
HB0739
Handbook

CoreAXI4DMAController v2.1

50200739. 2.0 2/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary HB0739 Revision 2.0 iii

Contents

1 Revision History . 1
1.1 Revision 2.0 . 1
1.2 Revision 1.0 . 1

2 Introduction . 2
2.1 Features . 2
2.2 Core Version . 2
2.3 Supported Families . 2
2.4 Utilization and Performance . 3

3 Functional Description . 7
3.1 Architecture . 7

3.1.1 AXI4-Lite Slave Interface Controller . 7
3.1.2 Control and Status Registers . 7
3.1.3 Buffer Descriptors . 7
3.1.4 DMA Controller . 8
3.1.5 Memory Map Cache . 8
3.1.6 Stream Cache . 8
3.1.7 Interrupt Controller . 8
3.1.8 AXI4 Master Interface Controller . 9
3.1.9 AXI4-Stream Slave Interface Controller . 9

3.2 Buffer Descriptors . 9
3.2.1 Internal Descriptor Support . 9
3.2.2 External Descriptor Support . 10
3.2.3 Stream Descriptor Support . 10
3.2.4 Descriptor Management . 11

3.3 Flow Control/Throttling . 11
3.4 DMA Operations . 12

3.4.1 Chain Operations (Scatter-gather) . 12
3.4.2 Cyclic Operations . 13

3.5 AXI4-Stream Bridge . 14
3.6 Interrupts . 16
3.7 Arbitration . 17
3.8 AXI Transactions . 18
3.9 AXI4-Stream Transactions . 18
3.10 Cache Coherence . 19

4 Interface Descriptions . 20
4.1 Signal Descriptions . 20
4.2 Configuration Parameters . 25

5 Register Map and Descriptions . 27
5.1 Version Register . 29
5.2 Start Operation Register . 29
5.3 Interrupt X Status Register . 30
5.4 Interrupt X Mask Register . 31
5.5 Interrupt X Clear Register . 32
5.6 Interrupt X External Descriptor Register . 33
5.7 Descriptor X Configuration Register . 33

Microsemi Proprietary HB0739 Revision 2.0 iv

5.8 Descriptor X Byte Count Register . 35
5.9 Descriptor X Source Address Register . 36
5.10 Descriptor X Destination Address Register . 36
5.11 Descriptor X Next Descriptor Number/Address Register . 37
5.12 Stream Address 0 Register . 37
5.13 Stream Address 1 Register . 38
5.14 Stream Address 2 Register . 38
5.15 Stream Address 3 Register . 39

6 Tool Flows . 40
6.1 Licensing . 40
6.2 RTL . 40
6.3 SmartDesign . 40
6.4 Simulation Flows . 42
6.5 Synthesis . 42
6.6 Place-and-Route . 42

7 Test-bench Operation and Modification . 43

Microsemi Proprietary HB0739 Revision 2.0 v

Figures

Figure 1 CoreAXI4DMAController Internal Architecture . 7
Figure 2 Internal Descriptor Format . 9
Figure 3 Stream Descriptor Support . 10
Figure 4 Multi Process Flow Control Management . 12
Figure 5 Example Descriptor Chain . 13
Figure 6 Example Cyclic Descriptor Chain . 13
Figure 7 Ping-Pong Cyclic Descriptor Chain . 14
Figure 8 AXI4-Stream to AXI4 Memory Map Bridging . 15
Figure 9 Interrupt Queue Logic . 16
Figure 10 Descriptor Arbitration . 17
Figure 11 SmartDesign CoreAXI4DMAController Instance View . 40
Figure 12 SmartDesign CoreAXI4DMAController Configuration Dialog Box . 41
Figure 13 User Testbench . 43

Microsemi Proprietary HB0739 Revision 2.0 vi

Tables

Table 1 CoreAXI4DMAController Device Utilization and Performance for PolarFire SoC
Family (AXI4-Stream Disabled) . 3

Table 2 CoreAXI4DMAController Device Utilization and Performance for PolarFire SoC
Family (AXI4-Stream Enabled) . 3

Table 3 CoreAXI4DMAController Device Utilization and Performance for PolarFire
Family (AXI4-Stream Disabled) . 3

Table 4 CoreAXI4DMAController Device Utilization and Performance for PolarFire
Family (AXI4-Stream Enabled) . 4

Table 5 CoreAXI4DMAController Device Utilization and Performance for RTG4
Family (AXI4-Stream Disabled) . 4

Table 6 CoreAXI4DMAController Device Utilization and Performance for RTG4 Family
(AXI4-Stream Enabled) . 4

Table 7 CoreAXI4DMAController Device Utilization and Performance for SmartFusion2
Family (AXI4-Stream Disabled) . 5

Table 8 CoreAXI4DMAController Device Utilization and Performance for SmartFusion2
Family (AXI4-Stream Enabled) . 5

Table 9 CoreAXI4DMAController Device Utilization and Performance for IGLOO2 Family
(AXI4-Stream Disabled) . 5

Table 10 CoreAXI4DMAController Device Utilization and Performance for IGLOO2 Family
(AXI4-Stream Enabled) . 6

Table 11 CoreAXI4DMA Controller I/O Signals . 20
Table 12 CoreAXI4DMAController Configuration Options . 25
Table 13 CoreAXI4DMAController Registers . 27
Table 14 Version Register . 29
Table 15 Version Register Bit Definitions . 29
Table 16 Start Operation Register . 29
Table 17 Start Operation Register Bit Definitions . 29
Table 18 Interrupt X Status Register . 30
Table 19 Interrupt X Status Register Bit Definitions . 30
Table 20 Interrupt X Mask Register . 31
Table 21 Interrupt X Mask Register Bit Definitions . 31
Table 22 Interrupt X Clear Register . 32
Table 23 Interrupt X Clear Register Bit Definitions . 32
Table 24 Interrupt X External Descriptor Register . 33
Table 25 Interrupt X External Descriptor Register Bit Definitions . 33
Table 26 Descriptor X Configuration Register . 33
Table 27 Descriptor X Configuration Register Bit Definitions . 34
Table 28 Descriptor X Byte Count Register . 35
Table 29 Descriptor X Byte Count Register Bit Definitions . 35
Table 30 Descriptor X Source Address Register . 36
Table 31 Descriptor X Source Address Register Bit Definitions . 36
Table 32 Descriptor X Destination Address Register . 36
Table 33 Descriptor X Destination Address Register Bit Definitions . 36
Table 34 Descriptor X Next Descriptor Number/Address Register . 37
Table 35 Descriptor X Next Descriptor Number/Address Register Bit Definitions . 37
Table 36 Stream Address 0 Register . 37
Table 37 Stream Address 0 Register Bit Definitions . 37
Table 38 Stream Address 1 Register . 38
Table 39 Stream Address 1 Register Bit Definitions . 38
Table 40 Stream Address 2 Register . 38
Table 41 Stream Address 2 Register Bit Definitions . 38
Table 42 Stream Address 3 Register . 39
Table 43 Stream Address 3 Register Bit Definitions . 39

Revision History

Microsemi Proprietary HB0739 Revision 2.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 2.0
The following is a summary of the changes in revision 2.0 of this document.

• Updated the document for CoreAXI4DMAController v2.1.
• Updated section Supported Families, page 2.
• Updated section Utilization and Performance, page 3.
• Updated the following tables.

• Table 11, page 20
• Table 12, page 25
• Table 19, page 30

• Added Notes below Table 13, page 27, Table 19, page 30, Table 21, page 31, and Table 27,
page 34.

• Removed section Obfuscation, page 40.
• Added section RTL, page 40.
• Updated section SmartDesign, page 40.
• Replaced Figure 11, page 40 and Figure 12, page 41.

1.2 Revision 1.0
The first publication of this document, created for CoreAXI4DMAController v2.0.

Introduction

Microsemi Proprietary HB0739 Revision 2.0 2

2 Introduction

CoreAXI4DMAController is an AXI4 DMA controller designed to perform memory to memory style DMA
(Direct Memory Access) transfers in an AXI system. The core provides in-built flow control techniques to
ensure that the bandwidth of the AXI interface is optimally utilized. In addition, the core provides a bridge
to AXI4 memory-mapped slaves for AXI4-Stream masters.

2.1 Features
Following are the key features of CoreAXI4DMAController:

• AXI4-Lite slave control interface
• AXI4 master DMA interface
• AXI4-Stream slave interface to provide a bridge to AXI4 memory map
• Maximum transfer size of 8 MB
• Maximum operating frequency of approximately 200 MHz
• Circular buffer DMA support
• Scatter-gather DMA support
• 2 internal 4 KB (maximum size) store and forward caches
• 1-4 interrupt outputs
• 4-32 internal descriptors
• External descriptor fetching support
• Fixed priority arbiter for DMA requests with configurable number of priority levels
• Configurable DMA bus width from 32- to 512-bit
• Prevents AXI4 transfers from crossing 4 KB boundaries1

2.2 Core Version
This handbook provides information on CoreAXI4DMAController version 2.1.

2.3 Supported Families
• PolarFire® SoC
• PolarFire®

• RTG4™

• IGLOO®2
• SmartFusion®2

1. The AXI4 protocol defines the smallest allocatable slave size as 4 KB. 4 KB boundary protection is
required to prevent masters from generating sequential transactions that cross 4 KB boundaries to prevent
sequential transactions spanning multiple slaves. Since the address information is sent up-front in an AXI
transaction, if a transaction were to span a 4 KB boundary, the slave would be unaware of the type and
configuration of the AXI transaction taking place.

Introduction

Microsemi Proprietary HB0739 Revision 2.0 3

2.4 Utilization and Performance
Utilization and performance data are listed in the following tables for their respective device families. The
data listed in the following tables are indicative only. The overall device utilization and performance of the
core is system dependent.

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Table 1 • CoreAXI4DMAController Device Utilization and Performance for PolarFire SoC
Family (AXI4-Stream Disabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
PolarFire SoC (32-bit) 2743 4047 6790 203.25

PolarFire SoC (64-bit) 2975 4213 7188 202.76

PolarFire SoC (128-bit) 3434 4614 8048 198.26

PolarFire SoC (256-bit) 4308 6088 10396 194.33

PolarFire SoC (512-bit) 6088 7080 13168 197.43

Table 2 • CoreAXI4DMAController Device Utilization and Performance for PolarFire SoC
Family (AXI4-Stream Enabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
PolarFire SoC (32-bit) 3503 5642 9145 197.01

PolarFire SoC (64-bit) 3891 5992 9883 183.35

PolarFire SoC (128-bit) 4588 6788 11376 184.95

PolarFire SoC (256-bit) 5941 8210 14151 177.49

PolarFire SoC (512-bit) 8735 11212 19947 192.6

Table 3 • CoreAXI4DMAController Device Utilization and Performance for PolarFire
Family (AXI4-Stream Disabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
PolarFire (32-bit) 2743 4047 6790 203.25

PolarFire (64-bit) 2975 4213 7188 202.76

PolarFire (128-bit) 3434 4614 8048 198.26

PolarFire (256-bit) 4308 6088 10396 194.33

PolarFire (512-bit) 6088 7080 13168 197.43

Introduction

Microsemi Proprietary HB0739 Revision 2.0 4

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Table 4 • CoreAXI4DMAController Device Utilization and Performance for PolarFire
Family (AXI4-Stream Enabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
PolarFire (32-bit) 3503 5642 9145 197.01

PolarFire (64-bit) 3891 5992 9883 183.35

PolarFire (128-bit) 4588 6788 11376 184.95

PolarFire (256-bit) 5941 8210 14151 177.49

PolarFire (512-bit) 8735 11212 19947 192.6

Table 5 • CoreAXI4DMAController Device Utilization and Performance for RTG4
Family (AXI4-Stream Disabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
RTG4 (32-bit) 2974 4198 7172 196.309

RTG4 (64-bit) 3212 4465 7677 190.512

RTG4 (128-bit) 3689 4953 8462 185.322

RTG4 (256-bit) 4628 5754 10382 181.422

RTG4 (512-bit) 6449 7343 13792 185.357

Table 6 • CoreAXI4DMAController Device Utilization and Performance for RTG4 Family
(AXI4-Stream Enabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
RTG4 (32-bit) 3748 5672 9420 181.061

RTG4 (64-bit) 4119 6101 10220 173.883

RTG4 (128-bit) 5251 7181 12432 164.76

RTG4 (256-bit) 6384 8261 14645 155.642

RTG4 (512-bit) 9249 11053 20302 165.207

Introduction

Microsemi Proprietary HB0739 Revision 2.0 5

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Table 7 • CoreAXI4DMAController Device Utilization and Performance for SmartFusion2
Family (AXI4-Stream Disabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
SmarFusion2 (32-bit) 2964 4187 7151 236.967

SmarFusion2 (64-bit) 3211 4431 7642 243.072

SmarFusion2 (128-bit) 3693 4963 8656 229.621

SmarFusion2 (256-bit) 4634 5777 10411 233.318

SmarFusion2 (512-bit) 6455 7345 13800 226.193

Table 8 • CoreAXI4DMAController Device Utilization and Performance for SmartFusion2
Family (AXI4-Stream Enabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
SmarFusion2 (32-bit) 3736 5634 9370 239.808

SmarFusion2 (64-bit) 4125 6061 10186 234.797

SmarFusion2 (128-bit) 5257 7172 12429 228.333

SmarFusion2 (256-bit) 6389 8283 14672 221.877

SmarFusion2 (512-bit) 9255 11014 20269 211.416

Table 9 • CoreAXI4DMAController Device Utilization and Performance for IGLOO2 Family
(AXI4-Stream Disabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
IGLOO2 (32-bit) 2964 4187 7151 236.967

IGLOO2 (64-bit) 3211 4431 7642 243.072

IGLOO2 (128-bit) 3693 4963 8656 229.621

IGLOO2 (256-bit) 4634 5777 10411 233.318

IGLOO2 (512-bit) 6455 7345 13800 226.193

Introduction

Microsemi Proprietary HB0739 Revision 2.0 6

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Note: The data in this table is achieved using Verilog RTL, with the following synthesis and layout settings
(Timing-driven mode, high-effort) on a -1 speed grade part.

Table 10 • CoreAXI4DMAController Device Utilization and Performance for IGLOO2 Family
(AXI4-Stream Enabled)

Family
Logic Elements

Performance (MHz)Sequential Combinatorial Total
IGLOO2 (32-bit) 3736 5634 9370 239.808

IGLOO2 (64-bit) 4125 6061 10186 234.797

IGLOO2 (128-bit) 5257 7172 12429 228.333

IGLOO2 (256-bit) 6389 8283 14672 221.877

IGLOO2 (512-bit) 9255 11014 20269 211.416

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 7

3 Functional Description

3.1 Architecture
Figure 1 displays a high-level view of the internal architecture of CoreAXI4DMAController.

Figure 1 • CoreAXI4DMAController Internal Architecture

3.1.1 AXI4-Lite Slave Interface Controller
The AXI4-Lite slave interface controller is responsible for translating AXI4-Lite write and read
transactions into the internal register interface protocol. This provides access to the internal registers
(including buffer descriptors) from an AXI4-Lite master, allowing AXI4-Lite masters to initiate and
configure DMA transfers.

3.1.2 Control and Status Registers
The Control and Status Registers block contains the Version register to relay the major, minor, and build
number of the core to controlling masters along with providing a register for initiating DMA operations.

3.1.3 Buffer Descriptors
The internal buffer descriptors contain the information required to configure a DMA operation including
the start and destination addresses, the type of DMA operation and the number of bytes to be
transferred. The number of internal descriptors instantiated is configurable through parameter, in the
range 4 – 32. Internal descriptors are stored in LSRAM and can be chained together to perform scatter-
gather or circular buffer DMA operations. In addition, internal descriptors can be used to point at external
descriptors.

Internal Buffer
Descriptors

Stream Descriptor
Address Registers

Interrupt
Controller

AXI4 Master
Interface
Controller

Memory Map
Cache

Stream Cache

AXI4‐Stream Slave
Interface
Controller

DMA Controller
AXI4‐Lite Slave

Interface
Controller

CoreAXI4DMAController

Starts(s)

AXI4‐Lite Bus

Int(s)

AXI4‐Stream BusAXI4 Bus

Control &
Status Registers

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 8

3.1.4 DMA Controller
CoreAXI4DMAController provides a dedicated external start bit for each internal buffer descriptor
(maximum of 32) which allows DMA operations already configured in the core’s internal buffer
descriptors to be kicked-off from a simple fabric controller. Alternatively, DMA operations can be kicked-
off by writing to the corresponding bit in the Start Operation register.

Start bits are queued and processed using a round-robin arbiter kicking off one operation per clock cycle.
This loads DMA requests into the DMA controller with the DMA operation commencing once control is
granted to that operation on the AXI4 master interface. This setup allows multiple operations to be
kicked-off in a single control master write preventing conflicts arising from multiple internal and external
start bits being asserted in the same cycle.

The arbiter decides the DMA operation that gets serviced on the AXI4 interface. Buffer descriptors are
assigned a fixed priority upfront. Since, the largest permitted DMA operation is 8 MB, DMA operations
are divided into multiple transactions with the maximum DMA transaction size determined by the priority
of the buffer descriptor to which it is associated and the maximum number of beats permitted for this
priority level, configured through parameter. As AXI4 transactions must run to completion once initiated,
this mechanism allows transactions with higher priorities to have more bandwidth whilst forcing
transactions with lower priorities to enter back into the arbitration sequence more frequently to check for
higher priority DMA operations in the queue. Round-robin arbitration is performed to service requests
with the same priority level. No bandwidth is given to descriptors with a lower priority level if a higher
priority descriptor is being processed. The maximum transactions size for the highest level of priority is
4 KB to prevent AXI transactions from crossing 4 KB address boundaries.

When enabled, AXI4-Stream operations shares the highest priority level, priority level 0. It is possible to
associate no internal buffer descriptors with priority level 0 at configuration time to allocate the entire
bandwidth of the AXI4 DMA interface to AXI4-Stream operations when they exist. Otherwise, AXI4-
Stream to memory map forwarding operations will be interleaved with operations of internal descriptors
at the highest priority level.

3.1.5 Memory Map Cache
CoreAXI4DMAControl contains two 4 KB SRAM caches to allow the core to complete the forward part of
an AXI4-memory map store and forward operation whilst performing the store element of the next store
and forward operation. The DMA Controller block is responsible for switching between the internal
caches autonomously in a round-robin fashion.

3.1.6 Stream Cache
If the AXI4-Stream configuration is selected, the core contains two additional 4 KB store caches allowing
stream data received through the AXI4-Stream interface to be buffered before initiating multi-beat AXI4
forward transactions on the AXI4 interface. This allows stream operations to be received asynchronously
to other DMA operations as the AXI4-Stream transfer is initiated by the AXI4-Stream master. The DMA
Controller block is responsible for switching between the internal stream caches autonomously in a
round-robin fashion.

3.1.7 Interrupt Controller
CoreAXI4DMAController allows users to enable multiple interrupt outputs and to associate each interrupt
output with one or more internal buffer descriptors. The Interrupt Controller block is responsible for
routing the events of each descriptor to the associated interrupt output. A configurable depth queue for
each interrupt output is contained within this block to allow DMA operations to take place whilst waiting
on the Control master to handle and clear previous interrupt events. If an interrupt queue backs up all
operations of descriptors associated with this interrupt are suspended until space is freed in the interrupt
queue by the Control master. DMA operations of other descriptors not associated with this interrupt
queue will still be processed. This setup facilitates multiple processors to use the DMA controller
concurrently.

Note: The interrupt association for an external descriptor is inherited from the previous internal descriptor in the
chain. Interrupt events of Stream descriptors are always associated with Interrupt 0.

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 9

3.1.8 AXI4 Master Interface Controller
The AXI4 master interface controller is responsible for performing the DMA operation outlined by the
DMA Controller block using AXI4 write and read transactions. This block returns a flag to the DMA
controller when the requested store and forward operation is completed. If an AXI4 error is returned by a
downstream slave during the read/store operation before the write/forward operation for that operation
has commenced, the AXI4 Master Interface Controller continues the read/store to completion and reports
the error to the control master without performing the write.

3.1.9 AXI4-Stream Slave Interface Controller
The AXI4-Stream slave interface controller provides a unidirectional bridge to the AXI4 memory map for
AXI4 stream masters. The AXI4-Stream slave interface controller notifies the DMA Controller that a
stream operation has commenced and of the position of the external descriptor in AXI4 memory
describing the AXI4-Stream operation. Caching of the stream data in one of the internal 4 KB stream
caches is performed in parallel to the fetching of the stream descriptor over the AXI4 DMA interface and
completion of the previous memory mapped or stream DMA operation.

3.2 Buffer Descriptors
3.2.1 Internal Descriptor Support

Internal descriptors are implemented using LSRAM with the number of internal descriptors configurable
through parameter in the range 4-32. Each internal descriptor has the ability to operate as a competing
DMA channel1. The format of an internal descriptor is as shown in Figure 2:

Figure 2 • Internal Descriptor Format

Chaining of internal descriptors is supported to perform scatter-gather DMA operations where data is
collected from one or more contiguous or non-contiguous locations and forwarded to one or more
contiguous or non-contiguous locations. Each descriptor or chain of descriptors can be configured to
perform repetitive cyclic operations. Refer to the Scatter-Gather and Cyclic Operations sections of this

1. Each internal descriptor can operate as a competing DMA channel provided that it’s not chained with other internal descriptors.

Configuration register

Byte Count register

Source Address register

Destination Address register

Next Descriptor Number/Address register

15 14 13 12 11 10 [9:7] [6:4] [3:2] [1:0]

Source Operation[1:0]

Destination Operation[1:0]

Unused[2:0]

Unused[2:0]

Chain

External Descriptor Next

Interrupt on Process

Source Data Valid
Destination Data Ready

Descriptor Valid

0x00

0x04

0x08

0x0C

0x10

[31:16]

Unused[15:0]

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 10

document for information on performing such operations. Fetching of internal descriptors is performed in
parallel to DMA data transferring and has no impact on DMA throughput performance provided that the
operation described by the current descriptor being operated on is sufficiently large.

The priority level and interrupt output associated with operations of any internal descriptor must be
configured at the time of instantiation through parameter.

3.2.2 External Descriptor Support
External descriptors can be defined in the AXI4 address space and fetched over the AXI4 DMA
interface. The structure of an external descriptor takes the same format as an internal descriptor, as
shown in Figure 2.

External descriptors are pointed to using an internal descriptor with the Chain and External Descriptor
bits set in the internal descriptor’s Configuration register by passing the base address of the external
descriptor to the Next Descriptor Number/Address register. Fetching of external descriptors over the
DMA interface has a minor impact on overall DMA throughput performance provided that DMA
operations are sizeable.

Chaining of external descriptors is supported through this mechanism. An external descriptor can be
chained back to an internal descriptor by setting the Chain bitwith the External Descriptor bit cleared in
the external descriptor’s Configuration register and passing the internal descriptor number to the Next
Descriptor Number/Address register. Cyclic operations of external descriptors can be achieved linking
the last external descriptor in the chain back to the first internal descriptor.

The priority level and interrupt association of an external descriptor is inherited from the previous internal
descriptor in the chain.

Note: The address of the Configuration register of an external descriptor must be aligned to the bus width of
the AXI4 DMA interface configured through the AXI_DMA_DWIDTH parameter.

3.2.3 Stream Descriptor Support
Stream descriptors describe the AXI4-Stream transaction that is received from the AXI4-Stream master
over the AXI4-Stream slave interface. The TDEST signal of the stream interface is used to select the
CoreAXI4DMAController Stream Descriptor Address register that points to the stream descriptor
describing the AXI4-Stream transaction that is in progress. The address of the stream descriptor must be
written to the appropriate Stream Descriptor Address register prior to the AXI4-Stream transaction being
initiated, along with the prior existence of the valid stream descriptor in the AXI4 DMA address space.

The format of stream descriptors is as shown in Figure 3:

Figure 3 • Stream Descriptor Support

Configuration register

Byte Count register

Destination Address register

3 2 [1:0]

Destination Operation[1:0]

Destination Data Ready
Descriptor Valid

0x00

0x04

0x08

[31:4]

Unused[27:0]

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 11

The Destination Data Ready bit is used by control masters to denote when a buffer has been allocated
for the reception of the stream data in the AXI4 memory-map address space. The first 4 KB of the stream
transaction will be cached whilst the descriptor is being fetched. No further transfers in the AXI4-Stream
transaction will be acknowledged until the Destination Data Ready bit is asserted, allowing the forwarding
operation to the AXI4 memory map to commence when allocated bandwidth by the DMA arbiter.

If the Descriptor Valid bit of the stream descriptor that the AXI4-Stream transaction relates to is not set
when the stream transaction is initiated and the descriptor is fetched, an invalid descriptor interrupt event
will be triggered.

Stream descriptors are fetched over the AXI4 DMA interface when TVALID is asserted for the first
transfer in the AXI4-Stream transaction once the current AXI4 or AXI4-Stream transaction completes.
The maximum transfer size of a single stream transaction is 8 MB.

Note: The address of the Configuration register of a stream descriptor must be aligned to the bus width of the
AXI4 DMA interface configured through the AXI_DMA_DWIDTH parameter. The bus width of the AXI4
DMA and stream interfaces are synonymous.

3.2.4 Descriptor Management
Since external start inputs exist for each internal descriptor and descriptors can be chained together, it is
impossible for firmware to determine if a descriptor is currently involved in a DMA operation as it may
have been initiated by a separate or external process. For this reason, it is advised to keep hardware-
initiated DMA operations in separate descriptors to dynamically configured, firmware initiated operations.
Once a descriptor is initialized by firmware during initial configuration, the Descriptor Valid bit must be set
in the descriptor’s Configuration register.

Note: If a UIC script is used to initialize internal descriptors in LSRAM, the Descriptor Valid bit will need to be
set through firmware due to the order in which the UIC script writes the data into LSRAM (writes the
Configuration register first, followed by the Byte Count register, hence the Descriptor Valid bit is cleared
automatically by the DMA Controller).

If the start input associated with a descriptor is tied off then it is permitted for firmware to modify the
descriptor contents on the fly, provided that no firmware initiated operations are being processed on the
particular descriptor or which include the descriptor in a chain/cyclic buffer. Once any field in the
descriptor is written to, the Descriptor Valid bit is automatically cleared by CoreAXI4DMAController. It is
the responsibility of the firmware to set this bit only when the descriptor has been reconfigured.

If a DMA operation is initiated through an external start input assertion or a write to the Start Operation
register on an uninitialized descriptor, an interrupt will be generated reporting the invalid descriptor error.

3.3 Flow Control/Throttling
Once an AXI transaction is initiated by a master sending the write/read address it must run to completion.
A slave can force a master to wait before sending additional write data or receiving read data using the
valid-ready flow control signals built into the AXI4 protocol. However, masters cannot determine up-front
that a slave is unable to handle more data and thereby may hog the bus.

To prevent CoreAXI4DMAController relying on AXI slaves always having data in place and room for write
data, CoreAXI4DMAController implements separate Source Data Ready and Destination Data Valid bits
in both internal and external descriptors to support firmware flow control management. In order for a
descriptor to be operated on, firmware must set both flow control bits whether or not the descriptor is part
of a descriptor chain.

Note: Both the Source Data Valid and Destination Data Ready flow control bits must be set again every time
that a descriptor is processed as part of a cyclic chain.

To support the separation of the application into multiple processes, a descriptor can be kicked-off in the
Start Operation register before either or both flow control bits are set, but no bandwidth will be granted to
this descriptor until both bits are subsequently set either together or separately in the same process or in
separate processes altogether. The conceptual flow control management of CoreAXI4DMAController is
as shown in Figure 4:

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 12

Figure 4 • Multi Process Flow Control Management

Clearing of the Source Data Valid and Destination Data Ready flow control bits is performed
automatically by CoreAXI4DMAController for both internal and external descriptors every time that an
operation of the descriptor is completed.

If either the Source Data Valid or Destination Data Ready flow control bits are low when an external
descriptor is fetched, the external descriptor’s Configuration register will be fetched again over the AXI4
interface until both bits are detected high every time that this DMA channel is apportioned a time slot by
the DMA arbiter. The allotted bandwidth will be passed-over if either bit remains low when fetched. No
DMA transfer will be performed whilst arbitration will be re-entered immediately.

Stream descriptors support a Destination Data Ready bit for flow control purposes. As with internal and
external descriptors, the Destination Data Ready bit is cleared by the DMA controller when the AXI4-
Stream transaction data described in the stream descriptor has been forwarded to the AXI4 memory-map
address space. The Destination Data Ready flow control bit will be fetched every time that the stream
descriptor is allocated bandwidth by the DMA arbiter in the manner described for external descriptors
above.

3.4 DMA Operations
3.4.1 Chain Operations (Scatter-gather)

Chain operations are typically used to implement scatter-gather DMA operations where data is collected
from multiple non-concurrent memory blocks and spread to a number of concurrent or non-concurrent
locations. A chain can be formed using a single internal descriptor and multiple external descriptors,
multiple internal descriptors or using a mix of internal and external descriptors. The starting point for a
descriptor chain must be an internal descriptor.

To configure a chain operation, create a number of buffer descriptors with the Chain bit set in each buffer
descriptor except the last. The Next Descriptor field in all buffer descriptors other than the last should
point to the next descriptor in the chain. This field will be ignored for the last descriptor in the chain
(denoted by a descriptor without the Chain bit set). The External Descriptor Next bit is used to denote the
type of the next descriptor in the chain. Chain operations can be initiated by writing to the internal start bit
or by triggering the start input signal associated with the first descriptor in the chain.

Configuration Register

Start Operation
Register

DMA

Process 2
(Reading Process)

Process 1
(Writing Process)

(Source)
Write data buffer

(Destination)
Read data buffer

Process 0 (Initiating process)

Dest Data
Ready

Src Data
Valid

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 13

If a chain operation is configured with all descriptors having the Interrupt on Process bit cleared, an
interrupt will only be generated on error or when the operation described by the last descriptor in the
chain has completed.

Alternatively, if the Interrupt on Process bit is set for one or more descriptors in a chain, an interrupt will
be generated when the operation described in each descriptor with its Interrupt on Process bit set is
completed, however, this will not stall the next descriptor in the chain from being processed by the DMA
controller, unless the associated interrupt queue has backed-up.

Note: Descriptor chaining should only be performed with buffer descriptors of the same priority level.

Figure 5 shows the format of one possible descriptor chain. Notice that the Chain bit is set for every
descriptor other than the last. In this case, the Interrupt on Process bit is set for the first internal
descriptor in the chain, Internal BD0 and External BD1. This will generate an interrupt when each of
these descriptors are processed. No interrupt will be generated for the processing of External BD0. An
interrupt will always be generated when the last descriptor in a chain has been processed, regardless of
the Interrupt on Process configuration.

Figure 5 • Example Descriptor Chain

CoreAXI4DMAController supports a source address and destination no-op feature to allow an internal
descriptor to point at an external descriptor without the internal descriptor performing a DMA data
transfer. Refer to the Source and Destination Operation fields of the descriptor’s Configuration register.

3.4.2 Cyclic Operations
Cyclic operations can be set up by creating a number of buffer descriptors with the Chain bit set in each
buffer descriptor. The Next Descriptor field for each descriptor should be assigned the number of the next
descriptor in the chain. Unlike standard chain operations, the last descriptor should have the Chain bit set
and should point back to the first descriptor in order to make the operation cyclic. The cyclic operation is
initiated by writing to the associated start bit for the first buffer descriptor in the cyclic chain. The flow
control bits must be set again for each descriptor every time that the descriptor has been processed
provided that there is valid data at the source and room for data at the destination. If a descriptor is
reached without one or both flow control bits set, the DMA operation will be passed over in the DMA
arbiter, allowing other DMA operations to proceed while waiting on buffer allocation.

Figure 6 • Example Cyclic Descriptor Chain

Cyclic operations can be terminated by clearing the Chain bit in the descriptor to stop at when next
reached. When this descriptor is reached and the DMA operation within the descriptor has been carried
out, an interrupt will be asserted signifying the completion of the DMA cyclic operation. If external buffer
descriptors are included in a descriptor chain, the cycle can only be stopped on an internal descriptor

Int On Proc 1

Chain 1

Ext Dscrptr Next 1

Nxt Dscrptr Addr

Internal Descriptor 0

Int On Proc 0

Chain 1

Ext Dscrptr Next 1

Nxt Dscrptr Addr

External Descriptor 0

Int On Proc N/A

Chain 0

Ext Dscrptr Next N/A

Nxt Dscrptr Addr N/A

External Descriptor 1

Int On Proc 0

Chain 1

Ext Dscrptr Next 1

Nxt Dscrptr Addr

Internal Descriptor 0

Int On Proc 0

Chain 1

Ext Dscrptr Next 1

Nxt Dscrptr Addr

External Descriptor 0

Int On Proc 1

Chain 1

Ext Dscrptr Next 0

Nxt Dscrptr Addr

External Descriptor 1

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 14

from the Control interface of CoreAXI4DMAController. The chain can terminate on an external descriptor
if the control master clears the Chain bit in the external descriptor’s Configuration register in the AXI4
memory map address space.

It is recommend that the Interrupt on Process bit is asserted for at least the last or tail descriptor in a
descriptor chain to provide notice to the firmware application that the chain has been processed and that
the Source Data Valid and Destination Data Ready flow control bit will need to be set for each descriptor
in the chain before another complete cycle of the chain can take place. The DMA arbiter allows the DMA
transfer to continue on each descriptor in the chain provided that both flow control bits are set and that
the descriptor is valid. The status of the next descriptor’s flow control bits will not impact the current
descriptors service.

3.4.2.1 Ping-Pong
Support for ping-pong cyclic DMA operations where data is read from one location and written to two or
more memory buffers with an interrupt generated every time that a buffer is filled is provided through use
of descriptor chaining and the Interrupt on Process bit within buffer descriptors. The Interrupt on Process
bit causes an interrupt to be raised every time that a descriptor has been processed. This feature is
supported for both internal and external buffer descriptors. The resetting of the data valid bit signifies that
the buffer can be re-written to by the DMA controller.

Figure 7 • Ping-Pong Cyclic Descriptor Chain

3.5 AXI4-Stream Bridge
In addition to AXI4 memory-map to memory-map DMA operations, CoreAXI4DMAController provides a
bridge to the AXI4 memory-map address space for AXI4-Stream masters. Before a stream master
initiates a stream transaction, the Control master must first write a description of the imminent AXI4-
Stream transaction to the AXI4 memory map in the stream descriptor format.

Next the address of the Configuration register of this stream descriptor needs to be written to the Stream
Descriptor Address register within CoreAXI4DMAController associated with the TDEST signal value of
the AXI4-Stream transaction. The TDEST signal provides destination routing information, used to
multiplex between the 4 Stream Descriptor Address registers inside CoreAXI4DMAController, as shown
in Figure 8.

Int On Proc 1

Chain 1

Ext Dscrptr Next 1

Nxt Dscrptr Addr

Internal Descriptor X

Int On Proc 1

Chain 1

Ext Dscrptr Next 0

Nxt Dscrptr Addr

Int/Ext Descriptor Y

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 15

Figure 8 • AXI4-Stream to AXI4 Memory Map Bridging

Once the first transfer of the AXI4-Stream transaction is received, the TDEST signal is used to select the
Stream Descriptor Address register that contains the address of the stream descriptor describing the
AXI4-Stream transaction. The stream descriptor is then fetched over the AXI4 DMA interface once the
current AXI4 DMA transaction completes, whilst the stream data is cached in parallel. If the stream
descriptor is valid then it is loaded into the DMA Arbiter where it competes for bandwidth with other
priority 0 requests. Otherwise, an invalid descriptor interrupt event is generated. Once bandwidth is
allocated to the stream request, if the Destination Data Ready flow control bit was set when the
descriptor was fetched, the AXI4 memory map forward operation commences on the AXI4 DMA
interface. If the flow control bit is not set then the flow control bit is re-fetched from the stream descriptor
over the AXI4 DMA interface until it is detected as begin set, at which point the AXI4 memory map
forward commences.

Once the AXI4 memory-map forward related to the AXI4-Stream read is completed, an interrupt is
generated on the Interrupt 0 output.

AXI4 Slave RAM (Descriptor Store)

AXI4‐Stream master

Stream 2 Descriptor

Stream 3 Descriptor

AXI4 Interconnect

A
XI
4
I/
F

A
XI
4
I/
F

AXI4 to AXI4‐Lite
Bridge

AXI4‐Lite Control I/F

Control Master µProcessor
(CoreRISCV_AXI4)

A
X
I4
 I/
F

Stream 0 Descriptor

Stream 1 Descriptor

AXI4 I/F

CoreAXI4DMAController

AXI4‐Stream Interface
Controller

TDEST 0 Descriptor Address Reg

TDEST 1 Descriptor Address Reg

TDEST 2 Descriptor Address Reg

TDEST 3 Descriptor Address Reg

AXI4‐Stream

DMA Controller

AXI4‐Lite Interface
Controller

TDEST[1:0]

A
X
I4
 D
M
A
 I/
F

AXI4 DMA Interface
Controller

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 16

3.6 Interrupts
CoreAXI4DMAController provides a configurable number of interrupt outputs, each with independent
status, mask and clear registers along with independent configurable depth queues. Descriptors must be
associated with interrupt outputs at instantiation time. Multiple descriptors may be associated with a
single interrupt output. Figure 9 shows the logic implemented for each enabled interrupt output.

Figure 9 • Interrupt Queue Logic

Interrupts are generated on error or completion. When configuring a descriptor, the Interrupt on Process
field provides the user with a means to generate an interrupt every time that a particular descriptor is
processed in a chain or circular buffer configuration, provided that this descriptor is not the last descriptor
in the chain. DMA operations are not halted for interrupts of this type and will proceed in the background
provided that the associated interrupt queue has not backed-up.

The current interrupt status will remain valid in the Interrupt X Status register associated with the interrupt
output until all unmasked bits (masked-off using the Interrupt Mask register) in the Interrupt Status
register have been cleared through the Interrupt Clear register.

Interrupt X
Mask

Register

Interrupt X
Status
Register

Interrupt X
Clear

Register

Interrupt X Queue
FIFO

D
M
A
 C
o
n
tro

lle
r

In
te
rr
u
p
t
O
u
tp
u
t

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 17

3.7 Arbitration
CoreAXI4DMAController supports fixed priority arbitration between multiple priority levels. If multiple
requests exist of the same priority level, round-robin arbitration is performed between these requests.
Higher priority requests are allowed to perform larger AXI4 burst transfers. This forces faster re-entrance
into the arbitration logic by lower priority requests to ensure that higher priority requests are detected
sooner.

Figure 10 • Descriptor Arbitration

Note: No bandwidth is allotted to lower priority descriptor requests when a request from a higher priority
descriptor with both its flow control bits set exists.

Since, a total transfer size of 8 MB is permitted for an operation of a single descriptor, DMA operations
are divided into multiple AXI4 transactions, with a maximum permitted transaction size of 4 KB to provide
AXI4 boundary protection. Access is re-evaluated every time that an AXI4 transaction completes. If
multiple large descriptor requests of the same priority level exist, AXI4 transactions of each descriptor will
be interleaved in a round-robin fashion.

Note: CoreAXI4DMAController does not support interleaving of transfers within AXI4 transactions (xID signal
unused). Only 1 descriptor is serviced per AXI4 transaction.

When enabled, AXI4-Stream requests are interleaved with operations of the highest priority level, priority
0. If the performance of the AXI4-Stream master is paramount, no internal descriptors should be
assigned priority 0 priority association at instantiation time to allocate the entire bandwidth of the AXI4
memory map interface to the AXI4-Stream operation. Unlike standard AXI4 DMA operations which enter
back into the arbitration algorithm every time that an AXI4 transaction is performed provided that the
destination transaction does not span a 4 KB boundary, which is not aligned to the source address (in
which case the core will perform multiple AXI writes to empty the read cache which was filled by a single
AXI read transaction before entering back into arbitration), whether or not the AXI4 transaction
completely services the descriptor request, AXI4-Stream operations do not enter back into arbitration
until the entire stream request has been serviced, even if this requires multiple AXI4 write transactions to
prevent crossing a 4 KB boundary in a sequential transaction and to empty the stream read cache.

Priority level assignment should be performed in a descending, contiguous fashion. If a priority level is
enabled with no descriptors allocated to it (apart from priority 0 when Stream support is enabled), the
underlying logic related to this priority level will be removed from the core. For this reason, no priority
level should be enabled without descriptors allocated to it when lower priority levels are enabled with
descriptors allocated to them.

To reduce the setup overhead on DMA transfers, the core allows multiple descriptors to be kicked-off in a
single write to the Start Operation register. It is difficult to determine the order that DMA operations will
take place in as the core has the facility for multiple start bits to get kicked-off in the same cycle, each

DMAArbiter

Stream Descriptor Cache Internal/External Descriptor Cache

Arbiter

Internal
Buffer

Descriptor
Cache D

Internal
Buffer

Descriptor
Cache B

Priority 0
Round robin

arbiter

Internal
Buffer

Descriptor
Cache H

Internal
Buffer

Descriptor
Cache Z

Priority N
Round Robin

Arbiter

Fixed Priority
Arbiter

Stream
Descriptor 1

Stream
Descriptor 0

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 18

with shared or separate priority levels. All start bits are maintained in an internal register and loaded into
the descriptor cache using a non-weighted round-robin arbiter, with only one start bit loaded in any given
cycle. The weighted round-robin DMA arbiter then reads out of the descriptor cache and fills a two-stage
pipeline to ensure that DMA transfers happen in a back-to-back fashion on the DMA interface and to
ensure that read-ahead can be performed for the next DMA operation as there are two internal caches.
To ensure that DMA operations happen in order, either wait for an interrupt to be received on the first
operation before kicking off the next operation, else form a chain with the descriptors of interest.

3.8 AXI Transactions
The source and destination addresses of all DMA operations must be aligned to AXI bus width
instantiated.

Note: Unaligned AXI transactions and data realignment are not performed by CoreAXI4DMAController.

The size of the AXI transaction generated is dependent upon the width of the AXI DMA interface
instantiated. CoreAXI4DMAController generates transactions with the AxSIZE field set at the maximum
for the instantiated bus width exclusively.

The length of the AXI transaction is dependent upon the priority level of the descriptor which the AXI
transaction is related to, the maximum permitted burst size at this priority level and the source address,
destination address and number of bytes in the DMA operation. If the store DMA operation spans a 4 KB
boundary, CoreAXI4DMAController may generate multiple shorter read transactions to prevent crossing
the 4 KB boundary in a sequential transfer and vice versa for the forward transactions if the forward DMA
operation spans a 4 KB boundary. Arbitration is performed on completion of each read transaction to
determine if a higher priority requests exists or if there are other requests at this priority level that need to
be serviced. The last transfer of the last transaction of a DMA operation may be narrow by way of the AXI
write strobes to provide N-byte DMA transfer support.

A single AXI read transaction may result in multiple AXI write transactions if the source operation is
confined within a 4 KB slot and the destination operations spans a 4 KB boundary.

The core supports DMA read ahead to read in the next data to the internal cache whilst the previous write
operation is completing. This increases the throughput of the AXI interface significantly for queued AXI
DMA operations in busy AXI systems. AXI outstanding address transactions are not generated by
CoreAXI4DMAController.

3.9 AXI4-Stream Transactions
CoreAXI4DMAController supports AXI4-Stream transactions where each bit of TSTRB mirrors TKEEP,
indicating either data or null bytes. Position bytes occur when a TKEEP bit is asserted and the
corresponding TSTRB bit is de-asserted. Position bytes are not supported by CoreAXI4DMAController.

The core expects all AXI4-Stream transactions to start from an address aligned to bus width, set through
the AXI_DMA_DWIDTH parameter. The first transfer in the transaction cannot be unaligned through the
use of TKEEP and TSTRB.

In addition, the core permits the last transfer in an AXI4-Stream transaction to be narrow by keeping the
TKEEP and TSTRB bits low for the associated byte lanes, making N-byte AXI4-Stream to AXI4 memory
map bridging possible. An example of this would be where TKEEP and TSTRB are both 0x7F for the last
transfer in the transaction and 0xFF for all other transfers in the transaction on a 64-bit bus.

It is expected that all TSTRB and TKEEP bits are asserted for every transfer other than the last transfer
in an AXI4-Stream transaction. Sparse strobe assertion is not supported where TSTRB and TKEEP are
both 0x55 for instance.

Note: AXI4 Stream Transactions should be performed whenever there is no pending request for memory map
to memory map data transfer and vice-versa.

Functional Description

Microsemi Proprietary HB0739 Revision 2.0 19

3.10 Cache Coherence
Data integrity issues can arise where a DMA read is performed on a shared, cacheable memory where
the cached memory contents has been updated but not yet written back to memory. To cover such an
event, the application must ensure that the contents of the cache is written back to memory before
kicking of a DMA read operation in a cacheable region. Processor operations to this memory space
should be suspended until the DMA read has completed.

Similarly, where a DMA write is performed on cacheable memory, the application needs to ensure that
the contents of the cache is flushed and refilled to prevent the processor from operating on out-of-date
data once the memory has been written via the DMA operation. Processor operations to this memory
space should be suspended until the DMA write has completed.

Note: Cache coherence is not handled by CoreAXI4DMAController and remains the responsibility of the
Firmware application.

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 20

4 Interface Descriptions

4.1 Signal Descriptions
Signal descriptions for CoreAXI4DMAController are defined in Table 11.

Table 11 • CoreAXI4DMA Controller I/O Signals

Port Name Width Direction Description

General Ports
CLOCK 1 Input Clock signal to all sequential elements

within the core.

RESETN 1 Input Active-low reset signal to all sequential
elements within the core. Reset
de-assertion must be synchronous to
CLOCK rising edge as per AXI4
specification. This reset should be
synchronized in the CLOCK clock domain
externally.

AXI4-Lite Control Interface Ports
CTRL_AWVALID 1 Input Write address valid. Indicates that the

control master is presenting valid write
address information.

CTRL_AWREADY 1 Output Write address ready. Indicates that
CoreAXI4DMAController is ready to
receive write address information.

CTRL_AWADDR[10:0] 11 Input AXI4-Lite write address bus.
CTRL_WVALID 1 Input Write data valid. Indicates that the

control master is presenting write data.
CTRL_WLAST 1 Input Indicates that the current transfer is the

last transfer in the write transaction.
CTRL_WREADY 1 Output Indicates that CoreAXI4DMAController

is ready to receive write data.
CTRL_WSTRB[3:0] 4 Input Write strobes. Indicates the byte lanes

of the WDATA bus, which contain valid
write data.

CTRL_WDATA[31:0] 32 Input AXI4-Lite write data bus.
CTRL_BVALID 1 Output Write response valid. Indicates that

CoreAXI4DMAController is presenting
valid write response information. Only
occurs at the end of a write transaction.

CTRL_BREADY 1 Input Indicates that the control master is ready
to receive write response information.

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 21

CTRL_BRESP[1:0] 2 Output Write response. Indicates the status of a
write transaction.
Okay and SLVERR responses are
returned by the core.
The core returns SLVERR when an
invalid address is latched on AXI4-Lite
write address bus.

CTRL_ARVALID 1 Input Read address valid. Indicates that the
control master is presenting valid
address information.

CTRL_ARREADY 1 Output Read address ready. Indicates that
CoreAXI4DMAController is ready to
receive address information.

CTRL_ARADDR[10:0] 11 Input AXI4-Lite read address bus.
CTRL_RVALID 1 Output Read data valid. Indicates that

CoreAXI4DMAController is presenting
valid read data.

CTRL_RREADY 1 Input Indicates that the control master is ready
to receive read data.

CTRL_RDATA[31:0] 32 Output AXI4-Lite read data bus.
CTRL_RLAST 1 Output Indicates that the current transfer is the

last transfer in the read transaction.
CTRL_RRESP[1:0] 2 Output Read response valid. Indicates that

CoreAXI4DMAController is presenting
valid read response information. Valid
for every transfer in a transaction.
Okay and SLVERR responses are
returned by the core. The core returns
SLVERR when an invalid address is
latched on the AXI4-Lite read address
bus.

AXI4 DMA Interface Ports
DMA_AWVALID 1 Output Write address valid. Indicates that

CoreAXI4DMAController is presenting
valid address information.

DMA_AWREADY 1 Input Write address ready. Indicates that the
AXI4 slave is ready to receive address
information.

DMA_AWADDR[31:0] 32 Output DMA write address bus.
DMA_AWID[ID_WIDTH-1:0] ID_WIDTH Output Write address ID. Identification tag for

write address group of signals.
Driven out as zeros as ID support not
implemented by
CoreAXI4DMAController. All
transactions are processed in order.

Table 11 • CoreAXI4DMA Controller I/O Signals (continued)

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 22

DMA_AWLEN[7:0] 8 Output Indicates the number of transfers in the
AXI write transaction. Allows for
between 1 and 256 transfers per
transaction.

DMA_AWSIZE[2:0] 3 Output Indicates the size of transfers in the AXI
write transaction.
CoreAXI4DMAController generates
transactions of the data bus width size
exclusively.

DMA_AWSIZE =
DMA_AWBURST[1:0] 2 Output Write burst address type. Only fixed and

incrementing DMA transfers are
generated by CoreAXI4DMAController.

DMA_WVALID 1 Output Write data valid. Indicates that
CoreAXI4DMAController is presenting
valid write data.

DMA_WLAST 1 Output Indicates that the current transfer is the
last transfer in the write transaction.

DMA_WREADY 1 Input Indicates that the AXI4 slave is ready to
receive write data.

DMA_WSTRB[(AXI_DMA_DWIDTH/8)-1:0] AXI_DMA_DW
IDTH/8

Output Write strobes. Indicates the byte lanes
of the WDATA bus which contain valid
write data.

DMA_WDATA[AXI_DMA_DWIDTH-1:0] AXI_DMA_DW
IDTH

Output DMA write data bus.

DMA_BVALID 1 Input Write response valid. Indicates that the
AXI4 slave is presenting valid write
response information. Only occurs at the
end of a transaction.

DMA_BREADY 1 Output Indicates that CoreAXI4DMAController
is ready to receive write response
information.

DMA_BID[ID_WIDTH:0] ID_WIDTH Input Write response ID. Identification tag for
write response group of signals.

DMA_BRESP[1:0] 2 Input Write response. Indicates the status of a
write transaction.

DMA_ARVALID 1 Output Read address valid. Indicates that
CoreAXI4DMAControlleris presenting
valid address information.

DMA_ARREADY 1 Input Read address ready. Indicates that the
control master is ready to receive
address information.

DMA_ARADDR[31:0] 32 Output DMA read address bus.

Table 11 • CoreAXI4DMA Controller I/O Signals (continued)

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 23

DMA_ARID[ID_WIDTH-1:0] ID_WIDTH Output Read ID. Identification tag for read
address group of signals.
Driven out as zeros as ID support not
implemented
byCoreAXI4DMAController. All
transactions are processed in order.

DMA_ARLEN[7:0] 8 Output Indicates the number of transfers in the
AXI read transaction. Allows for between
1 and 256 transfers per transaction.

DMA_ARSIZE[2:0] 3 Output Indicates the size of transfers in the AXI
read transaction.
CoreAXI4DMAController generates
transactions of the data bus width size
exclusively.

DMA_ARSIZE =
DMA_ARBURST[1:0] 2 Output Read burst address type. Only fixed and

incrementing DMA transfers are
generated by CoreAXI4DMAController.

DMA_RVALID 1 Input Read data valid. Indicates that the AXI4
slave is presenting read data.

DMA_RREADY 1 Output Indicates that the
CoreAXI4DMAController is ready to
receive read data.

DMA_RDATA[AXI_DMA_DWIDTH-1:0] AXI_DMA_DW
IDTH

Input DMA read data bus.

DMA_RLAST 1 Input Indicates that the current transfer is the
last transfer in the read transaction.

DMA_RRESP[1:0] 2 Input Read response data. Read response
data returned by the AXI4 slave. Valid
for every transfer in a transaction.

DMA_RID[ID_WIDTH-1:0] ID_WIDTH Input Read ID. Identification tag for read
group of signals.

AXI4-Stream Interface
TVALID 1 Input AXI4-Stream master is driving a valid

transfer.
TREADY 1 Output CoreAXI4DMAController is ready to

receive stream data.
TDATA[AXI_DMA_DWIDTH-1:0] AXI_DMA_DW

IDTH
Input Stream data bus.

TSTRB[(AXI_DMA_DWIDTH/8)-1:0] AXI_DMA_DW
IDTH/8

Input Indicates whether the associated byte
lane within TDATA should be treated as
a data byte or a position byte.
TSTRB[0] is associated with
TDATA[7:0], and so on.

Table 11 • CoreAXI4DMA Controller I/O Signals (continued)

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 24

TKEEP[(AXI_DMA_DWIDTH)-1:0] AXI_DMA_DW
IDTH/8

Input Indicates the byte lanes of the TDATA
bus which are processed as part of the
stream.
Byte lanes that have the associated
TKEEP bit de-asserted contain null
bytes.
TKEEP[0] is associated with
TDATA[7:0], and so on.

TLAST 1 Input Indicates the boundary of a packet.
TID[ID_WIDTH-1:0] ID_WIDTH Input Data stream identifier.
TDEST[1:0] 2 Input Provides routing information for the data

stream.

Interrupt Interface Ports
Interrupt0 1 Output Interrupt 0 output.

Remains asserted until all unmasked
bits in the Interrupt 0 Status register are
cleared via the Interrupt 0 Clear register.
Interrupt events of buffer descriptors
associated with this Interrupt output are
queued.

…
Interrupt3 1 Output Interrupt 3 output, enabled at

instantiation time when
NUM_OF_INTS = 3.
Remains asserted until all unmasked
bits in the Interrupt 3 Status register are
cleared via the Interrupt 3 Clear register.
Interrupt events of buffer descriptors
associated with this Interrupt output are
queued.

Start Interface Ports
STRTDMAOP [NUM_INT_BDS-1:0] NUM_INT_BD

S
Input Input to allow the DMA operation

described in an internal buffer
descriptor, to be initiated by a fabric
controller.
The DMA operation is kicked-off when
this bit is asserted for one clock cycle.
This signal should be synchronized in
the CLOCK clock domain externally.

Table 11 • CoreAXI4DMA Controller I/O Signals (continued)

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 25

4.2 Configuration Parameters
There are a number of configurable options, which are applied to CoreAXI4DMAController (as shown in
Table 12). If a configuration other than the default is required, then the configuration dialog box in
SmartDesign should be used to select appropriate values for the configurable options.

Table 12 • CoreAXI4DMAController Configuration Options

Name Valid Range Default Description
ECC 0-1 0 Note: This feature is only valid for RTG4,

PolarFire, and PolarFire SoC device
families.

For more information on ECC Flags
(SB_CORRECT and DB_DETECT), refer to
Table 19, page 30.

Error Correcting Code:

• 0: ECC is disabled for uSRAM/LSRAM
RAM

• 1: ECC is enabled for LSRAM RAM

AXI4_STREAM_IF 0-1 0 AXI Stream slave interface. Provides bridge for AXI4-
Stream masters to access the AXI4 memory map.

AXI_DMA_DWIDTH 32, 64,128,
256, 512

32 Data width of the AXI DMA and optional AXI4-Stream
interfaces.

ID_DWIDTH 1-8 1 ID width for AXI DMA transactions. ID will always be
driven out as zeros (unused – no transaction interleaving
support).

NUM_PRI_LVLS 1-8 1 Number of fixed priority levels supported.

PRI_0_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

256 Maximum number of transfers in an AXI transaction of
this priority level.

PRI_1_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

128 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_0_NUM_OF_BEATS.

PRI_2_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

64 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_1_NUM_OF_BEATS.

PRI_3_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

32 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_2_NUM_OF_BEATS.

PRI_4_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

16 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_3_NUM_OF_BEATS.

PRI_5_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

8 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_4_NUM_OF_BEATS.

PRI_6_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

4 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_5_NUM_OF_BEATS.

PRI_7_NUM_OF_BEATS 1, 4, 8, 16,
32, 64, 128,
256

1 Maximum number of transfers in an AXI transaction of
this priority level.
Must be ≤ PRI_6_NUM_OF_BEATS.

Interface Descriptions

Microsemi Proprietary HB0739 Revision 2.0 26

Note: When ECC is enabled, the core generates all the memories into LSRAM.

NUM_OF_INTS 1-4 1 Number of interrupt outputs enabled.

INT_0_QUEUE_DEPTH 1-8 1 Number of interrupt events that can be queued for the
interrupt 0 output.

INT_1_QUEUE_DEPTH 1-8 1 Number of interrupt events that can be queued for the
interrupt 1 output.

INT_2_QUEUE_DEPTH 1-8 1 Number of interrupt events that can be queued for the
interrupt 2 output.

INT_3_QUEUE_DEPTH 1-8 1 Number of interrupt events that can be queued for the
interrupt 3 output.

NUM_INT_BDS 4, 8, 16, 32 4 Number of internal buffer descriptors supported.

DSCRPTR_0_PRI_LVL 0-7 0 Buffer Descriptor 0 priority level. Fixed priority level
associated with operations of this descriptor.

DSCRPTR_0_INT_ASSOC 0-3 0 Buffer Descriptor 0 interrupt association. Associate
interrupt events of this buffer descriptor with an interrupt
output.

…

DSCRPTR_31_PRI_LVL 0-7 0 Buffer Descriptor 31 priority level. Fixed priority level
associated with operations of this descriptor.

DSCRPTR_31_INT_ASSOC 0-3 0 Buffer Descriptor 31 interrupt association. Associate
interrupt events of this buffer descriptor with an interrupt
output.

Table 12 • CoreAXI4DMAController Configuration Options (continued)

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 27

5 Register Map and Descriptions

The CoreAXI4DMAController registers are listed in Table 13.

Table 13 • CoreAXI4DMAController Registers

Offset Register Name Type Width Res Description
0x00 Version Register Read-only 4 N/A Register holding the major, minor, and build

number of the core.

0x04 Start Operation Register Write-only 4 N/A Start bits to kick-off DMA operations.

0x10 Interrupt 0 Status Register Read-only 4 0x0 Status register containing status information
for Interrupt 0 events.

0x14 Interrupt 0 Mask Register Read-write 4 0x0 Configure flags in the Interrupt 0 Status
register that can generate an interrupt.

0x18 Interrupt 0 Clear Register Write-only 4 N/A Clear flags asserted in the Interrupt 0 Status
register.

0x1C Interrupt 0 External Address
Register

Read-only 4 0x0 Address of the external buffer descriptor with
which the contents of the Interrupt Status
register is associated.

0x20 Interrupt 1 Status Register Read-only 4 0x0 Status register containing status information
for Interrupt 1 events.

0x24 Interrupt 1 Mask Register Read-write 4 0x0 Configure flags in the Interrupt 1 Status
register that can generate an interrupt.

0x28 Interrupt 1 Clear Register Write-only 4 N/A Clear flags asserted in the Interrupt 1 Status
register.

0x2C Interrupt 1 External Address
Register

Read-only 4 0x0 Address of the external buffer descriptor with
which the contents of the Interrupt Status
register is associated.

0x30 Interrupt 2 Status Register Read-only 4 0x0 Status register containing status information
for Interrupt 2 events.

0x34 Interrupt 2 Mask Register Read-write 4 0x0 Configure flags in the Interrupt 2 Status
register that can generate.

0x38 Interrupt 2 Clear Register Write-only 4 N/A Clear flags asserted in the Interrupt 2 Status
register.

0x3C Interrupt 2 External Address
Register

Read-only 4 0x0 Address of the external buffer descriptor with
which the contents of the Interrupt Status
register is associated.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 28

Note: CoreAXI4DMAController generates error response (SLVERR) on AXI4-Lite write response channel and
on read response, when register address other than mentioned in Table 13 (invalid address) is accessed.

0x40 Interrupt3Status Register Read-write 4 0x0 Status register containing status information
for Interrupt 3 events.

0x44 Interrupt 3 Mask Register Read-write 4 0x0 Configure flags in the Interrupt 3 Status
register that can generate an interrupt.

0x48 Interrupt 3 Clear Register Write-only 4 N/A Clear flags asserted in the Interrupt 3 Status
register.

0x4C Interrupt 3 External Address
Register

Read-write 4 0x0 Address of the external buffer descriptor with
which the contents of the Interrupt Status
register is associated.

0x60 Internal Descriptor 0
Configuration Register

Read-write 4 N/A Register for configuring the DMA operation
performed from by descriptor.

0x64 Internal Descriptor 0 Byte
Count Register

Read-write 4 N/A Number of bytes to be transferred in the DMA
operation.

0x68 Internal Descriptor 0
Source Address Register

Read-write 4 N/A Start address to source data from for the
DMA store operation.

0x6C Internal Descriptor 0
Destination Address Register

Read-write 4 N/A Start address to forward data to for the DMA
forward operation.

0x70 Internal Descriptor 0
Next Descriptor Address Register

Read-write 4 N/A Descriptor number/address of the next
internal/external descriptor in the chain.

0x80 Internal Descriptor 1
Configuration Register

Read-write 32 N/A Buffer Descriptor 1.

…

0x450 Internal Descriptor 31
Next Descriptor Address Register

Read-write 32 N/A Buffer Descriptor 31.

0x460 Stream 0 Address Register Read-write 32 0x0 External stream descriptor associated with
Stream transactions with TDEST = 0b00.

0x464 Stream 1 Address Register Read-write 32 0x0 External stream descriptor associated with
Stream transactions with TDEST = 0b01.

0x468 Stream 2 Address Register Read-write 32 0x0 External stream descriptor associated with
Stream transactions with TDEST = 0b10.

0x46C Stream 3 Address Register Read-write 32 0x0 External stream descriptor associated with
Stream transactions with TDEST = 0b11.

Table 13 • CoreAXI4DMAController Registers (continued)

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 29

5.1 Version Register
The Version register provides control masters with the CPZ version number of the
CoreAXI4DMAController instance. Table 14 describes the Version register.

5.2 Start Operation Register
The Start Operation register allows control masters to kick-off DMA operations described in internal
buffer descriptors. Table 16 describes the Start Operation register. Multiple DMA operations can be
initiated with a single write operation by setting multiple bits simultaneously in the Start Operation
register.

Note: DMA operations may not get initiated on the DMA interface in the order in which they were loaded into
the Start Operation register. The order is dependent upon the previous descriptor kicked-off and the
number and size of descriptor operations held in DMA controller’s internal two-stage pipeline.

Table 14 • Version Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

0x00 Version
Register

Read-only 32 N/A Register holding the major, minor, and build number
of the core.

Table 15 • Version Register Bit Definitions

Bit(s) Name Type Description
7:0 Build

Number
Read-only Build number of the CPZ.

15:8 Minor
Number

Read-only Minor version number of the CPZ.

23:16 Major
Number

Read-only Major version number of the CPZ.

31:24 Reserved Read-only Reserved – Returns all zeros if read.

Table 16 • Start Operation Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

0x04 Start
Operation

Write-only 32 N/A Start bits to kick-off DMA operations.

Table 17 • Start Operation Register Bit Definitions

Bit(s) Name Type Description
0 Start Bit 0 Write-only Kicks off the DMA operation described in Internal Descriptor 0.

…

31 Start Bit 31 Write-only Kicks off the DMA operation described in Internal Descriptor 31.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 30

5.3 Interrupt X Status Register
The Interrupt X Status register provides status information associated with Interrupt X events.

Table 18 • Interrupt X Status Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x0 Interrupt X
Status
Register

Read-only 32 0x00 Status register containing status information for
Interrupt X events.
Returns the status information for the event at the
head of the Interrupt X Queue.

Table 19 • Interrupt X Status Register Bit Definitions

Bit(s) Name Type Description
0 Operation

complete
Read-only Indicates that the DMA operation described in this descriptor or a chain

ending with this descriptor has completed successfully.

1 DMA Write
Transaction
error

Read-only An AXI error was returned by the target slave during an AXI write
transaction.

2 DMA Read
Transaction
error

Read-only An AXI error was returned by the target slave during an AXI read
transaction.

3 Invalid buffer
descriptor

Read-only An attempt was made to initiate a DMA operation on an invalid
descriptor.

9:4 Descriptor
Number

Read-only 0-31: Internal descriptor number that the status information is related to.
32: Refer to the External Descriptor Address register to determine the
address of the external buffer descriptor to which the status information
is associated.
33: Stream operation complete. Refer to the External Descriptor Address
register to determine the address of the stream descriptor to which the
status information is associated.

10 Error Flag Read only SB_CORRECT Flag from Buffer descriptors Memory instance.

11 Error Flag Read only DB_DETECT Flag from Buffer descriptors Memory instance.

12 Error Flag Read only SB_CORRECT Flag from DMA Arbitration Memory instance.

13 Error Flag Read only DB_DETECT Flag from DMA Arbitration Memory instance.

14 Error Flag Read only SB_CORRECT Flag from Memory Map Cache Memory instance.

15 Error Flag Read only DB_DETECT Flag from Memory Map Cache Memory instance.

16 Error Flag Read only SB_CORRECT Flag from Stream Cache Memory instance.

17 Error Flag Read only DB_DETECT Flag from Stream Cache Memory instance.

18 Error Flag Read only SB_CORRECT Flag from Interrupt FIFO Memory instance.

19 Error Flag Read only DB_DETECT Flag from Interrupt FIFO Memory instance.

31:20 Reserved Read only Reserved – Returns all zeros if read.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 31

Note:

• SB_CORRECT flag signifies single bit error corrected and DB_DETECT flag signifies double-bit
error detected. The ECC flags (SB_CORRECT and DB_DETECT) will be only available when the
ECC option is selected.

• The buffer descriptors memory contains the information of descriptors configured through the AXI4-
lite interface.

• The cache memory is used to store the data to be transferred from source to destination. Similarly,
stream cache memory stores the stream of data from the AXI4-stream interface.

• The Interrupt FIFO memory is used to store status information of interrupt associated with a
particular descriptor.

5.4 Interrupt X Mask Register
The Interrupt X Mask register allows control masters to configure the flags in the Interrupt X Status
register which generate an Interrupt X interrupt to the control master when asserted. Table 20 describes
the Interrupt X Mask register.

Note: It is mandatory to configure an interrupt mask register for a particular descriptor.

Note: Invalid buffer descriptor interrupt will be asserted if the DB_DETECT flag of Buffer descriptor memory is
asserted.

Table 20 • Interrupt X Mask Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x04 Interrupt X
Mask
Register

Read-write 32 0x00 Configure flags in the Interrupt X Status register that
can generate an interrupt.

Table 21 • Interrupt X Mask Register Bit Definitions

Bit(s) Name Type Description
0 Operation

complete
Read-write 0: No interrupt generated when the corresponding bit in the Interrupt X

status register is asserted.
1: Assert an interrupt when a DMA operation completes.

1 DMA Write
Transaction
error

Read-write 0: No interrupt generated when the corresponding bit in the Interrupt X
status register is asserted.
1: Assert an interrupt when an AXI write error is detected.

2 DMA Read
Transaction
error

Read-write 0: No interrupt generated when the corresponding bit in the Interrupt X
status register is asserted.
1: Assert an interrupt when an AXI read error is detected.

3 Invalid buffer
descriptor

Read-write 0: No interrupt generated when the corresponding bit in the Interrupt X
status register is asserted.
1: Assert an interrupt when an invalid descriptor is processed.

31:4 Reserved Read-only Reserved – Returns all zeros if read.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 32

5.5 Interrupt X Clear Register
The Interrupt X Clear register provides control masters with a means to clear all status bits asserted in
the Interrupt X Status register. The Interrupt X interrupt output will remain asserted until all asserted,
unmasked status bits have been cleared by writing to the corresponding bit in this register. Table 22
describes the Interrupt X Clear register.

Table 22 • Interrupt X Clear Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x08 Interrupt X
Clear
Register

Write-only 32 0x00 Clear flags asserted in the Interrupt X Status
register.

Table 23 • Interrupt X Clear Register Bit Definitions

Bit(s) Name Type Description
0 Operation

complete
Write-only Writing a ‘1’ to this bit clears the corresponding bit in the Interrupt X

Status register.

1 DMA Write
Transaction

Write-only Writing a ‘1’ to this bit clears the corresponding bit in the Interrupt X
Status register.

2 DMA Read
Transaction

Write-only Writing a ‘1’ to this bit clears the corresponding bit in the Interrupt X
Status register.

3 Invalid buffer
descriptor

Write-only Writing a ‘1’ to this bit clears the corresponding bit in the Interrupt X
Status register.

31:4 Reserved Read-only Reserved – Returns all zeros if read.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 33

5.6 Interrupt X External Descriptor Register
The Interrupt X External Descriptor register provides the address of the external descriptor to which the
Interrupt X Status data is related. Table 24 describes the Interrupt X External Descriptor register. This
register should only be referenced if the contents of the Interrupt X Status register Descriptor Number
field is either 32 or 33.

5.7 Descriptor X Configuration Register
The Descriptor X Configuration register holds the configuration for internal descriptor X. Table 26
describes the Interrupt X Configuration register. The descriptor configuration is maintained between
operations on this descriptor, with the exception of the source data valid and destination data ready flow
control bits, which must be reset each time the descriptor is processed.

Table 24 • Interrupt X External Descriptor Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x0C Interrupt X
External
Descriptor
Register

Read-only 32 0x00 Address of the external or stream descriptor with
which the contents of the Interrupt Status register is
associated.

Table 25 • Interrupt X External Descriptor Register Bit Definitions

Bit(s) Name Type Description
31:0 Descriptor

Address
Read-only Address of the external or stream descriptor to which the contents of the

Interrupt Status register is related. The contents of this register should be
ignored and will return all zeros if the contents of the Descriptor Number
field in the Interrupt Status register is something other than 32 or 33.

Table 26 • Descriptor X Configuration Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x00 Descriptor X
Configuration
Register

Read-write 32 N/A Register for configuring the DMA operation
performed from by descriptor.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 34

Table 27 • Descriptor X Configuration Register Bit Definitions

Bit(s) Name Type Description
1:0 Source

Operation
Read-write Store operation type:

0: No operation – Suits pointing at external descriptors
1: Incrementing address
2: Fixed address
3: Unused

3:2 Destination
Operation

Read-write Forward operation type:
0: No operation – Suits pointing at external descriptors
1: Incrementing address
2: Fixed address
3: Unused

9:4 Unused Read-only Reserved – Returns all zeros if read.

10 Chain Read-write 0: Buffer descriptor describes a single DMA operation or the last
descriptor in a non-cyclic chain.
1: Descriptor is part of a chain

11 External
Descriptor

Read-write The content of this field is irrelevant if the chain bit is not set.
0: Internal buffer descriptor
1: External buffer descriptor

12 Interrupt on
Process

Read-write Generates an interrupt when this descriptor has been processed as part
of a chain. Setting this bit for the last descriptor in a non-cyclic chain has
no effect.
Note: DMA operations are not halted on this channel when an interrupt is
generated via this bit. DMA operations will only be paused as a result of
this bit being set if the Interrupt Status bit associated with this descriptor
is not cleared in the Interrupt Clear register after an interrupt has been
fired resulting in the interrupt queue associated with this descriptor (and
possibly other channels) becoming full.

13 Source Data
Valid

Read-write Indicates that data is valid at the source. Useful for chain and cyclic
operations to prevent the DMA controller from hogging the AXI DMA bus
waiting for valid data at the source.
The operation defined in this descriptor will not be performed until this bit
is set. The Source Data Valid bit is cleared by the DMA controller every
time that the operation defined in this descriptor has been completed.
The control master (firmware) must set this bit again for cyclic
operations.

14 Destination
Data Ready

Read-write Indicates that there is room for data at the destination. Useful for chain
and cyclic operations to prevent the DMA controller from hogging the AXI
DMA bus waiting for a buffer to be allocated at the destination.
The operation defined in this descriptor will not be performed until this bit
is set. The Destination Data Ready bit is cleared by the DMA controller
every time that the operation defined in this descriptor has been
completed. The control master (firmware) must set this bit again for
cyclic operations.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 35

Note: Descriptor X configuration register must be written after writing all registers for a particular Descriptor X.

5.8 Descriptor X Byte Count Register
The Descriptor X Byte Count register is used to specify the number of bytes to transfer by the DMA
operation described in descriptor X. Table 28 describes the Descriptor X Byte Count register.

15 Descriptor
Valid

Read-write Indicates that this is a valid descriptor. Provides firmware with a
mechanism to safely de-allocate buffer descriptors and prevents lock ups
from external start inputs being triggered at startup before firmware has
defined a valid descriptor.
This bit is automatically cleared when any field of this Configuration
register is written. The bit should be subsequently reset by firmware
when the descriptor is valid.
This field needs to be set from a UIC script if a UIC script is used to
predefine descriptors in memory.
Note: It is not recommended to modify descriptors that are kicked-off
using an external start input.
Once a DMA operation has been initiated this bit is no longer referenced.
Therefore an invalid descriptor interrupt will not be generated if a
descriptor in operation is modified.

31:15 Reserved Read-only Reserved – Returns all zeros if read.

Table 28 • Descriptor X Byte Count Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x04 Descriptor X
Byte Count
Register

Read-write 32 N/A Number of bytes to be transferred in the DMA
operation.

Table 29 • Descriptor X Byte Count Register Bit Definitions

Bit(s) Name Type Description
22:0 Number of

Bytes
Read-write Number of bytes to be transferred as part of the DMA operation.

Maximum permitted is ~ 8 MB (8,388,608 bytes).

31:22 Reserved Read-only Reserved – Returns all zeros if read.

Table 27 • Descriptor X Configuration Register Bit Definitions (continued)

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 36

5.9 Descriptor X Source Address Register
The Descriptor X Source Address register is used to specify the start address of the store part of the
DMA operation described in descriptor x. Table 30 describes the Descriptor X Source Address register.

5.10 Descriptor X Destination Address Register
The Descriptor X Destination Address register is used to specify the start address of the forward part of
the DMA operation described in descriptor x. Table 32 describes the Descriptor X Destination Address
register.

Table 30 • Descriptor X Source Address Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x08 Descriptor X
Source
Address
Register

Read-write 32 N/A Start address to source data from for the DMA store
operation.

Table 31 • Descriptor X Source Address Register Bit Definitions

Bit(s) Name Type Description
31:0 Source

address
Read-write Address to start the AXI read operation from during a store and forward

operation.

Table 32 • Descriptor X Destination Address Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x0C Descriptor X
Destination
Address
Register

Read-write 32 N/A Start address to forward data to for the DMA forward
operation.

Table 33 • Descriptor X Destination Address Register Bit Definitions

Bit(s) Name Type Description
31:0 Destination

address
Read-write Address to start the AXI write operation to during a store and forward

operation.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 37

5.11 Descriptor X Next Descriptor Number/Address Register
The Descriptor X Next Descriptor Number/Address register is used to specify the address/number of the
next descriptor in the chain, if descriptor x forms part of a cyclic chain or is part of a non-cyclic chain and
is not the last descriptor in the chain. Table 34 describes the Descriptor X Next Descriptor
Number/Address register.

5.12 Stream Address 0 Register
The Stream Address 0 register is used to store the address of the stream descriptor associated with
AXI4-Stream transactions with TDEST[1:0] set to 0b00. Table 36 describes the Stream Address 0
register.

Table 34 • Descriptor X Next Descriptor Number/Address Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

Offset 0x10 Descriptor X
Next
Descriptor
Number/Addr
ess Register

Read-write 32 N/A Descriptor number/address of the next
internal/external descriptor in the chain.

Table 35 • Descriptor X Next Descriptor Number/Address Register Bit Definitions

Bit(s) Name Type Description
31:0 Descriptor

Number/Addr
ess

Read-write Address/ number of the next descriptor in the chain. This register is
ignored if the Chain bit is not set in the Configuration register of this
descriptor. The value specified to this register depends on the External
Descriptor bit in the Configuration register:
0: Specify the internal descriptor number
1: Specify the address of the external descriptor

Table 36 • Stream Address 0 Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

0x460 Stream
Address 0
Register

Read-write 32 0x00 External stream descriptor address associated with
AXI4-Stream transactions of with TDEST = 0b00.

Table 37 • Stream Address 0 Register Bit Definitions

Bit(s) Name Type Description
31:0 Stream

Descriptor
Address

Read-write Address of the Configuration register of the stream descriptor in the AXI4
memory-map address space.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 38

5.13 Stream Address 1 Register
The Stream Address 1 register is used to store the address of the stream descriptor associated with
AXI4-Stream transactions with TDEST[1:0] set to 0b01. Table 38 describes the Stream Address 1
register.

5.14 Stream Address 2 Register
The Stream Address 2 register is used to store the address of the stream descriptor associated with
AXI4-Stream transactions with TDEST[1:0] set to 0b10. Table 40 describes the Stream Address 2
register.

Table 38 • Stream Address 1 Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

0x464 Stream
Address 1
Register

Read-write 32 0x00 External stream descriptor address associated with
AXI4-Stream transactions of with TDEST = 0b01.

Table 39 • Stream Address 1 Register Bit Definitions

Bit(s) Name Type Description
31:0 Stream

Descriptor
Address

Read-write Address of the Configuration register of the stream descriptor in the AXI4
memory-map address space.

Table 40 • Stream Address 2 Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

0x468 Stream
Address 2
Register

Read-write 32 0x00 External stream descriptor address associated with
AXI4-Stream transactions of with TDEST = 0b10.

Table 41 • Stream Address 2 Register Bit Definitions

Bit(s) Name Type Description
31:0 Stream

Descriptor
Address

Read-write Address of the Configuration register of the stream descriptor in the AXI4
memory-map address space.

Register Map and Descriptions

Microsemi Proprietary HB0739 Revision 2.0 39

5.15 Stream Address 3 Register
The Stream Address 3 register is used to store the address of the stream descriptor associated with
AXI4-Stream transactions with TDEST[1:0] set to 0b11. Table 42 describes the Stream Address 3
register.

Table 42 • Stream Address 3 Register

AxADDR
[10:0]

Register
Name Type Width

Reset
Value Description

0x46C Stream
Address 3
Register

Read-write 32 0x00 External stream descriptor address associated with
AXI4-Stream transactions of with TDEST = 0b11.

Table 43 • Stream Address 3 Register Bit Definitions

Bit(s) Name Type Description
31:0 Stream

Descriptor
Address

Read-write Address of the Configuration register of the stream descriptor in the AXI4
memory-map address space.

Tool Flows

Microsemi Proprietary HB0739 Revision 2.0 40

6 Tool Flows

6.1 Licensing
No license is required for the use of this core.

6.2 RTL
Complete RTL source code is provided for the core and testbench.

6.3 SmartDesign
CoreAXI4DMAController is preinstalled in the SmartDesign IP deployment design environment. An
example instantiated view is shown in the following figure. The core can be configured using the
configuration GUI within SmartDesign, as shown in Figure 7, page 14. To know how to create a
SmartDesign project using the IP cores, refer to the Libero SoC documents page and use the latest
SmartDesign user guide.

After configuring and generating the core instance, basic functionality can be simulated using the
testbench supplied with CoreAXI4DMAController. The testbench parameters automatically adjust to the
CoreAXI4DMAController configuration.

Note: Certain RTL within CoreAXI4DMAController is automatically created when the core instance is
generated in SmartDesign based upon the Priority and Interrupt associations of descriptors. For this
reason, top-level parameters should only be modified in the CoreAXI4DMAController configurator in
SmartDesign to ensure that the underlying RTL reflects the parameter modifications for both simulation
and synthesis flows.

Figure 11 • SmartDesign CoreAXI4DMAController Instance View

The core is configured using the configuration GUI within SmartDesign, as shown in Figure 12.

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

Tool Flows

Microsemi Proprietary HB0739 Revision 2.0 41

Figure 12 • SmartDesign CoreAXI4DMAController Configuration Dialog Box

Tool Flows

Microsemi Proprietary HB0739 Revision 2.0 42

6.4 Simulation Flows
The user testbench for CoreAXI4DMAController is included in all releases.

To run simulations:

1. Select the user testbench flow within SmartDesign.
2. Click Save and Generate in the Generate pane. The user testbench is selected through the Core

Testbench Configuration GUI.
When SmartDesign generates the Libero project, it installs the user testbench files.

To run the user testbench:

1. Set the design root to the CoreAXI4DMAController instantiation in the Libero design hierarchy pane.
2. Click Simulation in the Libero Design Flow window. This invokes ModelSim and automatically run

the simulation.

6.5 Synthesis
To run synthesis on the CoreAXI4DMAController, set the design root to the IP component instance and
run the synthesis tool from the Libero design flow pane.

6.6 Place-and-Route
After the design is synthesized, run the compilation and then place-and-route the tools.
CoreAXI4DMAController requires no special place-and-route settings.

Test-bench Operation and Modification

Microsemi Proprietary HB0739 Revision 2.0 43

7 Test-bench Operation and Modification

The testbench packaged along with CoreAXI4DMAController includes an instantiation of
CoreAXI4DMAController, connected up to an AXI4 subsystem, as shown in Figure 13.

Figure 13 • User Testbench

Control Master
CoreAXI4DMA Controller

(UUT)

Application.v

Frame_
drive_
model.v

AXI4 Interconnect Model

Slave 0
(SRAM)

Slave 1
(SRAM)

External Descriptor
Store (SRAM)

AXI to AXI‐Lite Bridge

Slave 1
(.memfile)

Slave 0
(.memfile)

Slave 2
(.memfile)

Interrupt
I/F

AXI4‐Lite
Ctrl I/F

AXI4 I/F AXI4 I/F

M0 M1

S0 S1 S2 S3

AXI4 I/F AXI4 I/F AXI4 I/F AXI4 I/F

AXI4‐Lite I/F

User Testbench

axi4_stream_maste
r_application.v

AXI4‐Stream
Master

AXI4‐Stream
I/F

Test-bench Operation and Modification

Microsemi Proprietary HB0739 Revision 2.0 44

The CoreAXI4DMAController testbench environment consists of the following components:

• Control Master: The Control Master component emulates the operation of an AXI4 bus master. The
operations carried out by the Control master are issued from the application.v file, which calls the
functions implemented in the firmware_driver_model.v file to model the intended operation of
CoreAXI4DMAController from a firmware driver and application perspective. Users can modify the
application.v script in order to simulate custom cases.

• CoreAXI4DMAController: An instance of CoreAXI4DMAController, the unit under test (UUT). In the
user testbench, the DMA interface of the core is connected to a master slot on the AXI4 interconnect
model. External fetches are fetched from the External Descriptor store over the AXI4 DMA interface.
The interrupt output of the core is connected to the Control Master to inform the master when a DMA
operation has completed or failed. The test cases provided in the application.v file perform data
transfers between the Slave0 and Slave1 AXI4 slave RAM blocks.

• AXI4 Interconnect Model: A lightweight AXI4 interconnect simulation model facilitating the
connection of two masters to four slaves. Round-robin arbitration is performed to share control
between the two masters. The interconnect implements separate channels for the write address,
read address, write data, read data, and write response AXI4 channels.

• Slave 0 (SRAM): AXI4 RAM wrapper simulation model. Configurable address width supported to
allow larger RAM blocks to be implemented. The contents of the RAM is initialized by slave0.mem.

• Slave 1 (SRAM): AXI4 RAM wrapper simulation model. Configurable address width supported to
allow larger RAM blocks to be implemented. The contents of the RAM is initialized by slave1.mem.

• External Descriptor Store (SRAM): The purpose of this AXI4 RAM wrapper simulation model is to
store external descriptors describing DMA operations. When pointed to via an internal descriptor,
CoreAXI4DMAController fetches the descriptor from the External Descriptor Store through the AXI4
DMA interface and executes the operation described in the descriptor, before clearing the source
data valid and destination data ready bits for each executed descriptor in the External descriptor
store on completion of the DMA operation. The Control Master must then determine if the slave
memory related to the external descriptor DMA operation is ready before re-setting the source data
valid and destination data ready bits for that descriptor in the External Descriptor Store. The contents
of the External Descriptor Store is initialized by DscrptrStore.mem.

• AXI4 to AXI4-Lite Bridge: An AXI4 to AXI4-Lite protocol bridge simulation model to facilitate an
AXI4 master connecting to the AXI4-Lite control interface of CoreAXI4DMAController. Buffering is
performed within the simulation model to break sequential burst transactions into non-sequential,
single beat transactions on the AXI4-Lite side.

• AXI4-Stream Master: An AXI-Stream master model is included in the user testbench when the
AXI4_STREAM_IF parameter is set to 1 when CoreAXI4DMAController is instantiated. This
generates the AXI4-Stream transactions defined in the axi4_stream_master_application.v file.

Note: The CoreAXI4DMAController testbench only executes for the default configuration of
CoreAXI4DMAController as RTL is generated based on user configuration parameters when the
SmartDesign sheet containing this instance of CoreAXI4DMAController gets generated. In addition, no
data width translation logic is included in the testbench between the interconnect slave port 3 and the
AXI4-Lite bridge to the AXI4-Lite Control interface of CoreAXI4DMAController (fixed data width of 32-bit
on the Control interface.

Note: Ignore the warnings during simulation of user testbench, if any.

	1 Revision History
	1.1 Revision 2.0
	1.2 Revision 1.0

	2 Introduction
	2.1 Features
	2.2 Core Version
	2.3 Supported Families
	2.4 Utilization and Performance

	3 Functional Description
	3.1 Architecture
	3.1.1 AXI4-Lite Slave Interface Controller
	3.1.2 Control and Status Registers
	3.1.3 Buffer Descriptors
	3.1.4 DMA Controller
	3.1.5 Memory Map Cache
	3.1.6 Stream Cache
	3.1.7 Interrupt Controller
	3.1.8 AXI4 Master Interface Controller
	3.1.9 AXI4-Stream Slave Interface Controller

	3.2 Buffer Descriptors
	3.2.1 Internal Descriptor Support
	3.2.2 External Descriptor Support
	3.2.3 Stream Descriptor Support
	3.2.4 Descriptor Management

	3.3 Flow Control/Throttling
	3.4 DMA Operations
	3.4.1 Chain Operations (Scatter-gather)
	3.4.2 Cyclic Operations

	3.5 AXI4-Stream Bridge
	3.6 Interrupts
	3.7 Arbitration
	3.8 AXI Transactions
	3.9 AXI4-Stream Transactions
	3.10 Cache Coherence

	4 Interface Descriptions
	4.1 Signal Descriptions
	4.2 Configuration Parameters

	5 Register Map and Descriptions
	5.1 Version Register
	5.2 Start Operation Register
	5.3 Interrupt X Status Register
	5.4 Interrupt X Mask Register
	5.5 Interrupt X Clear Register
	5.6 Interrupt X External Descriptor Register
	5.7 Descriptor X Configuration Register
	5.8 Descriptor X Byte Count Register
	5.9 Descriptor X Source Address Register
	5.10 Descriptor X Destination Address Register
	5.11 Descriptor X Next Descriptor Number/Address Register
	5.12 Stream Address 0 Register
	5.13 Stream Address 1 Register
	5.14 Stream Address 2 Register
	5.15 Stream Address 3 Register

	6 Tool Flows
	6.1 Licensing
	6.2 RTL
	6.3 SmartDesign
	6.4 Simulation Flows
	6.5 Synthesis
	6.6 Place-and-Route

	7 Test-bench Operation and Modification

