
 Libero® SoC
 Design Separation Methodology User Guide

Introduction
This guide describes the design separation methodology required to implement security and safety-critical
applications. For a system to be secure and reliable, all critical subsystems in the design should be independent
of each other.

Traditionally, a system with security and safety-critical requirements is built with each critical subsystem implemented
using multiple integrated circuits (ICs). With each critical subsystem as an independent IC, fault and reliability
analysis is simplified. In a traditional Field Programmable Gate Array (FPGA) design, netlists generated for place-
and-route often are flattened for efficient placement. Design functions from various parts of the design hierarchy may
share physical resources. To meet critical security and safety application requirements, critical subsystems within
an FPGA design might need to be isolated to simplify failure analysis and prevent propagation of faults from one
subsystem adversely affecting another.

The Microchip Design Separation methodology provides a way to create independent critical subsystems on a single
FPGA. Functional blocks that must be independent can be isolated physically from other functional elements in the
FPGA using place-and-route constraints in the Libero SoC software. The following figure shows a top-level view for
implementing a security and safety-critical application in a Microchip FPGA.

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 1

Figure 1. Implementing Security and Safety-Critical Applications in Microchip FPGAs

 Libero® SoC

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 2

Table of Contents

Introduction...1

1. Design Methodology... 5

1.1. Design Separation Methodology Components...5
1.2. Design Separation Methodology Steps..5
1.3. Creating Blocks.. 7
1.4. Assigning I/Os to the Block.. 9
1.5. Optional CoreSMIP Block...11
1.6. Creating a Top-level Design... 11
1.7. FloorPlanning with Design Separation Regions...12
1.8. IRS Regions... 16
1.9. Considerations for Global Clock Resources...16
1.10. Initialization of Hard ASIC Blocks...17
1.11. Complete Place-and-Route..17
1.12. Configuring Security Settings and Generating the Programming File..17
1.13. Auditing by MSVT ..17
1.14. Executing MSVT...18
1.15. Further Considerations and Adjustments...20

2. Example.. 22

2.1. Creating HDL Subsystems...22
2.2. Creating Blocks.. 23
2.3. Publishing the Block...28
2.4. Creating a Top-level Design... 29
2.5. Floorplanning Design with Separation Regions... 34
2.6. Complete Place-and-Route..37
2.7. Configure Security Settings and Generate the Programming File... 37
2.8. Execute MSVT... 39

3. Revision History.. 42

4. Microchip FPGA Technical Support.. 43

4.1. Customer Service...43
4.2. Customer Technical Support.. 43
4.3. Website.. 43
4.4. Outside the U.S..43

The Microchip Website...44

Product Change Notification Service..44

Customer Support.. 44

Microchip Devices Code Protection Feature.. 44

Legal Notice... 45

Trademarks.. 45

 Libero® SoC

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 3

Quality Management System... 46

Worldwide Sales and Service...47

 Libero® SoC

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 4

1. Design Methodology
The following topics describe the design methodology.

1.1 Design Separation Methodology Components
The Microchip Design Separation methodology comprises of the following features:

• Ability to create independent subsystems.
• Ability to validate that isolation.
• Ability to monitor for faults.

The Design Separation methodology leverages an existing design methodology referred to as a “Block flow”
to achieve isolated functions. Block flow is a bottom-up design methodology that allows an incremental design
approach. In a Block flow compile, component modules in a design are compiled and optimized in independent
stages from the rest of the project. After compiling, the component modules are published as a netlist (or “Block”),
and then imported to a top-level project for integration with other modules in the larger system design.

Because the Block must be compiled with all the required physical resources, resource reservation is a key
component of Block flow. Routing reservation and logic reservation are both constraint options available from the
Block flow methodology. As a result, creating isolated subsystems for security and safety-critical applications is an
application of Block flow. All critical subsystems are assigned to an exclusive region (a region with strict resource
reservation) and floorplanned with a guard-band of unused clusters away from all other logic.
Note:  The width of the guard-band depends on individual project requirements.

Signal connections to another module (known as “Inter-Region Signals” within this flow) are assigned to another
resource-reserved region called the “IRS Region”. This region overlaps the source and sink regions. In this way, the
Inter-Region Signals are members of the source region, the sink region, and the IRS Region. The IRS Region acts as
a constrained routing channel.

A separate tool known as the Microchip Separation Verification Tool (MSVT) checks that a design meets the
separation requirements defined by the system requirements of the design. MSVT is an independent tool included
with the Libero installation. Libero SoC generates the parameter file MSVT.param automatically, which describes
the Blocks in the design, and the number of signals entering and leaving a Block. MSVT checks the final design
place-and-route against the MSVT.param file and reports any violations based on the separation requirement defined
by the user.

Anti-Tamper (AT) must be considered in addition to the isolation of critical design subsystems. PolarFire®,
SmartFusion®2, and IGLOO®2 devices come with standard robust design security, a critical portion of which is AT
and fault detection. PolarFire, SmartFusion2 and IGLOO2 devices include mechanisms that allow an FPGA design to
monitor the integrity of the device during operation.

Fault detection is a critical part of security-and safety-critical systems. To address this requirement, an IP core ties
together the relevant AT hooks in CoreSMIP_PF (PolarFire) and CoreSMIP (SmartFusion2 and IGLOO2) devices.

1.2 Design Separation Methodology Steps
The following flow chart shows the various steps of the design separation methodology.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 5

Figure 1-1. Microchip Design Separation Methodology

1. Create an RTL description for each subsystem. Each subsystem should be independent from the others
with its own logic resources. The RTL module defining each subsystem should be independent of other
subsystems.

2. Define each independent subsystem as a Block. The Block design flow creates logical partitions for the
subsystems in question as a handle for place-and-route constraints in later stages of the design separation
methodology.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 6

Note:  All corresponding I/O ports of a subsystem should be assigned to the respective Block. In the design
separation methodology, all logic must be a member of an isolated Block region.

3. For each Block, run Synthesis and Compile. Assess the size and shape of suitable regions based on the types
of I/O, count and length of cascaded Math blocks, RAM count, PLLs, peripherals and fabric resource usage.
Publish the Block without place-and-route.

4. Write a top-level module that only instantiates and connects all the Blocks. Import each published Block.
Enable the Design Separation Methodology option in the Project Settings... > Design Flow > Design
Separation > Enable Design Separation Methodology.

5. For each Block in the design, create separation regions by specifying region constraints using Chip Planner or
defining regions in a PDC file.

6. Assign Blocks to the isolated regions.
7. If two Blocks interact with each other, create an overlapping IRS region constraint connecting the Blocks.

These IRS regions should also be physically isolated from other blocks and IRS regions. Assign IRS nets to
each respective IRS region.

8. Enter the necessary timing constraints. Perform design iterations to achieve timing closure.
9. Verify all aspects of timing and power.
10. Generate back-annotated files and perform post-layout simulations when required.
11. Configure security and programming options before generating the programming file. This step also exports

information for MSVT.
12. Run MSVT from the command line. If MSVT fails, re-examine the floorplan and iterate the entire design flow

with corrected region constraints.

1.3 Creating Blocks
A security and safety-critical application may consist of one or more independent subsystems. Using Hardware
Description Language (HDL), define each subsystem to be independent from the rest of the system.

Each subsystem should have its own resources, including I/O buffers for external FPGA signals. A Block element is
created for each such subsystem, which is then instantiated in a top-level design.
To create a Block element for each subsystem:

1. Right-click the target module in the Design Hierarchy tab and choose Set as root.
2. Enable block creation from Project Settings (see the following figure).

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 7

Figure 1-2. Project Settings for Block Creation

Note:  Block flow is a bottom-up design methodology. The Block attribute in the Block flow identifies
components in an HDL hierarchy to be reused within a team-based design flow as a modular resource.

3. If a Block uses physical I/O pins, define those physical resources as part of that block. This requires explicit
definition of I/O to be assigned to the Block using I/O pads. Use direct instantiation of an I/O buffer within the
module in question or from the Catalog in Libero's SmartDesign tool.

4. For each module that has its I/Os defined, run Synthesis and Compile. Analyze the Compile report to assess
the size and shape of suitable regions based on types of I/O, count and length of cascaded Math blocks, RAM
count, PLLs, peripherals and fabric resource usage.

5. Optional: Enter timing constraints and run place-and-route followed by timing analysis to achieve timing
closure for each individual Block. This step indicates the difficulty of timing closure at the top level of the
design.

6. The Block is ready to be published. Because these Blocks will be assigned to isolated separation regions
(explained in subsequent sections), publish the Block without placement and routing information. Configure
Publish Block options to exclude placement and routing information, as shown in the following figure.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 8

Figure 1-3. Configuring Publish Block Options

Libero exports the <block_name>.cxz file to the <project_path>/designer/<block_name>/export
directory when a Block is published. The <block_name>.cxz file is the published Block. This is the file you import
into the top-level design to instantiate the Block.

1.4 Assigning I/Os to the Block
Signals that route to physical I/O pins within each module should belong to the corresponding Block. For design
separation, physical I/O resources must be associated with an isolation region. Enabling Block flow disables
automatic I/O insertion by the Synthesis tool. Therefore, the design separation methodology requires explicit
instantiation of I/O buffers that are required per Block. These I/O buffers can be inserted from the I/O Configurator in
the SgCore Catalog or the Macro Library Catalog. For more information, see the SmartDesign sections in the Libero
Online Help. These macros ensure that all design ports assigned to them infer an I/O port assigned to the given
Block.

Note: 
Do not insert I/O buffer on ports that are used to interconnect with other blocks (that is, IRS nets).

To insert I/Os in a Block, Microchip recommends you use Libero’s SmartDesign tool. Follow these steps to create a
SmartDesign component of the subsystem.

1. Create a SmartDesign and instantiate the module in SmartDesign.
2. Insert appropriate macros from the Macro library catalog for each type of port. The relevant macros are:

INBUF, INBUF_DIFF, OUTBUF, OUTBUF_DIFF, TRIBUFF, TRIBUFF_DIFF, BIBUF, and BIBUF_DIFF.
3. If ports belong to a bus, use the I/O configurator with required width and type of buffer.
4. After required macros are instantiated in SmartDesign, connect the ports of the design with the respective

macros.
5. Rename the I/O pads with names defined in the module. Generate SmartDesign.
6. Set the generated SmartDesign as the root module and create a Block using this module as described in

2.2 Creating Blocks.
The following figure shows a SmartDesign component in which a subsystem has been instantiated and
top-level ports are assigned to its I/Os using OUTBUF macros.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 9

Figure 1-4. SmartDesign Instantiating Subsystem Along with I/Os

dataIn[31:0]

CLK

RESETN

RX

CLKINT_0

CLKINT

YA MIV_RV32IMC_C2_0

MIV_RV32IMC_C2

CLK

RESETN
EXT_RESETN

TIME_COUNT_OUT[63:0]

APB_MSTR
IRQ

EXT_IRQ

CoreAPB3_C2_0

CoreAPB3_C2

APB3mmaster APBmslave0

CoreGPIO_C4_0

CoreGPIO_C4

PCLK

PRESETn

dataIn[31:0]

dataOut[31:0]

dataOut[31]

dataOut[30]

dataOut[29]

dataOut[28]

dataOut[27]

dataOut[26]

dataOut[25]

dataOut[24]

dataOut[23]

dataOut[22]

dataOut[21]

dataOut[20]

dataOut[19]

dataOut[18]

dataOut[17]

dataOut[16]

dataOut[15]

dataOut[14]

dataOut[13]

dataOut[12]

dataOut[11]

dataOut[10]

dataOut[9]

dataOut[8]

dataOut[7]

dataOut[6]

dataOut[5]

dataOut[4]

dataOut[3]

dataOut[2]

dataOut[1]

dataOut[0]

APBslave

OUTBUF_31

OUTBUF

PADD

OUTBUF_30

OUTBUF

PADD

OUTBUF_29

OUTBUF

PADD

OUTBUF_28

OUTBUF

PADD

OUTBUF_27

OUTBUF

PADD

OUTBUF_26

OUTBUF

PADD

OUTBUF_25

OUTBUF

PADD

OUTBUF_24

OUTBUF

PADD

OUTBUF_23

OUTBUF

PADD

OUTBUF_22

OUTBUF

PADD

OUTBUF_21

OUTBUF

PADD

OUTBUF_20

OUTBUF

PADD

OUTBUF_19

OUTBUF

PADD

OUTBUF_18

OUTBUF

PADD

OUTBUF_17

OUTBUF

PADD

OUTBUF_16

OUTBUF

PADD

OUTBUF_15

OUTBUF

PADD

OUTBUF_14

OUTBUF

PADD

OUTBUF_13

OUTBUF

PADD

OUTBUF_12

OUTBUF

PADD

OUTBUF_11

OUTBUF

PADD

OUTBUF_10

OUTBUF

PADD

OUTBUF_9

OUTBUF

PADD

OUTBUF_8

OUTBUF

PADD

OUTBUF_7

OUTBUF

PADD

OUTBUF_6

OUTBUF

PADD

OUTBUF_5

OUTBUF

PADD

OUTBUF_4

OUTBUF

PADD

OUTBUF_3

OUTBUF

PADD

OUTBUF_2

OUTBUF

PADD

OUTBUF_1

OUTBUF

PADD

OUTBUF_0

OUTBUF

PADD

DFN1_0

DFN1

Q

CLK

D

BUFD_1

BUFD

YA

BUFD_0

BUFD

YA

PAD_30

PAD_29

PAD_28

PAD_27

PAD_26

PAD_25

PAD_24

PAD_23

PAD_22

PAD_21

PAD_20

PAD_19

PAD_18

PAD_17

PAD_16

PAD_15

PAD_14

PAD_13

PAD_12

PAD_11

PAD_10

PAD_9

PAD_8

PAD_7

PAD_6

PAD_5

PAD_4

PAD_3

PAD_2

PAD_1

PAD_0

PAD

TX

Y

Y_0

As an alternative to SmartDesign, you can instantiate the macros and connect them to the top-level ports of
the design.

Because lower level modules are compiled independently from the top-level design, ensure unique I/O pin
names across the design are used in the lower level project. Microchip recommends checking the I/O pin

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 10

names across the project to ensure uniqueness when building a lower level project. It is important to realize
that some cores have pins that are not true single point inputs or outputs that can also be fed back internally.
Therefore, they should be carefully placed between blocks.

The cells connected to IRS regions must be isolated from other IRS regions connected to a different set of
blocks. It is best to insert a buffer or register (with only global clocks and resets) at the source and sinks of
IRS.

1.5 Optional CoreSMIP Block
The Security Monitor IP (CoreSMIP or CoreSMIP_PF) is a core provided by Microchip for tamper detection to
enhance the security of the system. For more information, see the CoreSMIP or CoreSMIP_PF User Guide.
CoreSMIP and CoreSMIP_PF is present in the catalog under the Tamper section.

The Design Separation methodology requires each subsystem to be defined as a Block. Therefore, if your design
includes CoreSMIP or CoreSMIP_PF, create such a block using the same steps as the other Blocks.

1.6 Creating a Top-level Design
After all Blocks are published, create a new Libero project for the top-level design using the following steps.

1. Create SmartDesign block where you instantiate all the individual blocks and connect their IRS signals. This
top-level module should contain instantiations of all Blocks along with interconnects between them to replicate
a complete system.

2. Set this top-level module as the root module in Libero and disable Block Creation. Navigate to the File
> Import > Blocks menu and import all published subsystem Blocks (<block_name>.cxz files) into this
design. Typically, you need not run Synthesis, because all published Blocks have already completed Synthesis
and have I/Os assigned to them.
The following figure shows Project Settings required for top-level design with Block Creation and Synthesis
disabled and Enable Design Separation Methodology enabled.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 11

Figure 1-5. Project Settings for Top-level Design

1.7 FloorPlanning with Design Separation Regions
After you create the top-level design with subsystem Blocks, floorplan the design by defining separation regions and
IRS regions. In a design that follows the Microchip Design Separation methodology, all logic should be contained in a
logic region with dedicated place-and-route resources.

A logic region is a user-defined area on the device within which logic can be assigned. A Separation region is a logic
region with the following features:

• It is a resource reserved (place-and-route) region which may be an exclusive or inclusive constraint.
• May be a non-rectangular region (built from a union of multiple rectangular floorplan regions).
• Regions are separated from each other by reserving a perimeter of unused clusters.

You can use Chip Planner to create regions or create them with PDC commands. Chip Planner is the floorplanning
tool used to create and edit regions on the chip and assign logic to these regions.

Create a Separation region for each Block present in the design. The size of and shape of the region should depend
on quantity of fabric resources, I/O types, RAM, Math blocks, PLL and peripherals being used in each block.

Each Block region is a place-and-route constraint for logic elements that are associated with it. Physical separation
is achieved by allowing some unused logic clusters as a guard-band around each Block region. The unused cluster
spacing between regions is dependent upon final system requirements. Floorplan according to the guard-band that is
appropriate for the security and safety requirements of the target design.

PolarFire, SmartFusion2 and IGLOO2 FPGA architecture is cluster-based. A cluster is made up of 12 Logic
Elements. A Logic Element includes a 4 input-LUT, a register, and a carry chain. In the Chip Planner coordinate
system, each Logic Element component has a unique coordinate. As such, each Cluster occupies an area of 12x3.
The following figure shows a single cluster as shown in the Chip Planner with dimensions noted. The granularity of
Chip Planner region sizes is one cluster.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 12

Figure 1-6. One Cluster of PolarFire, SmartFusion2 and IGLOO2 FPGA

You can define regions for each Block using either the Chip Planner or a Physical Design Constraints (PDC) file. The
size of each region should accommodate all resources used by a given block, including all embedded hard blocks
such as I/Os, RAM, Math blocks, PLL and peripheral blocks.

Note:  LSRAM and Math blocks take up a footprint of three clusters in the FPGA floorplans. The makeup of such
embedded blocks include the hard IP resource itself abutted to a set of Interface Clusters. The Interface Clusters help
route signals to and from the embedded hard Block to the rest of the fabric array. The following figures provide details
of the makeup of a embedded hard Block and its corresponding visualization within the Chip Planner floorplan,
respectively.

Figure 1-7. Interface Cluster for an Embedded Hard IP Block

Figure 1-8. LSRAM Block as Shown in Chip Planner

An isolated region constraint must include the entire embedded hard Block resource within its boundaries for the
resource to be usable within the target region. Use non-rectangular regions to efficiently allocate a floorplan to
include these embedded hard blocks.

More information about the fabric architecture for FPGA devices can be found in the PolarFire FPGA fabric user
guide or the SmartFusion2 FPGA fabric user guide.

The following figures provide a sample floorplan from a sample design using a PDC file and the floorplan as shown
in the Chip Planner, respectively. The granularity of placement units are logic modules in the Chip Planner coordinate
system and the granularity of region sizes is clusters. Therefore, regions must be a multiple of 12 in the horizontal
direction and a multiple of 3 in the vertical direction.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 13

https://www.microsemi.com/document-portal/doc_download/136522-ug0680-polarfire-fpga-fabric-user-guide
https://www.microsemi.com/document-portal/doc_download/136522-ug0680-polarfire-fpga-fabric-user-guide
https://www.microsemi.com/document-portal/doc_download/132008-ug0445-smartfusion2-soc-fpga-and-igloo2-fpga-fabric-user-guide

Figure 1-9. Sample Floorplan of Top-level Design

Following are the details of Physical design constraints file of the top-level design. Note the regions are defined with
-route true to constrain routing.

define_region -region_name Block1region -type exclusive -color 2143338688 -route
true -push_place true -x1 456 -y1 195 -x2 1631 -y2 371
define_region -region_name Block2region -type exclusive -color 2143338688 -route
true -push_place true -x1 1752 -y1 189 -x2 2435 -y2 377
define_region -region_name Block3region -type exclusive -color 2143338688 -route
true -push_place true -x1 0 -y1 0 -x2 335 -y2 41 \

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 14

 -x1 0 -y1 42 -x2 1067 -y2 161 \

 -x1 804 -y1 0 -x2 1067 -y2 41
define_region -region_name Block4region -type exclusive -color 2143338688 -route
true -push_place true -x1 1200 -y1 0 -x2 2351 -y2 158
define_region -region_name SMIPregion -type exclusive -color 2143338688 -route
true -push_place true -x1 384 -y1 0 -x2 755 -y2 11
define_region -region_name IBR1_2 -type inclusive -color 2147442270 -route true -
push_place false -x1 1584 -y1 282 -x2 2027 -y2 362
define_region -region_name IBR1_3 -type inclusive -color 2147442270 -route true -
push_place false -x1 636 -y1 102 -x2 851 -y2 239
define_region -region_name IBR1_4 -type inclusive -color 2143338688 -route true -
push_place false -x1 1356 -y1 126 -x2 1499 -y2 245
define_region -region_name IBR2_4 -type inclusive -color 2147442270 -route true -
push_place false -x1 2148 -y1 105 -x2 2327 -y2 266
define_region -region_name IBR3_4 -type inclusive -color 2147442270 -route true -
push_place false -x1 888 -y1 45 -x2 1463 -y2 98
assign_region -region_name Block1region -inst_name block1_0
assign_region -region_name Block2region -inst_name block2_0
assign_region -region_name Block3region -inst_name block3_0
assign_region -region_name Block4region -inst_name block4_0
assign_region -region_name Block4region -inst_name RESETN_ibuf
assign_region -region_name SMIPregion -inst_name pf_smip_0
assign_net_macros -region_name IBR1_2 -net_name block1_0_APBmslave0_PENABLE -
include_driver true
assign_net_macros -region_name IBR1_2 -net_name block1_0_APBmslave0_PSELx -
include_driver true
assign_net_macros -region_name IBR1_2 -net_name block1_0_APBmslave0_PWRITE -
include_driver true
assign_net_macros -region_name IBR1_2 -net_name block1_0_APBmslave0_PREADY -
include_driver true
assign_net_macros -region_name IBR1_2 -net_name {block1_0_APBmslave0_PADDR[*]} -
include_driver true
assign_net_macros -region_name IBR1_2 -net_name {block1_0_APBmslave0_PRDATA[*]} -
include_driver true
assign_net_macros -region_name IBR1_2 -net_name {block1_0_APBmslave0_PWDATA[*]} -
include_driver true
assign_net_macros -region_name IBR1_3 -net_name {block1_0_dataOut[*]} -
include_driver true
assign_net_macros -region_name IBR1_3 -net_name {block3_0_dataOut_0[*]} -
include_driver true
assign_net_macros -region_name IBR1_4 -net_name block4_0_TX -include_driver true
assign_net_macros -region_name IBR1_4 -net_name block4_0_Y_0 -include_driver true
assign_net_macros -region_name IBR1_4 -net_name block1_0_TX -include_driver true
assign_net_macros -region_name IBR2_4 -net_name block4_0_Y -include_driver true
assign_net_macros -region_name IBR3_4 -net_name {block3_0_dataOut[*]} -
include_driver true

For more information about floorplaning with the Chip Planner and PDC syntax, see the Chip Planner online help in
Libero SoC.

Figure 1-10. Sample Floorplan of Top-level Design

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 15

1.8 IRS Regions
Since each Block is defined in an isolated region, it must be ensured that a routing channel with valid inter-Block
communication interconnect exists that is separated from other unrelated regions. These inter-Block interconnect
channels are defined using IRS regions.

An IRS region is another routing region that overlaps with the isolated Block regions. All signals that have a valid
connection point between the source and destination Blocks are explicitly assigned to the IRS routing region.

IRS regions have the same requirements as the separation regions mentioned in 1.7 FloorPlanning with Design
Separation Regions. IRS regions should contain valid communication interconnect nets assigned to them. An IRS
region overlaps with the separation regions being connected.

Each IRS region should connect only one set of connected Blocks. Each set of IRS regions should also be separated
by a certain number of clusters from all other Blocks in all directions, both inside and outside the connected Blocks.
The extent of separation required depends on your system requirements.

The cells connected to IRS regions must be isolated from other IRS regions connected to a different set of Blocks. It
is best to insert a buffer or register (with only global clocks and resets) at the source and sinks of IRS.

1.9 Considerations for Global Clock Resources
The global clock network on PolarFire, SmartFusion2, and IGLOO2 FPGA devices provide a dedicated low-skew,
high-fanout network to all logic clusters within the fabric array. There are a number of global buffers per device with
the following potential inputs:

• Dedicated Global I/Os
• Clock Conditioning Circuits (inclusive of PLLs)
• On-Chip (hardened) oscillators
• Transceivers

• FPGA fabric routing

A detailed description of the clock distribution architecture and associated clocking resources can be found in the
PolarFire Clocking Resources User Guide or the SmartFusion2 Clocking Resources User Guide.

The design separation flow only considers physical isolation of the logic regions through the analysis of routing
elements on the programmable switch fabric in the FPGA. Global networks, as it is a dedicated routing tree, are not
analyzed as part of this flow. Hence, for design separation, global signals that are common to multiple regions (such
as clock and Reset) need not be separated from any other signal. If the location of a global resource like PLL or CCC
overlaps with a block region, you must make the type of the block region inclusive. Alternatively, you could include
the global resource within the block and bring out the global net for distributing to other blocks.

Note:  High fanout-signals from the fabric array often are promoted automatically to the global network. In such
cases, you may want high fanout signals that are meant for a region to use local routing resources only. To
understand which signals are promoted onto the global network, inspect the Compile log and Global Net report to
confirm which nets get assigned to GB and which nets get implemented on Row Global Buffer (RGB) resources.
You can control the promotion and demotion of signals using Synthesis attributes. You can also configure Synthesis
options in Libero SoC to modify the threshold values where global promotion occurs.

As MSVT only audits the programmable switch fabric, any hard macro resources (such as the CCC, PLL, DLL, clock
divider, or an RC oscillator) are not audited. Most inputs to the CCC are from hard blocks, such as from a dedicated
I/O pin or the RC oscillator and are routed on dedicated metal traces. However, CCC inputs may also be driven from
the fabric. If an input or output of a CCC is routed, then design separation constraints will apply. In such a case, the
physical CCC resource must also be encapsulated within the same region as the source signal driving the CCC. The
locations of the CCC may be restrictive for planning the regions—they occur in pairs in each quadrant and some
quadrants may not have any CCCs.

RGB resources (RCLKINT/RGCLKINT macros), if used, must be included in a design separation region. Connectivity
in the row served by a RGB is dictated by programmable switches, and therefore, is analyzed by the MSVT. RGBs
are distributed along a few columns across the fabric array (locations are device dependent). You need to be aware
of the location of the RGB columns. The width of such regions is determined by the span of the RGB output.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 16

https://www.microsemi.com/document-portal/doc_download/136524-ug0684-polarfire-fpga-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_download/132012-ug0449-smartfusion2-and-igloo2-clocking-resources-user-guide

1.10 Initialization of Hard ASIC Blocks
SmartFusion2 and IGLOO2 FPGA devices contain a number of hardened peripherals, such as SERDES blocks,
and hardened memory controllers. These peripherals often rely on initialization routines, where register values
are configured to the desired operational parameters. In the standard Libero flow, initialization of these hardened
peripherals is controlled through a centralized initialization controller. Fabric routing resources are used to connect
with the centralized configuration controller, and in such cases will cause a violation of design separation constraints.
If hardened peripherals are used in the design, the standalone initialization flow must be used with the design
separation flow.

For more information about standalone initialization of peripheral blocks, see the Standalone Peripheral Initialization
User Guide.

1.11 Complete Place-and-Route
After a floorplan of the entire design is complete with separation regions and IRS regions defined, run place-and-
route and verify post-layout implementation as per the regular Libero design flow.

Verify that timing closure can be achieved for the design. If the design does not meet timing, clone, and modify the
timing constraints scenario for Timing-Driven Place-and-Route (TDPR) and explore alternative optimization through
High-effort or Power-driven options. You can also change the floorplan and iterate through the design. Standard
FPGA design practices like incremental flow are available. Make sure all criteria required for separation of design
remains intact while changing the design floorplan.

1.12 Configuring Security Settings and Generating the Programming File
You can use the Security Policy Manager (SPM) to set design security attributes after completing place-and-route
and before you generate programming files. This procedure includes setting user encryption keys and hardware
access control policies. Configure the SPM as appropriate for the target system design. For more information about
design security and the options available in the Security Policy Manager, see the PolarFire FPGA Security User
Guide or the SmartFusion2 FPGA Security User Guide.

1.13 Auditing by MSVT
MSVT is a standalone tool provided with the Libero installation. It is used to verify that the design meets design
separation requirements.

The tool accepts as input the design database and a parameter file that is generated every time a programming
file is generated. The parameter file describes the isolation regions in the design as well as the inter-region signals
between isolation regions. This file is generated when the Enable Design Separation Methodology check box in
the Project Settings dialog is enabled. This file is exported to the following location:

<project_path>/designer/<Top_Level_Module>/msvt.param
The tool can work on any placed and routed design which has a Block that requires a separation from all elements
external to the block. The tool works iteratively on every Block to be verified. Internal signals and IRS are verified
separately. The tool checks whether the separation criteria is satisfied for each Block and the corresponding sets of
IRS signals.

MSVT prints a comprehensive report on each Block and the corresponding IRS regions being verified. If any Block
or IRS signals do not satisfy minimum separation criteria, the tool reports details of affected instances. For more
information about the MSVT output report, see the MSVT User Guide.

An MSVT failure indicates that the design has not met the design separation criteria and one or more sub-blocks (or
signals) are not independent of rest of the system. In such a case, do the following:

• Identify instances that cause violations in the MSVT output, and modify the design floorplan accordingly.
• Recompile the design to generate a new place-and-routed netlist.
• Verify the modified design using the MSVT tool.

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 17

https://www.microsemi.com/document-portal/doc_download/136534-ug0753-polarfire-fpga-security-user-guide
https://www.microsemi.com/document-portal/doc_download/136534-ug0753-polarfire-fpga-security-user-guide
https://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

If the design satisfies separation criteria, the MSVT output reports MSVT Check succeeded to indicate that the
required design separation has been achieved in the design.

1.14 Executing MSVT
The msvt.param file contains the parameters required by MSVT to verify design separation. The following shows a
sample parameter file.

//**
//
// This is input parameters file for MSVT Check program
//
//**

DEVICE = MPF300TS
DESIGN = SD_Top.msvt
VERIFY_BLOCKS = block4_0 block2_0 block3_0 block1_0 pf_smip_0 // empty list means
all blocks in design will be verified
REQUIRED_SEPARATION = 1
MAX_VIOLATIONS_PER_REPORT_SECTION = 1
IRS block4_0 block2_0 = block4_0_Y
IRS block2_0 block4_0 =
IRS block4_0 block3_0 =
IRS block3_0 block4_0 = block3_0_dataOut[31] block3_0_dataOut[30]
block3_0_dataOut[29]
 block3_0_dataOut[28] block3_0_dataOut[27] block3_0_dataOut[26]
block3_0_dataOut[25]
 block3_0_dataOut[24] block3_0_dataOut[23] block3_0_dataOut[22]
block3_0_dataOut[21]
 block3_0_dataOut[20] block3_0_dataOut[19] block3_0_dataOut[18]
block3_0_dataOut[17]
 block3_0_dataOut[16] block3_0_dataOut[15] block3_0_dataOut[14]
block3_0_dataOut[13]
 block3_0_dataOut[12] block3_0_dataOut[11] block3_0_dataOut[10]
block3_0_dataOut[9]
 block3_0_dataOut[8] block3_0_dataOut[7] block3_0_dataOut[6]
block3_0_dataOut[5]
 block3_0_dataOut[4] block3_0_dataOut[3] block3_0_dataOut[2]
block3_0_dataOut[1]
 block3_0_dataOut[0]
IRS block4_0 block1_0 = block4_0_TX block4_0_Y_0
IRS block1_0 block4_0 = block1_0_TX
IRS block4_0 pf_smip_0 =
IRS pf_smip_0 block4_0 =
IRS block2_0 block3_0 =
IRS block3_0 block2_0 =
IRS block2_0 block1_0 = block1_0_APBmslave0_PRDATA[31]
block1_0_APBmslave0_PRDATA[30]
 block1_0_APBmslave0_PRDATA[29] block1_0_APBmslave0_PRDATA[28]
block1_0_APBmslave0_PRDATA[27]
 block1_0_APBmslave0_PRDATA[26] block1_0_APBmslave0_PRDATA[25]
block1_0_APBmslave0_PRDATA[24]
 block1_0_APBmslave0_PRDATA[23] block1_0_APBmslave0_PRDATA[22]
block1_0_APBmslave0_PRDATA[21]
 block1_0_APBmslave0_PRDATA[20] block1_0_APBmslave0_PRDATA[19]
block1_0_APBmslave0_PRDATA[18]
 block1_0_APBmslave0_PRDATA[17] block1_0_APBmslave0_PRDATA[16]
block1_0_APBmslave0_PRDATA[15]
 block1_0_APBmslave0_PRDATA[14] block1_0_APBmslave0_PRDATA[13]
block1_0_APBmslave0_PRDATA[12]
 block1_0_APBmslave0_PRDATA[11] block1_0_APBmslave0_PRDATA[10]
block1_0_APBmslave0_PRDATA[9]
 block1_0_APBmslave0_PRDATA[8] block1_0_APBmslave0_PRDATA[7]
block1_0_APBmslave0_PRDATA[6]
 block1_0_APBmslave0_PRDATA[5] block1_0_APBmslave0_PRDATA[4]
block1_0_APBmslave0_PRDATA[3]

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 18

 block1_0_APBmslave0_PRDATA[2] block1_0_APBmslave0_PRDATA[1]
block1_0_APBmslave0_PRDATA[0]
 block1_0_APBmslave0_PREADY
IRS block1_0 block2_0 = block1_0_APBmslave0_PADDR[11] block1_0_APBmslave0_PADDR[10]
 block1_0_APBmslave0_PADDR[9] block1_0_APBmslave0_PADDR[8]
block1_0_APBmslave0_PADDR[7]
 block1_0_APBmslave0_PADDR[6] block1_0_APBmslave0_PADDR[5]
block1_0_APBmslave0_PADDR[4]
 block1_0_APBmslave0_PADDR[3] block1_0_APBmslave0_PADDR[2]
block1_0_APBmslave0_PADDR[1]
 block1_0_APBmslave0_PADDR[0] block1_0_APBmslave0_PWDATA[31]
block1_0_APBmslave0_PWDATA[30]
 block1_0_APBmslave0_PWDATA[29] block1_0_APBmslave0_PWDATA[28]
block1_0_APBmslave0_PWDATA[27]
 block1_0_APBmslave0_PWDATA[26] block1_0_APBmslave0_PWDATA[25]
block1_0_APBmslave0_PWDATA[24]
 block1_0_APBmslave0_PWDATA[23] block1_0_APBmslave0_PWDATA[22]
block1_0_APBmslave0_PWDATA[21]
 block1_0_APBmslave0_PWDATA[20] block1_0_APBmslave0_PWDATA[19]
block1_0_APBmslave0_PWDATA[18]
 block1_0_APBmslave0_PWDATA[17] block1_0_APBmslave0_PWDATA[16]
block1_0_APBmslave0_PWDATA[15]
 block1_0_APBmslave0_PWDATA[14] block1_0_APBmslave0_PWDATA[13]
block1_0_APBmslave0_PWDATA[12]
 block1_0_APBmslave0_PWDATA[11] block1_0_APBmslave0_PWDATA[10]
block1_0_APBmslave0_PWDATA[9]
 block1_0_APBmslave0_PWDATA[8] block1_0_APBmslave0_PWDATA[7]
block1_0_APBmslave0_PWDATA[6]
 block1_0_APBmslave0_PWDATA[5] block1_0_APBmslave0_PWDATA[4]
block1_0_APBmslave0_PWDATA[3]
 block1_0_APBmslave0_PWDATA[2] block1_0_APBmslave0_PWDATA[1]
block1_0_APBmslave0_PWDATA[0]
 block1_0_APBmslave0_PENABLE block1_0_APBmslave0_PSELx
block1_0_APBmslave0_PWRITE
IRS block2_0 pf_smip_0 =
IRS pf_smip_0 block2_0 =
IRS block3_0 block1_0 = block3_0_dataOut_0[7] block3_0_dataOut_0[6]
block3_0_dataOut_0[5]
 block3_0_dataOut_0[4] block3_0_dataOut_0[3] block3_0_dataOut_0[2]
block3_0_dataOut_0[1]
 block3_0_dataOut_0[0]
IRS block1_0 block3_0 = block1_0_dataOut[7] block1_0_dataOut[6] block1_0_dataOut[5]
 block1_0_dataOut[4] block1_0_dataOut[3] block1_0_dataOut[2]
block1_0_dataOut[1]
 block1_0_dataOut[0]
IRS block3_0 pf_smip_0 =
IRS pf_smip_0 block3_0 =
IRS block1_0 pf_smip_0 =
IRS pf_smip_0 block1_0 =
REGIONS_VERBOSITY = 0

1. Inspect the generated MSVT parameter file. Edit the required separation parameter per guideline requirements
and adjust other parameters to refine the verification criteria. You can specify the blocks you want to verify
and the names of each IRS signal, and limit the maximum number of violations to be reported. For more
descriptions about each parameter, see the MSVT User Guide.

2. To verify the design using MSVT for SmartFusion2 and IGLOO2 devices, issue the following command:

<Libero_path>/bin64/msvt_check –p <project_path>/designer/<Top_Level_Module>/
msvt.param [–o msvt_check.log]

To verify the design using MSVT for PolarFire devices, issue the following command:

<Libero_path>/bin64/msvt_check_pf –p <project_path>/designer/
<Top_Level_Module>/msvt.param [–o msvt_check.log]

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 19

A comprehensive report is printed into the filename given with the –o argument or to stdout if –o is omitted.
On successful completion of this command, the message “MSVT Check failed” indicates that the design
failed to meet one or more of separation criteria and the message “MSVT Check succeeded” indicates that
the design met all separation criteria.

1.15 Further Considerations and Adjustments
• It might be convenient to have the chip-level resources related to the global network at the top-level design;

particularly, if they are connected to multiple blocks.
• Certain PolarFire XCVR ERM related cells are automatically inserted or duplicated in the pre-placer that

circumvent the floorplanning in the PDC. These instances do not appear in any of the user blocks and cannot be
constrained by your region constraints.

• See the following table of coordinate that spans per device to floorplan any of the indicated instances.
Overlapping spans must belong to the same block.

Table 1-1. Coordinates that Span Per Device to Floorplan any of the Indicated Instances

Cell MPF100T MPF200T MPF300T MPF500T

Min-span
X

Min-span
Y

Min-span
X

Min-span
Y

Min-span
X

Min-span
Y

Min-span
X

Min-span
Y

DRI 240 .. 408 0 .. 1 240 .. 408 0 .. 1 384 .. 552 0 .. 1 384 .. 552 0 .. 1

APBM 240 .. 408 0 .. 1 240 .. 408 0 .. 1 384 .. 552 0 .. 1 384 .. 552 0 .. 1

SCB 240 .. 363 0 .. 2 240 .. 363 0 .. 2 384 .. 507 0 .. 2 384 .. 507 0 .. 2

ENFORC
E

252 .. 362 0 .. 1 252 .. 362 0 .. 1 396 .. 506 0 .. 1 396 .. 506 0 .. 1

DEBUG 252 .. 396 0 .. 2 252 .. 396 0 .. 2 396 .. 540 0 .. 2 396 .. 540 0 .. 2

TVS 240 .. 371 0 .. 2 240 .. 371 0 .. 2 384 .. 515 0 .. 2 384 .. 515 0 .. 2

OSC_RC
200MHZ

240 .. 368 0 .. 2 240 .. 368 0 .. 2 384 .. 512 0 .. 2 384 .. 512 0 .. 2

PF_SPI 240 .. 408 0 .. 2 240 .. 408 0 .. 2 384 .. 552 0 .. 2 384 .. 552 0 .. 2

SC_STAT
US

252 .. 366 0 .. 2 252 .. 366 0 .. 2 396 .. 510 0 .. 2 396 .. 510 0 .. 2

UJTAG_S
EC

240 .. 360 0 .. 2 240 .. 360 0 .. 2 384 .. 504 0 .. 2 384 .. 504 0 .. 2

SYS_SE
RVICES

240 .. 408 0 .. 2 240 .. 408 0 .. 2 384 .. 552 0 .. 2 384 .. 552 0 .. 2

VOLTAG
EDETEC
T

240 .. 363 0 .. 1 240 .. 363 0 .. 1 384 .. 507 0 .. 1 384 .. 507 0 .. 1

OSC_RC
2MHZ

240 .. 367 0 .. 2 240 .. 367 0 .. 2 384 .. 511 0 .. 2 384 .. 511 0 .. 2

INIT 240 .. 364 0 .. 2 240 .. 364 0 .. 2 384 .. 508 0 .. 2 384 .. 508 0 .. 2

TAMPER 288 .. 408 0 .. 2 288 .. 408 0 .. 2 432 .. 552 0 .. 2 432 .. 552 0 .. 2

PCIE 1572 ..
1596

92 .. 153 1572 ..
1596

180 .. 234 2436 ..
2460

180 .. 234 2724 ..
2748

261 .. 315

PCIE 1572 ..
1596

159 .. 201 1572 ..
1597

227 .. 282 2436 ..
2460

240 .. 282 2724 ..
2748

321 .. 363

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 20

...........continued
Cell MPF100T MPF200T MPF300T MPF500T

Min-span
X

Min-span
Y

Min-span
X

Min-span
Y

Min-span
X

Min-span
Y

Min-span
X

Min-span
Y

XCVR_PI
PE_AXI1

1572 ..
1596

159 .. 182 1572 ..
1598

236 .. 252 2436 ..
2462

236 .. 252 2724 ..
2748

321 .. 344

XCVR_PI
PE_AXI0

1572 ..
1596

111 .. 155 1572 ..
1597

192 .. 236 2436 ..
2461

192 .. 236 2724 ..
2748

273 .. 317

XCVR_PI
PE_AXI0

1572 ..
1597

159 .. 189 1572 ..
1599

236 .. 270 2436 ..
2463

236 .. 270 2724 ..
2749

321 .. 351

XCVR_PI
PE_AXI1

1572 ..
1596

128 .. 147 1572 ..
1596

210 .. 236 2436 ..
2460

210 .. 236 2724 ..
2748

290 .. 309

 Libero® SoC
Design Methodology

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 21

2. Example
The following topics describe how to implement a complete PolarFire design using Microchip Design Separation
methodology.

The design consists of six subsystems defined in Verilog:
• block1.v
• block2.v
• block3.v
• block4.v
• pf_smip.v
• PF_CCC_C0.v

The following figure shows a top-level view of these subsystems with interconnects between them.

Figure 2-1. Top-Level View of Example Design

This design is implemented using the design separation methodology steps defined in 1.2 Design Separation
Methodology Steps.

Note:  To understand the design flow and floorplanning terminology in the following topics, see the Libero SoC
Design Flow and Chip Planner help topics in Libero.

2.1 Creating HDL Subsystems
The first step when implementing a complete system using Microchip Design Separation methodology is to achieve
logical separation of various subsystems. Create logically separate HDL modules corresponding to the system.

This example defines the following subsystems:
– block1.v
– block2.v
– block3.v
– block4.v
– pf_smip.v
– PF_CCC_C0.v

These subsystems are independent of each other. They communicate with each other using the interconnect signals.
To begin with creating the HDL subsystem, follow these steps:

1. After you identify the subsystems to be implemented using design separation, import these modules into a
Libero project.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 22

2. Create a new Libero project for the FPGA device chosen for the design. In this example, the design using a
MPF300TS, 484 FCVG device is implemented. Import the HDL files using File > Import > HDL Source file
menu into the Libero Project.

3. Create a Block for each subsystem of this design.

2.2 Creating Blocks
The next step is to create a Block for each subsystem of this design.

1. Select a module to be the root module. For example, select block4 as shown in the following figure.
Figure 2-2. Selecting a Module as the Root of a Block

2. Use Project > Project Settings > Design Flow > Enable Block Creation to enable Block flow for this
module, as shown in the following figure.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 23

Figure 2-3. Project Settings for Block Creation

The Publish Block option is enabled in the design flow, as shown in the following figure.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 24

Figure 2-4. Publish Block Option Enabled in the Design

3. If a Block requires physical I/O resources, specify explicit instantiation of I/O resources. All logic within
the Microchip Design Separation methodology must be incorporated within an isolated region. Therefore,
you must associate all physical I/O resources with an isolated region. You can insert I/Os through direct
instantiation or through insertion of I/O buffers using SmartDesign.
This example uses the Catalog in SmartDesign to insert I/Os to top-level signals. block4 subsystem has
following port list:

• CLK , RESETN , RX, dataIn: Top-level input signals
• DataOut: Top-level output signals
• TX , Y_0: IRS signals to block1
• Y: IRS signals to block2

4. Because each Block should have I/Os inserted for its top-level I/O signals, insert I/O ports to the top-level
signals of this subsystem.

5. Create a SmartDesign with the name block4. Instantiate the COREAPB3, COREGPIO, and MIV_RV32IMC
components into block4.

6. For each top-level output signal, assign an OUTBUF macro. This instantiates a single I/O port for each of the
signals. The output signal DataOut has a width of 32 bits.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 25

Figure 2-5. Macros in the Catalog Window

7. After you instantiate all required I/O macros, rename them to a unique name and connect these I/O pads to
respective ports of block4 instance.

8. Since DataOut, TX, Y, and Y_0 are interconnected signals, right-click the ports and promote them to the top.
The following figure shows the schematics of the block4 SmartDesign component.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 26

Figure 2-6. SmartDesign Component for block4 Subsystem along with I/Os

dataIn[31:0]

CLK

RESETN

RX

CLKINT_0

CLKINT

YA MIV_RV32IMC_C2_0

MIV_RV32IMC_C2

CLK

RESETN
EXT_RESETN

TIME_COUNT_OUT[63:0]

APB_MSTR
IRQ

EXT_IRQ

CoreAPB3_C2_0

CoreAPB3_C2

APB3mmaster APBmslave0

CoreGPIO_C4_0

CoreGPIO_C4

PCLK

PRESETn

dataIn[31:0]

dataOut[31:0]

dataOut[31]

dataOut[30]

dataOut[29]

dataOut[28]

dataOut[27]

dataOut[26]

dataOut[25]

dataOut[24]

dataOut[23]

dataOut[22]

dataOut[21]

dataOut[20]

dataOut[19]

dataOut[18]

dataOut[17]

dataOut[16]

dataOut[15]

dataOut[14]

dataOut[13]

dataOut[12]

dataOut[11]

dataOut[10]

dataOut[9]

dataOut[8]

dataOut[7]

dataOut[6]

dataOut[5]

dataOut[4]

dataOut[3]

dataOut[2]

dataOut[1]

dataOut[0]

APBslave

OUTBUF_31

OUTBUF

PADD

OUTBUF_30

OUTBUF

PADD

OUTBUF_29

OUTBUF

PADD

OUTBUF_28

OUTBUF

PADD

OUTBUF_27

OUTBUF

PADD

OUTBUF_26

OUTBUF

PADD

OUTBUF_25

OUTBUF

PADD

OUTBUF_24

OUTBUF

PADD

OUTBUF_23

OUTBUF

PADD

OUTBUF_22

OUTBUF

PADD

OUTBUF_21

OUTBUF

PADD

OUTBUF_20

OUTBUF

PADD

OUTBUF_19

OUTBUF

PADD

OUTBUF_18

OUTBUF

PADD

OUTBUF_17

OUTBUF

PADD

OUTBUF_16

OUTBUF

PADD

OUTBUF_15

OUTBUF

PADD

OUTBUF_14

OUTBUF

PADD

OUTBUF_13

OUTBUF

PADD

OUTBUF_12

OUTBUF

PADD

OUTBUF_11

OUTBUF

PADD

OUTBUF_10

OUTBUF

PADD

OUTBUF_9

OUTBUF

PADD

OUTBUF_8

OUTBUF

PADD

OUTBUF_7

OUTBUF

PADD

OUTBUF_6

OUTBUF

PADD

OUTBUF_5

OUTBUF

PADD

OUTBUF_4

OUTBUF

PADD

OUTBUF_3

OUTBUF

PADD

OUTBUF_2

OUTBUF

PADD

OUTBUF_1

OUTBUF

PADD

OUTBUF_0

OUTBUF

PADD

DFN1_0

DFN1

Q

CLK

D

BUFD_1

BUFD

YA

BUFD_0

BUFD

YA

PAD_30

PAD_29

PAD_28

PAD_27

PAD_26

PAD_25

PAD_24

PAD_23

PAD_22

PAD_21

PAD_20

PAD_19

PAD_18

PAD_17

PAD_16

PAD_15

PAD_14

PAD_13

PAD_12

PAD_11

PAD_10

PAD_9

PAD_8

PAD_7

PAD_6

PAD_5

PAD_4

PAD_3

PAD_2

PAD_1

PAD_0

PAD

TX

Y

Y_0

9. Generate block4, set this module as the root module, and enable Block creation for this module as described
in the previous section.

10. Publish the Block.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 27

2.3 Publishing the Block
After you create the module with I/Os inserted, publish the Block. Run Synthesis, and compile the subsystem (or its
wrapper SmartDeisgnor HDL component). You can check for timing closure on the Block. Publish the Block without
place-and-route information.

1. For block4, run Synthesis.
2. Disable Publish Placement and Publish Routing information in Publish Block > Configure Options, as

shown in the following figure. Publish the block.
Note:  Placement and routing information is not needed until the Block is integrated with the top-level project.
Enabling these options results in a longer Compile cycle.

3. Figure 2-7. Publishing the Block without Placement and Routing Information

The following figure shows the state of the completed design flow after you publish the Block.
Figure 2-8. Completed Block Flow along with Resource Usage from Compile

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 28

Publishing a Block creates a <block_name>.cxz file in the <project_path>/designer/
<block_name>/export directory.

For the preceding subsystem, Libero creates the block4.cxz file in the export directory under the designer
directory of the Project location, as shown in the following figure.

Figure 2-9. Published Block as .cxz file in Export Directory

4. Repeat this procedure for the other four subsystems, and then publish Blocks for each of them. Use the Block
names shown in the following table.

Subsystem Block Name

block1 block1

block2 block2

block3 block3

pf_smip pf_smip

5. Create a top-level design.

2.4 Creating a Top-level Design
After you published the subsystem Blocks, create a new Libero project for the top-level design. Create a
SmartDesign block where you instantiate all the individual blocks and connect their IRS signals. This example writes
a top-level module SD_Top.v that instantiates these Blocks along with required interconnects. The following shows
an example description of the top-level SD_Top module.

//
// Created by SmartDesign Sun Mar 7 15:53:21 2021
// Version: v2021.1 2021.1.0.11

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 29

//

`timescale 1ns / 100ps

// top
module top(
 // Inputs
 input DataIn0,
 input DataIn1,
 input DataIn10,
 input DataIn11,
 input DataIn12,
 input DataIn13,
 input DataIn14,
 input DataIn15,
 input DataIn16,
 input DataIn17,
 input DataIn18,
 input DataIn19,
 input DataIn2,
 input DataIn20,
 input DataIn21,
 input DataIn22,
 input DataIn23,
 input DataIn24,
 input DataIn25,
 input DataIn26,
 input DataIn27,
 input DataIn28,
 input DataIn29,
 input DataIn3,
 input DataIn30,
 input DataIn31,
 input DataIn4,
 input DataIn5,
 input DataIn6,
 input DataIn7,
 input DataIn8,
 input DataIn9,
 input REF_CLK_0,
 input RESETN,
 input pf_smip_reset,
 // Outputs
 output DataOut0,
 output DataOut1,
 output DataOut10,
 output DataOut11,
 output DataOut12,
 output DataOut13,
 output DataOut14,
 output DataOut15,
 output DataOut16,
 output DataOut17,
 output DataOut18,
 output DataOut19,
 output DataOut2,
 output DataOut20,
 output DataOut21,
 output DataOut22,
 output DataOut23,
 output DataOut24,
 output DataOut25,
 output DataOut26,
 output DataOut27,
 output DataOut28,
 output DataOut29,
 output DataOut3,
 output DataOut30,

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 30

 output DataOut31,
 output DataOut4,
 output DataOut5,
 output DataOut6,
 output DataOut7,
 output DataOut8,
 output DataOut9,
 output pf_smip_out
);

//--
// Nets
//--
wire [31:0] block1_0_APBmslave0_PADDR;
wire block1_0_APBmslave0_PENABLE;
wire [31:0] block1_0_APBmslave0_PRDATA;
wire block1_0_APBmslave0_PREADY;
wire block1_0_APBmslave0_PSELx;
wire block1_0_APBmslave0_PSLVERR;
wire [31:0] block1_0_APBmslave0_PWDATA;
wire block1_0_APBmslave0_PWRITE;
wire [7:0] block1_0_dataOut;
wire block1_0_TX;
wire [31:0] block3_0_dataOut;
wire [7:0] block3_0_dataOut_0;
wire block4_0_TX;
wire block4_0_Y;
wire block4_0_Y_0;
wire REF_CLK_ibuf_Y;
wire RESETN_ibuf_Y;
wire PF_CCC_C0_0_OUT0_FABCLK_0;

//--
// Component instances
//--
//--------block1
block1 block1_0(
 // Inputs
 .CLK (PF_CCC_C0_0_OUT0_FABCLK_0),
 .HRESETN (block4_0_Y_0),
 .PREADYS0 (block1_0_APBmslave0_PREADY),
 .PSLVERRS0 (block1_0_APBmslave0_PSLVERR),
 .RX (block4_0_TX),
 .PRDATAS0 (block1_0_APBmslave0_PRDATA),
 .dataIn (block3_0_dataOut_0),
 // Outputs
 .PENABLES (block1_0_APBmslave0_PENABLE),
 .PSELS0 (block1_0_APBmslave0_PSELx),
 .PWRITES (block1_0_APBmslave0_PWRITE),
 .TX (block1_0_TX),
 .PADDRS (block1_0_APBmslave0_PADDR),
 .PWDATAS (block1_0_APBmslave0_PWDATA),
 .dataOut (block1_0_dataOut)
);

//--------block2
block2 block2_0(
 // Inputs
 .PCLK (PF_CCC_C0_0_OUT0_FABCLK_0),
 .PENABLE_in (block1_0_APBmslave0_PENABLE),
 .PRESETN (block4_0_Y),
 .PSEL_in (block1_0_APBmslave0_PSELx),
 .PWRITE_in (block1_0_APBmslave0_PWRITE),
 .PADDR_in (block1_0_APBmslave0_PADDR),
 .PWDATA_in (block1_0_APBmslave0_PWDATA),
 // Outputs
 .PREADY_in (block1_0_APBmslave0_PREADY),
 .PSVERR_in (block1_0_APBmslave0_PSLVERR),

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 31

 .PRDATA_in (block1_0_APBmslave0_PRDATA)
);

//--------block3
block3 block3_0(
 // Inputs
 .CLK (PF_CCC_C0_0_OUT0_FABCLK_0),
 .DataIn0 (DataIn0),
 .DataIn1 (DataIn1),
 .DataIn2 (DataIn2),
 .DataIn3 (DataIn3),
 .DataIn4 (DataIn4),
 .DataIn5 (DataIn5),
 .DataIn6 (DataIn6),
 .DataIn7 (DataIn7),
 .DataIn8 (DataIn8),
 .DataIn9 (DataIn9),
 .DataIn10 (DataIn10),
 .DataIn11 (DataIn11),
 .DataIn12 (DataIn12),
 .DataIn13 (DataIn13),
 .DataIn14 (DataIn14),
 .DataIn15 (DataIn15),
 .DataIn16 (DataIn16),
 .DataIn17 (DataIn17),
 .DataIn18 (DataIn18),
 .DataIn19 (DataIn19),
 .DataIn20 (DataIn20),
 .DataIn21 (DataIn21),
 .DataIn22 (DataIn22),
 .DataIn23 (DataIn23),
 .DataIn24 (DataIn24),
 .DataIn25 (DataIn25),
 .DataIn26 (DataIn26),
 .DataIn27 (DataIn27),
 .DataIn28 (DataIn28),
 .DataIn29 (DataIn29),
 .DataIn30 (DataIn30),
 .DataIn31 (DataIn31),
 .RESETN (RESETN_ibuf_Y),
 .dataIn_0 (block1_0_dataOut),
 // Outputs
 .dataOut (block3_0_dataOut),
 .dataOut_0 (block3_0_dataOut_0)
);

//--------block4
block4 block4_0(
 // Inputs
 .CLK (PF_CCC_C0_0_OUT0_FABCLK_0),
 .RESETN (RESETN_ibuf_Y),
 .RX (block1_0_TX),
 .dataIn (block3_0_dataOut),
 // Outputs
 .DataOut0 (DataOut0),
 .DataOut1 (DataOut1),
 .DataOut2 (DataOut2),
 .DataOut3 (DataOut3),
 .DataOut4 (DataOut4),
 .DataOut5 (DataOut5),
 .DataOut6 (DataOut6),
 .DataOut7 (DataOut7),
 .DataOut8 (DataOut8),
 .DataOut9 (DataOut9),
 .DataOut10 (DataOut10),
 .DataOut11 (DataOut11),
 .DataOut12 (DataOut12),
 .DataOut13 (DataOut13),

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 32

 .DataOut14 (DataOut14),
 .DataOut15 (DataOut15),
 .DataOut16 (DataOut16),
 .DataOut17 (DataOut17),
 .DataOut18 (DataOut18),
 .DataOut19 (DataOut19),
 .DataOut20 (DataOut20),
 .DataOut21 (DataOut21),
 .DataOut22 (DataOut22),
 .DataOut23 (DataOut23),
 .DataOut24 (DataOut24),
 .DataOut25 (DataOut25),
 .DataOut26 (DataOut26),
 .DataOut27 (DataOut27),
 .DataOut28 (DataOut28),
 .DataOut29 (DataOut29),
 .DataOut30 (DataOut30),
 .DataOut31 (DataOut31),
 .TX (block4_0_TX),
 .Y (block4_0_Y),
 .Y_0 (block4_0_Y_0)
);

//--------INBUF
INBUF REF_CLK_ibuf(
 // Inputs
 .PAD (REF_CLK_0),
 // Outputs
 .Y (REF_CLK_ibuf_Y)
);

//--------INBUF
INBUF RESETN_ibuf(
 // Inputs
 .PAD (RESETN),
 // Outputs
 .Y (RESETN_ibuf_Y)
);

//--------PF_CCC_C0
PF_CCC_C0 PF_CCC_C0_0(
 // Inputs
 .REF_CLK_0 (REF_CLK_ibuf_Y),
 // Outputs
 .OUT0_FABCLK_0 (PF_CCC_C0_0_OUT0_FABCLK_0),
 .PLL_LOCK_0 ()
);

//--------pf_smip
pf_smip pf_smip_0(
 // Inputs
 .CLK (PF_CCC_C0_0_OUT0_FABCLK_0),
 .pf_smip_reset (pf_smip_reset),
 // Outputs
 .pf_smip_out (pf_smip_out)
);

endmodule

1. Set the top-level module as the root module, and import all Blocks (<block_name>.cxz files) using File >
Import > Blocks in Libero. The following figure shows Design Hierarchy of the top-level SD_Top module with
all Blocks instantiated.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 33

Figure 2-10. Top-level Design Hierarchy

2. For this module, uncheck the boxes for Enable block creation and Enable synthesis (in Project Settings)
and check Enable Design Separation Methodology, as shown in the following figure.
Figure 2-11. Project Settings for the Top-level Design

3. Assign each Block of the design to a separation region.

2.5 Floorplanning Design with Separation Regions
Each Block of the design must be assigned to a separation region. You can define separation regions in Chip Planner
or use a PDC file. For more information about floorplanning a design using Chip Planner, see the Libero online help.

This example defines a separation region using Chip Planner for instance block4_0, which corresponds to the block4
Block.

1. Open Chip Planner from Manage Constraints > Floor Planner > Edit in the Design Flow window, as shown
in the following figure.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 34

Figure 2-12. Opening Chip Planner

2. Create a separation region for each Block according to the estimate obtained from the resource usage reports.
Note:  For more information, see Creating routing regions in the Chip Planner help.

1.7 FloorPlanning with Design Separation Regions shows a sample floorplan for the design. This example
creates an exclusive routing region constraint for instance block4_0, as shown in the following figure. (You can
define the region type to be inclusive if a top-level global instance needs to be placed within the same region).
Figure 2-13. Creating an Exclusive Routing Region

3. Create separation regions for all blocks of the design. Then assign Block instances to the respective
separation region. For this example, the floorplan resembles the following figure.
Figure 2-14. Floorplan of Design with Separation Regions Defined

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 35

4. After you create separation regions corresponding to the Blocks, create IRS regions for each set of
connections between the Blocks. In the example, block1_0 connects to IBR1_2 and IBR1_2 connects to
block2_0. Consequently, define the remaining three sets of IRS regions.
IRS region is an inclusive routing region that is created in a similar way as the separation regions. The
following figure show an example of an IRS region for instances block1_0 to IBR1_2.
Figure 2-15. Creating an IRS Region Between Two Blocks

5. Assign valid IRS net macros to the respective IRS regions.
A complete floorplan of the example design resembles the following figure.
Figure 2-16. Complete Floorplan of Design

The separation between each region should be at least equal to the required number of clusters to satisfy the
separation criteria.
The following shows a sample PDC file that can be used to implement the preceding floorplan. Note the
regions are defined with -route true to constrain routing. Separation regions are assigned by their highest
level hierarchy name using the assign_region command. IRS nets are assigned with wildcards using the
assign_net_macros command.

define_region -region_name Block1region -type exclusive -color 2143338688 -
route true -push_place true -x1 456 -y1 195 -x2 1631 -y2 371
define_region -region_name Block2region -type exclusive -color 2143338688 -
route true -push_place true -x1 1752 -y1 189 -x2 2435 -y2 377
define_region -region_name Block3region -type exclusive -color 2143338688 -
route true -push_place true -x1 0 -y1 0 -x2 335 -y2 41 \

 -x1 0 -y1 42 -x2 1067 -y2 161 \

 -x1 804 -y1 0 -x2 1067 -y2 41
define_region -region_name Block4region -type exclusive -color 2143338688 -
route true -push_place true -x1 1200 -y1 0 -x2 2351 -y2 158
define_region -region_name SMIPregion -type exclusive -color 2143338688 -

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 36

route true -push_place true -x1 384 -y1 0 -x2 755 -y2 11
define_region -region_name IBR1_2 -type inclusive -color 2147442270 -route
true -push_place false -x1 1584 -y1 282 -x2 2027 -y2 362
define_region -region_name IBR1_3 -type inclusive -color 2147442270 -route
true -push_place false -x1 636 -y1 102 -x2 851 -y2 239
define_region -region_name IBR1_4 -type inclusive -color 2143338688 -route
true -push_place false -x1 1356 -y1 126 -x2 1499 -y2 245
define_region -region_name IBR2_4 -type inclusive -color 2147442270 -route
true -push_place false -x1 2148 -y1 105 -x2 2327 -y2 266
define_region -region_name IBR3_4 -type inclusive -color 2147442270 -route
true -push_place false -x1 888 -y1 45 -x2 1463 -y2 98
assign_region -region_name Block1region -inst_name block1_0
assign_region -region_name Block2region -inst_name block2_0
assign_region -region_name Block3region -inst_name block3_0
assign_region -region_name Block4region -inst_name block4_0
assign_region -region_name Block4region -inst_name RESETN_ibuf
assign_region -region_name SMIPregion -inst_name pf_smip_0
assign_net_macros -region_name IBR1_2 -net_name
block1_0_APBmslave0_PENABLE -include_driver true
assign_net_macros -region_name IBR1_2 -net_name
block1_0_APBmslave0_PSELx -include_driver true
assign_net_macros -region_name IBR1_2 -net_name
block1_0_APBmslave0_PWRITE -include_driver true
assign_net_macros -region_name IBR1_2 -net_name
block1_0_APBmslave0_PREADY -include_driver true
assign_net_macros -region_name IBR1_2 -net_name
{block1_0_APBmslave0_PADDR[*]} -include_driver true
assign_net_macros -region_name IBR1_2 -net_name
{block1_0_APBmslave0_PRDATA[*]} -include_driver true
assign_net_macros -region_name IBR1_2 -net_name
{block1_0_APBmslave0_PWDATA[*]} -include_driver true
assign_net_macros -region_name IBR1_3 -net_name {block1_0_dataOut[*]} -
include_driver true
assign_net_macros -region_name IBR1_3 -net_name {block3_0_dataOut_0[*]} -
include_driver true
assign_net_macros -region_name IBR1_4 -net_name block4_0_TX -include_driver
true
assign_net_macros -region_name IBR1_4 -net_name block4_0_Y_0 -include_driver
true
assign_net_macros -region_name IBR1_4 -net_name block1_0_TX -include_driver
true
assign_net_macros -region_name IBR2_4 -net_name block4_0_Y -include_driver true
assign_net_macros -region_name IBR3_4 -net_name {block3_0_dataOut[*]} -
include_driver true

6. Complete place-and-route.

2.6 Complete Place-and-Route
After you complete the floorplan, edit the timing constraints and run place-and-route until you achieve timing closure
on the design.

2.7 Configure Security Settings and Generate the Programming File
After you complete place-and-route, extract the design information to execute MSVT.

1. Navigate to Configure Security > Configure Options > Debug Policy and configure the security and
programming options per system requirements, as shown in the following figure.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 37

Figure 2-17. Security Settings Before Programming

2. Export the programming file from Program Design > Export FlashPro Express Job.
A programming file and files required for the MSVT are generated. Libero exports these files into
the <project_path>/designer/SD_Top/SD_Top.msvt.dtf directory and creates a parameter file
in the <project_path>/designer/SD_Top/msvt.param file, as shown in the following figure. The
msvt.param file contains a list of parameters that you can adjust before executing MSVT.
Figure 2-18. Generated MSVT Files

3. Modify the REQUIRED_SEPARATION parameter according to your system requirements before executing
MSVT.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 38

2.8 Execute MSVT
You can now run the MSVT to verify that the design adheres to the required separation criteria.

MSVT is invoked from <Libero_Path>/bin64/msvt_check_pf. It is executed from the command line.

To verify the design using MSVT, run the following command:

<Libero_path>/bin64/msvt_check_pf –p <project_path>/designer/SD_Top/msvt.param –o
msvt_check_pf.log

This command prints an exhaustive report to msvt_check_pf.log file given with the –o argument or to stdout if –o
is omitted. The argument –p is required, along with the path to the msvt.param file generated from Libero.

When this command completes successfully, the message MSVT Check failed appears if the design failed to
meet one or more separation criteria and the message MSVT Check succeeded appears if the design met all
separation criteria.

Because Microchip Design Separation methodology guidlines are followed in the example, the following output shows
the conclusion of MSVT output indicating that the design was verified for the given separation criteria.

MSVT Check
Design: SD_Top.msvt Started: Fri Jan 8 16:50:41 2021

Checking IRS connectivity against parameter file
===

The following instances do not belong to any routing region:
==
 PF_CCC_C0_0/PF_CCC_C0_0/pll_inst_0
 REF_CLK_0_ibuf/U_IOIN

The following IRS nets are not constrained by any routing region:
==
 block4_0_TX
 block1_0_TX

Analyzing floorplan ...
========================

 block4_0 and block2_0 : Minimal floorplan separation = 9 clusters.
 block4_0 at cluster (144,62)
 block2_0 at cluster (144,52)
 block4_0 and block2_0 : Minimal placement separation = 21 clusters.
 (2148,156) containing cell block4_0/BUFD_1/U0
 (2148,225) containing cell block2_0/BUFD_0/U0

 block4_0 and block3_0 : Minimal floorplan separation = 11 clusters.
 block4_0 at cluster (99,27)
 block3_0 at cluster (87,27)
 block4_0 and block3_0 : Minimal placement separation = 11 clusters.
 (1211,82) containing cell block4_0/CoreGPIO_C4_0/CoreGPIO_C4_0/inData_s2[6]
 (1057,81) containing cell block3_0/APB_dp_fp_1/U0/i_post_norm_mul/
s_shl2_RNIS34841[4]

 block4_0 and block1_0 : Minimal floorplan separation = 11 clusters.
 block4_0 at cluster (99,64)
 block1_0 at cluster (99,52)
 block4_0 and block1_0 : Minimal placement separation = 13 clusters.
 (1368,156) containing cell block4_0/BUFD_0/U0
 (1368,201) containing cell block1_0/BUFD_0/U0

 block4_0 and pf_smip_0 : Minimal floorplan separation = 37 clusters.
 block4_0 at cluster (99,0)

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 39

 pf_smip_0 at cluster (61,0)
 block4_0 and pf_smip_0 : Minimal placement separation = 38 clusters.
 (1219,2) containing cell block4_0/block4_IO_0/OUTBUF_31/U_IOTRI
 (746,2) containing cell pf_smip_0/PF_IO_C1_0/PF_IO_C1_0/I_IOD_0

 block4_0 and 'others' : Minimal floorplan separation = overlapping.
 block4_0 at cluster (99,0)
 'others' at cluster (99,0)
 block4_0 and 'others' : Minimal placement separation = 0 clusters.
 (1219,2) containing cell block4_0/block4_IO_0/OUTBUF_31/U_IOTRI
 (1202,2) containing cell RESETN_ibuf/U_IOIN

 block2_0 and block3_0 : Minimal floorplan separation = diagonal.
 block2_0 and block3_0 : Minimal placement separation = diagonal.

 block2_0 and block1_0 : Minimal floorplan separation = 9 clusters.
 block2_0 at cluster (144,93)
 block1_0 at cluster (134,93)
 block2_0 and block1_0 : Minimal placement separation = 9 clusters.
 (1743,282) containing cell block2_0/BUFD_53/U0
 (1620,282) containing cell block1_0/BUFD_87/U0

 block2_0 and pf_smip_0 : Minimal floorplan separation = diagonal.
 block2_0 and pf_smip_0 : Minimal placement separation = diagonal.

 block2_0 and 'others' : Minimal floorplan separation = 9 clusters.
 block2_0 at cluster (144,62)
 'others' at cluster (144,52)
 block2_0 and 'others' : Minimal placement separation = diagonal.

 block3_0 and block1_0 : Minimal floorplan separation = 10 clusters.
 block3_0 at cluster (38,64)
 block1_0 at cluster (38,53)
 block3_0 and block1_0 : Minimal placement separation = 22 clusters.
 (842,124) containing cell block3_0/CoreGPIO_C2_0/CoreGPIO_C2_0/dataOut[7]
 (842,196) containing cell block1_0/CoreGPIO_C0_0/CoreGPIO_C0_0/inData_s1[7]

 block3_0 and pf_smip_0 : Minimal floorplan separation = 4 clusters.
 block3_0 at cluster (66,0)
 pf_smip_0 at cluster (61,0)
 block3_0 and pf_smip_0 : Minimal placement separation = 4 clusters.
 (811,2) containing cell block3_0/Block3_IO_0/INBUF_17/U_IOIN
 (746,2) containing cell pf_smip_0/PF_IO_C1_0/PF_IO_C1_0/I_IOD_0

 block3_0 and 'others' : Minimal floorplan separation = 11 clusters.
 block3_0 at cluster (99,0)
 'others' at cluster (87,0)
 block3_0 and 'others' : Minimal placement separation = 15 clusters.
 (1010,2) containing cell block3_0/Block3_IO_0/INBUF_19/U_IOIN
 (1202,2) containing cell RESETN_ibuf/U_IOIN

 block1_0 and pf_smip_0 : Minimal floorplan separation = 60 clusters.
 block1_0 at cluster (38,64)
 pf_smip_0 at cluster (38,3)
 block1_0 and pf_smip_0 : Minimal placement separation = diagonal.

 block1_0 and 'others' : Minimal floorplan separation = 11 clusters.
 block1_0 at cluster (99,64)
 'others' at cluster (99,52)
 block1_0 and 'others' : Minimal placement separation = 66 clusters.
 (1204,204) containing cell block1_0/MIV_RV32IMC_C0_0/MIV_RV32IMC_C0_0/
u_opsrv_0/u_core_0/u_lsu_0/un1_lsu_expipe_req_op_2
 (1202,2) containing cell RESETN_ibuf/U_IOIN

 pf_smip_0 and 'others' : Minimal floorplan separation = 37 clusters.
 pf_smip_0 at cluster (61,0)
 'others' at cluster (99,0)
 pf_smip_0 and 'others' : Minimal placement separation = 37 clusters.

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 40

 (746,2) containing cell pf_smip_0/PF_IO_C1_0/PF_IO_C1_0/I_IOD_0
 (1202,2) containing cell RESETN_ibuf/U_IOIN

Checking internal nets for block block4_0 ...
==

Checking IRS nets for block block4_0 ...
==

Propagating IRS nets outgoing from block4_0 to block2_0
==

Propagating IRS nets outgoing from block4_0 to block1_0
==

Checking internal nets for block block2_0 ...
==

Checking IRS nets for block block2_0 ...
==

Propagating IRS nets outgoing from block2_0 to block1_0
==

Checking internal nets for block block3_0 ...
==

Checking IRS nets for block block3_0 ...
==

Propagating IRS nets outgoing from block3_0 to block4_0
==

Propagating IRS nets outgoing from block3_0 to block1_0
==

Checking internal nets for block block1_0 ...
==

Checking IRS nets for block block1_0 ...
==

Propagating IRS nets outgoing from block1_0 to block4_0
==

Propagating IRS nets outgoing from block1_0 to block2_0
==

Propagating IRS nets outgoing from block1_0 to block3_0
==

Checking internal nets for block pf_smip_0 ...
==

Checking IRS nets for block pf_smip_0 ...
==

Design has met 2 switches separation requirement

MSVT Check succeeded.
Number of errors: 0

 Libero® SoC
Example

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 41

3. Revision History
Revision Date Description

A 04/2021 Initial Revision

 Libero® SoC
Revision History

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 42

4. Microchip FPGA Technical Support
Microchip FPGA Products Group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. This section provides information about
contacting Microchip FPGA Products Group and using these support services.

4.1 Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

4.2 Customer Technical Support
Microchip FPGA Products Group staffs its Customer Technical Support Center with highly skilled engineers who
can help answer your hardware, software, and design questions about Microchip FPGA Products. The Customer
Technical Support Center spends a great deal of time creating application notes, answers to common design cycle
questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online
resources. It is very likely we have already answered your questions.

You can communicate your technical questions through our Web portal and receive answers back by email, fax, or
phone. Also, if you have design problems, you can upload your design files to receive assistance. We constantly
monitor the cases created from the web portal throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your request.

Technical support can be reached at soc.microsemi.com/Portal/Default.aspx.

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR),
log in at soc.microsemi.com/Portal/Default.aspx, go to the My Cases tab, and select Yes in the ITAR drop-down list
when creating a new case. For a complete list of ITAR-regulated Microchip FPGAs, visit the ITAR web page.

You can track technical cases online by going to My Cases.

4.3 Website
You can browse a variety of technical and non-technical information on the Microchip FPGA Products Group home
page, at www.microsemi.com/soc.

4.4 Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support at (https://
soc.microsemi.com/Portal/Default.aspx) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

 Libero® SoC
Microchip FPGA Technical Support

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 43

https://soc.microsemi.com/Portal/Default.aspx
https://soc.microsemi.com/Portal/Default.aspx
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc
http://www.microsemi.com/soc
http://www.microsemi.com/soc
https://soc.microsemi.com/Portal/Default.aspx
https://soc.microsemi.com/Portal/Default.aspx
https://www.microsemi.com/salescontacts
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 Libero® SoC

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 44

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge,
In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto,
maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad,
SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7566-8

 Libero® SoC

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 45

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 Libero® SoC

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 46

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc. User Guide DS60001683A-page 47

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Design Methodology
	1.1. Design Separation Methodology Components
	1.2. Design Separation Methodology Steps
	1.3. Creating Blocks
	1.4. Assigning I/Os to the Block
	1.5. Optional CoreSMIP Block
	1.6. Creating a Top-level Design
	1.7. FloorPlanning with Design Separation Regions
	1.8. IRS Regions
	1.9. Considerations for Global Clock Resources
	1.10. Initialization of Hard ASIC Blocks
	1.11. Complete Place-and-Route
	1.12. Configuring Security Settings and Generating the Programming File
	1.13. Auditing by MSVT
	1.14. Executing MSVT
	1.15. Further Considerations and Adjustments

	2. Example
	2.1. Creating HDL Subsystems
	2.2. Creating Blocks
	2.3. Publishing the Block
	2.4. Creating a Top-level Design
	2.5. Floorplanning Design with Separation Regions
	2.6. Complete Place-and-Route
	2.7. Configure Security Settings and Generate the Programming File
	2.8. Execute MSVT

	3. Revision History
	4. Microchip FPGA Technical Support
	4.1. Customer Service
	4.2. Customer Technical Support
	4.3. Website
	4.4. Outside the U.S.

	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

