
HB0766
Handbook

CoreAXI4Interconnect v2.8

50200766. 8.0 3/20

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2020 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

HB0766 Handbook Revision 8.0 1

Contents

1 Revision History . 1
1.1 Revision 8.0 . 1
1.2 Revision 7.0 . 1
1.3 Revision 6.0 . 1
1.4 Revision 5.0 . 1
1.5 Revision 4.0 . 1
1.6 Revision 3.0 . 1
1.7 Revision 2.0 . 2
1.8 Revision 1.0 . 2

2 Terminology . 3
2.1 Abbreviations . 3
2.2 Terms and Definitions . 3

3 Introduction . 4
3.1 AXI4 Infrastructure Cores . 5

3.1.1 Key Features . 5
3.1.2 Limitations . 5
3.1.3 Core Version . 5
3.1.4 Supported Families . 6
3.1.5 Supported Interfaces . 6
3.1.6 Device Utilization and Performance . 7

4 Functional Descriptions . 9
4.1 AXI4 Crossbar . 9

4.1.1 Pass-Through . 10
4.1.2 N-to-1 Interconnect or 1-to-M Interconnect . 14
4.1.3 N-to-M Interconnect - Shared Address Shared Data Mode . 16
4.1.4 N-to-M Interconnect - Shared Address Multiple Data Mode . 18
4.1.5 AXI4Crossbar Limitations . 20

4.2 Data-Width Converter . 20
4.3 Master Protocol Converter . 21
4.4 Slave Protocol Converter . 21
4.5 Address Decoding . 22

4.5.1 Address Decode Example . 23
4.6 Auxiliary Parameters Configuration . 25

4.6.1 Read Arbitration Enable . 25
4.6.2 Crossbar Data Width . 25
4.6.3 Mx Read Interleaving and Sy Read Interleaving . 26

4.7 Connectivity Matrix . 26
4.8 AHB-Lite to AXI4 Master Conversion . 28

5 Core Interfaces . 29
5.1 I/O Signals . 29
5.2 Core Parameters . 35

6 Clocking and Reset . 42
6.1 Clocking . 42
6.2 Reset . 42

HB0766 Handbook Revision 8.0 2

7 Timing Diagrams . 43
7.1 Write Cycles . 43
7.2 Read Cycles . 46
7.3 HI_FREQ (High Frequency) . 47
7.4 AXI3 and AXI4Lite Slave Configuration . 48

8 Tool Flows . 49
8.1 License . 49
8.2 RTL . 49
8.3 Smart Design . 49
8.4 Simulation Flow . 50

8.4.1 User Testbench . 51
8.5 Synthesis in Libero SoC . 51
8.6 Place and Route . 51

9 Design Constraints . 52
9.1 Timing Constraints . 52

10 System Integration . 53

11 Reference Documents . 54

HB0766 Handbook Revision 8.0 1

Figures

Figure 1 CoreAXI4Interconnect . 4
Figure 2 Core AXI4 Interconnect System . 6
Figure 3 Pass-Through . 10
Figure 4 Pass-through Mode Configuration . 11
Figure 5 Pass-through Mode Configuration continue.. 12
Figure 6 Pass-through Mode Configuration continue... . 13
Figure 7 N-to-1 Mode Configuration . 14
Figure 8 1-to-M Mode Configuration . 15
Figure 9 N-to-M Interconnect - SASD Mode showing 8 × 8 Example . 16
Figure 10 N-to-M SASD Mode Configuration . 17
Figure 11 N-to-M Interconnect - SAMD Mode Showing 8 × 8 example . 18
Figure 12 N-to-M SAMD Mode Configuration . 19
Figure 13 Overlapping Address . 25
Figure 14 Master Wire Connectivity Example . 27
Figure 15 Reset Synchronizer . 42
Figure 16 Address Latency . 43
Figure 17 Address Latency When Register Slice is Enabled . 43
Figure 18 Address Latency with CDC and HIGH_FREQ asserted . 44
Figure 19 Write Cycle . 45
Figure 20 Read Cycle . 46
Figure 21 Write Cycle with HIGH_FREQ asserted . 47
Figure 22 AXI3 Write Example . 48
Figure 23 CoreAXI4Interconnect Instance View . 49
Figure 24 SmartDesign Configuration Window . 50
Figure 25 CoreAXI4Interconnect User Testbench showing 8x8 Example . 51
Figure 26 Constraint Manager—Derive Constraints Tab . 52
Figure 27 CoreAXI4Interconnect Example Design . 53

HB0766 Handbook Revision 8.0 1

Tables

Table 1 CoreAXI4Interconnect Device Utilization and Performance (8 × 8, Crossbar Data Width, 32-Bit) . . 7
Table 2 CoreAXI4Interconnect Device Utilization and Performance (8 × 8, Crossbar Data Width, 64-Bit) . . 7
Table 3 CoreAXI4Interconnect Device Utilization and Performance (4 ×4, 64-Bit Crossbar Data Width, Data

Width Converters and Clock Domain Crossings) . 8
Table 4 CoreAXI4Interconnect Device Utilization and Performance (4 × 4, 64-Bit Crossbar Data Width, Data

Width Converters, Clock Domain Crossings and Read Interleaving) . 8
Table 5 MASTER TYPE Mapping . 21
Table 6 SLAVE TYPE mapping . 21
Table 7 CoreAXI4Interconnect I/O Signals . 29
Table 8 CoreAXI4Interconnect Parameters . 35
Table 9 Reference Documents . 54

Revision History

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 1

1 Revision History

The revision history describes the edits done in this document. The changes are listed as follows.

1.1 Revision 8.0
Published in March 2020. The core was updated to version 2.8. Following are the edits done in this
revision of the document.

• Updated Table 1, page 7, Table 2, page 7, Table 3, page 8, and Table 4, page 8
• Removed parameters MASTERx_DEF_BURST_LEN.
• Added more details in section User Testbench, page 51.

1.2 Revision 7.0
Published in September 2019. The core was updated to version 2.7.

1.3 Revision 6.0
Published in May 2019. Following are the edits done in this revision of the document.

• The core was updated to version 2.6.
• Removed parameter AHB_MASTERx_BRESP_CHECK_MODE. Added parameters

SLAVEy_START_ADDR_UPPER, SLAVEy_END_ADDR_UPPER,
MASTERx_READ_INTERLEAVE,SLAVEy_READ_INTERLEAVE, OPTIMIZATION. Updated valid
value for ADDR_WIDTH and NUM_MASTERS parameters. For more information, see Table 8,
page 35.

• Updated Device Utilization and Performance table.
• Added new section Clocking and Reset. For more information, see Clocking and Reset, page 42
• Added new section Design Constraints. For more information, see Design Constraints, page 52

1.4 Revision 5.0
Published in Apr 2018. Following are the edits done in this revision of the document.

• The core is updated to version 2.5.
• Removed parameters UPPER_COMPARE_BIT,LOWER_COMPARE_BIT,SLOTy_BASE_VEC,
SLOTy_MIN_VEC and SLOTy_MAX_VEC, added parameters SLAVEy_START_ADDR and

SLAVEy_END_ADDR, and updated valid value for ADDR_WIDTH parameter. For more information, see
Table 8, page 35.

• Updated address decoding example. For more information, see Address Decoding, page 21.
• A new chapter, System Integration, page 53, is added.
• A new section, Smart Design, page 49 is added in Tool Flows, page 49.

1.5 Revision 4.0
Published in Nov 2017. The core was updated to version 2.4.

1.6 Revision 3.0
• Revision 3.0 was published in Jul 2017. Following are the edits done in the revision 3.0 of this

document.The core was updated to v2.3.
Support to number of slaves is upgraded to 32. For more information, see Introduction, page 4.

• Description of M_CLKx and S_CLKy is updated. For more information, see Table 7, page 29.
Parameter description and valid values are updated. For more information, see Table 8, page 35.

Revision History

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 2

1.7 Revision 2.0
Published in Apr 2017. The core was updated to version 2.2.

1.8 Revision 1.0
Published in Mar 2017. It was the first publication of this document. Created for version 2.0.

Terminology

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 3

2 Terminology

This section describes terms and definitions used in this document.

2.1 Abbreviations
• AMBA: ARM Advanced Microcontroller Bus Architecture
• AXI4: Advanced eXtensible Interface v4
• AXI4-Lite: Advanced eXtensible Interface v4 Lite
• AXI3: Advanced eXtensible Interface v3
• AHB-Lite: AMBA High-performance Bus Lite
• DWC: Data Width Converter
• CDC: Clock Domain Crossings
• FIFO: First In First Out
• DMA: Direct Memory Access
• UART: Universal Asynchronous Receiver/Transmitter
• DDR3: Double Data Rate 3
• LSRAM: Large Synchronous Random Accessible Memory
• SASD: Shared Address Shared Data
• SAMD: Shared Address Multiple Data

2.2 Terms and Definitions
• x: Represents a range of 0 to 15 for master signals and 0 to 31 for slave signals unless stated

otherwise.
• y: Represents a range of 0 to 31 for slave signals unless stated otherwise.
• Parameters: In section 4.2 Core Parameters, Parameter Name column shows actual parameter

name used in RTL and Description column starts with parameter name appear in the AXI4
Interconnect Configurator (GUI interface). These two names are used interchangeably throughout
the document.

Introduction

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 4

3 Introduction

The AMBA AXI4 Interconnect core connects one or more AXI memory-mapped master devices to one or
more memory-mapped slave devices. The AMBA AXI protocol supports high-performance, high-
frequency system designs. CoreAXI4Interconnect is a configurable core with the following features:

• Supports high-bandwidth and low-latency designs.
• Meets the interface requirements of a wide-range of components.
• Suitable for memory controllers with high-initial access latency.
• Provides flexibility in the implementation of interconnect architectures.
The key features of the AXI protocol are:

• Separate address/control and data phases.
• Supports unaligned data transfers, using byte strobes.
• Uses burst-based transactions with only the start address issued.
• Separate read and write data channels, which provides low-cost Direct Memory Access (DMA).
• Supports multiple outstanding read/write transactions.
• Supports out-of-order read transaction completion.
• Permits easy addition of register stages to provide timing closure.
The following figure shows the top-most AXI4 Interconnect core block diagram. Inside the AXI
Interconnect core, theAXI4 Crossbar core routes the traffic between the Slave Ports (SP) and Master
Ports (MP). The convention followed here is that the master-side ports connect to external upstream
masters, while the slave-side ports connect to external downstream slaves. Along each pathway
connecting the master ports or the slave ports to the Crossbar, an optional series of AXI Infrastructure
cores perform various conversion and buffering functions. The Infrastructure cores include Register
Slice, Data Width Converter, Protocol Converter, and Clock-Domain Crossing Converter. The
Protocol Converter includes AHB-Lite and AXI options, when placed at Master Ports.

The AXI Interconnect core can be configured to have up to 32 slave-side ports and up to 16 master ports.
The crossbar core, at the center, routes traffic on all the AXI channels between the slave-side ports and
master ports. Along each of the pathways between slave-side ports and the crossbar, or between the
crossbar and master ports. There are one or more infrastructure cores that perform various conversion
and storage functions. The crossbar effectively splits the AXI Interconnect core down the middle between
the master ports-related functional units and the slave-side ports-related units.

Figure 1 • CoreAXI4Interconnect

Introduction

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 5

3.1 AXI4 Infrastructure Cores
The following components are included within each instance of the AXI4 Interconnect core, depending on
the configuration of AXI4 Interconnect core:

1. AXI4 Crossbar connects one or more similar AXI4 memory-mapped masters to one or more similar
memory-mapped slaves.

2. AXI4 Data-Width Converter connects one AXI4 memory-mapped interface to one AXI4 interface
memory-mapped having a wider or narrower datapath.

3. Master Protocol Converter converts an AXI3, AXI4-Lite, or AHB-Lite master to an AXI4 master.
4. Slave Protocol Converter converts an AXI4 slave to an AXI3 or AXI4-Lite slave.
5. AXI4 Register Slice connects one AXI4 memory-mapped master to one AXI4 memory-mapped

slave through a set of pipeline registers, to break a critical timing path.
6. Clock Domain Crossing (CDC) components provide AXI4 to AXI4 clock domain crossing functions,

which can be enabled on a per-port basis.
The internal design of the CoreAXI4Interconnect is AXI4, only at the ingress and egress is AXI3,
AXI4Lite and AHB-Lite (master ports only) handles – where, they are converted to AXI4 format. The
crossbar sets the native data width for the core. An individual port can defined to have a different data
width, which defines the width for that ports Protocol Converter and Data Width Converter modules.

3.1.1 Key Features
The following list describes the key features of CoreAXI4Interconnect:

• AXI protocol compliant The AXI4 Interconnect core can be configured to support AXI4, AXI3, and
AXI4-Lite protocols on all master or slave ports, and the AHB-Lite protocol on master ports.

• The AXI4 Interconnect core breaks-up, burst transactions of more than 16 data beats from AXI4
masters into multiple transactions of no more than 16 beats when addressed to an AXI3 slave.

• The AXI4 Interconnect core breaks-up burst transactions of more than 1 data beats from AXI4 or
AXI3 masters into multiple transactions of 1 beats when addressed to an AXI4Lite slave.

• Interface data widths:
• AXI4/AXI3/AHB-Lite: 32, 64, 128, 256, or 512 bits
• AXI4-Lite: 32 or 64 bits

• Address width: Up to 64 bits
• USER width (per channel): Up to 64 bits
• ID width: Up to 8 bits
• Supports Read-only and Write-only masters and slaves, to reduce resource utilization.
• Supports up to 16 masters and 32 slaves
• Supports AXI3/AXI4 read interleaving.

3.1.2 Limitations
The following list gives the limitations of CoreAXI4Interconnect in this version:

• The AXI4 Interconnect core doesn't support AXI4 streaming interface.
• The AXI4 Interconnect core doesn't support Trust Zone security.
• The AXI4 Interconnect core doesn't support Region for slave devices with multiple address decode

ranges.
• AXI4 QoS signals do not effect arbitration priority in crossbar.
• The AXI4 Interconnect core doesn't support low-power mode or propagate the AXI C channel

signals.
• The AXI4 Interconnect core doesn't support time out in case of response is not received from the

destination.
• The AXI4 Interconnect core doesn't support AXI3 write interleaving.

3.1.3 Core Version
This handbook supports CoreAXI4Interconnect version 2.8.

Introduction

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 6

3.1.4 Supported Families
The following list of families support CoreAXI4Interconnect v2.8:

• PolarFire SoC
• PolarFire®

• SmartFusion®2
• IGLOO®2
• RTG4™

3.1.5 Supported Interfaces
CoreAXI4Interconnect is available with the following interfaces:

• AXI3, AXI4, AXI4-Lite, or AHB-Lite Masters
• AXI3, AXI4, or AXI4-Lite Slaves
The following figure shows detailed block diagram of CoreAxi4interconnect system:

Figure 2 • Core AXI4 Interconnect System

Introduction

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 7

3.1.6 Device Utilization and Performance
The following tables summarize various parameters settings data. The PolarFire MPF300TS_ES-
1FCG484E device and the SmartFusion2 M2S150TS-1FC1152 device are used in deriving the following
data. The PolarFire SoC device data is the same as the PolarFire device, and the IGLOO2 device data is
the same as the SmartFusion2 device.

Note: NUM_MASTERS = 8, NUM_SLAVES= 8, DATA_WIDTH = 32, ADDR_WIDTH = 32, ID_WIDTH = 4,
OPEN_TRANS_MAX=2, CROSSBAR_MODE=SAMD, SLAVEy_RS-1, MASTER_RSx=1,
RD_ARB_EN=0, MASTERx_CLOCK_DOMAIN_CROSSING=0,
SLAVEy_CLOCK_DOMAIN_CROSSING=1.

Note: NUM_MASTERS = 8, NUM_SLAVES= 8, DATA_WIDTH = 64, ADDR_WIDTH = 32, ID_WIDTH = 4,
OPEN_TRANS_MAX=2, CROSSBAR_MODE=SAMD, SLAVEy_RS-1, MASTER_RSx=1,

Table 1 • CoreAXI4Interconnect Device Utilization and Performance (8 × 8, Crossbar Data Width, 32-Bit)

Family Device Logic Elements Performance RAM
Sequential Combinational

SmartFusion2 M2S150TS-1FC1152 8201 12665 122MHz – ACLK (Crossbar
Clock)
145MHz – S_CLK (Slave
Clock)

63 Blocks
of uSRAM

PolarFire MPF300TS_ES-1FCG484E 6141 9892 156MHz – ACLK (Crossbar
Clock)
293MHz – S_CLK (Slave
Clock)

78 Blocks
of uSRAM

RTG4 RT4G150L-FCG1657M 8347 11776 72 MHz – ACLK (Crossbar
Clock)
68 MHz – S_CLK (Slave
Clock)

63 Blocks
of uSRAM

Table 2 • CoreAXI4Interconnect Device Utilization and Performance (8 × 8, Crossbar Data Width, 64-Bit)

Family Device Logic Elements Performance RAM
Sequential Combinational

SmartFusion2 M2S150TS-1FC1152 9500 14100 121MHz – ACLK (Crossbar
Clock)
150MHz – S_CLK (Slave Clock)

70 Blocks
of uSRAM

PolarFire MPF300TS_ES-1FCG484E 7339 11371 170MHz – ACLK (Crossbar
Clock)
281MHz – S_CLK (Slave Clock)

92 Blocks
of uSRAM

RTG4 RT4G150L-FCG1657M 9592 13812 61 MHz – ACLK (Crossbar
Clock)
65 MHz – S_CLK (Slave Clock)

70 Blocks
of uSRAM

Introduction

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 8

RD_ARB_EN=0, MASTERx_CLOCK_DOMAIN_CROSSING=0,
SLAVEy_CLOCK_DOMAIN_CROSSING=1

Note: NUM_MASTERS = 4, NUM_SLAVES= 4, DATA_WIDTH = 64, MASTER0_DATA_WIDTH=32,
MASTER1_DATA_WIDTH=128 (all other master’s DATA_WIDTH= 64) ADDR_WIDTH = 32,
SLAVE0_DATA_WIDTH=32, SLAVE1_DATA_WIDTH=128 (all other slave’s DATA_WIDTH= 64),
ID_WIDTH = 4, OPEN_TRANS_MAX=2, CROSSBAR_MODE=SAMD, SLAVEy_RS-1,
MASTER_RSx=1, RD_ARB_EN=0, MASTERx_CLOCK_DOMAIN_CROSSING=1,
SLAVEy_CLOCK_DOMAIN_CROSSING=1

Note: NUM_MASTERS = 4, NUM_SLAVES = 4, DATA_WIDTH = 64, MASTER0_DATA_WIDTH = 32,
MASTER1_DATA_WIDTH = 128 (all other master’s DATA_WIDTH = 64) ADDR_WIDTH = 32,
SLAVE0_DATA_WIDTH = 32, SLAVE1_DATA_WIDTH = 128 (all other slave’s DATA_WIDTH = 64),
ID_WIDTH = 2, OPEN_TRANS_MAX = 2, CROSSBAR_MODE = SAMD, SLAVEy_RS-1, MASTER_RSx
= 1, RD_ARB_EN = 0, NUM_THREADS = 4, MASTERx_CLOCK_DOMAIN_CROSSING = 1,
SLAVEy_CLOCK_DOMAIN_CROSSING = 1, MASTERx_READ_INTERLEAVE = 1,
SLAVEy_READ_INTERLEAVE = 1

Table 3 • CoreAXI4Interconnect Device Utilization and Performance (4 ×4, 64-Bit Crossbar Data Width,
Data Width Converters and Clock Domain Crossings)

Family Device Logic Elements Performance RAM
Sequential Combinational

SmartFusion2 M2S150TS-1FC1152 10938 14755 125 MHz – ACLK
(Crossbar Clock)
190 MHz – S_CLK
(Slave Clock)
169 MHz – M_CLK
(Master Clock)

117 Blocks
of uSRAM

PolarFire MPF300TS_ES-1FCG484E 9042 13124 203 MHz – ACLK
(Crossbar Clock)
336 MHz – S_CLK
(Slave Clock)
219 MHz – M_CLK
(Master Clock)

158 Blocks
of uSRAM

RTG4 RT4G150L-FCG1657M 9592 13812 54 MHz – ACLK
(Crossbar Clock)
69 MHz – S_CLK (Slave
Clock)
44 MHz – M_CLK
(Master Clock)

112 Blocks
of uSRAM

Table 4 • CoreAXI4Interconnect Device Utilization and Performance (4 × 4, 64-Bit Crossbar Data Width,
Data Width Converters, Clock Domain Crossings and Read Interleaving)

Family Device Logic Elements Performance RAM
Sequential Combinational

PolarFire MPF300TS_ES-1FCG484E 19242 30713 183 MHz – ACLK
(Crossbar Clock)
274 MHz – S_CLK (Slave
Clock)
231 MHz – M_CLK
(Master Clock)

489 Blocks
of uSRAM

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 9

4 Functional Descriptions

The CoreAXI4Interconnect soft IP provides a user interface for the AXI4, AXI3, AXI4-Lite, or AHB- Lite
master interfaces to AXI4, AXI3, or AXI4-Lite slave interfaces.

4.1 AXI4 Crossbar
Each instance of the AXI4 Interconnect core contains one AXI4 Crossbar instance, if it is configured with
more than one SIave and one Master. The slaveports of the AXI4 Crossbar core can be configured to
comprise 1 to 32 slaveports slots, to accept transactions from up to 16 connected master ports. The
master ports can be configured to comprise 1 to 16 master ports slots to issue transactions up to 32
connected slave devices.

The AXI4 Cross bar key features are as follows:

• Selectable Crossbar Architecture – Shared Address Multiple Data (SAMD) or Shared Address
Shared Data (SASD)

• Shared Address Multiple Data mode (Performance optimized)
• Shared-Address (one for Write addresses and one for Read addresses), Multiple-Data (SAMD)

crossbar architecture.
• Parallel crossbar pathways for Write data and Read data channels. This enables independent

and concurrent Write data transactions up to 16 write data paths, as well as independent and
concurrent Read data transactions up to 16 read data paths. This allows multiple data
transactions in parallel, AXI4 provided ordering rules are met, which the crossbar imposes.

• It allows programmable number of outstanding transactions at a time.
• Sparse crossbar data paths according to configured connectivity map, resulting in reduced

resource utilization.
• One shared Write address bus, plus one shared Read address bus.
• One shared Response bus.
• Arbitration latencies typically do not impact to data throughput, when transactions average is at

least two data beats.
• Crossbar always operates with AXI4 Interface.

• Shared Address Shared Data mode (Area optimized)
• Shared write data, shared read data, shared write address, and shared read-address buses

(SASD).
• It has one shared response bus.
• It minimizes resource utilization.

• Supports connected masters with multiple reordering depths (ID threads).
• Supports up to 8-bit wide ID signals with varying ID width per connected master.
• Supports to configure maximum outstanding read/write transactions.
• Optional single-thread mode (per connected master) reduces thread control logic by allowing one or

more outstanding transactions from only one thread ID at a time.
• Supports "Single Slave per ID" method to avoid cyclic dependency (deadlock). For each ID thread,

issued by a connected master, the Crossbar allows one or more outstanding transactions to only
one slave device for Writes and one slave device for Reads, at a time.

• Round-robin arbitration
• Round-robin arbitration is used among all connected masters.
• Any slave ports slot which reached its outstanding limit, or is targeting an master ports slot

which reached its issuing limit, or is trying to access master ports slot in a manner that risks
deadlock, is temporarily removed from arbitration, so that, the other slave ports slots can be
granted.

The AXI4Interconnect core can be configured in one of several modes as shown in the following
sections:

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 10

4.1.1 Pass-Through
In this case, only one master needs to connect to one slave, the AXI4Interconnect can be configured in
1-to-1 or pass-through mode. In this case, the only function of the core is to convert, such as, connecting
an AXI4 Master to and AXI4/3 Slave. The crossbar is bypassed, which maximizes the performance and
minimizes the resource utilization.

Note: If read interleaving for any master or slave is enabled, then the crossbar will not be bypassed. User
should configure Mx Read Interleave and Sy Read Interleave parameters to zero to minimize the
resource utilization.

Figure 3 • Pass-Through

To configure the AXI4 Interconnect core in pass through mode, parameters configuration should be as
follows:

• Number of Masters - 1
• Number of Slaves - 1
• M0 Read Interleaving - Disabled
• S0 Read Interleaving - Disabled
Other parameters can be configured as per the requirement. Figure 4, Figure 5, and Figure 6 illustrates
the pass through mode configuration.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 11

Figure 4 • Pass-through Mode Configuration

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 12

Figure 5 • Pass-through Mode Configuration continue..

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 13

Figure 6 • Pass-through Mode Configuration continue...

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 14

4.1.2 N-to-1 Interconnect or 1-to-M Interconnect
A common configuration for the AXI Interconnect core is when multiple master devices arbitrate for
access to a single slave device, often a memory controller. In these cases, the address decoding logic
might be unnecessary and omitted from the AXI Interconnect core (unless address range validation is
needed). Pipeline and protocol conversions to or from AXI3 and AXI4Lite are useful. Another de-
generative configuration of the AXI Interconnect core is when a single master device, typically a
processor, accesses multiple memory-mapped slave peripherals. In these cases (N-to-1 and 1-to-M), all
use the AXI4Interconnnect arbitration, address decode, and data pathways as normal.

To configure the AXI4 Interconnect core in N-to-1 mode, parameters configurations should be as follows:

• Number of Masters - Greater than 1
• Number of Slaves - 1.
Figure 7 illustrates the N-to-1 configuration.

Figure 7 • N-to-1 Mode Configuration

To configure the AXI4 Interconnect core in 1-to-M mode, parameters configurations should be as follows:

• Number of Masters - 1
• Number of Slaves - Greater than 1
Figure 8 illustrates the 1-to-M configuration.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 15

Figure 8 • 1-to-M Mode Configuration

In both N-to-1 and 1-to-M mode, other parameters can be configured as per the requirement.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 16

4.1.3 N-to-M Interconnect - Shared Address Shared Data Mode
For SASD mode, the N-to-M use case of the AXI Interconnect core supports for only one outstanding
read transaction and one outstanding write transaction at a time. The arbiter selects from among the
requesting masters. One write data transfer is enabled to the targeted slave device and after the data
transfer (including the write response) completes, the next write request is arbitrated. Similarly, one read
transaction is selected in parallel to a write cycle and performed at the same time. SASD mode
minimizes the resources used to implement the crossbar module of the AXI4Interconnect.

Figure 9 • N-to-M Interconnect - SASD Mode showing 8 × 8 Example

To configure the AXI4 Interconnect core in N-to-M SASD mode, parameters configurations should be as
follows:

• Number of Masters - Greater than 1
• Number of Slaves - Greater than 1
• Crossbar Mode - SASD
• Optimization - Either Area or User

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 17

Figure 10 illustrates the N-to-M SASD mode configuration.

Figure 10 • N-to-M SASD Mode Configuration

Other parameters can be configured as per the requirement.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 18

4.1.4 N-to-M Interconnect - Shared Address Multiple Data Mode
For SAMD mode, the N-to-M use case of the AXI Interconnect core provides for parallel data pathways,
to allow multiple writes and read transactions to be executed at the same time. There are up to thirty-two
separate pathways for writes - one for each slave, and up to eight separate pathways for reads one for
each master. There is one write address pathway, one read address pathway, and one response
pathway that are shared by all masters and slaves. The sharing of the address and responses pathways
does not normally affect performance as long as data bursts are longer than two. All these pathways -
write address, read address, write data, read data, and response all operate in parallel.

Figure 11 • N-to-M Interconnect - SAMD Mode Showing 8 × 8 example

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 19

To configure the AXI4 Interconnect core in N-to-M SAMD mode, parameters configurations should be as
follows:

• Number of Masters - Greater than 1
• Number of Slaves - Greater than 1
• Crossbar Mode - SAMD
• Optimization - Either Performance or User
Figure 12 illustrates the N-to-M SAMD mode configuration.

Figure 12 • N-to-M SAMD Mode Configuration

Other parameters can be configured as per the requirement.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 20

4.1.5 AXI4Crossbar Limitations
The following list gives limitations of AXI4Crossbar:

• AXI4 QoS signals do not influence crossbar arbitration priority. QoS signals are only propagated
from Masters to Slaves.

• The AXI4 Crossbar does not time out, if the destination of any AXI channel transfer stalls indefinitely.
All slaves must respond to all received transactions, as required by AXI protocol.

• AXI4 Crossbar does not check, if burst crosses any illegal boundary. The master is required to
handle it.

4.2 Data-Width Converter
The Data-Width Converter function depends on whether the data path width gets wider ("up-sizing") or
narrower ("down-sizing") when moving in the direction from the Master port to Slave port. The data width
conversion functions are the same in either the Master or Slave side. At the master side, up-sizing or
data width up converter is implemented when master data width (Mx Data Width) is greater than AXI
Interconnect core native width (Crossbar Data Width) and down-sizing or data width down converter is
implemented when master data width (Mx Data Width) is less than AXI Interconnect core native width
(Crossbar Data Width). Similarly, at the slave side, up-sizing or data width up converter is implemented
when AXI Interconnect core native width (Crossbar Data Width) is less than slave data width (Sy Data
Width) and down-sizing or data width down converter is implemented when AXI Interconnect core native
width (Crossbar Data Width) is greater than slave data width (Sy Data Width).

• Master, Slave, and Crossbar can be any legal AHB-Lite or AXI data width from 32 to 512 bits. Master
data width can be configured using Mx Data Width parameter, Slave data width can be configured
using Sy Data Width and Crossbar data width can be configured using Crossbar Data Width
parameter

• For upsizing, write data is packed (merged) where it is feasible to the full bus width, for efficient
external memory access.

• For upsizing, both read and write data is buffered for efficient use of burst-type memory, such as
DRAM and allows bursts of full data width accesses, when bus arbitration is achieved. Synchronous
FIFO having different input and output widths are used to buffer read and write data during up-sizing.
Synchronous FIFO depth can be configured using Mx DWC Data Fifo Depth parameter for the
master and Sy DWC Data Fifo Depth parameter for the slave. Input and output data width of
Synchronous FIFO derived internally in the AXI4 Interconnect core.

• For downsizing, the burst transactions are split into multiple transactions, if the maximum burst
length is exceeded.

• For up sizing and downsizing, both read and write transactions control information such as size,
burst type, length, id, address are buffered and write response also buffered using Synchronous
FIFO. Synchronous FIFO depth can be configured for all the masters and all the slaves using DWC
Address FIFO Depth Ceiling parameter.

Note: When read interleaving is enabled, multiple instance of Synchronous FIFO will be implemented to buffer
out of order read data and read transactions, which may increase the resource utilization. Read
interleaving can be configured using Mx Read Interleaving parameter for the master and Sy Read
Interleaving parameter for the slave

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 21

4.3 Master Protocol Converter
The Master Protocol Converter transforms connected Masters from AXI3, AXI4Lite, or AHB-Lite to AXI4,
which is the native protocol type of the AXI4Interconnect. AXI4 compliant masters do not require Master
Protocol conversion. The parameter MASTERx_TYPE (Mx Type) defines, one per connected Master
port, the type of Master that connects to the AXI4Interconnect. x represents the per port version.

For example: MASTER0_TYPE.

The following table shows the mapping for the MASTERx_TYPE parameter:

4.4 Slave Protocol Converter
The Slave Protocol Converter transforms the native AXI4 ports for connected slaves to AXI3 or AXI4-
Lite. AXI4 compliant slaves do not require Slave Protocol conversion. The parameter SLAVEy_TYPE (Sy
Type) defines, one per connected Slave port, the type of slave, which connects to the AXI4Interconnect.
y represents the per port version.

For example: SLAVE0_TYPE

The following table shows the mapping for the SLAVEy_TYPE (Sy Type) parameter:

The key mechanisms for AXI4-Lite protocol conversion are:

• The AXI Interconnect stores transaction IDs from Masters and retrieve them during response
transfers.

• The AXI4 Interconnect core breaks-up burst transactions of more than 1 data beat from AXI4 or
AXI3 masters, into multiple transactions of 1 beats.

• INCR, FIXED, and WRAP burst types are supported. The key mechanisms for AXI3 protocol
conversions are:

• The AXI Interconnect core converts burst transactions of more than 16 data beats from AXI4
masters into multiple transactions of 16 beats.

• AXI3 write data interleaving is not supported. This feature was dropped by AXI4 protocol.
• Atomic locked transactions are not supported.

Note: When AXI4 burst transactions are breaks up in more than 1 data beat for AXI4 Lite slave and more than
16 data beat for AXI3 slave, multiple burst transactions and data are buffered using Synchronous FIFO.
Depth of Synchronous FIFO used to buffer burst transactions can be configured using "Slave FIFO
Address Depth" parameter and depth of Synchronous FIFO used to buffer data can be configured using
"Slave FIFO Data Depth" parameter. These two parameters are common for all the AXI4-Lite or AXI3
slave.

Table 5 • MASTER TYPE Mapping

MASTERx_TYPE [1:0] Port Type

00 AXI4

01 AXI4Lite

10 AHB-Lite

11 AXI3

Table 6 • SLAVE TYPE mapping

SLAVEy_TYPE [1:0] Port Type

00 AXI4

01 AXI4Lite

10 (reserved)

11 AXI3

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 22

4.5 Address Decoding
The AXI4Interconnect decodes the ARADDR and AWADDR in the AXI4Crossbar module to select, which
SLAVE port, the MASTER wants to access. This decode is performed using the following equation.
MATCHy SLAVE = (Addr[ADDR_WIDTH-1:0] >= SLAVEy_START_ADDR) and (Addr[ADDR_WIDTH-
1:0] <= SLAVEy_END_ADDR)

Where:

• y is 0 to (NUM_SLAVES-1).
• MATCHy SLAVE is the target slave for the transaction.
• Addr is the ARADDR or AWADDR for the transaction.
• SLAVEy_START_ADDR is per slave parameter that defines start address for the associate SLAVEy

port. SLAVEy_START_ADDR is the concatenation of SLAVEy_START_ADDR_UPPER (upper 32 bit
of AWADDR or ARADDR)and SLAVEy_START_ADDR (lower 32 bit of AWADDR or ARADDR) when
ADDR_WIDTH is more than 32.For ADDR_WIDTH less than 32, SLAVEy_START_ADDR_UPPER
will be ignored.

• SLAVEy_END_ADDR is per slave parameter that defines end address for the associate SLAVEy
port. SLAVEy_END_ADDR is the concatenation of SLAVEy_END_ADDR_UPPER (upper 32 bit of
AWADDR or ARADDR)and SLAVEy_END_ADDR (lower 32 bit of AWADDR or ARADDR) when
ADDR_WIDTH is more than 32. For ADDR_WIDTH less than 32, SLAVEy_END_ADDR_UPPER
will be ignored.

SLAVEy_END_ADDR can be evaluated using the equation, SLAVEy_END_ADDR =
SLAVEy_START_ADDR + slavey_range - 1

Note: slavey_range defines maximum address range of associate SLAVEy port. Maximum address range
depends on the number of AXI address bits [maximum of AWADDR or ARADDR bits] of associate
SLAVEy. The slave having 16 bits AXI address has maximum address range - 2^16 (64K). slavey_range
is not a parameter.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 23

4.5.1 Address Decode Example
For this example, the cores parameters are defined as follows:

• ADDR_WIDTH = 32;
• NUM_SLAVES = 4;
Address ranges of four slaves (not a part of cores parameters) are as follows:

• slave0_range = 256; //maximum address range of slave0
• slave1_range = 524288(512K); //maximum address range of slave1
• slave2_range = 16384 (16K); //maximum address range of slave2
• slave3_range = 512; //maximum address range of slave3
There are different possible combinations for addressing. The following list shows some of the valid
combinations:

Incremental Addressing

• SLAVE0_START_ADDR = 0x0000_0000
• SLAVE0_END_ADDR = SLAVE0_START_ADDR + slave0_range - 1

= 0x0000_0000 + 0x0000_0100 - 1

= 0x0000_00FF

• SLAVE1_START_ADDR = SLAVE0_END_ADDR + 1
= 0x0000_00FF + 1

= 0x0000_0100

• SLAVE1_END_ADDR = SLAVE1_START_ADDR + slave1_range - 1
= 0x0000_0100 + 0x0008_0000 - 1

= 0x0008_00FF

• SLAVE2_START_ADDR = SLAVE1_END_ADDR+ 1
= 0x0008_00FF + 1

= 0x0008_0100

• SLAVE2_END_ADDR = SLAVE2_START_ADDR + slave2_range - 1
= 0x0008_0100 + 0x0000_4000 - 1

= 0x0008_40FF

• SLAVE3_START_ADDR = SLAVE2_END_ADDR + 1
= 0x0008_40FF + 1

= 0x0008_4100

• SLAVE3_END_ADDR = SLAVE3_START_ADDR + slave3_range - 1
= 0x0008_4100 + 0x0000_0200 - 1

= 0x0008_42FF

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 24

Random Addressing

• SLAVE0_START_ADDR = 0x0000_0000
• SLAVE0_END_ADDR = SLAVE0_START_ADDR + slave0_range - 1

= 0x0000_0000 + 0x0000_0100 - 1

= 0x0000_00FF

• SLAVE1_START_ADDR = 0x0008_0000
• SLAVE1_END_ADDR = SLAVE1_START_ADDR + slave1_range - 1

= 0x0008_0000 + 0x0008_0000 - 1

= 0x000F_FFFF

• SLAVE2_START_ADDR = 0x0010_0000
• SLAVE2_END_ADDR = SLAVE2_START_ADDR + slave2_range - 1

= 0x0010_0000 + 0x0000_4000 - 1

= 0x0010_3FFF

• SLAVE3_START_ADDR = 0x0010_4000
• SLAVE3_END_ADDR = SLAVE3_START_ADDR + slave3_range - 1

= 0x0010_4000 + 0x0000_0200 - 1

= 0x0010_41FF

Address Overlapping Example

• SLAVE0_START_ADDR = 0x0000_0100
• SLAVE0_END_ADDR = SLAVE0_START_ADDR + slave0_range - 1

= 0x0000_0100 + 0x0000_0100 - 1

= 0x0000_01FF

• SLAVE1_START_ADDR = 0x0020_0000
• SLAVE1_END_ADDR = SLAVE1_START_ADDR + slave1_range - 1

= 0x0020_0000 + 0x0008_0000 - 1

= 0x0027_FFFF

• SLAVE2_START_ADDR = 0x0000_4000
• SLAVE2_END_ADDR = SLAVE2_START_ADDR + slave2_range - 1

= 0x0000_4000 + 0x0000_4000 - 1

= 0x0000_7FFF

• SLAVE3_START_ADDR = 0x0000_5000
• SLAVE3_END_ADDR = SLAVE3_START_ADDR + slave3_range - 1

= 0x0000_5000 + 0x0000_0200 - 1

= 0x0000_51FF

SLAVE3 address overlaps SLAVE2.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 25

The following figure shows address overlapping error in CoreAXI4Interconnect Configurator:

Figure 13 • Overlapping Address

4.6 Auxiliary Parameters Configuration
The following sections describe the auxiliary parameters and their configuration details:

4.6.1 Read Arbitration Enable
The Read Arbitration Enable parameter defines the mechanism used for Read Data paths. When Read
Arbitration Enable is enabled, a round-robin arbitrator is used to select the next slave to perform read
data transaction. This leads to a dead-cycle on back-to-back reads from the same slave device. While
Read Arbitration Enable is disabled, an ordered queue is used to select the slave. In this mode, it is
possible for back-to-back cycles from the same slave with no dead-cycles.

4.6.2 Crossbar Data Width
The Crossbar Data Width parameter configuration depends on the system design.

Following design example illustrates the configuration of Crossbar Data Width parameter

Number of Masters - 2

Number of Slaves - 4

Master 0 - Microprocessor

Master 1 - DMA

Master 0 Data Width - 32 Bits

Master 1 Data Width - 64 Bits

Slave 0 - LSRAM

Slave 1 - FIFO

Slave 2 - DDR3

Slave 3 - DMA

Slave 0 Data Width - 32 Bits

Slave 1 Data Width - 32 Bits

Slave 2 Data Width - 64 Bits

Slave 3 Data Width - 32 Bits

In the design, Microprocessor configures the DMA to transfer data between DDR3 and FIFO. LSRAM is
used as an application memory. In this scenario, most of the time DMA occupies AXI4 bus that is, DMA is

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 26

busy in transferring data between DDR3 and FIFO. DDR3 data width is 64 and DMA data width is also
64. Microprocessor data width is 32 bits and data width of all the slaves accessed by Microprocessor is
also 32 bits. However, Microprocessor occupies less AXI4 bus bandwidth compared to DMA and due to
that the Crossbar Data Width should be configured to 64 to achieve high performance.

If Crossbar Data Width is configured to 32 bits then data width converter implemented between Master
1 (DMA) and the AXI4 crossbar and between AXI4 crossbar and Slave 2 (DDR3) which increases
latency and reduce the performance.

4.6.3 Mx Read Interleaving and Sy Read Interleaving
The configuration of Mx Read Interleaving and Sy Read Interleaving parameters depends on the read
interleave feature supported by masters and slaves used in the system design.

Following design example illustrates the configuration of Mx Read Interleaving and Sy Read
Interleaving parameters

Number of Masters - 3

Number of Slaves - 4

Master 0 - DMA1. Supports read interleaving.

Master 1 - DMA2. Supports read interleaving.

Master 2 - Microprocessor. Doesn't support read interleaving.

Slave 0 - DMA1. Does not support read interleaving.

Slave 1 - DMA2. Does not support read interleaving.

Slave 2 - DDR3. Supports read interleaving.

Slave 3 - FIFO. Does not support read interleaving.

For the preceding configuration, masters and slaves supports read interleaving, its corresponding Mx
Read Interleaving and Sy Read Interleaving parameters should be enabled to improve both resource
utilization and performance. Mx Read Interleaving and Sy Read Interleaving configuration should be
as follows:

M0 Read Interleaving - Enabled

M1 Read Interleaving - Enabled

M2 Read Interleaving - Disabled

S0 Read Interleaving - Disabled

S1 Read Interleaving - Disabled

S2 Read Interleaving - Enabled

S3 Read Interleaving - Disabled.

4.7 Connectivity Matrix
The MASTERx_WRITE_SLAVEy and MASTERx_READ_SLAVEy parameters are used to prune the
decode and arbitration logic. Each master has a bit per slave that defines whether the master can write to
the slave (MASTERx_WRITE_SLAVEy, where x is 0 to 15 referring to MASTER0 to MASTER15 and y is
0 to 31 referring to SLAVE0 to SLAVE31) and another bit per slave that defines whether the master
canread from the slave (MASTERx_READ_SLAVEy).

MASTERx_WRITE_CONNECTIVITY is a concatenation of {MASTERx_WRITE_SLAVE31 ….
MASTERx_WRITE_SLAVE0} and MASTERx_READ_CONNECTIVITY is a concatenation of

{MASTERx_READ_SLAVE31 …. MASTERx_READ_SLAVE0}. These matrices are used to remove
slaves.whose connectivity bit set to zero from arbitration and other logic.

The following figure shows an example of how the MASTER_WRITE_CONNECTIVITY is used.
MASTER_READ_CONNECTIVITY is defined in a similar manner.

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 27

Figure 14 • Master Wire Connectivity Example

Functional Descriptions

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 28

4.8 AHB-Lite to AXI4 Master Conversion
A connected AHB-Lite master (MASTER_TYPE = 10) converts the AHB-Lite protocol to AXI4. The
differences between protocols are as follows:

• AXI has five independent channels (write and read address/control, write and read data, and write
response) whereas AHB-Lite has only one channel.

• AHB-Lite has an undefined length burst type, INCR, with no way to predict when it will end until a
new transaction starts or the bus goes idle; AXI specifies the length of transactions at the start.

• AXI and AHB-Lite have "response" indications for error conditions, but they are handled differently.
AHB-Lite is on per-beat basis within a burst for both reads and writes, whereas AXIs response
comes on per beat basis for reads, and comes once at the end of a burst for writes.

• AHB-Lite has only one shared "ready" signal for address or control and, both read and write data,
whereas AXI has a "ready" signal on each of the five channels, along with associated "valid" signals.

During back to back transactions without "BUSY type transfer, the last data beat coincides with the next
control beat, and "HREADY" is not asserted until both the data are accepted by AXI (AXI RVALID for
reads or WREADY for writes) and, the required read or write control channel is ready (AWREADY or
ARREADY).The AHB-Lite converter always provides AHB-Lite response at the end of the AHB-Lite
burst. AXI4 provides write response at the end of AXI4 write burst and read response at every beat
transfer. In both the cases AHB-Lite converter provides response to AHB-Lite at the end of AHB-Lite
burst. In case of the read operation, AHB-Lite converter stores the error response if error response is
received during the burst transaction and provides error response at the end of the AHB-Lite burst.

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 29

5 Core Interfaces

The following sections describe the I/O signals and parameters for CoreAXI4Interconnect:

5.1 I/O Signals
The following table describes the port signals for the CoreAXI4Interconnect macro as shown in Figure 2,
page 6.

Note: All signals are active High (logic 1) unless otherwise noted.

Note: In the signal names and parameters listed here, "x" represents a range of 0 to 15 for master signals and
“y” represents a range of 0 to 31 for slave signals.

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description
Global Signals
ACLK Input AXI4 crossbar clock signal.

ARESETN Input Note: Active low asynchronous reset.Asynchronous reset is
synchronized in ACLK, MCLK_x, and SCLK_y domains
inside AXI4 Interconnect. After de-assertion of
asynchronous reset, user must wait for two clock cycles
of the respective MCLK_x, before initiating master
transaction.

Master Signals – Port 0 to Port 15
Master Clock signals
M_CLKx Input Master clock for port x. If clock domain crossing is required on

Master port x, this clock must be connected to clock
associated with the ports bus (AHB-Lite/AXI). Parameter Mx
Clock Domain Crossing is used to enable the port.

Master AHB-Lite signals
MASTERx_HADDR[31: 0] Input Read/Write Write address. It gives the address of the first

transfer in a transaction.

MASTERx_HBURST[2:0] Input Burst type. The burst type and the length information,
determines how the address for each transfer within the burst
is calculated.

MASTERx_HMASTLOCK Input When High, this signal indicates that the current transfer is
part of a locked sequence. This is transferred to the lower bit
of the slaves 2- bit AXI "lock" signal with the upper bit
assigned to zero.

MASTERx_HPROT[6:0] Input HPROT[0] is inverted to produce AxPROT[2]. When
HPROT[0] is low, it indicates an instruction/opcode access,
high indicates a data access.

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 30

Input HPROT[1] is routed to AxPROT[0], to indicate user access
when low, privileged access when high.

Input HPROT[2] when high, indicates that data is bufferable; this is
routed to AxCACHE[0].

Input HPROT[3] when high, indicates data is catchable; this is
routed to AxCACHE[1] and [2].

Input HPROT [6:4] are included for possible future expansion to
support AHB5.

Input HPROT[5] indicates "allocate", where data must be looped-up
in cache, and is routed to AxCACHE[3] and [2].

Input HPROT[4] and [6] are unused.

MASTERx_HSIZE[2:0] Input This signal indicates the size in bytes of each transfer in the
burst.

MASTERx_HNONSEQ Input Non-secure access. This is not a standard AHB signal, but
may be useful in bridging to AXI, where it becomes bit[1] of
AxPROT[2:0] to indicate a non-secure access when driven
high.

MASTERx_HTRANS[1:0] Input Transaction type: BUSY, NONSEQUENTIAL, SEQUENTIAL,
or IDLE.

MASTERx_HWDATA
[MASTERx_DATA_WIDTH-1:0]

Input Write Data

MASTERx_HRDATA
[MASTERx_DATA_WIDTH-1:0]

Output Read Data

MASTERx_HWRITE Input Write transaction when high, read when low.

MASTERx_HREADY Output AXI Interconnect ready: when asserted during a write transfer,
indicates it accepted the write; when asserted during a read
transfer, indicates that read data is available; when asserted
while HTRANS indicates “NONSEQ”, it indicates that the
interconnect accepts the command, and also has processed
the last read or write beat if it is in progress, simultaneously.

MASTERx_HRESP Output Interconnect error indicator when high.

MASTERx_HSEL Input Optional decode signal, when high indicates the current
transaction is intended for this interconnect. Tie to “1” if not
required.

Master Address Write Channels
MASTERx_AWID [ID_WIDTH-1:0] Input Write address ID. The identification tag for the write address

group of signals.

MASTERx_AWADDR [ADDR_WIDT H-1:0] Input Write address. The write address gives the address of the first
transfer in a write burst transaction.

MASTERx_AWLEN[7:0] Input Burst length. The burst length gives the exact number of
transfers in a burst. This information determines the number of
data transfers, associated with the address. This changes
between AXI3 and AXI4.

MASTERx_AWSIZ[2:0] Input Burst size. Size of each transfer in the burst.

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 31

MASTERx_AWBURST[1: 0] Input Burst type. The burst type and the size information, determine
how the address for each transfer within the burst is
calculated.

MASTERx_AWLOCK[1: 0] Input Lock type. Provides additional information about the atomic
characteristics of the transfer. This changes between AXI3
and AXI4.

MASTERx_AWCACHE[3: 0] Input Memory type. Shows how transactions are required to
progress through a system.

MASTERx_AWPROT[2: 0] Input Protection type. It gives privilege and security level of the
transaction, and whether the transaction is a data access or
an instruction access.

MASTERx_AWQOS[3:0] Input Quality of Service, QoS. The QoS identifier sent for each write
transaction. Implemented only in AXI4.

MASTERx_AWREGION [3:0] Input Region identifier. Permits a single physical interface on a
slave, to be used for multiple logical interfaces. Implemented
only in AXI4.

MASTERx_AWUSER [USER_WIDT H-1:0] Input User signal. Optional user-defined signal in the write address
channel. Supported only in AXI4.

MASTERx_AWVALID Input Write address valid. Channel is signaling valid write address
and control
information.

MASTERx_AWREADY Output Write address ready. Slave is ready to accept an address and
associated control signals.

MASTERx_WID [ID_WIDTH-1:0] Input Write ID tag. This signal is the ID tag of the write data transfer.
Supported only in AXI3.

MASTERx_WDATA
[MASTERx_DATA_WIDTH- 1:0]

Input Write Data

MASTERx_WSTRB
[(MASTERx_DATA_WIDTH/8-1:0]

Input Write strobes. Shows which byte lanes hold valid data. There
is one write strobe bit for each eight bits of the write data bus.

MASTERx_WLAST Input Write last. Last transfer in a write burst.

MASTERx_WUSER [USER_WIDTH-1:0] Input User signal. Optional user-defined signal in the write data
channel. Supported only in AXI4.

MASTERx_WVALID Input Write valid. Valid write data and strobes are available.

MASTERx_WREADY Output Write ready. Slave can accept the write data.

Master Write Response Channels
MASTERx_BID [ID_WIDTH-1:0] Output Response ID tag. This signal is the ID tag of the write

response.

MASTERx_BRESP[1:0] Output Write response. Status of the write transaction.

MASTERx_BUSER [USER_WIDTH- 1:0] Output User signal. Optional user-defined signal in the write response
channel. Supported only in AXI4.

MASTERx_BVALID Output Write response valid. Channel is signaling a valid write
response.

MASTERx_BREADY Input Response ready. Master can accept a write response.

Master Address Read Channels

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 32

MASTERx_ARID [ID_WIDTH-1:0] Input Read address ID. Tag for the read address group of signals.

MASTERx_ARADDR [ADDR_WIDT H-1:0] Input Read address. Address of the first transfer in a read burst
transaction.

MASTERx_ARLEN[7:0] Input Burst length. Exact number of transfers in a burst. This
information determines the number of data transfers
associated with the address. This changes between AXI3 and
AXI4.

MASTERx_ARSIZ[2:0] Input Burst size. Size of each transfer in the burst.

MASTERx_ARBURST[1: 0] Input Burst type. The burst type and the size information, determine
how the address for each transfer within the burst is
calculated.

MASTERx_ARLOCK[1:0] Input Lock type. Provides additional information about the atomic
characteristics of the transfer. This changes between AXI3
and AXI4.

MASTERx_ARCACHE[3: 0] Input Memory type. Shows how transactions are required to
progress through a system.

MASTERx_ARPROT[2:0] Input Protection type. It gives privilege and security level of the
transaction, and whether the transaction is a data access or
an instruction access.

MASTERx_ARQOS[3:0] Input Quality of Service, QoS. The QoS identifier sent for each read
transaction. Implemented only in AXI4.

MASTERx_ARREGION[3: 0] Input Region identifier. Permits a single physical interface on a
slave to be used for multiple logical interfaces. Implemented
only in AXI4.

MASTERx_ARUSER [USER_WIDT H-1:0] Input User signal. Optional user-defined signal in the read address
channel. Supported only in AXI4.

MASTERx_ARVALID Input Read address valid. Channel is signaling valid read address
and control information.

MASTERx_ARREADY Output Read address ready. Slave is ready to accept an address and
associated control signals.

Master Read Data Channels
MASTERx_RID [ID_WIDTH-1:0] Output Read ID tag. This signal is the identification tag for the read

data group of signals generated by the slave.

MASTERx_RDATA
[MASTERx_DATA_WIDTH- 1:0]

Output Read Data

MASTERx_RRESP[1:0] Output Read response. Status of the read transfer.

MASTERx_RLAST Output Read last. Last transfer in a read burst.

MASTERx_RUSER [USER_WIDTH- 1:0] Output User signal. Optional user-defined signal in the read data
channel. Supported only in AXI4.

MASTERx_RVALID Output Read valid. Channel is signaling the required read data.

MASTERx_RREADY Input Read ready. Master can accept the read data and response
information.

Slave Signals – Port 0 to Port 31
Slave Clock Signals

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 33

S_CLKy Input Slave clock for port x. If clock domain crossing is required on
slave port x, this clock must be connected to clock associated
with the port's AXI bus. Parameter
SLAVEy_CLOCK_DOMAIN_CROSSING is used to enable
this port.

Slave Address Write Channels
SLAVEy_AWID [(ID_WIDTH + Log2
(NUM_MASTERS))-1:0]

Output Write address ID. This signal is the identification tag for the
write address group of signals.

SLAVEy_AWADDR [ADDR_WIDTH- 1:0] Output Write address. The write address gives the address of the first
transfer in a write burst transaction.

SLAVEy_AWLEN[7:0] Output Burst length. The burst length gives the exact number of
transfers in a burst. This information determines the number of
data transfers associated with the address. This changes
between AXI3 and AXI4.

SLAVEy_AWSIZ[2:0] Output Burst size. This signal indicates the size of each transfer in the
burst.

SLAVEy_AWBURST[1:0] Output Burst type. The burst type and the size information, determine
how the address for each transfer within the burst is
calculated.

SLAVEy_AWLOCK[1:0] Output Lock type. Provides additional information about the atomic
characteristics of the transfer. This changes between AXI3
and AXI4.

SLAVEy_AWCACHE[3:0] Output Memory type. It shows how transactions are required to
progress through a system.

SLAVEy_AWPROT[2:0] Output Protection type. It gives privilege and security level of the
transaction, and whether the transaction is a data access or
an instruction access.

SLAVEy_AWQOS[3:0] Output Quality of Service, QoS. The QoS identifier sent for each write
transaction. Implemented only in AXI4.

SLAVEy_AWREGION[3: 0] Output Region identifier. Permits a single physical interface on a
slave to be used for multiple logical interfaces. Implemented
only in AXI4.

SLAVEy_AWUSER [USER_WIDTH- 1:0] Output User signal. Optional user-defined signal in the write address
channel. Supported only in AXI4.

SLAVEy_AWVALID Output Write address valid. Channel is signaling valid write address
and control information.

SLAVEy_AWREADY Input Write address ready. Slave is ready to accept an address and
associated control signals.

Slave Write Data Channels
SLAVEy_WID
[(ID_WIDTH + Log2 (NUM_MASTERS))-1:0]

Output Write ID tag. This signal is the ID tag of the write data transfer.
Supported only in AXI3.

SLAVEy_WDATA [SLAVEy_DATA_WIDTH-
1:0]

Output Write Data

SLAVEy_WSTRB
[(SLAVEy_DATA_WIDTH/8)-1:0]

Output Write strobes. It gives, which byte lanes hold valid data. There
is one write strobe bit for each eight bits of the write data bus.

SLAVEy_WLAST Output Write last. Last transfer in a write burst.

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 34

SLAVEy_WUSER [USER_WIDTH- 1:0] Output User signal. Optional user-defined signal in the write data
channel. Supported only in AXI4.

SLAVEy_WVALID Output Write valid. Valid write data and strobes are available.

SLAVEy_WREADY Input Write ready. Slave can accept the write data.

Slave Write Response Channels
SLAVEy_BID [(ID_WIDTH + Log2
(NUM_MASTERS))-1:0

Input Response ID tag. This signal is the ID tag of the write
response.

SLAVEy_BRESP[1:0] Input Write response. Status of the write transaction.

SLAVEy_BUSER [USER_WIDTH- 1:0 Input User signal. Optional user-defined signal in the write response
channel. Supported only in AXI4.

SLAVEy_BVALID Input Write response valid. Channel is signaling a valid write
response.

SLAVEy_BREADY Output Response ready. Master can accept a write response.

Slave Address Read Channels
SLAVEy_ARID [(ID_WIDTH + Log2
(NUM_MASTERS))-1:0]

Output Read address ID. This signal is the identification tag for the
read address group of signals.

SLAVEy_ARADDR [ADDR_WIDTH- 1:0] Output Read address. The read address gives the address of the first
transfer in a read burst transaction.

SLAVEy_ARLEN[7:0] Output Burst length. The burst length gives the exact number of
transfers in a burst. This information determines the number of
data transfers associated with the address. This changes
between AXI3 and AXI4.

SLAVEy_ARSIZ[2:0] Output Burst size. Size of each transfer in the burst.

SLAVEy_ARBURST[1:0] Output Burst type. The burst type and the size information, determine
how the address for each transfer within the burst is
calculated.

SLAVEy_ARLOCK[1:0] Output Lock type. Provides additional information about the atomic
characteristics of the transfer. This changes between AXI3
and AXI4.

SLAVEy_ARCACHE[3:0] Output Memory type. It shows how transactions are required to
progress through a system.

SLAVEy_ARPROT[2:0] Output Protection type. It gives privilege and security level of the
transaction, and whether the transaction is a data access or
an instruction access.

SLAVEy_ARQOS[3:0] Output Quality of Service, QoS. The QoS identifier sent for each read
transaction. Implemented only in AXI4.

SLAVEy_ARREGION[3: 0] Output Region identifier. Permits a single physical interface on a
slave to be used for multiple logical interfaces. Implemented
only in AXI4.

SLAVEy_ARUSER [USER_WIDTH- 1:0] Output User signal. Optional user-defined signal in the read address
channel. Supported only in AXI4.

SLAVEy_ARVALID Output Read address valid. Channel is signaling valid read address
and control information.

SLAVEy_ARREADY Input Read address ready. Slave is ready to accept an address and
associated control signals.

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 35

5.2 Core Parameters
The following table describes the CoreAXI4Interconnect parameters for configuring the RTL code. All
parameters are integer types:

Slave Read Data Channels
SLAVEy_RID[(ID_WIDTH + Log2
(NUM_MASTERS))-1:0]

Input Read ID tag. This signal is the identification tag for the read
data group of signals generated by the slave.

SLAVEy_RDATA [SLAVEy_DATA_WIDTH-
1:0]

Input Read data.

SLAVEy_RRESP[1:0] Input Read response. Status of the read transfer.

SLAVEy_RLAST Input Read last. Last transfer in a read burst.

SLAVEy_RUSER [USER_WIDTH- 1:0] Input User signal. Optional User-defined signal in the read data
channel. Supported only in AXI4.

SLAVEy_RVALID Input Read valid. Channel is signaling the required read data.

SLAVEy_RREADY Output Read ready. Master can accept the read data and response
information.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description
NUM_MASTERS 1 to 16 2 Number of Masters

Number of connected masters to be
supported by the crossbar.

NUM_SLAVES 1 to 32 2 Number of Slaves
Number of connected slaves to be supported
by the crossbar.

ID_WIDTH 1 to 8 1 ID Width
Number of identification tag bits to be
supported for each port. It is same for all
masters and slaves. Slave ID bits have master
infrastructure number pre-pended to ID bits.
The slave port ID has more bits than master
port ID as Log2 (NUM_MASTER) bits are pre-
pended to slave port ID.
Note: When Mx Read Interleaving or Sy Read

Interleaving parameters are configured
to 1, resource utilization increase as
ID_WIDTH increases. User should
configured ID_WIDTH appropriately.

DATA_WIDTH 32, 64, 128,
256, 512

64 Crossbar Data Width
Data width for the core, Crossbar, and other
components.

ADDR_WIDTH 16 to 64 32 Address Width
Number of bits in the address.

USER_WIDTH 1-64 1 User Width
Number of bits for USER signals RUSER and
WUSER.

Table 7 • CoreAXI4Interconnect I/O Signals

Name Type Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 36

DWC_ADDR_FIFO_DEPTH_CEILING 4 to 64 10 DWC Address FIFO Depth Ceiling
DWC Address FIFO Depth Ceiling is used to
bind the size of the command FIFOs in the
data width converter. It is a general parameter
that the user can set to have small command
FIFOs if they run out of resources.

NUM_THREADS 1-4 1 Number of Threads
Number of independent threads per master
supported.

OPEN_TRANS_MAX 1-8 2 Max Outstanding Transactions
Maximum number of outstanding transactions
per thread, per Master, that is, transaction
acceptance limits for reads and writes. Used
for both reads and writes, separate counts are
used.

SLV_AXI4PRT_ADDRDEPTH 2-8 4 Slave FIFO Address Depth
Depth of synchronous FIFO used in Slave
Protocol Converter, to hold address for burst
read or write transactions, when converting
from AXI4 to AXI3 or AXI4Lite.
Used to decouple Master from Slave side
when burst translation is needed (breaking
AXI4 burst to multiple smaller bursts) for reads
and writes.
Note: This parameter is common for all the

AXI4-Lite and AXI3 slaves

SLV_AXI4PRT_DATADEPTH 2-9 4 Slave FIFO Data Depth
Depth of synchronous FIFO used in Slave
Protocol Converter, to hold data for burst read
or write transactions, when converting from
AXI4 to AXI3 or AXI4Lite. Used to decouple
Master from Slave side when burst translation
is needed (breaking AXI4 burst to multiple
smaller bursts) for reads and writes.
Note: This parameter is common for all the

AXI4-Lite and AXI3 slaves

CROSSBAR_MODE SASD
SAMD

SAMD Crossbar Mode
Indicates if crossbar is SAMD or SASD.
SAMD is the performance-optimized option
with Shared- address paths but with multiple
data paths. SASD is the area optimized
architecture having shared address and data
paths.
Note: This parameter is user configurable

only if Number of Masters is greater
than 1, Number of Slaves is greater
than 1 and Optimization is selected to
User.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 37

RD_ARB_EN 0 or 1 1 Read Arbitration Enable
RD_ARB_EN defines the way Read Data
transactions are handled.
When RD_ARB_EN is not asserted, Read
Data cycles are handled in an ordered manner
on a per port basis (in order they were
issued). When RD_ARB_EN is asserted, a
round-robin arbitrator is used to select next
slave to read from based on RVALIDs
asserted.

OPTIMIZATION Performance
Area
User

User Optimization
This parameter is used to choose
performance, area or customized
optimization.
When Performance is selected, below
parameters are configured to achieve
maximum performance optimization:
• NUM_THREADS (Number Of Threads)- 4
• OPEN_TRANS_MAX (Max Outstanding

Transactions) - 8
• SLV_AXI4PRT_ADDRDEPTH (Slave

FIFO Address Depth) - 8
• SLV_AXI4PRT_DATADEPTH (Slave FIFO

Data Depth)- 9
• DWC_ADDR_FIFO_DEPTH (DWC

Address FIFO Depth Ceiling)- 64
• RD_ARB_EN (Read Arbitration Enable) -
0
• CROSSBAR_MODE (Crossbar Mode) -
SAMD
When Area is selected, below parameters are
configured to achieve maximum area
optimization:
• NUM_THREADS (Number Of Threads) - 1
• OPEN_TRANS_MAX (Max Outstanding

Transactions) - 1
• SLV_AXI4PRT_ADDRDEPTH (Slave

FIFO Address Depth) - 2
• SLV_AXI4PRT_DATADEPTH (Slave FIFO

Data Depth) - 2
• DWC_ADDR_FIFO_DEPTH_CEILING

(DWC Address FIFO Depth Ceiling) - 4
• RD_ARB_EN (Read Arbitration Enable) -
1
• CROSSBAR_MODE (Crossbar Mode) -
SASD
When User is selected, user can configure
customized optimization.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 38

MASTERx_TYPE 2'b00,
2'b01,
2'b10,
2'b11

2'b00 Mx Type
Type of interface for the master port. Valid
values are as follows:
• 2'b00 - AXI4 master
• 2'b01 - AXI4-Lite master
• 2'b10 - AHB-Lite master
• 2'b11 - AXI3 master

MASTERx_DATA_WIDTH 32, 64,
128, 256,
512

64 Mx Data Width
Data widths of master ports are as follows:
• If master data width <Crossbar data width,

the master data converter up-scales.
• If master data width >Crossbar data width,

the master data converter down-scales.
• If master data width =Crossbar data width

no data- width conversion, so master data
converter is in pass-through mode.

• AXI4-Lite masters are limited by protocol
to data width of 32 and 64.

MASTERx_DWC_DATA_FIFO_DEPTH 16, 32, 64 16 Mx DWC Data FIFO Depth
Depth of synchronous FIFO used in master
data width converter to buffer read or write
data.

MASTERx_CHAN_RS 0 or 1 1 Mx Register Slice
When 1, full Register Slice is added to the five
channels of master i.e master write address
channel, master write data channel, master
write response channel, master read address
channel and master read data channel.
Adding a register slice can increase maximum
frequency of operation at the cost of one clock
cycle latency on all the channels.

MASTERx_CLOCK_DOMAIN_CROSSING 0 or 1 0 Mx Clock Domain Crossing
When high, an asynchronous FIFO is
instantiated for all the five channels (Write
Address, Read Address, Write Data, Read
Data, and Write Response) at the master port
to transfer data between master clock domain
to crossbar clock domain and vice versa.
Note: Asynchronous FIFO with flow control is

used. When asynchronous FIFO is full,
no additional write is performed and
when asynchronous FIFO is empty, no
additional read is performed.
Asynchronous FIFO depth is fixed to 8.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 39

MASTERx_READ_INTERLEAVING 0 or 1 0 Mx Read Interleaving
When '1' enables read interleaving and
Master Converter passes master address id
(AWID/ARID) and write data id (WID) for AXI3
mater to the AXI4 Crossbar. The AXI4
Crossbar append Log2(Number of Masters)
bits to the address id and data id and passes
to the slave if read interleaving is enabled in
targeted slave. The AXI4 Crossbar decodes
response id (BID) and read id (RID) received
from the Slave Converter and routed to the
targeted master When '0' disables read
interleaving and Master Converter drives 0 to
master address id (AWID/ARID) and write
data id (WID) for AXI3 master and passes to
the AXI4 Crossbar. The Master Converter
stores the master address id (AWID/ARID)
and data id (WID) for AXI3 master, internally
and retrieve it when write/read response
received from the AXI4 Crossbar.
Note: This parameter is configurable only for

AXI4 and AXI3 masters.

SLAVEy Type 2'b00,
2'b01,
2'b11
(2'b10 is
reserved)

2'b00 Sy Type
Type of interface for the slave port. Valid
values are as follows:
• 2'b00 - AXI4 slave
• 2'b01 - AXI4-Lite slave
• 2'b11 - AXI3 slave

SLAVEy_DATA_WIDTH 32, 64,
128, 256,
512

64 Sy Data Width
Data widths of slave ports are as follows:
• If slave data width <Crossbar data width

the slave data converter down-scales.
• If slave data width >Crossbar data width

the slave data converter up-scales.
• If slave data width =Crossbar data width

no data-width conversion so slave data
converter is in pass- through mode.

• AXI4-Lite slaves are limited by protocol to
data width of 32 and 64.

SLAVEy_DWC_DATA_FIFO_DEPTH 16, 32, 64 16 Sy DWC Data FIFO Depth
Depth of synchronous FIFO used in slave
data width converter to buffer read or write
data.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 40

SLAVEy_CLOCK_DOMAIN_CROSSING 0 or 1 0 SLAVEy Clock Domain Crossing
When high, an asynchronous FIFO is
instantiated for all the five channels (Write
Address, Read Address, Write Data, Read
Data and Write Response) at the slave port to
transfer data between crossbar clock domain
to slave clock domain and vice versa
Note: Asynchronous FIFO with flow control is

used. When asynchronous FIFO is full,
no additional write is performed and
when asynchronous FIFO is empty, no
additional read is performed.
Asynchronous FIFO depth is fixed to 8.

SLAVEy_READ_INTERLEAVING 0 or 1 0 Sy Read Interleaving
When '1' enables read interleaving and Slave
Converter passes slave address id
(AWID/ARID) and write data id (WID) for AXI3
slave received from AXI4 Crossbar to the
slave. When '0' disables read interleaving and
Slave Converter drives 0 to slave address id
(AWID/ARID) and write data id (WID) for AXI3
slave received from the AXI4 Crossbar and
passes to the slave.
Note: This parameter is configurable only for

AXI4 and AXI3 masters.

SLAVEy_CHAN_RS 0 or 1 1 Slavey Register Slice
When 1, full Register Slice is added to the five
channels of slave that is, slave write address
channel, slave write data channel, slave write
response channel, slave read address
channel and slave read data channel. Adding
a register slice can increase maximum
frequency of operation at the cost one clock
cycle latency on all the channels.

SLAVEy_START_ADDR 0 to
0xFFFFFFFF

- Sy Slave Start Address (Lower 32 Bits)
Defines the lower 32 bits of slavey start
address

SLAVEy_START_ADDR_UPPER 0 to
0xEFFFFFFF

- Sy Slave Start Address (Upper 32 Bits)
 Defines the upper 32 bits of slavey start
address. This parameter is configurable only if
Address Width parameter is greater than 32.
For Address Width less than 32, this
parameter will be ignored.

SLAVEy_END_ADDR 0 to
0xFFFFFFFF

- Sy Slave End Address (Lower 32 Bits)
Defines the lower 32 bits of slavey end
address.

SLAVEy_END_ADDR_UPPER 0 to
0xFFFFFFFF

- Sy Slave End Address(Upper 32 Bits)
Defines the upper 32 bits of slavey end
address. This parameter is configurable only if
Address Width parameter is greater than 32.
For Address Width less than 32, this
parameter will be ignored.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description

Core Interfaces

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 41

MASTERx_WRITE_SLAVEy (where, "x is
0 … 15 i.e. one per master port "y is 0 …
31 that is, one per slave port)

0 or 1 1 Mx access Sy (Enable Master Write
Access)

Bit per master per slave indicating if a master
can write to a slave port. Used to "trim"
internal decode/arbitration logic for Masters
that cannot write to a specific slave.

MASTERx_READ_SLAVEy (where,"x is
0 … 15 that is, one per master port "y is 0 …
31 that is, one per slave port)

0 or 1 1 Mx access Sy (Enable Master Read
Access)

Bit per master per slave. Used to "trim"
internal decode/arbitration logic for Masters
that cannot read from a specific slave.

Table 8 • CoreAXI4Interconnect Parameters

Parameter Name Valid Values Default Description

Clocking and Reset

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 42

6 Clocking and Reset

This section describes the options available for clocking and reset used in the IP cores.

6.1 Clocking
Following clocks are used in the IP core:

• ACLK: Crossbar clock.
• M_CLKx: AXI4/AXI3/AXI4-Lite/AHB-Lite master clock. This clock is available only if Mx Clock

Domain Crossing parameter is enabled.
• S_CLKy: AXI4/AXI3/AXI4-Lite slave clock. This clock is available only if Sy Clock Domain

Crossing parameter is enabled.
All the clocks are asynchronous that is clocks can have different frequencies and out of phase. When Mx
Clock Domain Crossing parameter is enabled. Asynchronous FIFO used to transfer data between
M_CLKx and ACLK. Same way, when Sy Clock Domain Crossing parameter is enabled. Asynchronous
FIFO used to transfer data between S_CLKy and ACLK.

6.2 Reset
Following resets are used in the IP core.

ARESETN: Active low ARESETN is used as asynchronous reset to reset the IP core. ARESETN is
synchronized in ACLK, M_CLKx (when Mx Clock Domain Crossing parameter is enabled and S_CLKy
(when Sy Clock Domain Crossing parameter is enabled) domain internally.

Following figure shows the reset synchronizers:

Figure 15 • Reset Synchronizer

Timing Diagrams

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 43

7 Timing Diagrams

The following figure shows the timing diagrams:

7.1 Write Cycles
The AXI4Interconnect, with no converters, normally adds a latency of two ACLK ticks from the Master,
asserting AWVALID and the target Slave device, seeing AWVALID asserted as shown in the following
figure. The AWREADY is asserted with no extra latency to the Master when the Slave asserts it. The two
latency cycles are required for the address arbitrator to see signal asserted and then to make a decision
on which Master goes next. If the Master is not next, based on the round-robin scheme, it may have to
wait additional cycles until its turn.

Figure 16 • Address Latency

When a register slice is enabled on master side (that is, when Mx Register Slice parameter is enabled),
it adds another latency cycle to AWVALID being asserted to the target slave as shown in the following
figure. Also, AWREADY is normally asserted to Master as the RegSlice "consumes" the cycle.

Figure 17 • Address Latency When Register Slice is Enabled

When a register slice is enabled on slave write address channel (that is, Sy Register Slice parameter is
enabled), another latency cycle is added to the delay in AWVALID path from Master to Slave.

Timing Diagrams

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 44

Figure 18 • Address Latency with CDC and HIGH_FREQ asserted

When clock domain crossing is enabled on master side (that is Mx Clock Domain Crossing parameter
is enabled) and crossbar mode is SAMD, four additional clock cycle latency added to the delay in
AWVALID path from Master to Slave. Three clock cycle latency is added due to clock domain crossing
and one clock cycle latency is added due to SAMD mode.

A typical write cycle is shown in the following figure. In this example, register slices, SAMD mode of
crossbar and clock domain crossings are not enabled.

Timing Diagrams

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 45

Figure 19 • Write Cycle

Timing Diagrams

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 46

7.2 Read Cycles
The AXI4Interconnect reads address without converters is similar to write address cycles. In general, a
latency of two ACLK ticks from the Master asserting ARVALID and the target Slave device seeing
ARVALID asserted. The ARREADY is asserted with no extra latency to the Master, when the Slave
asserts it. The two latency cycles are required for the address arbitrator to see signal asserted and then
to make a decision on which master goes next. If this Master is not next based on the round-robin
scheme, it may have to wait additional cycles until its turn. The following figure shows an example of a
Read Cycle. In this example, register slice is not enabled.

Figure 20 • Read Cycle

Timing Diagrams

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 47

7.3 HI_FREQ (High Frequency)
The HI_FREQ parameter is derived internally in CoreAXI4Interconnect. HI_FREQ parameter is enabled
when CrossbarMode parameter is set to SAMD or Read Arbitration Enable parameter is set to 0. It
increases the maximum possible frequency of operation, at the cost of extra latency cycles. An additional
cycle is added to the address paths - Address Write and Address Read, as well as another on the RESP
paths. The following figure shows, how HI_FREQ changes write transactions compared to standard
Write transactions (that is, when HI_FREQ=0).

Figure 21 • Write Cycle with HIGH_FREQ asserted

Timing Diagrams

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 48

7.4 AXI3 and AXI4Lite Slave Configuration
A connected AXI3 or AXI4Lite Slave is supported by configuring SLAVE_TYPE for that port. The
parameters Slave FIFO Address Depth and Slave FIFO Data Depth configures how much storage is
used to hold address transactions and data transactions. Typically, both are set to 3 which means that,
storage of a depth of 8 is provided to hold transactions between internal AXI4 bus and external AXI3.
Typically Slave FIFO Address Depth should be the same value as Max Outstanding Transactions, to
avoid holding up address transactions and Slave FIFO Data Depth of 3 which provides storage of depth
of 8 to "buffer" Write or Read data between AXI3 slave and the internal AXI4 bus.

The following figure shows an example of a write of LEN = 17 (that is, 18 beats) from Master 0 to Slave 0.
On the SLAVE0 connections this burst is broken into two - one of LEN=15 (16 beats) and a second of
LEN=1 (two beats). These two bursts RESPONSES are combined into one to be sent back to
MASTER0. In this example no errors are indicated in the response. In cases where an error is indicated
in BRESP, all responses are combined. The BRESP returned to the connected master is set to the first
error response received from the connected slave.

Figure 22 • AXI3 Write Example

A port configured as AXI4Lite (SLAVE_TYPE set to 2'b01 for that port) operates similar to what is shown
in the preceding figure except that, all Slave side LEN will be 0. The AXI4Interconnect stores
transactions' AWID/WID/ARID/RID/BID as necessary to label each transaction correctly for the Master.
As with the width converters, the SLAVE ID is always sent out as "zero" to prevent read interleaving
problems. Instead the Master ID is stored in a FIFO and returned to the master intact.

Tool Flows

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 49

8 Tool Flows

8.1 License
The CoreAXI4Interconnect does not require any license.

8.2 RTL
Complete RTL source code is provided for the core and testbenches.

8.3 Smart Design
CoreAXI4Interconnect is preinstalled in the SmartDesign IP deployment design environment. An
example instantiated view is shown in the following figure. The core can be configured using the
configuration GUI within SmartDesign, as shown in Figure 24, page 50. For more information on using
SmartDesign to instantiate and generate cores, see, Using DirectCore in Libero SoC User Guide or
consult the Libero SoC online help.

Figure 23 • CoreAXI4Interconnect Instance View

https://www.microsemi.com/document-portal/doc_download/132044-libero-v11-6-online-help

https://www.microsemi.com/document-portal/doc_download/132044-libero-v11-6-online-help

Tool Flows

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 50

Figure 24 • SmartDesign Configuration Window

8.4 Simulation Flow
The User Testbench for AXI4Interconnect is included in all releases. To run simulations, perform the
following steps.

1. To run the user testbench, set the design root to the CoreAXI4Interconnect instantiation in the Libero
SoC design hierarchy pane

2. Right-click Simulate in the Libero SoC Design Flow window under Verify Pre- Synthesized Design
and select Open Interactively. This invokes ModelSim and automatically runs the simulation.

Tool Flows

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 51

8.4.1 User Testbench
The following figure shows the user simulation testbench and it includes the instantiation of the
CoreAXI4Interconnect macro and multiple AXI4MasterGen and AXI4SlaveGen blocks. The
AXI4MasterGen block is a primitive model of an AXI master, which performs, write and read operations,
initiated by rdStart and wrStart signals within the testbench. The AXI4SlaveGen block is a primitive model
of a AXI slave with embedded storage for read or write. The user tests are executed in tasks in the
testbench. These tasks can be edited.

Figure 25 • CoreAXI4Interconnect User Testbench showing 8x8 Example

User test bench supports up to 8 Masters and 16 Slaves. It does not support outstanding transactions
and more than 32 bit Address Width. As per the user test bench, each Master performs write/read
operation with each slave and with different burst.

User test bench is provided for reference purpose only. It is recommended to use it with default
configuration. User can find the default parameter configuration from
<project_dir/simulation/parameter_incl.v> file. User may need to change the user test
bench <project_dir/component/Actel/DirectCore/COREAXI4INTERCONNECT/IP Core
Version Number (ex 2.7.100)/sim/User_Test.v> if user want to modify parameters in
parameter_incl.v file.

Following are the details of the default configuration:

• Four Masters and Four Slaves having different types and different data width.
• Crossbar is configured in SAMD mode and its data width is 64
• Except Slave 0, all the Masters and Slaves have different clock frequency then crossbar clock i.e

MASTERx_CLOCK_DOMAIN_CROSSING (where x is 0 to 3) and
SLAVEy_CLOCK_DOMAIN_CROSSING (where y is 1 to 3)are configured to 1

• SLAVE address are configured in incremental order of 0x10000000 starting from 0

8.5 Synthesis in Libero SoC
After setting the design root appropriately for the design, use the following steps to run the Synthesis.

1. Click Synthesis in the Libero SoC software. The Synthesis window appears displaying the Synplicity
project.

2. Set Synplicity to use the Verilog 2001 standard, if Verilog is used.
3. Click Run.

8.6 Place and Route
After setting the design route appropriately for the design, and running Synthesis, click Layout in the
Libero SoC software to invoke Designer. CoreAXI4Interconnect does not require special place-and-route
settings.

AXI4Interconnect

AXI4MasterGen 0

AXI4MasterGen 7

Master0

Master7

Slave0

Slave7

AXI4SlaveGen 0

AXI4SlaveGen 7

Design Constraints

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 52

9 Design Constraints

This section describes the timing constraints of the CoreAXI4Interconnect IP core.

9.1 Timing Constraints
Asynchronous FIFO and Reset Synchronizer used in the core to transfer data between asynchronous
clock domains and to synchronize asynchronous reset in all the clock domains respectively, requires
timing constraint for synthesis, place and route, and timing verification. To generate these timing
constraints, select the Timing tab in Constraint Manager, and click Derive Constraints, as shown in
the following figure.

Figure 26 • Constraint Manager—Derive Constraints Tab

System Integration

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 53

10 System Integration

This section provides an example, that shows the integration of CoreAXI4Interconnect.

Figure 27 • CoreAXI4Interconnect Example Design

The example design described in this section contains CoreAXI4Interconnect, which is configured for
three masters and five slaves. The following are the components of the design.

• FABRIC_RESET_N of PF_RESET_0 is used for AXI4_Interconnect_0_0 reset “ARESETN”.
• The AXI4_Interconnect_0_0 has ACLK, S_CLK0 and S_CLK2 clocks. S_CLK0 and S_CLK2 are the

slave0 and slave2 clocks, respectively enabled for clock domain crossing (CDC).
• ACLK is a 200 MHz clock, driven from the output port, SYS_CLK of PF_DDR4_SS_0.
• S_CLK0 is a 50MHz clock, driven from the on-board oscillator.
• S_CLK2 is a 166.665MHz clock, driven from the output port, SYS_CLK of PF_DDR3_SS_0.
Run the Libero flow by enabling the Timing Driven, High Effort Layout, and Driver Replication
options. The example design can be obtained from the Microsemi technical support team.

Reference Documents

Microsemi Proprietary and Confidential HB0766 Handbook Revision 8.0 54

11 Reference Documents

The following table gives the list of documents referred in this document.

Table 9 • Reference Documents

Document ID Document Name
[R1] IHI0022E - AMBA AXI and ACE Protocol Specification

[R2] ARM_IHI0033A_AMBA_AHB-Lite_SPEC.pdf

	1 Revision History
	1.1 Revision 8.0
	1.2 Revision 7.0
	1.3 Revision 6.0
	1.4 Revision 5.0
	1.5 Revision 4.0
	1.6 Revision 3.0
	1.7 Revision 2.0
	1.8 Revision 1.0

	2 Terminology
	2.1 Abbreviations
	2.2 Terms and Definitions

	3 Introduction
	3.1 AXI4 Infrastructure Cores
	3.1.1 Key Features
	3.1.2 Limitations
	3.1.3 Core Version
	3.1.4 Supported Families
	3.1.5 Supported Interfaces
	3.1.6 Device Utilization and Performance

	4 Functional Descriptions
	4.1 AXI4 Crossbar
	4.1.1 Pass-Through
	4.1.2 N-to-1 Interconnect or 1-to-M Interconnect
	4.1.3 N-to-M Interconnect - Shared Address Shared Data Mode
	4.1.4 N-to-M Interconnect - Shared Address Multiple Data Mode
	4.1.5 AXI4Crossbar Limitations

	4.2 Data-Width Converter
	4.3 Master Protocol Converter
	4.4 Slave Protocol Converter
	4.5 Address Decoding
	4.5.1 Address Decode Example

	4.6 Auxiliary Parameters Configuration
	4.6.1 Read Arbitration Enable
	4.6.2 Crossbar Data Width
	4.6.3 Mx Read Interleaving and Sy Read Interleaving

	4.7 Connectivity Matrix
	4.8 AHB-Lite to AXI4 Master Conversion

	5 Core Interfaces
	5.1 I/O Signals
	5.2 Core Parameters

	6 Clocking and Reset
	6.1 Clocking
	6.2 Reset

	7 Timing Diagrams
	7.1 Write Cycles
	7.2 Read Cycles
	7.3 HI_FREQ (High Frequency)
	7.4 AXI3 and AXI4Lite Slave Configuration

	8 Tool Flows
	8.1 License
	8.2 RTL
	8.3 Smart Design
	8.4 Simulation Flow
	8.4.1 User Testbench

	8.5 Synthesis in Libero SoC
	8.6 Place and Route

	9 Design Constraints
	9.1 Timing Constraints

	10 System Integration
	11 Reference Documents

