
Synopsys Confidential Information

Verification Continuum™

Identify®

Instrumentor and Debugger
for Microchip User Guide
October 2020

https://solvnet.synopsys.com

LO

Preface

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
2 Synopsys Confidential Information October 2020

Copyright Notice and Proprietary Information
© 2020 Synopsys, Inc. This Synopsys software and all associated documenta-
tion are proprietary to Synopsys, Inc. and may only be used pursuant to the
terms and conditions of a written license agreement with Synopsys, Inc. All
other use, reproduction, modification, or distribution of the Synopsys
software or the associated documentation is strictly prohibited.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are
available in the product installation.

Destination Control Statement
All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective
owners.

http://www.synopsys.com/Company/Pages/Trademarks.aspx

Preface

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 3

Third-Party Links
Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

October 2020

This section contains the following topics:

The Design Flow

Instrumenting the Design

Setting up and Running Debug

Debugging Using FPGA Memory

LO

Preface

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
4 Synopsys Confidential Information October 2020

Contents

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 5

Contents

Chapter 1: The Design Flow
About Design Verification . 10
Identify Instrumentor and Debugger . 10

Identify Design Flow . 11

Launching the Instrumentor Tool . 13
Launching from the Synthesis Tool GUI . 13
Launching with a Tcl Command or in Batch Mode . 14
Invoking the Tool from the Operating System . 14

Launching the Identify Tool . 15
Launching from the Synthesis Tool GUI . 15
Launching with a Tcl Command or in Batch Mode . 16
Invoking the Tool from the Operating System . 16

Chapter 2: Instrumenting the Design
The Instrumentation Flow . 20

Planning Instrumentation and Debugging . 22

Instrumenting the Design . 23
Instrumenting Signals Before Compile . 23
Instrumenting a Netlist After Compile . 26

Adding Instrumentation . 28
Selecting Signals for Data Sampling . 28
Instrumenting Buses . 30
Adding Partial Instrumentation . 33
Adding Multiplexed Groups . 34
Sampling Signals in a Folded Hierarchy . 35
Instrumenting the Verdi Signal Database . 37
Selecting Breakpoints . 38
Selecting Breakpoints in Folded Hierarchies . 38
Configuring the IICE . 39
Synthesizing Instrumented Designs . 40
Capturing Commands from the Tcl Script Window . 40

LO

Contents

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
6 October 2020

Working with IICE Files . 41
Adding IICE . 41
Defining IICE/Editing IICE . 42
Deleting an IICE Unit . 43
Generating an IICE File . 43

Adding Triggers . 45
Enabling State Machine based Triggering . 46
Enabling Qualified Sampling . 46
Enabling Always-Armed based Triggering . 47
Enabling Sampled Data Compression . 47
Enabling Complex-Counter Triggering . 47
Enabling Import External Triggers . 48
Enabling Export IICE Trigger Signal . 49
Enabling Cross Triggering . 49
Remote Triggering . 49

Selecting Buffer Type . 51

Support Limitations . 52
VHDL Instrumentation Limitations . 52
Verilog Instrumentation Limitations . 54
SystemVerilog Instrumentation Limitations . 57
Interface . 59

Chapter 3: Setting up and Running Debug
Setting up the Hardware . 62

Basic Communication Connection . 62
JTAG Communication Interface . 71

Setting the Waveform Viewer . 83
Waveform Settings . 83
Installing the Waveform Viewer . 85

Debugger Operations . 86
Activating/Deactivating an Instrumentation . 86
Selecting Multiplexed Instrumentation Sets . 88
Activating/Deactivating Folded Instrumentation . 89
Run Command . 91
Sampled Data Compression . 92
Sample Buffer Trigger Position . 93
Sampled Data Display Controls . 94
Saving and Loading Activations . 98

Configuring Triggering Modes . 100

Contents

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 7

State Machine based Triggering . 100
Qualified Sampling . 104
Always-Armed based Triggering . 105
Sampled Data Compression . 105
Selecting Cross Triggering Mode . 106
Debugging with the Complex Counter . 107
Importing External Triggers . 108
Exporting IICE Trigger Signal . 108

Verdi-Identify Flow . 109

Debugging with the Waveform Viewer . 110

Debugging on a Different Machine . 113

Simultaneous Debugging . 115

Chapter 4: Debugging Using FPGA Memory
Using BRAM for Debugging . 118

Using Mux Sets . 119

Using State-Based Triggering . 120
State Machine Examples . 120

Debugging Script Example . 121

LO

Contents

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
8 October 2020

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 9

C H A P T E R 1

The Design Flow

The Synopsys® Identify® software includes functionality for instrumentation,
and supports various debug schemes. This chapter introduces the Identify
product and the FPGA synthesis tools with which it is integrated. See the
following topics for details:

• About Design Verification, on page 10

• Identify Instrumentor and Debugger, on page 10

• Identify Design Flow, on page 11

• Launching the Instrumentor Tool, on page 13

• Launching the Identify Tool, on page 15

LO

Chapter 1: The Design Flow About Design Verification

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
10 Synopsys Confidential Information October 2020

About Design Verification
As designs get larger and errors more expensive, verification is an
increasingly important part of the design cycle, in terms of both time and
necessity. There are various verification methodologies, from simulation to
emulation to formal verification.

The Synopsys® Identify® product is a verification tool that offers a way to
debug the HDL. HDL debugging ensures functional correctness that a
post-synthesis debugger cannot guarantee. This is because synthesis optimi-
zations cause gate-level netlists to significantly differ from the functional HDL
description, making it hard to trace bugs back to the original HDL. The
Identify software runs debug on hardware.

Identify Instrumentor and Debugger
The Identify tool set allows you to debug an operating FPGA directly in the
HDL source code. Using the tool, you can verify your design in hardware as
you would in simulation. Unlike simulation, it has in-system stimuli and is
much faster.

The Identify tool consists of two sets of functionalities: instrumentation and
debug.

• Instrumentation means marking the signals, usually before compiling
the design. Designers and verification engineers navigate the design
graphically and mark signals as probes or sample triggers directly in the
HDL with which they are familiar. Instrumentation gives you the ability
to monitor performance and diagnose errors when you get to the debug
stage.

• Debugging is a way to verify the FPGA design by running it on hardware.
The identify tool supports various debug strategies.

You can use the hardware platforms from the Synopsys HAPS® proto-
typing products for debug. You can also use the Identify functionality
with third-party hardwares or on your own boards. The Identify
documentation does not cover these custom design flows.

Identify Design Flow Chapter 1: The Design Flow

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 11

Identify Design Flow
The Identify software can be run standalone, but is also integrated into a
seamless development environment with these Synopsys FPGA synthesis
tools: Synplify Pro® and Certify®. The following figure provides an overview of
the use model.

The identify design flow is described in the following steps.

LO

Chapter 1: The Design Flow Identify Design Flow

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
12 Synopsys Confidential Information October 2020

1. Start the instrumentor, and specify the signals to be monitored.

After instrumentation, the tool generates an instrumentation design
constraints (idc) file that contains the instrumented signals. For informa-
tion about starting the instrumentor and specifying signals, see
Launching the Instrumentor Tool, on page 13 and Adding Instrumenta-
tion, on page 28, respectively.

2. Synthesize, place, and route the design as usual.

If you need to iterate, use incremental runs. After synthesis, you can
view the results in the HDL source code or in the waveform viewer.

3. Program the hardware with the instrumented design.

4. Run the debugger.

Launch the debugger to analyze the design while it is running in the
target system. The debugger interacts with the instrumented HDL
design that is implemented on the target hardware system. You can
activate the marked signals to cause trigger events on the target device,
and the triggers capture signal data.

For information about running the debugger, see Launching the Identify
Tool, on page 15.

5. Analyze the captured data.

The debugger transfers the data through a communications port to
where it can be displayed in various formats.

Launching the Instrumentor Tool Chapter 1: The Design Flow

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 13

Launching the Instrumentor Tool
User can launch the instrumentor in three different methods.

• Launching from the Synthesis Tool GUI, on page 13

• Launching with a Tcl Command or in Batch Mode, on page 14

• Invoking the Tool from the Operating System, on page 14

Launching from the Synthesis Tool GUI
To launch the Instrumentor from the synthesis tool:

• From the Synplify Pro GUI, highlight the Identify implementation and
select Run > Identify Instrumentor from the menu bar or pop-up menu, or
click the Identify Instrumentor icon in the menu bar.

• From the tool, select Run > Identify Instrumentor from the menu bar or click
the Identify Instrumentor icon in the top menu bar.

The identify instrumentor window is displayed, as shown below.

LO

Chapter 1: The Design Flow Launching the Instrumentor Tool

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
14 Synopsys Confidential Information October 2020

On launching the instrumentor tool, the design hierarchy and the RTL file
content with all the potential instrumentation marked and available for selec-
tion are displayed.

Launching with a Tcl Command or in Batch Mode
The instrumentor tool can be launched in any of the three execution modes
as outlined below.

To open the instrumentor in the GUI:

• identify_instrumentor
To run a Tcl startup file and open the instrumentor in the graphical user
interface:

• identify_instrumentor -f fileName.tcl
To open the instrumentor in the shell and/or script mode:

• identify_instrumentor_shell [-version]
If the optional -version argument is included, the above command displays the
software version without opening the instrumentor.

Invoking the Tool from the Operating System
The instrumentor runs on both the Windows and Linux platforms. To explic-
itly invoke the instrumentor from a Windows system, either:

• Double-click the Identify Instrumentor icon on the desktop

• Run identify_instrumentor.exe from the /bin directory of the installation path

To explicitly invoke the debugger from a Linux system:

• Run identify_instrumentor from the /bin directory of the installation path

Launching the Identify Tool Chapter 1: The Design Flow

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 15

Launching the Identify Tool
User can launch the Identify tool in three various methods.

• Launching from the Synthesis Tool GUI, on page 15

• Launching with a Tcl Command or in Batch Mode, on page 16

• Invoking the Tool from the Operating System, on page 16

Launching from the Synthesis Tool GUI
To open the Identify from the synthesis tool:

• From the tool, highlight the Identify implementation and select Run >
Launch Identify Debugger from the menu bar or pop-up menu, or click the
Launch Identify Debugger icon in the menu bar.

• From the tool, select Run > Launch Identify Debugger from the menu bar or
click the Launch Identify Debugger icon in the top menu bar.

The debugger window opens with the corresponding project displayed.

To open the project in the debugger tool, do either of the following:

• Click the Browse for Project button, navigate to the project directory and
open the corresponding project (.prj) file.

• Click Close to navigate to the Debugger window, select File > Open
Debugger Project from the main menu and, in the Open Project File dialog

LO

Chapter 1: The Design Flow Launching the Identify Tool

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
16 Synopsys Confidential Information October 2020

box, click the Browse for Project.. button, navigate to the project directory
and open the corresponding project (prj) file.

Launching with a Tcl Command or in Batch Mode
You can start the tool with a Tcl command, that can also be used in batch
mode:

To open the debugger in the GUI.

• identify_debugger

To run the debugger from a Tcl startup file that opens the tool in the graph-
ical user interface:

• identify_debugger -f fileName.tcl

To start the debugger in shell and/or script mode:

• identify_debugger_shell [-version]

If the optional -version argument is included, the above command reports the
software version without opening the tool.

Invoking the Tool from the Operating System
The identify tool can be invoked on both the Windows and Linux platforms.

To explicitly invoke the tool from a Windows operating system, do one of the
following:

Launching the Identify Tool Chapter 1: The Design Flow

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 17

• Double-click the Identify Debugger icon on the desktop

• Run identify_debugger.exe from the /bin directory of the installation path

To explicitly invoke the tool from a Linux operating system:

• Run identify_debugger from the /bin directory of the installation path.

LO

Chapter 1: The Design Flow Launching the Identify Tool

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
18 Synopsys Confidential Information October 2020

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 19

C H A P T E R 2

Instrumenting the Design

The first step to debug is to instrument the design, which prepares the design
for debugging. Instrumentation consists of adding specific logic, which is
used to run on-chip debugging, after programming the FPGA. It is best to
instrument early and reserve the resources needed for instrumentation,
instead of doing it after the design is in place.

Incorporating instrumentation as part of the initial phase reduces
turnaround time. Instrumentation allows you to pipe clean the flow and
identify logic, memory, timing, and other limitations early in the cycle.

See the following topics for details:

• The Instrumentation Flow, on page 20

• Planning Instrumentation and Debugging, on page 22

• Instrumenting the Design, on page 23

• Adding Instrumentation, on page 28

• Working with IICE Files, on page 41

• Adding Triggers, on page 45

• Selecting Buffer Type, on page 51

• Support Limitations, on page 52

LO

Chapter 2: Instrumenting the Design The Instrumentation Flow

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
20 Synopsys Confidential Information October 2020

The Instrumentation Flow
To create an instrumented design, you must first complete the following
steps:

1. Specify IICE parameters

2. Select signals to sample

3. Select breakpoints to instrument

4. Optionally, include the original HDL source

The following image illustrates the instrumentation flow.

To include the original HDL source with the exported design files, select Instru-
mentor > Instrumentor Preferences and enable the Save original source in
instrumentation directory check box. If the original source is to be encrypted,
additionally enable the Use encryption check box.

The Instrumentation Flow Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 21

Finally, select the File > Save from the main menu to capture your instrumen-
tation.

Saving the instrumentation generates an instrumentation design constraints
(idc) file or IICE file and adds compiler pragmas in the form of constraint files
to the design RTL for the instrumented signals and break points. This infor-
mation is then used by the synthesis tool to incorporate the instrumentation
logic (IICE and COMM blocks) into the synthesized netlist. If you include an
encrypted HDL source (Use encryption box checked), you are first prompted to
supply a password for the encryption. See the Debug Environment Reference
Manual.

LO

Chapter 2: Instrumenting the Design Planning Instrumentation and Debugging

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
22 Synopsys Confidential Information October 2020

Planning Instrumentation and Debugging
Recommendations to instrument the design are provided below:

• Proactively plan for debug visibility

– Plan for debug when you plan the clocks, resets, and I/Os. In
particular, consider the clock structure and how it maps to the global
clocks, Mixed-Mod Clock Manager (MMCM)s and Phase Lock Loop
(PLL)s for clock control and synchronization, and reset
synchronization and control.

– Plan for debug with incremental logic changes to an existing design,
as and when a new IP is added.

• Mark signals for debug

– Create separate .idc files for each block

– Use multiple IICEs to debug different clock domains

– Group signals in each IICE using mux groups, and selectively debug

• Consider memory depth

– For designs that require a high sample clock (for example, interface
IP) consider using BRAM or real time debug (RTD). BRAM uses block
RAM in the FPGA, so is best suited for shallow sample windows. Use
RTD with an external logic analyzer, if you need a much larger
sample window.

Instrumenting the Design Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 23

Instrumenting the Design
You can add instrumentation to a pre-compiled signal or to a netlist that has
already been compiled, as shown below:

See the following topics:

• Instrumenting Signals Before Compile, on page 23

• Instrumenting a Netlist After Compile, on page 25

Instrumenting Signals Before Compile
There are pros and cons to adding debug points to the design before
compiling, as opposed to after compiling. Marking signals before compiling
offers more visibility into the design and lets you implement complex trigger
and muxing options. However, some logic, like generate statements, might
not be visible, and the design and the available resources are probably not
stable. Further, adding debug points at this stage modifies the HDL, because
it requires that extra logic to be created for debugging.

The following procedure is an overview of how to add debug points to a design
before it is compiled.

1. Set up the design.

– Add the required source files to the design.

LO

Chapter 2: Instrumenting the Design Instrumenting the Design

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
24 Synopsys Confidential Information October 2020

– Create a new Identify Implementation. See the Synthesis FPGA User
Guide for details.

2. Click Identify Instrumentor or open the instrumentor GUI by typing the
following command:

identify_instrumentor

3. In the Instrumentor GUI, instrument the RTL design by setting
watchpoints and breakpoints that you want to trigger and sample when
you debug the design.

For few guidelines on instrumenting the design and debug planning, see
Instrumenting a Netlist After Compile, on page 25.

– Add Intelligent IICE and communication blocks for probe and
communication logic to trigger and sample the design. You can add
multiple IICEs to handle multiple clock domains. See Adding IICE, on
page 41.

4. Save the design by clicking the Save/Save All button from the main menu.

The tool writes out an idc file with information about the instrumented
design. You can open this file on subsequent runs with the edit idc
command.

See the scripts provided with the tool for examples of simple scripts you
can use to automate instrumentation tasks. Also refer to the example in
Adding Instrumentation, on page 28.

5. Set pre-configure and pre-arm triggers.

Instrumenting the Design Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 25

6. Click the Run button to compile the instrumented design or use the
following command.

project -run compile

The project -run compile command automatically includes information from
the idc file when it compiles the design.

7. Analyze the instrumented design.

From the GUI, click the RTL view icon to view the data schematic by
clicking the RTL view icon () in the GUI or using the view schematic
command, which allows you trace nodes back to the original RTL.

You can also instrument signals in the schematic. The schematic instru-
mentation can be in addition to the RTL-based instrumentation that was
done earlier, or as an alternative to it.

See Instrumenting a Netlist After Compile, on page 25 for information on
editing and adding instrumentation to a compiled netlist.

Instrumenting a Netlist After Compile
Typically, you instrument a design before it is compiled, as described in
Instrumenting Signals Before Compile, on page 23. This section provides an
overview of post-compile instrumentation, when you start with a compiled
netlist rather than the RTL source files.

LO

Chapter 2: Instrumenting the Design Instrumenting the Design

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
26 Synopsys Confidential Information October 2020

This approach offers slightly less visibility into the design than pre-compile
instrumentation, but the design is at a more stable stage, with the RTL elabo-
rated. You can use complex trigger and muxing options for the instrumenta-
tion. The downside to post-compile instrumentation is that some compiler
optimizations might affect the observability and affect mapping to RTL. You
could create a script to check post-compile signals against the RTL to instru-
ment the design and flag mismatches.

With a compiled netlist, you can instrument the signals directly in the
compiled netlist file, outside the instrumentor. This allows you to update
instrumentation that was inserted previously. It also allows you to instru-
ment signals within a parameterized module, which were unavailable for
instrumentation before compilation.

1. Instrument a design and compile it by clicking the Run button or using
the project -run compile command.

2. Click the RTL view icon to view the schematic of the compiled project.

3. Instrument the signals you want from the schematic.

– Select the signal you want to instrument or update.

– Right-click the signal, and set the type of instrumentation you want
by selecting Instrumentor from the pop-up menu, and selecting the kind
of sample or trigger instrumentation you want to use.

Instrumenting the Design Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 27

4. Add the instrumented signal to the idc file.

– Paste the signal string into the idc file. You can create a new idc file or
update an existing one. If you are creating a new file, you must add
the IICE definition shown on lines 2-4 in the figure below (iice new, iice
controller and iice sampler commands for defining a new IICE,
configuring the controller, and setting IICE sampler options
respectively).

The figure shows the signal on line 6 pasted into the idc file as a
sample-only signal.

– Save the edited idc file.

5. Run pre-map. This will re-run the entire synthesis flow till map.

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
28 Synopsys Confidential Information October 2020

project -run synthesis

6. Continue with place and route of the design.

7. Set up the design and start the debugger.

Adding Instrumentation
The following sections describe basic procedures to add instrumentation.

• Selecting Signals for Data Sampling, on page 28

• Instrumenting Buses, on page 30

• Adding Partial Instrumentation, on page 33

• Adding Multiplexed Groups, on page 34

• Sampling Signals in a Folded Hierarchy, on page 35

• Instrumenting the Verdi Signal Database, on page 37

• Selecting Breakpoints, on page 38

• Selecting Breakpoints in Folded Hierarchies, on page 38

• Configuring the IICE, on page 39

• Synthesizing Instrumented Designs, on page 40

• Capturing Commands from the Tcl Script Window, on page 40

Selecting Signals for Data Sampling
To select a signal to be sampled, follow these steps:

1. In the RTL tab, click the watchpoint icon next to the signal name.

2. Select the signals for sampling, triggering, or both from the pop-up
menu.

Adding Instrumentation Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 29

When the watchpoint icon is clear (unfilled), the signal has not been
instrumented. The colors of the filled icons are described in the following
table:

You can use Find to recursively search for signals and then instrument
selected signals directly from the Find dialog box (see Capturing
Commands from the Tcl Script Window, on page 40).

– Never instrument the following input and output buffer signals, as
they cause an error in the synthesis tool during subsequent mapping:
input of IBUF or IBUFG, and output of OBUF or OBUFT. These
signals either drive or are driven by user logic.

– To control the overhead for the trigger logic, always instrument
signals that are not needed for triggering with the Sample only selection
(the watchpoint icon is blue for sample-only signals).

– Specify a qualified clock signals as the sample clock (see the Debug
Environment Reference Manual). You can also specify bus segments
individually (see Instrumenting Buses, on page 30). In addition,
signals specified as Sample and trigger or Sample only can be included in
multiplexed groups as described in Adding Multiplexed Groups, on
page 34.

The example below shows how signal grant1 is enabled for sample and
trigger.

 Red Signal is enabled for triggering only

 Green Signal is enabled for both sampling and triggering

 Blue Signal is enabled for sampling only

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
30 Synopsys Confidential Information October 2020

The TCL Script window at the bottom displays the Tcl command that
implements the selection and the results of executing the command.

signals add -iice {IICE} -sample -trigger {/beh/arb_inst/grant1}

To disable a signal for sampling or triggering, select the signal from the
RTL tab and then select Not instrumented from the popup menu; the
watchpoint icon will again be clear (unfilled).

Instrumenting Buses
Entire buses, individual bits, or groups of bits of a bus can be individually
instrumented.

• Instrumenting a Partial Bus, on page 30

• Instrumenting Single Bits of a Bus, on page 31

• Instrumenting Non-Contiguous Bits or Bit Ranges, on page 32

• Changing the Instrumentation Type, on page 32

Instrumenting a Partial Bus
To instrument a sequence (range) of bits of a bus:

1. Place the cursor over a bus that is not fully instrumented and select Add
Partial Instrumentation. The following dialog box is displayed.

Adding Instrumentation Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 31

2. In the dialog box, enter the most- and least-significant bits in the MSB
and LSB fields.

Note that the bit range specified is contiguous; to instrument
non-contiguous bit ranges, see the section, Instrumenting Non-Contig-
uous Bits or Bit Ranges, on page 32.

When specifying the MSB and LSB values, the index order of the bus
must be followed. For example, when defining a partial bus range for
bus [63:0] (or “63 downto 0”), the MSB value must be greater than the
LSB value. Similarly, for bus [0:63] (or “0 upto 63”), the MSB value must
be less that the LSB value.

3. Select the type of instrumentation for the specified bit range from the
radio buttons and click OK.

When you click OK, a large letter “P” is displayed to the left of the bus
name in place of the watchpoint icon. The color of this letter indicates if
the partial bus is enabled for triggering only (red), for sampling only
(blue), or for both sampling and triggering (green).

Instrumenting Single Bits of a Bus
To instrument a single bit of a bus:

1. Enter the bit value in the MSB field of the Add partial bus dialog box.

2. Leave the LSB field blank.

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
32 Synopsys Confidential Information October 2020

3. Select the instrumentation type.

Instrumenting Non-Contiguous Bits or Bit Ranges
To instrument non-contiguous bits or bit ranges:

1. Instrument the first bit range or bit. See Instrumenting a Partial Bus, on
page 30.

2. Re-position the cursor over the bus, right-click and select Add partial
instrumentation to redisplay the Add partial bus dialog box.

The previously instrumented bit or bit range is now displayed.

3. Specify the bit or bit range to be instrumented. See Instrumenting a
Partial Bus, on page 30.

4. Select the type of instrumentation and click OK.

If the type of instrumentation is different from the existing instrumenta-
tion, the letter P will be yellow to indicate a mixture of instrumentation
types.

Bits cannot overlap groups (a bit cannot be instrumented more than
once).

Changing the Instrumentation Type
Use the procedure below to change the instrumentation type of a partial bus
or to remove the instrumentation from a bit or bit range.

1. Right-click on the bit.

2. Highlight the bit range or bit to be changed and select the new
instrumentation type from the menu.

Adding Instrumentation Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 33

3. To remove instrumentation from a bit or bit range, select Not Instrumented.

Adding Partial Instrumentation
Partial instrumentation allows fields within a record or a structure to be
individually instrumented.

1. Select a compatible signal for instrumentation, either on the RTL tab or
through the Instrumentor Search dialog box.

Partial instrumentation can only be added to a field or record one slice
level down in the signal hierarchy.

2. Right-click on the signal and select Add Partial Instrumentation.

3. Enter the most- and least-significant bits in the MSB and LSB fields and
select type of instrumentation.

When instrumented, the signal has a icon in place of the watchpoint
(glasses) icon to indicate that portions of the record are instrumented.
The P icon is the same icon that is used to show partial instrumentation
of a bus and uses a similar color coding:

The figure below shows the partial instrumentation icon on signal tt. The
yellow color indicates that the individual fields (tt.r2 and tt.c2) are
assigned different types of instrumentation.

Instance Color

All instances sample only Blue

All instances trigger only Red

All instances sample and trigger Green

All instances in any combination Yellow

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
34 Synopsys Confidential Information October 2020

The Search Panel also uses the partial instrumentation icon to show the state
of instrumentation on fields of partially instrumented records (see Capturing
Commands from the Tcl Script Window, on page 40).

Adding Multiplexed Groups
Only signals or buses that are instrumented as either Sample and Trigger or
Sample only can be added to a multiplexed group.

1. To create multiplexed groups, right-click on each individual
instrumented signal or bus and select Add mux group from the pop-up
menu. You can also use the signals group command to assign groups from
the console window (see signals in the Debug Environment Reference
Manual).

Command options allow more than one instrumented signal to be
assigned in a single operation and allow the resultant group assign-
ments to be displayed.

2. In the Add mux group dialog box displayed, select a corresponding group
by checking the group number.

3. Click OK to assign to the signal or bus to that group.

Adding Instrumentation Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 35

A signal can be included in more than one group by checking additional
group numbers.

When assigning instrumented signals to groups:

• A maximum of eight groups can be defined; signals can be included in
more than one group, but only one group can be active in the debugger
at any one time.

• Signals instrumented as Sample Clock, Trigger only, or Partial Buses cannot be
included in multiplexed groups.

For information on using multiplexed groups in the debugger, see Using Mux
Sets, on page 119.

Sampling Signals in a Folded Hierarchy
When a design contains entities or modules that are instantiated more than
once, it is termed to have a folded hierarchy. Folded hierarchies also occur
when multiple instances are created within a generate loop. By definition,
there will be more than one instance of every signal in a folded entity or
module. To allow you to instrument a particular instance of a folded signal,
the instrumentor automatically recognizes folded hierarchies and presents a
choice of all possible instances of each signal within the hierarchy.

The choices are displayed in terms of an absolute signal path name
originating at the top-level entity or module. The list of choices for a

particular signal is accessed by clicking the watchpoint icon or corresponding
signal.

To select the signals for folded hierarchy:

1. Identify the repeated unit entity.

2. Click the watchpoint icon or the signal name to get the list of instances
of the signal.

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
36 Synopsys Confidential Information October 2020

3. Select one or all instances of the signal by selecting the signal instance
and then sliding the cursor over to select the type of sampling to be
instrumented.

The color of the watchpoint icon is determined as follows:

• If no instances of the signal are selected, the watchpoint icon is clear.

• If all instances are defined for sampling, the color of the watchpoint icon
is determined by the type of sampling specified.

For example, see the Debug Environment Reference Manual.

To disable an instance of a signal that is currently defined for sampling:

1. Click on the watchpoint icon or signal.

2. Select the instance from the list displayed, and select Not instrumented.

For related information on folded hierarchies, see Activating/Deactivating
Folded Instrumentation, on page 89 and Displaying Data from Folded Signals,
on page 96.

Instance Color

All instances sample only Blue

All instances trigger only Red

All instances sample and trigger Green

All instances in any combination Yellow

Adding Instrumentation Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 37

Instrumenting the Verdi Signal Database
The instrumentor can import signals directly from the Verdi platform. After
performing behavioral analysis and generating the essential signal database
(ESDB), the essential signal list from the Verdi platform is brought directly
into the instrumentor where the signals are instrumented. To bring in the
essential signal list:

1. Load the project into the instrumentor.

2. Parse the essential signal list from the ESDB using the command:

verdi getsignals ESDBpath

In the above syntax, ESDBpath is the location where es.esdb++ is
installed. For example:

verdi getsignals path/es
3. Instrument the essential signal list using the command:

verdi instrument

The signals are automatically instrumented as sample and trigger.

4. Instrument the sample clock (a sample clock is required by the
instrumentor).

5. Configure the IICE and instrument the design.

The instrumented design is then synthesized, placed and routed, and
programmed into the FPGA. The debugger samples the data and generates
the fast signal database (FSDB) which is then displayed in the Verdi nWave
viewer.

Limitation
The instrumentation of all signals in the essential signal database may not be
possible due to changes in the original signal names during optimization by
the synthesis tool or differences in the signal naming conventions between
the instrumentor and Verdi tools.

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
38 Synopsys Confidential Information October 2020

Selecting Breakpoints
Breakpoints are used to trigger data sampling. Only the breakpoints that
are instrumented in the instrumentor can be enabled as triggers in the

debugger.

To instrument a breakpoint in the instrumentor, click on the circular icon to
the left of the line number. The color of the icon changes to green when
enabled.

Once a breakpoint is instrumented, the instrumentor creates trigger logic
that becomes active when the code region (in which the breakpoint resides) is
active.

In the above example, the code region of the instrumented breakpoint is
active if the variable current_state is state zero (s_ZERO) and the signal clr is not
0 when the clock event occurs.

Selecting Breakpoints in Folded Hierarchies
If a design contains entities or modules that are instantiated more than once,
the design is termed to have folded hierarchy. By definition, there will be
more than one instance of every breakpoint in a folded entity or module. To
allow you to instrument a particular instance of a folded breakpoint, the
instrumentor automatically detects folded hierarchy and presents a choice of
all possible instances of each breakpoint.

The choices are displayed in terms of an absolute breakpoint path name
originating at the top-level entity or module. The list of choices for a partic-
ular breakpoint is accessed by clicking on the breakpoint icon to the left of
the line number.

Adding Instrumentation Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 39

To select the breakpoints in folded hierarchies:

1. Identify the repeated unit entity.

2. Click the breakpoint icon to get the list of instances of the breakpoint
are available for sampling.

3. Select any or all of these breakpoints by clicking on the corresponding
line entry in the list displayed.

The color of the breakpoint icon is determined as follows:

• If no instances of the breakpoint are selected, the icon is clear in color.

• If some, but not all, instances of the breakpoint are selected, the icon is
yellow.

• If all instances are selected, the icon is green.

For example, see the Debug Environment Reference Manual.

The lines in the list of breakpoint instances act to toggle the selection of an
instance of the breakpoint. To disable an instance of a breakpoint that has
been previously selected, simply select the appropriate line in the list box.

Configuring the IICE
If the IICE configuration parameters for the active IICE need to be
changed, use the Edit IICE icon to change them. Adding IICE, on
page 41, discusses how to set these parameters for both single- and

multi-IICE configurations.

LO

Chapter 2: Instrumenting the Design Adding Instrumentation

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
40 Synopsys Confidential Information October 2020

Synthesizing Instrumented Designs
When you save your instrumentation, the synthesis tool creates the set of
files and subdirectories required by the debugger. These files and subdirecto-
ries are then exported from the database to an external directory location.
This location can be local to your system (when running the debugger on the
same machine) or the exported directory can be copied to a remote system
using tar or file transfer protocol (FTP).

Capturing Commands from the Tcl Script Window
• To capture all text written to the console window, use the log console

command (see the Debug Environment Reference Manual).

• To capture all commands executed in the console window use the
transcript command (see the Debug Environment Reference Manual).

• To clear the text from the console window, use the clear command.

Working with IICE Files Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 41

Working with IICE Files
This section describes how to configure one or more IICE units. IICE configu-
rations set in the instrumentor impact the operations available in the
debugger.

• Adding IICE, on page 41

• Defining IICE/Editing IICE, on page 42

• Deleting an IICE Unit, on page 43

• Generating an IICE File, on page 43

Adding IICE
Either of the following action opens the Add IICE dialog box to define the type
and name of the new IICE unit.

• Click Add IICE icon on the instrumentor graphical window to define
an additional IICE unit for the current design.

• Select Instrumentor > IICE > Add IICE from the menu bar.

When you click OK, the HDL source code in the RTL window is redisplayed
without any signals instrumented. The Instrumentation window is cleared,
and the IICE selection reported in the status panel on the left is updated with
the name of the IICE unit. When creating a new IICE unit:

• Select Regular (the default) to add a normal IICE unit.

LO

Chapter 2: Instrumenting the Design Working with IICE Files

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
42 Synopsys Confidential Information October 2020

• Optionally enter a name for the IICE unit in the Name field. By default,
the IICE name is formed by adding an _n suffix to IICE (for example,
IICE_0, IICE_1, etc.).

Defining IICE/Editing IICE
The individual parameters for each IICE are defined on a series of tabs of the
Edit IICE Settings dialog box.

1. Select the name of the target IICE unit appears in the Control Panel tab.

2. Click the Edit IICE icon in the top menu bar or click the entry for the IICE
Type field in the Control Panel to display the Edit IICE Settings dialog box. For
detailed information on IICE settings, see the Debug Environment
Reference Manual.

3. Select or define the required IICE settings in the following tabs:

Working with IICE Files Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 43

– IICE Sampler Tab – Select buffer type for the external memory
configuration, define sample depth, and select allow qualified
sampling, always-armed triggering, and data compression checkbox
to perform the same in debugger.

– IICE Clock Tab – Select the sample clock and clock edge.

– IICE Controller Tab – Define complex counter trigger width specification
and state machine triggering specifications.

– IICE Options Tab – Set trigger-signal export and cross triggering.

4. Click Ok to save the defined settings.

For details description of the tabs, see Debug Environment Reference Manual.

Deleting an IICE Unit
To delete an IICE unit from the design:

1. From the Control Panel, select the specific IICE to delete.

2. Select Instrumentor > IICE > Delete IICE from the top menu or click on the
Delete IICE icon in the instrumentor GUI.

3. Click OK in the confirmation dialog.

Generating an IICE File
After your HDL is successfully created, the instrumentor is used to define the
specific signals to be monitored. Saving the instrumented design generates
an instrumentation design constraints (idc) file or IICE file and adds
constraint files to the HDL source for the instrumented signals and break
points. The design is synthesized and then run through the remainder of the
process. After the device is programmed with the debuggable design, the
debugger is launched to debug the design while it is running in the target
system. For information on using the debugger, see Setting up and Running
Debug, on page 61.

The information required to instrument a design includes references to the
HDL design source, the user-selected instrumentation, the settings used to
create the IICE, and other system settings. Additionally, you can save the
original design in either an encrypted or non-encrypted format, which is then
used to reproduce the exact state of the design.

LO

Chapter 2: Instrumenting the Design Working with IICE Files

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
44 Synopsys Confidential Information October 2020

Instrumenting and Saving a Design
1. Set up the IICE. See Adding IICE, on page 41.

2. Define the instrumentation (selecting the signals for sampling, and
setting breakpoints). See Adding Instrumentation, on page 28.

3. Save the instrumented design.

Saving a design generates an idc file and adds compiler pragmas in the form
of constraint files to the design RTL for the instrumented signals and break
points. This information is then used to incorporate the instrumentation logic
(IICE and COMM blocks) into the synthesized netlist.

Multiple IICE Units
Multiple IICE units allow triggering and sampling of signals from different
clock domains within a design. Each IICE unit is independent and can have
unique IICE parameter settings including sample depth, sampling/triggering
options, and sample clock and clock edge. During the subsequent debugging
phase, individual or multiple IICE units can be armed. Each IICE is armed at
the same or closest clock cycle. IICE will automatically download sample data
when a trigger occurs, even while other IICE is still polling for triggers.

Adding Triggers Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 45

Adding Triggers
The triggering modes can be broadly classified as simple triggering mode and
the complex triggering mode. The simple mode allows comparing signals to
values (including don’t cares) and then triggering when the signals match
those values. This scheme can be enhanced by using breakpoints to denote
branches in control logic. If a breakpoint is enabled, this particular branch
must be active at the same time that the signals match their respective
values. The overall trigger logic involves signals and breakpoints in the
following way:

• Signals: All signals must match their respective comparison values in
order to trigger.

• Breakpoints: All breakpoints are OR connected, which means that any
one enabled breakpoint is enough to trigger.

• Signals and breakpoints are combined using AND, such that all signals
must match their values AND at least one enabled breakpoint must
occur.

In the advance triggering mode, you can define complex trigger conditions
using the advance triggering techniques. For instance, the state machine
based triggering enables you to trigger on a certain sequence of events like
“trigger if pattern A occurs exactly five cycles after pattern B, but only if
pattern C does not intervene.”

By default, the instrumentor instruments the design according to the simple
trigger mode. See the following for more information on how to make use of
advance triggering techniques.

This section describes the usage of various triggering methods available in
the debugger.

• Enabling State Machine based Triggering, on page 46

• Enabling Qualified Sampling, on page 46

• Enabling Always-Armed based Triggering, on page 47

• Enabling Always-Armed based Triggering, on page 47

• Enabling Sampled Data Compression, on page 47

• Enabling Complex-Counter Triggering, on page 47

• Enabling Import External Triggers, on page 48

LO

Chapter 2: Instrumenting the Design Adding Triggers

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
46 Synopsys Confidential Information October 2020

• Enabling Export IICE Trigger Signal, on page 49

• Enabling Cross Triggering, on page 49

Enabling State Machine based Triggering
When building a complex, state-machine trigger, you specify the number of
trigger states, the trigger conditions (which can be set dynamically in the
debugger), and the counter width. You can enable state-machine triggering
and specify the states through the user interface as outlined in the following
steps:

1. Make sure that the following prerequisites are met:

– In the instrumentor tool, select Instrumentor > IICE > Edit IICE from the
menu bar or click the Edit IICE icon.

– From the instrumentor Edit IICE Settings dialog box, select the IICE
Controller tab, click the State Machine triggering radio button, and specify
the number of trigger states, trigger conditions, and the counter
width in the corresponding fields.

2. Create the state machine trigger in debugger. See Creating State
Machine Trigger, on page 101.

Enabling Qualified Sampling
To create a complex trigger event to perform qualified sampling:

1. In the instrumentor tool, select Instrumentor > IICE > Edit IICE from the
menu bar or click the Edit IICE icon.

2. From the Edit IICE Settings dialog box, select the IICE Sampler tab, click the
Allow qualified sampling checkbox.

See also:

• Always-Armed based Triggering, on page 105

• Debug Environment Reference Manual

Adding Triggers Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 47

Enabling Always-Armed based Triggering
To enable the always-armed based triggering:

1. In the instrumentor tool, select Instrumentor > IICE > Edit IICE from the
menu bar or click the Edit IICE icon.

2. From the Edit IICE Settings dialog box, select the IICE Sampler tab, click the
Allow always-armed triggering checkbox.

See also:

• Always-Armed based Triggering, on page 105

• Debug Environment Reference Manual

Enabling Sampled Data Compression
A data compression mechanism is available to compress the sampled data to
effectively increase the depth of the sample buffer without requiring any
additional hardware resources.

To enable the data compression:

1. In the instrumentor tool, select Instrumentor > IICE > Edit IICE from the
menu bar or click the Edit IICE icon.

2. From the Edit IICE Settings dialog box, select the IICE Sampler tab, click the
Allow data compression checkbox or use the following command:

iice sampler -datacompression 1
See Debug Environment Reference Manual.

Enabling Complex-Counter Triggering
Complex-counter triggering augments the simple triggering by instrumenting
a variable-width counter that can be used to create a more complex trigger
function. Use the width setting to control the desired width of the counter.
The complex counter connects the output of the breakpoint and watchpoint
event logic to the sampling block and allows the user to implement complex
triggering behavior.

LO

Chapter 2: Instrumenting the Design Adding Triggers

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
48 Synopsys Confidential Information October 2020

Creating a Complex Counter
The counter is created, configured, and inserted into the HDL design during
instrumentation using the instrumentor IICE Controller tab of the IICE Configura-
tion dialog box or using the instrumentor iice controller command.

Complex counter for an IICE unit is enabled in the instrumentor.

1. Select Instrumentor > IICE > Edit IICE from the menu bar or click the Edit IICE
icon.

2. From the Edit IICE Settings dialog box, select the IICE Controller tab.

3. Select the Complex counter triggering option and enter the Counter width.

During configuration, the size of the counter is specified. For example, a
16-bit counter is the default. This default value produces a counter that
ranges from 0 to 65535. Setting the counter size to zero during instru-
mentation configuration disables counter insertion.

See Debugging with the Complex Counter, on page 107, for details on how to
debug with complex counter.

Enabling Import External Triggers
To enable this option:

1. Select Instrumentor > IICE > Edit IICE from the menu bar or click the Edit IICE
icon.

2. From the Edit IICE Settings dialog box, select the IICE Options tab.

3. Enter the Import external trigger signals.

Note: When using external triggers, the pin assignments for the corre-
sponding input ports must be defined in the synthesis or place
and route tool.

Adding Triggers Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 49

Enabling Export IICE Trigger Signal
To enable this option:

1. Select Instrumentor > IICE > Edit IICE from the menu bar or click the Edit IICE
icon.

2. From the Edit IICE Settings dialog box, select the IICE Options tab.

3. Select the Export IICE trigger signal check box.

Enabling Cross Triggering
Cross triggering allows the trigger from one IICE unit to be used to qualify a
trigger on another IICE unit, even when the two IICE units are in different
time domains. Cross triggering is available in both the simple triggering and
complex counter triggering modes (state-machine triggering supports cross
triggering by allowing the IICE unit IDs to be included in the state-machine
equations).

To enable cross triggering for an IICE unit in the instrumentor:

1. Select Instrumentor > IICE > Edit IICE from the menu bar or click the Edit IICE
icon.

2. From the Edit IICE Settings dialog box, select the IICE Options tab, click the
Allow cross-triggering in IICE checkbox.

See Selecting Cross Triggering Mode, on page 106, for selecting
cross-triggering modes.

Remote Triggering
Remote triggering allows one debugger executable to send a software trigger
event to terminate data collection in the other debugger executables, effec-
tively creating a remote stop button. It is a scripting application. The IICE or
debugger targets are defined by the debugger remote_trigger command (see the
command description in the Debug Environment Reference Manual).

LO

Chapter 2: Instrumenting the Design Adding Triggers

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
50 Synopsys Confidential Information October 2020

You can selectively set the remote trigger to the following.

• Trigger all IICEs in all debugger executables
remote_trigger [-all-iice iiceID]

• Trigger all IICEs in a specific debugger executable
remote_trigger [-all-pid processID]

• Trigger a specific IICE in a specific debugger executable
remote_trigger [-all|-pid processID|-iice iiceID]

A common design configuration is to trigger all FPGAs on a single board-level
event; when that event occurs, data collection is stopped and the sample data
is downloaded by the corresponding debugger executables for all FPGAs.

Selecting Buffer Type Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 51

Selecting Buffer Type
The buffer type specifies the type of memory used to capture the on-chip
signal data for debug. The type of memory you select depends on the
hardware and your design requirements.

To use an external logic analyzer for debug, set up real-time debug with a
new IICE (iice new command) instead of specifying a buffer type.

1. Set the buffer type from the GUI or the command line:

– In the instrumentor tool, select the IICE icon, from the IICE Sampler
tab, set the buffer type.

– To use the command line, include this command in the idc file:

iice sampler -iice {iiceID | all} bufferType

2. Specify the buffer type and click Ok.

– BRAM:
Instrumentor logic that uses distributed RAM blocks (part of the
FPGA resources) to store sample data. You can use this for
single-FPGA or multi-FPGA debug. See Using BRAM for Debugging, on
page 118 for details.

– DDR3 Daughter board:
Instrumentor logic that uses external DDR3 memory to store sample
data. Allows larger memory depth as compared to the BRAM based
instrumentation.

Buffer Type Command Supported Hardware Platform

BRAM
(Built-in memory)

iice sampler -iice name
internal_memory

All

DDR3
(DDR3 memory)

iice sampler -iice name
haps_dtd

HAPS-DX7: Onboard memory

LO

Chapter 2: Instrumenting the Design Support Limitations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
52 Synopsys Confidential Information October 2020

Support Limitations
The debug environment fully supports the synthesizable subset of both Ver-
ilog and VHDL design languages. Designs with a mixture of VHDL and Verilog
languages can be debugged – the software reads the design files in either lan-
guage.

There are some limitations on which parts of a design can be instrumented by
the instrumentor. However, in most cases you can always instrument all
other parts of your design.

The instrumentation limitations are usually related to language features.
These limitations are described in these sections.

• VHDL Instrumentation Limitations, on page 52

• Verilog Instrumentation Limitations, on page 54

• SystemVerilog Instrumentation Limitations, on page 57

VHDL Instrumentation Limitations
The synthesizable subsets of VHDL IIEEE 1076-1993 and IEEE 1076-1987
are supported in the current release of the debugger.

Design Hierarchy
Entities that are instantiated more than once are supported for instrumenta-
tion with the exception that signals that have type characteristics specified by
unique generic parameters cannot be instrumented.

Subprograms
Subprograms such as VHDL procedures and functions cannot be instru-
mented. Signals and breakpoints within these specific subprograms cannot
be selected for instrumentation.

Loops
Breakpoints within loops cannot be instrumented.

Support Limitations Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 53

Generics
VHDL generic parameters are fully supported as long as the generic param-
eter values for the entire design are identical during both instrumentation
and synthesis.

Transient Variables
Transient variables defined locally in VHDL processes cannot be instru-
mented.

Scalar Signal Syntax
The values of scalar signals of type std_logic must be enclosed in single quotes
in both the GUI and the shell as shown in the following command:

watch enable -iice IICE -condition 0 /my_signal {'0'}
Entering a scalar signal either without quotes or in double quotes results in
an error. Conversely, a vector signal must be entered without quotes as
shown in the following command:

watch enable -iice IICE -condition 0 /my_bus {1010}

Examples of FF Coding with Breakpoints
Breakpoints inside flip-flop inferring processes can only be instrumented if
they follow the coding styles outlined below:

For flip-flops with asynchronous reset:

process(clk, reset, ...) begin
if reset = '0' then

reset_statements;
elsif clk’event and clk = '1' then

synchronous_assignments;
end if;

end process;
For flip-flops with synchronous reset or without reset:

LO

Chapter 2: Instrumenting the Design Support Limitations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
54 Synopsys Confidential Information October 2020

process(clk, ...) begin
if clk’event and clk = '1' then

synchronous_assignments;
end if;

end process;
Or:

process begin
wait until clk’event and clk = '1'

synchronous_assignments;
end process;

The reset polarity and clock-edge specifications above are only exemplary.
The debug software has no restrictions with respect to the polarity of reset
and clock. A coding style that uses wait statements must have only one wait
statement and it must be at the top of the process.

Using any other coding style for flip-flop inferring processes will have the
effect that no breakpoints can be instrumented inside the corresponding
process. During design compilation, the instrumentor issues a warning when
the code cannot be instrumented.

Verilog Instrumentation Limitations
The synthesizable subsets of Verilog HDL IEEE 1364-1995 and 1364-2001
are supported.

Subprograms
Subprograms such as Verilog functions and tasks cannot be instrumented.
Signals and breakpoints within these specific subprograms cannot be
selected for instrumentation.

Loops
Breakpoints within loops cannot be instrumented.

Parameters
Verilog HDL parameters are fully supported. However, the values of all the
parameters throughout the entire design must be identical during instru-
mentation and synthesis.

Support Limitations Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 55

Locally Declared Registers
Registers declared locally inside a named begin block cannot be instrumented
and will not be offered for instrumentation. Only registers declared in the
module scope and wires can be instrumented.

Verilog Include Files
There are no limitations on the instrumentation of 'include files that are refer-
enced only once. When an 'include file is referenced multiple times as shown
in the following example, the following limitations apply:

• If the keyword module or endmodule, or if the closing ‘)’ of the module port
list is located inside a multiply-included file, no constructs inside the
corresponding module or its submodules can be instrumented.

• If significant portions of the body of an always block are located inside a
multiply-included file, no breakpoints inside the corresponding always
block can be instrumented.

If either situation is detected during design compilation, the instrumentor
issues an appropriate warning message.

As an example, consider the following three files:

adder.v File
module adder (cout, sum, a, b, cin);
parameter size = 1;
output cout;
output [size-1:0] sum;
input cin;
input [size-1:0] a, b;
assign {cout, sum} = a + b + cin;
endmodule

LO

Chapter 2: Instrumenting the Design Support Limitations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
56 Synopsys Confidential Information October 2020

adder8.v File
`include "adder.v"
module adder8 (cout, sum, a, b, cin);
output cout;
parameter my_size = 8;
output [my_size - 1: 0] sum;
input [my_size - 1: 0] a, b;
input cin;
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

adder16.v File
`include "adder.v"
module adder16 (cout, sum, a, b, cin);
output cout;
parameter my_size = 16;
output [my_size - 1: 0] sum;
input [my_size - 1: 0] a, b;
input cin;
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

There is a workaround for this limitation. Make a copy of the include file and
change one particular include statement to refer to the copy. Signals and
breakpoints that originate from the copied include file can now be instru-
mented.

Macro Definitions
The code inside macro definitions cannot be instrumented. If a macro defini-
tion contains important parts of some instrumentable code, that code also
cannot be instrumented. For example, if a macro definition includes the case
keyword and the controlling expression of a case statement, the case state-
ment cannot be instrumented.

Always Blocks
Breakpoints inside a synchronous flip-flop inferring an always block can only
be instrumented if the always block follows the coding styles outlined below:

For flip-flops with asynchronous reset:

Support Limitations Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 57

always @(posedge clk or negedge reset) begin
if(!reset) begin

reset_statements;
end

else begin
synchronous_assignments;

end;
end;

For flip-flops with synchronous reset or without reset:

always @(posedge clk) begin
synchronous_assignments;

end process;
The reset polarity and clock-edge specifications and the use of begin blocks
above are only exemplary. The instrumentor has no restrictions with respect
to these other than required by the language.

For other coding styles, the instrumentor issues a warning that the code is
not instrumentable.

SystemVerilog Instrumentation Limitations
The synthesizable subsets of Verilog HDL IEEE 1364-2005 (SystemVerilog)
are supported with the following exceptions.

Typedefs
Create names for type definitions that you use frequently in your code.
SystemVerilog adds the ability to define new net and variable user-defined
names for existing types using the typedef keyword. Only typedefs of
supported types are supported.

Struct Construct
A structure data type represents collections of data types. These data types
can be either standard data types (such as int, logic, or bit) or, they can be
user-defined types (using SystemVerilog typedef). Signals of type structure
can only be sampled and cannot be used for triggering; individual elements of
a structure cannot be instrumented, and it is only possible to instrument
(sample only) an entire structure. The following code segment illustrates
these limitations:

LO

Chapter 2: Instrumenting the Design Support Limitations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
58 Synopsys Confidential Information October 2020

In the above code segment, port signal sig_oport_P_Struc_data is a packed
structure consisting of two elements (up_nibble and lo_nibble) which are of a
user-defined datatype. As elements of a structure, these elements cannot be
instrumented. The signal sig_oport_P_Struc_data can be instrumented for
sampling, but cannot be used for triggering (setting a watch point on the
signal is not allowed). If this signal is instrumented for sample and trigger,
the instrumentor allows only sampling and ignores triggering.

Union Construct
A union is a collection of different data types similar to a structure with the
exception that members of the union share the same memory location.
Trigger-expression settings for unions are either in the form of serialized bit
vectors or hex/integers with the trigger bit width representing the maximum
available bit width among all the union members. Trigger expressions using
enum are not allowed.

The example below shows an acceptable sample code segment for a packed
union; the trigger expression for union d1 can be defined as:

typedef union packed {
shortint u1;
logic signed [2:1][1:2][4:1] u2;

struct packed {
bit signed [1:2][1:2][2:1] st1;
struct packed {

byte unsigned st2;
} u3_int;

} u3;
logic [1:2][0:7] u4;
bit [1:16] u5;

} union_dt;

Support Limitations Chapter 2: Instrumenting the Design

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 59

module top (
input logic clk,
input logic rst,
input union_dt d1,
output union_dt q1,
...

The maximum bit width of all elements is 16 which requires a serialized
16-bit vector to define the trigger. For example, to set st1 (2x2x2x1bit):

st1[1][1][2]=0
st1[1][1][1]=0
st1[1][2][2]=1
st1[1][2][1]=1
st1[2][1][2]=0
st1[2][1][1]=1
st1[2][2][2]=1
st1[2][2][1]=0

Similarly, to set st2:

(unsigned int) 200 = (bin) 11001000
The trigger expression is defined as:

16b' 00110110 11001000
| st1 | st2 |

Arrays
Partial instrumentation of multi-dimensional arrays and multi-dimensional
arrays of struct and unions are not permitted.

Interface
Interface and interface items are not supported for instrumentation and
cannot be used for sampling or triggering. The following code segment illus-
trates this limitation:

interface ff_if (input logic clk, input logic rst,
 input logic din, output logic dout);
modport write (input clk, input rst, input din, output dout);
endinterface: ff_if
module top (input logic clk, input logic rst,
 input logic din, output logic dout) ;

LO

Chapter 2: Instrumenting the Design Support Limitations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
60 Synopsys Confidential Information October 2020

 ff_if ff_if_top(.clk(clk), .rst(rst), .*);
 sff UUT (.ff_if_0(ff_if_top.write));
endmodule

In the above code segment, the interface instantiation of interface ff_if is
ff_if_top which cannot be instrumented. Similarly, interface item modport write
cannot be instrumented.

Port Connections for Interfaces and Variables
Instrumentation of named port connections on instantiations to implicitly
instantiate ports is not supported.

Packages
Packages permit the sharing of language-defined data types, typedef
user-defined types, parameters, constants, function definitions, and task
definitions among one or more compilation units, modules, or interfaces.
Instrumentation within a package is not supported.

Concatenation Syntax
The concatenation syntax on an array watchpoint signal is not accepted by
the debugger. To illustrate, consider a signal declared as:

bit [3:0] sig_bit_type;
To set a watchpoint on this signal, the accepted syntax in the debugger is:

watch enable -iice IICE {/sig_bit_type} {4’b1001}
The 4-bit vector cannot be divided into smaller vectors and concatenated (as
accepted in SystemVerilog). For example, the below syntax is not accepted:

watch enable -iice IICE {/sig_bit_type} {{2’b10,2’b01}}

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 61

C H A P T E R 3

Setting up and Running Debug

Before a design can be debugged, the instrumentor is first used to define the
specific signals to be monitored and then to generate an instrumentation
design constraints (idc) file containing the instrumented signals and break
points. The design is synthesized and the device is programmed with the
debuggable design. The debugger is then launched to analyze the design
while it is running in the target system.

The debugger enables HDL designs to be analyzed by interacting with the
instrumented HDL design implemented in the target hardware system. You
can activate breakpoints and watchpoints to cause trigger events within the
IICE on the target device. These triggers cause signal data to be captured in
the IICE. The data is then transferred to the debugger through a communica-
tions port where it can be displayed in a variety of formats. This chapter
describes:

• Setting up the Hardware, on page 62

• Setting the Waveform Viewer, on page 83

• Debugger Operations, on page 86

• Configuring Triggering Modes, on page 100

• Debugging on a Different Machine, on page 113

• Simultaneous Debugging, on page 115

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
62 Synopsys Confidential Information October 2020

Setting up the Hardware
This section describes methods to connect the debugger to the target
hardware system. The programmable device in the target system that
contains the design to be debugged is usually placed on a printed circuit
board along with a number of other support devices. The difficulty is that the
boards differ greatly in the connections between their programmable devices,
the other components, and the external connections of the boards.

This section outlines how to connect the debugger to most of the common
board configurations and addresses the following topics:

• Basic Communication Connection, on page 62

• JTAG Communication Interface, on page 71

Basic Communication Connection
The components that make up the debugging system are:

• The host machine running the debug environment with a loaded project.

• The communication cable connecting the host machine to the
programmable device.

• The programmable device or devices loaded with the instrumented
version of the design to be debugged.

The following topics are outlined in this section:

• Debugger Communications Settings, on page 62

• Configuring the Debugger, on page 64

Debugger Communications Settings
Debugger communications settings are defined on the Setup tab and include
selecting the cable type and setting the port parameters for the selected cable.

Selecting the Cable Type
1. From the Setup and Preferences window, select Cable Settings.

2. Select the desired technology from the drop-down menu.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 63

3. Select the appropriate cable from the drop-down menu.

For more information on cable settings, see the Debug Environment Reference
Manual.

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
64 Synopsys Confidential Information October 2020

Configuring the Debugger
All parts of the debugging system must be configured correctly to make a
successful connection between the debugger and the instrumented device
through the cable.

In addition to selecting the cable type and port parameters, the following
additional requirements must be met to ensure proper communications.

• Configuring the Local Client-Server, on page 64

• Configuring a Remote Client-Server, on page 66

• License Consumption, on page 68

• Communications Cable Connections, on page 69

• Project File, on page 70

• JTAG Chain Description, on page 70

• Device Family, on page 70

• Device Programming, on page 70

Configuring the Local Client-Server
The following figure shows a typical local server configuration.

To view the Client-Server configuration:

1. In the debugger tool, select Debugger > Setup debugger. The Setup and
Preferences dialog box appears.

2. In the Communications tab, click the Configure Client/Server button.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 65

The default settings are usually correct for most configurations and
require changing only when the default server port address is already in
use or when the debugger is being run from a remote machine that is
not the same machine connected to the FPGA board/device (see Config-
uring a Remote Client-Server, on page 66).

To establish a local client-server connection:

1. In the debugger tool, select Debugger > Setup debugger. The Setup and
Preferences dialog box is displayed.

2. In the Communications tab, click the Configure Client/Server button.

3. Select the cable type from the Cable drop-down menu

4. Provide the server address as either 127.0.0.1 or localhost.

5. Use the default client-server port (59015), if available.

If this port is already in use, list the port status with the netstat command
and select an unused port. If possible, use a port address within the
listed range where there is usually ample room.

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
66 Synopsys Confidential Information October 2020

6. Click the OK button.

Note: Do not use the Start button as this creates a standalone server
which must then be manually stopped with the Stop button.

7. Start the debugger client-server session with a run or com check command
after loading the project. The local client-server application ends
automatically when the Identify debugger session ends.

8. Check the Cable type setting in the main page of the debugger after
loading the project.

Configuring a Remote Client-Server
The figure below shows a client-server configuration for remote debugging.

Ports Port Range

Known ports for system components 0 through 1023

Registered ports for software
components

1024 through 49151

Dynamic and/or private ports 49152 through 65535

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 67

The Identify debugger uses a client-server architecture to communicate with
the device. Client-server architecture lets you work remotely with the Identify
debugger using Ethernet as the backbone for the client-server communica-
tion.

In the client-server architecture, the machine connected to the target device
hardware (Computer B in the diagram) is termed the server and any machine
on the same network that is used to launch the Identify debugger and
connect to the server is termed the client (Computer A). Client-server commu-
nication uses the TCP/IP communication protocol over the network.

To establish a server connection for remote debugging:

1. Configure the target device with the design to be debugged.

2. To start the server on the machine connected to the target device,
launch the Identify debugger, and then configure the server-side Identify
debugger as described below:

– Load the design project file (debug.prj) to be debugged.

– In the debugger GUI, select Client/Server from the Debugger popup
menu to display the Client/Server dialog box.

– Specify the cable type, server address, port number, and log file name
in the respective fields. Set the client/server port according to the
selected cable type and enable the Use Client/Server check box.
Configuring the client-server parameters does not start the server.

– Click the Start button to start the server in standalone mode. Once
started, close the dialog box by clicking OK to save any changed
settings or simply click Cancel to close. With the server running, you
can exit the debugger, but you must manually stop the server (click
the Stop button) after your session ends.

– If the server starts successfully, a green tick mark is shown. If the
server cannot be started on the host machine, an error message is
displayed.

3. To debug the design from a remote machine (client), launch the
debugger on the client machine and load the design to be debugged.
Then configure the client-side debugger as described below:

– In the debugger GUI, select Client/Server from the Debugger popup
menu.

– Specify the server address, port number, and log file name in the
Configure Client/Server dialog box. Use the ipconfig (Windows) or

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
68 Synopsys Confidential Information October 2020

/sbin/ifconfig (Linux) command to verify the name or tcp/ip4 address
of the client. The port number must be the same as the port number
used to configure the server.

Once started, close the dialog box by clicking OK to save any changed
settings or simply click Cancel to close.

The following syntax shows the equivalent Tcl commands to configure the
server:

jtag_server set -addr {hostName/IP_address} -port {serverPort} -logf {logFileName}

To view the existing server configuration settings, use the jtag_server get Tcl
command.

Checking the Client-Server Communication
Check the client-server communication by running the com check command
(click the Comm check button in the Setup panel). If the client-server communi-
cation cannot be established, an error message is displayed in the debugger.

The client-server architecture may not always work within a WLAN. Also,
firewall restrictions as well as security software such as anti-virus or
anti-spyware can also impact client-server communications.

Once the client-server communication is running properly, you can debug
the design remotely.

License Consumption
If you start a debugger session on the server machine, then load an instru-
mented project, and run a communications check, the server does not start
in standalone mode. With this method, you cannot terminate the debugger
session, and two licenses are consumed.

You can start the acteljtag process in stand-alone mode on the server/host
machine that interfaces to the HAPS hardware or on a Microchip device
system either from the debugger GUI or from the command line. Both
methods are described below.

Through GUI

1. Start the debugger on the system host.

2. Configure the client/server:

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 69

– Select Debugger > Setup debugger > Communications tab > Configure Client
Server.

– Set the Cable Type.

– Set the server address to the hostname of the machine (localhost or
127.0.0.1).

– In the dialog box, specify the Port Number.

– Click the Start button to start the acteljtag process, according to the
cable type selected.

3. Close the debugger session.

The server (acteljtag) continues to run in standalone mode, without
consuming a debugger license.

4. Verify that the acteljtag process is running, using systems tools such as
Task Manager or Process Explorer on Windows or ps, top, or htop on
Linux.

Using Commands

As an alternative to the previous steps, start the process by running the
appropriate command from the shell or command prompt.

acteljtag -p portNum -l logfile

Use the - option with either of the commands to verify that the process is
running. For example: umrbus -. For usage information about these
commands, specify the -? option.

Communications Cable Connections
Two communication connections are available in the debugger.

• Cable-to-Host

• Cable-to-Board

Cable-to-Host

The latest cable types use a USB connector to interface with the host and
require a USB driver to be installed. For details on installing the driver, see
the installation procedures in the release notes.

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
70 Synopsys Confidential Information October 2020

A parallel port connection is also supported and requires the installation of a
parallel-port driver.

When using a parallel port, make sure that the parallel port where the cable
is connected corresponds to the lpt specified using the com port command. The
Identify debugger uses the “standard” I/O port definitions: lpt1:
0x378-0x37B, lpt2: 0x278-0x27B, lpt3: 0x3BC-0x3BF, and lpt4:
0x288-0x28B if it cannot determine the proper definitions from the operating
system. If the hardware address for your parallel port does not match the
addresses for lpt1 through lpt4, use the setsys set command variable lpt_ad-
dress to set the hardware port address (for example, setsys set lpt_address 0x0378
defines port lpt1).

Project File
Make sure that the project file you load into the debugger is the same one
used to create the instrumented version of your design. The debugger detects
any difference between the project and hardware versions when it first
attempts to communicate with the device.

JTAG Chain Description
If you are using the builtin JTAG connection and the device to be debugged is
part of a multi-device scan chain, the debugger first attempts to detect the
devices in the scan chain. If auto-detection is unsuccessful, describe the
device chain to the debugger using the chain command (see Setting the JTAG
Chain, on page 74).

Device Family
If you are using the Identify instrumentor/Identify debugger tool set in
stand-alone mode, make sure that the device family is correct for the type of
programmable chip being used. If this is incorrect, you must go back and
re-instrument your design using the proper device family.

Device Programming
Make sure that you program the device with the instrumented version of your
design, not the original version.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 71

JTAG Communication Interface
JTAG is a 4-wire communication protocol defined by the IEEE 1149.1
standard. The JTAG standard defines the names of the four connections as:
TCK, TMS, TDI, and TDO.

The JTAG-compliant devices are connected to a host computer through a
JTAG cable. Such devices can be connected directly to the cable (see the
following figure), or multiple devices can be connected in a serial chain.

The following topics are included in this section:

• JTAG Communication Block, on page 71

• JTAG Hardware in Instrumented Designs, on page 71

• JTAG Communication Debugging, on page 79

JTAG Communication Block
The JTAG communication block can be implemented using either the built-in
device-specific TAP controller (the builtin option) or using the debug environ-
ment implementation of the TAP controller (the soft option).

JTAG Hardware in Instrumented Designs
When the debug environment uses a JTAG connection to communicate with
the instrumented design, the IICE must contain a TAP controller to imple-
ment the JTAG standard. The IICE JTAG connection currently can be imple-
mented in one of two ways:

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
72 Synopsys Confidential Information October 2020

• The IICE can be configured (using the builtin option) to use the JTAG
controller that is built into the programmable chip. This approach has
the advantage that the built-in TAP controller already has hard-wired
connections and four dedicated pins. Accordingly, employing the debug
environment does not cost extra pins. In addition, the built-in TAP
controller does not require any user logic resources because it usually is
implemented in hard-wired logic on the chip. All devices do not have a
usable built-in TAP controller.

• The IICE can be configured (using the soft JTAG port option) to include a
complete, JTAG-compliant TAP controller. The TAP controller is
connected to external signals by using four standard I/O pins on the
programmable device. Any programmable device family can utilize this
type of cable connection since it only requires four standard I/O pins.

The following sections provide more detail on these two JTAG communication
options.

Using the Built-in JTAG Port
Some programmable device families employ a built-in TAP controller as a
means for device configuration. In most cases, the IICE can also be config-
ured to use this built-in TAP controller. Using this TAP controller saves the
user logic necessary to implement the controller and also saves four I/O pins.

Using the built-in port is slightly more complicated than using the soft debug
port because the built-in port usually has special board-level connections
that facilitate the programming of the chip. Consequently, these program-
ming connections must be understood to properly connect the JTAG cable to
the board and to properly communicate with the IICE.

Boards with Direct JTAG Connections

HAPS boards and other boards that connect the built-in JTAG port directly to
four header pins on the board allow the JTAG cable to simply be connected
directly to the header pins. This configuration works for both directly
connected devices and serially chained devices.

A common serial configuration is the combination of an EEPROM with a
programmable device. This configuration allows you to either directly
program the chip, or to program the EEPROM and then use the contents of
the EEPROM to program the device via some other connection (see the
following figure).

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 73

This configuration is well suited to the debugger and works just like any
other serially connected chain.

Using the Synopsys Debug Port
By configuring the IICE using the soft JTAG port option, the design instrumen-
tation includes a complete, JTAG-compliant TAP controller. The debugger
connects the TAP controller to four top-level I/O connections to the design.
The signal names for these connections are:

• identify_jtag_tck: The asynchronous clock signal

• identify_jtag_tms: The control signal

• identify_jtag_tdi: The serial data IN signal

• identify_jtag_tdo: The serial data OUT signal

Direct JTAG Connection
Commonly, the host computer is directly connected to the four JTAG signals
on the programmable chip as follows:

• The four JTAG I/O signals on the programmable chip are connected to a
header on the circuit board that contains the programmable chip.

• A standard JTAG cable is connected to the four pins on the circuit board
header.

• The other end of the JTAG cable is connected to the host computer.

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
74 Synopsys Confidential Information October 2020

Serial JTAG Connection
A programmable chip using the Synopsys FPGA Debug Port can also be
connected in a serial chain. To allow the debugger to communicate with the
device, the configuration of the device chain must be successfully
auto-detected or declared using the chain command (see the Debug Environ-
ment Reference Manual). The steps for making a serial cable connection are
the same as a direct cable connection described above.

JTAG Clock Considerations
The JTAG clock signal syn_tck on the JTAG port drives many flip-flops in the
instrumentation logic – the number depends on the instrumentation, but can
be larger than 1000 flip-flops. Consequently, the clock signal on the program-
mable device must be able to drive large numbers of flip-flops and have
low-skew properties. If the JTAG clock signal is not handled correctly, it is
likely that the instrumentation will act erratically.

Most programmable devices have the ability to route such high-fanout
signals using dedicated clock drivers and global clock distribution networks.
Different devices use different methods of accomplishing this and have
different names for this resource. Here are some guidelines:

• Some programmable devices have a number of dedicated clock I/O pins
that drive internal clock distribution networks. In this case, be sure to
connect the syn_tck signal to the chip using one of these clock I/O pins.

• Other programmable devices have clock buffers and clock distribution
networks that can use any internal signal as a clock signal. For these
technologies, the synthesis tool usually detects high-fanout signals and
implements them with a clock buffer. In this case, it is important to
make sure that the synthesis tool has worked correctly. If it does not put
the syn_tck signal into a global buffer, it may be necessary to manually
add a global buffer to this signal.

Setting the JTAG Chain
JTAG connections on an FPGA board usually chain devices together to form a
serial chain of devices. This chain includes PROMs and other FPGA devices
present on the board.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 75

The debugger automatically detects the JTAG chain at the beginning of the
debug session. You can review the JTAG chain settings by clicking the Show
Chain button in the Setup panel.

To enable the debugger to properly communicate with the target device, the
device chain must be configured correctly. If, for some reason, the JTAG
chain cannot be successfully configured, you must manually specify the
chain through a series of chain instructions entered in the console window.

Configuring a device chain is very similar to the steps required to program the
device with a JTAG programmer.

For the debugger, the devices in the chain must be known and specified. The
following information is required to configure the device chain:

• The number of devices in the JTAG chain.

• The length of the JTAG instruction register for each device.

Instruction register length information is usually available in the bsd file for
the particular device. Specifically, it is the Instruction_length attribute listed in
the bsd file.

For the board used in developing this documentation, the following sequence
of commands was used to specify a chain consisting of a PROM followed by
the FPGA. The instruction length of the PROM is 8 while the instruction
length of the FPGA is 5. Note that the chain select command identifies the
instrumented device to the system. Identifying the instrumented device is
essential when a board includes multiple FPGAs.

Note: The names PROM and FPGA have no meaning to the debugger –
they simply are used for convenience. The two devices could be

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
76 Synopsys Confidential Information October 2020

named device1 and device2, and the debugger would function
exactly the same.

Again, the sequence of chain commands is specific to the JTAG chain on your
board; these commands are the chain commands for the board used to
develop this document – the board you use will most likely be different.

Type the following sequence in the console window of the debugger:

chain clear
chain add prom 8
chain add fpga 5
chain select fpga
chain info

The following figure shows the results of the above command sequence.

Adding Microchip Soft JTAG TAP Controllers
This procedure describes how to select and set up a specific Flashpro
programmer, when multiple FlashPro programmers are connected to a
common host.

The com cableoptions option allows you to select one among the multiple
FlashPro programmers connected to a common host:

com cableoptions Microchip_BuiltinJTAG_port <string>
The string represents the FlashPro programmer’s port name.

You can identify the port name and proceed to use the cable option as
described below:

1. Start FlashPro.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 77

2. Scan the programmers that are connected to the host and note down the
port name (for example—usb32344).

3. Close FlashPro.

4. Start Identify debugger.

5. Define the cable type as:

com cabletype Microchip_BuiltinJTAG

6. Define the cable option using the FlashPro programmer port name that
you identified in step 2. For example:
com cableoptions Microchip_BuiltinJTAG_port usb32344

Note: For Flashpro4 programmer ports, the port name must include
the usb prefix, as shown in the example above. Flashpro5 ports
on the other hand, must NOT include the prefix. For example:
com cableoptions Microchip_BuiltinJTAG_port S201R1NLS.

7. Check communication with the port using the com check command. If the
check is successful, you can start the debugger and debug the design.

Note that you cannot change to a different port by just re-running step 6 with
the new port’s name. To select a different port, you need to stop the server
and perform the following steps:

1. Stop the server using the jtag_server stop -forced 0 command. If this
does not work,

use -forced 1.

2. Define the new cable option. For example:

com cableoptions Microchip_BuiltinJTAG_port usb32388

3. Run com check to check communication with the new port.

Adding Multiple FlashPro Programmers through GUI
This feature enables the user to select multi FlashPro devices to debug
respective projects for Microchip devices using the identify tool.

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
78 Synopsys Confidential Information October 2020

The following steps describe how to select multiple FlashPro programmers in
the Identify Debugger tool.

1. Create two individual projects for two boards. For example, for boards
with port number usb92433 and usb88057. The port numbers are
provided to demonstrate the features.

– Synplifyusb92433.prj

– Synplifyusb88057.prj

2. Open project Synplifyusb92433.prj to debug the board with usb92433 JTAG
port number.

3. From the Debugger menu, select Setup Debugger. The Setup and Preferences
window is displayed.

4. In the Setup and Preferences dialog box click the Communications tab and
click Cable Settings.

5. Click the Detect button (Ignore any warning or errors) and select the
JTAG port values.

6. Select Microchip_BuiltinJTAG from the Cable Type drop-down list.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 79

7. Select respective JTAG port for the opened project from available JTAG
ports and click Ok.

8. Perform the regular debugging steps to debug the selected project.

9. Follow the same steps to debug other projects.

JTAG Communication Debugging
The debugger performs a number of diagnostic communication tests. The
first time the debugger connects to the on-chip TAP controller, it performs
extensive communication tests. Later, every time the run function is executed,
either by clicking the Run button or executing the run command, simpler and
faster tests are executed.

A list of communication related error messages with some additional explana-
tions are listed below.

Basic Communication Test
This test sends a pattern of ones and zeros to the chip and examines the
return values

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
80 Synopsys Confidential Information October 2020

• ERROR: Communication is stuck at zero. Check the cable connection.
It is likely that the debugger is unable to communicate with the instru-
mented chip. This error is usually a cable connection problem, or the
cable type is not set correctly.

• ERROR: Communication is stuck at one. Check the cable connection.
This has the same reasons as a stuck-at-zero communication error.

• ERROR: Communication is returning incorrect IR data. Check the cable connection.
If this error is received, then the previous two errors were NOT received
as the communication is returning a mixture of ones and zeros.
However, the data is not coherent and again the communication connec-
tion is suspect.

• ERROR: Communication problem - Data sent is not the same as data received.
This test verifies that the debugger can shift data into the instrumented
chip and receive the same data back. If this error occurs, there is again a
problem with your cable connection or the cable type setting is incorrect.
Also, the JTAG chain may be experiencing noise immunity/signal integ-
rity problems. As a troubleshooting step, select a reduced JTAG clock
frequency by clicking Port settings in the debugger project window and
selecting a lower clock frequency.

The last two errors can also be the result of a syn_tck signal that is not using a
high-fanout clock buffer resource, and thus may show large clock skew
properties. If you are using a parallel port, make sure that you have selected
the correct port.

On-chip Identification Register
The instrumentor adds hardware to implement an on-chip identification
register.

• ERROR: Cannot find valid instrumented design.
The debugger cannot verify that the identification register on the instru-
mented design is correct or even exists. This error usually means that
the design on the programmable chip is not the instrumented version of
the design.

• ERROR: Instrumented design on FPGA differs from design loaded into Identify
Debugger.
The debugger verified that the chip is instrumented but the instrumen-
tation does not match the design that was loaded into the debugger.

Setting up the Hardware Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 81

JTAG Chain Tests
The debugger attempts to verify the device chain (as defined by the chain
auto-detector or the chain command).

• ERROR: No hardware devices were found. Check the cable connection.
No devices can be seen in the JTAG identification register chain.
Probably a bad cable connection, or the cable type is incorrect.

• ERROR: The actual number of devices differs from the defined number: ACTUAL: XX
DEFINED: YY
The number of devices seen in the JTAG chain is XX, but the debugger
was expecting the number to be YY (as was defined using the chain
command). The chain description is incorrect.

• ERROR: The actual IR chain size differs from the defined size: ACTUAL: XX
DEFINED: YY
The total number of JTAG identification register bits is incorrect. The
debugger measured the hardware to have XX bits, but was expecting YY
bits (as was defined using the chain command). Review your chain
configuration.

• ERROR: Communication with device number XX is not correct. Check your chain
setup.
If this error appears, the previous error does not appear. Thus, the total
JTAG instruction register length is correct, but the size of the instruc-
tion register of device number XX is incorrect. It is likely that the order
of your devices is incorrect. Review your chain settings.

Viewing JTAG Chain Settings
To view the UMRBus and JTAG chain settings, click the Show chain button in
the Communication settings section of the design-view window. Normally, the
chain settings for the devices are automatically extracted from the design.
When the chain settings cannot be determined, they must be created and/or
edited using the chain command in the console window.

The settings shown below are for a 2-device chain that has JTAG identifica-
tion register lengths of 8 and 10 bits. In addition, the device named fpga has
been enabled for debugging.

LO

Chapter 3: Setting up and Running Debug Setting up the Hardware

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
82 Synopsys Confidential Information October 2020

Setting the Waveform Viewer Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 83

Setting the Waveform Viewer
The waveform display control displays the sampled data in a waveform. For
details, see the application note, Interfacing Your Waveform Viewer with the
Debugger on the Synopsys website.

This section describes the waveform settings and steps to install a waveform
viewer if not installed earlier.

• Waveform Settings, on page 83

• Installing the Waveform Viewer, on page 85

Waveform Settings
To define the waveform settings:

1. From the Debugger menu, select Setup debugger or click the Setup debugger
icon on the toolbar. The Setup and Preferences dialog box is displayed.

LO

Chapter 3: Setting up and Running Debug Setting the Waveform Viewer

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
84 Synopsys Confidential Information October 2020

Note: The Synopsys DVE and FSDB waveform viewers are available on
Linux platforms only.

2. Select the Automatically open waveform viewer checkbox, the waveform will
be displayed in the selected default waveform viewer.

3. Set the Period (ns) for the waveform display and it is independent of the
design speed.

4. Enter the Maximum number of FSDB files to generate.

5. Select the Show Equivalent signals in waveform checkbox to display the
equivalent signals.

6. Select the Show cycle in waveform checkbox to display the clock cycles in
the waveform.

Setting the Waveform Viewer Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 85

7. Select the Show sample clock in waveform checkbox to display the
instrumented sample clocks.

8. Select the Separate data with ‘X’ in waveform for qualified triggering/sampling
checkbox to separate and display the data as specified.

9. Select the order of the unmapped LL signal bus from the drop-down list.

10. Select Enum representation format from the drop-down list.

11. Set the threshold range for the waveform dialog.

Installing the Waveform Viewer
If you select a waveform viewer from the Waveform preference dialog box that is
not installed, an error message is displayed when you attempt to invoke the
viewer. To install the waveform viewer:

1. Open the Setup and Preferences dialog box (select Debugger > Setup
debugger).

2. Select the desired waveform viewer from the drop-down menu.

Make sure that the selected simulator is installed on your machine and that
the path to the executable is set by your $PATH environment variable.

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
86 Synopsys Confidential Information October 2020

Debugger Operations
This section describes the following debugger operations:

• Activating/Deactivating an Instrumentation, on page 86

• Selecting Multiplexed Instrumentation Sets, on page 88

• Activating/Deactivating Folded Instrumentation, on page 89

• Run Command, on page 91

• Sampled Data Compression, on page 92

• Sample Buffer Trigger Position, on page 93

• Sampled Data Display Controls, on page 94

• Saving and Loading Activations, on page 98

• Configuring Triggering Modes, on page 100

Activating/Deactivating an Instrumentation
The trigger conditions used to control the sampling buffer comprise break-
points, watchpoints, and counter settings. Activation and deactivation of
breakpoints and watchpoints are discussed in this section.

Setting a Watchpoint Expression
Any signal that has been instrumented for triggering can be activated as a
watchpoint in the debugger. A watchpoint is defined by assigning one or two
HDL constant expressions to it. When a watched signal changes to the value
of its watchpoint expression, a trigger event occurs.

1. Click-and-hold on the signal or the watchpoint icon next to the
signal or click-and-hold on the signal or the P icon next to the signal for
partial bus signal

2. Select Conditions > Triggering.

3. From the Set trigger expressions dialog box, enable the required condition
and provide values.

4. Click Ok.

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 87

There are two forms of watchpoints: value and transition.

• A value watchpoint triggers when the watched signal attains a specific
value.

• A transition watchpoint triggers when the watched signal has a specific
value transition.

For information on the trigger conditions, see the Debug Environment Refer-
ence Manual.

Deactivating a Watchpoint
By default, a watchpoint that does not have a watchpoint expression is
inactive. A watchpoint that has a watchpoint expression can be temporarily
deactivated. A deactivated watchpoint retains the expression entered, but is
not armed in the hardware and does not result in a trigger.

To deactivate a watchpoint:

• Click-and-hold on the signal or the associated watchpoint icon. The
watchpoint pop-up menu appears.

To deactivate a partial-bus watchpoint:

• Click-and-hold on the signal or the associated “P” icon and select the
bus segment from the list of segments displayed. The watchpoint popup
menu appears.

The Watch menu selection will have a check mark to indicate that the watch-
point is activated. Click on the Watch menu selection to toggle the check mark
and deactivate the watchpoint.

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
88 Synopsys Confidential Information October 2020

Reactivating a Watchpoint
To reactivate an inactive watchpoint:

1. Click-and-hold on the signal or the associated watchpoint or “P” icon.
Clicking the watchpoint icon redisplays the watchpoint pop-up menu

Clicking the P icon, lists the partial bus segments; select the bus
segment from the list displayed to display the watchpoint popup menu.

2. Click on the Watch menu selection to toggle the check mark and
reactivate the watchpoint.

Activating a Breakpoint
Instrumented breakpoints are shown in the debugger as green icons in the
left margin adjacent to the source-code line numbers. Green breakpoint icons
are inactive breakpoints, and red breakpoint icons are active breakpoints. To
activate a breakpoint, click on the icon to toggle it from green to red; to
deactivate an active breakpoint, click on the breakpoint icon to toggle it from
red to green.

Selecting Multiplexed Instrumentation Sets
Multiplexed groups of instrumented signals defined in the instrumentor can
be individually selected for activation in the debugger. For information on
defining a multiplexed group in the instrumentor, see Instrumenting the
Design, on page 19).

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 89

Using multiplexed groups can substantially reduce the amount of pattern
memory required during debugging when all of the originally instrumented
signals are not required to be loaded into memory at the same time.

To activate a predefined multiplexed group in the debugger:

1. Select Debugger > IICE > Configure IICE Settings or click the Configure IICE
Settings icon to display the dialog box.

2. From the drop-down menu in the Mux Group section, select the group
number to be active for the debug session.

The signals group command can be used to assign groups from the console
window (see signals in the Debug Environment Reference Manual).

Activating/Deactivating Folded Instrumentation
If your design contains entities or modules that are instantiated more than
once, the design is termed to have a “folded” hierarchy (folded hierarchies
also occur when replicated instances are created within a generate loop). By
definition, there will be more than one instance of every signal and break-
point in a folded entity or module. During instrumentation, it is possible to
instrument more than one instance of a signal or breakpoint.

When you debug an instrumented design with replicated instrumented
instances of a breakpoint or signal, the debugger allows you to
activate/deactivate each of these instrumented instances independently.

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
90 Synopsys Confidential Information October 2020

Independent selection is accomplished by displaying a list of the instru-
mented instances when the breakpoint or signal is selected for activa-
tion/deactivation.

Activating/Deactivating a Folded Watchpoint
The following example consists of two instances of the repeated_unit entity. The
source code of repeated_unit is displayed. In this folded entity, multiple
instances of the signal val and the breakpoints are instrumented.

To activate/deactivate instances of the val signal:

1. Select the watchpoint icon next to the signal.

A list is displayed with two instrumented instances of the signal val,
available for activation/deactivation:

/rtl/cnt_inst0/val
/rtl/cnt_inst1/val

2. Click on the appropriate line in the list box to bring up the watchpoint
menu to activate/deactivate the folded watchpoint.

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 35 and Displaying Data from Folded Signals, on
page 96.

Activating/Deactivating a Folded Breakpoint
To activate/deactivate instances of the breakpoint, select the icon next to line
number. A list will pop up with the two instrumented instances of the break-
point available for activation/deactivation.

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 91

For example, to activate/deactivate an instance of a breakpoint on line 24,
select the icon next to line number 24.

/rtl/inst0/rtl/process_18/if_20/if_23/repeated_unit.vhd:24
/rtl/inst1/rtl/process_18/if_20/if_23/repeated_unit.vhd:24

Either of these instances can be activated/deactivated by clicking on the
appropriate line in the list box.

Run Command
The Run command sends watchpoint and breakpoint activations to the IICE,
waits for the trigger to occur, receives data back from the IICE when the
trigger occurs, and then displays the data in the source window.

To execute the Run command for the active IICE (or a single IICE):

• Select Debugger > Run from the menu or click the Run button.

If data compression is to be used on the sample data, see Sampled Data
Compression, on page 92.

To execute the Run command for multiple IICE units

1. Enable the individual IICE units in the Run panel by checking their
corresponding boxes.

2. Click Run button or select Debugger > Run from the menu.

After the Run command is executed, the sample of signal values at the trigger
position is annotated to the HDL code in the RTL panel. This data can be
displayed in a waveform viewer with the waveform command or written out to
a file with the write vcd/fsdb command (see the corresponding command
descriptions in the Debug Environment Reference Manual).

Note: In a multi-IICE environment, you can edit and run other IICEs
while an IICE is running.

The following example shows a design with one breakpoint activated, the
breakpoint triggered, and the sample data displayed. The small green arrow
next to the activated breakpoint in the example indicates that this breakpoint
was the actual breakpoint that triggered. Note that the green arrow is only
present with simple triggering.

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
92 Synopsys Confidential Information October 2020

1.

Sampled Data Compression
A data compression mechanism is available to compress the sampled data to
effectively increase the depth of the sample buffer without requiring any
additional hardware resources. When enabled, data compression engine will
ignore the sampled data that remains unchanged between the sampled
cycles. A sample is automatically taken after 64 unchanging cycles.

To enable the data compression from the project view:

1. Select Debugger > Setup debugger > Instrumentation tab.

2. Click the IICE button to display the Enhanced Settings for IICE Unit dialog
box

3. Click the Enable check box in the Data Compression section or enter the
following command:

iice sampler -datacompression 1
Data compression must be set prior to executing the Run command and
applies to all enabled IICE units. Data compression is not available when
using state-machine triggering, or qualified sampling or always-armed
sampling.

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 93

Sample Data Masking
A masking option is available with data compression to selectively mask
individual bits or buses from being considered as changing values within the
sample data. This option is only available through the Tcl interface using the
following syntax:

iice sampler -enablemask 0 |1 [-msb integer -lsb integer] signalName

For example, the following command masks bits 0 through 3 of vector signal
mybus[7:0] from consideration by the data compression mechanism:

iice sampler -enablemask 1 -msb 3 -lsb 0 mybus
Similarly, to reinstate the masked signals in the above example, use the
command:

iice sampler -enablemask 0 -msb 3 -lsb 0 mybus
4.

Sample Buffer Trigger Position
The purpose of the activated watchpoints and breakpoints is to cause a
trigger event to occur. The trigger event causes sampling to terminate in a
controlled fashion. Once sampling terminates, the data in the sample buffer
is communicated to the debugger and then displayed in the GUI.

The sample buffer is continuously sampling the design signals. Conse-
quently, you can control the exact relationship between the trigger event and
the termination of the sampling. Currently, the debugger supports the
following trigger positions relative to the sample buffer:

• Early

• Middle

• Late

You can determine the correct setting for the trigger position, as required. For
example, if the design behavior of interest usually occurs after a particular
trigger event, set the trigger position to “early.” See the Debug Environment
Reference Manual, for more information.

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
94 Synopsys Confidential Information October 2020

Sampled Data Display Controls
The sampled data display controls are used to navigate through the data
values captured by the sample buffer. All sample buffer data is tagged with a
cycle number based on when the data item was stored in the sample buffer
relative to the trigger event. The data item stored at the trigger event time has
cycle number 0, the data item stored one sample clock cycle after the trigger
has cycle number 1, and the data item stored one sample clock cycle before
the trigger has cycle number -1. The data display procedures allow you to
retrieve data values for a specific cycle number.

The sampled data displayed in the debugger is controlled by the value given in
the Cycle text field. You can manually change the cycle number by typing a
number in the entry field. Or use the up and down arrows to the right of the
cycle number increment or decrement the cycle number for each click.

To reset the cycle number to the default position (the zero time
position), use the Debug > Cycle > Home menu selection or click on the
Goto trigger event in sample history icon.

Radix
The radix of the sampled data displayed can be set to any of a number of
different number bases. To change the radix of a sampled signal:

1. Right-click on the signal name or the watchpoint or P icon and select
Change signal radix to display the following dialog box.

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 95

2. Select the desired radix from the Radix drop-down menu.

3. Click OK.

Note: You can change the radix before the data is sampled. The watch-
point signal value will appear in the specified radix when the
sampled data is displayed.

Selecting default resets the radix to its initial intended value. Note that the
radix value is maintained in the “activation database” and that this informa-
tion will be lost if you fail to save or reload your activation. Also, the radix set
on a signal is local to the debugger and is not propagated to any of the
waveform viewers.

Note: Changing the radix of a partial bus changes the radix for all bus
segments.

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
96 Synopsys Confidential Information October 2020

Displaying Data from Folded Signals
If your design contains entities or modules that are instantiated more than
once, it is termed to have a “folded” hierarchy (folded hierarchies also occur
when multiple instances are created within a generate loop). By definition,
there will be more than one instance of every signal in a folded entity or
module. During instrumentation, it is possible to instrument more than one
instance of a signal.

When debugging an instrumented design with multiple instrumented
instances of a signal, the debugger allows you to display the data values of
each of these instrumented signals.

Because multiple data values cannot be displayed at the same location, a
single data value is always displayed. For multiply instrumented signals, the
debugger displays an ellipsis (...) to indicate that there are multiple values
present. To display all of the instrumented values, click-and-hold on the
ellipsis indicator.

The example below consists of a top-level entity called top and two instances
of the repeated_unit entity. In the example, the source code of repeated_unit is
displayed, and both of the lists of instances of the signal val have been instru-
mented. The two instances are /rtl/inst0/val and /rtl/inst1/val, and their data
values are displayed in the pop-up window as shown in the following figure:

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 35 and Activating/Deactivating Folded Instrumen-
tation, on page 89.

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 97

Displaying Data for Partial Buses
When debugging designs with partially instrumented buses, the debugger
displays the data values of each of the instrumented segments.

To display the instrumented values for the individual bus segments, position
the cursor over the composite bus value. The individual partial bus values
are displayed in a tooltip in the specified radix as shown in the following
figure.

In the above figure, the question marks (?) in the composite bus value (64'
h3fad7910d1????36) indicate that the corresponding segment (data_in [23:8]) has
not been instrumented.

Displaying Data for Partial Instrumentation

In the debugger, the value for a fully instrumented record or structure is
shown with a value for each field, in field order. The following figure shows
instrumented signal sig_iport_P_Struc_instr. When displaying a partially instru-
mented bus, the value U is used for the uninstrumented slices. This same
notation is used to show the data values for a partially instrumented record
or structure (the value for each instrumented field is listed in field order, and
an uninstrumented field value is shown as a U).

LO

Chapter 3: Setting up and Running Debug Debugger Operations

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
98 Synopsys Confidential Information October 2020

The Find dialog in the debugger shows a partially instrumented signal with
the P icon. You can set the trigger expressions on the fields instrumented for
triggering in the same manner as if the signal was fully instrumented (that is,
select the signal, right-click to bring up the dialog, and select the option to set
the trigger expression).

Saving and Loading Activations
The debugger includes a capture and replay function that allows you to save and
load a set of enabled watchpoints and breakpoints referred to collectively as
an activation. Each activation can additionally include the sample data set that
was captured for a given trigger condition. Activations are stored in files with
an adc extension in a project’s instrumentation subdirectory.

Saving an Activation
An activation can be explicitly saved or saved on exit. To explicitly save an
activation:

1. Enable the set of watchpoints and breakpoints for the activation.

2. If the sample data set is to be included, run the debugger to collect the
sample data.

3. Select File > Save activations in the menu bar to bring up the following
dialog box.

Debugger Operations Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 99

4. Enter (or select) an activation name in the adjacent field. Selecting an
existing activation from the drop-down menu overwrites the selected
activation.

5. Click OK to save the activation.

Loading an Activation
To load an existing activation:

1. Expand (if necessary) the hierarchy to display the list of activations as
shown in the following figure.

2. Click on the desired activation and select Ok.

Autosaving Current Activation
By default, when you exit the debugger without explicitly saving an activa-
tion, the active activation is automatically saved to the last_run.adc file. This
file is automatically loaded the next time you open the project. By selecting
the Auto-save trigger settings check box in the General tab, the active activation
is automatically saved to the last_run.adc file.

Note: To save a specific activation, always use Save activations to explic-
itly name the project file and prevent the data from overwriting
the last_run.adc file.

To disable the auto-save feature, uncheck the Auto-save trigger settings check
box in the Setup and Preferences dialog box (select Debugger > Setup debugger >
General tab).

LO

Chapter 3: Setting up and Running Debug Configuring Triggering Modes

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
100 Synopsys Confidential Information October 2020

Configuring Triggering Modes
The triggering modes can be broadly classified as simple triggering mode and
the complex triggering mode. The simple mode allows comparing signals to
values (including don’t cares) and then begins triggering when the signals
match those values. This scheme can be enhanced by using breakpoints to
denote branches in control logic. If a breakpoint is enabled, this particular
branch must be active at the same time that the signals match their respec-
tive values. For more information on triggering modes, see Adding Triggers,
on page 45.

• State Machine based Triggering, on page 100

• Qualified Sampling, on page 104

• Always-Armed based Triggering, on page 105

• Sampled Data Compression, on page 105

• Selecting Cross Triggering Mode, on page 106

• Debugging with the Complex Counter, on page 107

• Importing External Triggers, on page 108

• Exporting IICE Trigger Signal, on page 108

State Machine based Triggering
You can set up a state-machine trigger during instrumentation and then
program the state machine dynamically during debug to create a complex,
design-specific trigger.

This section describes:

• Creating State Machine Trigger, on page 101

• Defining State Machine from Macro Description, on page 103

• Cross Triggering with State Machines, on page 104

Configuring Triggering Modes Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 101

Creating State Machine Trigger
The debugger includes a graphical state-machine editor that is available
when state-machine triggering is enabled for the active IICE unit on the IICE
Controller tab in the instrumentor. See the Debug Environment Reference
Manual for more information.

1. Click the Configure state machine icon in the debugger toolbar. Clicking
the icon displays the Configure State Machine dialog box for the selected
IICE.

Note: The Configure state machine icon will be disabled if state-machine
triggering was not selected in the instrumentor when the design
was instrumented and an error message will be generated if more
than 10 states are defined.

Each state is defined in an individual entry field based on the number of
states defined in the instrumentor. For each entry, you can add, edit, or
remove transitions from that state using the transition editing icons in
the upper left corner of the dialog box.

2. Click the Add a new transition icon to define or redefine the state machine.
A panel is displayed on the right side to define the state machine.

Each transition includes either one or two actions and a condition.

LO

Chapter 3: Setting up and Running Debug Configuring Triggering Modes

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
102 Synopsys Confidential Information October 2020

3. Enter the Transition Expression in the corresponding field.

The conditions provided in the following table are available for defining
state transition expressions.

4. Click OK in the initial Statemachine Editor dialog box when the
state-machine triggering condition has been defined.

Note: You can view the corresponding state-machine commands in the
Tcl window using the statemachine info -all command.

Condition Description

c0 ... cN References trigger event in active IICE unit

cntnull True when counter is equal to 0 (available only when
counter is instrumented)

iiceID References trigger event from a second IICE unit for cross
triggering (cross triggering must have been enabled when
the design was instrumented)

titriggerInID References external trigger originating from an IICE module
in another FPGA or on-board external logic

Boolean Boolean operators used to define state-machine events (see
the Debug Environment Reference Manual.)

Configuring Triggering Modes Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 103

5. Select the Transition Actions and click Ok to save the defined triggering
conditions.

Defining State Machine from Macro Description
You can define a state machine from macro settings.

1. Click the Configure state machine from macro description icon.

2. Select predefined macro from the Select a macro drop-down list.

3. Specify the required conditions and counters.

4. Click Create to set the defined macro settings to the state selected.

5. Click OK after all of the parameters are entered in the Configure State
Machine dialog.

LO

Chapter 3: Setting up and Running Debug Configuring Triggering Modes

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
104 Synopsys Confidential Information October 2020

Cross Triggering with State Machines
Cross triggering allows a specific IICE unit to be triggered by one or more IICE
units in combination with its own internal trigger conditions.

1. Ensure that cross-triggering option is enabled in the instrumentor. See
Enabling Cross Triggering, on page 49.

iice controller -crosstrigger 1
2. Click the Run button in the debugger project view or the following

command in the debugger console window:

run -iice {iiceID1 iiceID2 ... iiceIDn}
For more information on state machine triggering, see the Debug Environment
Reference Manual.

Qualified Sampling
During qualified sampling, a single sample of all sampled signals is collected
each time the trigger condition is true. When a trigger condition occurs,
instead of filling the entire buffer, the IICE collects the single sample and then
waits for the next trigger to acquire the next sample. The following example
uses qualified sampling to examine the data for a given number of clock
cycles. To create a complex trigger event to perform qualified sampling:

1. Click the Setup debugger icon or select from Debugger > Setup Debugger, to
open the Setup and Preferences dialog box.

2. In the Instrumentation tab, select qualified_fill or qualified_intr from the
Sample Mode drop-down list. For more information, see
-qualified_sampling under the iice command description in the Debug
Environment Reference Manual.

See the Debug Environment Reference Manual, for the example command
sequence samples the data every N cycles beginning with the first trigger
event.

Configuring Triggering Modes Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 105

Always-Armed based Triggering
The Allow always-armed triggering check box, when checked in the instrumentor,
saves the sample buffer for the most recent trigger and waits for the next
trigger or until interrupted. When always-armed sampling is enabled, a
snapshot is taken each time the trigger condition becomes true.

To enable the always-armed based triggering, see Enabling Always-Armed
based Triggering, on page 47.

With always-armed triggering, you always acquire the data associated with
the last trigger condition prior to the interrupt. This mode is helpful when
analyzing a design that uses a repeated pattern as a trigger (for example, bus
cycles) and then randomly freezes. You can retrieve the data corresponding to
the last time the repeated pattern occurred prior to freezing. Using
always-armed sampling includes a minimal area and clock-speed penalty.

Sampled Data Compression
When enabled, data compression engine will ignore the sampled data that
remains unchanged between the sampled cycles (a sample is automatically
taken after 64 unchanging cycles).

To enable the data compression, see Enabling Sampled Data Compression, on
page 47.

Data compression must be set prior to executing the Run command and
applies to all enabled IICE units.

Note: Data compression is not available when using state-machine
triggering, or qualified or always-armed sampling.

Sample Data Masking
A masking option is available with data compression to selectively mask
individual bits or buses from being considered as changing values within the
sample data. This option is only available through the Tcl interface using the
following syntax:

iice sampler -enablemask 0|1 [-msb integer -lsb integer] signalName

LO

Chapter 3: Setting up and Running Debug Configuring Triggering Modes

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
106 Synopsys Confidential Information October 2020

For example, the following command masks bits 0 through 3 of vector signal
mybus[7:0] from consideration by the data compression mechanism:

iice sampler -enablemask 1 -msb 3 -lsb 0 mybus
Similarly, to reinstate the masked signals in the above example, use the
command:

iice sampler -enablemask 0 -msb 3 -lsb 0 mybus

Selecting Cross Triggering Mode
Cross triggering allows the trigger from one IICE unit to be used to qualify a
trigger on another IICE unit, even when the two IICE units are in different
clock domains. Cross triggering is available in both the simple triggering and
complex counter triggering modes (state-machine triggering supports cross
triggering by allowing the IICE unit IDs to be included in the state-machine
equations).

1. In the debugger tool, from the Setup and Preference dialog box, select the
Instrumentation tab.

2. Select the required Cross Trigger Mode from the drop-down list.

For the description of available options, see the Debug Environment Reference
Manual.

If the cross-trigger mode drop-down is not enabled, make sure that Allow
cross-triggering in IICE is enabled on the IICE Options tab of the instrumentor and
that you have defined more than one IICE unit. See Enabling
Complex-Counter Triggering, on page 47, for more information.

Configuring Triggering Modes Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 107

Debugging with the Complex Counter
The complex counter is used to produce complex triggering behavior. During
the debugging of the design, the complex counter is set to zero on invocation
of the debugger run command. Then, it counts events from the Master Trigger
Signal event logic in a specific way depending on the counter mode.

Finally, the counter sends a trigger event to the sample block when a termi-
nation condition occurs. The form of the termination condition depends on
the mode of operation of the counter and on the target value of the counter:

1. Select Debugger > Setup debugger > Instrumentation tab.

2. Select the counter mode from the drop-down list.

3. Enter the counter target value.

To enable the complex counter, see Enabling Complex-Counter Triggering, on
page 47.

The following table provides a general description of the trigger behavior for
the various complex counter modes. Each mode is described in more detail in
individual subsections, and examples are included showing how the modes
are used. In both the table and subsection descriptions, the counter target
value setting is represented by the symbol n.

Counter mode Target value = 0 Target value n > 0

events Illegal Stop sampling on the nth trigger event.

cycles Stop sampling on
1st trigger event

Stop sampling n cycles after the 1st trigger
event.

watchdog Illegal Stop sampling if the trigger condition is not
met for n consecutive cycles.

pulsewidth Illegal Stop sampling the first time the trigger
condition is met for n consecutive cycles.

LO

Chapter 3: Setting up and Running Debug Configuring Triggering Modes

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
108 Synopsys Confidential Information October 2020

For more description on counter modes, see the Debug Environment Refer-
ence Manual.

Disabling the Counter
According to the previous table, the counter can be disabled simply by setting
its target value to 1 and its mode to events. Then, the complex counter will
pass any received event from the Master Trigger Signal logic on to the sample
block with no additional delay.

Importing External Triggers
An import external trigger capability can be used with trigger signals origi-
nating from on-board logic external to the FPGA or from an IICE module in a
second FPGA. To enable, see Enabling Import External Triggers, on page 48.

For information on using this feature with state-machine triggering, see the
Importing External Triggers application note available on the Synopsys
website.

Exporting IICE Trigger Signal
Selecting this feature in the Instrumentor enables the master trigger signal of
the IICE hardware to be exported to the top-level of the instrumented design.
See Enabling Export IICE Trigger Signal, on page 49.

Verdi-Identify Flow Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 109

Verdi-Identify Flow
The debugger is used to generate the fast signal database (FSDB) in the Verdi
platform and to display the results through the Verdi nWave viewer. To
generate this database:

1. Instrument the design with the essential signal list (see Instrumenting
the Verdi Signal Database, on page 37).

2. Run the instrumented design in the synthesis tool and load the project
into the debugger.

3. Use the Debugger Preferences dialog box and make sure that Synopsys Verdi
nWave is selected as the default waveform viewer.

4. Setup the trigger conditions and click the Run button to download the
sample buffer.

5. Generate the fast signal database using the following command syntax:

write fsdb -iice iiceID -showequiv fsdbFilename

6. Click the Open Waveform Display icon to view the samples in the nWave
viewer.

The fast signal database file (fsdbFilename) can be imported directly back to
the Verdi platform after debugging.

LO

Chapter 3: Setting up and Running Debug Debugging with the Waveform Viewer

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
110 Synopsys Confidential Information October 2020

Debugging with the Waveform Viewer
You can use the Verdi nWave waveform viewer for data expansion and debug-
ging, once you have generated the FSDB.

1. Launch the Verdi software from the shell.
tb_run_verdi_fsdb fsdb Filename

2. Enable data expansion by clicking the DE icon () in the toolbar.

The icon is green when enabled () and yellow when disabled. The
Data Expansion engine calculates combinational values on the fly, as
they are requested.

3. Open the nWave viewer and view signals that are not in the FSDB with
the Data Expansion engine.

Debugging with the Waveform Viewer Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 111

– Click the New Waveform toolbar icon () in the main Verdi window

– Click the Get Signals icon () or select Signal > Get Signals in the
nWave window.

– In the Get Signals hierarchy browser pane, click the + icon to expand
items. The signals in bold are signals that are not in the FSDB, and
which can be expanded (calculated on the fly) by the Data Expansion
engine.

– Select the signals you want to view in the waveform viewer and click
OK to add them to the waveform. Drag left to select several signals;
make sure to include the top-level I/O port.

– In the main window, select Source > Active Annotation so that you can
see the values overlaid on the source code.

The values for all signals are now annotated. The text in purple color
are expanded signals which did not come from the FSDB file, but
were calculated. This is an example of the results:

LO

Chapter 3: Setting up and Running Debug Debugging with the Waveform Viewer

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
112 Synopsys Confidential Information October 2020

Debugging on a Different Machine Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 113

Debugging on a Different Machine
The instrumentation phase and the debugging phase can be performed on
different machines. For example, the debug machine is often located in a
hardware lab. When a different machine is used for debugging, you must
copy or transfer the exported runtime directory from the database to the lab
machine.

Since the tool set allows you to debug your design in the HDL, the debugger
must have access to the original source files. Depending on the type of your
network, the debugger may be able to access the original sources files directly
from the lab machine. If this is not possible or if the two computers are not
networked, you must also copy the original sources to the debug machine. If
the debugger cannot locate the original source files, it will open the design,
but an error will be generated for each missing file, and the corresponding
source code will not be visible in the source viewer.

Copying the source files to the debug machine can be done in two ways:

• The instrumentor can automatically include the original source files in
the exported runtime directory so that when you transfer the directory
to the lab machine, the original sources files (in the orig_sources subdi-
rectory) are included. The debugger automatically looks in this directory
for any missing source files. This preference can be set before compiling
the instrumented design by selecting Instrumentor > Instrumentation prefer-
ence and making sure that Save original source in instrumentation directory is
checked.

• The original source files can be manually copied to the lab machine or
may already exist in a different location on this machine. In this case, it
may be necessary to help locate the design files using the searchpath
command. Simply call this command from the command line before
loading the design file (debug.prj). The argument is a
semi-colon-separated (Windows) or colon-separated (Linux) list of direc-
tories in which to find the original source files.

searchpath {d:/temp;c:/Documents and Settings/me/my_design/}
The debugger only displays files that match the CRC generated at the time of
instrumentation.

LO

Chapter 3: Setting up and Running Debug Debugging on a Different Machine

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
114 Synopsys Confidential Information October 2020

Note: If there are security issues with having the original source files
on the lab machine, the instrumentor can password-protect the
original sources on the development machine for use with the
debugger.

Simultaneous Debugging Chapter 3: Setting up and Running Debug

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 115

Simultaneous Debugging
When multiple debugger licenses are available, multiple FPGAs residing on a
single, non-HAPS board can be debugged concurrently through a single
cable. This capability is based on semaphores that allow more than one
debugger to share the common port.

LO

Chapter 3: Setting up and Running Debug Simultaneous Debugging

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
116 Synopsys Confidential Information October 2020

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 117

C H A P T E R 4

Debugging Using FPGA Memory

This chapter describes debugging using FPGA memory and using mux sets:

• Using BRAM for Debugging, on page 118

• Using Mux Sets, on page 119

• Using State-Based Triggering, on page 120

• Debugging Script Example, on page 121

LO

Chapter 4: Debugging Using FPGA Memory Using BRAM for Debugging

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
118 Synopsys Confidential Information October 2020

Using BRAM for Debugging
You can use the on-board BRAM blocks to store sample data for debugging
operations. BRAM-based debug offers many advantages. It is a
platform-independent, fast, method that does not consume I/O resources. It
leverages existing system resources, so it does not require additional
hardware resources. The performance limits and width are determined by the
FPGA resources.

You can use it for any sampling frequency, but it is best suited to
high-frequency debugging.

1. Instrument the design.

– The design at the pre-instrument state (RTL-based instrumentation)
or after compile (compiled database instrumentation).

– Set the buffer type to internal memory:

iice sampler iice internal_memory
– Set simple triggering only.

2. Run through the synthesis implementation flow as usual.

The tool uses four pins per slave IICE. It automatically inserts a
cross-trigger network.

3. Run debug.

The tool uses distributed RAM blocks to store sample data. You can view
the results in a single waveform view (FSDB, VCD). It generates a
balanced network where waveforms do not need to be post-processed.

Using Mux Sets Chapter 4: Debugging Using FPGA Memory

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 119

Using Mux Sets
Multiplexed groups of instrumented signals defined in the instrumentor can
be individually selected for activation in the debugger (for information on
defining a multiplexed group in the instrumentor, see Adding Multiplexed
Groups, on page 34).

Using multiplexed groups can substantially reduce the amount of pattern
memory required during debugging when all of the originally instrumented
signals are not required to be loaded into memory at the same time.

To activate a predefined multiplexed group in the debugger:

1. Select Debugger > IICE > Configure IICE Settings or click the Configure IICE
Settings icon to display the dialog box.

2. Use the drop-down menu in the Mux Group section to select the group
number to be active for the debug session.

3. The signals group command can be used to assign groups from the
console window (see the signals command in the Debug Environment
Reference Manual).

LO

Chapter 4: Debugging Using FPGA Memory Using State-Based Triggering

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
120 Synopsys Confidential Information October 2020

Using State-Based Triggering
Perform the following steps in the debugger console window to setup a trigger
in advanced triggering mode. These steps can be done in any order.

• Setup the values for the trigger conditions using the debugger watch and
stop commands.

• Setup the trigger state machine behavior using the debugger statemachine
command.

The watch command takes an additional parameter, -condition, specifying the
trigger conditions that the given condition is intended for. This argument is
available in simple mode as well, but as there is only one trigger condition in
this case, the argument is redundant. See statemachine command in the Debug
Environment Reference Manual.

State Machine Examples
To implement a trigger behavior that triggers when the pattern on condition 1
or condition 2 (c1 or c2) becomes true for the 10th time (a setting identical to
counter mode events in the simple mode triggering), the following state
machine can be used:

statemachine addtrans -from 0 -to 1 -cntval 9
statemachine addtrans -from 1 -cond "(c1 | c2) & cntnull" -trigger
statemachine addtrans -from 1 -cond "c1 or c2" -cnten

A trigger condition requiring pattern c2 to occur 10 times after pattern c1 has
occurred, without pattern c3 occurring in between (commonly available in
logic analyzers as “Pattern 1 followed by Pattern 2 before Pattern 3”) can be
achieved with the following state machine:

statemachine addtrans -from 0 -to 1 -cond c1 -cntval 9
statemachine addtrans -from 1 -cond "c2 & cntnull" -trigger
statemachine addtrans -from 1 -to 0 -cond c3
statemachine addtrans -from 1 -cond "c2" -cnten

These behaviors can be cascaded by moving on to the next behavior instead
of triggering in the transition that has -trigger specified, as long as there are
trigger conditions and states available.

Debugging Script Example Chapter 4: Debugging Using FPGA Memory

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 121

Debugging Script Example
You can set up a script to instrument your design. This is one example of a
script that instruments the design without starting the GUI. For others, refer
to the debug examples included in the tool installation.

#Open the debugger project
set prj_path myPath/debug/debug.prj
project open $prj_path
#Set the focus to i250 debugger logic
iice current iice_dtd
#Set the sample depth, 20 signals instrumented
iice sampler -iice iice_dtd -sampledepth 500000
set keystroke Y
set i 0
while {$keystroke eq Y} {

#Time before running the Run command
set sys_time_start [clock seconds]
puts "Time before RUN command: [clock format $sys_time_start

-format %H:%M:%S]"
#Run the debugger
run -iice iice_dtd -wait
set sys_time_end [clock seconds]
set sys_time_difference [expr $sys_time_end - $sys_time_start]
puts "Time after RUN command : [clock format $sys_time_end

-format %H:%M:%S]"
puts "Sample download time : $sys_time_difference seconds"
puts "Downloading of samples to host computer is complete."
puts "Writing VCD format file of sampled data."
write vcd -iice iice_dtd -comment {Instrumentor-created

VCD dump} -gtkwave -noequiv debug$i.vcd
incr i
puts "Continue Y/N"
set keystroke [gets stdin]
puts $keystroke

}

LO

Chapter 4: Debugging Using FPGA Memory Debugging Script Example

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
122 Synopsys Confidential Information October 2020

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 123

Index

A
activations

auto-saving 114
loading 114
saving 113

B
blocks

JTAG communication 83
boundary-scan registers 86
BRAM

debug memory 136
IICE buffer type 54

breakpoint icon
color coding 37

breakpoints
activating 101
in folded hierarchy 36
instance selection 37
selecting 36

buffer types
IICE 54

buffers
instrumenting restrictions 27

buses
instrumenting partial 28

C
cable type 70
cables

connection 78
client-server configuration 73
communications settings 70
complex counter 51

disabling 123
modes 122
size 51

Configure IICE dialog box 130
console window operations 43
cross triggering 52, 119, 121, 134

enabling 119

D
data compression 51, 107, 120

masking 107
DDR3

memory card for debug 54
Debugger tool

invoking 96
debugging

on separate machines 132
performance 136
using BRAM 136

design flow 9
designs

writing instrumented 18
dialog boxes

Configure IICE 130
directories

instrumentation 42

E
essential signal database 35

F
fast signal database 124
files

idc 24
IICE core 42
last_run.adb 114
project 47

folded hierarchy 33
folded signals 111

Index

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
124 Synopsys Confidential Information October 2020

folded watchpoints 104
FPGA synthesis tools, environment for

Identify 9

H
hierarchy

folded 33

I
idc file

editing 24
identification register 93
IICE

buffer type 54
cross triggering 119
JTAG connection 83

IICE parameters
individual 130

IICE units
cross triggering 52, 121

instrumentation
description 8
partial records 31
post-compile 24

instrumentation directory 42
instrumenting partial buses 28
instrumentor

launching 21
running after compilation 24

J
JTAG

chain tests 94
communication block 83
communication test 92
debugging 80, 92
direct connection 85
serial connection 86

JTAG chain
settings 94

JTAG registers 86

L
last_run.adb file 114

M
multi-IICE

tabs 130
multiple signal values 111, 112
multiplexed groups

assigning 32
selecting 102

O
original source files

searchpath 132
original sources 132

P
parameterized modules

instrumenting 24
partial buses

instrumenting 28
post-compile instrumentation 24
pre-configured triggers 106
project files 47
projects

instrumenting 47

Q
qualified sampling 119

R
radix

sampled data 109
records

partially instrumented 31
registers

boundary scan 86
restrictions

instrumenting buffers 27
run command 105

Index

Identify for Microchip Edition User Guide © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 125

S
sample buffer 109

trigger position 108
sample modes 119
sampled data

changing radix 109
compressing 51, 107, 120
display controls 109
masking 107

sampling
in folded hierarchy 33

sampling signals 26, 27, 33, 36, 38, 41
settings

JTAG chain 94
signal values

displaying multiple 111, 112
signals

disabling sampling 28
exporting trigger 123
folded 111
instance selection 34
multiply instrumented 111, 112
partially instrumented 112
sampling selection 26, 27, 33, 36, 38, 41

source files
copying 132

state machines
triggering 138

synthesizing designs 42

T
TAP controller 84
tools

invoking Debugger 96
trigger signal

exporting 123
triggering

between IICEs 119
modes 49, 115
state machine 138

triggers
complex 51
pre-configured 106

U
UMRBus 80

V
Verdi nWave viewer 124, 127
Verdi platform 35

W
watch icon

color coding 34
watchpoints

activating 99, 101
deactivating 100
folded 104

waveform display 96
waveform viewers

Verdi 124

LO

Index

© 2020 Synopsys, Inc. Identify for Microchip Edition User Guide
126 Synopsys Confidential Information October 2020

	Instrumentor and Debugger for Microchip User Guide
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	The Design Flow
	About Design Verification
	Identify Instrumentor and Debugger
	Identify Design Flow
	Launching the Instrumentor Tool
	Launching from the Synthesis Tool GUI
	Launching with a Tcl Command or in Batch Mode
	Invoking the Tool from the Operating System

	Launching the Identify Tool
	Launching from the Synthesis Tool GUI
	Launching with a Tcl Command or in Batch Mode
	Invoking the Tool from the Operating System

	Instrumenting the Design
	The Instrumentation Flow
	Planning Instrumentation and Debugging
	Instrumenting the Design
	Instrumenting Signals Before Compile
	Instrumenting a Netlist After Compile

	Adding Instrumentation
	Selecting Signals for Data Sampling
	Instrumenting Buses
	Adding Partial Instrumentation
	Adding Multiplexed Groups
	Sampling Signals in a Folded Hierarchy
	Instrumenting the Verdi Signal Database
	Selecting Breakpoints
	Selecting Breakpoints in Folded Hierarchies
	Configuring the IICE
	Synthesizing Instrumented Designs
	Capturing Commands from the Tcl Script Window

	Working with IICE Files
	Adding IICE
	Defining IICE/Editing IICE
	Deleting an IICE Unit
	Generating an IICE File

	Adding Triggers
	Enabling State Machine based Triggering
	Enabling Qualified Sampling
	Enabling Always-Armed based Triggering
	Enabling Sampled Data Compression
	Enabling Complex-Counter Triggering
	Enabling Import External Triggers
	Enabling Export IICE Trigger Signal
	Enabling Cross Triggering
	Remote Triggering

	Selecting Buffer Type
	Support Limitations
	VHDL Instrumentation Limitations
	watch enable -iice IICE -condition 0 /my_bus {1010}
	Verilog Instrumentation Limitations
	adder.v File
	adder8.v File
	adder16.v File
	SystemVerilog Instrumentation Limitations
	Interface

	Setting up and Running Debug
	Setting up the Hardware
	Basic Communication Connection
	JTAG Communication Interface

	Setting the Waveform Viewer
	Waveform Settings
	Installing the Waveform Viewer

	Debugger Operations
	Activating/Deactivating an Instrumentation
	Selecting Multiplexed Instrumentation Sets
	Activating/Deactivating Folded Instrumentation
	Run Command
	Sampled Data Compression
	Sample Buffer Trigger Position
	Sampled Data Display Controls
	Saving and Loading Activations

	Configuring Triggering Modes
	State Machine based Triggering
	Qualified Sampling
	Always-Armed based Triggering
	Sampled Data Compression
	Selecting Cross Triggering Mode
	Debugging with the Complex Counter
	Importing External Triggers
	Exporting IICE Trigger Signal

	Verdi-Identify Flow
	Debugging with the Waveform Viewer
	Debugging on a Different Machine
	Simultaneous Debugging

	Debugging Using FPGA Memory
	Using BRAM for Debugging
	Using Mux Sets
	Using State-Based Triggering
	State Machine Examples

	Debugging Script Example
	Index

	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

