
.
HB0911

Handbook
MIV_RV32IMC v2.1

March 2020

Contents

Revision History..1
1.1 Revision 1.0...1

2 Introduction...2
2.1 Overview...2
2.2 Features..2
2.3 Core Version..2
2.4 Supported Families...2
2.5 Device Resource Utilization and Performance..3

2.5.1 Typical Resource Utilization...6
2.5.2 Benchmarks...7

3 Functional Description...9
3.1 MIV_RV32IMC Architecture..9
3.2 Hart...10
3.3 Memory System..10
3.4 Interrupts..10
3.5 Debug Support via JTAG..11
3.6 External Interfaces..11
3.7 Tightly Coupled Memory..11
3.8 Direct Access Port...11
3.9 Clocks..11
3.10 Resets...11

4 Interface..13
4.1 Configuration Parameters...13
4.2 I/O Signals...16

5 Programmer’s Model...20
5.1 Processor Operating States...20
5.2 Reset Operation..20
5.3 Data Types..20
5.4 General Purpose Registers..20
5.5 Machine Control and Status Registers..21
5.6 Debug Module..28

5.6.1 Debug Transport Module...28
5.6.2 Debug Unit...29
5.6.3 Hart Debug Logic...30

5.7 Memory Map..32
5.8 Subsystem Restrictions...34
5.9 Exceptions...34

5.9.1 Vectored and Non-Vectored Interrupts...35
5.9.2 Nested Interrupts...35
5.9.3 Available Interrupts...35
5.9.4 Interrupt Handling...35
5.9.5 Vectored Interrupt Offsets and Exception Priorities..36
5.9.6 OPSRV Register Interrupts...36

5.10 OPSRV Register...37
5.11 MTIME..38
5.12 ECC..40

iiiMicrosemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Contents

6 Tool Flow..42
6.1 License..42

6.1.1 RTL...42
6.2 SmartDesign...42
6.3 Configuring MIV_RV32IMC...43

6.3.1 Extension Options..43
6.3.2 Interface Options...44
6.3.3 Reset Vector Address...44
6.3.4 Interrupt Options...44
6.3.5 Tightly Coupled Memory (TCM) Options...44
6.3.6 Other Options..44
6.3.7 Memory Map Tab..45

6.4 Debugging...45
6.5 Simulation Flows...45
6.6 Synthesis in Libero..47
6.7 Place-and-Route in Libero...47

7 System Integration...48
7.1 PolarFire Example System...48
7.2 RTG4/SF2/IG2 Example System..48
7.3 Reset Synchronization...49

7.3.1 RESETN...49
7.3.2 TRST...50

8 Design Constraints...51

9 SoftConsole..52
9.1 Setting the System Clock Frequency and Peripheral Base Addresses...52

ivMicrosemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Contents

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are listed
by revision, starting with the most current publication.

1.1 Revision 1.0
Revision 1.0 was published in March 2020. This is the first publication of the MIV_RV32IMC IP.

1Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Revision History

2 Introduction

2.1 Overview
TheMIV_RV32IMC is a processor core designed to implement the RISC-V instruction set for use inMicrochip
FPGAs.

The core includes an industry standard JTAG interface to facilitate debug access. Three optional bus interfaces
are available for peripheral and memory accesses. They are AHB, APB3, and AXI which can be configured
as AXI3 or AXI4.

There are three dedicated interrupts as well as six optional external interrupts.

A quick start guide is available on how to create an MIV_RV32IMC Libero design from the help menu in the
core configurator.

2.2 Features
• Designed for low power FPGA soft-core implementations
• Supports the RISC-V standard RV32I ISA with optional Multiply and Divide (M) and Compressed (C)

extensions
• Tightly coupled memory is available and size is defined by address range
• Direct Access Port (DAP) to TCM
• External, Timer and Soft Interrupts
• Up to six optional external interrupts
• Vectored and non-vectored interrupt support
• Optional on-chip debug unit with a JTAG interface
• AHBL, APB3, and AXI3/AXI4 optional external bus interfaces

2.3 Core Version
This Handbook applies to MIV_RV32IMC version 2.1.

Note: The five accompanying manuals for this core are as follows:
• The RISC-V Instruction Set Manual Volume I: Unprivileged ISA
• The RISC-V Instruction Set Manual Volume II: Privileged Architecture
• RISC-V External Debug Support Version 0.13.2
• MiV_RV32IMC Quick Start Guide
• Supplementary Resource Utilization and Performance (RUP) tables

2.4 Supported Families
• PolarFire®

• RTG4™

• IGLOO®2
• SmartFusion®2

2Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

2.5 Device Resource Utilization and Performance
The device Resource Utilization and Performance (RUP) data is listed in tables 1 to 9 for the supported
device families. This data is indicative only. The overall resource utilization and performance of the core is
system dependent.

The entire RUPdatawas generated using Libero SoC v 12.3 and Synplify v2019.03M-SP1. TheP&R LEs signify
the number of logic elements used in the synthesized component for benchmarking. This value is for
reference only and varies between place-and-route runs. The following tables list the device resource
utilization and performance for selected configurations of the processor.
Table 1 • RV32I APB TCM

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

109.206410548833899984MPF500T-1PolarFire

FCG1152E

89.815401748133829984RTG4150LRTG4

FCG1657

89.654405948343852982M2S150TSmartFusion2

FC1152

89.654405948343852982M2GL150IGLOO2

FC1152

RISC-V Extensions: I,Multiplier: n,AHBMaster: n,AHBMirrored I/F:n,APBMaster:APB3,APBMirrored
I/F: n, AXI Master: n, AXI Mirrored I/F: n, Reset Vector Address Upper 16 bits: 0x4000, Reset Vector

Configuration

Parameters
Address Lower 16 bits: 0x0, External IRQs: 0,MTVEC Offset: 0x34, Vectored Interrupts: n, TCM: y (4
k), TCMDirect Access Port: n, InternalMTIME: n, InternalMTIME IRQ: n,Debug: n,Register Forwarding:
n, ECC: n, GPR Registers: n

Table 2 • RV32I APB All Features

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

67.24984711056479012663MPF500T-1PolarFire

FCG1152E

56.57784331040677462660RTG4150LRTG4

FCG1657

72.12984111044777872660M2S150TSmartFusion2

FC1152

72.12984111044777872660M2GL150IGLOO2

FC1152

RISC-V Extensions: I,Multiplier: n, AHBMaster: AHBLite, AHBMirrored I/F: y, APB Master: APB3, APB Mir-
rored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector Address Upper 16 bits: 0x8000, Reset Vector

Configuration

Parameters
Address Lower 16 bits: 0x0, External IRQs: 6,MTVEC Offset: 0x34, Vectored Interrupts: y, TCM: y (4 k), TC-
M Direct Access Port: y, Internal MTIME: y, Internal MTIME IRQ: y, Debug: y, Register Forwarding: y, ECC:
y, GPR Registers: y

3Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

Table 3 • RV32IC APB TCM

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

98.678435551474165982MPF500T-1PolarFire

FCG1152E

83.417442852164230986RTG4150LRTG4

FCG1657

95.822444652274240987M2S150TSmartFusion2

FC1152

95.822444652274240987M2GL150IGLOO2

FC1152

RISC-V Extensions: IC,Multiplier:n,AHBMaster: n,AHBMirrored I/F: n,APBMaster: APB3,APBMirrored
I/F: n, AXI Master: n, AXI Mirrored I/F: n, Reset Vector Address Upper 16 bits: 0x4000, Reset Vector A-

Configuration

Parameters
ddress Lower 16 bits: 0x0, External IRQs: 0,MTVEC Offset: 0x34, Vectored Interrupts: n, TCM: y (4 k),
TCM Direct Access Port: n, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n, Register Forwarding:
n, ECC: n, GPR Registers: n

Table 4 • RV32IC APB All Features

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

68.92388001090282362666MPF500T-1PolarFire

FCG1152E

55.94187561077481042670RTG4150LRTG4

FCG1657

70.95788491086182002661M2S150TSmartFusion2

FC1152

70.95788491086182002661M2GL150IGLOO2

FC1152

RISC-V Extensions: IC,Multiplier: n, AHB Master: AHBLite, AHB Mirrored I/F: y, APB Master: APB3, APB
Mirrored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector Address Upper 16 bits: 0x8000, Reset

Configuration

Parameters
Vector Address Lower 16 bits: 0x0, External IRQs: 6,MTVEC Offset: 0x34, Vectored Interrupts: y, TCM:
y (4k), TCMDirect Access Port: y, InternalMTIME: y, InternalMTIME IRQ: y,Debug: y,Register Forwarding:
y, ECC: y, GPR Registers: y

Table 5 • RV32IM (MACC-Pipelined) APB TCM

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

87.0934802556244421120MPF500T-1PolarFire

FCG1152E

83.6964879565645291127RTG4150LRTG4

4Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

FCG1657

88.7084918569045681122M2S150TSmartFusion2

FC1152

88.7084918569045681122M2GL150IGLOO2

FC1152

RISC-V Extensions: IM,Multiplier:MACC-Pipelined, AHBMaster: n, AHBMirrored I/F: n, APBMaster: A-
PB3, APB Mirrored I/F: n, AXI Master: n, AXI Mirrored I/F: n, Reset Vector Address Upper 16 bits: 0x40

Configuration

Parameters
00, Reset Vector Address Lower 16 bits: 0x0, External IRQs: 0,MTVEC Offset: 0x34, Vectored Interrupts:
n, TCM: y (4k), TCM Direct Access Port: n, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n, Register
Forwarding: n, ECC: n, GPR Registers: n

Table 6 • RV32IM (MACC-Pipelined) All Features

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

67.52290611118083722808MPF500T-1PolarFire

FCG1152E

58.22491621117283742798RTG4150LRTG4

FCG1657

71.23592281124884502798M2S150TSmartFusion2

FC1152

71.23592281124884502798M2GL150IGLOO2

FC1152

RISC-V Extensions: IM,Multiplier:MACC-Pipelined, AHBMaster: y, AHBMirrored I/F: y, APB Master: AP-
B3, APB Mirrored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector Address Upper 16 bits: 0x8000,

Configuration

Parameters
Reset Vector Address Lower 16 bits: 0x0, External IRQs: 6,MTVEC Offset: 0x34, Vectored Interrupts: y,
TCM: y (4k), TCM Direct Access Port: y, Internal MTIME: y, Internal MTIME IRQ: y, Debug: y, Register For-
warding: y, ECC: y, GPR Registers: y

Table 7 • RV32IMC (Fabric) APB TCM

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

95.8415374632751701157MPF500T-1PolarFire

FCG1152E

81.9075421635651971159RTG4150LRTG4

FCG1657

86.4985403634651911155M2S150TSmartFusion2

FC1152

5Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

86.4985403634651911155M2GL150IGLOO2

FC1152

RISC-V Extensions: IMC,Multiplier: Fabric, AHB Master: n, AHB Mirrored I/F: n, APB Master: APB3, AP-
BMirrored I/F: n, AXI Master: n, AXI Mirrored I/F: n, Reset Vector Address Upper 16 bits: 0x4000, Reset

Configuration

Parameters
Vector Address Lower 16 bits: 0x0, External IRQs: 0,MTVEC Offset: 0x34, Vectored Interrupts: n, TCM:
y (4k), TCMDirect Access Port: n, InternalMTIME: n, InternalMTIME IRQ: n,Debug: n, Register Forward-
ing: n, ECC: n, GPR Registers: n

Table 8 • RV32IMC (Fabric) All Features

Performance/MHzP&R LEsSynthesisPartFamily

Total4LUTDFF

64.94398031210092652835MPF500T-1PolarFire

FCG1152E

57.84098451203692032883RTG4150LRTG4

FCG1657

69.23899081208492512883M2S150TSmartFusion2

FC1152

69.23899081208492512883M2GL150IGLOO2

FC1152

RISC-V Extensions: IMC,Multiplier: Fabric, AHB Master: y, AHB Mirrored I/F: y, APB Master: APB3, APB
Mirrored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector Address Upper 16 bits: 0x8000, Reset V-

Configuration

Parameters
ector Address Lower 16 bits: 0x0, External IRQs: 6,MTVEC Offset: 0x34, Vectored Interrupts: y, TCM: y
(4k), TCM Direct Access Port: y, Internal MTIME: y, Internal MTIME IRQ: y, Debug: y, Register Forwarding:
y, ECC: y, GPR Registers: y

For more information, see the Supplementary RUP Tables manual, which is included with the core.

2.5.1 Typical Resource Utilization
The following table lists a breakdown of average resource usage for core options across the supported
families.
Table 9 • Option Resources

SynthesisPartsFeature

Avg. TotalAvg. 4LUTAvg. DFF

210102108
MPF500T-1FCG1152E

AHBL

259144115APB RTG4150L FCG1657

M2S150T FC1152
1006492514AXI M2GL150 FC1152

67616Ext_sys_interrupts (6)

6Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

SynthesisPartsFeature

Avg. TotalAvg. 4LUTAvg. DFF

18915435Vectored interrupts

43437262TCM (4 k)

84840DAP

585425160Mtime and Mtime irq

23201756564Debug

42940712ECC

25331544989GPR registers

2942895Register forwarding

2.5.2 Benchmarks
Table 10 • Coremark Results

Coremark/MHzECCReg

GPRs

Reg

Fwd

MultiplierRV32Memory

Location

Benchmarks

2.767011MACCIMCTCM

Ex
te
ns
io
n
be

nc
h-

m
ar
ks

2.533010MACCIMCTCM

1.567000MACCIMTCM

1.567000MACC pipeIMTCM

1.567000MACCIMCTCM

1.567001MACCIMCTCM

1.5000MACC pipeIMCTCM

1.067000FabricIMTCM

1.067011n/aITCM

1.033000FabricIMCTCM

0.967010n/aITCM

0.533000n/aITCM

0.533000n/aICTCM

0.533100n/aITCM

0.533001n/aITCM

7Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

Coremark/MHzECCReg

GPRs

Reg

Fwd

MultiplierRV32Memory

Location

Benchmarks

0.467000MACCIMCAHB

In
te
rfa

ce
be

nc
h-

m
ar
ks

0.433000MACCIMAHB

0.2000n/aICAHB

0.2010n/aIAHB

0.2011n/aIAHB

0.167000n/aIAHB

0.167001n/aIAHB

0.4000MACCIMAXI

0.4000MACCIMCAXI

0.167000n/aICAXI

0.167010n/aIAXI

0.133000n/aIAXI

0.133001n/aIAXI

8Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Introduction

3 Functional Description

3.1 MIV_RV32IMC Architecture
The core architecture comprises of a RV32IMC four stage pipelined processor unit integratedwith anOffload
Processor Subsystem for RISC-V (OPSRV). The OPSRV consists of a system interconnect with a JTAG Debug
Module, System MTimer, Tightly Coupled Memory (TCM) with a Direct Access Port (DAP- Slave APB),
AHB\AXI\APBmaster interfaces, andOPSRV registers. The following figure shows the block level architecture
of MIV_RV32IMC device.

Figure 1 • MIV_RV32IMC Block Diagram

9Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Functional Description

The following table lists the key features of the core.
Table 11 • MIV_RV32IMC Architecture features

NotesUnitsValueFeature

Base RV32I, optional multiply and divide and optional
compressed extensions

RV32IMCISA support

Submicron RV32IMC1Harts

Word aligned address 0x1000_0000 and above availableConfigurableReset vector

External, Software and Timer interrupts, six optional ex-
ternal interrupts, and ECC interrupts. Vectored interrupts
supported.

13Interrupts

AnMTIME block is available to generate a time value and
periodic interrupts

1Timers/Counters

Optional AHB, AXI3/AXI4, and APBAHB/AXI3/AXI4/APBBus interfaces

Bits7JTAG debug transport addresswidth

Width of TCM start and end address determines the size
of the local memory

1Local memories

Optional Direct Access Port (DAP) provides slave APB ac-
cess to TCM

1Local memory access

3.2 Hart
The MIV_RV32IMC hart is based on the RISC-V Instruction Set Architecture (ISA). The hart supports the
RISC-V standard RV32 Integer (I), Multiply (M), and Compressed (C) ISA. It also supports themachine-mode
privileged architecture and debug mode.

The hart is a four stage pipelined submicron processor, which has been designed to be highly configurable
for use in Microchip FPGAs. It is designed to be used as a standalone or auxiliary processor within FPGA
designs. The hart contains the base RISC-V Integer ISA extension. Optionally, the RISC-V M ISA extension
adds hardwaremultiply and divide instructions. Optionally, the RISC-V C ISA extension adds the compressed
instruction set.

3.3 Memory System
The core is non-cached. The Tightly CoupledMemory (TCM) is available as for instruction and data storage.
A range of system peripherals are accessed across AXI (AXI4/AXI3), AHB, and APB bus interfaces.

3.4 Interrupts
The RISC-V external interrupt is available for use as a top-level input to the core. Six optional external
interrupts can also be enabled at the top level for use as external interrupts. The RISC-V software interrupt
is available and can be accessed through the OPSRV register. The timer interrupt can be exposed to the top
level or connected internally to a compare register that can be accessed through software, and generates
interrupts at a fixed interval. There is an OPSRV register interrupt available that signals TCM, ECC, or AXI
write errors. Interrupts can be configured in vectored or non-vectored mode when the core is being
configured to allow for a defined vector for each interrupt, if required. Interrupts are positive edge triggered.

10Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Functional Description

3.5 Debug Support via JTAG
The core includes support for an external debugger using a JTAG port. This v0.13.2 debug implementation
is abstract command based and uses system bus access to write to memory. The core does not support the
use of a program buffer. The following debug features are provided:
• Hart can be halted and resumed
• All hart registers (including CSRs) can be read/written
• Memory can be accessed
• Binary files can be downloaded to memory
• Hart can be debugged from the very first instruction executed
• Debug can perform single-step operations and can execute one instruction at a time
• A RISC-V hart can be halted when a software breakpoint instruction is executed

3.6 External Interfaces
The core supports three optional external interfaces: AHB, APB, and AXI (AXI3/AXI4). Each interface has its
own address space mapped at compile time. The address spaces may not overlap.

The core can boot from a word aligned address range, within the configurator specified address space, by
setting the RESET_VECTOR and modifying the linker scripts for the firmware project. This address can be
half word aligned, if C extension is used.

3.7 Tightly Coupled Memory
The core supports Tightly Coupled Memory (TCM). The size of the memory is defined by the start and end
address of the TCM. This memory can be booted by setting the RESET_VECTOR to the address of the
TCM. The TCM can also be initialized at power on or programmed through the DAP interface.

3.8 Direct Access Port
A Direct Access Port is available over an APB slave interface. This allows reading and writing to the TCM
from an external source before the core is brought out of reset. It is recommended that the address widths
for the TCM and the DAP are of the same size to avoid memory read/write violations.

3.9 Clocks
The system clock frequency should be chosen to meet design timing requirements with clock constraints
applied. The tables in Device Resource Utilization and Performance section list the upper clock frequency
obtained for a specified device from each supported FPGA family, whilst meeting timing requirements for
the configurations defined. Sequential logic within the core is driven on the positive clock edge.

When the debug option is enabled, the JTAG debug signals are made available at the top level. The JTAG
has a clock signal TCK whose characteristics are determined by the connected JTAG debugger. It is advised
that the applied TCK frequency should not be greater than one-seventh of the system clock frequency and
remain within the maximum frequency permitted for the JTAG probe in use. The TCK should have clock
constraints applied. For more information, see the Design Constraints section.

3.10 Resets
The RESETN is an active low hard reset, which resets everything within the core. An external reset
synchronizer is required (for more information, see the Reset Synchronization section). In many cases, the
synchronizer is integrated within a family specific reset core, for example, Core_Reset_PF.

11Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Functional Description

The EXT_RESETN is an active low reset output. This is fed through from the RESETN and also driven
from the debug module during a debug session to allow a system reset through the debugger.

There is an internal CPU Soft Reset feature accessible through software. For more information, see the
Table 46 • opsrv_soft_reg (0x6020) table in the OPSRV Register section.

The TRST is an active high reset signal for the JTAG Test Access Port (TAP).

12Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Functional Description

4 Interface

4.1 Configuration Parameters
The following table lists the parameters (Verilog) or generics (VHDL) for configuring the RTL code of the
core.
Table 12 • MIV_RV32IMC Parameters and Generics Descriptions

DescriptionDefault ValueRangeName

This is the address the processor will start executing from after a
reset. This address is byte aligned.

0x80000x1000-0xFFFFRESET_VECTOR_ADDR_1

0x00x0000-0xFFFCRESET_VECTOR_ADDR_0

JTAG Debugger10 or 1DEBUGGER

0: Disable

1: Enabled

AXI Master Type00 to 2AXI_MASTER_TYPE

0: None

1: AXI3

2: AXI4

AXI Slave Mirror00 or 1AXI_SLAVE_MIRROR

0: None

1: AXI Slave Mirror

Note: This parameter is only used when an AXI Master is selected

This is the AXI start address.AXI_START_ADDR_1 andA-
XI_START_ADDR_0 represent the upper and lower 16 bits
of the address respectfully.

0x60000x1000-0xFFFFAXI_START_ADDR_1

0x00x0000-0xFFFFAXI_START_ADDR_0

This is the AXI end address.AXI_END_ADDR_1 andAXI_
END_ADDR_0 represent the upper and lower 16 bits of the
address respectfully.

0x6FFF0x1000-0xFFFFAXI_END_ADDR_1

0xFFFF0xFFFF-0xFFFCAXI_END_ADDR_0

AHB Master Type10 or 1AHB_MASTER_TYPE

0: None

1: AHB-Lite

AHB Slave Mirror00 or 1AHB_SLAVE_MIRROR

0: None

1: AXI Slave Mirror

Note: This parameter is only used when an AHBMaster is selected

This is the AHB start address.AHB_START_ADDR_1 and
AHB_START_ADDR_0 represent the upper and lower 16
bits of the address respectfully.

0x80000x1000-0xFFFFAHB_START_ADDR_1

0x00x0000-0xFFFFAHB_START_ADDR_0

This is the AHB end address.AHB_END_ADDR_1 andAHB_
END_ADDR_0 represent the upper and lower 16 bits of the
address respectively.

0x8FFF0x1000-0xFFFFAHB_END_ADDR_1

0xFFFF0xFFFF-0xFFFCAHB_END_ADDR_0

13Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

DescriptionDefault ValueRangeName

APB Master Type10 or 1APB_MASTER_TYPE

0: None

1: APB3

AHB Slave Mirror00 or 1APB_SLAVE_MIRROR

0: None

1: AXI Slave Mirror

Note: This parameter is only used when an AHBMaster is selected

This is the APB start address.APB_START_ADDR_1 and
APB_START_ADDR_0 represent the upper and lower 16
bits of the address respectfully.

0x70000x1000-0xFFFFAPB_START_ADDR_1

0x00x0000-0xFFFFAPB_START_ADDR_0

This is the APB end address.APB_END_ADDR_1 andAPB_
END_ADDR_0 represent the upper and lower 16 bits of the
address respectfully.

0x7FFF0x1000-0xFFFFAPB_END_ADDR_1

0xFFFF0xFFFF-0xFFFCAPB_END_ADDR_0

TCM Present00 or 1TCM_PRESENT

0: Disabled

1: Enabled

This is the TCM start address.TCM_START_ADDR_1 and
TCM_START_ADDR_0 represent the upper and lower 16
bits of the address respectfully.

0x40000x1000-0xFFFFTCM_START_ADDR_1

0x00x0000-0xFFFFTCM_START_ADDR_0

This is the TCMendaddress.TCM_END_ADDR_1 andTCM_
END_ADDR_0 represent the upper and lower 16 bits of the
address respectfully.

0x40000x1000-0xFFFFTCM_END_ADDR_1

0x40000xFFFF-0xFFFCTCM_END_ADDR_0

TCM DAP Present00 or 1TCM_DAP_PRESENT

0: Disabled

1: Enabled

This is the TCM DAP start address.DAP_START_ADDR_1
and DAP_START_ADDR_0 represent the upper and lower
16 bits of the address respectfully.

0x40000x1000-0xFFFFDAP_START_ADDR_1

0x00x0000-0xFFFFDAP_START_ADDR_0

This is the TCM DAP end address.DAP_END_ADDR_1 and
DAP_END_ADDR_0 represent the upper and lower 16 bits
of the address respectfully.

0x40000x1000-0xFFFFDAP_END_ADDR_1

0x40000xFFFF-0xFFFCDAP_END_ADDR_0

RISCV ISA Extension Select30 to 3GEN_DECODE_RV32

0: I

1: IM

2: IC

3: IMC

Multiplier Type00 to 2GEN_MUL_TYPE

0: Fabric

1: MACC (Non-Pipelined)

2: MACC (Pipelined)

Vectored Interrupts10 or 1VECTORED_INTERRUPTS

0: Disabled

14Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

DescriptionDefault ValueRangeName

1: Enabled

MTVEC Offset as defined in the RISC-V HAL (currently 0x100).0x340x0 to 0xFFFFMTVEC_OFFSET

Number of external interrupts60 to 6NUM_EXT_IRQS

Forwarding Registers00 or 1FWD_REGS

0: Disabled

1: Enabled

ECC00 or 1ECC_ENABLE

0: Disabled

1: Enabled

Internal MTIME10 or 1INTERNAL_MTIME

0: Disabled

1: Enabled

TheMTIME_PRESCALER integer value divided by the CLK
frequency derives an MTIME time base given by the equation:

1000 to 65535MTIME_PRESCALER

Internal MTIME10 or 1INTERNAL_MTIME_IRQ

0: Disabled

1: Enabled

GPR Registers00 or 1GPR_REGS

0: Disabled

1: Enabled

15Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

4.2 I/O Signals
The following figure shows all the I/O signals for the core.

Figure 2 • MIV_RV32IMC Full I/O View

The following table lists the MIV_RV32IMC I/O signal description.
Table 13 • MIV_RV32IMC I/O Signal Description

DescriptionDirectionWidthPort Name

Global Signals

System clock. All other I/Os are synchronous to this clock.In1CLK

Synchronized reset signal. This signal is active low.In1RESETN

External system reset, active low. Driven by RESETN andDebugger system
reset (debug mode).

Out1EXT_RESETN

JTAG Interface Signals

Test Data In (TDI). This signal is used by the JTAG device for downloading
and debugging programs. Sampled on the rising edge of TCK.

In1JTAG_TDI

Test Clock (TCK). This signal is used by the JTAG device for downloading
and debugging programs.

In1JTAG_TCK

Test Mode Select (TMS). This signal is used by the JTAG device when
downloading and debugging programs. It is sampled on the rising edge
of TCK to determine the next state.

In1JTAG_TMS

16Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

DescriptionDirectionWidthPort Name

Test Reset (TRST). This is an optional signal used to reset the TAP con-
trollers state machine. This signal is active high.

In1JTAG_TRST

Test Data Out (TDO). This signal is the data, which is shifted out of the
device during debugging. It is valid on FALLING/RISING edge of TCK.

Out1JTAG_TDO

Drive Test Data Out (DRV_TDO). This signal is used to drive a tri-state
buffer.

Out1JTAG_TDO_DR

Interrupt Signals

External interrupt from peripheral source. An active high level based in-
terrupt signal. Tie this input low if unused.

In1EXT_IRQ

Optional External System Interrupts. This signal is active high. Tie any
unused inputs low.

In6EXT_SYS_IRQ

A Timer interrupt input is exposed when the internal MTIME IRQ param-
eter is not selected in the GUI. This in an active high level based interrupt.
Tie this input low if unused.

In1TMR_IRQ

System Time Signals

External system timer countIn64TIME_COUNT_IN

Internal system timer countOut64TIME_COUNT_OUT

TCM Access Signals

When asserted, CPU access to the TCM is disabled.In1TCM_CPU_ACCESS_DISABLE

When asserted, DAP access to the TCM is disabled.In1TCM_DAP_ACCESS_DISABLE

APB Master Interface

APB Master Interface. The address range is 0x1000_0000 to 0xFFFF_FFF-
F. This interface can also be configured as a mirrored slave through the
GUI.

Out32APB_MSTR_PADDR

Out1APB_MSTR_PSEL

Out1APB_MSTR_PENABLE

Out1APB_MSTR_PWRITE

In32APB_MSTR_PRDATA

Out32APB_MSTR_PWDATA

In1APB_MSTR_PREADY

In1APB_MSTR_PSLVERR

AHB Master Interface

AHBMaster Interface. The address range is 0x1000_0000 to 0xFFFF_FFF-
F. This interface can also be configured as a mirrored slave through the
GUI.

Out1AHB_MSTR_ HMASTLOCK

Out2AHB_MSTR_ HTRANS

Out1AHB_MSTR_ HWRITE

17Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

DescriptionDirectionWidthPort Name

Out32AHB_MSTR_ HADDR

Out3AHB_MSTR_ HSIZE

Out3AHB_MSTR_ HBURST

Out4AHB_MSTR_ HPROT

Out32AHB_MSTR_ HWDATA

In1AHB_MSTR_ HREADY

In1AHB_MSTR_ HRESP

In32AHB_MSTR_ HRDATA

HSEL only used whenAHB_SLAVE_MIRROR is set to 1.Out1AHB_MSTR_ HSEL

AXI Master Interface

AXI (AXI3/AXI4) Master Interface. The address range is 0x1000_0000 to
0xFFFF_FFFF. This interface can also be configured as a mirrored slave
through the GUI.

Out1AXI_MSTR_AWREADY

Out1AXI_MSTR_AWVALID

Out1AXI_MSTR_AWID

Out32AXI_MSTR_AWADDR

Out4AXI_MSTR_AWLEN

Out3AXI_MSTR_AWSIZE

Out2AXI_MSTR_AWBURST

Out1AXI_MSTR_AWLOCK

Out4AXI_MSTR_AWCACHE

Out3AXI_MSTR_AWPROT

in1AXI_MSTR_WREADY

Out1AXI_MSTR_WVALID

Out1AXI_MSTR_ WID

Out32AXI_MSTR_WDATA

Out4AXI_MSTR_WSTRB

Out1AXI_MSTR_WLAST

Out1AXI_MSTR_BREADY

in1AXI_MSTR_BVALID

in1AXI_MSTR_BID

18Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

DescriptionDirectionWidthPort Name

in2AXI_MSTR_BRESP

in1AXI_MSTR_BUSER

in1AXI_MSTR_ARREADY

Out1AXI_MSTR_ARVALID

Out1AXI_MSTR_ARID

Out32AXI_MSTR_ARADDR

Out4AXI_MSTR_ARLEN

Out3AXI_MSTR_ARSIZE

Out2AXI_MSTR_ARBURST

Out1AXI_MSTR_ARLOCK

Out4AXI_MSTR_ARCACHE

Out3AXI_MSTR_ARPROT

Out1AXI_MSTR_RREADY

Out1AXI_MSTR_RVALID

Out1AXI_MSTR_RID

Out32AXI_MSTR_RDATA

in2AXI_MSTR_RRESP

in1AXI_MSTR_RLAST

APB Slave Interface (DAP)

APB Slave Interface (DAP). The address range is 0x1000_0000 to 0xFFFF_
FFFF.

In32DAP_APB_SLV_PADDR

In1DAP_APB_SLV_PSEL

In1DAP_APB_SLV_PENABLE

In1DAP_APB_SLV_PWRITE

Out32DAP_APB_SLV_PRDATA

In32DAP_APB_SLV_PWDATA

Out1DAP_APB_SLV_PREADY

Out1DAP_APB_SLV_PSLVERR

19Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Interface

5 Programmer’s Model

This core implements the RISC-V Integer extensionwith optional support for theMultiplication and Division
extension (M) and the Compressed extension (C). Multiplication and Division provides hardware support
for these operations and Compressed allows for a subset of the Integer instructions to be encoded as 16-bit
instructions as opposed to 32-bit instructions.

The M improves operating performance of the processor at the expense of area and speed, while C allows
for reduced code size with additional area.

5.1 Processor Operating States
Machine Mode: This core can be run in RISC-V machine mode and is the standard operating state for the
core. In this mode, the 32 bit I and M instructions can be executed along with the 16-bit C instructions.

Debug Mode: The core enters the debug mode when debugging using the JTAG interface.

5.2 Reset Operation
Out of reset or as a result of a CPU soft reset, PC takes on the value of the Reset Vector Address (RVA) and
begins executing code from this address.

5.3 Data Types
This core supports the following data types:
• 32-bit words
• 16-bit halfwords
• 8-bit bytes

Instructions can be encoded as 32-bit words for all extensions and a subset of the Integer instructions can
be encoded as 16-bit words when the C extension is included.

5.4 General Purpose Registers
The following table lists the 32-bit RISC-V General Purpose Registers (GPRs) available in the core.
Table 14 • General Purpose Registers

DescriptionABI NameRegister

Hardwired zerozerox0

Return addressrax1

Stack pointerspx2

Global pointergpx3

Thread pointertpx4

Temporary registerst0–t2x5–x7

Saved register/Frame pointers0/fpx8

20Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

DescriptionABI NameRegister

Saved Registers1x9

Function arguments/Return valuesa0–a1x10–x11

Function argumentsa2–a7x12–x17

Saved registerss2–s11x18–x27

Temporary registerst3–t6x28–x31

5.5 Machine Control and Status Registers
As the core only supports machine mode, it only needs to implement a small subset of the machine mode
registers defined in the RISC-V privileged architecture. The remaining registers and bits of registers are
addressable, and are hard coded as defined by the privileged architecture specification.

The following table lists the implemented CSRs.
Table 15 • mvendorid CSR (0xF11)

31:0Bits

Vendor IDField

ROR/W

Preset value = l_submicron_vendoridReset

The vendor ID CSR reads the value defined by the l_submicron_vendorid constant configured at
build time.
Table 16 • marchid CSR (0xF12)

31:0Bits

Architecture IDField

ROR/W

Preset value = l_submicron_marchidReset

Table 17 • mimpid CSR (0xF13)

31:0Bits

Implementation IDField

ROR/W

Preset value = l_submicron_mimpidReset

21Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

Table 18 • mhartid CSR (0xF14)

31:0Bits

Hart IDField

ROR/W

Preset value = l_hart_idReset

Table 19 • mstatus CSR (0x300)

17181920212230:2331Bits

MPRVSUMMXRTVMTWTSR-SDField

ROROR ROROROROWPRIROR/W

--------Reset

01234567810:912:1114:1316:15Bits

UIESIE-MIEUPIESPIE-MPIESPP-MPPFSXSField

ROROWPRIRORORWWPRIRWROWPRIROR0ROR/W

---0------3--Reset

This core only supports the machine mode. It only implements the mie and mpie bits as actual read-write
register bits. The MPP is always hardwired to 3 as it can only ever be machine mode. The remaining bits
are tied off to 0.

When the status register is read using the supervisor, or usermode alias (sstatus(0x100) and ustatus(0x000)
respectively), they can still be accessed without an illegal instruction exception, as these registers are
accessible from machine mode. However, only the supervisor and user mode bits are available in sstatus,
and only the user bits are available in ustatus. Therefore, in both cases all bits read as 0 and not be writable.

The MPP is always in the machine mode (that is, 3) as the core only supports machine mode. The MIE is
architecturally defined to reset to 0. All other bits do not have a defined reset value.

The XS is currently not implemented. The SD bit reflects the state of the XS filed (the core does not support
floating point instructions. Therefore, FS is always == 0).
Table 20 • misa CSR (0x301)

25:029:2631:30Bits

Extension-Base ISAField

ROWPRIROR/W

Base ISA is RV32 = 2’b01.

According to the RISC-V architecture, misa may optionally be implemented as a RW register to allow the
supported base ISA and extensions to change. However, in this core it is implemented as hardwired read-only,
as these decisions are build time configuration options.

22Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

Table 21 • misa CSR Extension Bit Description

Submicron implementationDescriptionCharacterBit

0Atomic extensionA0

0Bit manipulation extensionB1

Configuration optionCompressed extensionC2

0Double-precision floating-point extensionD3

0RV32E base ISAE4

0Single-precision floating-point extensionF5

0Additional standard extensions presentG6

0Hypervisor mode implementedH7

1RV32I/64I/128I base ISAI8

0Dynamically translated languages extensionJ9

0ReservedK10

0Tentatively reserved for Decimal Floating-Point extensionL11

Configuration optionInteger Multiply/Divide extensionM12

0User-level interrupts supportedN13

0ReservedO14

0Packed-SIMD extensionP15

0Quad-precision floating-point extensionQ16

0ReservedR17

0Supervisor mode implementedS18

0Tentatively reserved for Transactional Memory extensionT19

0User mode implementedU20

0Vector extensionV21

0ReservedW22

0Non-standard extensions presentX23

0ReservedY24

1 (for support of Zicsr and ZFencei)ReservedZ25

23Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

Table 22 • mie CSR (0x304) Machine Interrupt Enable Register

161723:1829:243031Bits

MGEUIEMGECIE-MSYS_EIEOPSRV_IRQ_IE-Field

RWRWWPRIRWRWROR/W

------Reset

0123456789101115:12Bits

---MSIE---MTIE---MEIE-Field

ROROWPRIRWROROWPRIRWROROWPRIRWWPRIR/W

-------------Reset

Table 23 • mip CSR (0x344) Machine Interrupt Pending Register

161723:1829:243031Bits

MGEUIPMGECIP-MSYS_EIPOPSRV_IRQ_IE-Field

ROROWPRIRWRWROR/W

------Reset

0123456789101115:12Bits

---MSIP---MTIP---MEIP-Field

ROROWPRIROROROWPRIROROROWPRIROWPRIR/W

-------------Reset

Table 24 • Interrupt Bit Description

DescriptionName

Software interruptMSI

Timer interruptMTI

External interruptMEI

GPR ECC uncorrectable error. Exists if ECC is enabled, otherwise 0.MGEUI

GPR ECC correctable error. Exists if ECC is enabled, otherwise 0.MGECI

System external interrupts. Exists if external interrupts are enabled.MSYS_EI[5:0]

When the ie register is read using the supervisor, or usermode alias (sie(0x104) and uie(0x004) respectively,
and similarly for ip (sip(0x144) and uip (0x044)), they can still be accessed without an illegal instruction
exception, as these registers are accessible from machine mode. However, only the supervisor and user

24Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

mode bits are available in sie/sip, and only the user bits in uie/uips. Therefore, in both cases all bits read
as 0 and are not writable.
Table 25 • mtvec CSR (0x305)

1:031:2Bits

modeException vector baseField

RWIf vectored interrupts are disabled (DirectMode), themtvec exception base vector is a read/write RW register.R/W

ROIf vectored interrupts are enabled (Vector Mode), the mtvec exception base vector is a read only register,
where the value is defined by the reset vector address + theMTVEC offset value provided in the configurator.

2’b00In Direct Mode, the reset value is not defined.Reset

2’b01In Vector Mode, the reset value is the reset vector address + the MTVEC offset value provided in the config-
urator.

Table 26 • mepc CSR (0x341)

31:0Bits

Machine exception program counterField

RWR/W

-Reset

mepc[0] is always 0. Therefore, it is hardwired 0.
Table 27 • mcause CSR (0x342)

30:031Bits

Exception codeInterruptField

RWRWR/W

00Reset

The exception codes are as defined in the RISC-V privileged architecture. The core implements the
architecturally defined trap codes and additional custom trap codes as described in the following table.
Therefore, only code[4:0] are implemented as register bits, the remaining bits are hardwired to 0. The
italicized interrupts and exceptions in the following table are non-standard custom traps defined.
Table 28 • mcause Exception Codes

DescriptionException codeInterrupt

MSI [Highest priority]31

MTI71

MEI111

MGEUI161

MGECI171

MSYS_EI0-MSYS_EI524–291

25Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

DescriptionException codeInterrupt

OPSRV IRQ301

Trigger breakpoint30

Illegal instruction20

Instruction address misalign00

M env-call110

Breakpoint30

Store address misaligned60

Load address misaligned40

Instruction fetch read bus error240

Instruction fetch read parity error250

Data load bus error260

Data load parity error [Lowest priority]270

Themcause register is reset to 0 following hard or soft reset.
Table 29 • mtval CSR (0x343)

31:0Bits

mtvalField

RWR/W

xReset

Table 30 • MTVAL Value Following Trap Taken

MTVALInterrupt/exception cause

0MSI [Highest priority]

0MTI

0MEI

0MGEUI

0MGECI

0MICNT

0MCCNT

0MHCNT

26Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

MTVALInterrupt/exception cause

0MSYS_EI0-MSYS_EI7

Program counter of the instruction retiringTrigger breakpoint

Encoding of instruction retiringIllegal instruction

Program counter of the instruction retiringInstruction address misalign

0M env-call

Program counter of the instruction retiringBreakpoint

Store address of faulting accessStore address misaligned

Load address of faulting accessLoad address misaligned

Program counter of the instruction retiringInstruction fetch read bus error

Program counter of the instruction retiringInstruction fetch read parity error

Load address of faulting accessData load bus error

Load address of faulting accessData load parity error [Lowest priority]

Table 31 • mscratch CSR (0x340)

31:0Bits

mscratchField

RWR/W

-Reset

Table 32 • time CSR (0xC01)

31:0Bits

time[31:0]Field

ROR/W

xReset

Table 33 • timeh CSR (0xC81)

31:0Bits

timeh[63:32]Field

ROR/W

xReset

Time is a read-only user CSR.

27Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

5.6 Debug Module
The MIV_RV32IMC debug module is implemented in compliance with the RISC-V External Debug Support
specification v0.13.2. The debug module consists of the following three main blocks:

1. Debug Transfer Module with an interface module DMI

2. Debug Unit—abstract command based with System Bus Access

3. Hart Debug Logic—debug CSR’s and halt/run logic

5.6.1 Debug Transport Module
An external debugger communicates with the core’s debug sub-system through a JTAG interface with a
Test Access Port (TAP) controller. The TAP Controller Instruction Register has a length of five bits. Upon
reset, its value is 0x01, selecting the IDCODE instruction. The following table lists the full instruction set.
Table 34 • TAP Controller Instructions

Full nameMnemonicIR code

Reserved-0x00

IDCODEIDCODE0x01

Reserved-0x02–0x03

Reserved-0x04

Reserved-0x05–0x0F

DTM Control and StatusDTMCS0x10

Debug Module Interface AccessDMI_ACCESS (DMI)0x11

Reserved-0x12–0x1E

BYPASS instructionBYPASS0x1F

Internal connection between TAP and DM is a form of serial scan interface. Source and destination of the
TAP controller scan interface are in different clock domains. The TAP runs in the JTAG’s TCK clock domain,
whereas, the DM are in the system clock domain. Therefore, the TAP controller scan interface must pass
through a clock synchronization process.

Using the Debug Module Interface (DMI), the debug module (DM) exposes a standard register interface to
the core’s debug features:
• Run control of the core’s single hart
• Access to its internal registers (GPRs and CSRs)
• Access to its memory space

28Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

5.6.2 Debug Unit
The debug module implementation is abstract command based for GPR\CSR access and uses system bus
access to perform read/write operations to memory locations. The following table lists the registers
implemented in Debug Module.
Table 35 • Debug Module Registers

Full nameMnemonicAddress

Reserved-0x00–0x03

Abstract Data 0DATA00x04

Abstract Data 1, not implemented-0x05

Reserved-0x06–0x0F

Debug Module ControlDMCONTROL0x10

Debug Module StatusDMSTATUS0x11

Reserved-0x12

Halt Summary 1 (single bit)HALTSUM10x13

Reserved-0x14–0x15

Abstract Control and StatusABSTRACTCS0x16

Abstract CommandCOMMAND0x17

Abstract Command Autoexec, not implemented-0x18

Configuration String Pointer, not implemented-0x19

Reserved-0x1A–0x37

System Bus Access Control and StatusSBCS0x38

System Bus Address [31:0]SBADDRESS0x39

Reserved-0x3A–0x3B

System Bus Data [31:0]SBDATA0x3C

Reserved-0x3D–0x3F

Halt Summary 0 (single bit)HALTSUM00x40

Reserved-0x41–0x7F

29Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

5.6.3 Hart Debug Logic
The Submicron hart implements the halt\run logic and required debug CSR registers.

Two debug CSRs: DCSR, and DPC are accessible using abstract debug commands when in Debug Mode.
Table 36 • Debug Control and Status Registers

Full nameMnemonicAddress

Debug Control and StatusDCSR0x7B0

Debug PCDPC0x7B1

Reserved-0x7B2 – 0x7BF

5.6.3.1 Debug Control and Status CSR (DCSR–0x7B0)
Table 37 • Debug Control and Status Registers

DescriptionReset ValueAccessNameBits

The field’s value (4) indicates that debug support exists as described in
the RISC-V Debug Spec version 0.13.

4ROxdebugver31:28

Reserved for future use.0ROrsrv327:16

Encoding:0RWebreakm15

0 - ebreak instructions in M-mode behave as described in the Privileged
Spec.

1 - ebreak instructions in M-mode enter Debug Mode (Soft Breakpoint).

Reserved for future use. (Supervisor/User modes not supported)0ROrsrv214:12

Encoding:0RWstepie11

0 - Interrupts are disabled during single stepping.

1 - Interrupts are enabled during single stepping.

The debugger must not change the value of this bit while the hart is
running.

Reserved for future use. (System Counter/Timer halting not supported)0ROrsrv110:9

Explainswhy debugmodewas entered.When there aremultiple reasons
to enter debug mode in a single cycle, hardware should set cause to the
cause with the highest priority. Encoding:

0ROcause8:6

1. An ebreak instruction was executed (priority 3);

2. The TriggerModule caused a breakpoint exception (priority 4, highest);

3. The debugger requested entry to Debug Mode using haltreq (priority
1);

4. The hart single stepped because step was set (priority 0, lowest);

Other values are reserved for future use.

Reserved for future use (mprven\nmip not supported).0ROrsrv05:3

When set and not in debugmode, the hart only executes a single instruc-
tion and then enters debug mode. If the instruction does not complete

0RWstep2

due to an exception, the hart immediately enters the debugmode before

30Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

DescriptionReset ValueAccessNameBits

executing the trap handler, with appropriate exception registers set. The
debugger must not change the value of this bit while the hart is running.

Contains the privilege level the hart was operating in when debug mode
was entered. Mi-V debug has the field hardwired to 3. Only machine
mode is supported.

3RWprv1:0

5.6.3.2 Debug Program Counter CSR (DPC–0x7B1)

Upon entry to debug mode, DPC is updated with the virtual address of the next instruction to be executed.
The following table lists the behavior.
Table 38 • DPC CSR Address Behavior

Virtual address in DPCCause

Address of the ebreak instruction.ebreak

Address of the instruction that would be executed next, that is, PC + 4 or the destination PC, if jumps/branches
taken.

Single Step

Address of the next instruction to be executed at the time that debug mode was entered.Halt Request

When resumed, the hart’s PC is updated to the virtual address stored in DPC. A debugger may write DPC
to change where the hart resumes.
Table 39 • DPC CSR Register

DescriptionReset ValueAccessNameBits

Field contains the debug PC value.-RWdpc31:0

31Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

5.7 Memory Map
The memory map of the core is highly configurable. The GPRs, CSRs, and debug registers are contained in
the reserved range. TheOPSRVRegister ismemorymapped to 0x6000. The optional 64-bit timecmp register
is mapped to 0x0200_4000. The mtime pre-scaler is mapped to 0x0200_5000. The 64-bit mtime register is
mapped to 0x0200_BFF8. The following figure shows the memory map.

Figure 3 • Memory Map

32Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

The following figure shows the default memory map for the core.

Figure 4 • Default Memory Map

33Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

The following figure shows a memory map using the full accessible range.

Figure 5 • Example SystemMemory Map

5.8 Subsystem Restrictions
Very few restrictions are placed on the configuration of this core. Interface slots and TCMmust have a start
address ≥ 0x1000_0000 and cannot have overlapping start and end addresses. These rules are enforced by
the core configurator. The DAP can have an address anywhere in this accessible range, but the TCM must
be within this address space to be accessed.

In vectored mode, the mtvec is restricted to being a read only register. This is different to the normal mtvec
operation expected by theMicrochip RISC-V HAL, and its user guide should be consulted on how to properly
deal with this configuration.

5.9 Exceptions
The core handles all exceptions. The core can be configured to handle interrupts in a vectored or non-vectored
mode, with faults causing the PC to jump to mtvec regardless of vectored or non-vectored mode.

34Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

5.9.1 Vectored and Non-Vectored Interrupts
In vectored mode, each interrupt causes the PC to jump to a defined address relative to the mtvec value
defined at build time. In vectored mode, the mtvec is defined as a read only register. It is populated with
the value of the reset vector + the MTVEC OFFSET value set in the core configurator. This must be
accommodated for when writing and linking software. In non-vectored mode, all exceptions cause the PC
to jump to the mtvec address (a R/W register in non-vectored mode so that the mtvec can be dynamically
changed using a csrw or csrwi instruction) and the exception cause can be determined by checking the
value in the mcause register.

5.9.2 Nested Interrupts
Nested interrupts are supported and interrupts can be re-enabled during an ISR by setting the mie bit in
the mstatus register. This bit is automatically un-set when taking an interrupt, and is re-enabled when
an mret instruction is executed.

5.9.3 Available Interrupts
The following interrupts are available to generate exceptions:
• External
• Software
• Timer
• GPR ECC Uncorrectable
• GPR ECC Correctable
• Custom External x 6
• OPSRV Register

The OPSRV register interrupt is triggered by any of the following interrupts present in the OPSRV register:
• TCM ECC Correctable Error
• TCM ECC Uncorrectable Error
• AXI Write Error

The external interrupt is available to be used as an input to the core. The software interrupt is internally
connected to bit[1] of the OPSRV soft register and writing a 1 to this bit causes a soft interrupt. The timer
interrupt can be internally connected to a counter and time compare register, which can be used to generate
periodic interrupts, or a counter input can bemade available as a top-level input to the core and the compare
register. The six custom external interrupts are available as inputs to the core. The OPSRV register interrupt
is internally connected to the OR’d outputs of the interrupts available in the OPSRV pending register.

5.9.4 Interrupt Handling
When an exception is generated in non-vectored mode, the PC jumps to mtvec. Once there, the register
states can be pushed to the stack. The cause of the exception determined, if it is not a fault, can be handled
and register states restored. An mret instruction sets the PC to the value of the next instruction following
when the exception was taken and re-enables interrupts. This ISR is used in the Microchip RISC-V HAL.

35Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

5.9.5 Vectored Interrupt Offsets and Exception Priorities
When an exception is generated in vectored mode, the PC jumps to the defined address for each interrupt
source with a defined priority. The following table lists the defined priorities.
Table 40 • Vectored Interrupt Offsets and Exception Priorities

End Address fromMTVECStart Address fromMTVECException SourcePriority

0x1B0xCSoftware interruptHighest

0x2B0x1CTimer interrupt

0x3B0x2CExternal interrupt

0x4B0x3CGPR ECC uncorrectable error interrupt

0x5B0x4CGPR ECC correctable error interrupt

0x630x60Custom external interrupt 0

0x670x64Custom external interrupt 1

0x6B0x68Custom external interrupt 2

0x6F0x6CCustom external interrupt 3

0x730x70Custom external interrupt 4

0x770x74Custom external interrupt 5

0x8B0x78OPSRV interrupt

0xB0x0FaultLowest

5.9.6 OPSRV Register Interrupts
The OPSRV register interrupt handler manages the following interrupts.
• TCM ECC correctable error
• TCM ECC uncorrectable error
• AXI Write response error

When any of the OPSRV register interrupts are triggered, the OPSRV interrupt to the core asserts and
remains asserted until the interrupt is handled.

Each interrupt has an enable bit in the OPSRV Register Interrupt Enable register addressed at 0x6010:
Table 41 • OPSRV Interrupt Enable Register

Interrupt EnabledBit

TCM ECC correctable error0

TCM ECC uncorrectable error1

AXI write response error4

36Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

Each interrupt has a pending bit in the OPSRV Register Interrupt Pending Register addressed at 0x6014:
Table 42 • OPSRV Interrupt Pending Register

Interrupt PendingBit

TCM ECC correctable error0

TCM ECC uncorrectable error1

AXI write response error4

The interrupt pending register of theOPSRV register should be read to determinewhich interrupt occurred
causing theOPSRV register interrupt to assert. Interrupts from theOPSRV register can be cleared bywriting
to the corresponding interrupt pending bit in the interrupt pending register. The priority with whichOPSRV
register interrupts are serviced is defined by the software.

The soft interrupt is also contained within the OPSRV register, but not managed in the same way as the
TCM, ECC, or AXI interrupts. It is bit[1] in the OPSRV soft register addressed at 0x6020. Writing a 1 to this
bit causes a soft interrupt to occur. It can be cleared by writing a 0 to the bit.

5.10 OPSRV Register
The offload processor subsystem interfaces with the hart and provides an interconnect for the interfaces.
TheDAP,TCM, andOPSRV registers are accessed by the hart. The following table lists the several additional
configuration registers of the OPSRV register for features of the core.

Table 43 • opsrv_cfg (0x6000)

031:1Bits

opsrv_parity_enField

RWR0R/W

0Reset

Setting the opsrv_parity_en bit enables parity checking on TCM and interface transactions. Data in
the TCMmust be written with parity when this feature is enabled, and bus parity must be generated by
peripherals connected to the core. In this release of the core, the parity enable register has been tied to 0,
as parity is not being supported.
Table 44 • opsrv_irq_en (0x6010)

013:2431:5Bits

TCM ECC correctable err irq enTCM ECC uncorrectable err irq enAXI write response
err irq en

Field

RWRWR0RWR0R/W

000Reset

37Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

This register contains the enable bits for each of the OPSRV interrupts. Setting any of the available interrupt
bits allows that interrupt to assert opsrv_irq. Machine interrupts will still need to be enabled.

Table 45 • opsrv_irq_pend (0x6014)

013:2431:5Bits

TCM ECC correctable err irq pendTCM ECC uncorrectable err irq
pend

AXI write response
err irq pend

Field

RWRWR0RWR0R/W

000Reset

This register contains the pending bits for each of the OPSRV interrupts. When any of these bits assert, the
opsrv_irq is triggered, if the corresponding enable bit is set. Writing a 1 to any set bit clears it.

Table 46 • opsrv_soft_reg (0x6020)

01231:3Bits

soft_rstsoft_irqcore_gpr_ded_resetField

RWRWRWR0R/W

0000Reset

Setting the soft_irq bit in this register causes a soft interrupt to be triggered in the core. The machine
interrupts and the software interrupt should be enabled for this interrupt to be taken. Writing 0 to this bit
clears it. Setting the soft_rst bit causes a CPU soft reset. This bit unsets after 1 clock cycle to prevent
lockup.

The core_gpr_ded_reset_reg is set, when the core has reset due to GPR DED error when ECC is
enabled. It can be cleared by writing 0 to the bit.

5.11 MTIME
The MTIME is an optional block for this core. It contains a compare register (mtimecmp), which sources a
time count from an external source (TIME_COUNT) or an internal counter (mtime).

Table 47 • mtimecmp (0x200_4000)

31:0Bits

mtimecmpField

RWR/W

FFFF_FFFFReset

Table 48 • mtimecmph (0x200_4004)

31:0Bits

mtimecmphField

RWR/W

FFFF_FFFFReset

38Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

The mtimecmp and mtimecmph registers contain the time value that triggers a timer interrupt to the
core.Whenmtime is greater than or equal to this value, an interrupt is generated to the core. Themachine
interrupts and timer interrupts should be enabled for this interrupt to be taken.
Table 49 • mtime_prescaler (0x200_5000)

31:0Bits

mtime_prescalerField

ROR/W

Value set from core configuratorReset

The mtime prescaler register is read only and populated with the mtime prescaler value set in the core
configurator. This register exists to indicate the configured prescaler value for mtime relative to the system
clock.
Table 50 • mtime (0x200_BFF8)

31:0Bits

mtimeField

RWR/W

0Reset

Table 51 • mtimeh (0x200_BFFC)

31:0Bits

mtimehField

RWR/W

0Reset

The mtime and mtimeh registers contain the time value.

The mtimecmp register is 64-bits wide and initialized to a value of 0xFFFF_FFFF_FFFF_FFFF. The mtime
register is also a 64-bit value and is initialized to 0x0. It is incremented by an internal counter, if selected
from the configurator or from a 64-bit TIME_COUNT input to the core. Once mtime ≥ mtimecmp, a
timer interrupt is generated to the core. This interrupt is serviced only if machine interrupts and the timer
interrupt are enabled.

The lower 32 bits of the mtimecmp register can be written as follows:

C:

int *time_cmp_addr;
time_cmp_addr = 0x02004000;
*time_cmp_addr = time_count; // time_count is the value written to the timecmp register

The upper 32 bits of the mtimecmp (mtimcmph) register can be written as follows:

39Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

C:

int *time_cmph_addr;
time_cmph_addr = 0x02004004;
*time_cmph_addr = time_count; // time_count is the value written to the timecmp register

Note:

On first use of the system timer interrupt, the timecmp and timecmph reset values
are 0xFFFF_FFFF. These values generate an interrupt and should be set by the user as
well.

The mtime register can also be written by using the following code.

The lower 32 bits of the mtime register can be written as follows:

C:

int *time _addr;
time_addr = 0x02004BFF8;
*time_addr = time_count; // time_count is the value written to the time register

The upper 32 bits of the mtime (mtimeh) register can be written as follows:

C:

int *time _addr;
timeh_addr = 0x02004BFFC;
*timeh_addr = time_count; // time_count is the value written to the time register

Note:

Ensure that an overflow situation should not occur when using the mtime compare
register. For example, with a prescaler of 50 and a 50 MHz system clock, it will take
approximately 500,000 years to reach overflow. However, if a lower prescaler value is
set, this will occur sooner, or, software should have appropriate handling in place to
prevent an overflow situation.

For example:

mtime value == 0xFFFF_FFFF_FFFF_FFF0

An interrupt is required in 0xFFFF cycles of mtime. This occurs when:

mtime value == 0x0000_0000_0000_FFF0

Setting anmtimecmp value == 0x0000_0000_0000_FFF0 causes an immediate interrupt, asmtime is greater
than mtimecmp. To resolve this, mtime and mtimeh should first be written with 0x0 and an mtimecmp
value of 0xFFFF should be set.

5.12 ECC
Error Correcting Codes (ECC) can be enabled for the core through the configurator. They encode parity with
data in RAM and can correct single bit errors and detect double bit errors, Single Error Correct Double Error
Detect (SECDED).

If RAM based GPRs are used (default) and ECC is enabled, a fabric encoder and decoder will be instantiated
for the RAM. If the TCM is used, an encoder and decoder will also be instantiated for the memory when
ECC is enabled.

When ECC is enabled for the GPRs, the core are held in soft reset for several cycles on start-up while the
GPRs are initialized to 0. This prevents erroneous SECDED errors on uninitialized RAM.

40Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

If a double bit error is detected from a GPR, the core automatically initiates a soft reset and the GPRs are
reinitialized before start-up. This prevents bad data from the GPR being used. In the event of a DED, soft
reset bit[2] of the OPSRV Soft register sets to indicate that the core has recovered from a double bit error
and this bit can be cleared by writing to it. The individual machine ECC interrupts have to be enabled for
an ECC error to be handled, but the soft reset will occur on a DED regardless of the interrupts being enabled.

When ECC is enabled for the TCM, it is not initialized. This process should be undertaken in software before
enabling the TCM ECC interrupts in the OPSRV Register.

Sample code to initialize the TCM to 0:

C:

volatile uint32_t *tcm_addr;
 tcm_addr = 0x40000000; // Memory mapped start address of TCM
 uint32_t tcm_end_addr = 0x40002000; // Memory mapped end address of TCM

 while (tcm_addr != tcm_end_addr){ // loop until end is reached
 *tcm_addr = 0x0; // write 0 to memory location
 tcm_addr = tcm_addr + 0x1; // increment pointer
 }

Sample code to scrub the TCM and generate parity for initialized memory:

C:

 volatile uint32_t *tcm_addr;
 tcm_addr = 0x40000000; // Memory mapped start address of TCM
 uint32_t tcm_end_addr = 0x40002000; // Memory mapped end address of TCM

 while (tcm_addr != tcm_end_addr){
 *tcm_addr = *tcm_addr;
 tcm_addr = tcm_addr + 0x1;
 }

Programming the TCM through the DAP also generates parity if ECC is enabled.

41Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Programmer’s Model

6 Tool Flow

6.1 License
This core is released under the Apache 2.0 license and is freely available through Libero.

6.1.1 RTL
Complete Verilog source code is provided for the core. The core can be readily instantiated within
SmartDesign. Simulation, Synthesis, and Layout can be performed within Libero SoC.

6.2 SmartDesign
The MIV_RV32IMC is pre installed in the SmartDesign IP deployment design environment. The core is
available from the Libero catalog.

For more information on using SmartDesign to instantiate and generate cores, see the Using DirectCore in
Libero® SoC User Guide.

Figure 6 • SmartDesign MIV_RV32IMC Instance Views

42Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Tool Flow

6.3 Configuring MIV_RV32IMC
The core is configured using the configuration GUI within SmartDesign, as shown in the following figure.

Note: Leading zeros are suppressed. For example, 0x8000 0000 is displayed as 0x8000 0x0. The reset vector
is word-aligned.

Figure 7 • Configuration GUI for MIV_RV32IMC in SmartDesign

6.3.1 Extension Options
Under the Extension Options heading, the core can be configured to use a combination of the following
RISC-V standard extensions:
• I—Base Integer instruction set
• M—Multiply and Divide instruction set (optional)
• C—Compressed instruction set (optional)

43Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Tool Flow

The core Multiplier can be set to either use the Fabric Multiplier or the MACC multiplier:
• Fabric—multiply operations complete in 32 clock cycles.
• MACC (Non–Pipelined)—multiply operations complete in one clock cycle. However, the maximum

operating frequency of the processor decreases in comparison to the fabric multiplier.
• MACC (Pipelined)—multiply operations complete in typically one extra clock cycle. The maximum

operating frequency of the processor increases in comparison to the non-pipelined MACC multiplier.

6.3.2 Interface Options
Under the Interface Options heading, the core can be configured to use the following bus interfaces:
• AHB Master: AHBLite
• APB Master: APB 3.0
• AXI Master: AXI3 or AXI4

The option to configure these interfaces as mirrored slaves is available. This option allows a single slave
component (for example, RAM or UART) to be connected directly to the interface at the start address,
without the need for a bus master.

6.3.3 Reset Vector Address
Under the Reset Vector Address heading, the reset vector address of the core can be configured. The default
boot address is 0x8000_0000. The code that runs from initialized memory must be built using the correct
linker script. For example, in the RISC-V HAL, which can be generated from the Firmware catalog, there are
two example linker scripts: Microsemi-riscv-ram.ld and Microsemi-riscv-ilgoo2.ld.
Microsemi-riscv-ram.ld is configured for a single memory at address 0x8000_0000 in Random
Access Memory (RAM), such as DDR or LSRAM. The Microsemi-riscv-igloo2.ld is configured to
use NVM (ROM) at address 0x6000_0000 and RAM at 0X8000_0000. To boot from initialized memory on
power-up, the reset vector and RAM start address in the linker script must match, otherwise, the core will
not boot as expected.

6.3.4 Interrupt Options
Under the Interrupt Options heading, up to six optional external interrupts are available alongside the
standard external interrupt.

6.3.5 Tightly Coupled Memory (TCM) Options
Under the Tightly Coupled Memory (TCM) Options heading, the option to enable TCM along with the
additional option to enable a TCM Direct Access Point (DAP) is available. This option allows reading and
writing to the TCM by an external core over the APB Interface. The TCM depth is determined by the address
space allocated in the Interface Memory Mapping configuration.

6.3.6 Other Options
Under theOther Options heading, the option to enable register forwarding is available. This option increases
the area and decreases the maximum operating frequency of the system, while increasing the core
performance.

Option to enable ECC (Error Correcting Code) is available, which instantiates fabric ECC encoding and
decoding logic for the TCM and GPRs, if they are RAM based.

Debug option to enable or disable the JTAG debug feature is also available.

44Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Tool Flow

6.3.7 Memory Map Tab
The address range for each interface can be configured through the core configurator’s memory map tab.
The following figure shows the default address ranges used for each interface.

Figure 8 • Memory Map GUI for MIV_RV32IMC in SmartDesign

In the event of an overlap conflict between address ranges, the configurator displays a warning and does
not generate the core until the conflict is resolved.

6.4 Debugging
The CoreJTAGDebug v3.1.100 or later, is used to enable debugging of MIV_RV32IMC. This is available in
the Libero Catalog.

6.5 Simulation Flows
The user testbench for MIV_RV32IMC is not included in this release.

The MIV_RV32IMC RTL can be simulated using a standard Libero generated HDL testbench. An example
subsystem is shown in the following figure. A hex file found in the Debug or Release folders generated by
SoftConsole is needed for thismethod.When the hex file is generated, remove the first line before importing

45Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Tool Flow

it into memory. The RESET_VECTOR of the MIV core is set to 0x8000_0000. Therefore, it boots from the
LSRAM_0. Using this design, the MIV core can be simulated.

Figure 9 • Example Subsystem

46Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Tool Flow

6.6 Synthesis in Libero
To run synthesis on the core, set the SmartDesign sheet as the design root and click Synthesize in Libero
SoC.

6.7 Place-and-Route in Libero
After the design is synthesized, run the compilation and the place-and-route tools. Click the Layout icon in
Libero SoC to invoke designer.

47Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Tool Flow

7 System Integration

7.1 PolarFire Example System
The following figure shows the block diagram containing the basic building blocks to start using the core in
a simple system.

Figure 10 • MIV_RV32IMC: An Example System

7.2 RTG4/SF2/IG2 Example System
The following figure shows the block diagram containing the basic building blocks to start using the core in
a simple system for the RTG4/SF2/IG2.

Figure 11 • MIV_RV32IMC: An Example System for RTG4/SF2/IGL2

Note: The difference between the PolarFire and the other design is the use of the PolarFire
Initialization Monitor and CoreReset_PF. The HDL reset synchronizer acts as the
CoreReset_PF, as this IP is only available on PolarFire. For other families, the reset
synchronizer is used. The HDL code for the reset synchronizer is available in the following
section.

48Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

System Integration

7.3 Reset Synchronization

7.3.1 RESETN
All sequential elements are clocked by the CLK signal, which requires that resets to employ a synchronous
reset topology. Asmost designs source CLK from a CCC/PLL, it is a common practice to AND the LOCK output
of the CCC with the push button reset (PB_RESET), to generate the RESETN input for core. However, this
results in the reset being de-asserted when the CLK comes up. Therefore, the reset de-assertion is not
clocked through the sequential reset elements and goes unnoticedmost commonly leading to the processor
locking-up. To guarantee that the RESETNde-assertion is seen by all sequential elements, a reset synchronizer
is required on the RESETN input, as shown in theMIV_RV32IMC: An Example System for RTG4/SF2/IGL2
figure.

Figure 12 • RESETN Reset Synchronization

The following Verilog code snippet implements the reset synchronizer block shown in the SmartDesign
MIV_RV32IMC Instance Viewsfigure. The function of this block is tomake the reset assertion and de-assertion
synchronous to CLK while guaranteeing that the reset is asserted for one or more CLK cycles to the core,
to ensure that it is registered by all sequential elements.

module reset_synchronizer (
 input clock,
 input reset,
 output reset_sync
);
reg [1:0] sync_deasert_reg;
reg [1:0] sync_asert_reg;

always @ (posedge clock or negedge reset)
 begin
 if (!reset)
 begin
 sync_deasert_reg[1:0] <= 2'b00;
 end
 else
 begin
 sync_deasert_reg[1:0] <= {sync_deasert_reg[0], 1'b1};
 end
 end
always @ (posedge clock)
 begin
 sync_asert_reg[1:0] <= {sync_asert_reg[0], sync_deasert_reg[1]};
 end
assign reset_sync = sync_asert_reg[1];
endmodule

Perform the following steps to include this synchronizer in your Libero design.

1. Select Create HDL from the Design Flow tab in your Libero project.

2. In the pop-up window, name the HDL file accordingly and select Verilog as the HDL type.

3. Uncheck the option to initialize file with standard template.

49Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

System Integration

4. Copy and paste the Verilog code above into this file and save the changes.

5. Build the Design Hierarchy, and then from the Design Hierarchy tab, drag and drop the file into the
SmartDesign containing the core instance and connect the pins as shown in the preceding figure.

7.3.2 TRST
No reset synchronization is required on this reset input, as all sequential elements in the debug logic in the
core use an asynchronous reset topology.

50Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

System Integration

8 Design Constraints

Designs containing core require the application of the following constraints in the design flow to allow
timing-driven Place-And-Route (PAR) and timing analysis to be performed on the design. The procedure
for adding the required constraints in the enhanced constraints flow in Libero SoC is as follows:

1. Double-click Constraints >Manage Constraints in the Design Flow window and click the Timing tab.

Assuming the the system clock SYS_CLK, which used to clock the core, is sourced from a CCC. Select
Derive Constraints to automatically create a constraints file containing the CCC constraints. Select Yes
when prompted to allow the constraints to be automatically included for Synthesis, Place-and- Route,
and Timing Verification stages.

If changes are made to the CCC configuration in the design, update the contents of this file by clicking
Derive Constraints again. Select Yes when prompted to allow the constraints to be overwritten.

2. In the Timing tab of the Constraint Manager window, select New to create a new SDC file, and name
it. Design constraints other than the system clock source derived constraints can be entered in this blank
SDC file. Keeping derived and manually added constraints in separate SDC files allows the Derive
Constraints stage to be re-performed, if changes are made to the CCC configuration, without deleting
all manually added constraints in the process.

3. Calculate the TCK period and half period. TCK is typically 6 MHz when debugging with a FlashPro, with
a maximum frequency of 30 MHz supported by FlashPro5. Populate the following constraint with the
TCK values and paste it into the blank SDC file:

create_clock -name { TCK } \
-period TCK_PERIOD \
-waveform { 0 TCK_HALF_PERIOD } \ [get_ports { TCK }]

As TCK is in a clock domain independent and asynchronous to the SYS_CLK, a set_clock_groups
constraint is also required. A set_clock_groups constraint is also required.

set_clock_groups -name {group_name} \
-asynchronous \
-group [get_clocks {……/SYS_CLK }] \
-group [get_clocks { TCK }]

For example, the following constraints need to be applied for a design that uses a TCK frequency of 6
MHz with a CCC generated system clock called OUT0:

#Constraining the JTAG clock to 6 MHz
create_clock -name {TCK}\
-period 166.67 \
-waveform {0 83.33} \
[get_ports {TCK}]

JTAG and Mi-V clocks are independent - adding asynchronous clock group

set_clock_groups -name {async1}\
-asynchronous\
-group [get_clocks {CCC_0_inst_0/CCC_0_0/pll_inst_0/OUT0}]\
-group [get_clocks {TCK}]

4. Associate all constraints files with the Synthesis, Place-and-Route, and Timing Verification stages in the
Constraint Manager > Timing tab by selecting the related check boxes for the SDC files in which the
constraints were entered in.

5. Save the changes made in the Constraint Manager > Timing dialog.

51Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Design Constraints

9 SoftConsole

The SoftConsole version 6.0 or later is required to use theMIV_RV32IMC. Each SoftConsole project requires
the RISC-V Hardware Abstraction Layer (HAL) version 2.2 or greater. For more information on setting up
project for RISC-V, see the SoftConsole release notes. The following steps briefly explain the changes that
may be made to a SoftConsole project. More information on setting up SoftConsole for this core can be
found in theQuick Start Guide. It can be found in theHelpmenu in the configurator, or if the core is selected
in the Catalog.

9.1 Setting the System Clock Frequency and Peripheral Base Addresses
If UART is being used, the system clock frequency is provided to the software and is done in the
hw_platform.h file by changing the #define SYS_CLK_FREQ to the clock frequency.

Note: This value should be in hertz.

Figure 13 • Setting Clock Frequency and Peripheral Base Addresses

The hw_platform.h file sets the base address for peripherals. The base address of a peripheral can be
found in the project memory map generated by Libero.

52Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

SoftConsole

Figure 14 • Modify Memory Map Dialog

The peripheral address in the hw_platform.h file must match the address in Libero for the peripheral
to function correctly. These peripherals are addressed for 0x0 because the RV32IMC core redirects these
addresses accordingly. The following figure shows the RV32IMC configuration settings for peripherals.

Figure 15 • RV32IMC Configurator Memory Map

53Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

SoftConsole

Microsemi's product warranty is set forth inMicrosemi's Sales Order Terms and Conditions. Information
contained in this publication is provided for the sole purpose of designing with and using Microsemi
products. Information regarding device applications and the like is provided only for your convenience
and may be superseded by updates. Buyer shall not rely on any data and performance specifications or
parameters provided by Microsemi. It is your responsibility to ensure that your application meets with
your specifications. THIS INFORMATION IS PROVIDED "AS IS."MICROSEMIMAKESNOREPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TOTHE INFORMATION, INCLUDINGBUTNOT LIMITEDTO ITS CONDITION,QUALITY,
PERFORMANCE, NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT WILL MICROSEMI BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE WHATSOEVER RELATED TO THIS INFORMATION
OR ITS USE, HOWEVER CAUSED, EVEN IF MICROSEMI HAS BEEN ADVISED OF THE POSSIBILITY OR THE
DAMAGESARE FORESEEABLE. TOTHE FULLEST EXTENTALLOWEDBY LAW,MICROSEMI’S TOTAL LIABILITY
ON ALL CLAIMS IN RELATED TO THIS INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF
FEES, IF ANY, YOU PAID DIRECTLY TO MICROSEMI FOR THIS INFORMATION. Use of Microsemi devices
in life support, mission-critical equipment or applications, and/or safety applications is entirely at the
buyer’s risk, and the buyer agrees to defend and indemnifyMicrosemi from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any
Microsemi intellectual property rights unless otherwise stated.

Microsemi
2355 W. Chandler Blvd.
Chandler, AZ 85224 USA

Within the USA: +1 (480) 792-7200
Fax: +1 (480) 792-7277

www.microsemi.com © 2020 Microsemi and
its corporate affiliates. All rights reserved.
Microsemi and the Microsemi logo are
trademarks of Microsemi Corporation and its
corporate affiliates. All other trademarks and
service marks are the property of their
respective owners. Microsemi Corporation, a subsidiary ofMicrochip Technology Inc. (Nasdaq:MCHP),

and its corporate affiliates are leading providers of smart, connected and secure
embedded control solutions. Their easy-to-use development tools and
comprehensive product portfolio enable customers to create optimal designswhich
reduce risk while lowering total system cost and time to market. These solutions
serve more than 120,000 customers across the industrial, automotive, consumer,
aerospace and defense, communications and computing markets. Headquartered
in Chandler, Arizona, the company offers outstanding technical support along with
dependable delivery and quality. Learn more at www.microsemi.com.

50200911

54Microsemi Proprietary and Confidential. HB0911 Handbook Revision 1.0

Legal

	Contents
	Revision History
	1.1 Revision 1.0

	2 Introduction
	2.1 Overview
	2.2 Features
	2.3 Core Version
	2.4 Supported Families
	2.5 Device Resource Utilization and Performance
	2.5.1 Typical Resource Utilization
	2.5.2 Benchmarks

	3 Functional Description
	3.1 MIV_RV32IMC Architecture
	3.2 Hart
	3.3 Memory System
	3.4 Interrupts
	3.5 Debug Support via JTAG
	3.6 External Interfaces
	3.7 Tightly Coupled Memory
	3.8 Direct Access Port
	3.9 Clocks
	3.10 Resets

	4 Interface
	4.1 Configuration Parameters
	4.2 I/O Signals

	5 Programmer’s Model
	5.1 Processor Operating States
	5.2 Reset Operation
	5.3 Data Types
	5.4 General Purpose Registers
	5.5 Machine Control and Status Registers
	5.6 Debug Module
	5.6.1 Debug Transport Module
	5.6.2 Debug Unit
	5.6.3 Hart Debug Logic
	5.6.3.1 Debug Control and Status CSR (DCSR–0x7B0)
	5.6.3.2 Debug Program Counter CSR (DPC–0x7B1)

	5.7 Memory Map
	5.8 Subsystem Restrictions
	5.9 Exceptions
	5.9.1 Vectored and Non-Vectored Interrupts
	5.9.2 Nested Interrupts
	5.9.3 Available Interrupts
	5.9.4 Interrupt Handling
	5.9.5 Vectored Interrupt Offsets and Exception Priorities
	5.9.6 OPSRV Register Interrupts

	5.10 OPSRV Register
	5.11 MTIME
	5.12 ECC

	6 Tool Flow
	6.1 License
	6.1.1 RTL

	6.2 SmartDesign
	6.3 Configuring MIV_RV32IMC
	6.3.1 Extension Options
	6.3.2 Interface Options
	6.3.3 Reset Vector Address
	6.3.4 Interrupt Options
	6.3.5 Tightly Coupled Memory (TCM) Options
	6.3.6 Other Options
	6.3.7 Memory Map Tab

	6.4 Debugging
	6.5 Simulation Flows
	6.6 Synthesis in Libero
	6.7 Place-and-Route in Libero

	7 System Integration
	7.1 PolarFire Example System
	7.2 RTG4/SF2/IG2 Example System
	7.3 Reset Synchronization
	7.3.1 RESETN
	7.3.2 TRST

	8 Design Constraints
	9 SoftConsole
	9.1 Setting the System Clock Frequency and Peripheral Base Addresses

