
CoreQDR v3.3
Handbook

CoreQDR v3.3 Handbook

CoreQDR v3.0 Handbook 2

Table of Contents

Introduction .. 3
About QDR... 3
QDR Supported Families and Devices .. 3
Core Overview ... 4
Key Features ... 5
Core Version .. 5
Supported Families ... 5
Utilization and Performance .. 5

Interface Description ... 7
Parameters/Generics ... 7
I/O Signals ... 7
I/Os.. 9

Operations .. 10
Clock Generation and Data Registering .. 10
Burst-of-2 Operation ... 11
Burst-of-4 Operation ... 12
User Interface Timing ... 13

Tool Flows... 15
Licensing .. 15
SmartDesign .. 15
Simulation Flows ... 15
Synthesis in Libero SoC .. 15
Place-and-Route in Libero SoC .. 15

Implementation Hints .. 16
CCC Configuration ... 16
Constraints ... 18

List of Changes .. 25

CoreQDR v3.3 Handbook 3

Introduction

About QDR
Quad data rate (QDR) synchronous dynamic random access memories (SDRAMs) are a family of SRAMs
with separate read and write channels, each operating at double data rate (DDR), optimized for high-
performance communication applications such as the data plane memory of routers. QDR SDRAM performs
functions such as packet buffering, statistics counting, and flow rate control. The specifications for QDR are
created and maintained by the QDR consortium, which comprises several companies, including Cypress
Semiconductor and Renesas Electronics.

QDR Supported Families and Devices
Table 1 outlines the various QDR flavors.

Table 1 ·QDR Families (source)
QDR Family QDR I QDR II QDR II+ QDR II+ Xtreme
Frequency 2-word burst 166 MHz 333 MHz 333 MHz 400 MHz

4-word burst 200 MHz 333 MHz 500 MHz 633 MHz
Latency 1 Cycle 1.5 Cycles 2 Cycles 2.5 Cycles
Clocks No echo CLKs Echo CLKs Echo CLKs Echo CLKs
Density 9Mb/18Mb 18/36/72 Mb 18/36/72/144Mb 36/72 Mb

http://www.qdrconsortium.org/qdr-product-family.htm

Introduction

4 CoreQDR v3.3 Handbook

Core Overview
CoreQDR provides a soft IP controller for interfacing with the QDR, QDR II, or QDR II+ SRAMs. Figure 1
shows the basic use of CoreQDR in a system.

SmartFusion2 FPGA

CoreQDR QDR II SRAM Device

RREQ_N

WREQ_N

RADDR[18:0]

WADDR[18:0]

RDATA[71:0]

WDATA[71:0]

SYSCLK

Write Clock
PLL

Tx CCC
K

K_N

RPS_N

WPS_N

BWS2_N

Read Data
Capture

Q[17:0]

BWS1_N

BWS0_N

Write Data
Generation

D[17:0]

A[18:0]

90º shifted

WSTRB[2:0]

Read FIFO /
Pipeline Logc

Write FIFO /
Pipeline

Logic

RFULL

RREADY

READ_N

Read Clock
PLL

Rx CCC

WFULL

RESET_N

PLL_WCLK

PLL_WCLK_DIV2

PLL_K_IN
PLL_TX_LOCK

PLL_RCLK

PLL_RX_LOCK

CQ

CQ_N

90º shifted} }

Figure 1 CoreQDR System

Note:
• In Figure 1, burst-of-2 Operation with an SRAM width of 18 is Configured
• For optimal performance and to easy Place-and-Route/timing closure, it is recommended to select an SRAM

device with QVLD support, that is, QDR II+ devices and set USE_QVALID to 1. For more information, refer to
the Parameters/Generics section below.

• The actual Read and Write Clock PLL’s are implemented in the device but outside of CoreQDR. For more
information, refer to the relevant application note on Meeting Timing for CoreQDR in SmartFusion2. For
examples on how to instantiate these blocks, please refer to the top-level testbench file coreqdr_tb.v.

• The examples given in this document show a system clock (PLL_WCLK_DIV2) of 166 MHz and QDR clocks
(RCLK, WCLK, K/K#, and CQ/CQ#) of 333 MHz. For certain designs (depending on the overall system), these
frequencies may not be achievable, in which case the clock rate may always be scaled down.

Key Features

CoreQDR v3.3 Handbook 5

Key Features
CoreQDR is a configurable memory controller for QDR static random access memory (SRAM) devices and
has the following features:
• Supports QDR II Interface

- Up to 666 MHz double data rate (333 MHz clock)
- Separate read and write channels D (input) and Q (output), supporting concurrent transactions
- Single address channel A
- Burst of 2 and burst of 4 support (configurable)

• Configurable clock cycle latency using configuration input ports
- Clock cycle (coarse latency)
- Clock edge (fine latency)

• Configurable QDR data width D/Q (8, 9, 18, 36 bits)
• Two phase-locked loops (PLLs), instantiated outside of CoreQDR; top-level PLL inputs in CoreQDR

- One to generate true write clock (K and K_n)
- One to generate 90 degree phase shifted clock from Echo (read) clock

• Two-Port FIFO’s for clock synchronization/pipelining
- Write Data Path
- Read Data Path
- Write Address Path
- Read Address Path

• Configurable use of QVLD signal
- When enabled, QVLD signal is used and there is no write-read clock crossing
- When disabled (for QDR I / QDR II devices not supporting QVLD), CoreQDR generates an internal

data valid signal

Core Version
This handbook applies to CoreQDR v3.3.

Supported Families
• SmartFusion®2
• RTG4™

Utilization and Performance
Table 2 and Table 3 show CoreQDR utilization and performance for two configurations (burst-of-2 and burst-
of-4) at 18-bit data width (maximum configurable).

Table 2 ·Burst-of-2 Utilization and Performance

Family Logic Elements RAM Usage Speed Sequential Combinatorial Total Device Total
SmartFusion2 893 558 1,451 M2S050T 2% 12 RAM1K18

blocks
167 MHz

RTG4 1,291 1,586 2,877 RT4G150 2% 12 RAM1K18
blocks

100 MHz

Note: In burst-of-2 configuration with SRAM_WIDTH = 18

Introduction

6 CoreQDR v3.3 Handbook

Table 3 ·Burst-of-4 Utilization and Performance

Family Logic Elements RAM Usage Speed Sequential Combinatorial Total Device Total
SmartFusion2 871 500 1,371 M2S050T 2% 12 RAM1K18

blocks
167 MHz

RTG4 1,244 1,581 2,825 RT4G150 2% 12 RAM1K18
blocks

100 MHz

Note: In burst-of-4 configuration with SRAM_WIDTH = 18

CoreQDR v3.3 Handbook 7

Interface Description

CoreQDR consists of a QDR II interface on one side for controlling a QDR memory chip as well as capturing
data from it and generating data to it. On the other side, there is a generic user interface, which consists of
basic write/read selects, separate read and write data buses, and an input clock PLL_WCLK_DIV2. For
more information on top-level ports, refer to the I/O Signals section.

Parameters/Generics
All the parameters (Verilog) and generics (VHDL) for CoreQDR are described in Table 4. All parameters and
generics are positive integer types.

Table 4 ·CoreQDR Parameter/Generic Descriptions
Name Valid

Range
Default Description

FAMILY 19, 25 19 Must be set to the required field programmable gate array (FPGA) family:
19: SmartFusion2
25: RTG4

SRAM_DWIDTH 8, 9, 18,
36

8 SRAM data width; specifies the width, in bits, of data buses D and Q
Note:

This IP does not support x36 mode for SmartFusion2.

SRAM_AWIDTH 19, 20, 21 19 SRAM address width; specifies the width, in bits, of address bus A
SRAM_BURST 0 or 1 0 Burst size

0: Burst-of-2 operation is used
1: Burst-of-4 operation is used
For more information, refer to the Burst-of-2 Operation, Burst-of-4 Operation, and
User Interface Timing sections.

USE_QVALID 0 or 1 0 QVLD enable
When 0: CoreQDR does not use QVLD input
When 1: CoreQDR uses USE_QVALID as an enable to register data from the
QDR memory. This is enabled only for QDRII+ and higher devices.

I/O Signals
The input/output (I/O) ports are listed in Table 5.

Table 5 ·CoreQDR Signals and Descriptions
Name Width Type Description
Configuration Ports
LAT_SEL 3 Input Latency select

Note:
1. This port is only used when Q_VALID is 0. When Q_VALID is 1, there is no

need to generate an internal read valid signal.
2. This value should be tweaked post-layout, as the clock cycle that the data

appears valid to CoreQDR is dependent on Place and Route results. It is
vital that the user run post-layout simulations.

8 CoreQDR v3.3 Handbook

Name Width Type Description
This port determines how many clock cycles after RPS_N is asserted data
becomes valid.
0: 1 cycle
1: 2 cycles
2: 3 cycles
…
7: 8 cycles

Q_EDGE 1 Input Edge select
A finer-grained tuning of expected data arrival, this port selects whether the first
data coming from the QDR SRAM is expected on the rising edge or the falling
edge.
0: Rising Edge
1: Falling Edge
Note: Q_EDGE is used only when USE_QVALID is 0.

Clocks and Reset
Note: All signals prefaced with “PLL_” should be outputs of a CCC that the user must instantiate in the top-level of their

design.

PLL_WCLK_DIV2 1 Input System clock, drives the write data path in the 166 MHz domain.
PLL_TX_LOCK 1 Input Lock output of CCC used for generating write clock from system clock.
PLL_RX_LOCK 1 Input Lock output of CCC used for generating read clock from CQ/CQ#.
PLL_RCLK 1 Input 90-degree phase-shifted output of a CCC for which CQ is the reference clock.
PLL_WCLK 1 Input A 333 MHz clock must be synchronous with PLL_WCLK_DIV2 and 2x the

frequency of PLL_WCLK_DIV2.
PLL_K_IN 1 Input A 333 MHz clock must be 90 phase-shifted with regards to PLL_WCLK.
RESET_N 1 Input System reset, active low
User Interface Signals

RREQ_N 1 Input Read request signal, sampled on the rising edge of PLL_WCLK_DIV2. Requests
a read operation by loading the RADDR into the address FIFO. Can be asserted
at the same time as WREQ_N. Active low.

RREADY 1 Output Indicates that there is data waiting in the READ FIFO.

RFULL 1 Output Indicates that the read FIFO is full. Subsequent read transactions will be lost.

READ_N 1 Input When RREADY is asserted, this signal can be asserted to pull data from the
READ FIFO; data appears on the read data bus two cycles after READ_N is
asserted.

WREQ_N 1 Input Write request signal, sampled on the rising edge of PLL_WCLK_DIV2. Write
data must be presented on this same cock cycle at the data bus WDATA. Write
data then gets written to the write FIFO and subsequently the QDR memory,
following the standard QDR II timing. Can be asserted at the same time as
RREQ_N. Active low.

WFULL 1 Output Indicates that the write FIFO is full. This should not typically happen, since data
should be cleared to the FIFO as quickly as it is written onto the QDR interface.

WADDR SRAM_A
WIDTH

Input Write address, sampled on the rising edge of PLL_WCLK_DIV2.

RADDR SRAM_A
WIDTH

Input Read address, sampled on the rising edge of PLL_WCLK_DIV2.

RDATA SRAM_D
WIDTH*4

Output Read data, output at rising edge of PLL_WCLK_DIV2.

I/Os

CoreQDR v3.3 Handbook 9

Name Width Type Description
WDATA SRAM_D

WIDTH*4
Input Write data, sampled on the rising edge of PLL_WCLK_DIV2.

WSTRB 3 Input Reserved, currently unused.
Interrupts
CLK_READY 1 Output Indicates that the RX and TX clocks are locked and ready. Data should not be

written or read until this output is asserted. RESET_N should be held low until
CLK_READY is asserted.

QDR SRAM Signals
Control
RPS_N 1 Output Read port select, active low
WPS_N 1 Output Write port select, active low
BWS2_N 1 Output Byte write select 2, active low; used for 18-bit memory only
BWS1_N 1 Output Byte write select 1, active low; used for 9-bit and 18-bit memories
BWS0_N 1 Output Byte write select 0, active low; used for 8-, 9-, and 18-bit memories
NWS1_N 1 Output Nibble write select 1, active low; used only for 8-bit memories
NWS0_N 1 Output Nibble write select 0, active low; used only for 8-bit memories
A SRAM_A

WIDTH
Output QDR address bus

Write Channel
K 1 Output Write clock
K_N 1 Output Inverted write clock
D SRAM_D

WIDTH
Output Write data bus

Read Channel
Q SRAM_D

WIDTH
Input Read data bus

Q_VALID 1 Input Data valid signal
Notes:

1. CQ and CQ_N are only provided for QDR II/QDR II+ mode, and are used to derive the PLL_RCLK signal.
2. All signals are active high unless otherwise indicated.

I/Os
QDR II requires the HSTL I/O standard using a VREF of 0.7 V and a VDDIO of 1.5 V, which is supported by
the SmartFusion2 DDRIO. A termination voltage of VDDIO/2 is required, in this case 0.75 V, which is also
supported by SmartFusion2 DDRIO.
For more information on supported DDRIO modes, refer to the SmartFusion2 Datasheet
For more information on the HSTL I/O standard, visit www.jedec.org.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.jedec.org/

10 CoreQDR v3.3 Handbook

Operations

Clock Generation and Data Registering
The QDR interface consists of two write clocks, K and K_N, and two read clocks, CQ and CQ_N. For
optimal data capture, CoreQDR internally shifts both the write clocks and the read clocks by 90 degrees and
uses these shifted clocks to capture data. This ensures that timing is met and that the clock edges are
roughly in the middle of the data capture window.
To that end (meeting timing), the nominal clock domain of 333 MHz (666 MHz DDR) must be slowed to a
167 MHz single data rate (SDR) using multiplexing/demultiplexing logic. Essentially, the data rate is traded
for bus width – that is, lowering the local bus data rate by increasing its width. This presents unique
challenges (and requires much more heavy pipelining), but allows the main CoreQDR controller logic run at
a more manageable 167 MHz. This applies to both the read datapath and the write datapath. The address
path need not be widened.
Figure 2 and Figure 3 on page 11 show the clock generation scheme and data registering/generation
scheme used in CoreQDR.

333 MHz DDR333 MHz SDR167 MHz SDR

REFCLK
WCLK K_N

Lock

DDR_OUT

Dr

Df

1

0
Q K

DDR_OUT

D

FPGA QDR

@167MHz

@333MHz

K_OUT

WDATA
72

36

36

sel1

From write
FIFO

@333MHz

36

18

18

Dr

Df

Q

Figure 2 ·QDR Write Datapath and Clocks for SRAM_WIDTH = 18

In Figure 2, the data bus is first narrowed, and the data rate increased, by a factor of 4. For the case of
burst-of-2 operation, this is done by a factor of 2. The final step in the datapath to the QDR II memory is
register the data using the DDR_OUT output register, which acts as a sort of multiplexer (MUX), selecting Dr
on the positive edge and Df on the negative edge.
The output K and its complement K_N are generated using a 270 degree output clock operating at 2 times
the system clock frequency (333 MHz) and an invert located in the output I/O, which comes free in the
DDRIO block.

Burst-of-2 Operation

CoreQDR v3.3 Handbook 11

Note: The TX PLL as shown above must be instantiated in the top-level of the design. You must generate and route
the clock signals from the CCC to the appropriate inputs of CoreQDR (signals proceeding with PLL_WCLK* as
described in the Port List).

167 MHz SDR 333 MHz SDR 333 MHz DDR

PLL

CQCLKINCLK_90

LOCK
To read

synchronization
logic

D

DDR_REG

Qr

Qf
Q

18
1836

@333MHz@333MHz

CLK2_90
@167MHz

36

36
18

72
RDATA

To QDR read/
write controller

en0

Figure 3 ·QDR Read Datapath and Clocks for SRAM_WIDTH = 18

In Figure 3, a simplified version of read data is registered from the QDR SRAM using the echo clock; the
data is edge-aligned to the echo clock CQ. CQ_N is not used because the DDR_REG block only uses a
single clock and registers data at both falling and rising edges. In order to meet timing, the read clock is also
shifted by 90 degrees; this ensures that data is centered around the read clock, CQ. The data is then
widened using 2 sets of registers and the register enables that alternate high and low on consecutive clock
cycles.

Note:
• The RX PLL as shown above must be instantiated in the top-level of the design. You must generate and route

the clock signals from the CCC to the appropriate inputs of CoreQDR (signals proceeding with PLL_R* as
described in the Port List).

• To ensure that the clock routing delay does not erode timing margins, and to ensure that there is indeed a 90º
phase-shift between PLL_RCLK and the data (Q). You instantiate a CCC with a dedicated Hardwired Input as
the reference clock. They should also generate a 0º clock as one of the outputs of the CCC and connect it to a
Fabric Input feedback port of that same CCC. This will mitigate clock routing delay between the clock PAD and
the fabric.

Burst-of-2 Operation
The latencies shown in Figure 4 are contingent on timing being met, and are not guaranteed in the final
design. During a burst-of-2 read operation, a read address must be presented on the RADDR bus of the
local user interface. This is latched using the rising edge of the input clock PLL_WCLK_DIV2, along with the
RREQ_N control signal, which indicates that a read is requested. After several clock cycles (the precise
number depending on the status of the write and read FIFOs), the address appears on the address bus A at
the rising edge of K clock signal. After a clock latency defined by the Q_EDGE and LAT_SEL inputs, the
data appears on the QDR data bus, at which point it is latched at the rising edge and then falling edge
(DDR) of the 90-degree shifted CQ echo clock from the QDR SRAM device. This latched data is stored in
FIFO and the RREADY signal (active high) is asserted. It will be possible to read from the FIFO by asserting
the READ_N input.

12 CoreQDR v3.3 Handbook

During a burst-of-2 write operation, a write address must be presented on the WADDR bus of the local user
interface, as well as valid data on the WDATA line. These are latched using the rising edge of the input clock
PLL_WCLK_DIV2, along with the WREQ_N control signal, which indicates that a write is requested using
the current address and data. After some time, CoreQDR presents the least significant half of the data (for
example, WDATA[7:0] for an 8-bit memory) on the rising edge of K. On the subsequent falling edge of K, the
most significant half of the data (WDATA[15:8], for example), is presented at the same time as the latched
address is presented on A.
Since QDR uses separate read and write channels and since the shared address bus uses rising edge K
capture for reads and falling edge K capture for writes, it is possible to conduct concurrent read and write
operations with no change in timing from read-only or write-only.
Figure 4 shows the waveform for both read and write transactions at maximum throughput (back-to-back
transactions). This waveform only describes the deterministic QDR II timing, not the local interface.

K

K_N

A A1 A2 A3 A4

WPS_N

READ WRITE

RPS_N

D

Q

CQ

D2-1 D4-1 D6-1 D7-1D2-2 D4-2 D6-2 D7-2

Q1-1 Q3-1 Q5-1Q1-2 Q3-2 Q5-2

CQ_N

A5 A6 A7

READ WRITE READ WRITE NOP WRITE NOP NOP NOP NOP NOP NOP

Figure 4 ·Burst-of-2 QDR Operation

Burst-of-4 Operation
Burst-of-4 operation is similar to burst-of-2, except that the user interface data width is twice as wide (that is,
four times data width overall), and each transaction on that side produces a burst-of-4. As a result,
consecutive transactions of the same type (read or write), cannot be performed on consecutive clock cycles,
since it takes 2 full clock cycles for a burst-of-4 to occur (that is, 2 rising edges and 2 falling edges).
Figure 5 shows the waveform for both read and write transactions at maximum throughput (back-to-back
transactions). This waveform only describes the deterministic QDR II timing, not the local interface.

User Interface Timing

CoreQDR v3.3 Handbook 13

K

K_N

A A1 A2 A3 A4

WPS_N

READ NOPREADWRITE WRITE NOP

RPS_N

D

Q

D2-1 D2-3 D4-1 D4-3D2-2 D2-4 D4-2 D4-4

Q1-1 Q1-3 Q3-1 Q3-3Q1-2 Q1-4 Q3-2 Q3-4

CQ

CQ_N

Figure 5 ·Burst-of-4 QDR Operation

User Interface Timing
All user interface signals, both control and data, are synchronous to the rising edge of PLL_WCLK_DIV2.
On any given clock cycle (rising edge of PLL_WCLK_DIV2), the user may perform a write operation, a read
operation, or both at the same time, as long as the WFULL is not asserted (for writes) and RFULL is not
asserted (for reads).
Figure 6 shows a sample of reads and writes on the user interface. Control signals, interrupts, and status
outputs are omitted for simplicity. Write transactions are straightforward; as long as the WFULL output (not
shown) is not asserted, it is possible to perform a write by pulling the WREQ_N signal low. Write address
(WADDR) and write data (WDATA) must be presented on the same clock edge as the WREQ_N control.
For read transactions, a read can be requested on any clock cycle by pulling the RREQ_N signal low, as
long as the RFULL output (not shown) is not asserted. The read address (RADDR) must be presented on
the same clock cycle as the RREQ. After several clock cycles1, CoreQDR asserts the RREADY signal,
indicating that there is data present in the read FIFO. When RREADY is asserted, the available data can be
read by pulling the READ_N signal low. Read data is presented on the RDATA bus two clock cycles
following the assertion of READ_N.

1 The exact number depends on the latency configuration of the core and whether it is operating in
Burst-of-2 mode or Burst-of-4 mode.

14 CoreQDR v3.3 Handbook

Note: For burst-of-2 operation, consecutive reads or consecutive writes should be performed at increments of
addresses of 2, because each user-side transaction corresponds to two QDR bursts on the QDR interface. For
burst-of-4 operation, consecutive operations should be performed on sequential addresses, because each
user-side operation corresponds to a single QDR burst.

A4

SYSCLK

WREQ_N

WADDR

WDATA

RREQ_N

RADDR

RDATA

A1

WRITE

D1

A2

D2

WRITEREADNOP

RREADY

READ_N

A3

READ
NOP NOP NOP

D4D3

Figure 6 ·User Interface Timing (Burst-of-2 and Burst-of-4)

Note: In Burst-of-2 mode, each (4x data width) user interface read/write gets translated to 2 burst-of-2 read/writes on
the QDR interface. In Burst-of-4 mode, each (4x data width) user interface read/write gets translated to a
single burst-of-4 read/write on the QDR interface.

Licensing

CoreQDR v3.3 Handbook 15

Tool Flows

Licensing
CoreQDR is available as clear RTL in Verilog and VHDL versions.

SmartDesign
CoreQDR is available for download to the Libero® System-on-Chip (SoC) IP Catalog through the web
repository. Once it is listed on the catalog, the core can be instantiated using the SmartDesign flow. The
core can be configured using the configuration GUI within SmartDesign.
For information on using SmartDesign to instantiate and generate cores, refer to the Using DirectCore in
Libero SoC User Guide.

Simulation Flows
A testbench is included with the CoreQDR release.
To run simulations, select Testbench: User inside the CoreQDR configurator in SmartDesign. Click Save
and Generate on the Generate pane.
When SmartDesign generates the Libero SoC project, it installs the User Testbench files.

User Testbench
The User Testbench includes the CoreQDR with a sample memory model. The memory model should be
replaced with the appropriate model being used for the target application.

Synthesis in Libero SoC
Right-click on Synthesize in the Design Flow pane. Select Configure Options. Ensure that the Verilog
2001 standard option is selected. To run Synthesis, right-click on Synthesize and select Run.

Place-and-Route in Libero SoC
Note: To run place and route, right click on Place and Route and select Run. CoreQDR requires no special place-and-route

settings.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850

16 CoreQDR v3.3 Handbook

Implementation Hints

CCC Configuration
In order to operate CoreQDR at the required speeds, it is important to configure the two Clock Condition
Circuits (CCC’s) appropriately. These consist of a transmit clock CCC and receive clock CCC.
The transmit or write path CCC’s input can be configured as per the system requirements and the outputs
must be configured with a 333 MHz 0-degree write path launch clock, 333 MHz 90-degree write clock, and
166.5 MHz 0-degree system or user interface clock. Figure 7 and Figure 8 show an example of TX clock
configuration in the CCC configurator in Libero SoC (v11.2) and its connection to CoreQDR.

Note: The GL0 is the 0-degree system clock (connecting to PLL_WCLK_DIV2), GL1 is the
333 MHz QDR launch clock (connecting to PLL_WCLK), and GL2 is a 90-degree phase-shifted version of GL1
used to pass through to K via DDR block to ease timing (connecting to PLL_K_IN).

Figure 7 ·TX PLL Configuration

CCC Configuration

CoreQDR v3.3 Handbook 17

Figure 8 ·Connecting TX CCC to CoreQDR

Similarly, the receive or read path, CCC must be configured appropriately. In this case, you must configure
the reference clock to correspond with the echo clock coming back from the QDR SRAM device. Microsemi®
recommends using a dedicated (hardwired) CCC input pad for this clock. This allows for deterministic timing
between the CCC and CLK PAD. These pins are documented in the pinout table as CCC_***_CLKlw pins
and are specific to CCC locations.

Note: The REFCLK in Figure 9 is configured as a Dedicated CCC Input Pad. In addition, to mitigate the clock PAD
delay and to ensure that read data and the read clock are aligned. You must use a 0-degree feedback clock.
Figure 9 shows this as GL0. GL1, on the other hand, is the read capture clock, which is a 90-degree phase
shifted clock and which should be connected to the CoreQDR PLL_RCLK input port.

Figure 9 ·RX PLL Configuration

18 CoreQDR v3.3 Handbook

Figure 10 ·Connected RX CCC to CoreQDR

Constraints
As the CoreQDR is a high-speed controller, it is important to provide it with tight constraints in order to
Place-and-Route a Libero SoC design without timing violations.

Pin Constraints
There are several pins in CoreQDR, WPS_N and RPS_N, A[*] and D[*] (write port select and read port
select, address, and data, respectively) whose final stage is a register. To aid in timing, it is required that
these ports be pushed to the IO registers. In the physical design constraint (PDC) file, this can be forced
with a -register switch. For example:

ENABLE IO REGISTER PACKING

set_io RPS_N \

-pinname E11 \

-fixed yes \

-iostd HSTLII \

-FF_IO_STATE TRISTATE \

-OUT_LOAD 5 \

-RES_PULL None \

-register yes \

-DIRECTION OUTPUT

ENABLE IO REGISTER PACKING

set_io WPS_N \

-pinname D15 \

-fixed yes \

-iostd HSTLII \

Constraints

CoreQDR v3.3 Handbook 19

-FF_IO_STATE TRISTATE \

-OUT_LOAD 5 \

-RES_PULL None \

-register yes \

-DIRECTION OUTPUT

set_io {A[*]} \

-pinname A14 \

-fixed yes \

-REGISTER Yes \
-OUT_REG Yes \

-DIRECTION OUTPUT

Note: To help with placement and routing, it is advised to assign buses contiguously. That is, for the address bus A,

A[0] must be next to A[1], followed by A[2], and so on. The same principal applies to the data buses D and Q.

Timing Constraints
To create input and output delay constraints, refer to the datasheet for the particular QDR device with which
they are interfacing.

Input Constraints
For input delays, create two sets of delays, a maximum and a minimum for the Q ports (with respect to CQ)
for both rising and falling edges of the clock. This will yield a set of four constraints, which are derived from
the memory’s output clock-to-Q and hold time (for max and min, respectively). An example of these for a
particular device operating at 333 MHz is given below:
Input delay (max) = trace delay + Tcqd = 0.257 + 0.250 (@333Mhz) = 0.507ns

Input delay (min) = trace delay + Tcqdoh = 0.257 - 0.250 (@333Mhz) = 0.007ns

set max_input_delay 0.507

set min_input_delay 0.007

set_input_delay $max_input_delay \

-clock { CQ } \

-max [get_ports { Q }]

set_input_delay $min_input_delay \

-clock { CQ } \

-min [get_ports { Q }]

set_input_delay -clock_fall $max_input_delay \

-clock { CQ } \

-max [get_ports { Q }]

set_input_delay -clock_fall $min_input_delay \

-clock { CQ } \

-min [get_ports { Q }]

Output Constraints
The same principles apply to Output delays, with the exception that SmartTime must be aware that launch
and capture are happening on the same edge. This is achieved by setting a max delay of 0 (setup) and one
clock cycle (hold) min delay for control, data, and address signals. An example of output delay constraints is
shown below.

20 CoreQDR v3.3 Handbook

OUTPUT DELAYS

LAUNCH & CAPTURE ARE HAPPENING ON SAME EDGE

Output delay (max) = trace delay + Tsa = 0.257 + 0.300 = 0.557ns

Output delay (min) = trace delay + Tha = 0.257 - 0.300 = -0.043ns

set max_output_delay 0.557

set min_output_delay -0.043

set clock_period 3.000

set half_period 1.500

RPS_N, WPS_N_A are SDR

set_output_delay $max_output_delay \

-clock { K } \

-max [get_ports { RPS_N WPS_N }]

set_output_delay $min_output_delay \

-clock { K } \

-min [get_ports { RPS_N WPS_N }]

SETUP = 0, HOLD = -CLOCK PERIOD ####

set_max_delay 0\

-to [get_ports { RPS_N WPS_N }]

set_min_delay -$clock_period\

-to [get_ports { RPS_N WPS_N }]

A, D are DDR

set_output_delay $max_output_delay \

-clock { K } \

-max { D A }

set_output_delay -clock_fall $max_output_delay \

-clock { K } \

-max { D A }

set_output_delay $min_output_delay \

-clock { K } \

-min { D A }

set_output_delay -clock_fall $min_output_delay \

-clock { K } \

-min { D A }

SETUP = 0, HOLD = -HALF PERIOD ####

set_max_delay 0\

-to [get_ports { D A }]

set_min_delay -$half_period\

-to [get_ports { D A }]

Constraints

CoreQDR v3.3 Handbook 21

Synthesis Constraints
The input and output constraints defined above must also be included as constraints for Synthesis. The
input and output constraints are shown below:
###==== INPUT / OUTPUT DELAYS

set_input_delay {p:Q[17:0]} -clock {c:CQ} {0.507}

set_input_delay {p:Q[17:0]} -clock {c:CQ} -clock_fall {0.507}

set_output_delay {p:RPS_N} -clock {c:K} {0.557}

set_output_delay {p:WPS_N} -clock {c:K} {0.557}

set_output_delay {p:A[18:0]} -clock {c:K} {0.557}

set_output_delay {p:A[18:0]} -clock {c:K} -clock_fall {0.557}

set_output_delay {p:D[17:0]} -clock {c:K} {0.557}

set_output_delay {p:D[17:0]} -clock {c:K} -clock_fall {0.557}

It is also important to ensure that all clocks are correctly defined in the Synplify SDC file. For example, using
the clock configuration above, using a 50 MHz external input clock:
###==== CLOCKS

create_clock -name {CLK0_PAD} {p:CLK0_PAD} -period {20}

create_clock -name {CQ} {p:CQ} -period {3}

###==== GENERATED CLOCKS

create_generated_clock -name {FCCC_1_GL0} -source {p:CQ} {n:FCCC_1.GL0_net} -multiply_by
{1}

create_generated_clock -name {FCCC_1_GL1} -source {p:CQ} {n:FCCC_1.GL1_net} -multiply_by
{1}

create_generated_clock -name {FCCC_0_GL0} -source {p:CLK0_PAD} {n:FCCC_0.GL0_net} -
multiply_by {333} -divide_by {100}

create_generated_clock -name {FCCC_0_GL1} -source {p:CLK0_PAD} {n:FCCC_0.GL1_net} -
multiply_by {333} -divide_by {50}

create_generated_clock -name {FCCC_0_GL2} -source {p:CLK0_PAD} {n:FCCC_0.GL2_net} -
multiply_by {333} -divide_by {50}

Note: Depending on the version of Synplify being used, it may also be necessary to shorten net paths – which can
be observed in the SmartTime timing analyzer – by ensuring that the fanout of certain signals is 1. This can be
achieved using the syn_maxfan attribute. The following lines in the SDC file are greatly improved timing:
###==== ATTRIBUTES

define_attribute {i:COREQDR_0.genblk1\.waddr_select} {syn_maxfan} {1}

define_attribute {i:COREQDR_0.genblk1\.raddr_select} {syn_maxfan} {1}

Clock Source Latencies
As mentioned in CCC Configuration section, the read clock CCC contains a feedback loop to mitigate the
clock generation and clock routing delay from CQ to the read clock. SmartTime must be made aware of this
path by adding a clock latency in the timing constraints. This latency can be calculated as follows in
SmartTime, and must be done for both the maximum and minimum case:

Latency = tREFCLK to GL0 + tGL0 to CLK0

Where GL0 is the 0-degree CCC output, REFCLK is the dedicated input Pad, and CLK0 is the feedback
input. This can be calculated by adding User Sets in SmartTime and observing the values reported. For
more information on this flow, refer to the Libero SoC User Guide. As calculated this information, add a clock
latency with the following:
RX PLL GL0 ####

set_clock_latency -source \

-early \

-rise \

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850

22 CoreQDR v3.3 Handbook

$max_pll_clock_latency \

[get_clocks FCCC_1/CCC_INST/INST_CCC_IP:GL0]

set_clock_latency -source \

-early \

-fall \

$max_pll_clock_latency \

[get_clocks FCCC_1/CCC_INST/INST_CCC_IP:GL0]

set_clock_latency -source \

-late \

-rise \

$max_pll_clock_latency \

[get_clocks FCCC_1/CCC_INST/INST_CCC_IP:GL0]

set_clock_latency -source \

-late \

-fall \

$max_pll_clock_latency \

[get_clocks FCCC_1/CCC_INST/INST_CCC_IP:GL0]

Note: This path must be calculated and checked against the design for both minimum (hold time) and maximum
(setup time).

False Paths and Special Cases
It is possible that SmartTime will report paths as having timing violations when those paths are invalid or not
in use for particular configurations. In this case, it is advised to set those paths as false paths so that
designer is able to ignore those paths and concentrate on placement relevant to meeting timing.
In particular, there are paths meant to be asynchronous in the read data FIFO that are false paths, and
should be set as such if they are being reported as having timing violations in SmartTime, using the
following SDC commands:
FALSE PATH FOR ASYNC FIFO PATHS ####

set_false_path -from {
COREQDR_0/genr_18.fifo_rdata/COREFIFO_0/genblk1.U_fifocore_async/genblk1.rptr[*]:CLK } \

-to {
COREQDR_0/genr_18.fifo_rdata/COREFIFO_0/genblk1.U_fifocore_async/Rd_doubleSync/sync_int[*
]:D }

set_false_path -from {
COREQDR_0/genr_18.fifo_rdata/COREFIFO_0/genblk1.U_fifocore_async/genblk1.wptr[*]:CLK } \

-to {
COREQDR_0/genr_18.fifo_rdata/COREFIFO_0/genblk1.U_fifocore_async/Wr_doubleSync/sync_int[*
]:D }

In addition, there may be cases where the user must over-constrain certain paths that should be
theoretically solvable by placement – that is, if there is a significant Net Delay to Cell Delay ratio. This
situation indicates more routing delay compared to logical delay through the cells. By setting a max_delay
constraint the place and route can be forced to tighten the routing segments and improving the entire path
timing. This can be done by setting a maximum to less than one clock period. For example, for a 333 MHz
clock, the user might set a register-to-register max delay to 2.5 ns, as such:
ADD MAX DELAY TO IMPROVE TIMING ####

set_max_delay 2.500\

 -from { COREQDR_0/genblk1.fifo_raddr_0[*]:CLK } \

 -to { COREQDR_0/genblk1.raddr_0[*]:D }

set_max_delay 2.500\

Constraints

CoreQDR v3.3 Handbook 23

 -from { COREQDR_0/genblk1.fifo_waddr_0[*]:CLK } \

 -to { COREQDR_0/genblk1.waddr_reg[*]:D }

Post-layout Simulation and Clock Adjustment
Microsemi recommends connecting CoreQDR to a QDR SRAM device with a QVLD signal. If that is the
case, the steps outlined in this section are not required, as there are no asynchronous clock domain
crossings.
If CoreQDR is used without QVLD enabled – that is, if the USE_QVALID parameter is set to 0 – this
complicates timing significantly. If QVLD is not enabled, CoreQDR attempts to predict when data will
become valid on the read data bus (Q) by counting clock cycles, selecting a fixed edge using the LAT_SEL
and Q_EDGE configuration ports. It then asserts a read_data_valid signal internally, which gets passed to
the SHIM layer of the core and is used to register the data from the DDR block. The data is then written into
the read data FIFO.
The challenge with this approach is that there is a clock domain crossing between the read clock and the
write clock that is not necessarily deterministic. It is entirely dependent on the propagation of the output K
clock from the I/O pad on the board, to the QDR SRAM device, through the internal SRAM PLL, back out
through the echo clock of the SRAM, and back into the IO pad of the SmartFusion2/IGLOO2 device through
the CQ input, feeding into a second CCC (refer to CCC Configuration section).
As this phase relationship is variable depending on chip layout and board layout and I/O placement, ensure
that, at the register(s) at which the clock crossing occurs, there is sufficient phase shift (nominally
180-degrees) between the clocks to not violate either setup or hold time in either of the clock domains. In the
case of CoreQDR, this register is rd_l2_en, clocked on the read data path but driven by signals from the
write data path. A safe constraint to set (for 333 MHz operation) is 1 ns for both minimum and maximum
delays, as follows:
NOT REQUIRED FOR QDR VERSION WITH VALID CONTROL

set_min_delay -1.000\

 -from { COREQDR_0/genblk1.RPS_N_*:CLK } \

 -to { COREQDR_0/shim_0/rd_l2_en:D }

set_max_delay 1.000\

 -from { COREQDR_0/genblk1.RPS_N_*:CLK } \

 -to { COREQDR_0/shim_0/rd_l2_en:D }

Note that, while SmartTime will report if there is a setup or hold time violation on this path, Libero cannot
adjust the phase relationship between the two clocks. To do this, you must run post-layout simulation and
observe the relationship between the SLE CLK input of RPS_N_* and the SLE CLK input of rd_l2_en. They
should be as close to 180-degrees as possible. If they are not, it can be adjusted by adding input delay to
both Q and CQ signals by the same amount (this ensures that the 90-degree relationship is maintained
between read clock and read data).
Note that to accurately model the WCLK to RCLK relationship, a latency constraint is required from K to CQ
that is an estimation of the loopback path from the K clock (with generation delay) back to the CQ clock, as
follows:
###

ADD CLOCK SOURCE LATENCY FOR CQ

CQ LATENCY = (FCCC_0:CLK0_PAD --> K (clock generation from pad)) + (Trace Delay K to
QDR chip) + (K to CQ delay inside QDR chip (Tccqo, Tcqoh)) + (Trace delay QDR chip to CQ)

CALCULATED AT 200MHZ

CQ LATENCY(max) = 10.548 + 0.257 + 0.450 + 0.257 = 11.842ns [Simplified to 11.512 -
5.000 = 6.512ns]

CQ LATENCY(min) = 6.291 + 0.257 - 0.450 + 0.257 = 6.355ns [Simplified to 6.355 - 5.000
= 1.355ns]

24 CoreQDR v3.3 Handbook

###

set max_clock_latency 6.512

#set min_clock_latency 1.355

CQ ####

set_clock_latency -source \

-early \

-rise \

$max_clock_latency \

[get_clocks CQ]

set_clock_latency -source \

-early \

-fall \

$max_clock_latency \

[get_clocks CQ]

set_clock_latency -source \

-late \

-rise \

$max_clock_latency \

[get_clocks CQ]

set_clock_latency -source \

-late \

-fall \

$max_clock_latency \

[get_clocks CQ]

Note: This path too must be calculated for both minimum delay (hold requirement) and maximum delay (setup
requirement).

Constraints

CoreQDR v3.3 Handbook 25

List of Changes

The following table shows important changes made in this document for each revision.
Date Change
March 2019 Updated changes related to CoreQDR v3.3.

March 2017 License Lock feature included.

April 2015 Added support for RTG4.

October 2014 Added a note to Pin Constraints section.
Updated User Interface Timing section.

April 2014 Updated Figure 6.

February 2014 Added Implementation Hints section.

December 2013 CoreQDR v3.0 release.

August 2013 CoreQDR v2.1 release.

March 2013 CoreQDR v2.0 release.

26 CoreQDR v3.3 Handbook

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive
portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and
industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated
circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise
time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete
components; enterprise storage and communication solutions, security technologies and scalable anti-tamper
products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services.
Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its
products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application
or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to
limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance
specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other
testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and
performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine
suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is,
where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not
grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information
itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi

Microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi, a wholly owned subsidiary of
Microchip Technology Inc. All rights reserved.
Microsemi and the Microsemi logo are registered
trademarks of Microsemi Corporation. All other
trademarks and service marks are the property of
their respective owners.

50200431-7/3.19

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

	Introduction
	About QDR
	QDR Supported Families and Devices
	Core Overview
	Key Features
	Core Version
	Supported Families
	Utilization and Performance
	Interface Description
	Parameters/Generics
	I/O Signals
	I/Os
	Operations
	Clock Generation and Data Registering
	Burst-of-2 Operation
	Burst-of-4 Operation
	User Interface Timing
	Tool Flows
	Licensing
	SmartDesign
	Simulation Flows
	User Testbench

	Synthesis in Libero SoC
	Place-and-Route in Libero SoC
	Implementation Hints
	CCC Configuration
	Constraints
	Pin Constraints
	Timing Constraints
	Input Constraints
	Output Constraints
	Synthesis Constraints
	Clock Source Latencies

	False Paths and Special Cases
	Post-layout Simulation and Clock Adjustment

	List of Changes

