the physical address pointer to the first element of the data memory location (image_buffer is

defined in dpcom.c. The image_buffer file is used as the base memory for accessing the information in the
programming data in storage memory.

The dp_get_data function calculates the address offset to the requested data and adds it toimage_buffer.
return_bytes is the requested data.

The following is an example of dp_get_data function implementation. This function can be used as is.

DPUCHAR* dp_get_data(DPUCHAR var_ID,DPULONG bit_index)
{
DPUCHAR * data_address = (DPUCHAR*)DPNULL;
dp_get_data_block_address(var_ID);
if ((current_block_address == 0U) && (var_ID != Header_ID))
{
return_bytes = 0U;
}
else
{
data_address = dp_get_data_block_element_address(bit_index);
}
return data_address;
}

3.2.7 Systems with Indirect Access to the Data File
These systems access programming data indirectly via a paging mechanism. Paging is a method of copying a
certain range of data from the memory containing the data file and pasting it into a limited size memory buffer that
JTAG-DirectC can access.

To implement paging, follow the steps below:

1. Enable USE_PAGING compiler option. For more details, see 3.1 Compiler Switches.
2. Define Page_buffer_size. The recommended minimum buffer size is 16 bytes for efficiency purposes.

If eNVM encrypted programming support is required on SmartFusion or Fusion devices, two buffers are
needed of Page_buffer_size. Therefore, the run time memory required must be able to hold two times the
Page_buffer_size.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 13

3. Modify the dp_get_page_data function. This function copies the requested data from the external memory
device into the page buffer. For more information, see 8. Data File Bit Orientation. Follow the below rules for
correct operation:

– Fill the entire page unless the end of the image is reached. See 5. Data File Format for more details.
– Update return_bytes to reflect the number of valid bytes in the page.

JTAG-DirectC programming functions call the dp_get_data function every time access to a data block within the
image data file is needed. The dp_get_data function calculates the relative address location of the requested data
and checks if it already exists in the current page data. The paging mechanism is triggered if the requested data is
not within the page buffer.

3.2.8 Example of dp_get_page_data Function Implementation
dp_get_page_data is the only function that must interface with the communication peripheral of the image data
file. Since the requested data blocks may not be contiguous, it must have random access to the data blocks. Its
purpose is to fill the page buffer with valid data. In addition, this function must maintain start_page_address,
end_page_address, and return_bytes. These global variables contain the range of data currently in the page as
well as the number of valid bytes.

dp_get_page_data takes one argument:

• address_offset - Contains the relative address of the needed element within the data block of the image file.

void dp_get_page_data(DPULONG image_requested_address)
{
DPULONG image_address_index;
start_page_address=0;
image_address_index=image_requested_address;
return_bytes = PAGE_BUFFER_SIZE;
if (image_requested_address + return_bytes > image_size)
return_bytes = image_size - image_requested_address;
while (image_address_index < image_requested_address + return_bytes)
{
page_global_buffer[start_page_address]=image_buffer[image_address_index];
start_page_address++;
image_address_index++;
}
start_page_address = image_requested_address;
end_page_address = image_requested_address + return_bytes - 1;
return;
}

3.2.9 Main Entry Function
The main entry function is dp_top defined in dpalg.c. It must be called to initiate the programming operation. Prior
to calling the dp_top function, a global variable Action_code must be assigned a value as defined in dpalg.h.
Action codes are listed in the following codeblock.
/* Action Names -- match actions function */
/* These codes are passed to the main entry function "dp_top" to indicate
* which action to perform */
#define DP_DEVICE_INFO_ACTION_CODE 1u
#define DP_READ_IDCODE_ACTION_CODE 2u
#define DP_ERASE_ACTION_CODE 3u
#define DP_PROGRAM_ACTION_CODE 5u
#define DP_VERIFY_ACTION_CODE 6u
/* Array only actions */
#define DP_ENC_DATA_AUTHENTICATION_ACTION_CODE 7u
#define DP_ERASE_ARRAY_ACTION_CODE 8u
#define DP_PROGRAM_ARRAY_ACTION_CODE 9u
#define DP_VERIFY_ARRAY_ACTION_CODE 10u
/* FROM only actions */
#define DP_ERASE_FROM_ACTION_CODE 11u
#define DP_PROGRAM_FROM_ACTION_CODE 12u
#define DP_VERIFY_FROM_ACTION_CODE 13u
/* Security only actions */
#define DP_ERASE_SECURITY_ACTION_CODE 14u
#define DP_PROGRAM_SECURITY_ACTION_CODE 15u
/* NVM only actions */
#define DP_PROGRAM_NVM_ACTION_CODE 16u

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 14

#define DP_VERIFY_NVM_ACTION_CODE 17u
#define DP_VERIFY_DEVICE_INFO_ACTION_CODE 18u
#define DP_READ_USERCODE_ACTION_CODE 19u
/* For P1 device, The following two actions are only supported with data files
* generated form V86 or later. ENABLE_V85_DAT_SUPPORT must be disabled */
#define DP_PROGRAM_NVM_ACTIVE_ARRAY_ACTION_CODE 20u
#define DP_VERIFY_NVM_ACTIVE_ARRAY_ACTION_CODE 21u
#define DP_IS_CORE_CONFIGURED_ACTION_CODE 22u
#define DP_PROGRAM_PRIVATE_CLIENTS_ACTION_CODE 23u
#define DP_VERIFY_PRIVATE_CLIENTS_ACTION_CODE 24u
#define DP_PROGRAM_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE 25u
#define DP_VERIFY_PRIVATE_CLIENTS_ACTIVE_ARRAY_ACTION_CODE 26u
#define DP_CHECK_BITSTREAM_ACTION_CODE 27u
#define DP_VERIFY_DIGEST_ACTION_CODE 28u
#define DP_VALIDATE_USER_ENC_KEYS_ACTION_CODE 29u
#define DP_READ_DEVICE_CERTIFICATE_ACTION_CODE 30u
#define DP_ZEROIZE_LIKE_NEW_ACTION_CODE 31u
#define DP_ZEROIZE_UNRECOVERABLE_ACTION_CODE 32u

Note:  This list is for M2S, M2GL, RTG4, and MPF device families only. Programming of individual blocks such as
array or eNVM is not possible with one DAT file that contains both array and eNVM. It programs all enabled blocks.
To program eNVM or Fabric only, you must generate DAT files for eNVM or Fabric. For more information see the
Libero SoC Design Flow User Guide.

3.2.10 Data Type Definitions
Microchip uses DPUCHAR, DPUINT, DPULONG, DPBOOL, DPCHAR, DPINT, and DPLONG in the JTAG-DirectC source
code. Change the corresponding variable definition if different data type names are used.

/***/
/* DPCHAR -- 8-bit Windows (ANSI) character */
/* that is, 8-bit signed integer */
/* DPINT -- 16-bit signed integer */
/* DPLONG -- 32-bit signed integer */
/* DPBOOL -- boolean variable (0 or 1) */
/* DPUCHAR -- 8-bit unsigned integer */
/* DPUSHORT -- 16-bit unsigned integer */
/* DPUINT -- 16-bit unsigned integer */
/* DPULONG -- 32-bit unsigned integer */
\/***/
typedef unsigned char DPUCHAR;
typedef unsigned short DPUSHORT;
typedef unsigned int DPUINT;
typedef unsigned long DPULONG;
typedef unsigned char DPBOOL;
typedef char DPCHAR;
typedef int DPINT;
typedef long DPLONG;

3.2.11 Supported Actions
The following table lists supported actions and devices.

Table 3-3. Supported Actions

Action Supported Devices Description

DP_DEVICE_INFO_ACTION All Displays device design information
and status including security settings.

DP_READ_IDCODE_ACTION All Reads and displays the content of
the IDCODE register.

DP_ERASE_ACTION All Erases all supported blocks in the
data file.

DP_PROGRAM_ACTION All Performs erase, program, and verify
operations for all the supported
blocks in the data file including
SmartFusion MSS private clients.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 15

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/libero_ecf_ug.pdf

...........continued
Action Supported Devices Description

DP_VERIFY_ACTION All Performs verify operation for all the
supported blocks in the data file
including SmartFusion MSS private
clients.

DP_ENC_DATA_AUTHENTICATION
_ACTION

All excluding RTG4 Valid for encrypted array devices
and files only. It performs data
authentication for the array to make
sure that the data was encrypted
with the same encryption key as the
device.

DP_ERASE_ARRAY_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs erase operation on the
array blocks.

DP_PROGRAM_ARRAY_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs erase, program and verify
operations on the array block and
SmartFusion MSS private clients.

DP_VERIFY_ARRAY_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs verify operation on the
array block and SmartFusion MSS
private clients.

DP_ERASE_FROM_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs erase operation on the
FROM block.

DP_PROGRAM_FROM_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs erase, program, and verify
operations on the FROM block.

DP_VERIFY_FROM_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs verify operation on the
FROM block.

DP_ERASE_SECURITY_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs erase operation on the
security registers.

DP_PROGRAM_SECURITY_ACTIO
N

ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs erase and program
operations on the security registers.

DP_PROGRAM_NVM_ACTION Fusion, SmartFusion Performs program and verify
operations on all supported NVM
blocks in the data file including
SmartFusion MSS private clients.

DP_VERIFY_NVM_ACTION Fusion, SmartFusion Performs verify operation on all
supported NVM blocks in the data file
including SmartFusion MSS private
clients.

DP_VERIFY_DEVICE_INFO_ACTIO
N

ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs verification of the security
settings of the device against the
data file security setting.

DP_READ_USERCODE_ACTION ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Reads and displays the device user
code while the FPGA array remains
active.

DP_PROGRAM_NVM_ACTIVE_AR
RAY

Fusion, SmartFusion Programs the targeted EFMBs while
the FPGA array remains active
including SmartFusion MSS private
clients.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 16

...........continued
Action Supported Devices Description

DP_VERIFY_NVM_ACTIVE_ARRAY Fusion, SmartFusion Verifies the targeted EFMBs while
the FPGA Array remains active
including SmartFusion MSS private
clients.

DP_IS_CORE_CONFIGURED_ACTI
ON_COD E

ProASIC3/E/L, IGLOO/+/E, Fusion,
SmartFusion

Performs a quick check on the
array to determine if the core is
programmed and enabled.

DP_PROGRAM_PRIVATE_CLIENTS
_ACTION
_CODE

SmartFusion SmartFusion specific action. This
action programs the system boot
code as well as initialization clients
in SmartFusion used by MSS.

DP_VERIFY_PRIVATE_CLIENTS_A
CTION_CODE

SmartFusion SmartFusion specific action. This
action verifies the system boot code
as well as initialization clients in
SmartFusion used by MSS.

DP_PROGRAM_PRIVATE_CLIENTS
_ACTIVE _ARRAY_ACTION_CODE

SmartFusion SmartFusion specific action. This
action updates the system boot code
as well as initialization clients in
SmartFusion used by the MSS while
the FPGA array remains active.

DP_VERIFY_PRIVATE_CLIENTS_A
CTIVE_A RRAY_ACTION_CODE

SmartFusion SmartFusion specific action. This
action updates the system boot code
as well as initialization clients in
SmartFusion used by the MSS while
the FPGA array remains active.

DP_VERIFY_DIGEST_ACTION_CO
DE

SmartFusion2, IGLOO2, RTG4,
PolarFire, PolarFire SoC

SmartFusion2/IGLOO2/RTG4/
PolarFire specific action. This action
checks the digest of a programmed
M2S/M2GL/RTG4 device.

DP_CHECK_BITSTREAM_ACTION
_CODE

RTG4 Checks the integrity of the bitstream.

DP_READ_DEVICE_CERTIFICATE_
ACTION_CODE

SmartFusion2, IGLOO2, PolarFire,
PolarFire SoC

Reads and displays device
certificate.

DP_ZEROIZE_LIKE_NEW_ACTION
_CODE

PolarFire, PolarFire SoC Performs zeroization. Device is
recoverable.

DP_ZEROIZE_UNRECOVERABLE_
ACTION_CODE

PolarFire, PolarFire SoC Performs zeroization. Device is not
recoverable.

Required Source Code Modifications

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 17

4. Chain Programming
Chain programming refers to a chain of devices (from various vendors) connected serially through a JTAG port.
When devices are joined together in a JTAG chain, all their Instruction Registers (IR) and Data Registers (DR) are
put in a long shift register from TDI to TDO. The IR length differs from device to device and the DR length depends
on the instruction that shifts into the instruction register.

Pre/Post Data Variable Declaration
The pre/post data variable declaration variables are initialized and used in the dpchain.c file. Their default values
are 0s. You do not need to change these values if you are programming a standalone device. However, you must
correctly set these variables if you are programming Microchip devices in a daisy chain. The following is a list of
variables that must be set and defined in dpchain.c:

DPUINT dp_preir_length = PREIR_LENGTH_VALUE;
DPUINT dp_predr_length = PREDR_LENGTH_VALUE;
DPUINT dp_postir_length = POSTIR_LENGTH_VALUE;
DPUINT dp_postdr_length = POSTDR_LENGTH_VALUE;

These variables are used to hold the pre and post IR and DR data:

DPUCHAR dp_preir_data[PREIR_DATA_SIZE];
DPUCHAR dp_predr_data[PREDR_DATA_SIZE];
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE];
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE];

PREIR_DATA_SIZE = (dp_preir_length + 7) / 8;
PREDR_DATA_SIZE = (dp_predr_length + 7) / 8;
POSTIR_DATA_SIZE = (dp_postir_length + 7) / 8;
POSTDR_DATA_SIZE = (dp_postdr_length + 7) / 8;

In the following example, the devices in a chain between the need-programming A3P device and the TDO of
programming header are called pre-devices. The devices between the need-programming A3P device and the TDI of
the programming header are called post-devices. The following figure shows,

• Devices one and two that are pre-devices.
• Devices four, five, and six that are post-devices.
• A3P3 that is the device that is programmed.

Figure 4-1. Devices in the Chain

If there are N1 pre-devices and N2 post-devices in a chain, L1 is the sum of IR lengths of all the pre-devices. L2
is the sum of IR lengths of all the post-devices. The following table is an example of how to set the values for the
dpchain.c file using the variables.

Table 4-1. Device IR Length

Device IR Length

Dev 1 5

Dev 2 8

Dev 3 8

Dev 4 3

Dev 5 12

Dev 6 5

Chain Programming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 18

Table 4-2. Example Variable Values for dpchain.c File

Pre/Post Data Values Comments

#Define PREIR_LENGTH_VALUE 13 L1

#Define PREDR_LENGTH_VALUE 2 N1

#Define POSTIR_LENGTH_VALUE 20 L2

#Define POSTDR_LENGTH_VALUE 3 N2

#Define PREIR_DATA_SIZE 2 Number of bytes needed to hold L1

#Define PREDR_DATA_SIZE 1 Number of bytes needed to hold N1

#Define POSTIR_DATA_SIZE 3 Number of bytes needed to hold L2

#Define POSTDR_DATA_SIZE 1 Number of bytes needed to hold N2

Notes: 
1. L1 = 5 + 8 = 13
2. L2 = 3 + 12 + 5 = 20

Initialize the following arrays as in this example:

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff,0x1f};
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x3};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff,0xff,0xf};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x1f};

Note:  Chain programming does not support programming multiple devices simultaneously. Instead, it is a method
to communicate with one device to perform programming. All other devices must be placed in bypass mode, as
implemented in the above example.

4.1 Example
The following example shows the definitions of all relevant constants and variables to target a specific device
(IGLOO2 is used in the example) in the chain.

Figure 4-2. Constants and Variables Targeting a Specific Device in the Chain

TDI
M2GL-1 M2GL-2 M2GL-3 M2GL-4

TDO

To program IGLOO2-1

#define PREIR_LENGTH_VALUE 24
#define PREDR_LENGTH_VALUE 3
#define POSTIR_LENGTH_VALUE 0
#define POSTDR_LENGTH_VALUE 0
#define PREIR_DATA_SIZE 3
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 1
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff, 0xff , 0xff };
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x7};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0x0};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x0};

Chain Programming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 19

To program IGLOO2-2

#define PREIR_LENGTH_VALUE 16
#define PREDR_LENGTH_VALUE 2
#define POSTIR_LENGTH_VALUE 8
#define POSTDR_LENGTH_VALUE 1
#define PREIR_DATA_SIZE 2
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 1
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff, 0xff};
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x3};
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff};
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x1};

To program IGLOO2-3

#define PREIR_LENGTH_VALUE 8
#define PREDR_LENGTH_VALUE 1
#define POSTIR_LENGTH_VALUE 16
#define POSTDR_LENGTH_VALUE 2
#define PREIR_DATA_SIZE 1
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 2
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]={0xff}
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x1}
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff, 0xff}
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x3}

To program IGLOO2-4

#define PREIR_LENGTH_VALUE 0
#define PREDR_LENGTH_VALUE 0
#define POSTIR_LENGTH_VALUE 24
#define POSTDR_LENGTH_VALUE 3
#define PREIR_DATA_SIZE 1
#define PREDR_DATA_SIZE 1
#define POSTIR_DATA_SIZE 3
#define POSTDR_DATA_SIZE 1

DPUCHAR dp_preir_data[PREIR_DATA_SIZE]= {0x0}
DPUCHAR dp_predr_data[PREDR_DATA_SIZE]={0x0}
DPUCHAR dp_postir_data[POSTIR_DATA_SIZE]={0xff, 0xff, 0xff}
DPUCHAR dp_postdr_data[POSTDR_DATA_SIZE]={0x7}

Table 4-3. IR Bit Length

Device Family IR Bit Length

Fusion 8

SmartFusion 8

SmartFusion2 8

IGLOO2 8

RTG4 8

PolarFire / PolarFire SoC 8

ProASIC3/E/L, IGLOO/+/E 8

Chain Programming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 20

5. Data File Format
JTAG-DirectC is a set of C code designed to support embedded In-System Programming for Microchip devices.
To use JTAG-DirectC, you must make some minor modifications to the source code, add the necessary API, and
compile the source code and the API together to create a binary executable. The binary executable is downloaded
along with the programming data file. The programming data file is a binary file that can be generated by Libero®

SoC.

5.1 DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and A2F Devices
The AGL / AFS / A3PL / A3PEL / A3P/3 A2F data file contains the following sections:

Header Block
The header block contains information identifying the type of the binary file, data size blocks, target Device ID, and
different flags needed in the JTAG-DirectC code to identify the block that is supported and its associated options.

Table 5-1. Header Section Description

Information Number Of Bytes

Designer version number 24

Header Size 1

Image Size 4

Data Compression Flag 1

M1/P1/M7 Flag 1

Target Device ID 4

Tools Version Number 2

Map Version Number 2

Core Support Flag 1

FORM Support Flag 1

NVM Support Flag 1

NVM Block 0 Support Flag 1

NVM Block 1 Support Flag 1

NVM Block 2 Support Flag 1

NVM Block 3 Support Flag 1

NVM Verify Support Flag 1

PASS Key Support Flag 1

AES Key Support Flag 1

Core Encryption Flag 1

FROM Encryption Flag 1

NVM Block 0 Encryption Flag 1

NVM Block 1 Encryption Flag 1

NVM Block 2 Encryption Flag 1

Data File Format

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 21

...........continued
Information Number Of Bytes

NVM Block 3 Encryption Flag 1

Device Exception Flag 2

ID Mask 4

SD Tiles 1

Mapped rows 2

BSR Length 2

SE Wait 1

Dual Key Support Flag 1

Number of DirectC data blocks in file 1

Data Look-up Table
The Look-up table block contains records identifying the starting relative location of all the different data blocks used
in the JTAG-DirectC code and data size of each block. The format is described in the following table.

Table 5-2. Look-up Table Description

Information # Of Bytes

Data Identifier # 1 1

Pointer to data 1 memory location in the data block section 4

of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block section 4

of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block section 4

of bytes of data x 4

Data Block
The data block contains the raw data for all the different variables specified in the Look-up Table (LUT).

Table 5-3. Data Block Description

Information # Of Bytes

CRC of the entire image 2

Binary Data Variable

5.2 DAT File Description for M2GL, M2S, RTG4, MPF, and MPFS Devices
The M2GL, M2S, RTG4, and MPFS data file contains the following sections:

Header Block
The header block contains information identifying the type of the binary file and data size blocks.

Data File Format

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 22

Table 5-4. Header Section Description

Information # Of Bytes

Designer version number 24

Header Size 1

Image Size 4

DAT File Version 1

Tools Version Number 2

Map Version Number 2

Feature Flag 2

Device Family 1

Constant Data Block
The constant data block includes Device ID, silicon signature, and other information needed for programming.

Table 5-5. DAT Image Description

Information # Of Bytes

Device ID 4

Device ID Mask 4

Silicon Signature 4

Checksum 2

Number of BSR Bits 2

Number of Components 2

Data Size 2

Erase Data Size 2

Verify Data Size 2

ENVM Data Size 2

ENVM Verify Data Size 2

UEK1_EXISTS Flag (Excluding RTG4) 1

UEK2_EXISTS Flag (Excluding RTG4) 1

SEC_ERASE Flag (Excluding RTG4) 1

Number of Records 1

UEK3_EXISTS Flag (Excluding RTG4 and MPF) 1

Data Lookup Table
The data look-up table contains records identifying the starting relative location of all the different data blocks used in
the JTAG-DirectC code and data size of each block. The format is described in the following table.

Table 5-6. DAT Image Description

Information # Of Bytes

Data Identifier # 1 1

Data File Format

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 23

...........continued
Information # Of Bytes

Pointer to data 1 memory location in the data block section 4

Of bytes of data 1 4

Data Identifier # 2 1

Pointer to data 2 memory location in the data block section 4

Of bytes of data 2 4

Data Identifier # x 1

Pointer to data x memory location in the data block section 4

Of bytes of data x 4

Data Block
The data block contains the raw data for all the different variables specified in the lookup table.

Table 5-7. DAT Image Description

Information # Of Bytes

Binary Data Variable

CRC of the entire image 2

Data File Format

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 24

6. Source File Description
DPUSER.C and
DPUSER.H

These files contain hardware interface functions and require user modification.

DPCOM.C and DPCOM.H These files contain memory interface functions and require user modification.

DPALG.C and DPALG.H dpalg.c contains the main entry function dp_top. dpalg.h contains definitions of
all the STAPL actions and their corresponding codes.

DPG3ALG.C and
DPG3ALG.H

dpG3alg.c contains the main entry function dp_top_g3 and all other functions
common to AGL, AFS, A3PL, A3PEL, A3P/E, and A2F families. dpG3alg.h contains
compile options specific to AGL, AFS, A3PL, A3PEL, A3P/E, and A2F families. User
modification may be required.

DPCORE.C and
DPCORE.H

Files that contain the specific functions to support array erase, program and verify
actions of AGL, AFS, A3PL, A3PEL, A3P/E and A2F families.

DPFROM.C and
DPFROM.H

Files that contain the specific functions to support FROM erase, program and verify
actions of AGL, AFS, A3PL, A3PEL, A3P/E and A2F families.

DPNVM.C and DPNVM.H Files that contain the specific functions to support NVM program and verify actions of
AFS and A2F families.

DPSECURITY.C and
DPSECURITY.H

Files that contain the specific functions to support security erase, program actions of
AGL, AFS, A3PL, A3PEL, A3P/E, and A2F families.

DPG4ALG.C and
DPG4ALG.H

dpG4alg.c contains the main entry function dp_top_g4 and all other functions
common to M2S and MGL families.

DPJTAG.C and DPJTAG.H The JTAG related functions are declared in dpjtag.h and implemented in
dpjtag.c.

DPCHAIN.C and
DPCHAIN.H

Files that contain the specific functions to support chain programming. dpchain.c
contains pre- and post-IR/DR data definition to support chain programming. User
modification to set up a chain may be required.

DPUTIL.C and DPUTIL.H These files contain utility functions needed in the JTAG-DirectC code.

DPRTG4ALG.C and
DPRTG4ALG.H

dpRTG4alg.c contains the main entry function dp_top_rtg4 and all other functions
specific to RTG4 devices.

DPG5ALG.C and
DPG5ALG.H

dpG5alg.c contains the main entry function dp_top_g5 and all other functions
specific to MPF and MPFS devices.

Source File Description

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 25

7. Disabled Features with ENABLE_CODE_SPACE_OPTIMIZATION
DMK Verification for ARM
Enabled Devices

This feature identifies whether the target device is M1, M7, or P1 device.

Affected devices: ARM enabled devices

Impact if removed: JTAG-DirectC cannot identify if the device is standard Fusion or ARM enabled
device. JTAG-DirectC still supports programming. However, it relies on the data file
processing the target device as an ARM enabled device.

030/015 Device Check This feature identifies if the target device is a 015 or 030 device and prevents the
wrong design from being programmed into the device.

Affected devices: A3P and AGL 015 / 030 device

Impact if removed: If the design does not match the target device, programming may pass, but the device
does not function.

Disabled Features with ENABLE_CODE_SPACE_O...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 26

8. Data File Bit Orientation
This topic specifies the data orientation of the binary data file generated by Libero software. JTAG-DirectC
implementation must be in sync with the specified data orientation. The following table illustrates how the data is
stored in the binary data file. See 5. Data File Format for additional information about the data file.

Table 8-1. Binary Data File Example

Byte 0 Byte 1 Byte 2 Byte 3 Byte N

Bit7.Bit0 Bit15.Bit8 Bit23.Bit16 Bit35.Bit24 Bit(8N+7).
Bit(8N)

Valid Data Valid Data Valid Data Valid Data o <-Valid Data

If the number of bits in a data block is not a multiple of eight, the rest of the most significant bits (msb) in the last byte
are filled with zeros. The following example shows a given 70-bit data to be shifted into the target shift register from
the least significant bit (lsb) to the most significant bit (msb). A binary representation of the same data is shown in the
following figure.

Figure 8-1. Binary Representation of data

Bit 0

 20E60A9AB06FAC78A6 tdi

10000011100110 00001010100110101011000001101111101011000111100010100110 tdi
Bit 69

This data is stored in the data block section. The following table shows how the data is stored in the data block.

Table 8-2. Data Block Section Example

Byte 0 Byte 1 Byte 2 Byte3 Byte4 .. Byte 8

Bit7...Bit0 Bit15..Bit8 Bit23..Bit16 Bit35..Bit24 Bit43..Bit36 .. Bit71..Bit64

10100110 01111000 10101100 01101111 10110000 .. 00100000

A6 78 AC 6F B0 .. 20

Data File Bit Orientation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 27

9. Sample Project
The sample project, IAR_JTAG_DirectC.zip, available with this release of DirectC is based on IAR Embedded
Workbench v7.40. It is designed to work on SmartFusion2 Security Evaluation Kit with the SmartFusion2 M2S090-
FGG484 device.

Project Requirements
The following hardware and software are required to work with the sample project:

• Hardware:
– SmartFusion2 Security Evaluation Kit with SmartFusion2 M2S090-FGG484 device.
– jLink from IAR.
– Target board with Microchip device to be programmed.

• Software:
– IAR Embedded Workbench version 7.4.
– UART Host Loader available with this release package.

Procedure
1. Program the evaluation kit with JTAG_DC_top.job under the M2S Eval Kit Files directory. The M2S090

design connects specific MSS IO pins and SPI1 port to specific J1 header pins for JTAG and SPI access.
2. Connect the JTAG pins as described in HeaderPinAssignment.xlsx available under the M2S EvalKit Files

directory.
3. Connect the Mini USB (J18) to your PC. The mini-USB is connected to the FTDI FT4232h device that is used

as a USB to UART bridge.
Note:  Make sure the appropriate drivers are installed on your PC to communicate with this chip.

4. Run UART Host Loader available with this release package.
5. Select the fourth com port amongst the four com ports available in the serial port setup window. Configure the

Baud Rate as shown in the following figure.

Sample Project

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 28

Figure 9-1. UART Host Loader

6. If more than four ports are available, disconnect the J18 header and refresh the com ports in the UART Host
Loader application to identify exiting ports.

7. Click Initialize Port to establish connection with the selected COM port.
8. Select the programming file and desired action.
9. Click Run. The UART Host Loader application waits for data from the SmartFusion2 Evaluation Kit.
10. Reset the board and run the embedded application to perform the action selected. To run another action or

select a different programming file, select it from the UART Host Loader and click Run.
The programming file programmed into the evaluation kit has a JTAG-DirectC sample project that supports
SmartFusion2, IGLOO2, RTG4, PolarFire, and PolarFire SoC devices.

11. Run the IAR workbench to make changes to the embedded project and modify the compile options as desired.
You can download the embedded application using jLink as follows:
a. Connect jLink to RVI/IAR header.
b. Set the JTAG select jumper low.
c. Click on download and run from IAR.

Sample Project

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 29

10. Error Messages and Troubleshooting Tips
The information in this chapter might help you solve or identify a problem while using JTAG-DirectC code. See the
following table for a description of exit codes and their solutions.

Table 10-1. Exit Codes

Exit Code Error Message Action/Solution

0 This code does not indicate an error This message indicates success.

6 JEDEC standard message. The IDCODE of the
target device does not match the expected value in
the DAT file image.

Possible Causes:
• The data file loaded was

compiled for a different device.
For example, the AFS250 DAT
file loaded to program AFS600
device.

• Device TRST pin is grounded
• Noise or reflections on one or

more of the JTAG
pins causing incorrect read-
back of the IR Bits.

Solutions:

• Choose the correct DAT file for
the target device.

• Measure JTAG pins and noise
or reflection. TRST must be
floating or tied HIGH.

• Cut down the extra length of
ground connection.

8 This message occurs when the FPGA failed during
the Erase operation.

Possible Causes:
• The device is secured, and

the corresponding data file
is not loaded. The device
is permanently secured and
cannot be unlocked.

Solution:

• Load the correct DAT file.

10 Failed to program FlashROM Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

Error Messages and Troubleshooting Tips

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 30

...........continued
Exit Code Error Message Action/Solution

11 The message occurs when the FPGA failed verify. Possible Cause:
• The device is secured, and the

corresponding DAT file is not
loaded.

• The device is programmed with
an incorrect design.

Solution:

• Load the correct DAT file.
• Check Vpump level.
• Measure JTAG pins and noise

or reflection.

14 Failed to program Silicon Signature Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

18 Failed to authenticate the encrypted data. Solution:
• Make sure that the AES

key used to encrypt the
data matches the AES key
programmed in the device.

20 Failed to verify FlashROM at row ###. Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.
• Make sure that the device is

programmed with the correct
design.

22 Failed to program pass key Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

23 Failed to program AES key Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

Error Messages and Troubleshooting Tips

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 31

...........continued
Exit Code Error Message Action/Solution

24 Failed to program UROW Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.
• Make sure that you mounted

0.01 uF and 0.33 uF caps on
Vpump (close to the pin).

25 Failed to enter programming mode Solution:
• Try programming with a new

device.
• Measure JTAG pins and noise

or reflection.

27 FlashROM Write/Erase is protected by the pass key.
A valid pass key needs to be provided.

Solution:
• Provide a data file with a pass

key.

30 FPGA Array verification is protected by a pass key. A
valid pass key needs to be provided.

Solution:
• Provide a data file with a valid

pass key.

31 Failed to program DMK Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

33 FPGA Array encryption is enforced. Plain text
programming is prohibited.

Provide a data file with an encrypted
FPGA array.

34 FlashROM encryption is enforced. Plain text
programming is prohibited.

Solution:
• Provide a data file with an

encrypted FlashROM.

35 Pass key match failure. Solution:
• Provide a data file with correct

pass key.

36 FlashROM Encryption is not enforced. AES key
may not be present in the target device. Unable to
proceed with Encrypted FlashROM programming.

Solution:
• Make sure that the device

is properly secured with AES
encryption protection is ON.

• Provide correct DAT file for
programming.

37 FPGA Array Encryption is not enforced. Cannot
guarantee valid AES key present in target device.
Unable to proceed with Encrypted FPGA Array
programming.

Solution:
• Make sure that the device is

properly secured with the AES
encryption protection is ON for
FPGA Array.

• Provide the correct data file for
programming.

Error Messages and Troubleshooting Tips

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 32

...........continued
Exit Code Error Message Action/Solution

38 Failed to program pass key. Solution:
• Check that the device is not

already secured with a different
pass key.

• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

39 Failed the Embedded Flash Block verification. Solution:
• Check that the device is not

read secured already with a
different pass key.

• Measure JTAG pins and noise
or reflection.

41 Failed to program Embedded Flash Block. Solution:
• Check Vpump level.
• Try with new device.
• Measure JTAG pins and noise

or reflection.

42 User lock bits do not match the lock bits in the data
file.

Provide a data file with the correct
lock bits data.

43 User urow information does not match the urow
information in the data file.

Provide a data file with the correct
urow information data.

47 NVM encryption is enforced. Plain text programming
is prohibited.

Provide a data file with an encrypted
NVM.

49 NVM encryption is not enforced. Cannot guarantee
valid AES key present in target device. Unable to
proceed with encrypted NVM programming.

Solution:
• Make sure the device is

properly secured with the AES
encryption protection turned on
for NVM.

• Provide the correct data file for
programming.

100 CRC data error. Data file is corrupted or
programming on system board is not successful.

Solution:
• Regenerate data file.
• Reprogram the data file into the

system memory.

150 Requested action is not found. Check spelling.

151 Action is not supported because required data block
is missing from the data file.

Regenerate STAPL/DAT file with the
needed block/feature support.

152 Compiled code does not support the requested
action.

Compile DirectC code with the
appropriate compile options enabled.

153 Data files contain data for the protected portion of
NVM0 block

Regenerate the data file from the
latest Designer software.

154 Device security settings do not match with the data
file

Regenerate the data file with the
correct device security settings.

Error Messages and Troubleshooting Tips

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 33

11. Revision History
Revision Date Description

A 09/2021 • Migrated to the Microchip standard template format.
• Renamed document title from DirectC User Guide to JTAG-DirectC

User Guide.
• Updated for the new version numbering schema (v202x.x) for DirectC

solutions.

Revision History

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 34

Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 35

http://www.microchip.com/support
http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 36

VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8866-8

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 37

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003192A-page 38

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. System Overview
	1.1. Systems with Direct Access to Memory

	2. Generating Data Files and Integrating with JTAG-DirectC
	2.1. Data File Compatibility
	2.2. JTAG-DirectC Code Integration

	3. Required Source Code Modifications
	3.1. Compiler Switches
	3.2. Hardware Interface Components
	3.2.1. Define JTAG Hardware Bit Assignments (dpuser.h)
	3.2.2. Hardware Interface Function (dpuser.c)
	3.2.3. Delay Function (dpuser.c)
	3.2.4. Display Functions (dpuser.c)
	3.2.5. Memory Interface Functions (dpuser.c)
	3.2.6. Systems with Direct Access to the Memory with Data File
	3.2.7. Systems with Indirect Access to the Data File
	3.2.8. Example of dp_get_page_data Function Implementation
	3.2.9. Main Entry Function
	3.2.10. Data Type Definitions
	3.2.11. Supported Actions

	4. Chain Programming
	4.1. Example

	5. Data File Format
	5.1. DAT File Description for AGL, AFS, A3PL, A3PEL, A3P/E, and A2F Devices
	5.2. DAT File Description for M2GL, M2S, RTG4, MPF, and MPFS Devices

	6. Source File Description
	7. Disabled Features with ENABLE_CODE_SPACE_OPTIMIZATION
	8. Data File Bit Orientation
	9. Sample Project
	10. Error Messages and Troubleshooting Tips
	11. Revision History
	Microchip FPGA Support
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

