
.
HB0919

Handbook
CoreVectorBlox

November 2020

Contents

1 Revision History...1
1.1 Revision 2.0...1
1.2 Revision 1.0...1

2 Introduction...2
2.1 Overview...2
2.2 Features..3
2.3 Core Versions..3
2.4 Supported Families...3
2.5 Device Utilization and Performance...3

3 Functional Description...4
3.1 System Level Overview...4
3.2 Memory Components...4
3.3 Hardware Architecture...5
3.4 Configuration Options..6

4 Operation...7
4.1 Memory Map..7
4.2 Network Processing..9

5 CoreVectorBlox..11
5.1 Generics..11

6 Interface Description...12
6.1 Clocks and Resets..12
6.2 Control Slave Signals...12
6.3 Data Master Signals..13
6.4 Interrupt Signals...15

7 Tool Flows..16
7.1 Licenses...16
7.2 Smart Design...16
7.3 Simulation...16
7.4 Synthesis...17
7.5 Place and Route..17

iiHB0919 Handbook Revision 2.0

Contents

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed
by revision, starting with the most current publication.

1.1 Revision 2.0
Revision 2.0 was published in November 2020. The following is the list of changes in revision 2.0.
• The Overview section was updated
• Device Utilization and Performance table was updated
• Added Interrupt Signals section
• Updated Smart Design diagram

1.2 Revision 1.0
Revision 1.0 was published in June 2020. It is the first publication of this document.

1HB0919 Handbook Revision 2.0

Revision History

2 Introduction

This handbook provides details about Microsemi
®
CoreVectorBlox Environment and how to use it.

This document is used by Microsemi FPGA designers using Libero
®
System-on-Chip (SoC).

2.1 Overview
CoreVectorBlox provides a flexible neural network accelerator. It uses an overlay approach, where one
instantiation can run different networks without needing to be resynthesized. A software toolkit called
VectorBlox Accelerator Software Development Kit (SDK) compiles a neural network description from a
supported framework (for example, TensorFlow, Caffe, and so on) into a Binary Large Object (BLOB) that
is loaded into memory accessible by the CoreVectorBlox memory-mapped master. The CoreVectorBlox
reads this BLOB and the network inputs from memory, processes the network, and places the result into
an output buffer in memory. It can switch between multiple networks dynamically because of its overlay
design. The overlay features a vector processor which can handle general vector layers and a convolutional
accelerator, further accelerates Convolutional Neural Networks (CNNs). CoreVectorBlox efficiently supports
most convolutional neural networks available today, such as ResNet, MobileNet, YOLO, and many more.
Different configurations are available, allowing the user to scale the resource utilization to the required
network performance.

The top-level interface diagram is shown in the following figure.

Figure 1 • I/O Signal Diagram

2HB0919 Handbook Revision 2.0

Introduction

3 Functional Description

3.1 System Level Overview
CoreVectorBlox processes neural networks residing in external memory. Its interfaces are an AXI4-Lite slave
for setup and control and an AXI4 master for instruction and data memory. An example system of
CoreVectorBlox usage is shown in the following figure.

Figure 2 • Example of System Level Block Diagram

The Mi-V soft processor is used to control the flow of data between components. At boot up, the firmware
and network BLOBs (the network BLOBs were processed by the SDK and stored in non-volatile memory)
are copied from non-volatile memory to DDR memory. Incoming data (for example, video frames from an
image sensor) is written into DDR memory by user logic under the control of the Mi-V. When new data is
available, the Mi-V instructs CoreVectorBlox to begin processing. CoreVectorBlox reads the weights and
layer types from the Network BLOB and data from the network inputs from DDR memory, processes the
network, and then writes the results to DDR memory. Finally, the Mi-V either directly reads the results or
signals another module to consume them.

3.2 Memory Components
CoreVectorBlox requires the following components to be placed in memory accessible to its AXI4 master
interface:

1. Firmware BLOB—Binary Large OBject (BLOB) common to all networks.

2. Network BLOB(s)—BLOBs produced by the VectorBlox Accelerator SDK for each network to run.

3. Network Inputs/Outputs—Network specific I/O for each run of a network.

The firmware BLOB is provided by Microchip and is common to all configurations of CoreVectorBlox. The
firmware BLOB is included as part of the VectorBlox Accelerator SDK and contains instructions to parse
Network BLOBs. Updated firmware can be released to target new network features. The firmware BLOB is
loaded into external memory during bootup.

The Network BLOBs are compiled by the user to target their own networks. Microchip provides examples
and tutorials in the VectorBlox Accelerator SDK. A Network BLOB contains information about the specific
layer types in the network as well as weights and buffer space for activations. Each network has its own
BLOB; multiple BLOBs can be present in memory at the same time and each time the CoreVectorBlox is

4HB0919 Handbook Revision 2.0

Functional Description

started, it can target a different BLOB. The user loads the Network BLOB(s) into external memory during
bootup. The network inputs and outputs are specific to each network. For more information, see the
VectorBlox Accelerator SDK.

3.3 Hardware Architecture
The following figure shows the primary blocks of CoreVectorBlox.
• Control Registers—Control, status, and error registers as well as addresses for BLOBs and I/O.
• Microcontroller—Parses network structures from BLOBs and controls the vector processor.
• MXP Vector Processor—Processes general neural network layers.
• CNN Accelerator—Processes convolutional network layers.

Figure 3 • CoreVectorBlox Block Diagram

The control registers have an AXI4-Lite slave interface for external logic (for example, aMi-V soft processor)
to control the state of CoreVectorBlox. They can detect and report simple errors, such as invalid BLOB
addresses, but mostly are used to initialize and communicate with the microcontroller. Once initialized,
the microcontroller can set status and error conditions in the control registers.

The microcontroller is a simple in-order RISC-V soft processor (internal to CoreVectorBlox and different
from theMi-V processormentioned in the system description). It is used to read/set control registers, parse
network BLOBs, and issue instructions to the vector processor for processing network layers. Its instruction
memory and working data memory are contained in the Firmware BLOB, and it has instruction and data
caches to reduce traffic over the data memory master interface.

The MXP Vector Processor is a soft vector processor, which can perform data parallel operations on long
vectors of data. It uses an internal scratchpad as working memory and a variable-width DMA controller for
transferring data between the scratchpad and external memory. The CoreVectorBlox size configuration
(see Configuration Options) configures the number of parallel ALUs and scratchpad memory size of the
MXP. The microcontroller issues instructions to the MXP to read network data into its scratchpad, perform
operations such as addition and multiplication on the data, and store the data back to memory.

The CNN Accelerator is an array of processing elements (PEs) that consists of a multiply-accumulate unit
and small accumulation RAM. Data is passed from theMXP scratchpad to the PE array, where it is processed
over multiple cycles before being written back to the MXP scratchpad. The PEs are laid out in a 2D grid,
which can take advantage of the multiple levels of parallelism in many neural network layers. This achieves
a higher level of performance than theMXP alone, especially in convolutional neural networks and achieves
a higher degree of parallelism than the MXP, when processing the convolutional layers.

5HB0919 Handbook Revision 2.0

Functional Description

3.4 Configuration Options
CoreVectorBlox can be configured to one of the various size configurations, based on size configuration
performance. Detailed resource usage and device utilization by size configuration can be found in Device
Utilization and Performance. The following table lists the details of the configuration changes the vector
processor and CNN accelerator. More benchmarks along with power and memory bandwidth usage are
available in the CoreVectorBlox SDK.
Table 2 • Processor Size Configuration Details

Resnet50

Performance

Peak CNN

Throughput

CNN Accelerator

Array Size

Vector

Scratchpad

Vector Processor

Width

Size

Configuration

4.2 FPS78 GOPs16x1664 kB128-bitV250

7.8 FPS146 GOPs16x32128 kB256-bitV500

13.6 FPS264 GOPs32x32256 kB256-bitV1000

Note:

Network latency is 1/FPS; networks are run with a batch size of 1.

6HB0919 Handbook Revision 2.0

Functional Description

4 Operation

4.1 Memory Map
The following table lists the control slave memory map. All registers are 32-bit in width. Register access is
specified as a combination of readable (R), writable (W), write-to-set (WS), and write-to-clear (WC).
Write-to-set (WS) bits are set to ‘1’ by a write to the specified register that has a ‘1’ in the WS bit, but can
only be cleared by an internal logic (a write to the specified register with a ‘0’ in the WS bit has no effect).
Write-to-clear (WC) bits are cleared to ‘0’ by a write to the specified register with a ‘1’ in theWC bit (a write
to the specified register with a ‘0’ in the WC bit has no effect). Write-to-clear (WC) registers are cleared by
any write to the specified register.
Table 3 • Control Slave Memory Map

AccessDescriptionNameAddress

Reset ValueFunctionBit 0 = LSB

R/W1Write 1 to soft reset.

All other control register bits are ignored
when soft reset is activated. The error
register is cleared on soft reset as well.

0 Soft ResetControl

Register

0x00

Soft reset expects to fulfill memory trans-
actions on all interfaces. If the modules
connected to S_AXI or M_AXI are
placed into reset andmaynot have correct-
ly fulfilled outstanding AXI transactions,
then a hard reset (through theresetn
pin)must be performed to ensure that the
S_AXI and M_AXI interfaces come
up correctly. 1→0 transition triggers the
load of instruction memory; the Instruc-
tion BLOB Address must be set before
clearing this bit. Furthermore, the instruc-
tion BLOB must be reloaded every time a
soft or hard reset is performed; failure to
do so issues an error.

R/WS0Write 1 to set. Setting this bit causes the
CoreVectorBlox to start processing a net-

1 Start

work. It begins fetching the network BLO-
B from the location specified in the Net-
work Model Address register and decode
the BLOB to determine how to proceed.

TheNetworkModel Address andNetwork
I/O Address registers must be set before
setting this bit. Once cleared, the hard-
ware starts processing the current net-
work (concurrently with setting the Run-
ning bit).

While set, it is an error to Start again or to
write to the Network Model Address or
Network I/O Address registers.

R0Set during processing (concurrently with
clearing the Start bit).

2 Running

7HB0919 Handbook Revision 2.0

Operation

AccessDescriptionNameAddress

Reset ValueFunctionBit 0 = LSB

Cleared concurrently to setting the 'Out-
put Valid' bit.

R/WC0Write 1 to clear.

Set once the network outputs are valid. It
must be cleared once per network invoca-

3 Output Valid

tion. An invocation is started by writing
the Start bit and is ended by clearing the
Output Valid bit. The Output Valid bit is
not cleared before writing the Start bit for
the next network invocation, but until it
is cleared, the subsequent network does
not finish (the Running bit stays set). The
Output Valid bit sets once and must be
cleared once per setting of the Start bit. If
the control slave does not clear this bit,
subsequent network invocations will not
finish.

While this bit is clear, it is an error to write
to this bit.

R0Indicates the contents of the Error Register
are valid and must be examined.

4 Error

R0Reserved31:5

R/WCWrite any value to clear to zero, which also clears the Error bit of the Control Regis-
ter. Errors will cause a soft reset, which is identical to setting the Soft Reset bit of

Error

Register

0x04

the Control Register except that the Error bit and this register are not cleared. See
Table 5 • Error Codes for more information.

R/WAddress pointing to firmware BLOB to which contains instruction memory.

Must be be aligned to a 2 MB boundary and be greater than or equal to 0x0020_0
000 when clearing the Soft Reset bit or an error will be raised.

Firmware

BLOB

Address

0x08

Writing while not in Soft Reset raises an error.

R/WAddress Pointing to Model Blob.

Must be aligned to an 8 byte boundary and be greater than or equal to 0x0020_0
000 when setting the 'Start' bit or an error will be raised.

Network

Model

Address

0x10

Writing while the Start bit is set raises an error.

R/WAddress pointing to the I/O data structure for the network.

Must be aligned to an 8 byte boundary and be greater than or equal to 0x0020_0
000 when setting the 'Start' bit or an error will be raised.

Network I/O
Address

0x18

Writing while the Start bit is set raises an error.

RSee the following table for version information.Version0x28

Table 4 • Version

FunctionNameBits

Reserved; Reads 0 for CoreVectorBlox.Product ID7:0

Size configuration:Size Configuration15:8

8HB0919 Handbook Revision 2.0

Operation

FunctionNameBits

0=>V250, 1=>V500 , 2=>V1000

Reserved core version informationReserved19:16

Minor version numberMinor Version27:20

(For example, 0x05 for CoreVectorBlox 1.5).

Major version numberMajor Version31:28

(For example, 0x01 for CoreVectorBlox 1.5).

Table 5 • Error Codes

DescriptionCodeValue

The instruction address is within the reserved memory range
(first 2 MB).

INVALID_INSTRUCTION_ADDRESS1

The Instruction BLOB Address was written while not in reset.INSTRUCTION_ADDRESS_NOT_READY2

The Start bit of the Control Register, theNetworkModel Address,
or the Network I/O Address were written while the Start bit of
the Control Register was still set.

START_NOT_CLEAR3

The Output Valid bit of the Control register was cleared when it
was not set.

OUTPUT_VALID_NOT_SET4

The Instruction BLOBwas built for thewrong version of the core.INSTRUCTION_BLOB_VERSION_MISMATCH5

The network model or I/O addresses are within the reserved
memory range (first 2 MB).

INVALID_NETWORK_ADDRESS6

The network BLOB has an invalid format.NETWORK_BLOB_INVALID7

The network BLOBwas built for thewrong version of the Instruc-
tion BLOB.

NETWORK_BLOB_VERSION_MISMATCH8

The network BLOB was built for a different preset configuration
than the one in use.

NETWORK_BLOB_PRESET_MISMATCH9

The Instruction BLOB was not reloaded between resets of the
accelerator.

INSTRUCTION_BLOB_STALE10

4.2 Network Processing
The following figure shows the flow of processing networks.

Figure 4 • Network Processing Flow

A C API is provided in the CoreVectorBlox SDK.

9HB0919 Handbook Revision 2.0

Operation

When coming out of reset, CoreVectorBlox is held in an IDLE state. Once the Firmware BLOB is present in
memory, the Firmware BLOB address can be set, and then the core taken out of soft reset. The core starts
executing the firmware instructions and initializes, at which point it is in the READY state and can process
networks.

Processing a network is started by setting the Network BLOB address and then setting the ‘start’ bit of the
control register. CoreVectorBlox will then begin parsing the Network BLOB and read in the inputs as it starts
processing. Exact steps of processing depend on the Network BLOB. During processing, thememorymaster
may also access temporary buffer memory. The temporary buffers are pre-allocated inside the Network
BLOB; CoreVectorBlox only accessesmemory inside the Firmware BLOB, Network BLOB, and Network Input
and Output buffers.

When network processing completes, the ‘Output Valid’ bit of the control register is set and the network
outputs can be read. The next network run might start as soon as the current run is finished.

At any point, CoreVectorBlox can be put back into the Soft Reset state by setting the ‘soft reset’ bit of the
control register. Soft reset attempts to finish any outstanding AXI transactions on the master and slave
interfaces, as opposed to a hard reset using the resetn pin, which will immediately cease all transactions
and reset those interfaces. After either kind of reset, the Firmware BLOB must be reloaded as it contains
volatile data that is modified during processing. For more details on signals, see Memory Map.

10HB0919 Handbook Revision 2.0

Operation

5 CoreVectorBlox

5.1 Generics
Customers can define the generics listed in the following table as required in the source code.
Table 6 • CoreVectorBlox Generics

DescriptionValid ValuesDefault SettingGeneric

Size Configuration; see Configuration Options table
for details.

[V250, V500, V1000]V1000Size Configuration

AXI4 Data Master data width in bits. V250 only sup-
ports 64 bits to 128 bits, while V500 and V1000 sup-
port 64 bits to 256 bits.

[64, 128, 256]256M_AXI_DATA_WIDTH

11HB0919 Handbook Revision 2.0

CoreVectorBlox

6 Interface Description

The port signals for CoreVectorBlox are defined in the following tables and are also described in Overview.

6.1 Clocks and Resets
The clocks and the resets are listed in the following table.
Table 7 • Clocks and Resets

DescriptionI/OFunctionSignal

System clock. The control slave and data master are synchronous
to this clock.

InputClockclk

Double-frequency clock. Clocks MathBlocks and LSRAM resources
at twice the frequency of the system clock. It must be synchronous
to and in phase with clk. See the following notes.

Input2X Clockclk_2x

System reset (active low). Resets all core functions as well as the
control slave and data master.

InputResetresetn

Note:

1. To minimize skew between clk and clk_2x, the clocks must be created from the same CCC on PolarFire
devices. Additionally, the clock outputs are paired. Either the OUT0 and OUT1 or the OUT2 and OUT3
pair must be used, but not one output from each pair.

2. The Libero Place and Route tool must be configured with the ‘Repair Minimum Delay Violations’ option
selected to repair any hold violations caused by skew between the two clocks.

6.2 Control Slave Signals
The Control Slave is an AXI4-Lite compliant interface with memory map described in Memory Map. It is
synchronous to clk and reset by resetn pin. Its signals are listed in the following table.

Table 8 • Control Slave Signals

DescriptionI/OFunctionSignal

AXI4-Lite slave write address.InputWrite Addresss_axi_awaddr

AXI4-Lite slave write address
valid.

InputWrite Address Valids_axi_awvalid

AXI4-Lite slave write address
ready.

OutputWrite Address Readys_axi_awready

AXI4-Lite slave write data.InputWrite Datas_axi_wdata

AXI4-Lite slave write data
strobe (byte enable).

InputWrite Data Strobes_axi_wstrb

CoreVectorBlox expects all
write strobe signals to be all
high or all low; partial register

12HB0919 Handbook Revision 2.0

Interface Description

DescriptionI/OFunctionSignal

writes results in undefined re-
sults.

AXI4-Lite slavewrite data valid.InputWrite Data Valids_axi_wvalid

AXI4-Lite slave write data
ready.

OutputWrite Data Readys_axi_wready

AXI4-Lite slave write response
ready.

InputWrite Response Readys_axi_bready

AXI4-Lite slave write response
code.

OutputWrite Responses_axi_bresp

AXI4-Lite slave write response
valid.

OutputWrite Response Valids_axi_bvalid

AXI4-Lite slave read address.InputRead Addresss_axi_araddr

AXI4-Lite slave read address
valid.

InputRead Address Valids_axi_arvalid

AXI4-Lite slave read address
ready.

OutputRead Address Readys_axi_arready

AXI4-Lite slave read data
ready.

InputRead Data Readys_axi_rready

AXI4-Lite slave read data.OutputRead Datas_axi_rdata

AXI4-Lite slave read data re-
sponse code.

OutputRead Data Responses_axi_rresp

AXI4-Lite slave read data valid.OutputRead Data Valids_axi_rvalid

Note:

1. All control slave signals are synchronous to clk.

2. The control slave is reset by resetn pin.

6.3 Data Master Signals
The DataMaster is an AXI4 compliant interface. It is synchronous to clk and reset by resetn pin. Its signals
are listed in the following table.
Table 9 • Data Master Signals

DescriptionI/OFunctionSignal

AXI4 master read address ready.InputRead Address Readym_axi_arready

AXI4 master read address valid.OutputRead Address Validm_axi_arvalid

AXI4 master read address ID.OutputRead Address IDm_axi_arid

13HB0919 Handbook Revision 2.0

Interface Description

DescriptionI/OFunctionSignal

CoreVectorBlox uses multiple IDs; these
must be propagated correctly through any
interconnect attached to the Data Master.

AXI4 master read address.OutputRead Addressm_axi_araddr

AXI4 master read length (beats per burst
minus 1).

OutputRead Lengthm_axi_arlen

AXI4 master read size.OutputRead Sizem_axi_arsize

CoreVectorBlox does not issue narrow
reads; this will be fixed to the data width
size.

AXI4 master read burst type. CoreVectorB-
lox only issues incrementing bursts.

OutputRead Burst Typem_axi_arburst

AXI4 master read protection. CoreVectorB-
lox only issues unprivileged, secure data
acceses.

OutputRead Protectionm_axi_arprot

AXI4 master read transaction attributes.OutputRead Transaction Attributesm_axi_arcache

CoreVectorBlox issues modifiable and
bufferable transactions. It does not set allo-
cation bits and assumes that transactions
can be read from memory in systems with
caches.

AXI4 master read data ready.OutputRead Data Readym_axi_rready

AXI4 master read dataInputRead Data Validm_axi_rvalid

AXI4 master read data ID. CoreVectorBlox
uses multiple IDs.

InputRead Data IDm_axi_rid

AXI4 master read data.InputRead Datam_axi_rdata

AXI4 master read data response code.InputRead Data Responsem_axi_rresp

AXI4 master read data last (end of burst).InputRead Data Lastm_axi_rlast

AXI4 master write address ready.InputWrite Address Readym_axi_awready

AXI4 master write address valid.OutputWrite Address Validm_axi_awvalid

AXI4masterwrite address ID. CoreVectorB-
lox usesmultiple IDs; thesemust be propa-

OutputWrite Address IDm_axi_awid

gated correctly through any interconnect
attached to the Data Master.

AXI4 master write address.OutputWrite Addressm_axi_awaddr

AXI4 master write length (beats per burst
minus 1).

OutputWrite Lengthm_axi_awlen

AXI4masterwrite size. CoreVectorBlox does
not issue narrow writes; this will be fixed
to the data width size.

OutputWrite Sizem_axi_awsize

14HB0919 Handbook Revision 2.0

Interface Description

DescriptionI/OFunctionSignal

AXI4masterwrite burst type. CoreVectorB-
lox only issues incrementing bursts.

OutputWrite Burst Typem_axi_awburst

AXI4masterwrite protection. CoreVectorB-
lox only issues unprivileged, secure data
acceses.

OutputWrite Protectionm_axi_awprot

AXI4 master write transaction attributes.
CoreVectorBlox issues modifiable, buffer-

OutputWrite Transaction Attributesm_axi_awcache

able transactions. It does not set allocation
bits.

AXI4 master write data ready.InputWrite Data Readym_axi_wready

AXI4 master write data valid.OutputWrite Data Validm_axi_wvalid

AXI4 master write data.OutputWrite Datam_axi_wdata

AXI4 master write data strobe (byte en-
able).

OutputWrite Data Strobem_axi_wstrb

AXI4 master write last (end of burst).OutputWrite Data Lastm_axi_wlast

AXI4 master write response ready.OutputWrite Response Readym_axi_bready

AXI4 master write response valid.InputWrite Response Validm_axi_bvalid

AXI4 master write response ID.InputWrite Response IDm_axi_bid

AXI4 master write response code.InputWrite Response Codem_axi_bresp

Note:

1. All data master signals are synchronous to clk.

2. The data master is reset by resetn pin.

6.4 Interrupt Signals
The following table lists the interrupt signals.
Table 10 • Interrupt Signals

DescriptionI/OFunctionSignal

Mirrors the Output Valid bit in the Control Register (see Memory Map)
for use as an interrupt for needed systems.

OutputInterrupt Outputoutput_valid

15HB0919 Handbook Revision 2.0

Interface Description

7 Tool Flows

7.1 Licenses
CoreVectorBlox is licensed using encrypted RTL.

7.2 Smart Design
The following figure shows the core configured using the configuration GUI within SmartDesign.

Figure 5 • CoreVectorBlox Configurator within SmartDesign with V1000 Configuration

7.3 Simulation
CoreVectorBlox can be functionally simulated aswell as simulated at the RTL level. For functional simulation,
see the SDK. Functional simulation is the preferred way of verifying network functionality and accuracy.

The RTL can be simulated as part of a higher level design. The user has to load the Firmware and Instruction
BLOBs into memory attached to the Data Master port. See the documentation for the specific memory
interface used. The user must also write to the control registers, either using state machine logic or by
instantiating a control processor, such as a Mi-V and loads a program for it to set the control registers.

16HB0919 Handbook Revision 2.0

Tool Flows

7.4 Synthesis
Set the design root appropriately and click the Synthesis icon in Libero. To perform synthesis, right-click,
and select Run. CoreVectorBlox requires no special synthesis settings.

7.5 Place and Route
The ‘Repair Minimum Delay Violations’ option must be turned on in the Libero Place and Route tool to fix
any hold violations between clk and clk_2x caused by clock skew through the fabric (see Clocks and Resets).

Set the design route appropriately and run Synthesis. Click the Place and Route icon in Libero to invoke the
Designer software.

17HB0919 Handbook Revision 2.0

Tool Flows

Microsemi's product warranty is set forth inMicrosemi's Sales Order Terms and Conditions. Information
contained in this publication is provided for the sole purpose of designing with and using Microsemi
products. Information regarding device applications and the like is provided only for your convenience
and may be superseded by updates. Buyer shall not rely on any data and performance specifications or
parameters provided by Microsemi. It is your responsibility to ensure that your application meets with
your specifications. THIS INFORMATION IS PROVIDED "AS IS."MICROSEMIMAKESNOREPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TOTHE INFORMATION, INCLUDINGBUTNOT LIMITEDTO ITS CONDITION,QUALITY,
PERFORMANCE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION
OR ITS USE, HOWEVER CAUSED, EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE
DAMAGESARE FORESEEABLE. TOTHE FULLEST EXTENTALLOWEDBY LAW,MICROSEMI’S TOTAL LIABILITY
ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF
FEES, IF ANY, YOU PAID DIRECTLY TO MICROSEMI FOR THIS INFORMATION. Use of Microsemi devices
in life support, mission-critical equipment or applications, and/or safety applications is entirely at the
buyer’s risk, and the buyer agrees to defend and indemnifyMicrosemi from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any
Microsemi intellectual property rights unless otherwise stated.

Microsemi
2355 W. Chandler Blvd.
Chandler, AZ 85224 USA

Within the USA: +1 (480) 792-7200
Fax: +1 (480) 792-7277

www.microsemi.com © 2020 Microsemi and
its corporate affiliates. All rights reserved.
Microsemi and the Microsemi logo are
trademarks of Microsemi Corporation and its
corporate affiliates. All other trademarks and
service marks are the property of their
respective owners. Microsemi Corporation, a subsidiary ofMicrochip Technology Inc. (Nasdaq:MCHP),

and its corporate affiliates are leading providers of smart, connected and secure
embedded control solutions. Their easy-to-use development tools and
comprehensive product portfolio enable customers to create optimal designswhich
reduce risk while lowering total system cost and time to market. These solutions
serve more than 120,000 customers across the industrial, automotive, consumer,
aerospace and defense, communications and computing markets. Headquartered
in Chandler, Arizona, the company offers outstanding technical support along with
dependable delivery and quality. Learn more at www.microsemi.com.

50200919

18HB0919 Handbook Revision 2.0

Legal

	Contents
	1 Revision History
	1.1 Revision 2.0
	1.2 Revision 1.0

	2 Introduction
	2.1 Overview
	2.2 Features
	2.3 Core Versions
	2.4 Supported Families
	2.5 Device Utilization and Performance

	3 Functional Description
	3.1 System Level Overview
	3.2 Memory Components
	3.3 Hardware Architecture
	3.4 Configuration Options

	4 Operation
	4.1 Memory Map
	4.2 Network Processing

	5 CoreVectorBlox
	5.1 Generics

	6 Interface Description
	6.1 Clocks and Resets
	6.2 Control Slave Signals
	6.3 Data Master Signals
	6.4 Interrupt Signals

	7 Tool Flows
	7.1 Licenses
	7.2 Smart Design
	7.3 Simulation
	7.4 Synthesis
	7.5 Place and Route

