
 Libero® SoC v2021.2
 Custom Flow User Guide

Introduction
Libero® System-on-Chip (SoC) software provides a fully integrated Field Programmable Gate Array (FPGA) design
environment. However, a few users might want to use third-party synthesis and simulation tools outside the Libero
SoC environment. Libero can now be integrated into the FPGA design environment. It is recommended to use Libero
SoC to manage the entire FPGA design flow.

This user guide describes the Custom Flow, a process to integrate Libero as a part of the larger FPGA design flow.

Supported Device Families
The following table lists the device families that Libero SoC supports. However, some information in this guide might
only apply to specific family of devices. In this case, such information is clearly identified.
Table 1. Device Families Supported by Libero SoC

Device Family Description

PolarFire® PolarFire FPGAs deliver the industry’s lowest power at mid-range densities with
exceptional security and reliability.

PolarFire SoC PolarFire SoC is the first SoC FPGA with a deterministic, coherent RISC-V CPU
cluster, and a deterministic L2 memory subsystem enabling Linux and real-time
applications.

SmartFusion®2 SmartFusion2 addresses the fundamental requirements for advanced security, high
reliability, and low power in critical industrial, military, aviation, communications, and
medical applications.

IGLOO®2 IGLOO2 is a low-power mixed-signal programmable solution.

RTG4™ RTG4 is Microchip's family of radiation-tolerant FPGAs.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 1

https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/1692-smartfusion2#overview
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#overview
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#overview

Table of Contents

Introduction...1

1. Overview... 3

1.1. Component Lifecycle..5
1.2. Libero SoC Project Creation...5
1.3. Custom Flow.. 6

2. Component Configuration... 9

2.1. Component Configuration Using Libero... 9
2.2. Component Manifests...11
2.3. Interpreting Manifest Files..13

3. Synthesizing Your Design... 16

4. Simulating Your Design...17

5. Implementing Your Design.. 21

6. Building Your Firmware Project...26

7. Appendix A—Libero-Generated Hardware Configuration Files.. 28

8. Appendix B—Sample SDC and PDC Constraints...29

8.1. SDC Timing Constraints...29
8.2. PDC Physical Design Constraints..30

9. Appendix C—Importing Simulation Libraries into Simulation Environment...31

10. Appendix D—Derive Constraints.. 32

10.1. Derive Constraints Tcl Commands...32

11. Revision History.. 44

Microchip FPGA Support..45

The Microchip Website...45

Product Change Notification Service..45

Customer Support.. 45

Microchip Devices Code Protection Feature.. 45

Legal Notice... 46

Trademarks.. 46

Quality Management System... 47

Worldwide Sales and Service...48

 Libero® SoC v2021.2

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 2

1. Overview
While Libero SoC provides a fully-integrated end-to-end design environment to develop SoC and FPGA designs, it
also provides the flexibility to run synthesis and simulation with third-party tools outside the Libero SoC environment.
However, some design steps must remain within the Libero SoC environment.

The following table lists the major steps in the FPGA design flow and indicates the steps for which Libero SoC must
be used.
Table 1-1. FPGA Design Flow

Design Flow Step Must Use Libero Description

Design Entry: HDL No Use third-party HDL editor/checker tool outside
Libero SoC if desired.

Design Entry: Configurators Yes Create first Libero project for IP catalog core
component generation.

Design Entry: System Builder
(SmartFusion2 and IGLOO2 only)

Yes Stay in first Libero project.

Automatic PDC/SDC constraint
generation

No Derived constraints need all HDL files, and a
derive_constraints utility when performed outside
of Libero SoC, as described in 10. Appendix D—
Derive Constraints.

Simulation No Use third-party tool outside Libero SoC if
desired. Requires download of pre-compiled
simulation libraries for target device, target
simulator, and target Libero version used for
backend implementation.

Synthesis No Use third-party tool outside Libero SoC if
desired.

Design Implementation
• Manage Constraints, Compile

Netlist, Place and Route (see
Figure 1-1)

Yes Create second Libero project for the backend
implementation.

Timing and Power Verification Yes Stay in second Libero project.

Configure Design Initialization Data
and Memories

Yes Use this tool to manage different types of
memories and design initialization in PolarFire.
Stay in second project.

Programming File Generation Yes Stay in second project.

Firmware Generation (SmartFusion2
only)

Yes Stay in second project.

Firmware Debug (SmartFusion2
only)

No Use third-party tool outside Libero SoC if
desired.

Note:  You must download precompiled libraries listed under the Compiled Simulation Libraries for SmartFusion2,
IGLOO2, RTG4 and PolarFire section on the Libero SoC Documentation page to use a third-party simulator.

In a CPLD/pure Fabric FPGA flow, enter your design using HDL or schematic entry and pass that directly to the
synthesis tools. The flow is still supported. However, SmartFusion2, IGLOO2, RTG4, and PolarFire FPGAs have
significant proprietary hard IP blocks requiring the use of configuration cores (SgCores) from the Libero SoC IP
catalog. Special handling is required for any blocks that comprise SoC functionality. These are:

• SmartFusion2 and IGLOO2

 Libero® SoC v2021.2
Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 3

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

– SmartFusion2 MSS (includes MDDR and eNVM)
– IGLOO2 HPMS (includes MDDR and eNVM)
– System Builder
– FDDR
– SerDes
– Oscillator
– CCC
– RAMs (TPSRAM, DPSRAM, URAM)
– TAMPER, and so on.

• RTG4
– uPROM
– SerDes
– SerDes INIT
– FDDR
– FDDR INIT
– RCOSC macro
– CCC
– RAMs (TPSRAM, DPSRAM, URAM), and so on.

• PolarFire
– PF_UPROM
– PF_SYSTEM_SERVICES
– PF_CCC
– PF CLK DIV
– PF_CRYPTO
– PF_DRI
– PF_INIT_MONITOR
– PF_NGMUX
– PF_OSC
– RAMs (TPSRAM, DPSRAM, URAM)
– PF_SRAM_AHBL_AXI
– PF_XCVR_ERM
– PF_XCVR_REF_CLK
– PF_TX_PLL
– PF_PCIE
– PF_IO
– PF_IOD_CDR
– PF_IOD_CDR_CCC
– PF_IOD_GENERIC_RX
– PF_IOD_GENERIC_TX
– PF_IOD_GENERIC_TX_CCC
– PF_RGMII_TO_GMII
– PF_IOD_OCTAL_DDR
– PF_DDR3
– PF_DDR4
– PF_LPDDR3
– PF_QDR
– PF_CORESMARTBERT
– PF_TAMPER
– PF_TVS, and so on.

 Libero® SoC v2021.2
Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 4

In addition to the preceding listed SgCores, there are many DirectCore soft IPs available for various device
families in the Libero SoC Catalog that uses the FPGA fabric resources.

For design entry, if you use any one of the preceding components, you must use Libero SoC for part of the
design entry (2. Component Configuration), but you can continue the rest of your Design Entry (HDL entry, and
so on) outside of Libero. To manage the FPGA design flow outside of Libero, follow the steps provided in the
rest of this guide.

1.1 Component Lifecycle
The following steps describe the lifecycle of an SoC component and provides instructions on handle its data:

1. Generate the component using its configurator in Libero SoC. This generates the following types of data:
a. HDL files
b. Memory files
c. Stimulus and Simulation files
d. Component metadata such as component file manifest text file, register configuration files (*.reg)

for MDDR/FDDR/SerDes and *cfg file for eNVM (SmartFusion2 and IGLOO2), uPROM (RTG4), and
uPROM and sNVM (PolarFire)

e. Firmware drivers (*.h) files
f. Component SDC file

2. For HDL files, instantiate and integrate them in the rest of the HDL design using the external design entry
tool/process.

3. Supply memory files and stimulus files to your simulation tool.
4. Supply firmware drivers to your firmware project.
5. Supply Component SDC file to Derive Constraint tool for Constraint Generation. See 10. Appendix D—Derive

Constraints for more details.
6. You must create a second Libero project, where you import the post-Synthesis netlist and your component

metadata (data files about the design components, such as register configuration files and initialization files),
thus completing the connection between what you generated and what you program.

1.2 Libero SoC Project Creation
Some design steps must be run inside the Libero SoC environment (Table 1-1). For these steps to run, you must
create two Libero SoC projects. The first project is used for design component configuration and generation, and the
second is one for the physical implementation of the top-level design.

• The enhanced constraint flow is used for both the first project and the second (implementation) project because
the enhanced constraint flow offers the constraint manager to better manage all design constraints (SDC Timing,
IO PDC, Floorplanning PDC, and Synthesis NDC constraints). The creation, import, and editing of constraints
and their association with individual design tools are controlled in one single management tool - the Constraint
Manager.

• The enhanced constraint flow generates automatic SDC and PDC constraints for common cores such as
the CCC, OSC, SerDes, and so on. For RTG4 designs using RTG4FCCCECALIB core, the automatic
constraint generation (Derive Constraints) generates netlist constraint files (NDC) as well in addition to SDC,
for association with synthesize or compile Netlist design flow steps. The SDC, PDC, or NDC constraints of these
cores are set from the top of the design hierarchy with the full hierarchical path given. You do not need to
traverse from the top of the design hierarchy to set a constraint on these IP cores, nor do you need to worry
about the syntax of the SDC, PDC, or NDC constraints such as hierarchy and pin separators, design object
names, and so on.

• The automatically generated constraints, when applied, increase the chance of timing closure with less effort
and fewer design iterations.

 Libero® SoC v2021.2
Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 5

1.3 Custom Flow
The following custom flow figure describes how Libero SoC can be integrated as a part of the larger FPGA design
flow with the third-party synthesis and simulation tools outside the Libero SoC environment. The following figure
depicts various steps involved in the flow, starting from design creation and stitching all the way to programming the
device. The figure also lists the data exchange (inputs and outputs) that must occur at each design flow step.

Figure 1-1. Custom Flow Overview

Components Generation

Core
Catalog

Configuration
 &
Generation

Libero Reference Proj (1st Libero Project)

Pre-Synthesis
Simulation

Post-Synthesis
Simulation

Post-Layout
Simulation

Component
HDL Files

User
HDL
Files

Synthesis

Constraint
Manager

Netlist Import

Compile
Netlist

Place and
 Route

Design & Memory
 Initialization (3) SmartPower

SmartTime

*edn or * .vm
 netlist

(Component Data Files,
Memory Config Files)* (1)

User Constraint
 Files

*.sdc

*_ba.v/*_ba.vhd
*_ba.sdf

Libero Implementation Project (2nd Libero Project)

Programming

Simulate

Simulation files (*.bfm)

*.mem

*.mem file
generation (2)

*_derived_constraints
.sdc/* .pdc/* .ndc

*.pdc/
*.sdc/

*.ndc

Constraints Generation Component
sdc/ndc file
(*.sdc/*.ndc) Derive

Constraints
Utility

 Libero® SoC v2021.2
Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 6

Notes: 
1. Component Data Files and Memory Config Files:

a. Component Data Files and Memory Config Files:
i. SmartFusion2/IGLOO2: *.reg files for MDDR/FDDR/SerDes blocks.

b. Memory Config Files:
i. SmartFusion2/IGLOO2: ENVM.cfg.
ii. RTG4: UPROM.cfg.
iii. PolarFire: SNVM.cfg, UPROM.cfg.

2. *.mem file generation for Simulation for different families:
a. SmartFusion2: pa4mssenvmgen.exe takes ENVM.cfg as input and generates ENVM_init.mem.
b. IGLOO2: pa4mssenvmgen.exe takes *.reg files for MDDRR/FDDR/SerDes blocks and ENVM.cfg as input

and generates ENVM_init.mem.
c. RTG4, PolarFire: pa4rtupromgen.exe takes UPROM.cfg as input and generates UPROM.mem.

3. For PolarFire only.

The following are the steps in the custom flow:
1. Component configuration and generation:

a. Create a first Libero project (to serve as a Reference Project).
b. Select the Core from the Catalog. Double-click the core to give it a component name and configure the

component.
Note:  For SmartFusion2 and IGLOO2 System Builder and SmartFusion2 MSS blocks, generate the
component in the SmartDesign canvas after configuration of the SmartFusion2 MSS block and System
Builder block.

This automatically exports component data and files. A Component Manifests is also generated. See
Component Manifests for details. For more details, see 2. Component Configuration.

2. Complete your RTL design outside of Libero:
a. Instantiate the component HDL files.
b. The location of the HDL files is listed in the Component Manifests files.

3. Generate SDC/PDC/NDC constraints for the components. Use Derive Constraints utility to generate the
floorplanning .*pdc (only for SmartFusion2/IGLOO2), the timing .*sdc, and netlist constraints .*ndc (in RTG4
designs using RTG4FCCCECALIB core) files based on:
a. Component HDL files
b. Component SDC/NDC files
c. User HDL files

For more details, see 10. Appendix D—Derive Constraints.
4. Synthesis tool/simulation tool:

a. Get HDL files, stimulus files, and component data from the specific locations as noted in the Component
Manifests.

b. Synthesize and simulate the design with third-party tools outside Libero SoC.
5. Firmware tool (SmartFusion2 only):

a. Get drivers from the specific locations as noted in the manifest.
b. Edit source code to enable run time initialization for specific components C compile firmware project.

6. Create your second (Implementation) Libero Project.
7. Remove synthesis from the design flow tool chain (Project > Project Settings > Design Flow > clear the

Enable Synthesis check box) if it is a netlist file.
8. Import the design source files (post-synthesis *.edn or *.vm netlist from synthesis tool):

– For SmartFusion2 and IGLOO2, import post-synthesis *.edn netlist (File > Import > Others).
– For PolarFire, import post-synthesis *.vm netlist (File > Import > Synthesized Verilog Netlist (VM)).
– Component metadata such as *.reg files for MDDR/FDDR/SerDes (SmartFusion2 and IGLOO2), *.cfg

file for eNVM (SmartFusion2 and IGLOO2), and *.cfg file for uPROM (RTG4), *.cfg files for uPROM
and/or sNVM (PolarFire).

 Libero® SoC v2021.2
Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 7

9. Import any Libero SoC block component files. The block files must be in the *.cxz file format. For more
information on how to create a block, see PolarFire Block Flow User Guide and SmartFusion2, RTG4, IGLOO2
Block Flow User Guide.

10. Import the design constraints:
– Import I/O constraint files (Constraints Manager > I/OAttributes > Import).
– Import floorplanning *.pdc files (Constraints Manager > Floor Planner > Import). If your design

contains CoreConfigP (SmartFusion2 and IGLOO2), import the PDC file generated with the Derive
Constraints utility (generate SDC and PDC constraints for the components).

– Import *.sdc timing constraint files (Constraints Manager > Timing > Import). Import the SDC file
generated through Derive Constraint tool.

– Import *.ndc constraint files (Constraints Manager > NetlistAttributes > Import), if any. In RTG4
designs using the RTG4FCCCECALIB core, import the NDC file generated through Derive Constraints
utility outside of Libero.

11. Constraint file and tool association
– In the Constraint Manager, associate the *.pdc files to place and route, the *.sdc files to place and

route and timing verifications, and the *.ndc files to compile netlist.
12. Complete design implementation

– Place and route, verify timing and power, configure design initialization data and memories (PolarFire
only), and programming file generation.

13. Validate the design
– Validate the design on FPGA and debug as necessary using the design tools provided with the Libero

SoC design suite.

 Libero® SoC v2021.2
Overview

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 8

https://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_block_flow_ug.pdf
https://www.microsemi.com/document-portal/doc_download/132891-smartfusion2-igloo2-and-rtg4-block-flow-user-u-s-guide
https://www.microsemi.com/document-portal/doc_download/132891-smartfusion2-igloo2-and-rtg4-block-flow-user-u-s-guide

2. Component Configuration
The first step in the custom flow is to configure your components using a Libero reference project (also called first
Libero project in Table 1-1). In subsequent steps, you will use data from this reference project.

If you are using any components listed earlier, under the 1. Overview in your design, perform the steps described in
this section:

If you are not using any of the above components, you can write your RTL outside of Libero and directly import it
into your Synthesis and Simulation tools. You can then proceed to the post-synthesis section and only import your
post-synthesis *.edn or *.vm netlist into your final Libero implementation project (also called second Libero
project in Table 1-1).

2.1 Component Configuration Using Libero
After selecting the components which must be used from the preceding list, perform the following steps:

1. Create a new Libero project (Core Configuration and Generation):
a. Select the Device and Family that you target your final design to.
b. If you use the SmartFusion2 MSS, or if you use SmartFusion2 or IGLOO2 System Builder, make the

appropriate selection in the Use Design Flow section of the New Project window.
2. If you use Smart Fusion2 or IGLOO2 System Builder (for IGLOO2, you must use System Builder to configure

the HPMS, eNVM, MDDR, and FDDR):
a. Use System Builder to select your components and configure your system.
b. Generate your system in System Builder and promote all its ports to the top level after instantiating in a

SmartDesign canvas (select all ports, right-click and choose Promote to Top).
Note:  The port names—you need them to connect the rest of your design to the generated system.

c. Instantiate and configure any CCC or SerDes blocks in the same top level SmartDesign or in another
SmartDesign component. Again, promote any ports to top.

d. Generate any SmartDesign instances.
e. Double-click the Simulate tool (Pre-Synthesis) to invoke the simulator. You can exit the simulator once it

is invoked—this step generates the simulation files necessary for your project.
Note:  You must perform this step if you want to simulate your design outside Libero.

f. Save your project—this is your reference project.
3. If you do not use System Builder (SmartFusion2 only):

a. If you select the SmartFusion2 MSS in the Use Design Flow subsection (step 1.b), the SmartFusion2
MSS Configurator automatically opens. Otherwise, in the Design Flow window, double-click Configure
MSS. Double-click the SmartFusion2 MSS instance to open its configurator.
i. Double-click the SmartFusion2 MSS instance to open its configurator.
ii. Configure the SmartFusion2 MSS as per your requirements.

Note:  If you use the eNVM or the MDDR, you must use the SmartFusion2 MSS to configure it.
iii. Save and generate the SmartFusion2 MSS component.

Note:  If you do not use System Builder, and you have SmartFusion2 MSS (using MDDR) or FDDR
or SerDes blocks in your design, you must follow the next steps:

b. Construct the Peripheral Initialization architecture in your final design. For more details about Peripheral
Initialization, see:

• SmartFusion2 DDR Controller and Serial High Speed Controller Initialization Methodology
• SmartFusion2 DDR Controller and Serial High Speed Controller Standalone Initialization

Methodology
c. Instantiate and configure any FDDR, CCC, or SerDes blocks in the top level SmartDesign. It is not

necessary to connect them to anything else—just promote any ports to top.
d. Generate all SmartDesigns built in the preceding steps.
e. Double-click the Simulate tool (Pre-Synthesis) to invoke the simulator. You can exit the simulator after it

is invoked; this step simply generates the simulation files necessary for your project.

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 9

http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_peri_init_meth_ug_1.pdf
https://www.microsemi.com/document-portal/doc_view/134377-smartfusion2-standalone-peripheral-initialization-user-guide
https://www.microsemi.com/document-portal/doc_view/134377-smartfusion2-standalone-peripheral-initialization-user-guide

Note:  You must perform this step if you want to simulate your design outside Libero.
For more information, see the 4. Simulating Your Design.

f. Generate the SDC and the PDC files through Derive Constraints utility outside of Libero SoC by using
Component HDL and User HDL files. The path of newly generated SDC, PDC files must be specified by
user. For further information, see 10. Appendix D—Derive Constraints.
Note:  You must pass this *.sdc file to Synthesis when you exit Libero and run Synthesis outside
Libero. For the floorplanning PDC constraint file, you must pass it to Place and Route in the second
Libero project you will create to implement your design.

g. Save your project—this is your reference project.
4. If you use SmartFusion2, and any of the SmartFusion2 MSS peripherals (MDDR, FDDR, or SerDes), you must

export your firmware project (SoftConsole/IAR/Keil) from this Libero project. For more information, see
6. Building Your Firmware Project.

5. If you use RTG4:
a. If you want to use the SerDes and the FDDR blocks in your design with built-in

Initialization logic, configure and generate the corresponding INIT cores (NPSS_SERDES_IF_INIT,
PCIE_SERDES_IF_INIT, and RTG4FDDRC_INIT) from the Libero catalog.

b. If you want to use the SerDes and the FDDR blocks in your design without built-in Initialization logic,
configure and generate the corresponding peripheral cores from the Libero catalog.
Note:  If you are using the SerDes and the FDDR blocks in your design, but not their corresponding INIT
cores, you must:

i. Construct the Peripheral Initialization architecture in your final design to initialize the RTG4 SerDes
and the FDDR blocks. For further details, regarding Peripheral Initialization see:

– RTG4™ High Speed Serial Interface Configuration User Guide
– RTG4 DDR Memory Controller Configuration User Guide

c. Instantiate and configure any FDDR, CCC, OSC, or SerDes blocks in the top level SmartDesign. It is not
necessary to connect them to anything else — just promote any ports to top.

d. If you want to use RTG4 uPROM, add the uPROM block to the top level SmartDesign.
e. Generate all SmartDesigns built in the above steps.
f. Double-click Simulate (Pre-Synthesis) to invoke the simulator. You can exit the simulator after it is

invoked; this step just generates the simulation files necessary for your project.
Note:  To generate UPROM.mem file (used for simulating the UPROM contents) from the UPROM.cfg file
(generated by the configurator) using a stand-alone executable outside Libero, see 4. Simulating Your
Design. You must perform this step if you want to simulate your design outside of Libero.

g. Use Derive Constraint utility outside of Libero environment to generate SDC and NDC constraints.
To generate SDC constraints, supply component HDL, component SDC, User HDL files to derive
constraint tool, and specify the path where to generate the SDC file. For RTG4 designs using the
RTG4FCCCECALIB core, supply the component NDC file of RTG4FCCCECALIB core as well, and
specify the path where to write the NDC constraints. For further information, see 10. Appendix D—Derive
Constraints.

To pass the *.sdc file to synthesis when you exit Libero, run synthesis outside Libero. For place and
route and timing verification tools in the second Libero project create to implement your design. For the
netlist NDC constraint file, you must pass it to the compile netlist tool in the second Libero project, you will
create, to implement your design.

h. Save your project—this is your reference project.
Note:  You must follow DRCs for components that you instantiate. For example, if you have multiple
SerDes instances in your design, make sure that each SerDes instance is configured to select a different
physical SerDes block. Refer to the user guides for the respective component DRCs for details.

6. If you use PolarFire device, use one or more of the PolarFire cores mentioned in 1.3 Custom Flow.
a. Create a SmartDesign and Configure the desired core and instantiate it in the SmartDesign component.
b. Promote all the pins to top level.
c. Generate the SmartDesign.
d. Double-click the Simulate tool (any of Pre-Synthesis or Post-Synthesis or Post-Layout options) to invoke

the simulator. You can exit the simulator after it is invoked. This step generates the simulation files
necessary for your project.

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 10

https://coredocs.s3.amazonaws.com/Libero/SgCore/SERDES/rtg4_serdes_config_ug_2.pdf
http://coredocs.s3.amazonaws.com/Libero/SgCore/FDDR/rtg4_fddr_config_ug_2.pdf

Note:  You must perform this step if you want to simulate your design outside Libero.
For more information, see 4. Simulating Your Design.

e. To generate SDC constraints with derive constraint tool outside of Libero SoC supply Component HDL,
Component SDC, and User HDL file to the tool and specify where write the SDC constraints. For further
information, see 10. Appendix D—Derive Constraints.
You must pass the generated *.sdc file to Synthesis when you exit Libero and run Synthesis outside
Libero, and to the Place and Route and Timing Verification tools in the second Libero project you will
create to implement your design.

f. Save your project—this is your reference project.

2.2 Component Manifests
When you generate your components, a set of files is generated for each component. The Component Manifest
Report details the set of files generated and used in each subsequent step (Synthesis, Simulation, Firmware
Generation, and so on). This report gives you the locations of all the generated files needed to proceed with the
Custom Flow. You can access the component manifest in the Reports area: Click Design > Reports to open
the reports tab. In the reports tab, you see a set of manifest.txt files (Figure 1-1), one for each component you
generated.

Note:  You must to set a component or module as 'root' to see the component manifest file contents in the Reports
tab.

Alternatively, you can access the individual manifest report files for each core component
generated or SmartDesign component from <project>/component/work/<component name>/<instance
name>/<component name>_manifest.txt or <project>/component/work/<SmartDesign name>/
<SmartDesign name>_manifest.txt. You can also access the manifest file contents of each component
generated from the new Components tab in Libero, where the file locations are mentioned with respect to the
project directory.

Figure 2-1. Accessing Component Manifest Report Files from Libero Reports Tab (For PolarFire)

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 11

Figure 2-2. Accessing Component Manifest Report Files from Libero Components Tab

Figure 2-3. Accessing Component Manifest Report Files from Libero Reports Tab (For SmartFusion2 System
Builder)

Focus on the following Component Manifest Reports:

• If you use SmartFusion2 or IGLOO2 System Builder, read the file <system builder
name>_sb_manifest.txt.

• If you instantiated cores into a SmartDesign, read the file <smartdesign_name>_manifest.txt.
• If you created components for cores, read the <core_component_name>_manifest.txt.

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 12

You must use all Component Manifests Reports that apply to your design. For example, if your project has a
SmartDesign with one or more core components instantiated in it and you intend to use them all in your final design,
then you must select files listed in the Component Manifests Reports of all those components for use in your design
flow.

2.3 Interpreting Manifest Files
When you open a component manifest file, you see paths to files in your Libero project and pointers on where in the
design flow to use them. You might see the following types of files in a manifest file based on the device family you
are targeting:

• HDL source files for all Synthesis and Simulation tools
• HDL source files for Synopsys SynplifyPro Synthesis tool
• Stimulus files for all Simulation tools
• Configuration files to be used for all Simulation tools
• Firmware files for all Software IDE tools
• Configuration files to be used for Programming
• Configuration files to be used for Power Analysis

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 13

Component Manifest (example of a SmartFusion2 System Builder component)

HDL source files for all Synthesis and Simulation tools:
 D:/Designs/g4proj/component/work/toplevelsd_sb/CCC_0/
toplevelsd_sb_CCC_0_FCCC.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite_addrdec.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite_defaultslavesm.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite_slavearbiter.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite_masterstage.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite_slavestage.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite_matrix4x16.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreAHBLite/5.2.100/rtl/vlog/
core/coreahblite.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreConfigP/7.1.100/rtl/vlog/
core/coreconfigp.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreResetP/7.1.100/rtl/vlog/
core/coreresetp.v
 D:/Designs/g4proj/component/Actel/DirectCore/CoreResetP/7.1.100/rtl/vlog/
core/coreresetp_pcie_hotreset.v
 D:/Designs/g4proj/component/work/toplevelsd_sb/FABDDR_0/
toplevelsd_sb_FABDDR_0_FDDRC.v
 D:/Designs/g4proj/component/work/toplevelsd_sb/FABOSC_0/
toplevelsd_sb_FABOSC_0_OSC.v
 D:/Designs/g4proj/component/work/toplevelsd_sb/toplevelsd_sb.v
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/toplevelsd_sb_MSS.v

HDL source files for Synopsys SynplifyPro Synthesis tool:
 D:/Designs/g4proj/component/work/toplevelsd_sb/FABDDR_0/
toplevelsd_sb_FABDDR_0_FDDRC_syn.v
 D:/Designs/g4proj/component/Actel/SgCore/OSC/2.0.101/osc_comps.v
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/toplevelsd_sb_MSS_syn.v

Stimulus files for all Simulation tools:
 D:/Designs/g4proj/component/work/toplevelsd_sb/subsystem.bfm
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/CM3_compile_bfm.tcl
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/user.bfm
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/test.bfm
 D:/Designs/g4proj/component/Actel/SmartFusion2MSS/MSS/1.1.500/
peripheral_init.bfm

Firmware files for all Software IDE tools:
 D:/Designs/g4proj/component/work/toplevelsd_sb/FABDDR_0/
sys_config_fddr_define.h
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/sys_config_mss_clocks.h
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/sys_config_mddr_define.h

Configuration files to be used for all Simulation tools:
 D:/Designs/g4proj/component/work/toplevelsd_sb/FABDDR_0/FDDR_init.bfm
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/MDDR_init.bfm

Configuration files to be used for Power Analysis:
 D:/Designs/g4proj/component/work/toplevelsd_sb_MSS/MDDR_init.reg
 D:/Designs/g4proj/component/work/toplevelsd_sb/FABDDR_0/FDDR_init.reg

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 14

Component Manifest (example of a PolarFire core component)

HDL source files for all Synthesis and Simulation tools:
 D:/Designs/manifestex/component/Actel/SgCore/PF_SYSTEM_SERVICES/
3.0.100/rtl/vlog/core/CoreSysServices_PF_APBS.v
 D:/Designs/manifestex/component/Actel/SgCore/PF_SYSTEM_SERVICES/
3.0.100/rtl/vlog/core/CoreSysServices_PF_Ctrl.v
 D:/Designs/manifestex/component/Actel/SgCore/PF_SYSTEM_SERVICES/
3.0.100/rtl/vlog/core/CoreSysServices_PF_ReqArbiter.v
 D:/Designs/manifestex/component/Actel/SgCore/PF_SYSTEM_SERVICES/
3.0.100/rtl/vlog/core/CoreSysServices_PF_MBXIF.v
 D:/Designs/manifestex/component/Actel/SgCore/PF_SYSTEM_SERVICES/
3.0.100/rtl/vlog/core/CoreSysServices_PF_SSIIF.v
 D:/Designs/manifestex/component/work/PF_SYSTEM_SERVICES_C0/
PF_SYSTEM_SERVICES_C0_0/rtl/vlog/core/PF_System_Services.v
 D:/Designs/manifestex/component/work/PF_SYSTEM_SERVICES_C0/
PF_SYSTEM_SERVICES_C0.v

Each type of file is necessary downstream in your design flow. The following chapters describe how to integrate files
from the manifest into your design flow.
Note:  The component SDC/NDC files are not included in the Component Manifest files.
The component SDC/NDC files are available under <project>/component/work/<component name>/
<instance_name>/directory after component configuration and generation.

Note:  Keep track of the location of all these files. These files are used downstream in the custom flow. The derived
*.sdc and *.pdc files are given in SDC Timing Constraints and PDC Physical Design Constraints in Appendix B.

 Libero® SoC v2021.2
Component Configuration

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 15

3. Synthesizing Your Design
One of the primary features of the Custom Flow is to allow you to use a third-party synthesis tool outside Libero. The
custom flow supports the use of Synopsys SynplifyPro. To synthesize your project, follow the steps:

1. Create a new project in your Synthesis tool, targeting the same device family, die and package as the Libero
project your first created.
a. Import your own RTL files as you normally do.
b. Set the Synthesis output to be Structural Verilog (.vm).

Note:  Structural Verilog (.vm) is the only supported synthesis output format in PolarFire.
2. Import Component HDL files into your Synthesis project:

a. For each Component Manifest Report:
i. For each file under HDL source files for all Synthesis and Simulation tools, import the file into

your Synthesis Project.
ii. Also, import all files under HDL source files for Synopsys SynplifyPro Synthesis tool.

3. For PolarFire only: Import the file polarfire_syn_comps.v (if using Synopsys Synplify) from <Libero
Installation location>/data/aPA5M to your Synthesis project.

4. Import the previously generated sdc file through Derived Constraint tool (in Appendix B) into the Synthesis
tool. This constraint file constrains the synthesis tool to achieve timing closure with less effort and fewer design
iterations.

Notes:  If you plan to use the same *.sdc file to constrain Place and Route during the design implementation
phase, you must import this *.sdc into the synthesis project. This is to ensure that there are no design object name
mismatches in the synthesized netlist and the Place and Route constraints during the implementation phase of the
design process. If you do not include this *.sdc file in the Synthesis step, the netlist generated from Synthesis may
fail the Place and Route step because of design object name mismatches.

1. Import any Netlist Attributes *.ndc, if any, into the Synthesis tool.
2. Run Synthesis.

Note:  The location of your Synthesis tool output has the *.edn or *.vm netlist file generated post Synthesis. You
must import the netlist into the Libero Implementation Project to continue with the design process.

 Libero® SoC v2021.2
Synthesizing Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 16

4. Simulating Your Design
To simulate your design outside of Libero (that is, using your own simulation environment and simulator), follow the
steps:

1. Design Files
a. Pre-synthesis simulation:

• Import your RTL into your simulation project.
• For each Component Manifests Report.

– Import each file under HDL source files for all Synthesis and Simulation tools into your
simulation project.

• Compile these files as per your simulator's instructions.
b. Post-synthesis simulation:

• Import your post-synthesis *.edn or *.vm netlist (generated in 3. Synthesizing Your Design) into
your simulation project and compile it.

c. Post-layout simulation:
• First,complete implementing your design (see 5. Implementing Your Design). Ensure that your final

Libero project is in post-layout state.
• Double-click Generate BackAnnotated Files in the Libero Design Flow window. It generates

two files:
<project directory>/designer/<root>/<root>_ba.v/vhd <project directory>/
designer/<root>/<root>_ba.sdf

• Import both of these files into your simulation tool.
2. Stimulus and Configuration files:

a. For each Component Manifests Report:
• Copy all files under the Configuration files to be used for all Simulation tools

and Stimulus Files for all Simulation Tools sections to the root directory of your
Simulation project.

b. Ensure that any Tcl files in the preceding lists (in step 2.a) are executed first, before the start of
simulation.

c. For SmartFusion2 only:
• Review the subsystem.bfm file. Based on your usage of the MDDR, FDDR, or SerDes, ensure

that the following lines are present (or absent) in the subsystem.bfm file — presence indicates that
the Component is used in your design. Absence indicates that the Component is not used:
#----------------------------------- # Peripheral Initialization
#-------------------------------------#define USE_MDDR #define USE_FDDR #efine
USE_SERDESIF_0 #define USE_SERDESIF_1 #define USE_SERDESIF_2 # define
USE_SERDESIF_3

d. ENVM_init.mem: If you use the eNVM (SmartFusion2 or IGLOO2), or if you use IGLOO2 and use
MDDR, FDDR, or SerDes, you must use the pa4mssenvmgen.exe to generate the ENVM_init.mem
file, regardless of whether or not you use eNVM. The pa4mssenvmgen executable takes all the
peripheral *init.reg files and the ENVM.cfg file as inputs through a Tcl script file and outputs the
ENVM_init.mem file required for simulations. This ENVM_init.mem file is required for component
initialization in simulation. This file must be copied to the simulation folder prior to the simulation run.
An example showing the pa4mssenvmgen executable usage is provided in the subsequent steps below.

e. UPROM.mem: If you use RTG4 uPROM, you must use the pa4rtupromgen.exe to generate the
UPROM.mem file. The pa4rtupromgen executable takes the UPROM.cfg file as inputs through a Tcl script
file and outputs the UPROM.mem file required for simulations. This file must be copied to the simulation
folder prior to the simulation run. An example showing the pa4rtupromgen executable usage is provided
in the subsequent steps below.

f. UPROM.mem (PolarFire): If you use the PolarFire uPROM core in your design with the option Use
content for simulation enabled for one or more data storage clients that you wish to simulate,
you must use the executable pa4rtupromgen (pa4rtupromgen.exe on Windows) to generate the

 Libero® SoC v2021.2
Simulating Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 17

UPROM.mem file. The pa4rtupromgen executable takes the UPROM.cfg file as inputs through a Tcl
script file and outputs the UPROM.mem file required for simulations. This UPROM.mem file must be
copied to the simulation folder prior to the simulation run. An example showing the pa4rtupromgen
executable usage is provided in the subsequent steps below. The UPROM.cfg file will be available in the
directory <Project>/component/work/<uPROM component name>/<uPROM instance name> in
the Libero project you used to generate the PolarFire uPROM component.

g. snvm.mem (PolarFire): If you use the PolarFire System Services core in your design and configured
the sNVM tab in the core with the option Use content for simulation enabled for one or more
clients that you wish to simulate, then a snvm.mem file is automatically generated to the directory
<Project>/component/work/<PolarFire System Services component name>/<uPROM
instance name> in the Libero project you used to generate the PolarFire System Services component.
This snvm.mem file must be copied to the simulation folder prior to the simulation run.

3. Create a working folder and a sub-folder named simulation under the working folder.
The pa4mssenvmgen and pa4rtupromgen executable expect the presence of the simulation sub folder in the
working folder and the *.tcl script (steps 5 and 7) is placed in the simulation sub folder.

4. For SmartFusion2 and IGLOO2, copy all the component *init.reg files and the ENVM.cfg file from the first
Libero project (for component generation) into the working folder. Examples of component *init.reg files
are:
a. MDDR_init.reg
b. FDDR_init.reg
c. SERDESIF_0_init.reg
d. SERDESIF_1_init.reg
e. SERDESIF_2_init.reg
f. SERDESIF_3_init.reg

For RTG4, copy the UPROM.cfg file from the first Libero project created for component generation (OR the
UPROM.cfg file with any modified/updated contents) into the working folder.

For PolarFire, copy the UPROM.cfg file from the first Libero project created for component generation into the
working folder.

5. IGLOO2: Paste the following commands in a *.tcl script and place it in the simulation folder created in step
3.
Sample*.tcl for IGLOO2 devices set_device -fam <family_name> -die <internal_die_name>
-pkg <internal_pkg_name> set_mddr_reg -path <path_to_MDDR_register_file/
MDDR_init.reg> set_fddr_reg -path <path_to_FDDR_register_file/FDDR_init.reg>
set_serdesif0_reg -path <path_to_SERDESIF_0_register_file/SERDESIF_0_init.reg>
set_serdesif1_reg -path <path_to_SERDESIF_1_register_file/SERDESIF_1_init.reg>
set_serdesif2_reg -path <path_to_SERDESIF_2_register_file/SERDESIF_2_init.reg>
set_serdesif3_reg -path <path_to_SERDESIF_3_register_file/SERDESIF_3_init.reg>
set_input_cfg -path <path_to_ENVM_configuration_file/ENVM.cfg> set_sim_mem -path
<path_to_ENVM_Initialization_File/ENVM_init.mem> gen_sim -use_init true

For the proper internal name to use for the die and package, see the *.prjx file of the first Libero project
(used for component generation).

For IGLOO2, the argument use_init must be set to true for the gen_sim command if any of the
*init.reg files are used.

Not all *init.reg in the example *.tcl may be needed. Include the reg file paths for only those peripherals
used in the design.

The set_sim_mem command specifies the path to the output file ENVM_init.mem that is generated upon
execution of the script file with the pa4mssenvmgen executable.

6. At the command prompt or cygwin terminal, go to the working directory created in step 3. Execute the
pa4mssenvmgen command with the-script option and pass to it the *.tcl script created in step 5.
For Windows
<Libero_SoC_release_installation>/designer/bin/pa4mssenvmgen.exe \
 --script ./simulation/<Tcl_script_name>.tcl

 Libero® SoC v2021.2
Simulating Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 18

For Linux
<Libero_SoC_release_installation>/bin/pa4mssenvmgen
--script ./simulation/<tcl_script_name>.tcl

7. SmartFusion2: Paste the following commands in a *.tcl script and place it in the simulation folder created in
step 3.
Sample *.tcl for SmartFusion2 devices
set_device -fam <family> -die <internal_die_name> -pkg <internal_pkg_name>
set_input_cfg -path <path_to_ENVM.cfg>
set_sim_mem -path <path_to_ENVM_Initialization_File/ENVM_init.mem>
gen_sim -use_init false

For the proper internal name to use for the die and package, see the *.prjx file of the first Libero project
(used for component generation).

The argument use_init must be set to false for SmartFusion2.

For SmartFusion2, the set_mddr_reg, set_fddr_reg, and set_serdesif(x)_reg commands are
not needed. All the peripheral register initialization information/data required to run simulations is a part of the
*_init.bfm files (listed in the Component Manifests reports of each component), which must be copied from
the first Libero SoC project (used for component generation) to the top level directory of your simulation project
(outside of Libero SoC).

Use the set_sim_mem command to specify the path to the output file ENVM_init.mem that is generated
upon execution of the script file with the pa4mssenvmgen executable.

8. At the command prompt or cygwin terminal, go to the working directory created in step 1. Execute the
pa4mssenvmgen command with the-script option and pass to it the *.tcl script created in step 7.
For Windows
<Libero_SoC_release_installation>/designer/bin/pa4mssenvmgen.exe \
 --script ./simulation/<Tcl_script_name>.tcl

For Linux
Libero_SoC_release_installation>/bin/pa4mssenvmgen
 --script ./simulation/<tcl_script_name>.tcl

9. RTG4: Paste the following commands in a *.tcl script and place it in the simulation folder created in step 3.

Sample *.tcl for RTG4 devices to generate URPOM.mem file from UPROM.cfg
set_device -fam <family> -die <internal_die_name> -pkg <internal_pkg_name>
set_input_cfg -path <path_to_UPROM.cfg>
set_sim_mem -path <path_to_UPROM_Initialization_File/UPROM.mem>
gen_sim -use_init false

For the proper internal name to use for the die and package, see the *.prjx file of the first Libero project
(used for component generation).

For RTG4, there is a provision to simulate the UPROM by specifying the UPROM.cfg file using the
set_input_cfg command.

Use the set_sim_mem command to specify the path to the output file UPROM.mem that is generated upon
execution of the script file with the pa4rtupromgen executable.

10. At the command prompt or cygwin terminal, go to the working directory created in step 3. Execute the
pa4mssenvmgen command with the-script option and pass to it the *.tcl script created in step 9.
For Windows
<Libero_SoC_release_installation>/designer/bin/pa4rtupromgen.exe
 --script ./simulation/<Tcl_script_name>.tcl

For Linux
<Libero_SoC_release_installation>/bin/pa4rtupromgen
 --script ./simulation/<tcl_script_name>.tcl

 Libero® SoC v2021.2
Simulating Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 19

11. PolarFire: Paste the following commands in a *.tcl script and place it in the simulation folder created in step
3.
Sample *.tcl for PolarFire devices to generate URPOM.mem file from UPROM.cfg
set_device -fam <family> -die <internal_die_name> -pkg <internal_pkg_name>
set_input_cfg -path <path_to_UPROM.cfg>
set_sim_mem -path <path_to_UPROM_Initialization_File/UPROM.mem>
gen_sim -use_init false

For the proper internal name to use for the die and package, see the *.prjx file of the first Libero project
(used for component generation).

The argument use_init must be set to false for PolarFire.

Use the set_sim_mem command to specify the path to the output file UPROM.mem that is generated upon
execution of the script file with the pa4rtupromgen executable.

12. At the command prompt or cygwin terminal, go to the working directory created in step 3. Execute the
pa4mssenvmgen command with the-script option and pass to it the *.tcl script created in step 11.
For Windows
<Libero_SoC_release_installation>/designer/bin/pa4rtupromgen.exe
--script ./simulation/<Tcl_script_name>.tcl

For Linux
<Libero_SoC_release_installation>/bin/pa4rtupromgen
--script ./simulation/<tcl_script_name>.tcl

13. For SmartFusion2 and IGLOO2, after successful execution of the pa4mssenvmgen executable, check that
the ENVM_init.mem file is generated in the location specified in the set_sim_mem command in the *.tcl
script.
For RTG4, after successful execution of the pa4rtupromgen executable, check that the UPROM.mem file is
generated in the location specified in the set_sim_mem command in the *.tcl script.

For PolarFire, after successful execution of the pa4rtupromgen executable, check that the UPROM.mem file is
generated in the location specified in the set_sim_mem command in the *.tcl script.

14. For SmartFusion2 and IGLOO2, copy the generated ENVM_init.mem file into the top level simulation project
to run simulation (outside of Libero SoC).
For RTG4, copy the generated UPROM.mem file into the top level simulation folder of your simulation project to
run simulation (outside of Libero SoC).

For PolarFire, to simulate the sNVM contents configured as a part of the PolarFire System Services core, copy
the snvm.mem file from your first Libero project (used for component configuration) into the top level simulation
folder of your simulation project to run simulation (outside of Libero SoC). To simulate UPROM contents, copy
the generated UPROM.mem file into the top level simulation folder of your simulation project to run simulation
(outside of Libero SoC).

Note:  To simulate the functionality of SoC Components, download the pre-compiled SmartFusion2/IGLOO2, RTG4
or PolarFire simulation libraries and import them into your simulation environment as described here. For more
details, see 9. Appendix C—Importing Simulation Libraries into Simulation Environment.

 Libero® SoC v2021.2
Simulating Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 20

5. Implementing Your Design
After completing the Synthesis and Post-Synthesis simulation in your environment, you must use Libero again to
physically implement your design, run timing and power analysis, and generate your programming file.

1. Create a new Libero project for the physical implementation and layout of the design. Ensure to target the
same device as in the reference project you created in 2. Component Configuration.

2. After project creation, remove Synthesis from the tool chain in the Design Flow Window (Project >
Project Settings > Design Flow > Uncheck Enable Synthesis).

3. Import your post-synthesis *.edn or *.vm file into this project, (File > Import > Synthesized
Verilog Netlist (VM)).
Note:  It is recommended that you create a link to this file, so that if you re-synthesize your design, Libero
always uses the latest post-synthesis netlist.

a. In the Design Hierarchy window, note the name of the root module (shown in the following figure).
Figure 5-1. Root Module in Design Hierarchy

4. Import the constraints into the Libero project. Use the Constraint Manager to import *.pdc
/*.sdc/*.ndc constraints.

a. Import I/O *.pdc constraint files (Constraints Manager > I/O Attributes > Import).
b. Import Floorplanning *.pdc constraint files (Constraints Manager > Floor Planner >

Import). If your design contains CoreConfigP (SmartFusion2 and IGLOO2 only), ensure to import
the PDC file generated through Derive Constraint tool.

c. Import *.sdc timing constraint files (Constraints Manager > Timing > Import). If your design
has any of the cores listed in 1. Overview, make sure to import the SDC file generated through derive
constraint tool.

d. Import *.ndc constraint files (Constraints Manager > Netlist Attributes > Import). If
your design is an RTG4 design using RTG4FCCCECALIB core, then make sure to import the NDC file
generated through derive constraint tool.

5. Associate Constraints Files to design tools
a. Open Constraint Manager (Manage Constraints > Open Manage Constraints View). Check

the Place and Route and Timing Verifications check box next to the constraint file to establish constraint
file and tool association. Associate the *.pdc constraint to Place and Route and the *.sdc to both Place
and Route and Timing Verifications. Associate the *.ndc file to Compile Netlist.

Note:  The derived SDC timing constraint file constrains your design contains various IP cores to achieve
timing closure with less effort and fewer design iterations. If Place and Route fails with this *.sdc constraint
file, import this same *.sdc file to synthesis and re-run synthesis.

 Libero® SoC v2021.2
Implementing Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 21

Note:  SmartFusion2 and IGLOO2 only: The derived floorplanning PDC file constrains the CoreConfigP in an
optimal location for placement, and improves timing performance of the design.

6. Click Compile Netlist and then Place and Route to complete the layout step.
7. From all Component Manifests Reports:

For SmartFusion2 and IGLOO2, import all the files in the Configuration files to be used for Programming
and Configuration files to be used for Power Analysis sections using the import_component_data Tcl
command:

import_component_data
 module <name of root component>
 fddr < path to FDDR.reg >
 mddr < path to MDDR.reg >
 serdes0 < path to SERDESIF_0_init.reg >
 serdes1 < path to SERDESIF_1_init.reg >
 serdes2 < path to SERDESIF_2_init.reg >
 serdes3 < path to SERDESIF_3_init.reg >
 envm_cfg < path to eNVM cfg>

For RTG4, import all the files in the Configuration files to be used for Programming and Configuration
files to be used for Power Analysis sections using the import_component_data Tcl command:

import_component_data
 module <name of root component>
 uprom_cfg <path to uPROM cfg>

Note:  All configuration files imported with the import_component_data. Tcl command are imported to the
designer/<root name>/component/ folder in the Libero project directory.

Note:  For SmartFusion2, if you do not run SmartPower, you can skip importing the *.reg files, and you
only need to import the ENVM.cfg file. For IGLOO2, you must import all *.reg and ENVM.cfg files specified
in all your relevant Component Manifests Reports.

Note:  For RTG4, only the UPROM .cfg file can be imported.
8. For SmartFusion2/IGLOO2, if you need to change eNVM content, open the Update eNVM Memory Content

dialog box (refer to the following figure). Changes you make in this dialog box are saved to the eNVM *.cfg
file you imported

 Libero® SoC v2021.2
Implementing Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 22

Figure 5-2. Update eNVM Memory Content

9. For RTG4, if you need to change uPROM content, open the Update uPROM Memory Content dialog box
(see the following figure). Changes you make in this dialog box are saved to the uPROM.cfg file you imported.

 Libero® SoC v2021.2
Implementing Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 23

Figure 5-3. uPROM Memory Content Dialog Box

10. PolarFire: The Configure Design Initialization Data and Memories tool allows you to initialize design blocks
such as LSRAM, uSRAM, XCVR (transceivers), and PCIe using data stored in nonvolatile uPROM, sNVM, or
external SPI Flash storage memory. The tool has the following tabs for defining the specification of the design
initialization sequence and the specification of the initialization clients as well as user data clients.

– Design Initialization tab
– uPROM tab
– sNVM tab
– SPI Flash tab
– Fabric RAMs tab

Use the tabs in the tool to configure the design initialization data and memories.

 Libero® SoC v2021.2
Implementing Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 24

Figure 5-4. Design Initialization data and memories

After completing the configuration, perform the following steps to program the initialization data:
• Generate initialization clients
• Generate or export the bit stream
• Program the device

For detailed information on how to use this tool, see Libero SoC Design Flow User Guide. Fore more
information on the Tcl commands used to configure various tabs in the tool and specify memory configuration
files (*.cfg), see Tcl Commands Reference Guide.

11. Generate a Programming File from this project and use it to program your FPGA.

 Libero® SoC v2021.2
Implementing Your Design

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 25

http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_des_flow_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/2021_2/Tool/pf_tcl_cmd_ref_ug.pdf

6. Building Your Firmware Project
Note:  This chapter applies to SmartFusion2 only.

This section describes how to build your firmware project when using the Custom Flow. Three types of files that make
up a firmware project:

• Source files (your firmware application)
• Drivers: These are drivers provided to facilitate your use of SmartFusion2 SoC Components and Soft IP blocks.

They include the CMSIS Hardware Abstraction Layer, which facilitates the use of the Cortex-M3 processor, and
peripheral drivers (for example, MSS SPI, MSS UART, and so on).

• Peripheral Initialization Drivers: These files are generated by Libero SoC if you use the MDDR, FDDR, or
SerDes Components. Libero translates configuration settings for these blocks into register values that are stored
in these files. You must import these into your firmware project manually, as listed:

Build your firmware project as follows:

Note: 
Steps 1- 4 are detailed in the SmartFusion2 CMSIS Hardware Abstraction Layer User Guide, which you can access
using the Firmware Catalog.

1. Select a Software IDE Tool.
2. Use the Firmware Catalog to download driver files for SoC Components or Soft IP you use in your Libero

project.
3. Create a new firmware project using your Software IDE tool of choice.
4. Import driver files, and write your application code as you normally do.
5. Create a directory in your firmware project.

<my_project>/drivers_config/sys_config

6. For each Component Manifests Report (generated in 2. Component Configuration):
– Import each file in the Firmware files for all Software IDE tools section (Figure 2-2) into your firmware

project's drivers_config/sys_config directory.
7. Navigate to your Libero installation directory (where Libero is installed), and then navigate to the following

directory:
<Libero install dir>\data\aPA4M\sysconfig

– There are two files here:
• sysconfig.c
• sysconfig.h.

– Import sysconfig.c (as is, do not modify the file) into your firmware project's drivers_config/
sys_config directory.

– Edit the local copy of sysconfig.h:
• If you use the MDDR, change the following line:

#define SYS_MDDR_CONFIG_BY_CORTEX 0

to

#define SYS_MDDR_CONFIG_BY_CORTEX 1

• Similarly, depending on whether you use FDDR and SerDes blocks 0 to 3 in your design, change
their respective lines as preceding.

• Import sysconfig.h into your firmware project's drivers_config/sys_config directory.
8. Import sysconfig.h into your firmware project's drivers_config/sys_config directory.

/*====== * MDDR configuration */ #define MSS_SYS_MDDR_CONFIG_BY_CORTEX 0 /*======
* FDDR configuration */ #define MSS_SYS_FDDR_CONFIG_BY_CORTEX 0 /*=======*
SERDES Interface configuration 0 */ #define MSS_SYS_SERDES_0_CONFIG_BY_CORTEX #if
MSS_SYS_SERDES_0_CONFIG_BY_CORTEX #include "sys_config_SERDESIF_0.h" #endif #define
MSS_SYS_SERDES_1_CONFIG_BY_CORTEX 0 #if MSS_SYS_SERDES_1_CONFIG_BY_CORTEX #include

 Libero® SoC v2021.2
Building Your Firmware Project

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 26

"sys_config_SERDESIF_1.h" #endif #define MSS_SYS_SERDES_2_CONFIG_BY_CORTEX 0 #if
MSS_SYS_SERDES_2_CONFIG_BY_CORTEX #include "sys_config_SERDESIF_2.h" #endif #define
MSS_SYS_SERDES_3_CONFIG_BY_CORTEX 0 #if MSS_SYS_SERDES_3_CONFIG_BY_CORTEX #include
"sys_config_SERDESIF_3.h" #endif

 Libero® SoC v2021.2
Building Your Firmware Project

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 27

7. Appendix A—Libero-Generated Hardware Configuration Files
This appendix describes the hardware configuration files that Libero generate. These files are intended to be
imported into a firmware project. For more information, see 6. Building Your Firmware Project. Depending on the
components present in a design, not all of these files are present.

sys_config.h This header file contains information about the SmartFusion2 MSS hardware
configuration. The Libero hardware design flow generates it. The content of this
file is hardware design specific. This file must not be included in the application
code.

sys_config.c This C source file contains information about the SmartFusion2 MSS hardware
configuration. The Libero hardware design flow generates it. The content of this
file is hardware design specific. This file must be part of your software project
if the hardware design uses one of the DDR memory controllers or a SerDes
interface.

sys_config_mss_clocks.h This header file contains information about the SmartFusion2 MSS hardware
clock configuration. The Libero hardware design flow generates it. The content
of this file is hardware design specific. This file must not be included in the
application code.

sys_config_mddr_define.h This header file contains information about the SmartFusion2 MSS DDR
hardware configuration. The Libero hardware design flow generates them if DDR
is included in the Libero design. The content of this file is hardware design
specific. This file must not be included in the application code.

sys_config_SERDESIF_<0-3>.c These C source files contain information about the SmartFusion2 SerDes
interface hardware configuration. The Libero hardware design flow generates
them if SerDes interfaces are included in the Libero design. A separate file is
generated for each SerDes interface. The content of these files is hardware
design specific. These files must be part of your software project if the hardware
design uses one or more SerDes interfaces.

sys_config_SERDESIF_<0-3>.h These header files contain information about the SmartFusion2 SerDes interface
hardware configuration. The Libero hardware design flow generates them if
SerDes interfaces are included in the Libero design. A separate file is generated
for each SerDes interface. The content of these files is hardware design specific.
These files must not be included in the application code.

 Libero® SoC v2021.2
Appendix A—Libero-Generated Hardware Configuration...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 28

8. Appendix B—Sample SDC and PDC Constraints
For certain IP cores such as CCC, OSC, CoreResetP and CoreConfigP, Libero SoC generates SDC, and PDC timing
constraints. Passing the SDC and/or PDC constraints to design tools increases the chance of meeting timing closure
with less effort and fewer design iterations. The full hierarchical path from the top-level instance is given for all design
objects referenced in the constraints.

8.1 SDC Timing Constraints
In the Libero IP core reference project, this top-level SDC constraint file is available from the Constraint Manager
(Design Flow > Open Manage Constraint View >Timing > Derive Constraints).
Note:  See this file to set the SDC constraints if your design contains CCC, OSC, CoreResetP, and CoreConfigP
components. Modify the full hierarchical path, if necessary, to match your design hierarchy or use the
Derive_Constraints utility and steps in 10. Appendix D—Derive Constraints on the component level SDC file.
Save the file to a different name and import the SDC file to the synthesis tool, Place and Route Tool, and Timing
Verifications, just like any other SDC constraint files.

8.1.1 Derived SDC file
#Libero SoC uses “/” as the hierarchy separator and pin separators in the *.sdc file
create_clock -name {<top_level_instance_name>/FABOSC_0/I_RCOSC_25_50MHZ/CLKOUT}\
-period 20 \
[get_pins \{<top_level_instance_name>/FABOSC_0/I_RCOSC_25_50MHZ/CLKOUT}]
create_clock -name {<top_level_instance_name>/mddr_top_sb_MSS_0/CLK_CONFIG_APB} \
-period 40 \ [get_pins {\
<top_level_instance_name>/mddr_top_sb_MSS_0/MSS_ADLIB_INST/CLK_CONFIG_APB}]
create_generated_clock -name {<top_level_instance_name>/CCC_0/GL0}\
-multiply_by 4 -divide_by 2 \
-source [get_pins {<top_level_instance_name>/CCC_0/CCC_INST/RCOSC_25_50MHZ}]\
-phase 0 \
[get_pins {<top_level_instance_name>/CCC_0/CCC_INST/GL0}]
set_false_path -ignore_errors -through [get_nets {\
<top_level_instance_name>/CORECONFIGP_0/INIT_DONE\
<top_level_instance_name>/CORECONFIGP_0/SDIF_RELEASED}]
set_false_path -ignore_errors -through [get_nets {\
<top_level_instance_name>/CORERESETP_0/ddr_settled \
<top_level_instance_name>/CORERESETP_0/count_ddr_enable\
<top_level_instance_name>/CORERESETP_0/release_sdif*_core\
<top_level_instance_name>/CORERESETP_0/count_sdif*_enable}]
set_false_path -ignore_errors -from [get_cells {\
<top_level_instance_name>/CORERESETP_0/MSS_HPMS_READY_int}] -to [get_cells {
<top_level_instance_name>/CORERESETP_0/sm0_areset_n_rcosc\
<top_level_instance_name>/CORERESETP_0/sm0_areset_n_rcosc_q1}]
set_false_path -ignore_errors -from [get_cells {\
<top_level_instance_name>/CORERESETP_0/MSS_HPMS_READY_int\
<top_level_instance_name>/CORERESETP_0/SDIF*_PERST_N_re}] -to [get_cells {\
<top_level_instance_name>/CORERESETP_0/sdif*_areset_n_rcosc*}]
set_false_path -ignore_errors -through [get_nets {\
<top_level_instance_name>/CORERESETP_0 CONFIG1_DONE\
<top_level_instance_name>/CORERESETP_0/CONFIG2_DONE\
<top_level_instance_name>/CORERESETP_0/SDIF*_PERST_N \
<top_level_instance_name>/CORERESETP_0/SDIF*_PSEL\
<top_level_instance_name>/CORERESETP_0/SDIF*_PWRITE\
<top_level_instance_name>/CORERESETP_0/SDIF*_PRDATA[*]\
<top_level_instance_name>/CORERESETP_0/SOFT_EXT_RESET_OUT \
<top_level_instance_name>/CORERESETP_0/SOFT_RESET_F2M\
<top_level_instance_name>/CORERESETP_0/SOFT_M3_RESET \
<top_level_instance_name>/CORERESETP_0/SOFT_MDDR_DDR_AXI_S_CORE_RESET \
<top_level_instance_name>/CORERESETP_0/SOFT_FDDR_CORE_RESET\
<top_level_instance_name>/CORERESETP_0/SOFT_SDIF*_PHY_RESET \
<top_level_instance_name>/CORERESETP_0/SOFT_SDIF*_CORE_RESET \
<top_level_instance_name>/CORERESETP_0/SOFT_SDIF0_0_CORE_RESET\
<top_level_instance_name>/CORERESETP_0/SOFT_SDIF0_1_CORE_RESET}]
set_max_delay 0 -through [get_nets {\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PSEL\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PENABLE}] -to [get_cells {\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PREADY*\
<top_level_instance_name>/CORECONFIGP_0/state[0]}]

 Libero® SoC v2021.2
Appendix B—Sample SDC and PDC Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 29

set_min_delay -24 -through \
[get_nets {<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PWRITE\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PADDR[*]\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PWDATA[*]\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PSEL\
<top_level_instance_name>/CORECONFIGP_0/FIC_2_APB_M_PENABLE}]

8.2 PDC Physical Design Constraints
In the Libero IP core reference project, this top-level PDC constraint file is available from the Constraint Manager
(Design Flow > Open Manage Constraint View >Timing > Derive Constraints).
Note:  See this file to set the PDC constraints for the CoreConfigP component. Modify the full hierarchical path, if
necessary, to match your design hierarchy or use the Derive_Constraints utility and steps in 10. Appendix D—Derive
Constraints on the component level PDC file. Save the *.pdc file to a different name. Import the PDC file to your
project and use it for Compile, just like any other PDC constraint files.

8.2.1 Derived PDC file
This PDC design constraint file creates a region specifically for the CoreConfigP IP Core and places the core in the
region created. This constrains the Place and Route engine to place the core in an optimal location resulting in better
timing performance of the design when routed. The full hierarchical path from the top is given for the constraint.
Modify, if necessary, the hierarchical path to match the names in your design.
This file was generated based on the following PDC source files:
W:/pc/11_7_1_14_lily/Designer/data/aPA4M/cores/constraints/PA4M12000/
coreconfigp.pdc
define_region -name {auto_coreconfigp} -type inclusive 1104 159 1451 299 assign_region
{auto_coreconfigp} {<top_level_instance_name>/CORECONFIGP_0}

 Libero® SoC v2021.2
Appendix B—Sample SDC and PDC Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 30

9. Appendix C—Importing Simulation Libraries into Simulation
Environment
The default simulator for RTL simulation with Libero SoC is ModelSim ME Pro. Pre-compiled libraries for default
simulator is available with Libero installation at directory <install_location>/Designer/lib/modelsimpro/
precompiled/vlog for supported families.

Libero SoC also supports other third-party simulators editions of ModelSim, Questasim, VCS, Xcelium, Active HDL
and Riviera Pro. Download respective pre-compiled libraries from here Libero SoC v12.0 and later based on the
simulator and its version.

Similar to Libero environment, run.do file must be created to run simulation outside Libero.

Create a simple run.do file that has commands to establish library for compilation results, library mapping,
compilation and simulation. Follow the steps to create a basic run.do file.

1. Create a logical library to store compilation results using vlib command
vlib presynth.

2. Map the logical library name to pre-compiled library directory using vmap command vmap <logical_name>
<pre-compiled directory path>.

3. Compile source files – Use language specific compiler commands to compile design files into working
directory.

– vlog for .v/.sv
– vcom for .vhd

4. Load the design for simulation using vsim command by specifying name of any top-level module.
5. Simulate the design using run command.

After loading the design, simulation time is set to zero, and enter run command to begin simulation.

In the simulator transcript window, execute run.do file as do run.do to run the simulation. Sample run.do file as
follows.

quietly set ACTELLIBNAME PolarFire
quietly set PROJECT_DIR "W:/Test/basic_test"

if {[file exists presynth/_info]} {
 echo "INFO: Simulation library presynth already exists"
} else {
 file delete -force presynth
 vlib presynth
}
vmap presynth presynth
vmap PolarFire "X:/Libero/Designer/lib/modelsimpro/precompiled/vlog/PolarFire"

vlog -sv -work presynth "${PROJECT_DIR}/hdl/top.v"
vlog "+incdir+${PROJECT_DIR}/stimulus" -sv -work presynth "${PROJECT_DIR}/stimulus/tb.v"

vsim -L PolarFire -L presynth -t 1ps presynth.tb
add wave /tb/*
run 1000ns
log /tb/*
exit

 Libero® SoC v2021.2
Appendix C—Importing Simulation Libraries into Sim...

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 31

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

10. Appendix D—Derive Constraints
This appendix describes the Derive Constraints Tcl commands.

10.1 Derive Constraints Tcl Commands
The derive_constraints utility helps you Derive Constraints from the RTL or the Configurator outside
of the Libero SoC design environment. To run the derive_constraints utility supply path to the Tcl file as a
command-line argument. For example:

$ <libero_installation_path>/bin{64}/derive_constraints derive.tcl

The Tcl file supplied to the derive_constraints utility should specify the following information in specified order.

1. Device information (10.1.7 set_device).
2. RTL files (10.1.5 read_verilog/10.1.6 read_vhdl).
3. Top level module

(10.1.8 set_top_level).
4. Component SDC/NDC files

(10.1.3 read_sdc/10.1.4 read_ndc).
5. derive_constraint command

(10.1.2 derive_constraints).
6. Where to generate SDC/PDC/NDC derived constraints file (10.1.11 write_sdc/10.1.9 write_pdc/

10.1.10 write_ndc).

The following is a Tcl file example using the Derive Constraints Tcl commands.

Device information
set_device -family PolarFire -die MPF100T -speed -1

RTL files
read_verilog -mode system_verilog project/component/work/txpll0/txpll0_txpll0_0_PF_TX_PLL.v
read_verilog -mode system_verilog {project/component/work/txpll0/txpll0.v}
read_verilog -mode system_verilog {project/component/work/xcvr0/I_XCVR/xcvr0_I_XCVR_PF_XCVR.v}
read_verilog -mode system_verilog {project/component/work/xcvr0/xcvr0.v}
read_vhdl -mode vhdl_2008 {project/hdl/xcvr1.vhd}

#Component SDC files
set_top_level {xcvr1}
read_sdc -component {project/component/work/txpll0/txpll0_0/txpll0_txpll0_0_PF_TX_PLL.sdc}
read_sdc -component {project/component/work/xcvr0/I_XCVR/xcvr0_I_XCVR_PF_XCVR.sdc}

#Use derive_constraint command
derive_constraints

#SDC/PDC/NDC result files
write_sdc {project/constraint/xcvr1_derived_constraints.sdc}
write_pdc {project/constraint/fp/xcvr1_derived_constraints.pdc}

10.1.1 add_include_path

Description
Specifies a path to search for includes when reading RTL files.

add_include_path <directory>

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 32

Arguments

Parameter Type Description

directory String Specifies a path to search for includes when reading RTL files.
This option is mandatory.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Message Description

Required parameter include path is
missing.

The directory option is mandatory and must be provided.

Note:  If the directory path is not correct then add_include_path will be passed without an error. However,
read_verilog/read_vhd commands will be fail due to Verific errors.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
add_include_path component/work/COREABC0/COREABC0_0/rtl/vlog/core

10.1.2 derive_constraints

Description
Instantiate component SDC/PDC/NDC files into the design-level database.

derive_constraints

Arguments

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 33

List of Errors

Error Message Description

Top-level is not defined This means that the top-level module or entity is not specified. To fix this call
set_top_level command before derive_constraints command call.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
derive_constraints

10.1.3 read_sdc

Description
Read a SDC file into the component database.

read_sdc -component <filename>

Arguments

Parameter Type Description

-component — This is a mandatory flag for read_sdc command when we do
derive constraints.

filename String Path to the SDC file.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Message Description

Required parameter file name is
missing.

The mandatory option file name is not specified.

SDC file <file_path> is not readable. The specified SDC file does not have read permissions.

Unable to open <file_path> file. The SDC file does not exist. The path must be corrected.

Missing set_component command
in <file_path> file

The specified component of SDC file does not specify the component.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 34

...........continued
Error Message Description

<List of errors from sdc file> The SDC file contains incorrect sdc commands. Example when
there is an error in set_multicycle_path constraint: Error while
executing command read_sdc: in <sdc_file_path> file:
Error in command set_multicycle_path: Unknown parameter
[get_cells {reg_a}]

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
read_sdc -component {./component/work/ccc0/ccc0_0/ccc0_ccc0_0_PF_CCC.sdc}

10.1.4 read_ndc

Description
Read a NDC file into the component database. The command can be used for RTG4 designs using
RTG4FCCCECALIB core.

read_ndc -component <filename>

Arguments

Parameter Type Description

-component — This is a mandatory flag for read_ndc command when we do
derive constraints.

filename String Path to the NDC file.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Message Description

Unable to open <file_path> file The NDC file does not exist. The path must be corrected.

Required parameter—AtclParam0_ is
missing.

The mandatory option filename is not specified.

Required parameter—component is
missing

Component option is mandatory and must be specified.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 35

...........continued
Error Message Description

NDC file '<file_path>' is not readable. The specified NDC file does not have read permissions.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
read_ndc -component {component/work/ccc1/ccc1_0/ccc1_ccc1_0_RTG4FCCCECALIB.ndc}

10.1.5 read_verilog

Description
Read a Verilog file using Verific.

read_verilog [-lib <libname>] [-mode <mode>] <filename>

Arguments

Parameter Type Description

-lib <libname> String Specify the library to add the modules into library.

-mode <mode> String Specify the Verilog standard. Possible
values are verilog_95, verilog_2k,
system_verilog_2005, system_verilog_2009,
system_verilog, verilog_ams, verilog_psl,
system_verilog_mfcu. Values are case insensitive. Default is
verilog_2k.

filename String Verilog file name.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Message Description

Parameter—lib is missing value The lib option is specified without value.

Parameter—mode is missing value The mode option is specified without value.

Unknown mode '<mode>' The specified verilog mode is unknown. See the list of possible verilog
mode in—mode option description.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 36

...........continued
Error Message Description

Required parameter file name is missing No verilog file path is provided.

Failed due to Verific errors Syntax error in verilog file. Verific errors can be observed in the
console above the error message.

set_device is not called The device information is not specified. Use set_device command
to describe the device.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
read_verilog -mode system_verilog {component/work/top/top.v}

read_verilog -mode system_verilog_mfcu design.v

10.1.6 read_vhdl

Description
Add a VHDL file into the list of VHDL files.

read_vhdl [-lib <libname>] [-mode <mode>] <filename>

Arguments

Parameter Type Description

-lib <libname> — Specify the library in which the content needs to be added.

-mode <mode> — Specifies the VHDL standard. Default is VHDL_93. Possible
values are vhdl_93, vhdl_87, vhdl_2k, vhdl_2008, vhdl_psl.
Values are case insensitive.

filename — VHDL file name.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 37

List of Errors

Error Message Description

Parameter—lib is missing value The lib option is specified without value.

Parameter—mode is missing value The mode option is specified without value.

Unknown mode '<mode>' The specified VHDL mode is unknown. See the list of possible
VHDL mode in—mode option description.

Required parameter file name is missing No VHDL file path is provided.

Unable to register invalid_path.v file The specified VHDL file does not exist or does not have read
permissions.

set_device is not called The device information is not specified. Use set_device
command to describe the device.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
read_vhdl -mode vhdl_2008 osc2dfn.vhd

read_vhdl {hdl/top.vhd}

10.1.7 set_device

Description
Specify family name, die name, and speed grade.

set_device -family <family_name> -die <die_name> -speed <speed>

Arguments

Parameter Type Description

-family <family_name> String Specify the family name. Possible values are PolarFire, PolarFire
SoC, IGLOO2, SmartFusion2, RTG4.

-die <die_name> String Specify the die name.

-speed <speed> String Specify the device speed grade. Possible values are STD or -1.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 38

List of Errors

Error Message Description

Required parameter—die is missing Die option is mandatory and must be specified.

Unknown die 'MPF30' The value of -die option is not correct. See the possible list of values in
option's description.

Parameter—die is missing value Die option is specified without value.

Required parameter—family is
missing

The family option is mandatory and must be specified.

Unknown family 'PolarFire' The family option is not correct. See the possible list of values in option's
description.

Parameter—family is missing value The family option is specified without value.

Required parameter—speed is
missing

The speed option is mandatory and must be specified.

Unknown speed '<speed>' The speed option is not correct. See the possible list of values in option's
description.

Parameter—speed is missing value The speed option is specified without value.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
set_device -family {PolarFire} -die {MPF300T_ES} -speed -1

set_device -family SmartFusion2 -die M2S090T -speed -1

10.1.8 set_top_level

Description
Specify the name of the top-level module in RTL.

set_top_level [-lib <libname>] <name>

Arguments

Parameter Type Description

-lib <libname> String The library to search for the top-level module or entity (Optional).

name String The top-level module or entity name.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 39

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Message Description

Required parameter top level is missing The top level option is mandatory and must be specified.

Parameter—lib is missing value The lib option is specified without values.

Unable to find top level <top> in library <lib> The specified top level module is not defined in the provided
library. To fix it the top module or library name must be
corrected.

Elaborate failed Error in RTL elaboration process. The error message can be
observed from console.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
set_top_level {top}

set_top_level -lib hdl top

10.1.9 write_pdc

Description
Write physical constraints (Derive Constraints only).

write_pdc <filename>

Arguments

Parameter Type Description

<filename> String Path to the PDC file will be generated. This is mandatory
option. If the file path already exists it will be overwritten.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 40

List of Errors

Error Messages Description

Unable to open <file path> file The file path is not correct. May be the parent directories do not
exist.

PDC file '<file path>' is not writeable. The specified PDC file does not have write permission.

Required parameter file name is missing The PDC file path is mandatory option and needs to be specified.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
write_pdc "derived.pdc"

10.1.10 write_ndc

Description
Write NDC constraints into a file. The command can be used for RTG4 designs using RTG4FCCCECALIB core.

write_ndc <filename>

Arguments

Parameter Type Description

filename String Path to the NDC file will be generated. This is mandatory option.
If the file already exists it will be overwritten.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Messages Description

Unable to open <file_path> file. File path is not correct. The parent directories do not exist.

NDC file '<file_path>' is not writable. The specified NDC file does not have write permission.

Required parameter _AtclParam0_ is
missing.

The NDC file path is mandatory option and needs to be specified.

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 41

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

Example
write_ndc "derived.ndc"

10.1.11 write_sdc

Description
Write a constraint file in SDC format.

write_sdc <filename>

Arguments

Parameter Type Description

<filename> String Path to the SDC file will be generated. This is mandatory
option. If the file already exists it will be overwritten.

Return Type Description

0 Command succeeded.

1 Command does not succeeded. There is an error and user can observer the
error message in console.

List of Errors

Error Message Description

Unable to open <file path> file. File path is not correct. May be the parent directories do not exist.

SDC file '<file path>' is not writable. The specified SDC file does not have write permission.

Required parameter file name is missing. The SDC file path is mandatory option and needs to be specified.

Supported Families

PolarFire

PolarFire SoC

RTG4

SmartFusion2

IGLOO2

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 42

Example
write_sdc "derived.sdc"

 Libero® SoC v2021.2
Appendix D—Derive Constraints

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 43

11. Revision History
Revision Date Description

B 08/2021 • Updated Figure 1-1.
• Added 10. Appendix D—Derive Constraints.

A 08/2021 Initial Revision

 Libero® SoC v2021.2
Revision History

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 44

Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.

 Libero® SoC v2021.2

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 45

http://www.microchip.com/support
http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,

 Libero® SoC v2021.2

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 46

VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8795-1

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 Libero® SoC v2021.2

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 47

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS00004133B-page 48

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Overview
	1.1. Component Lifecycle
	1.2. Libero SoC Project Creation
	1.3. Custom Flow

	2. Component Configuration
	2.1. Component Configuration Using Libero
	2.2. Component Manifests
	2.3. Interpreting Manifest Files

	3. Synthesizing Your Design
	4. Simulating Your Design
	5. Implementing Your Design
	6. Building Your Firmware Project
	7. Appendix A—Libero-Generated Hardware Configuration Files
	8. Appendix B—Sample SDC and PDC Constraints
	8.1. SDC Timing Constraints
	8.1.1. Derived SDC file

	8.2. PDC Physical Design Constraints
	8.2.1. Derived PDC file

	9. Appendix C—Importing Simulation Libraries into Simulation Environment
	10. Appendix D—Derive Constraints
	10.1. Derive Constraints Tcl Commands
	10.1.1. add_include_path
	10.1.2. derive_constraints
	10.1.3. read_sdc
	10.1.4. read_ndc
	10.1.5. read_verilog
	10.1.6. read_vhdl
	10.1.7. set_device
	10.1.8. set_top_level
	10.1.9. write_pdc
	10.1.10. write_ndc
	10.1.11. write_sdc

	11. Revision History
	Microchip FPGA Support
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

