MICROCHIP

MIV_RV32 Migration Guide

Introduction

This document describes the Libero® SoC design migration process for Mi-V Soft Processors. The legacy
CoreRISCV_AXI4,MIV _RV32IMA L1 AHB,MIV_RV32IMA L1 AXI,and MIV_RV32IMAF L1 AHB soft processor
cores are to be replaced with a single highly-configurable MIV_Rv32 soft processor core. The objective of this
document is to ease the customer Hardware (HW) and Firmware (FW) migration process to the MIv_Rv32 platform.

In this document, the CoreRISCV_AXI4, MIV _RV32IMA L1 AHB,MIV RV32IMA L1 AXI, and
MIV_RV32IMAF L1 AHB soft processor cores are collectively referred to as MIV_Legacy cores. The MIV_RV32IMC
v2.1.100and MIV_RV32 v3.0.100 or greater are collectively referred to as MIV_RV32, unless otherwise stated.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 1

Table of Contents

a1 0T [8 o3 1] o SRR 1
1. REASONS 10 MIGFate.eeiiiiiiiiiii ettt e et e e e st e e e e e nnb e e e e e nanee 3
1.1 MIV_RV32 COrE.. ittt ettt ettt ettt b et be e et she e et e e sbe e e bt e sae e e beeeneeeabeeenneenneeans 3
1,20 MIV_RV32 HAL. ..ottt ettt ettt e et e s ae e et e eme e et e e ssteenseesnbeeaneeenseenees 3
2. Migrating Hardware Configurations............c.ueiiiii et e e e e e e e 4
2.1. Peripherals Connected to the MEM INterface.........c..ooviiiiiiiiiie e 4
2.2. Peripherals Connected to the MMIO Interface..............oooiiiiiiiiiiiiie e 8
2.3. Mirrored Master INTEIrfaCES.o it e e et e e e e 9
2.4. Interfaces and MemOIY MaPS.........cooiuiiiiiiiiiiiie ettt 11
D TS 1 V1 (=12 (I T3 =Y PRSP PPTRRPNE 28
D22 TR I 1= o 18 o RPN 31
2 (R =L SR 33
D S T 111 (T4 U] o] €T PSPPSRSO 34
2.9, RISC-V EXIENSIONS. ...oiitiiieiiie ettt ettt st ettt e e et e e s at e e snb e e ebee e e anneeesnneeenn 37
3. Migrating SOftWare ProjECES.oouiiiiiiii e 41
R T O o =T =Y [T (Y SOt 41
3.2. Recommended Migration ProCeSS...........ooii it e e 41
3.3. Example of Recommended Migration PrOCESScouiuiiiiiiiiiiiieeiee e 41
3.4. Updating the MIV_RV32 HAL.....coutiiiiie ettt et e e e e e 45
3.5. Defining the Core t0 the HAL.........oo it 47
B TG T [0] 1=T 4 (] o €= PRSI 50
3.7, MIV_RV32 EXIENSIONS.ciiiutiiiiiiie ittt ettt st e et e e s e e et e s nane e sneee s 51
3.8. Maintaining Performance in Code Implementations From MIV_Legacy............ccccccvveeeviunnnn... 52
4. REVISION HISTOMY ...ttt ettt e et e e e bt e et e nnees 56
The MiICrOChID WEDSITE.c.cc ittt e e e e e e ettt e e e e eeeeaaaaaaaeeeaeeeseaaaaaannsnsnsnennnnnns 57
Product Change NOtIfiCation SEIVICE.ii i 57
(OIS (o] 0 LT RS UT o] o o]« SU OO OOPPPR 57
Microchip Devices Code Protection Feature.............ooouiiiiiiiiiiii e 57
[I=To P 1 N o) i o7 T USRS UPRRRRN 57
= Te (=10 =T o G PSP O PP OPPPPPPN 58
Quality Management SYSIEML........oooiiiii ettt 58
Worldwide Sales @nd SEIVICE.......cciiiiie ettt e et e e et e e s e e e snee e e enneeesneeeeaneeeeeneeesnneeean 59

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 2

11

1.2

Reasons to Migrate

Reasons to Migrate

The following sections explain why an existing Libero SoC and accompanying Software design should be migrated to
MIV_RV32.

MIV_RV32 Core

The CoreRISCV_AXI4 core is no longer recommended for new designs. The MIV_RV32 IMA L1 AHB/MIV RV32
IMA L1 AXI/MIV_RvV32 IMAF L1 AHB Mi-V cores are minimally configurable, and the unused features are left in
place during post Synthesis. If the requirement is low resource and medium performance without the need for cache,
the MIV_Rv32 core should be used. Where cache is required, the MIV_Legacy core should be retained. The
MIV_RvV32 will be enhanced over time to supersede the MIV_ Legacy cores.

MIV_RV32 HAL

MIV_RV32 HAL v3.0 or greater contains bug fixes and adds support for the MIV Rv32 core.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 3

21

211

Migrating Hardware Configurations

Migrating Hardware Configurations

Migrating designs from a MIV_Legacy configuration to a MIV_Rv32 configuration is relatively straight forward. The
MIV_ Legacy cores have a fixed memory map based on their Hardware Architecture. They use the MEM interface for
cached instructions and data, and the MMIO interface for peripherals and non-cached memory.

The following figure shows the fixed memory map of the MIV_Legacy cores.

MEM MMIO
0x8000_0000 0x6000_0000
-> ->

OX8FFF_FFFF Ox7FFF_FFFF

The following figure shows a typical system.

MIV_Legacy

0x8000_0000 0x6000_0000
> AHB Bus AHB Bus -
OX8000_FFFF Ox6FFF_FFFF

AHB to APB Bridge

APB Bus

APB
Peripherals

Peripherals Connected to the MEM Interface

The primary function of the MEM interface in a MIV_Legacy core is to allow cached access to software code and
data. It can be connected to SRAM embedded within the FPGA or to discrete DDR memory devices. The MEM
interface has a restricted address range on the MIV_Legacy cores from 0x8000 0000 to Ox8FFF FFFF. The
MIV_RV32 core does not feature a cache, instead it features a Tightly Coupled Memory (TCM).

Note: The TCM must be used in preference to SRAM in systems where the processor requires faster memory
accesses. The address range for the MEM interface on the MIV_RV32 core is much less restrictive and is described
in the following sections.

SRAM
The typical use of the MEM interface is interfacing a memory. When using SRAM, the configuration can be an AHB or
an AXI as shown in the following figure.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 4

Migrating Hardware Configurations

AHB Bus

The TCM in the MIV_RV32 core operates in the same way as external SRAM, except with lower latency due to it
being internally coupled to the core.

TCM

21.1.1 Configuring the TCM

Review the maximum size of TCM available in the relevant MIV_RV32 Handbook. The TCM must have a start
address greater than 0x1000_0000.
Note: The TCM on the MIV_R32 is limited to a maximum size of 256 Kbytes in v3.0.x.

The TCM is enabled from the Configuration tab of the Configuration window.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 5

Migrating Hardware Configurations

&7 Configurator

Mi-V RV32 Configurator
MicrosemEMIV:MIV_RV32:3.0.100
@ coniguraton | MemoryMsp |
Extension Options
RISCV Extensions: [MC | @ Mutpler: [Fabic <] €

Interface Options

AHB Master: [AHBLite ¥, AHB Mirored 1F: [@)
APB Master: [APB3 ¥ apsMimored 1fF: |~)
AXIMaster: [None ¥ AxtMirored 1F: T @

Reset Vector Address.
Upper 16bits (Hex): [0x3000 Lower 16bits (Hex): [ox0 e

BootROM Options

BootRoM: [€ Reconfigure BootRom: ™ €

Tightly Coudled Memory (TCM) Optons
TCM Ao Slave (Tas): I~ @
Interrupt Opbions
External System RQs: [0 ~| €
Vectored Interrupts: [[]
System Timer Options
ntemalMME: @) MTIMEPrescaler: 100 @
Interal MTMERQ: ¥ €
Other Options
Debug: ¥ @ Register Forwarding: I~ €

ecc: [€D GPR Registers: re

_ |

-

The depth of the TCM, up to the maximum defined TCM size, is calculated from its accessible range in the Memory

Map tab of the Configurator window.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 6

2.1.2

Migrating Hardware Configurations

®7 Configurator -] X
Mi-V RV32 Configurator
Microsemi:MiV:MIV_RV32:3.0.100
© configuration Memory Map ‘
AHB Master Address
Start Address: Upper 16bits (Hex): [0x7000 Lower 16bits (Hex): [0x0
End Address: Upper 16bits (Hex): |0x700f Lower 16bits (Hex): 0xffff
APB Master Address
Start Address: Upper 16bits (Hex): [0x5000 Lower 16bits (Hex): J0x0
End Address: Upper 16bits (Hex): |0x6ff Lower 16bits (Hex): Joxfff
AXI Master Address
Start Address: Upper 16bits (Hex): |0x6000 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): [0:5fff Lower 16bits (Hex): Joxffff
TCM Address
Start Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): |ox0
End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0x3fff
TCM APS Slave Address
Start Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [0x0
End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0xffff
BootROM Address
Source Start Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [0x0
Source End Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex)s [oart
Destination Address: Upper 16bits (Hex): [0x4000 Lower 16bits (Hex): |0x0

The following table gives examples of TCM address widths and their corresponding memory depth.

Start Address End Address m # 32-Bit Words Kbytes

0x8000_0000
0x8000_0000
0x8000_0000
0x8000_0000
0x8000_0000
0x8000_0000
0x8000_0000
0x8000_0000

DDR

0x8000_03FF
0x8000_07FF
0x8000_OFFF
0x8000_1FFF
0x8000_3FFF
0x8000_7FFF
0x8000_FFFF
0x8001_FFFF

0x400
0x800
0x1000
0x2000
0x4000
0x8000
0x1_0000
0x2_0000

512 2
1024 4
2048 8
4096 16
8192 32
16384 64
32768 128

DDR can be used as external memory available to the core. As the core features AHB and AXI3/AXI4 interfaces with
no addressing restrictions, except a start address greater than 0x1000_0000, the DDR can be connected to either of
these interfaces depending on the slave interface type and the accessible range given in the Memory tab.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 7

Migrating Hardware Configurations

The MIV_RV32 data interfaces are 32 bits wide. In many instances DDR can require 64-bit data access. In this case,
an IP core such as CoreAXI4Interrconnect can be used to provide data width conversion for DDR memory. It
should be noted that MIV_Rv32 does not feature an L1 cache and as such AXI burst transactions are not available.

In this instance, careful consideration should be given before migrating to MIV_Rv32 as performance with DDR will
be limited.

AHB /
AXI13 /
AXl4

2.2 Peripherals Connected to the MMIO Interface

Each peripheral connected to a Mi-V Legacy core has an APB interface and is connected to an APB bus. As the
MIV_ Legacy core does not have an APB interface, use the APB bus bridges as shown in the following figure.

MIV_Legacy

AHB Bus

AHB to APB Bridge

APB Bus

APB
Peripheral(s)

The following figure shows the bridges required to convert from AXI to APB when using a MIV_Legacy core.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 8

Migrating Hardware Configurations

MIV_Legacy

AXI Bus

AXI to AHB Bridge

AHB to APB Bridge

APB Bus

APB
Peripheral(s)

The following figure shows that as MIvV_Rv32 features an APB interface, no conversion is required.

APB

I 1
CEOICEICED

2.3 Mirrored Master Interfaces
If MIV_RV32 is the only core that is going to access a memory or a peripheral and there are no additional peripherals
connected on the interface, the Mirrored Master mode can be selected to allow a direct connection. It improves
performance and reduces area as a bus master is not used.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 9

Migrating Hardware Configurations

APB MM /
AHB MM /
AXI3 MM /
AXI4 MM

It can be enabled by selecting the Mirrored Master options under the Interface Options in the Configurator window.

B Configurator - o *

Mi-V RV32 Configurator
MicrosemeMiV:MIV_RV32:3.0.100
owﬁwaﬁw | Memory Map]
Extension Options
RISCV Extensions: [MC = | () Muitipier: [Fabric ~1 e
Interface Options

AHB Master: [AHBLite ¥ v Mrored 1F: ¥

APB Master: |aPB3 v e Mirored 1F:)

a1 Master: [rone v] axiMrored i T @
Reset Vector Address
Upper 16bits (Hex): [0xB000 Lower tébits(Hex): Jo0 @
BootROM Options
sootroM: [€ reconfigure Boorom: I €
Tightly Coupled Memory (TCM) Options
Tom: [~) oM ape Slave (Tas): ™ @
Interrupt Options
External System IRQs: [0 =] @
Vectored Interrupts: [i}
System Timer Options
internalMTIvE: ¥ @) MTMEPrescaler: [0 000 @
Internal MTME RQ: ¥)
Other Options.
Debug: [€ Register Forwarding: [~ @

ecc: [€ oRRegsters: [@

el oK Cancel

For example, the following figure shows APB and AHB SRAMs connected directly to the MIV Rv32 using the
Mirrored Master configuration. After place-and-route, the following design has used 4774 logic elements.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 10

2.4

2.41

24141

Migrating Hardware Configurations

COREAHBLSRAM_CO0_0

—HCLK
HRESETN
|AHBSlaveInterface

MIV_RV32_C0_0

(CLK TIME_COUNT_OUT[63:0] COREAH BLSRAM CO
—|RESETN EXT_RESETN -
[EliRQ AHBL_M_SLV|
g[=o COREAPBLSRAM_C0_0
MIV_RV32_CO0 PCLK
PRESETN
|APBS|avelnterface

COREAPBLSRAM_CO

The following figure is the equivalent design, without the mirrored masters. After place-and-route, the following design

has used 4927 logic elements.

CoreAHBLite_C0_0

HCLK
HRESETN

COREAHBLSRAM_C0_0

HCLK
—{HRESETN

AHBSlavelnterface

REMAP_MO

MIV_RV32_C0_0

CoreAHBLite_CO

CLK EXT_RESETN
RESETN TIME_COUNT_OUT[63:0]
[ElRg AHEBL MSTR jE—!
BEXT_IRQ APB_MSTRIE—
MIV_RV32_C0

CoreAPB3_C0_0

APBmslavels|

APB3Immaster

CoreAPB3_CO

Interfaces and Memory Maps

COREAHBLSRAM_CO

COREAPBLSRAM_CO0_0

PCLK
PRESETN
[APES|avelntarface

COREAPBLSRAM_CO

When migrating a design from an MIV_Legacy core to an MIV_RV32 core, there are several ways to configure the
updated design to retain the functionality of the original, while taking advantage of the benefits of the MIV_Rv32 core.

Sample designs are shown in the following sections, featuring an AHB as the primary configuration. The same

configurations can be applied to the AXI cores as well.

Sample Design 1 — Base Design

MIV_Legacy Configuration

Memory is connected to the MEM interface at 0x8000_0000. Peripherals are connected to the MMIO interface at

0x6000_0000.

© 2020 Microchip Technology Inc. User Guide

DS00003723A-page 11

Migrating Hardware Configurations

MIV Legacy

0x8000_0000 0x6000 0000
- AHB Bus AHB Bus >
OxB000_FFFF OXGFFF_FFFF

AHB to APB Bridge

APB
Peripherals

241.2 MIV_RV32 Configuration
TCM is enabled and set to start at 0x8000_0000 and end at 0x8000_FFFF. The APB bus is enabled and configured
to start at 0x6000_0000 and end at Ox6FFF_FFFF. The configuration settings for this example are shown in the
following figures.

TCM
OxG000 0000
- APB
Ox6FFF_FFFF
User Guide DS00003723A-page 12

© 2020 Microchip Technology Inc.

Migrating Hardware Configurations

57 Configurator - o X
Mi-V RV32 Configurator
MicrosemiMiV:MIV_RV32:3.0.100
O configuration | memoryap |
Extension Options
RISC-V Extensions: [T~ | @ Multpler: [Fabric - &
Interface Options
AHBMaster: [None ¥ aHB Mirored IFF: I~ @)
apBMirored I [@
axvaster: [None v| mamrored e T @
Reset Vector Address
I Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [ox0 (] I
BootROM Options
gootRoM: [~ @ Reconfigure Bootrom: ™ €
led Memory (TCM) Options
M APB Slave (Tas): I~ @
Interrupt Options:
External System IRQs: [0 v| @
Vectored Interrupts: [~ [:]
System Timer Options
Intemal MTIVE: @) MTIME Prescaler: [100 [i]
Internal MTIME IRQ: ¥ @
Other Options
Debug: [) Regster Forwardng: [~ €
ecc: [) PR Regsters: re
L= oK I Cancel
- o X

7 Configurator

Mi-V RV32 Configurator

MicrosemiMiV:MIV_RV32:3.0.100
6 configuration MemoryMap |

AHE Master Address

Lower 16bits (Hex):

Lower 16bits (Hex): [0xffif

Start Address: Upper 16bits (Hex):

End Address: Upper 16bits (Hex): |0xsfff
APB Master Address

Start Address: Upper 16bits (Hex): |0x6000
End Address: Upper 16bits (Hex): |0x6fff

AXI Master Address

Lower 16bits (Hex): [ox0

Lower 16bits (Hex): |oxffff

Lower 16bits (Hex): [0x0
Lower 16bits (Hex): [0xfff

Start Address: Upper 16bits (Hex)

End Address: Upper 16bits (Hex): [0x6ffF

TCM Address

Start Address: Upper 16bits {Hex): [0x3000 Lower 16bits (Hex): [ox0

End Address: Upper 16bits (Hex): [0x3000

TCM APS Slave Address

Lower 16bits (Hex): [oxfrif

Lower 16bits (Hex): [ox0
Lower 16bits (Hex): [oxafF

Start Address: Upper 16bits (Hex):

End Address: Upper 16bits (Hex):

BoOtROM Address

Lower 16bits (Hex): [

Lower 16bits (Hex):

Lower 16bits (Hex):

Source Start Address: Upper 18bits (Hex):

Source End Address: Upper 16bits (Hex):

Destination Address: Upper 16bits (Hex):

Cancel

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 13

Migrating Hardware Configurations

24.2 Sample Design 2 — Base Design with DDR

2421 MIV_Legacy Configuration

SRAM is connected to the MEM interface at 0x8000_0000 with DDR connected at 0x8001_0000. Peripherals are
connected to the MMIO interface at 0x6000_0000.

MIV_Legacy

0x2000_0000

= AHB Bus AHB Bus
0x8000_FFFF

Ox6000_0000
-

Ox6FFF_FFFF

Application AHB to APB Bridge

code

APB Bus

OXBFFF_FFFF
APB

Peripherals

2422 MIV_RV32 Configuration

TCM is enabled and set to a range from 0x8000_0000 to 0x8000_FFFF to run the application code. The AHB or AXI
interfaces can be used to access the DDR in mirrored master mode with a range from 0x8001_0000 to
O0x8FFF_FFFF. The APB interface is enabled with a range from 0x6000_0000 to Ox6FFF_FFFF.

0x8000_0000
->
| 0x8000_FFFF

TCM
0x8001_oooo AHB MM / 0x6000_000C
> AXI3 MM / e

OXSEFF_FFFE AXI4 MM | APB it FrF

]

By enabling the AHB master, it allows the AHB Master address fields of the memory map tab to be edited. The same
applies to the APB and AXI masters along with the TCM.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 14

Migrating Hardware Configurations

B Configurator

Mi-V RV32 Configurator

MicrosemiMiV:MIV_RV32:3.0.100

OConﬁguratm | Memory Map ‘

Extension Options

RISC-V Extensions: [MC v | () Muitipler: [Fabric -9
Interface Options
AHB Master: [aFBLte ~| AHB Mirrored IFF: ¥ €9
APBMaster: [APB3 ¥| APBMimoredF: | @)
AXIMaster: [Mone ~¥] AxMiroredIF: | @
Reset Vector Address
Upper 16bits (Hex): [0:x8000 Lower tebits(Hex): Jo0
BootROM Options
BootRoM: [~ € Reconfigure BootRoM: I~)
Tightly Coupled Memory (TCM) Options
TCM APE Slave (TAS): [0
Interrupt Options.
External SystemIRQs: [0 - @
Vectored Interrupts: [(i}
System Timer Options.
Intenal MTIVE: ¥ @) MTIME Prescaler: [0 @

Internal MTIME RQ: ¥ @)
Other Options

ebug: I~ @) Register Forwarding: I @)

ecc: [@) GPRRegiters: re

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 15

243
2.4.31

Migrating Hardware Configurations

B Configurator

Mi-V RV32 Configurator
Microsemi:MiV:MIV_RV32:3.0.100
OCmﬁwrah‘m Memory Map |

AHB Master Address

Start Address: Upper 16bits (Hex): [0x8001

End Address: Upper 16bits (Hex): |oxafff

Lower 16bits (Hex): [ox0

Lower 16bits (Hex): |oxfHf

APB Master Address

Start Address: Upper 16bits (Hex): [0x6000

End Address: Upper 16bits (Hex): [oxsfff

Lower 16bits (Hex): [ox0

Lower 16bits (Hex): [oxfiff

AXI Master Address

Start Address: Upper 16bits (Hex): |0x6000
End Address: Upper 18bits (Hex): [0xaff

TCM Address

Lower 16bits (Hex): |0x0
Lower 16bits {Hex): |0xfff

Start Address: Upper 16bits (Hex): [0x8000

End Address: Upper 16bits (Hex): [0x8000

Lower 16bits (Hex): |0xU

Lower 16bits (Hex): |0xffff

TCM APB Slave Address

Start Address: Upper 16bits (Hex): |0x400
End Address: Upper 16bits (Hex): |0x4000

BootROM Address

Source End Address: Upper 16bits (Hex): |0x2000

Destination Address: Upper 16bits (Hex): |0x3000

Source Start Address: Upper 16bits (Hex): |0x8000

Lower 16bits (Hex): |0x0
Lower 16bits (Hex): |0x3fFF

Lower 16bits (Hex): |0x0
Lower 16bits (Hex): |0x3FFF
Lower 16bits (Hex): |0x0

Sample Design 3 — Base Design with DDR and a Second Master

MIV_Legacy Configuration

SRAM is connected to the MEM interface at 0x8000_0000 with DDR connected at 0x8001_0000. Peripherals are
connected to the MMIO interface at 0x6000_0000. Master 2 is connected to the AHB bus used by the MEM interface

accessing DDR.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 16

Migrating Hardware Configurations

MIV_Legacy

Accessing DDR

0x6000 0000
AHB Bus AHB Bus =
Ox6FFF_FFFF

Application
code AHB to APB Bridge
0x2000_0000
-
Ox8000_FFFF

0x2001_0000
-
Ox8FFF_FFFF

APB

Peripherals

243.2 MIV_RV32 Configuration
TCM is enabled and set to a range from 0x8000_0000 to 0x8000_FFFF to run the application code. The AHB or AXI
interfaces can be used to access the AHB bus and DDR with a range from 0x8001_0000 to Ox8FFF_FFFF. The APB
interface is enabled with a range from 0x6000_0000 to Ox6FFF_FFFF. Master 2 can access DDR through the AHB

bus.
The block diagram and configuration windows show how to enable this setup.

0x8000_0000
0x8001_0000 >
> 1 OXBOOO_FFFF
OXBFFF_FFFF AHB /
AXI3 /

TCM

Master 2

Accessing DDR .

0x6000_0000
->
OXGFFF_FFFF

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 17

Migrating Hardware Configurations

B Configurator

Mi-V RV32 Configurator

Microsemi:MiV:MIV_RV32:3.0.100

oCmﬁgu.raﬁnn | Memory Map I
Extension Options

RISC-V Extensions: [IMC v | @ multipler: [Fabric by i]
Interface Options

AHB Master: [aHBlite ¥| AHBMirored1F: [

APB Master: |APE3 ¥ apsMrrored 1IFF: [~)

AXIMaster: [None ¥ AxiMirored IfF: T~)

Reset Vector Address
Upper 16bits (Hex): |0x8000

BootROM Options

Lower 16bits (Hex): |0x0 o

BootRoM: |~ € Reconfigure BootroM: ™)

Tightly Coupled Memory (TCM) Options

tom: ¥ @M AP Save (Tas): [T @

Interrupt Options

External System IRQs: [0 ¥ o
i

Vectored Interrupts: |
System Timer Options

Internal MTIME:

M @ MTIVE Prescaler: [100 (i)

Intemal MTMERQ: ¥)

Other Options
Debug: [~ e Register Forwarding: | 0
ecc: [@) GPRRegisters: re

© 2020 Microchip Technology Inc. User Guide

DS00003723A-page 18

Migrating Hardware Configurations

Configurator - a X
Mi-V RV32 Configurator
Microsemi:MiV:MIV_RV32:3.0.100
o Configuration Memory Map }
AHB Master Address
Start Address: Upper 16bits (Hex): [0x8001 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): |0x8fff Lower 16bits (Hex): |Oxffff
APE Master Address
Start Address: Upper 16bits (Hex): |0x6000 Lower 16bits (Hex): |0)10
End Address: Upper 16bits (Hex): |0x6fff Lower 16bits (Hex): |0xffff
AXI Master Address

Lower 16bits (Hex): |0x0

Start Address: Upper 16bits (Hex): |0x6000

End Address: Upper 16bits (Hex): |0x6fff Lower 16bits (Hex): |0xffff
TCM Address
Start Address: Upper 16bits (Hex): |0><3000 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |Oxffff

TCM APS Slave Address

Lower 16bits (Hex): |0x0

Start Address: Upper 16bits (Hex): |0x4000

End Address: Upper 16bits (Hex): |0x4000

BootROM Address
Source Start Address: Upper 16bits (Hex): |0x2000 Lower 16bits (Hex): |0x0
Source End Address: Upper 16bits (Hex):
Destination Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): |0x0

Help I OK I Cancel

244 Sample Design 4 - Base Design with DDR and Second Master

2.4.41 MIV_Legacy Configuration
SRAM is connected to the MEM interface at 0x8000_0000 with DDR connected at 0x8001_0000. Peripherals are
connected to the MMIO interface at 0x6000_0000. Master 2 is connected to the cached MEM AHB bus accessing the
application code and DDR.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 19

Migrating Hardware Configurations

MIV_Legacy

Master 2

Accessing all

0x6000_0000
AHB Bus AHB Bus o
0x6FFF_FFFF

Application

code AHB to APB Bridge
0x2000_0000
UxBﬂijO_FFFF
APB Bus

0x2001_0000

=
Ox8FFF_FFFF
APB

Peripherals

24.4.2 MIV_RV32 Configuration
TCM is enabled and set to a range from 0x8000_0000 to 0x8000_FFFF to run the application code. The AHB or AXI
interfaces can be used to access the AHB bus and the DDR with a range from 0x8001_0000 to O0x8FFF_FFFF. The
APB interface is enabled with a range from 0x6000_0000 to Ox6FFF_FFFF. Master 2 can access the DDR through
the AHB bus and can access the application code in TCM using the TAS interface; making this change requires an
APB master interface on Master 2.

The following block diagram and configuration windows show how to enable this setup.

Master 2

Accessing

Application code TAs

0x8000_0000

AHB / . -
AXI3 / | 0x8000_FFFF
M 2 ‘ TCM
aster 0x8001_0000 0X6000_0000

->
OX6FFF_FFFF

->
Accessing DDR . OX8FFF FFFF

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 20

Migrating Hardware Configurations

Confiqurator

Mi-V RV32 Configurator

SMIV_RVIZ:3.0.100
O coniquraton | Memoryap |
RISC-V Extensions: [MC | {0 Mulspler: [Fabric - &
Interface Options
A8 Master: [arBute x| AEMimaediF: T)

AP8 Master: (aPB3 ¥ A Mirored 1F: [)

aamester; fhoe 7] AammoeediE T @
Resat Vector Address

Upper 16hits (Hex): |0x3000 Lower 16bits {Hex): |OxD 0

BootROM Optiorts
BootRoM: [) Reconfigure Bootrom: I~ @

Tightly C: Meamory (TCM hions.
i Tom: M) Tom ace save (Tas): ¥ I

Interrupt Options:
Extemnal System RQs: [0~ €@

Vectored Internupts: [(i}
System Timer Options
InteralMTME: ¥ @ MTDEPrescaler: [0 @
Internal MTIME RO)
Other Options
Debug: I (0 Register Forwarding: [~ @)

ecc: [D crrRegsters: I ; }

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 21

245
2.4.51

Migrating Hardware Configurations

1| Configurator

Mi-V RV32 Configurator

MicrosemiMVMIV_RV3Z:3.0.100

6 coniguration

Memory Map |

AHB Master Address

Start Address: Upper 16bits (Hex): Euaom

End Address: Upper 16bits (Hex): |Oxafff

Lower 16bits (Hex): [EIJ(D

Lower 16bits (Hex): |Oxffff

APB Master Address

Start Address: Upper 16bits (Hex): |MUDO

End Address: Upper 160is (Hex): |0xsfff

Lower 16bits (Hex): |Ox0

Lower 16bits (Hex): |Oxffff

AXI Master Address

Start Address: Upper 16bits (Hex): [xs000
End Address: Upper 16bits (Hex): [usiit

TCM Address

Lowwer 18bits ez [0
Lowwer 16bits Hen): [

Start Address: pper 18béts (Hex): [oxa000

End Address: Upper 160its (Hex): [0x@000

Lower 18bits (Hex): [0x0

Lower 16bits (Hex): [oxFrit

TCM AFE Slave Address

Start Address: Upper 18béts (Hex): [0x@000

End Address: Upper 165its (Hex): [oxa000

Lower 18bits (Hex): [ox0

Lower 18bits (Hex): [oneftt

BootROM Address

Source Start Address: Upper 16hits (Hex): | 0x8000
Source End Address: Upper 16béts (Hex): [0x8000
Destination Address: Upper 16béts (Hex): [ox4000

Lower 16bits (Hex): |)
Lower 16bits (Hex): | 3
Lower 16bits (Hes): [omo

Sample Design 5 - Base Design Bootloader from SPI Flash

MIV_Legacy Configuration

Memory is connected to the MEM interface at 0x8000_0000. Peripherals are connected to the MMIO interface at
0x6000_0000. The bootloader is configured to pull data from a SPI flash. The bootloader reset holds the

MIV_ Legacy in reset while th

e memory is initialized.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 22

Migrating Hardware Configurations

Bootloader

Bootloader reset

MIV_Legacy

AHB Bus

AHB to APB Bridge

APB Bus

APB
Peripherals

2452 MIV_RV32 Configuration
TCM is enabled and set to start at 0x8000_0000 and end at 0x8000_FFFF. The APB master is enabled and
configured to start at 0x6000_0000 and end at Ox6FFF_FFFF. The TCM APB Slave (TAS) interface is enabled to
allow the bootloader to write data to the TCM. The bootloader holds the TCM CPU DISABLE ACCESS input high to
prevent the core reading from the TCM, this input becomes available when the TAS is enabled. It means that the core
is not held in reset. If the core is held in reset, the interface logic for the TCM and the TAS will also be reset, causing
the write operation to the TCM to fail.
Note: It maybe the case that the core requires a reset after the initialization has completed.

The following block diagram and configuration windows show how to enable this setup.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 23

Migrating Hardware Configurations

Bootloader

TCM_CPU_DISABLE_ACCESS

TCM

e —

B Configurator = o x

Mi-V RV32 Configurator
MicrosemiMV:MIV_RV32:3.0.100
O coniguraton | memoryap |
Extension Options:
RISC-¥ Extensians: iJNC X o Multipler: 1Fabnc x 0
Interface Cptians
AHE Master: [aHBlite ¥| AHBMeoredif: [@)

Immw: g3 v| g Merored 1F: | I
AXIMaster: [Nore 7| wrmrored [F: T €

Reset Vector Address
Upper 16bits (Hex): |0x8000 Lower 185its (Hex): [0 (]

BootROM Options
sooroM: [i Reconfigure Boormom: I @

Tighthy Coupled Memory (TCM) Options
| o @ @ tom s siave (as): @ o_l
s
Intermupt Options
External SystemIRQs: [0~ €

vecwored Interrupts: | @
System Timer Options
nteraidrive: 7 @) MERrescaler: [0 @)
Interal MTME IRQ: ¥ @)
Other Options
Debug: [@@ Regiter Forwardng: [@

ecc: [@) GPR Registers: re

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 24

Migrating Hardware Configurations

17 Configurator - o x

Mi-V RV32 Configurator

MicrosemeMV:HMIV_RV32:3.0.100

O coniguration Memory Map |
AHE Master Address

Start Address: Upper 16bits (Hex): |0 Lower 16bits (Hex): [0x
End Address: Lipper 16bits (Hes): [14arT Lower 16bits (Hex): [0

APB Master Address.
Start Address: Upper 16bits (Hex): [0xs000 Lower 1605 (Hex): [0x0
End Address: Upper 16bits (Hexd: [onsiff Lower i6bits (Hex)s [onffif

AXI Master Address

Start Address: Upper 16kits (Hex): [7500 Lower 18bits (Hex: [0
End Address: Upper 16bits (Hex): [Duefir Lower 16bits (Hex]: [0t

TCM Address

Start Address: Upper 16bits (Hex): [(v8000 Lower 16béts (Hex): [0x0
End Address: Lipper 16bits (Hex): [0x5000 Loer 16bits (Hex): [oxfror
TCM APS Slave Address
Start Address: Upper 16bts (Hex): [oxs000 Lower 160és (Hex): o0 '
End Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): |oxffif
BootROM Address

Seurce Start Address: Upper 15bits (Hex): |0x2000 Lower 16bits (Hex): [0:0
Source End Address: Uipper 16bits (Hex): |0c5000 Lower 16bits (Hex): |3
Destnation Address: Lipper 16bits (Hex): 4000 Lower 16bits (Hex): |00

_m | [| ,Ef"f',‘Jl

24.6 Sample Design 6 — Base Design Booting from eNVM and SRAM Used as RAM

24.6.1 MIV_Legacy Configuration
SRAM is connected to the MEM interface at 0x8000_0000 and used as RAM. eNVM is connected to the MMIO
interface at 0x7000_0000 and used to store the read only application code. Peripherals are connected to the MMIO
interface at 0x6000_0000. The core resets and boots from eNVM and uses the SRAM to hold the application data. As
eNVM is read only, there is no code corruption, if an error occurs during execution.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 25

Migrating Hardware Configurations

MIV Legacy

0x28000_0000
- AHB Bus 0x6000_0000
-

0x8000_FFFF
- OX6FFF_FFFF

0x7000_0000

GX?UE;F_FFFF AHB to APB Bridge

APB Bus

Application
Code

APB

Peripherals

24.6.2 MIV_RV32 Configuration
TCM is enabled and set to start at 0x8000_0000 and end at 0x8000_FFFF and is used in place of SRAM shown in
the preceding figure. The AHB interface is enabled to start at 0x7000_0000 and end at 0x700F_FFFF to interface the
eNVM. The APB master is enabled and configured to start at 0x6000_0000 and end at Ox6FFF_FFFF.

The following block diagram and configuration windows show how to enable this setup.

o]| e
g

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 26

Migrating Hardware Configurations

"7 Configurator -

Mi-V RV32 Configurator

MicrosemizMiV:MIV_RV32:3.0.100
0 configuration | Memory Map |
Extension Options
RISCVExtensions: [MC =] @ Mutigler: [Fabic ~ ~| @
Interface Options
AHB Master: [ABUte ~| AHBMirored IF: V¥ @)
APBMaster: [aPB3 | APBMiroredF: [@)

AXIMaster: [None x A Mrrored IF: T~ @

Reset Vector Address

I Upper 16bits (Hex): [0x7000 Lower 16bits (Hex): [ox0 (i) I

BootROM Options
BootRoM: [~ (@ Reconfigure Boowom: I~ @

Tightly Coupled Memory (TCM) Options

oM APB Slave (TAS): [~ @
Interrupt Options
External System 1RQs: [0 | @
Vectored Interrupts: [~ (i)
System Timer Options.
Internal MTIME: ¥ (@) MITIME Prescaler: [100 ()
Intemal MTME RQ: ¥ @)
Other Options
Debug: [~ € Register Forwarding: [~ @

ecc: [@ cpr Registers: re

"7 Cenfigurator -

Mi-V RV32 Configurator

MicrosemiMiV:MIV_RV32:3.0.100

@ confguaton MemoryMep |
AHB Master Address

‘Start Address: Upper 16bits (Hex): |0x7000 Lower 16bits (Hex): |0x0

End Address: Upper 16bits (Hex): [0x700f Lower 16bits (Hex): [oxfrf

APB Master Address

Start Address: Upper 16bits (Hex): [0x6000 Lower 16bits (Hex): [ox0

End Address: Upper 16bits (Hex): [oxsffF Lower 16bits (Hex): [oxfff
AXI Master Address
Start Address: Upper 16bits (Hex): [0x5000 Lower 16bits (Hex): [0x0
End Address: Upper 16bits (Hex): |0xsfff Lower 16bits (Hex): |0
TCM Address
‘Start Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [0x0
End Address: Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [oxfff
TCM AP Slave Address

Lower 16bits (Hex): [0x0
Lower 16bits (Hex): [0xFFfF

Start Address: Upper 16bits (Hex):

End Address: Upper 16bits (Hex): [0x8000

E0otROM Address

Lower 16bits (Hex): [0x0
Source End Address: Upper 16bits (Hex): |0x5000 Lower 16bits (Hex): [0x3fTF
Destination Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): [0x0

Source Start Address: Upper 16bits (Hex): |0

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 27

2.5

2.51

Migrating Hardware Configurations

System Time

The MIV_RV32 core features an internal 64-bit internal counter. The internal counter has the same function as the
counter found in the PRCI module of the MIV_Legacy cores. It can be used:

» To generate a time value for the processor.
» To generate a time value for the system.

This counter is disabled by default and must be enabled for use. Once enabled, a 64-bit top-level output
(TIME COUNT_OUT) is exposed to provide a time value to the system. In the default mode (counter disabled), a 64
bit top-level input is available (TIME COUNT_ IN) to provide a time value directly to the processor.

The processor also features a 64-bit compare register, which can be used to generate interrupts to the processor’s
timer interrupt. This can be enabled if needed, and the processors timer interrupt input is connected to the time count
compare register. If it is not needed, the disabled top-level TMR IRQ input is available on the core.

Sample Design 7—Internal MTIME and Internal MTIME IRQ

In this design as shown in the following figure, MIV_RvV32 (2) has its internal counter enabled and MIV_RV32 (B)
has its counter disabled. The MIV_RV32 (B)receives a time value from the “TIME COUNT OUT” of the MIV_RV32
(n) . Both the processors have their internal compare registers enabled to generate independent periodic interrupts.

TIME_COUNT_OUT

TCM

o

~

Ll
TIME_COUNT_IN

A

TCM

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 28

Migrating Hardware Configurations

®° Cenfigurator

Mi-V RV32 Configurator

Microsemi:MiV:MIV_RV32:3.0.100

O confguraton | vemorymap |

Extension Options

Interface Options

Reset Vector Address
Upper 16bits (Hex): [0x8000

BootROM Options

Tightly Coupled Memory (TCM) Options
Tom: ¥ @) ToM Aps slave (Tas): [~ @)

Interrupt Options
External System RQs: [0 =]
Vectored Interrupts: [(i)

System Timer Options

RISC-V Extensions: [IMC |) Multipler: [Fabric -9

AHBMaster: [None ¥ asMrrored IF: I @)
APBMaster: [APB3 ¥ e mirored 1: [@

AMIMaster: [Nome ¥ ACMrrored IF: T @

Lower 16bits (Hex): [0x0 [:]

Booom: [) Reconfigure Boomom: I~

Internal MTVE RQ: ¥ @)

intenalMTIME: ¥) MTIME Prescaler: [100

Other Options
Debug: I~) Register Fornardng: I~ @

ecc: [@) PRRegisters: re

|

7 Configurater

Mi-V RV32 Configurator

Microsemi:MiV:-MIV_RV32:3.0.100

O coniguration | MemoryMap |

Extension Options

Interface Options.

Reset Vector Address
Upper 16bits (Hex): |0x8000

BootROM Options.

Tightty Coupled Memory (TCM) Options
ToM: ¥ € T APB Stave (ras): I~ @

Interrupt Options
External SystemRQs: [0 ~| @
Vectored Interrupts: 1™ i)

System Timer Options.

RISC-V Extensions: [MC | @ multpier: [Fabric - @

AHB Master: [None ¥ ArB Mirored 1F: T~ @)
APB Master: [APB3 ¥ APBMirored 1F: [~ @@
AXIMaster: [None = Xt Mirored 1F: [~ @)

Lower 16bits (Hex): Jox0 i}

BootRoM: [~ (@ Reconfigure BootroM: I~ @)

Intemal MTIME RQ: ¥ @)

nemavrve: | @ vivEPrescaler: [100 ;]

Other Options
Debug: [~ @ Register Forwardng: [~ @

e [@ PRRegstess [@

© 2020 Microchip Technology Inc.

User Guide DS00003723A-page 29

Migrating Hardware Configurations

25.2 Sample Design 8—External MTIME and External MTIME IRQ

In this sample design, MIV_RvV32 (A) receives time from a system time generator and internally generates an
interrupt. MIV_RvV32 (B) receives time and a timer interrupt from the time generator.

S5

Cd
TIME_COUNT_IN

TCM

Time generator

>

TIME_COUNT_IN

TCM

TMR_IRQ

B Configurator

Mi-V RV32 Configurator

MicrosemiMIV:HIV_RV32:3.0.100
O confiquration | Memorymap |
Extension Options
RISCV Extensions: [MC v | @ Mutipler: [Fabic =] €
Interface Options

AHB Master: [None ¥ A48 Mirored 1F: T)
APGMaster: [APB3 ¥ ApaMirrored IFF: [)
AXIMaster: |None ¥ aamrored 17 [@)

Reset Vector Address
Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [0x0 3]

BootROM Options
BootRoM: |~) Reconfigure BootroM: I~ €

Tightly Coupled Memory (TCM) Options
Tcm: ¥) Tom apB Slave (Tasy: T €

Interrupt Options
Extemal SystemRQs: [0 x| @
Vectored Interrupts: [[i]

System Timer Options

ntemalMTIvE: | @) MTIVE Prescaler: [100 []

Internal MTIMEIRQ: ¥)

Other Options

Debug: [~ € Register Forwardng: [~ €

ecc: [) cPRRegisters: re

[x | o |

© 2020 Microchip Technology Inc. User Guide

DS00003723A-page 30

Migrating Hardware Configurations

&7 Configurator

Mi-V RV32 Configurator

MicrosemiMiV:MIV_RV32:3.0.100

oomﬁguranon |

Extension Options

RISC-V Extensions: |[IMC ¥ 0Muluol=r: Fabric = 0

Interface Options

AHBMaster: |None ¥
APB Master: |APB3 =
AXT Master: |None >

Reset Vector Address

Upper 16bits (Hex): |0x8000

BootROM Options

sootom: |~) Reconfigure Bootrom: I~)

Tightly Coupled Memory (TCM) Cptions
1o @ oM aPB Slave (Tas): [)

Interrupt Options

External System IRQs: [0~ | €

Vectored Interrupts:

System Timer Options

Memory Map |

A8 Mirored 1F: ™ @)
APB Mirrored IF: I~)

Axt Mirrored IFF: T~ @)

Lower 16bits (Hex): [0x0 (i]

.]

Internal MTIME:

Internal MTIME IRQ:

I~ @ MIIME Prescaler: [100

i

Other Options

Debug: [~ € Register Forwardng: [~)

ECC:

™ @ PR Registers:

re

o | o

2.6 Debug

MIV Rv32 features a JTAG compliant debug unit. A key difference between this debugger and the MIV Legacy
cores debugger is that the debugger is optional in the MIV_Rv32. If the debug is not needed in a design, the feature
can be disabled in the Configurator window.

© 2020 Microchip Technology Inc.

User Guide DS00003723A-page 31

Migrating Hardware Configurations

#1 Configurator - O

Mi-V RV32 Configurator

MicrosemiMIV:MIV_RV32:3.0.100

O configraton | memorymap |
Extension Options
RISCV Extensions: [IMC v | @@ Muitiler: [Fabric Ry ;]

Interface Options

AHBMaster: [None ¥ A Mimored IF: T)
APeMaster: [4PB3 v| APBMimoredIF: [€
A Master: [None ¥ A Mrored 1F: [)

Reset Vector Address

Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [0x0 (i}
BOOIROM Options

BootRoM: [@) Reconfigure Bootrom: ™

Tightly Coupled Memary (TCM) Options.
Tom: ¥ @ Tem aPB Slave (Tas)y: I €

Interrupt Options
External SystemRQs: [0 | @@
Vectored Interrupts: | []

System Timer Options.
Internal MTIME: I @ MTME Prescaler: [100 (i)
Internal MTMEIRQ: [~)

Other Options

o Gpeeereveis - @

ecc: [@) cPR Regsters: re

A critical debug difference relates to the JTAG TRST polarity. The MIV_Legacy cores are active high JTAG_TRST,
whereas the MIV_Rv32 from v3.0.100 onwards uses an active low JTAG_TRSTN. A typical Libero MIV_Rv32 design
with debug features uses CoreJTAGDebug IP. Therefore, the user needs to ensure the correct polarity is used for the
MIV_RV32. The following figures illustrate a typical design and the configuration of JTAG_TRST polarity on

CoreJTAGDebug.

© 2020 Microchip Technology Inc.

User Guide DS00003723A-page 32

Migrating Hardware Configurations

B Configurator - O X
CoreJTAGDebug Configurator
Microsemi:DirectCore:COREITAGDEBUG:3.1.100
Configuration] =1
General Configuration
Mumber of Debug Targets |1
UITAG_BYPASS r
Debug_Target_0
Target 0 IR. Code |0x55 Active-high target reset Target 0 [
Debug_Target_1
Target 11IR Code [0x55 Active-high target reset Target 1 [V
Debug_Target_2 1
Target 2 IR. Code |0x57 Active-high target reset Target 2 [
Debug_Target_3
Target 31IR Code |0x58 Active-high target reset Target 3 [V
Debug_Target_4
Target 4 IR Code |0x59 Active-high target reset Target 4 [
Debug_Target_5
Target 5 IR Code |0x5a Active-high target resst Target 5 [V
Debug_Target_6
Target &6 IR Code 'M\i Active-high target reset Target 6 [V
A
Help < CK | Cancel |
| RV2.C00
CLK
COREJTAGDEBUG_CO0_0 a1
=S [E]DEBUG
[E1ITAG_HEADER DEBUG_TARGET_O[=] EXT_RESETN
— pTCK TGT_TCK_Op PpITAG_TCK
»TDI TGT_TDL_Op »ITAG_TDI 0]
«TDO TGT_TDO_0« JTAG_TDO AP B_MSTR::
»TMS TGT_TMS_0p |- < AHBL_M_SLV
pTRSTB TGT_TRSTE_Op PITAG_TMS
PITAG_TRSTN
COREJTAGDEBUG_CO B0
p-EXT_IRQ
—{ pMSYS_EI[0]

MIV_RV32_CO

2.7 ECC

Some of the MIV_Legacy cores have support for ECC on their caches. As the MIV_Rv32 does not have a cache, it
does not need this protection, but there are SRAM implementations within the core that can be protected from errors.

1. Inits standard configuration, the MIV_Rv32 core uses RAM-based General Purpose Resources (GPRs).
These are susceptible to errors.

User Guide DS00003723A-page 33

© 2020 Microchip Technology Inc.

2.8

Migrating Hardware Configurations

1.1. By enabling the GPR Registers option for the core, generates GPRs as registers, which are not

susceptible to the same errors.

1.2. By enabling the ECC option for the core, generates a fabric EDAC wrapper around the RAM-based
GPRs and any single bit errors are corrected and cause an interrupt to be generated to the hart.

Double bit errors cause a soft reset.

2. Ifthe TCM is enabled, it may also need error protection.

21. By enabling the ECC option for the core, generates a fabric EDAC wrapper around the RAM-based

GPRs and any errors cause interrupts to be generated to the hart.

7 Confiurator

Mi-V RV32 Configurator
MicrosemiMiV:MIV_RV32:3.0.100
O confioraton | memorymap |
Extension Options
RISC-V Extensions: [MC ¥) Muitipler: [Fabric Ral ;)
Interface Options

ArBMaster: [None v| ABMirored I T @
APB Master: |aPB3 x| apBMimored IF: [@)
AXIMaster: [None v| Axt Mirored 1F: T @)

Reset Vector Address

Upper 16bits (Hex): [oxs000 Lower 16bits (Hex): [0x0 (i]

BootROM Options
BooRoM: [~) Reconfigure BoctroM: I~ €

Tightly Coupled Memory (TCM) Options
ToM: ¥ @) ram aps siave (ras): [@

Interrupt Options
Extemal SystemIRQs: [0 | @
Vectored Interrupts: [(3]

System Tmer Options
nternalMTIvE: |) MTIME Prescaler: [100 [i]
Internal MTIME IRQ: [

Other Options

Debug: [) Register Forwardng: [~ @

I ecc: W d‘."RReqls!tvs‘ r d

- =] x

Enabling this option replaces RAM based registers with fabric based registers
This improves throughput performance but will increase resources used and reduce the max operating frequency.

Interrupts

MIV_RvV32 does not feature a PLIC like the MIV_ Legacy cores. It has support for the three standard interrupts
defined in the RISC-V Spec (Soft, Timer, and External) and also has the option to generate up to six additional
external interrupts. An option to use Vectored Interrupts is also provided on the MIV_Rv32 configuration GUI as

shown in the following figure.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 34

Migrating Hardware Configurations

i Configurator - 0o x

Mi-V RV32 Configurator
MicrosemEMiV:MIV_RV32:3.0.100
ch-ﬂw.‘m | Memory Map]
Extension Options
RISC Extensions: [~ | @ Mutper: [Faoic ~] @
Interface Options

AHB Master: |AHBLite v A Mirored IF: T @)
APBMaster: [aPB3 ~ ape Mirored 1F: | €
AXIMaster: [None = wxavrrored 1F: T @

Reset Vector Address
Upper 16bits (Hex): [0x8000 Lower 16bits (Hex): [ox0 o
BOOTROM Options
Booom: [) Reconfigure Boorom: ™
Tightly Coupled Memory (TCM) Options
TcM: [D TeM ARG Slave (TAs): ™ €D
Interrupt Optons
External System IRQs: |3 ~| @

Vectored Interrupts: [(i)

System Timer Opt [Enabling vectored interrupts will create an individual interrupt vector for each interrupt in the system.

Internal MTIME: ¥ (@) MTIME Prescaler: [100 (3]

Internal MTIME RQ: ¥)

Other Options
Debug: [~ € Register Forwardng: [~ @)

ecc: [€ GPRRegisters: I ;]

o] o |

2.8.1 Sample Design 9 — Single Interrupt Source
2.8.1.1 MIV_Legacy Configuration

In this sample design, MIV_Legacy has one interrupt source with the remaining 31 PLIC interrupts tied low.

IRQ Source

PLIC_IRQ[O]

MIV_Legacy

PL|C_|RQ[31:1]_I_—>

uint8 t External 1 IRQHandler ()

{
return (EXT IRQ KEEP ENABLED);

}

2.81.2 MIV_RV32 Configuration
The interrupt source is connected to EXT IRQ input of MIV_RV32.

© 2020 Microchip Technology Inc. User Guide

DS00003723A-page 35

Migrating Hardware Configurations

IRQ Source

EXT_IRQ

There are no configuration options that need to be selected to use EXT IRQ. If required, you can enable the
Vectored mode.

uint8 t External IRQHandler ()

{ return (EXT IRQ KEEP ENABLED);
int main (int argc, char **argv)

{ HAL enable interrupts();

asm volatile ("wfi");

2.8.2 Sample Design 10 — Multiple Interrupt Sources

2.8.21 MIV_Legacy Configuration

In this sample design, MIV_Legacy has an interrupt source generating an interrupt for PLIC_IRQI0], and a second
source generating interrupts for PLIC_IRQ[1] and PLIC_IRQ[2] with the remaining PLIC interrupts tied low.

IRQ Source

PLIC_IRQ[O]
PLIC_IRQ[1]
IRQ Source PLIC_IRQ[2] MIV_Legacy

PLIC_| RQ[31:3]_|_—>

uint8 t External 1 IRQHandler ()
{

return (EXT IRQ KEEP ENABLED);
}

uint8 t External 2 IRQHandler ()
{

return (EXT IRQ KEEP ENABLED);
}

uint8 t External 3 TRQHandler ()
{

return (EXT IRQ KEEP ENABLED);
}

2.8.2.2 MIV_RV32 Configuration

The interrupt source generating a single interrupt is connected to the EXT IRQ, and the source generating the two
second interrupts is connected to two of the custom external interrupts.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 36

2.9

291

2.9.2

Migrating Hardware Configurations

IRQ Source

IRQ Source

CUSTOM_IRQ_O
CUSTOM_IRQ_1
—|

void External IRQHandler ()

{
}

void MSYS E10_ IRQHandler (void)

{
}

void MSYS E11 IRQHandler (void)

{
}

RISC-V Extensions

The MIV_Rv32 core can use the base RISC-V Integer extension along with the Multiply and/or Compressed
extensions as shown in the following figure. The multiply extension can be used with several versions of multipliers,
depending on the processor frequency required and processor performance needed; multiplication can be completed
in 1 cycle, 2 cycles or 32 cycles. The MIV_ Legacy cores featured the Integer, Multiplication and Atomic extensions.
The | and M extensions can be enabled in the MIV_Rv32 core and the Atomic extension is used for mutli-core
systems, if atomics are required, an MIV_Legacy core must be used.

Configurator

Mi-V RV32 Configurator

Microsemi:MiV:MIV_RV32:3.0.100

0 Configuration ‘

Extension Options

Memory Map l

RISC-V Extensions:

B Multipler: |Fa|:||'i-:
Interface Options

AHE Master:

APE Master: |APE3 b
AXI Master: |Mone i

AHE Mirrored TF: [)
APB Mirrored IF: [e

axIMirrored IF: T €D

RISC-V | Extension
This is the base RISC-V extension and is required in all cores.

RISC-V M Extension

The M extension adds multiply and divide instructions to the core. These can be used in place of software
equivalents to improve code performance while increasing the area of MIV_RV32.

- @

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 37

29.21

Migrating Hardware Configurations

A benefit will only be seen from the RISC-V Multiply extension, if multiply operations are used frequently by software.

The multiplier in MIV_Rv32 can be one of several types: MACC, MACC Pipelined, and Fabric, as seen in the
following figure.

B Configurator — O x

Mi-V RV32 Configurator

Microsemi:MiV:MIV_RV32:3.0.100

GCDnﬁguratiu:un l Memary Map]

Extension Options

RISC-V Extensions: |[IM oMuIﬁpler:

Interface Options MACC {Mon-Fipelined)
MACC (Pipelined)

AHE Master: |AHBLite AHE Mirrored IjF:
APE Master: |APE3 APE Mirored IiF: [€D
AXI Master: |Mone ~ AXI Mirrored IF: [0

The MACC options use the math blocks included in the FPGA fabric to carry out the multiplication operations, while
the fabric option instantiates a fabric multiplier.

Using the non-pipelined multiplier option, operations complete in one cycle.

LU LU UL LU L L L U UL L LT LT LT
1) T) e

Using the pipelined multiplier option, operations complete in two cycles.

B0) ST)

Using the fabric multiplier option, operations complete in 32 cycles.

Using the 32-cycle multiplier can still be very beneficial, depending on the values being multiplied. Software
multiplication (that is, only using the RV32I extension) can take many multiples of 32-cycle to complete and will not
take the same number of cycles for different values. The fabric multiplier is still faster than this and completes
multiplication in 32-cycle regardless of values.

For application that rely heavily on multiplication operations, a MACC option is recommended. For those applications
that require less or none at all, a fabric multiplier can be used or the M extension can be excluded respectively.

Using Software Multiplication
Using the M extension with the following C code:

uint32_t val0 = 5;
uint32 t vall = 7;
val0 = val0 * vall;

Compiles to the following RISC-V assembly:

1w a4,-28(s0)
1w a5,-24(s0)

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 38

293

Migrating Hardware Configurations

mul
sw

a5,a4,ab
a5,-28(s0)

With the highlighted “mul” instruction, taking a fixed number of cycles to complete depending on the multiplier type

chosen.

Using software multiplication, the same C code complies to the following RISC-V assembly:

1w a5,-28(s0)
1w ad,-24(s0)

mv al,ad
mv a0,ab
Jal ra,80001330 < mulsi3>
mv a5,a0

sw a5,-28(s0)

_ mulsi3():

mv a2,al

1i a0,0

andi a3,al, 1

beqgz a3,80001344 < mulsi3+0x14>
add a0,a0,a2

srli al,al,0Ox1

slli az2,a2,0x1

bnez al, 80001338 < mulsi3+0x8>
ret

The C code* for the loop being executed by the mulsi3 () : function is as follows:

unsigned int

_ mulsi3 (unsigned int a, unsigned int b)

{

unsigned int r = 0;
while (a)
{
if (a & 1)
r += b;
a >>= 1;
b <<= 1;
}
return r;

}

This loop executes until the multiplication operation has completed as opposed to the “mul” instruction available with

the M extension.

Note: This function is included in the standard C library, included by GCC automatically when building your code, if

the M extension is not selected.

RISC-V C Extension

Twenty-five of the base RV32l instructions have a compressed variant, which can be used in place of the base
instruction. The compressed variant is only 16 bits instead of 32. This allows for a 20%—30% reduction in overall code

size for a given application.

The following figure is an example chunk of RISC-V instructions, each cell is a 32-bit memory location.

ADD w SW SUB SLL LBU S5uUB SW
LB LH ADD CSRS JAL BME ADD MUL
RET LH ADD BEQ ADD JAL sUB ADDI

The following figure is the same chunk of instructions, but this time the C extension is included and the 16-bit

instructions are mixed with the 32-bit instructions.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 39

Migrating Hardware Configurations

CADDCLW

C.5W C5UB

SLL

C.LBUC5UB

sw

CLBC.LH

ADD

CSRS

C.JAL C.BNE

ADD

MUL

C.RET C.LH

ADD

C.BEQ C.ADD

CJALCsSUB

ADDI

Using the C extension, it allows for a reduction in code size with a small increase in core area. The reduced code size
allows for a smaller TCM and reduced RAM usage, which outweighs the increase in area from adding the extension.
The C extension is recommended in most circumstances to reduce the code size.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 40

Migrating Software Projects

3. Migrating Software Projects
MIV_RV32 HAL v3.0.100 or greater is required to use MIV_RV32.

3.1 Prerequisites

» Download and install latest SoftConsole at https://www.microsemi.com/product-directory/design-tools/4879-
softconsole#downloads.

» Download and install latest Firmware Catalog at https://www.microsemi.com/product-directory/design-tools/
4880-firmware-catalog#downloads.

Note: If you have Libero® SoC Software installed, you need not install the Firmware Catalog as it is included in the
Libero SoC Software.

3.2 Recommended Migration Process

The recommended way to migrate is to use the default Mi-V RV32IMA application from the SoftConsole workspace.
The migration process involves the following steps:
1. Generate the SoftConsole example projects from MIV_RV32 HAL v3.0, or greater, package in the firmware
catalog.
2. Importthe miv-rv32i-systick-blinky example project into workspace.
3. Copy your application specific files (main.c and other application specific files including driver) into the miv-
rv32i-systick-blinky example project.
4. Replicate your application project properties like pre-processor, include paths, optimization levels, and so on in
the miv-rv32i-systick-blinky example project.
— The readme.txt document located in the root directory of miv-rv32i-systick-blinky example
project describes the linker script and macro combinations required for conditional compilation. If you

have any application specific modifications in the linker script, then those should also be ported to the
new linker script you are going to use for miv-rv32i-systick-blinky project.

— The default debug and release build configurations are provided with the miv-rv32i-systick-blinky
example project.
5. Build the Debug or Release target. Fix any build errors, if they occur.
6. Debug the application using debug or release launch configuration.

3.3 Example of Recommended Migration Process
The following steps describe migration to an MIv_Rv32 core SoftConsole application.

1. In the Firmware catalog, search for the latest MIV_RV32 HAL v3.0.x, or greater. Right-click MIV_RV32
Hardware Abstraction Layer (HAL) to generate a sample project, as shown in following figure.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 41

https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://www.microsemi.com/product-directory/design-tools/4880-firmware-catalog#downloads
https://www.microsemi.com/product-directory/design-tools/4880-firmware-catalog#downloads

Migrating Software Projects

2.

3.

<# Firmware Catalog

File View Tools Help

View (53/269):

Search by all fields (53/53):

53/269
;GAII I f vault @] Web repositories Ic

¥ display only the latest version of a core

Q-

=]

MIV_RV32 Hardware Abstraction Layer (HAL)

MName | Version
CorelLPC Driver 2.1
CoreMACFilter Driver 2.1.100
CoreMMC Driver 3.0.101
CoreMMC Driver 2.0.100
CorePWM Driver 2.4.100
CoreSDLC Driver 2.1.100
CoreSP| Driver 3.3.100
CoreSysServices_PF Driver 2.0.102
CoreTSE Driver 2.5.100
CoreTimer Driver 24100
CorelARTapb Driver 3.3.101
CoreWatchdog Driver 2.2.100
Cortex-M1 CMSIS Hardware Abstraction Layer 2.1
Hardware Abstraction Layer (HAL)

23102

21100

PolarFire PCle Driver [Generate...
PolarFire Transceiver Driver 2.0.106
R fi It
PolarFire User Crypto Driver 2.2.102 | s
SmartFusion CMSIS-PAL 24102 .
SmartFusion MSS ACE Driver 23705 @ Show details...
SrnartFusion MSS Ethernet MAC Driver 3.1.102 Open documentation L4
SmartFusion MS5S GPIO Driver 2.1.100 - -]
it | Ta - - -
SmartFusion MSS [2C Driver 3.1 Systick Timer Example I
Documentation: -
MIV RV32 HAL UG.pdf
MIV RV32 HAL RM.pdf
Description: Hardware Abstraction Layer for the Mi-V soft processors.
Start-up code for Mi-V soft processors
Supports MIV_RV32, MIV_RV32IMC and legacy RV.32IMA core variants
Support for the Integer multiplication and division(M), Floating point(F) and Atomic instruction (A) and Compressed (C) j
(4] Generate

In the Generate Sample Options dialog box, enter a folder location in which the project must be generated,

as shown in the following figure.

¥ Generate Sample Options

Samples folder: |D:;"Sys1:idc_‘ﬁmer

Files will be generated in:
D \Systick_Timer\MIVRV32I_GMNU_SC_Systick_Timer

¥ Show generation report

Help

Ok

Cancel

Open SoftConsole workspace and import the generated project using the option, as shown in the following

figure.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 42

Migrating Software Projects

SC workspace.examples - SoftConscle v8.5.0.442

File Edit Source Refactor MNavigate Search Project Git Run Window Help
Mew Alt+Shift+N > | T QP-Q-®@ 5
Open File... <}=|'=> 7 8 = g

[y Open Projects from File System...

Close Ctrl+W
Close All Ctrl+ Shift+W
Save Ctrl+5
Save As..

Sawve All Ctrl+Shift+5
Revert

Move...

Rename... F2

& Refresh F5
Convert Line Delimiters To
Print... Ctrl+P

= Import...

' Export.

Properties Alt+Enter
Exit
3.1. Select General > Existing Projects into workspace and click Next.
3.2. Copy the root directory (the generated project path) or use Browse to navigate to the root directory.
3.3. Select the application in the directory to import and click Finish.
SC Import O X
Import Projects *'_ ==
Select a directory to search for existing Eclipse projects. A A

@ Select root directory: | D:\Systick_Timer\MIVRV32I_GMNU_SC_Systick_Timer ~ | Browse...

() Select archive file: Browse

Projects:

miv-re32i-systick-blinky (D Systick_Timer\MIVRY32I_GNU_SC_Systick_Timer) Select All
Deselect All
Refresh
< >
Options
Search for nested projects
Copy projects into workspace
[Close newly imported projects upon completion
[]Hide projects that already exist in the workspace
Working sets
[[] Add project to working sets Mew...
Select...
‘/?:' < Back MNext = Cancel
User Guide DS00003723A-page 43

© 2020 Microchip Technology Inc.

Migrating Software Projects

The following figure shows the imported SoftConsole project in the workspace.

SC workspace.examples - SoftConscle v6.5.0.442
File Edit 5Source Refactor Mavigate Search Project Gt Run Window Help

|| -iw] HFE-O~Qu-® - &
5 Project Explorer &3 S SyY &8 = 8
LI fpga-cortex-m1-blinky
LI mifpga-cortex-m1-blinky
W =% miv-rv32i-systick-blinky
i) Includes
[&=- drivers
= hal
= miv_nv32_hal
hw_platform.h
L] main.c

= miv-rv3Z-envim.ld

miv-rv32-ram-ima.ld

miv-rv32-ram-ime.ld

miv-rv32i-systick-blinky Debug.launch

miv-rv32i-systick-blinky Renode Debug.launch

=| miv-rv32i-systick-blinky Rencde Start-platform-and-debug.launch
=| README.txt

4. As described in the Recommended migration process section, replace your application specific files in the
example.

5. Openthe hw_platform.h file and configure,
5.1. The peripheral base addresses as per the memory map generated by Libero SoC Software design.
5.2. The system clock frequency based on the Libero SoC Software design.

6. Right-click the project name and open the properties menu (last option in menu). The project settings offer six
types of configurations like debug and release configurations for Mi-V |, IMA, and IMC cores.
Note: The selected configuration must match with the processor core in the design.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 44

Migrating Software Projects

w C/C++ Build
Build Variables
Environment
Legging
Settings
Tool Chain Editor
C/C++ General

Project References
Run/Debug Settings

Configuration:

) Tool Setting

SC Properties for miv-rv32i-systick-blinky O x

type filter text | Settings =l - 8
Resource ~
Builders

miv32i-Debug [Active]

~| | Manage Configurations..

miv32i-Debug [Active]
miv32i-Release
miv32ima-Debug
miv3i2ima-Release

@ Target [miy32imc-Release
2 Optimil[All configurations]

rch=rv32i*)

(% Preprocessor
2 Includes

- 5} in[Multiple configurations...]
cppcheclipse (22 Warni
MCU @ Debugging [TEfomic extension (RS,
Project Matures ~ B3 GMU RISC-V Cross Assembler Floating point Mone

[Compressed extension (RVC)

act Binary Parsers| *

@ Warnings Integer ABI ILP32 (-mabi=ilp32¥)

@ Miscellanecus
~ B3 GMNU RISC-V Cross C Compiler
(% Preprocessor
@ Includes
Optimization
Warnings
@ Miscellanecus
~ B3 GMNU RISC-V Cross C Linker
@ General
@ Libraries
@ Miscellanecus
~ B3 GMNU RISC-V Cross Create Flash Image
@ General
~ B3 GMNU RISC-V Cross Create Listing
@ General
~ B3 GMNU RISC-V Cross Print Size
@ General

Floating point ABl | None

Tuning Toolchain default

Code model Mediurm Any (-mcmodel=medany)

Small data limit | 8

Align Strict (-mstrict-align)
[15mall prolegue/epilogue (-msave-restore)

Force string operations to call library functions (-mmer

Other target flags |

T
'\2/' Cancel

Apply and Close

7. Select the configuration that matches your processor design. Make any application specific changes like
pre-processor, include paths and so on.

8. Click Apply and Close. The same process must be followed to build the release target.
9. Build the debug or release target. Fix any build errors that arise in the process.

10. Use the default build configurations and look for any application specific settings.

11. Launch the application in debug mode to test the functionality.

3.4 Updating the MIV_RV32 HAL

The MIV_RV32 HAL can be updated to the latest version. The source files are generated from the Firmware Catalog,
which is installed with Libero SoC Software.
1. Open the Firmware Catalog and search for hal.

2. Right-click MIV_RV32 Hardware Abstraction Layer (HAL) and click Generate. Select a location for the HAL
update files.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 45

Migrating Software Projects

<# Firmware Catalog

— O *
File View Tools Help
View (53/269): Search by all fields (4/53):
All W web itori =
,& I J Vault | Web repositories |H.-'-\L Q-

¥ display only the latest version of a core

MName | Version
Cortex-M1 CMSIS Hardware Abstraction Layer 2110

Hardware Abstraction Layer (HAL)
MIV_RV32 Hardware Abstraction Layer (HAL)
SmartFusion2 CMSIS Hardware Abstraction Layer

2.3.102

. J-
E 2] Generate...

38 Remove from vault

4% Show details...
Open documentation L4

Generate sample project ¥

Documentation: -
MIV RV32 HAL UG.pdf
MIV RV32 HAL RN.pdf

Description: Hardware Abstraction Layer for the Mi-V soft processors.

Start-up code for Mi-V soft processors
Supports MIV_RV32, MIV_RV32IMC and legacy RV32IMA core variants
Support for the Integer multiplication and division(M), Floating peint{F) and Atomic instruction (A) and Compressed (C) j

(] Generate

3. After generating the HAL update, the hal and miv_rv32_hal folders from the SoftConsole project must be
updated. Note that the existing project specific linker script in the miv_rv32_hal folder will be over written. If
required, it must be backed up before deleting the folder.

SC workspace.examples - SoftConsole v6.5.0.442

File Edit Source Refactor Mavigate Search Project Git Run Window Help

| | ~ivn| - | | #-0-Q-=
¥ Project Explorer &3 =] ﬁ) f § = 0

LI fpga-cortex-m1-blinky

LI mifpga-cortex-m1-blinky
v T5 miv-rv32i-systick-blinky

[Includes
(= drivers
= hal
= miv_rv32_hal
[B] hw_platform.k Mew ¥
[€] main.c Go Into
=] miv-re32-envr .
= Show In Alt+Shift+ W >
= miv-re32-ram-
2 miv-rv32-ram- Show in Local Terminal »
=] miv-re32i-syst
=] miv-re32i-syst Copy CtrI+Cl
=] miv-rv32i-syst reae gkl
) READMEixt 46 Delete Delete
LI miv-rv32Zim-inter Source »
LI miv-rv32im-systi e
LI miv-rv32imaf-me)
LI miv-re32imaf-ray fename... e
LI mpfs-blinky pag Import...
LI mpfs-freertos-lwi | B
LI mpfs-mustein-ju

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 46

3.5

Migrating Software Projects

4. Copy the generated hal and miv_rv32_hal folders, generated by the Firmware Catalog into the SoftConsole

project.
sC
File Edit Source Refactor MNavigate Search Project Git Run Window Help
| &) ~iw| | F-O-Q@-® 5~ Gov
[Project Explorer 52 SBY & = [€] main.c 32

3 fpga-cortex-m1-blinky
3 mifpga-cortex-mi-blinky
v 1% miv-rv32i-systick-blinky
&1l Includes.
(= drivers
hw_platform.h
1) main.c
[miv-rv32-envm.ld
=| miv-rv32-ram-ima.ld
miv-re32-ram-ime.ld
miv-n32i-systick-blinky Debug.launch
2i-systick-blinky Renode Debug.launch
rmiv-rv32i-systick-blinky Renode Start-platform-and-debug.lsunch
|5 README.txt
3 miv-rv32im-interrupt-blinky
3 miv-rv32im-systick-blinky
L miv-rv32imaf-mandelbrot-uart
I miv-rv32imaf-raytracer-uart-cpp
3 mpfs-blinky
I mpfs-freettos-lwip
3 mpfs-mustein-julia
3 smartfusion-cortex-m3-blinky
3 smartfusion2-cortex-m3-blinky

Defining the Core to the HAL

[F] | = | HALupdate

i &) Extra large icons (=] Large icons
- 0 o ° ’

Copyright 2@19-2@2@ Microchip FPGA Embedded Systems Solutions.

[~ [rtem check boxes) IZI

=& Mediumicons EE Small icons - [~ [File name extensions le
+ MNavigation e = — Sort Hide selected Options
:1_! gation TR gp gt == Details T wte . e o
i1 T
#i1 Panes Layout Current view Shaw/hide
i1
i € v 4 [« Wo.. » HALu.. v o Search HAl_update
a™ Name Date modified Type Size
hal File folder
miv_rv32_hal File folder

The MIV_Rv32 and MIV_Legacy cores handle traps and interrupts differently. They also have different methods of
causing internal interrupts. Each one includes unique interrupts, for example, a PLIC or ECC errors. Due to this, the
HAL must be configured for the core that is being used, by defining a symbol in the SoftConsole project properties.
This symbol must be defined in the following preprocessor settings. In C/C++ Build > Settings > Tool Settings >
GNU RISC-V Cross Assembler > Preprocessor, the symbol MIV_LEGACY RV32 must be defined, if an

MIV_ Legacy core is used.

SC Properties for miv-rv32i-systick-blinky

type filter text Settings
Resource
Builders -
~ C/C++ Build Configuration: miv32ima-Debug

Build Variables
Environment
Logging
Settings

) Tool Settings %3 Toolchains M Devices #* Build Steps

Tool Chain Editor (# Target Processor
C/C++ General (# Optimization
cppcheclipse (& Warnings
MCU (& Debugging
Project Natures ~ B GNU RISC-V Cross Assembler
Project References (# Preprocessor
Run/Debug Settings (2 Includes
(= Warnings
(# Miscellaneous
w B GNU RISC-V Cross C Compiler
(2 Preprocessor
2 Includes
(# Optimization
(2 Wamings
(& Miscellaneous
w B GMU RISC-V Cross C Linker
& General
(2 Libraries
(# Miscellaneous
w B GMU RISC-V Cross Create Flash Image
(& General
~ i GNU RISC-V Cross Create Listing
(2 General
~ B2 GNU RISC-V Cross Print Size
(£ General

i~ | Manage Configurations...

Build Artifact Binary Parsers @ Errorf * | *

[use preprocessor
[Do not search system directories (-nostding)
[Preprocess only (-E)
Defined symbols (-D) 28 8

MIV_LEGACY RW32

Undefined symbols (-U) &

Restore Defaults Apply
Apply and Close Cancel

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 47

Migrating Software Projects

In C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross Compiler > Preprocessor, the symbol
MIV_LEGACY_RV32 must be defined, if an MIV_Legacy core is used. If MIV_RvV32 or MIV_RV32IMC core is used,
then no symbol needs to be defined.

Resource
Builders
~ C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
cppcheclipse
MCU
Project Natures
Project References
Run/Debug Settings

SC Properties for miv-re32i-systick-blinky

type filter text

) Tool Settings

Settings

Configuration: miv32ima-Debug

Y Toolchains M Devices

(5 Target Processor
(2 Optimization
(2 Warnings

Debugging

~ E3 GMNU RISC-V Cross Assembler

(22 Preprocessor
% Includes

& Wamings

(2 Miscellaneous

~ B GNURISC-V Cross C Compiler

(# Preprocessor
(2 Includes
(2 Optimization
(5 Wamnings

(& Miscellaneous

~ B GMNURISC-V Cross C Linker

(5 General
(B Libraries
& Miscellaneous

~ B GMU RISC-V Cross Create Flash Image

(B General

~ 83 GMNU RISC-V Cross Create Listing

(2 General

~ 3 GNU RISC-V Cross Print Size

(3 General

Build Steps Build Artifact Binary Parsers & Errorf ' |*

~

Manage Configurations...

[] Do not search system directories (-nostdinc)

[Preprocess only (-E)
Defined symbels (-D)

a8

MIV_LEGACY_RV32

Undefined symbols (-U)

8

Restore Defaults Apply

Apply and Close Cancel

Two additional defines can be included, depending on the configuration of the MIV_Rv32 core to define the system
timer configuration of the core:

.« MIV_RV32_EXT_TIMER
« MIV_RV32_EXT_TIMECMP

These symbols must be defined only when the internal MTIME and internal MTIMECMP options are not selected in

the IP Core configurations. These symbols must be defined in the following project settings path.

C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross Compiler > Preprocessor.

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 48

Migrating Software Projects

SC Properties for miv-rv32i-systick-blinky

Resource
Builders
~ C/Cs+ Build
Build Variables
Environment
Logging
Settings

Settings
Configuration: | miv32ime-Debug

& Tool Settings 3 Toolchains [l Devices

Toel Chain Editer
C/C++ General

(£ Target Processor
(2 Optimization
(5 Warnings
MCU (¥ Debugging
Project Matures ~ 53 GNU RISC-V Cross Assembler
Project References (3% Preprocessor
Run/Debug Settings (2 Includes
2 Warnings
@ Miscellaneous
~ B GNU RISC-V Cross C Compiler
(# Preprocessor
2 Includes
(# Optimization
(5 Warnings
2 Miscellaneous
~ B3 GMNU RISC-V Cross C Linker
(2 General
2 Libraries
2 Miscellaneous
~ B3 GMU RISC-V Cross Create Flash Image
(2 General
~ 8 GNU RISC-V Cross Create Listing
5 General
~ B GMNU RISC-V Cross Print Size
(2 General

cppcheclipse

G

| | Manage Configurations...

4 Build Steps Build Artifact Binary Parsers @3 Error [4

[]De not search system directories (-nostdinc)
[JPreprocess only (-E)

Defined symbols (-D)

ea 80l &

MV RV32 EXT TIMER
MIV_RV32_EXT_TIMECMP

Undefined symbols (-U) &

Restore Defaults Apply

Apply and Close Cancel

v

When the "Internal MTIME" and "Internal MTIMECMP" are enabled in the core (default configuration). The
SoftCosole project uses the same default settings and it works without adding any symbols to the project settings.

B Configurator

Mi-V RV32 Configurator

Microsemi:MiV:MIV_RV32:3.0.100

APB Master: |APB3 &
AXI Master: |Mone v

Reset Vector Address
Upper 16bits (Hex): |0x8000
BootROM Options

BootRoM: [~ € Reconfigure Bootrom: T

APB Mirrored IjF: [

AXIMirrored IjF: T e

Tightly Coupled Memory {TCM) Options
tom: [B Tom ape Slave (Tas): T

Interrupt Options
External System IRQs: [0 = e
Vectored Interrupts: [6

System Timer Options

Internal MTIME: - MTIME Prescaler: |100

Internal MTIME IRQ: |

Other Options

Debug: ¥ € Register Forwarding: [
ecc: [W GPR Registers: i i]

Help

Lower 16bits (Hex): |Ox0 e

m] X

Ad|
OK | Cancel |

© 2020 Microchip Technology Inc.

User Guide

DS00003723A-page 49

Migrating Software Projects

3.6 Interrupts

In MIV_RV32 HAL v3.0.x or greater handler, names for the standard RISC-V interrupts have not been changed, that
is, external interrupt, software interrupt, and timer interrupt. If the MIV_LEGACY RV32 symbol is defined in the GCC
pre-processor, the software is built to support the MIV_Legacy cores. If the symbol is not defined, then the software
will be built to support the MIV_Rv32 core (as well as the MIV_RvV32IMC core).

In the MIV_ Legacy cores, PLIC interrupts cause the external interrupt to assert, and the core determines which
interrupt in the PLIC has occurred and jump to its handler. In the MIV_RVv32 core, each interrupt has its own
encoding and a PLIC does not need to be polled to determine which interrupt has occurred.

3.6.1 Sample Design 11 — Single Interrupt Source

3.6.1.1 MIV_Legacy Configuration
In this sample design, MIV_Legacy has one interrupt source with the remaining 31 PLIC interrupts tied low.

IRQ Source

PL|C_|RQ[31:1]_‘_—>

PLIC_IRQ[O]

MIV_Legacy

The following code block is a software implementation of the interrupt handling.

uint8 t External 1 IRQHandler ()
{

return (EXT_IRQ KEEP ENABLED) ;
}

3.6.1.2 MIV_RV32 Configuration
The interrupt source is connected to the EXT IRQ input of MIV_Rv32.

IRQ Source

EXT_IRQ

The following code block is a software implementation of the interrupt handling.

uint8 t External IRQHandler ()
{

return (EXT_IRQ KEEP ENABLED) ;
}

3.6.2 Sample Design 12 — Multiple Interrupt Sources

3.6.2.1 MIV_Legacy Configuration
In this sample design, MIV_Legacy has an interrupt source generating an interrupt for PLIC_IRQ[0] and a second
source generating interrupts for PLIC_IRQ[1] and PLIC_IRQ[2] with the remaining PLIC interrupts tied low.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 50

3.6.2.2

3.7

Migrating Software Projects

IRQ Source

PLIC_IRQ[O]
PLIC_IRQ[1]
IRQ Source PLIC_IRQ[2] MIV_Legacy

PLIC_| RQ[31:3]_‘_—)

The following code block is a software implementation of the interrupt handling.

uint8 t External 1 IRQHandler ()

{ return (EXT IRQ KEEP ENABLED);
1),1int87t External 2 IRQHandler ()

{ return (EXT IRQ KEEP ENABLED);
L}lint8_t External 3 TRQHandler ()

{ return (EXT IRQ KEEP ENABLED);
}

MIV_RV32 Configuration

The interrupt source generating a single interrupt is connected to the EXT_IRQ core; the source generating the two
second interrupts is connected to two of the custom external interrupts.

IRQ Source

CUSTOM_IRQ_O .

—_—
IRQ Source FISEYE R

—

The core configuration to enable CUSTOM IRQ 0 and CUSTOM IRQ 1 is as follows:

The following code block is a software implementation of the interrupt handling.

void External IRQHandler ()
{

}
void MSYS_E10_IRQHandler (void)
{

}
void MSYS E11_ TIRQHandler (void)
{

}

MIV_RV32 Extensions

As MIV_RV32 supports any configuration of RV32I, RV32IM, RV32IC, or RV32IMC, the SoftConsole projects need to
be configured appropriately. In the Project Properties > C/C, select the check box for the Multiply extension
(RVM), if the M Extension is included in the core, select the check box for the Compressed extension (RVC), if the
C Extension is included in the core.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 51

3.8

Migrating Software Projects

sc
type filter text Settings
Resource
Builders o o -
v C/C++ Build Configuration: miv32i-Debug [Active]
Build Variables
Environment % Tool Settings ® Toolchains M Devices # Build Steps
Logging
Settings & Target Processor Architecture
Tool Chain Editor & Optimization] Multiply extension (RVM)
C/C++ General & Warnings r Atomic extension (RVA)
cppchedipse 2 Debugging . X
Floating point None
MCU v ® GNU RISC-V Cross Assembler ' P

Project Natures * Preprocessor

~ Manage Configurations...

Build Artifact &4 Binary Parsers © Error Parsers

RV32I (-march=rv32i*) W

[l Compressed extension (RVC)

Project References 2 Includes Integer ABI ILP32 (-mabi=ilp32*) v

Run/Debug Settings 5 Warnings Floating point ABI None v
& Miscellaneous

v ® GNURISC-V Cross € Compler Tuning Toolchain default v

2 Preprocessor Code model Toolchain default =

P inchdes Small data fimit | 8
B Optimization
5 Warnings
* Miscellaneous
GNU RISC-V Cross C Linker
2 General
= Libraries
B Miscellaneous
® GNU RISC-V Cross Create Flash Image
2 General
GNU RISC-V Cross Create Listing
* General
GNU RISC-V Cross Print Size

B General

<

Other target flags

<

<

<

Align Strict (-mstrict-align) ~

[1small prologue/epilogue (-msave-restore)

Cancel

B Configurator

Mi-V RV32 Configurator

Microsemi:MiV:MIV_RV32:3.0.100

oCunﬁguraﬁun l Memory Map]

Extension Options

eMulﬁpler: Fabric = o

RISC-V Extensions:

Interface Options

AHE Master: AHE Mirrored TF: ¥ (B

APB Master: |APB3 fud
AXI Master: |None Bt

Reset Vector Address

Upper 16bits (Hex): |0x8000

BootROM Options

AHBI
APB Mirrored 1/F: @ €D

AXI Mirrored IfF: [e

gootRoM: | € Reconfigure Bootrom: [~ D

Tightly Coupled Memory (TCM) Options

tem: T @ Tom APB Slave (Tas): T @)

Interrupt Options

Help

Lower 16bits (Hex): |0x0 e =

|»

|~

Maintaining Performance in Code Implementations From MIV_Legacy

In some use cases, certain code requirements are needed in software running on MIV_Legacy. The main
requirement is that if memory is needed to appear consistent to another master accessing it, as shown in the

following use case.

© 2020 Microchip Technology Inc.

User Guide DS00003723A-page 52

Migrating Software Projects

MIV_Legacy

Master 2

Accessing all MMIO

0x6000_0000

AHB Bus >

OX6FFF_FFFF

Application
code

0x8000_0000
->
0x8000_FFFF

AHB to APB Bridge

0x8001_0000
->
OX8FFF_FFFF

APB
Peripherals

Due to the cache of MIV_Legacy, fence and fence. i instructions are required to make the memories in question
appear consistently to the other masters. As there is no cache on MIV_RV32, there is no requirement to execute
fence or fence. i instructions. Using the TAS to access, the TCM also appears consistently without fence or
fence. 1 instructions.

Any ported code with fence or fence. i instructions still executes on the MIV_Rv32. The instructions themselves
have no effect when executed, but still need to be decoded, incurring a five-cycle delay.

Note: Any code that is ported from a MIV_Legacy configuration to a MIV_Rv32 configuration, should have any
fence and fence. i instructions removed.

3.8.1 Latency of fence and fence. i Instructions
The following figure is an example system to test the delay added by fence and fence. i instructions.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 53

Migrating Software Projects

PF_SRAM_AHBL_AXI_C0_0

HCLK
HRESETN
M IV_ RV3 Z_CO_O 1AHBS\aveInterface
ax e) PF_SRAM_AHBL_AXI_C0
RESETN R X CoreGPIO_CO_O
*TIME_COUNT_IN[63:0] . =
AHBL_M_SLViE— i
1EI,IR§T RQ APB_M_SLV:— ;)EEEHN hd
| JTMR_IRQ —GPIO_IN[O] GPIO—OUT[O]X core0
"~ MIV_RV32_CO (i
B B CoreGPIO_CO
_ MIV.RV32C10 PF_SRAM_AHBL_AXI_C1_0
i rHCLK
R X HRESETN
1= F_COUNT_IN[63:0] AHBL_M_SLV ;RHBSlaveInterface
.. EIIEQ APB_M_SL\-’:— ﬂ
1 PF_SRAM_AHBL_AXI_C1
*H WTMR_IRQ
) MIV_RV32 C1 ’) CoreGPIO_C1_0
PRESETN "
_G(;IL g_IN[O] GPIO_OUT[0] " corel
APB_bif

CoreGPIO_C1

Core 0 boots and executes the following code in main.

int main(int argc, char **argv)

{
GPIO init (&g gpio0, COREGPIO IN BASE ADDR, GPIO APB 32 BITS BUS);

GPIO_set outputs (&g gpio0, 1);
}

Core 1 boots and executes the following code in main.

int main(int argc, char **argv)
{

asm volatile ("fence.i");

GPIO_init (&g _gpio0, COREGPIO IN BASE ADDR, GPIO APB 32 BITS BUS);
GPIO_set outputs (&g gpio0, 1);
}

The time taken by each core to set its GPIO output indicates how long it takes to execute the code. The only
difference between the code being executed on both cores is that the core 1 executes a fence. i instruction before
initializing and setting its GPIO. The following figure shows that this result in core 1 settings is GPIO 5 cycles after
core 0.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 54

Migrating Software Projects

J =] &

L W] 0000000000
0|

9 RESETN 1

Ja.{ﬂfeu
4. corel

The code for core 1 is modified as in the following:

int main(int argc, char **argv)
{
asm volatile ("fence");
GPIO init (&g gpio0, COREGPIO IN BASE ADDR, GPIO APB 32 BITS BUS);

GPIO_set outputs (&g gpio0, 1);
}

In this case, a fence instruction is executed instead of a fence. i instruction.

-
The same delay as seen with fence. i can been seen here. This delay is compounded every time and the
instruction is executed.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 55

4.

Revision History

Revision History

L S T

A October 2020 Initial Revision

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 56

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

» Microchip is willing to work with the customer who is concerned about the integrity of their code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 57

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
1/0, SMART-1.S., SQI, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-7048-9

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. User Guide DS00003723A-page 58

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC B

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2020 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

User Guide

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS00003723A-page 59

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Reasons to Migrate
	1.1. MIV_RV32 Core
	1.2. MIV_RV32 HAL

	2. Migrating Hardware Configurations
	2.1. Peripherals Connected to the MEM Interface
	2.1.1. SRAM
	2.1.1.1. Configuring the TCM

	2.1.2. DDR

	2.2. Peripherals Connected to the MMIO Interface
	2.3. Mirrored Master Interfaces
	2.4. Interfaces and Memory Maps
	2.4.1. Sample Design 1 – Base Design
	2.4.1.1. MIV_Legacy Configuration
	2.4.1.2. MIV_RV32 Configuration

	2.4.2. Sample Design 2 – Base Design with DDR
	2.4.2.1. MIV_Legacy Configuration
	2.4.2.2. MIV_RV32 Configuration

	2.4.3. Sample Design 3 – Base Design with DDR and a Second Master
	2.4.3.1. MIV_Legacy Configuration
	2.4.3.2. MIV_RV32 Configuration

	2.4.4. Sample Design 4 - Base Design with DDR and Second Master
	2.4.4.1. MIV_Legacy Configuration
	2.4.4.2. MIV_RV32 Configuration

	2.4.5. Sample Design 5 - Base Design Bootloader from SPI Flash
	2.4.5.1. MIV_Legacy Configuration
	2.4.5.2. MIV_RV32 Configuration

	2.4.6. Sample Design 6 – Base Design Booting from eNVM and SRAM Used as RAM
	2.4.6.1. MIV_Legacy Configuration
	2.4.6.2. MIV_RV32 Configuration

	2.5. System Time
	2.5.1. Sample Design 7—Internal MTIME and Internal MTIME IRQ
	2.5.2. Sample Design 8—External MTIME and External MTIME IRQ

	2.6. Debug
	2.7. ECC
	2.8. Interrupts
	2.8.1. Sample Design 9 – Single Interrupt Source
	2.8.1.1. MIV_Legacy Configuration
	2.8.1.2. MIV_RV32 Configuration

	2.8.2. Sample Design 10 – Multiple Interrupt Sources
	2.8.2.1. MIV_Legacy Configuration
	2.8.2.2. MIV_RV32 Configuration

	2.9. RISC-V Extensions
	2.9.1. RISC-V I Extension
	2.9.2. RISC-V M Extension
	2.9.2.1. Using Software Multiplication

	2.9.3. RISC-V C Extension

	3. Migrating Software Projects
	3.1. Prerequisites
	3.2. Recommended Migration Process
	3.3. Example of Recommended Migration Process
	3.4. Updating the MIV_RV32 HAL
	3.5. Defining the Core to the HAL
	3.6. Interrupts
	3.6.1. Sample Design 11 – Single Interrupt Source
	3.6.1.1. MIV_Legacy Configuration
	3.6.1.2. MIV_RV32 Configuration

	3.6.2. Sample Design 12 – Multiple Interrupt Sources
	3.6.2.1. MIV_Legacy Configuration
	3.6.2.2. MIV_RV32 Configuration

	3.7. MIV_RV32 Extensions
	3.8. Maintaining Performance in Code Implementations From MIV_Legacy
	3.8.1. Latency of fence and fence.i Instructions

	4. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

