

 MIV_RV32 Migration Guide

Introduction
This document describes the Libero® SoC design migration process for Mi-V Soft Processors. The legacy
CoreRISCV_AXI4, MIV_RV32IMA_L1_AHB, MIV_RV32IMA_L1_AXI, and MIV_RV32IMAF_L1_AHB soft processor
cores are to be replaced with a single highly-configurable MIV_RV32 soft processor core. The objective of this
document is to ease the customer Hardware (HW) and Firmware (FW) migration process to the MIV_RV32 platform.

In this document, the CoreRISCV_AXI4, MIV_RV32IMA_L1_AHB, MIV_RV32IMA_L1_AXI, and
MIV_RV32IMAF_L1_AHB soft processor cores are collectively referred to as MIV_Legacy cores. The MIV_RV32IMC
v2.1.100 and MIV_RV32 v3.0.100 or greater are collectively referred to as MIV_RV32, unless otherwise stated.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 1

Table of Contents

Introduction...1

1. Reasons to Migrate... 3

1.1. MIV_RV32 Core... 3
1.2. MIV_RV32 HAL.. 3

2. Migrating Hardware Configurations...4

2.1. Peripherals Connected to the MEM Interface.. 4
2.2. Peripherals Connected to the MMIO Interface...8
2.3. Mirrored Master Interfaces... 9
2.4. Interfaces and Memory Maps... 11
2.5. System Time...28
2.6. Debug...31
2.7. ECC..33
2.8. Interrupts.. 34
2.9. RISC-V Extensions...37

3. Migrating Software Projects.. 41

3.1. Prerequisites ... 41
3.2. Recommended Migration Process... 41
3.3. Example of Recommended Migration Process ... 41
3.4. Updating the MIV_RV32 HAL...45
3.5. Defining the Core to the HAL... 47
3.6. Interrupts.. 50
3.7. MIV_RV32 Extensions... 51
3.8. Maintaining Performance in Code Implementations From MIV_Legacy.................................... 52

4. Revision History.. 56

The Microchip Website...57

Product Change Notification Service..57

Customer Support.. 57

Microchip Devices Code Protection Feature.. 57

Legal Notice... 57

Trademarks.. 58

Quality Management System... 58

Worldwide Sales and Service...59

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 2

1. Reasons to Migrate
The following sections explain why an existing Libero SoC and accompanying Software design should be migrated to
MIV_RV32.

1.1 MIV_RV32 Core
The CoreRISCV_AXI4 core is no longer recommended for new designs. The MIV_RV32 IMA_L1_AHB/MIV_RV32
IMA_L1_AXI/MIV_RV32 IMAF_L1_AHB Mi-V cores are minimally configurable, and the unused features are left in
place during post Synthesis. If the requirement is low resource and medium performance without the need for cache,
the MIV_RV32 core should be used. Where cache is required, the MIV_Legacy core should be retained. The
MIV_RV32 will be enhanced over time to supersede the MIV_Legacy cores.

1.2 MIV_RV32 HAL
MIV_RV32 HAL v3.0 or greater contains bug fixes and adds support for the MIV_RV32 core.

Reasons to Migrate

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 3

2. Migrating Hardware Configurations
Migrating designs from a MIV_Legacy configuration to a MIV_RV32 configuration is relatively straight forward. The
MIV_Legacy cores have a fixed memory map based on their Hardware Architecture. They use the MEM interface for
cached instructions and data, and the MMIO interface for peripherals and non-cached memory.

The following figure shows the fixed memory map of the MIV_Legacy cores.

The following figure shows a typical system.

2.1 Peripherals Connected to the MEM Interface
The primary function of the MEM interface in a MIV_Legacy core is to allow cached access to software code and
data. It can be connected to SRAM embedded within the FPGA or to discrete DDR memory devices. The MEM
interface has a restricted address range on the MIV_Legacy cores from 0x8000_0000 to 0x8FFF_FFFF. The
MIV_RV32 core does not feature a cache, instead it features a Tightly Coupled Memory (TCM).
Note:  The TCM must be used in preference to SRAM in systems where the processor requires faster memory
accesses. The address range for the MEM interface on the MIV_RV32 core is much less restrictive and is described
in the following sections.

2.1.1 SRAM
The typical use of the MEM interface is interfacing a memory. When using SRAM, the configuration can be an AHB or
an AXI as shown in the following figure.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 4

The TCM in the MIV_RV32 core operates in the same way as external SRAM, except with lower latency due to it
being internally coupled to the core.

2.1.1.1 Configuring the TCM
Review the maximum size of TCM available in the relevant MIV_RV32 Handbook. The TCM must have a start
address greater than 0x1000_0000.
Note:  The TCM on the MIV_R32 is limited to a maximum size of 256 Kbytes in v3.0.x.

The TCM is enabled from the Configuration tab of the Configuration window.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 5

The depth of the TCM, up to the maximum defined TCM size, is calculated from its accessible range in the Memory
Map tab of the Configurator window.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 6

The following table gives examples of TCM address widths and their corresponding memory depth.

Start Address End Address Depth # 32-Bit Words Kbytes

0x8000_0000 0x8000_03FF 0x400 256 1

0x8000_0000 0x8000_07FF 0x800 512 2

0x8000_0000 0x8000_0FFF 0x1000 1024 4

0x8000_0000 0x8000_1FFF 0x2000 2048 8

0x8000_0000 0x8000_3FFF 0x4000 4096 16

0x8000_0000 0x8000_7FFF 0x8000 8192 32

0x8000_0000 0x8000_FFFF 0x1_0000 16384 64

0x8000_0000 0x8001_FFFF 0x2_0000 32768 128

2.1.2 DDR
DDR can be used as external memory available to the core. As the core features AHB and AXI3/AXI4 interfaces with
no addressing restrictions, except a start address greater than 0x1000_0000, the DDR can be connected to either of
these interfaces depending on the slave interface type and the accessible range given in the Memory tab.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 7

The MIV_RV32 data interfaces are 32 bits wide. In many instances DDR can require 64-bit data access. In this case,
an IP core such as CoreAXI4Interrconnect can be used to provide data width conversion for DDR memory. It
should be noted that MIV_RV32 does not feature an L1 cache and as such AXI burst transactions are not available.
In this instance, careful consideration should be given before migrating to MIV_RV32 as performance with DDR will
be limited.

2.2 Peripherals Connected to the MMIO Interface
Each peripheral connected to a Mi-V Legacy core has an APB interface and is connected to an APB bus. As the
MIV_Legacy core does not have an APB interface, use the APB bus bridges as shown in the following figure.

The following figure shows the bridges required to convert from AXI to APB when using a MIV_Legacy core.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 8

The following figure shows that as MIV_RV32 features an APB interface, no conversion is required.

2.3 Mirrored Master Interfaces
If MIV_RV32 is the only core that is going to access a memory or a peripheral and there are no additional peripherals
connected on the interface, the Mirrored Master mode can be selected to allow a direct connection. It improves
performance and reduces area as a bus master is not used.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 9

It can be enabled by selecting the Mirrored Master options under the Interface Options in the Configurator window.

For example, the following figure shows APB and AHB SRAMs connected directly to the MIV_RV32 using the
Mirrored Master configuration. After place-and-route, the following design has used 4774 logic elements.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 10

The following figure is the equivalent design, without the mirrored masters. After place-and-route, the following design
has used 4927 logic elements.

2.4 Interfaces and Memory Maps
When migrating a design from an MIV_Legacy core to an MIV_RV32 core, there are several ways to configure the
updated design to retain the functionality of the original, while taking advantage of the benefits of the MIV_RV32 core.

Sample designs are shown in the following sections, featuring an AHB as the primary configuration. The same
configurations can be applied to the AXI cores as well.

2.4.1 Sample Design 1 – Base Design

2.4.1.1 MIV_Legacy Configuration
Memory is connected to the MEM interface at 0x8000_0000. Peripherals are connected to the MMIO interface at
0x6000_0000.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 11

2.4.1.2 MIV_RV32 Configuration
TCM is enabled and set to start at 0x8000_0000 and end at 0x8000_FFFF. The APB bus is enabled and configured
to start at 0x6000_0000 and end at 0x6FFF_FFFF. The configuration settings for this example are shown in the
following figures.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 12

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 13

2.4.2 Sample Design 2 – Base Design with DDR

2.4.2.1 MIV_Legacy Configuration
SRAM is connected to the MEM interface at 0x8000_0000 with DDR connected at 0x8001_0000. Peripherals are
connected to the MMIO interface at 0x6000_0000.

2.4.2.2 MIV_RV32 Configuration
TCM is enabled and set to a range from 0x8000_0000 to 0x8000_FFFF to run the application code. The AHB or AXI
interfaces can be used to access the DDR in mirrored master mode with a range from 0x8001_0000 to
0x8FFF_FFFF. The APB interface is enabled with a range from 0x6000_0000 to 0x6FFF_FFFF.

By enabling the AHB master, it allows the AHB Master address fields of the memory map tab to be edited. The same
applies to the APB and AXI masters along with the TCM.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 14

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 15

2.4.3 Sample Design 3 – Base Design with DDR and a Second Master

2.4.3.1 MIV_Legacy Configuration
SRAM is connected to the MEM interface at 0x8000_0000 with DDR connected at 0x8001_0000. Peripherals are
connected to the MMIO interface at 0x6000_0000. Master 2 is connected to the AHB bus used by the MEM interface
accessing DDR.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 16

2.4.3.2 MIV_RV32 Configuration
TCM is enabled and set to a range from 0x8000_0000 to 0x8000_FFFF to run the application code. The AHB or AXI
interfaces can be used to access the AHB bus and DDR with a range from 0x8001_0000 to 0x8FFF_FFFF. The APB
interface is enabled with a range from 0x6000_0000 to 0x6FFF_FFFF. Master 2 can access DDR through the AHB
bus.

The block diagram and configuration windows show how to enable this setup.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 17

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 18

2.4.4 Sample Design 4 - Base Design with DDR and Second Master

2.4.4.1 MIV_Legacy Configuration
SRAM is connected to the MEM interface at 0x8000_0000 with DDR connected at 0x8001_0000. Peripherals are
connected to the MMIO interface at 0x6000_0000. Master 2 is connected to the cached MEM AHB bus accessing the
application code and DDR.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 19

2.4.4.2 MIV_RV32 Configuration
TCM is enabled and set to a range from 0x8000_0000 to 0x8000_FFFF to run the application code. The AHB or AXI
interfaces can be used to access the AHB bus and the DDR with a range from 0x8001_0000 to 0x8FFF_FFFF. The
APB interface is enabled with a range from 0x6000_0000 to 0x6FFF_FFFF. Master 2 can access the DDR through
the AHB bus and can access the application code in TCM using the TAS interface; making this change requires an
APB master interface on Master 2.

The following block diagram and configuration windows show how to enable this setup.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 20

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 21

2.4.5 Sample Design 5 - Base Design Bootloader from SPI Flash

2.4.5.1 MIV_Legacy Configuration
Memory is connected to the MEM interface at 0x8000_0000. Peripherals are connected to the MMIO interface at
0x6000_0000. The bootloader is configured to pull data from a SPI flash. The bootloader reset holds the
MIV_Legacy in reset while the memory is initialized.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 22

2.4.5.2 MIV_RV32 Configuration
TCM is enabled and set to start at 0x8000_0000 and end at 0x8000_FFFF. The APB master is enabled and
configured to start at 0x6000_0000 and end at 0x6FFF_FFFF. The TCM APB Slave (TAS) interface is enabled to
allow the bootloader to write data to the TCM. The bootloader holds the TCM_CPU_DISABLE_ACCESS input high to
prevent the core reading from the TCM, this input becomes available when the TAS is enabled. It means that the core
is not held in reset. If the core is held in reset, the interface logic for the TCM and the TAS will also be reset, causing
the write operation to the TCM to fail.
Note:  It maybe the case that the core requires a reset after the initialization has completed.

The following block diagram and configuration windows show how to enable this setup.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 23

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 24

2.4.6 Sample Design 6 – Base Design Booting from eNVM and SRAM Used as RAM

2.4.6.1 MIV_Legacy Configuration
SRAM is connected to the MEM interface at 0x8000_0000 and used as RAM. eNVM is connected to the MMIO
interface at 0x7000_0000 and used to store the read only application code. Peripherals are connected to the MMIO
interface at 0x6000_0000. The core resets and boots from eNVM and uses the SRAM to hold the application data. As
eNVM is read only, there is no code corruption, if an error occurs during execution.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 25

2.4.6.2 MIV_RV32 Configuration
TCM is enabled and set to start at 0x8000_0000 and end at 0x8000_FFFF and is used in place of SRAM shown in
the preceding figure. The AHB interface is enabled to start at 0x7000_0000 and end at 0x700F_FFFF to interface the
eNVM. The APB master is enabled and configured to start at 0x6000_0000 and end at 0x6FFF_FFFF.

The following block diagram and configuration windows show how to enable this setup.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 26

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 27

2.5 System Time
The MIV_RV32 core features an internal 64-bit internal counter. The internal counter has the same function as the
counter found in the PRCI module of the MIV_Legacy cores. It can be used:

• To generate a time value for the processor.
• To generate a time value for the system.

This counter is disabled by default and must be enabled for use. Once enabled, a 64-bit top-level output
(TIME_COUNT_OUT) is exposed to provide a time value to the system. In the default mode (counter disabled), a 64
bit top-level input is available (TIME_COUNT_IN) to provide a time value directly to the processor.

The processor also features a 64-bit compare register, which can be used to generate interrupts to the processor’s
timer interrupt. This can be enabled if needed, and the processors timer interrupt input is connected to the time count
compare register. If it is not needed, the disabled top-level TMR_IRQ input is available on the core.

2.5.1 Sample Design 7—Internal MTIME and Internal MTIME IRQ
In this design as shown in the following figure, MIV_RV32 (A) has its internal counter enabled and MIV_RV32 (B)
has its counter disabled. The MIV_RV32 (B)receives a time value from the “TIME_COUNT_OUT” of the MIV_RV32
(A). Both the processors have their internal compare registers enabled to generate independent periodic interrupts.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 28

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 29

2.5.2 Sample Design 8—External MTIME and External MTIME IRQ
In this sample design, MIV_RV32 (A) receives time from a system time generator and internally generates an
interrupt. MIV_RV32 (B) receives time and a timer interrupt from the time generator.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 30

2.6 Debug
MIV_RV32 features a JTAG compliant debug unit. A key difference between this debugger and the MIV_Legacy
cores debugger is that the debugger is optional in the MIV_RV32. If the debug is not needed in a design, the feature
can be disabled in the Configurator window.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 31

A critical debug difference relates to the JTAG TRST polarity. The MIV_Legacy cores are active high JTAG_TRST,
whereas the MIV_RV32 from v3.0.100 onwards uses an active low JTAG_TRSTN. A typical Libero MIV_RV32 design
with debug features uses CoreJTAGDebug IP. Therefore, the user needs to ensure the correct polarity is used for the
MIV_RV32. The following figures illustrate a typical design and the configuration of JTAG_TRST polarity on
CoreJTAGDebug.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 32

2.7 ECC
Some of the MIV_Legacy cores have support for ECC on their caches. As the MIV_RV32 does not have a cache, it
does not need this protection, but there are SRAM implementations within the core that can be protected from errors.

1. In its standard configuration, the MIV_RV32 core uses RAM-based General Purpose Resources (GPRs).
These are susceptible to errors.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 33

1.1. By enabling the GPR Registers option for the core, generates GPRs as registers, which are not
susceptible to the same errors.

1.2. By enabling the ECC option for the core, generates a fabric EDAC wrapper around the RAM-based
GPRs and any single bit errors are corrected and cause an interrupt to be generated to the hart.
Double bit errors cause a soft reset.

2. If the TCM is enabled, it may also need error protection.
2.1. By enabling the ECC option for the core, generates a fabric EDAC wrapper around the RAM-based

GPRs and any errors cause interrupts to be generated to the hart.

2.8 Interrupts
MIV_RV32 does not feature a PLIC like the MIV_Legacy cores. It has support for the three standard interrupts
defined in the RISC-V Spec (Soft, Timer, and External) and also has the option to generate up to six additional
external interrupts. An option to use Vectored Interrupts is also provided on the MIV_RV32 configuration GUI as
shown in the following figure.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 34

2.8.1 Sample Design 9 – Single Interrupt Source

2.8.1.1 MIV_Legacy Configuration
In this sample design, MIV_Legacy has one interrupt source with the remaining 31 PLIC interrupts tied low.

uint8_t External_1_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

2.8.1.2 MIV_RV32 Configuration
The interrupt source is connected to EXT_IRQ input of MIV_RV32.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 35

There are no configuration options that need to be selected to use EXT_IRQ. If required, you can enable the
Vectored mode.

uint8_t External_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}
int main(int argc, char **argv)
{
 HAL_enable_interrupts();

 asm volatile("wfi");
}

2.8.2 Sample Design 10 – Multiple Interrupt Sources

2.8.2.1 MIV_Legacy Configuration
In this sample design, MIV_Legacy has an interrupt source generating an interrupt for PLIC_IRQ[0], and a second
source generating interrupts for PLIC_IRQ[1] and PLIC_IRQ[2] with the remaining PLIC interrupts tied low.

uint8_t External_1_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

uint8_t External_2_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

uint8_t External_3_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

2.8.2.2 MIV_RV32 Configuration
The interrupt source generating a single interrupt is connected to the EXT_IRQ, and the source generating the two
second interrupts is connected to two of the custom external interrupts.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 36

void External_IRQHandler()
{

}

void MSYS_E10_IRQHandler(void)
{

}
void MSYS_E11_IRQHandler(void)
{

}

2.9 RISC-V Extensions
The MIV_RV32 core can use the base RISC-V Integer extension along with the Multiply and/or Compressed
extensions as shown in the following figure. The multiply extension can be used with several versions of multipliers,
depending on the processor frequency required and processor performance needed; multiplication can be completed
in 1 cycle, 2 cycles or 32 cycles. The MIV_Legacy cores featured the Integer, Multiplication and Atomic extensions.
The I and M extensions can be enabled in the MIV_RV32 core and the Atomic extension is used for mutli-core
systems, if atomics are required, an MIV_Legacy core must be used.

2.9.1 RISC-V I Extension
This is the base RISC-V extension and is required in all cores.

2.9.2 RISC-V M Extension
The M extension adds multiply and divide instructions to the core. These can be used in place of software
equivalents to improve code performance while increasing the area of MIV_RV32.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 37

A benefit will only be seen from the RISC-V Multiply extension, if multiply operations are used frequently by software.

The multiplier in MIV_RV32 can be one of several types: MACC, MACC Pipelined, and Fabric, as seen in the
following figure.

The MACC options use the math blocks included in the FPGA fabric to carry out the multiplication operations, while
the fabric option instantiates a fabric multiplier.

Using the non-pipelined multiplier option, operations complete in one cycle.

Using the pipelined multiplier option, operations complete in two cycles.

Using the fabric multiplier option, operations complete in 32 cycles.

Using the 32-cycle multiplier can still be very beneficial, depending on the values being multiplied. Software
multiplication (that is, only using the RV32I extension) can take many multiples of 32-cycle to complete and will not
take the same number of cycles for different values. The fabric multiplier is still faster than this and completes
multiplication in 32-cycle regardless of values.

For application that rely heavily on multiplication operations, a MACC option is recommended. For those applications
that require less or none at all, a fabric multiplier can be used or the M extension can be excluded respectively.

2.9.2.1 Using Software Multiplication
Using the M extension with the following C code:

uint32_t val0 = 5;
uint32_t val1 = 7;
val0 = val0 * val1;

Compiles to the following RISC-V assembly:

lw a4,-28(s0)
lw a5,-24(s0)

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 38

mul a5,a4,a5
sw a5,-28(s0)

With the highlighted “mul” instruction, taking a fixed number of cycles to complete depending on the multiplier type
chosen.

Using software multiplication, the same C code complies to the following RISC-V assembly:

lw a5,-28(s0)
lw a4,-24(s0)
mv a1,a4
mv a0,a5
jal ra,80001330 <__mulsi3>
mv a5,a0
sw a5,-28(s0)

__mulsi3():
mv a2,a0
li a0,0
andi a3,a1,1
beqz a3,80001344 <__mulsi3+0x14>
add a0,a0,a2
srli a1,a1,0x1
slli a2,a2,0x1
bnez a1,80001338 <__mulsi3+0x8>
ret

The C code* for the loop being executed by the __mulsi3(): function is as follows:

unsigned int
__mulsi3 (unsigned int a, unsigned int b)
{
 unsigned int r = 0;
 while (a)
 {
 if (a & 1)
 r += b;
 a >>= 1;
 b <<= 1;
 }
 return r;
}

This loop executes until the multiplication operation has completed as opposed to the “mul” instruction available with
the M extension.

Note:  This function is included in the standard C library, included by GCC automatically when building your code, if
the M extension is not selected.

2.9.3 RISC-V C Extension
Twenty-five of the base RV32I instructions have a compressed variant, which can be used in place of the base
instruction. The compressed variant is only 16 bits instead of 32. This allows for a 20%–30% reduction in overall code
size for a given application.

The following figure is an example chunk of RISC-V instructions, each cell is a 32-bit memory location.

The following figure is the same chunk of instructions, but this time the C extension is included and the 16-bit
instructions are mixed with the 32-bit instructions.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 39

Using the C extension, it allows for a reduction in code size with a small increase in core area. The reduced code size
allows for a smaller TCM and reduced RAM usage, which outweighs the increase in area from adding the extension.
The C extension is recommended in most circumstances to reduce the code size.

Migrating Hardware Configurations

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 40

3. Migrating Software Projects
MIV_RV32 HAL v3.0.100 or greater is required to use MIV_RV32.

3.1 Prerequisites
• Download and install latest SoftConsole at https://www.microsemi.com/product-directory/design-tools/4879-

softconsole#downloads.
• Download and install latest Firmware Catalog at https://www.microsemi.com/product-directory/design-tools/

4880-firmware-catalog#downloads.

Note:  If you have Libero® SoC Software installed, you need not install the Firmware Catalog as it is included in the
Libero SoC Software.

3.2 Recommended Migration Process
The recommended way to migrate is to use the default Mi-V RV32IMA application from the SoftConsole workspace.

The migration process involves the following steps:

1. Generate the SoftConsole example projects from MIV_RV32 HAL v3.0, or greater, package in the firmware
catalog.

2. Import the miv-rv32i-systick-blinky example project into workspace.
3. Copy your application specific files (main.c and other application specific files including driver) into the miv-

rv32i-systick-blinky example project.
4. Replicate your application project properties like pre-processor, include paths, optimization levels, and so on in

the miv-rv32i-systick-blinky example project.
– The readme.txt document located in the root directory of miv-rv32i-systick-blinky example

project describes the linker script and macro combinations required for conditional compilation. If you
have any application specific modifications in the linker script, then those should also be ported to the
new linker script you are going to use for miv-rv32i-systick-blinky project.

– The default debug and release build configurations are provided with the miv-rv32i-systick-blinky
example project.

5. Build the Debug or Release target. Fix any build errors, if they occur.
6. Debug the application using debug or release launch configuration.

3.3 Example of Recommended Migration Process
The following steps describe migration to an MIV_RV32 core SoftConsole application.

1. In the Firmware catalog, search for the latest MIV_RV32 HAL v3.0.x, or greater. Right-click MIV_RV32
Hardware Abstraction Layer (HAL) to generate a sample project, as shown in following figure.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 41

https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://www.microsemi.com/product-directory/design-tools/4880-firmware-catalog#downloads
https://www.microsemi.com/product-directory/design-tools/4880-firmware-catalog#downloads

2. In the Generate Sample Options dialog box, enter a folder location in which the project must be generated,
as shown in the following figure.

3. Open SoftConsole workspace and import the generated project using the option, as shown in the following
figure.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 42

3.1. Select General > Existing Projects into workspace and click Next.
3.2. Copy the root directory (the generated project path) or use Browse to navigate to the root directory.
3.3. Select the application in the directory to import and click Finish.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 43

The following figure shows the imported SoftConsole project in the workspace.

4. As described in the Recommended migration process section, replace your application specific files in the
example.

5. Open the hw_platform.h file and configure,
5.1. The peripheral base addresses as per the memory map generated by Libero SoC Software design.
5.2. The system clock frequency based on the Libero SoC Software design.

6. Right-click the project name and open the properties menu (last option in menu). The project settings offer six
types of configurations like debug and release configurations for Mi-V I, IMA, and IMC cores.
Note:  The selected configuration must match with the processor core in the design.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 44

7. Select the configuration that matches your processor design. Make any application specific changes like
pre‑processor, include paths and so on.

8. Click Apply and Close. The same process must be followed to build the release target.
9. Build the debug or release target. Fix any build errors that arise in the process.
10. Use the default build configurations and look for any application specific settings.
11. Launch the application in debug mode to test the functionality.

3.4 Updating the MIV_RV32 HAL
The MIV_RV32 HAL can be updated to the latest version. The source files are generated from the Firmware Catalog,
which is installed with Libero SoC Software.

1. Open the Firmware Catalog and search for hal.
2. Right-click MIV_RV32 Hardware Abstraction Layer (HAL) and click Generate. Select a location for the HAL

update files.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 45

3. After generating the HAL update, the hal and miv_rv32_hal folders from the SoftConsole project must be
updated. Note that the existing project specific linker script in the miv_rv32_hal folder will be over written. If
required, it must be backed up before deleting the folder.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 46

4. Copy the generated hal and miv_rv32_hal folders, generated by the Firmware Catalog into the SoftConsole
project.

3.5 Defining the Core to the HAL
The MIV_RV32 and MIV_Legacy cores handle traps and interrupts differently. They also have different methods of
causing internal interrupts. Each one includes unique interrupts, for example, a PLIC or ECC errors. Due to this, the
HAL must be configured for the core that is being used, by defining a symbol in the SoftConsole project properties.
This symbol must be defined in the following preprocessor settings. In C/C++ Build > Settings > Tool Settings >
GNU RISC-V Cross Assembler > Preprocessor, the symbol MIV_LEGACY_RV32 must be defined, if an
MIV_Legacy core is used.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 47

In C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross Compiler > Preprocessor, the symbol
MIV_LEGACY_RV32 must be defined, if an MIV_Legacy core is used. If MIV_RV32 or MIV_RV32IMC core is used,
then no symbol needs to be defined.

Two additional defines can be included, depending on the configuration of the MIV_RV32 core to define the system
timer configuration of the core:

• MIV_RV32_EXT_TIMER
• MIV_RV32_EXT_TIMECMP

These symbols must be defined only when the internal MTIME and internal MTIMECMP options are not selected in
the IP Core configurations. These symbols must be defined in the following project settings path.

C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross Compiler > Preprocessor.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 48

When the "Internal MTIME" and "Internal MTIMECMP" are enabled in the core (default configuration). The
SoftCosole project uses the same default settings and it works without adding any symbols to the project settings.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 49

3.6 Interrupts
In MIV_RV32 HAL v3.0.x or greater handler, names for the standard RISC-V interrupts have not been changed, that
is, external interrupt, software interrupt, and timer interrupt. If the MIV_LEGACY_RV32 symbol is defined in the GCC
pre-processor, the software is built to support the MIV_Legacy cores. If the symbol is not defined, then the software
will be built to support the MIV_RV32 core (as well as the MIV_RV32IMC core).

In the MIV_Legacy cores, PLIC interrupts cause the external interrupt to assert, and the core determines which
interrupt in the PLIC has occurred and jump to its handler. In the MIV_RV32 core, each interrupt has its own
encoding and a PLIC does not need to be polled to determine which interrupt has occurred.

3.6.1 Sample Design 11 – Single Interrupt Source

3.6.1.1 MIV_Legacy Configuration
In this sample design, MIV_Legacy has one interrupt source with the remaining 31 PLIC interrupts tied low.

The following code block is a software implementation of the interrupt handling.

uint8_t External_1_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

3.6.1.2 MIV_RV32 Configuration
The interrupt source is connected to the EXT_IRQ input of MIV_RV32.

The following code block is a software implementation of the interrupt handling.

uint8_t External_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

3.6.2 Sample Design 12 – Multiple Interrupt Sources

3.6.2.1 MIV_Legacy Configuration
In this sample design, MIV_Legacy has an interrupt source generating an interrupt for PLIC_IRQ[0] and a second
source generating interrupts for PLIC_IRQ[1] and PLIC_IRQ[2] with the remaining PLIC interrupts tied low.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 50

The following code block is a software implementation of the interrupt handling.

uint8_t External_1_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}
uint8_t External_2_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}
uint8_t External_3_IRQHandler()
{
 return(EXT_IRQ_KEEP_ENABLED);
}

3.6.2.2 MIV_RV32 Configuration
The interrupt source generating a single interrupt is connected to the EXT_IRQ core; the source generating the two
second interrupts is connected to two of the custom external interrupts.

The core configuration to enable CUSTOM_IRQ_0 and CUSTOM_IRQ_1 is as follows:

The following code block is a software implementation of the interrupt handling.

void External_IRQHandler()
{

}
void MSYS_E10_IRQHandler(void)
{

}
void MSYS_E11_IRQHandler(void)
{

}

3.7 MIV_RV32 Extensions
As MIV_RV32 supports any configuration of RV32I, RV32IM, RV32IC, or RV32IMC, the SoftConsole projects need to
be configured appropriately. In the Project Properties > C/C, select the check box for the Multiply extension
(RVM), if the M Extension is included in the core, select the check box for the Compressed extension (RVC), if the
C Extension is included in the core.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 51

3.8 Maintaining Performance in Code Implementations From MIV_Legacy
In some use cases, certain code requirements are needed in software running on MIV_Legacy. The main
requirement is that if memory is needed to appear consistent to another master accessing it, as shown in the
following use case.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 52

MIV_Legacy

MMIOMEM

AHB Bus AHB Bus

0x8000_0000
‐>

0x8000_FFFF

0x6000_0000
‐>

0x6FFF_FFFF

AHB
LSRAM

AHB to APB Bridge

APB Bus

APB
Peripherals

DDR
0x8001_0000

‐>
0x8FFF_FFFF

Application
code

Master 2

Accessing all

Due to the cache of MIV_Legacy, fence and fence.i instructions are required to make the memories in question
appear consistently to the other masters. As there is no cache on MIV_RV32, there is no requirement to execute
fence or fence.i instructions. Using the TAS to access, the TCM also appears consistently without fence or
fence.i instructions.

Any ported code with fence or fence.i instructions still executes on the MIV_RV32. The instructions themselves
have no effect when executed, but still need to be decoded, incurring a five-cycle delay.

Note:  Any code that is ported from a MIV_Legacy configuration to a MIV_RV32 configuration, should have any
fence and fence.i instructions removed.

3.8.1 Latency of fence and fence.i Instructions
The following figure is an example system to test the delay added by fence and fence.i instructions.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 53

Core 0 boots and executes the following code in main.
int main(int argc, char **argv)
{
 GPIO_init(&g_gpio0, COREGPIO_IN_BASE_ADDR, GPIO_APB_32_BITS_BUS);
 GPIO_set_outputs(&g_gpio0, 1);
}

Core 1 boots and executes the following code in main.
int main(int argc, char **argv)
{
 asm volatile("fence.i");

 GPIO_init(&g_gpio0, COREGPIO_IN_BASE_ADDR, GPIO_APB_32_BITS_BUS);
 GPIO_set_outputs(&g_gpio0, 1);
}

The time taken by each core to set its GPIO output indicates how long it takes to execute the code. The only
difference between the code being executed on both cores is that the core 1 executes a fence.i instruction before
initializing and setting its GPIO. The following figure shows that this result in core 1 settings is GPIO 5 cycles after
core 0.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 54

The code for core 1 is modified as in the following:
int main(int argc, char **argv)
{
 asm volatile("fence");

 GPIO_init(&g_gpio0, COREGPIO_IN_BASE_ADDR, GPIO_APB_32_BITS_BUS);
 GPIO_set_outputs(&g_gpio0, 1);
}

In this case, a fence instruction is executed instead of a fence.i instruction.

The same delay as seen with fence.i can been seen here. This delay is compounded every time and the
instruction is executed.

Migrating Software Projects

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 55

4. Revision History
Revision Date Description

A October 2020 Initial Revision

Revision History

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 56

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 57

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7048-9

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 58

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 59

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Reasons to Migrate
	1.1. MIV_RV32 Core
	1.2. MIV_RV32 HAL

	2. Migrating Hardware Configurations
	2.1. Peripherals Connected to the MEM Interface
	2.1.1. SRAM
	2.1.1.1. Configuring the TCM

	2.1.2. DDR

	2.2. Peripherals Connected to the MMIO Interface
	2.3. Mirrored Master Interfaces
	2.4. Interfaces and Memory Maps
	2.4.1. Sample Design 1 – Base Design
	2.4.1.1. MIV_Legacy Configuration
	2.4.1.2. MIV_RV32 Configuration

	2.4.2. Sample Design 2 – Base Design with DDR
	2.4.2.1. MIV_Legacy Configuration
	2.4.2.2. MIV_RV32 Configuration

	2.4.3. Sample Design 3 – Base Design with DDR and a Second Master
	2.4.3.1. MIV_Legacy Configuration
	2.4.3.2. MIV_RV32 Configuration

	2.4.4. Sample Design 4 - Base Design with DDR and Second Master
	2.4.4.1. MIV_Legacy Configuration
	2.4.4.2. MIV_RV32 Configuration

	2.4.5. Sample Design 5 - Base Design Bootloader from SPI Flash
	2.4.5.1. MIV_Legacy Configuration
	2.4.5.2. MIV_RV32 Configuration

	2.4.6. Sample Design 6 – Base Design Booting from eNVM and SRAM Used as RAM
	2.4.6.1. MIV_Legacy Configuration
	2.4.6.2. MIV_RV32 Configuration

	2.5. System Time
	2.5.1. Sample Design 7—Internal MTIME and Internal MTIME IRQ
	2.5.2. Sample Design 8—External MTIME and External MTIME IRQ

	2.6. Debug
	2.7. ECC
	2.8. Interrupts
	2.8.1. Sample Design 9 – Single Interrupt Source
	2.8.1.1. MIV_Legacy Configuration
	2.8.1.2. MIV_RV32 Configuration

	2.8.2. Sample Design 10 – Multiple Interrupt Sources
	2.8.2.1. MIV_Legacy Configuration
	2.8.2.2. MIV_RV32 Configuration

	2.9. RISC-V Extensions
	2.9.1. RISC-V I Extension
	2.9.2. RISC-V M Extension
	2.9.2.1. Using Software Multiplication

	2.9.3. RISC-V C Extension

	3. Migrating Software Projects
	3.1. Prerequisites
	3.2. Recommended Migration Process
	3.3. Example of Recommended Migration Process
	3.4. Updating the MIV_RV32 HAL
	3.5. Defining the Core to the HAL
	3.6. Interrupts
	3.6.1. Sample Design 11 – Single Interrupt Source
	3.6.1.1. MIV_Legacy Configuration
	3.6.1.2. MIV_RV32 Configuration

	3.6.2. Sample Design 12 – Multiple Interrupt Sources
	3.6.2.1. MIV_Legacy Configuration
	3.6.2.2. MIV_RV32 Configuration

	3.7. MIV_RV32 Extensions
	3.8. Maintaining Performance in Code Implementations From MIV_Legacy
	3.8.1. Latency of fence and fence.i Instructions

	4. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

