
CoreMBX v2.0

Handbook

http://www.actel.com/survey/rating/?f=CoreMBX_HB.pdf

Actel Corporation, Mountain View, CA 94043

© 2008 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200138-0

Release: October 2008

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Core Overview . 5

1 Functional Block Descriptions . 9
Memory Usage . 9

2 Tool Flows . 11
Licenses . 11

CoreConsole . 11

Importing into Libero IDE . 13

SmartDesign . 13

Simulation Flows . 14

Synthesis in Libero IDE . 14

Place-and-Route in Libero IDE . 14

3 Interface Descriptions . 15
Parameters/Generics . 15

Ports . 17

4 Register Maps: Programmer’s View . 21
Port A (AHB Slave) Register Interface . 21

Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface 26

5 Testbench Operation and Modification . 33
User Testbench . 33

6 System Operation . 35
Usage with Cortex-M1 and CoreABC . 35

7 Ordering Information . 37
Ordering Codes . 37

A Product Support . 39
Customer Service . 39

Actel Customer Technical Support Center . 39

Actel Technical Support . 39

Website . 39

Contacting the Customer Technical Support Center . 39

Index . 41
CoreMBX v2.0 Handbook 3

Introduction

Core Overview
At the basic level, CoreMBX (Mail Box) allows data messages (mail) to pass back and forth from one processing
element to another. At pre-synthesis configuration time, the user is able to choose whether this message passing
capability is implemented with one or more instances of dual-port SRAM hard macros, or with one or more instances of
FIFO hard macros. Implementation is limited to those device families that employ true dual-port SRAM macros:
IGLOO®, Fusion®, and ProASIC®3 families of devices.

The first bus uses a set of AMBA advanced high-performance bus (AHB) slave connections. This first bus is used by the
first processing element, such as Cortex™-M1, to initialize and pass messages back and forth to a second processing
element, such as CoreABC or Core8051s, that uses a set of AMBA 2 or AMBA 3 advanced peripheral bus (APB) slave
connections. Note that the first bus may be asynchronous to the second bus; therefore synchronization logic is included
internally.

A set of optional output connections (Init/Config interface) are provided. These output connections can initialize the
SRAM instances within a connected instance of CoreABC, if CoreABC is configured to operate in "soft" mode. This
initialization interface is initiated by the first processor on the “A” bus connections for writes, and the writes are
synchronized to the clock of the second processor on the “B” bus connections. For example, if an instance of CoreABC
is to be initialized via its INIT* inputs, it should be connected to the APB “B” bus. Another processor, such as Cortex-
M1 via an AHB or AHB-Lite bridge, should be connected to the “A” bus.

Several aspects of CoreMBX can be configured using top-level parameters (Verilog) or generics (VHDL). For a detailed
description of the parameters/generics, refer to “Parameters/Generics” on page 15. The CoreMBX block diagram is
shown in Figure 1 on page 6. A typical application using CoreMBX is shown in Figure 2 on page 6.
CoreMBX v2.0 Handbook 5

Introduction
Figure 1 · CoreMBX Block Diagram

Figure 2 · CoreMBX Typical Application

Interrupt Logic

FIFO (A->B)

FIFO (B->A)

ORFirst Processor
Port A (AHB)

INIT Logic

Interrupt A

Second Processor
Port B (APB)

Interrupt B

Initialization (INIT*)
signals

Optional ROM

Dual-port SRAM

 M1-Enabled Fusion Device

Temperature Monitor
Bipolar Transistor

CoreAI

CoreMBX

CoreABC

Cortex-M1
6 CoreMBX v2.0 Handbook

Core Overview
Key Features
CoreMBX has the following features:

• Mailbox simultaneously accessible from an AMBA AHB/AHB-Lite master and an AMBA 2 APB master

• Mailbox memory storage elements made of either dual-port SRAM or FIFO blocks

• Init/Config master interface suitable for initializing CoreABC via AHB/AHB-Lite master

• Configurable number of interrupt flags between two processors

• Optional ROM built of FPGA tiles for up to 40 16-bit ROM words

Core Version
This handbook applies to CoreMBX v2.0.

Supported Interfaces
CoreMBX is available with one AHB slave interface that must be connected to an AMBA AHB or AMBA AHB-Lite
master, and one AMBA 2 APB slave interface that must be connected to an AMBA 2 APB or AMBA 3 APB master.

Actel recommends using the CoreConsole IP Deployment Platform (IDP) or SmartDesign within Libero IDE to
connect and configure CoreMBX in a multi processor-based system, such as Cortex-M1, Core8051s or CoreABC.

Utilization and Performance
CoreMBX has been implemented in the Actel IGLOO, Fusion and ProASIC3 families of devices. A summary of the
data for CoreMBX is listed in Table 1 and Table 2 on page 8. CoreMBX can be used with any devices in the IGLOO,
Fusion and ProASIC3 families of devices.

Table 1 · CoreMBX Device Utilization and Performance (Minimum Configuration)

Family
FPGA Resources Utilization

Performance

Sequential Combinatorial Total RAM Device %

IGLOO

25 79 104 1

AGLE600

1% > 60 MHzFusion AFS600

ProASIC3 A3PE600

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/generics that differ from the default values

were set as follows: CFG_INTERRUPT_A=2, CFG_INTERRUPT_B=2, MBX_WIDTH=8, PORT_B_WIDTH=8.
CoreMBX v2.0 Handbook 7

Introduction
Table 2 · CoreMBX Device Utilization and Performance (Maximum Configuration)

Family
FPGA Resources Utilization

Performance

Sequential Combinatorial Total RAM Device %

IGLOO

314 864 1178 16

AGLE600

9% > 60 MHzFusion AFS600

ProASIC3 A3PE600

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/generics that differ from the default values
were set as follows: MBX_DEPTH=2048, MBX_WIDTH=32, PORT_B_WIDTH=32, USE_INIT=1, MSG_A2B_FLAGS=32,

MSG_B2A_FLAGS=32, CFG_ROM=40, ROM_ADDR_1 to ROM_ADDR_40 = 1 to 40, respectively, ROM_DATA_1 to
ROM_DATA_40 = 1 to 40, respectively.
8 CoreMBX v2.0 Handbook

1
Functional Block Descriptions

CoreMBX, shown in Figure 1 on page 6, consists of memory macros (either one or more dual-port SRAM macros, or
two or more FIFO macros), an interrupt logic block that contains optional flag logic for sending interrupts from
processor A to processor B, or from processor B to processor A; and a logic block that interfaces to an Init/Config slave
interface, such as that used by the CoreABC processor.

Memory Usage

FIFO Usage
When CoreMBX is configured to use FIFO blocks, one set of FIFOs is instantiated to send messages from the first
processor (processor A on the left side of Figure 1) to the second processor (processor B on the right side of Figure 1).
Another set of FIFOs is instantiated to send messages from the second processor to the first processor.

The empty and full flags from each set of FIFOs are synchronized to the rising edge of the first and second clock
domains to serve as interrupt sources.

The content and structure of the data messages that get passed on from one processor to the other are left to be created
by the developer of the application. CoreMBX is merely the receptacle of the messages and assumes no knowledge of the
actual content of the messages.

Dual-Port SRAM Usage
When CoreMBX is configured to use dual-port SRAM blocks and the INIT* ports are being used to initialize an
instance of CoreABC that is connected to the APB slave bus, the INITDONE signal may be used by CoreABC to
qualify reading the contents of the messages (content) sent from the first processor. The first processor may wish to
initialize the messages (content) of all of the memory locations of the dual-port SRAM blocks prior to initializing the
INIT* ports of CoreABC. The optional message flags, via the interrupt outputs, may be used to indicate this
functionality as well, or instead of, the INIT* outputs from CoreMBX. In other words, the CoreABC processor may
check the status of one or more of the message flags and proceed with its own initialization routines, including eventual
clearing of the message flags. Refer to “Flag Logic” on page 10 for more information.

When using dual-port SRAM blocks, an interrupt can be generated whenever a write occurs to either port (this is a
configurable option). For example, if a write occurs to the A-port (initiated by first processor), an interrupt will be
generated to the second processor. If a write occurs to the B-port (initiated by second processor), an interrupt will be
generated to the first processor. If this behavior is not desired, each interrupt may be disabled permanently at
configuration time or temporarily via software control during operation. Disabling each interrupt via software control
will not clear a pending interrupt, and it will merely mask the true interrupt source. Reading each interrupt status
register will clear each interrupt, except for the interrupt contribution from the optional flag logic, which can only be
cleared by the processor to which the interrupt is destined. Refer to “Flag Logic” on page 10 for more details on
operation of the optional flag logic.

As with the FIFO configuration, the actual content and meaning of the data messages that are written into each memory
location are dependent on the application that the developer has in mind.

Optional ROM Usage
CoreMBX can be configured to include an optional block of ROM that will be built from FPGA tiles. This optional
ROM can have up to 40 unique address/data pairs defined via the CoreConsole or SmartDesign configurator GUI. The
default value of unaddressed locations can be set to any non-negative integer from 0 to (2**16)-1, or alternatively, to a
“don't care” value that will be most efficient in logic synthesis optimization. The ROM can be read from either the AHB
slave interface (port A) or the APB slave interface (port B), when either of the individual ROM select lines
(ROMSEL_A, ROMSEL_B) are logic 1 and a read from the DPRAMA or DPRAMB address space occurs. Refer to
“Register Maps: Programmer’s View” on page 21 for more information.
CoreMBX v2.0 Handbook 9

Functional Block Descriptions
Flag Logic
Within CoreMBX, flag logic that contributes to the interrupt outputs is optionally included. The flag logic can be
configured to allow processor A to set message flag bits destined for processor B, by way of the INTERRUPT_B output.
The flag logic can also be configured to allow processor B to set message flag bits destined for processor A, by way of the
INTERRUPT_A output. If used, the message flag bits are set by writing logic 1 values to any or all of the bits; logic 0
values written to any of the message flag bits are ignored. Only the processor to which the interrupt is destined can clear
each of the message flag bits, also by writing logic 1 values to any or all of the bits. Synchronization flip-flops are used to
ensure that the message flag bits are synchronous to each of the processor clock domains.
10 CoreMBX v2.0 Handbook

2
Tool Flows

Licenses
CoreMBX is licensed in two ways. Depending on your license type, tool flow functionality may be limited.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated within CoreConsole or SmartDesign.
Simulation, synthesis and layout can be performed within the Libero® Integrated Design Environment (IDE). The
RTL code for the core is obfuscated and some of the testbench source files are not provided; they are pre-compiled into
the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
CoreMBX is preinstalled in CoreConsole. To use the core, simply drag it from the IP core list into the main window.
The CoreConsole project can be exported to Libero IDE at this point, providing access just to CoreMBX. Other IP
blocks can be interconnected, allowing the complete system to be exported from CoreConsole to Libero IDE.

The core can then be configured using the configuration GUI within CoreConsole, as shown in Figure 2-1 and Figure
2-2 on page 13. Parameters can be configured within the CoreConsole GUI and are fully described in the “Parameters/
Generics” on page 15. Cross references to the corresponding parameters in the GUI configuration screen are shown in
boxes in Figure 2-1 on page 12 and Figure 2-2 on page 13.
CoreMBX v2.0 Handbook 11

Tool Flows
Figure 2-1 · CoreMBX Configuration Within CoreConsole
12 CoreMBX v2.0 Handbook

Importing into Libero IDE
Figure 2-2 · CoreMBX Configuration Within CoreConsole (Continued)

Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core may be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory within the CoreConsole
installation directory tree. Libero IDE will then install the core and the selected testbenches into its project, along with
constraints and documentation. Refer to the Libero IDE online help for details on how to create a CoreConsole
subsystem within Libero IDE.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

SmartDesign
As an alternative to the CoreConsole IDP, you can use SmartDesign to create an FPGA system using CoreMBX.
CoreMBX is available for download to the SmartDesign IP Catalog via the Libero IDE web repository. Note that the
CoreMBX IP configuration GUI in SmartDesign will very closely resemble the CoreConsole configuration shown in
Figure 2-1 on page 12 and Figure 2-2 on page 13. For information on using SmartDesign to instantiate, configure,
connect and generate cores, refer to the Libero IDE online help. For a detailed tutorial on DirectCore IP flow using
SmartDesign, refer to Using DirectCore in Libero IDE.
CoreMBX v2.0 Handbook 13

http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf
http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf
http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf

Tool Flows
Simulation Flows
To run simulations, select the user testbench within CoreConsole or SmartDesign through the CoreMBX configuration
GUI. Run Save & Generate from the Generate pane.

When CoreConsole or SmartDesign generates the Libero IDE project, it will install the appropriate test bench files.

To run the testbenches, set the design root to the CoreMBX instantiation in the Libero IDE File Manager and click the
Simulation icon in the Libero IDE Design Flow window. This will invoke ModelSim® and automatically run the
simulation.

Synthesis in Libero IDE
To run Synthesis on the core with parameters set in CoreConsole or SmartDesign, set the design root appropriately and
click the Synthesis icon in Libero IDE. The Synthesis window appears, displaying the Synplicity project. Set Synplicity
to use the Verilog 2001 standard if Verilog is being used. To perform synthesis, click the Run icon.

Place-and-Route in Libero IDE
After setting the design root appropriately and running Synthesis, click the Layout icon in Libero IDE to invoke
Designer. CoreMBX requires no special place-and-route settings.
14 CoreMBX v2.0 Handbook

3
Interface Descriptions

CoreMBX is available with one AHB slave interface and one APB slave interface and can easily connected to an AHB
bus and an APB bus within the CoreConsole IDP or SmartDesign canvas.

Parameters/Generics
CoreMBX has parameters (Verilog) and generics (VHDL), described in Table 3-1. All parameters and generics are
integer types.

Table 3-1 · CoreMBX Parameter/Generic Descriptions

Name Valid Range Description

FAMILY
15, 16, 17, 20,

21, 22

Technology-specific device family:

15 - ProASIC3

16 - ProASIC3E

17 - Fusion (default)

20 - IGLOO

21 - IGLOOe

22 - ProASIC3L

CFG_INTERRUPT_A 0 to 3

Interrupt A output configuration:

0 - Interrupt A active-high (default)

1 - Interrupt A active-low

2 - Interrupt A permanently disabled (statically held at logic 0)

3 - Interrupt A permanently disabled (statically held at logic 1)

CFG_INTERRUPT_B 0 to 3

Interrupt B output configuration:

0 - Interrupt B active-high (default)

1 - Interrupt B active-low

2 - Interrupt B permanently disabled (statically held at logic 0)

3 - Interrupt B permanently disabled (statically held at logic 1)

USE_FIFOS 0 or 1

This value determines whether FIFO hard macros or dual-port SRAM hard macros are
used as the storage elements for messages.

0 - dual-port SRAM macros used (default)

1 - FIFOs are used

MBX_DEPTH
512, 1024, or

2048
This value sets the word-depth of the memory elements (FIFOs or dual-port SRAMs)
used for message storage. The default value is 512.

MBX_WIDTH 8, 16, or 32
This value sets the bit-width* of the memory elements (FIFOs or dual-port SRAMs)
used for message storage. The default value is 16.
CoreMBX v2.0 Handbook 15

Interface Descriptions
PORT_B_WIDTH 8, 16, or 32

This value specifies the width of the processor connected to the APB slave “B” port.
Note that this value affects the manner in which the internal registers are accessed, refer
to “Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface” on page 26 for more
information. The default value is 16.

Note that PORT_B_WIDTH should be greater than or equal to MBX_WIDTH,
otherwise MSB bits of the memory element(s) will not be accessible from the B
processor.

USE_INIT 0 or 1

This value determines whether or not the Init/Config outputs INIT* are used to
initialize a second processor (such as CoreABC). The default value of 0 disables the
INIT* outputs and removes an internal loadable counter that is connected to the
INITADDR outputs.

INITWIDTH 1 to 16

This value specifies the width of the INITADDR outputs that are used to initialize the
second processor (such as CoreABC). If using CoreABC, the value of INITWIDTH in
CoreMBX must match the value of INITWIDTH in CoreABC. The default value is
16. This parameter also is used to set the width of an internal loadable counter that is
used as the INITADDR outputs that increments after each write to the INITWDATA
register.

MSG_A2B_FLAGS 0, 8, 16, or 32

This setting determines how many message flags (A_FLAGS_A2B[31:0] and
B_FLAGS_A2B[31:0] register) are used to send an interrupt from processor A to
processor B. The default setting of 0 disables message flag logic from processor A to
processor B. If set to 8, the upper 24 bits of the internal flags (A_FLAGS_A2B[31:0]
and B_FLAGS_A2B[31:0] register) will return static logic 0 values when read, and
writes to the upper 24 bits will be ignored. Similarly, if set to 16, the upper 16 bits of the
internal flags register will return static logic 0 values when read, and writes to the upper
16 bits will be ignored.

MSG_B2A_FLAGS 0, 8, 16, or 32

This setting determines how many message flags (A_FLAGS_B2A[31:0] and
B_FLAGS_B2A[31:0] register) are used to send an interrupt from processor B to
processor A. The default setting of 0 disables message flag logic from processor B to
processor A. If set to 8, the upper 24 bits of the internal flags (A_FLAGS_B2A[31:0]
and B_FLAGS_B2A[31:0] register) will return static logic 0 values when read, and
writes to the upper 24 bits will be ignored. Similarly, if set to 16, the upper 16 bits of the
internal flags register will return static logic 0 values when read, and writes to the upper
16 bits will be ignored.

CFG_ROM 0, 4, 8, 16, 32, 40

Optional ROM configuration:

0 - No ROM used (default)

4 - ROM used with 4 custom addresses

8 - ROM used with 8 custom addresses

16 - ROM used with 16 custom addresses

32 - ROM used with 32 custom addresses

40 - ROM used with 40 custom addresses

The default value of 0 disables the optional ROM. If set to values greater than 0, the
ROMSEL_A and ROMSEL_B inputs are used to qualify reads from the internal ROM
values using the DPRAMA and DPRAMB address decodes, respectively, for reads from
the A or B processors.

Table 3-1 · CoreMBX Parameter/Generic Descriptions (continued)

Name Valid Range Description
16 CoreMBX v2.0 Handbook

Ports
Ports
The port signals for the CoreMBX macro are defined in Table 3-2 on page 18 and illustrated in Figure 3-1 on page 18.
CoreMBX has from 139 (minimum configuration) to 202 (maximum configuration) I/O signals.

DEF_ROM_DATA_SEL 0 or 1

Select Default ROM Data: If set to 0, CoreMBX uses the DEF_ROM_DATA
parameter to determine the default value (0 to (2**16)-1) of the ROM data for addresses
that are not specified. If set to 1, the default ROM data will be set to a “don't care” value
for optimal synthesis results. The default value of this parameter is 0.

DEF_ROM_DATA 0 to (2**16)-1

If CFG_ROM is not 0 and DEF_ROM_DATA_SEL is 0, this parameter determines
the default value of ROM data for address/data pairs that are not configured with the
ROM_ADDR_xx/ROM_DATA_xx parameter pairs. If CFG_ROM has the default
value of 0, this parameter is ignored. The default value of this parameter is 0.

ROM_ADDR_1,

ROM_ADDR_2,

…,

ROM_ADDR_40

0 to (2**11)-1

Custom ROM Addresses: there are 40 possible custom ROM addresses. If CFG_ROM
is not 0, these ROM addresses are paired with the ROM_DATA_xx parameters to
return custom data when the ROM is read from either processor A or processor B. Note
that the number set in the CFG_ROM parameter must have all custom address/data
pairs specified. For example, if CFG_ROM=4, then ROM_ADDR_1,
ROM_ADDR_2, ROM_ADDR_3, and ROM_ADDR_4 must all be specified (as well
as the corresponding ROM_DATA_1 to ROM_DATA_4 parameters); also note that in
this example, ROM addresses that fall outside the values specified by ROM_ADDR_1
to ROM_ADDR_4 will return data whose value is determined by the
DEF_ROM_DATA parameter. If CFG_ROM is the default value of 0, these
parameters are ignored. The default collective value of these parameters is 0, therefore, it
is imperative that all used addresses configured in the CFG_ROM parameter are set
appropriately.

ROM_DATA_1,

ROM_DATA_2,

…,

ROM_DATA_40

0 to (2**16)-1

Custom ROM Data: there are 40 possible custom ROM data values; if CFG_ROM is
not 0, these ROM data values are paired with the ROM_ADDR_xx parameters to
return custom data when the ROM is read from either processor A or processor B. Note
that the number set in the CFG_ROM parameter must have all custom address/data
pairs specified. For example, if CFG_ROM=4, then ROM_DATA_1, ROM_DATA_2,
ROM_DATA_3, and ROM_DATA_4 must all be specified (as well as the
corresponding ROM_ADDR_1 to ROM_ADDR_4 parameters). If CFG_ROM is the
default value of 0, these parameters are ignored. The default collective value of these
parameters is 0.

* Note that more than 1 dual-port SRAM will be instantiated for 16 or 32-bit widths.

Table 3-1 · CoreMBX Parameter/Generic Descriptions (continued)

Name Valid Range Description
CoreMBX v2.0 Handbook 17

Interface Descriptions
Figure 3-1 · CoreMBX I/O Signal Diagram

Table 3-2 · CoreMBX Signal Descriptions

Name Type Description

Port A (AHB Slave) Signals

HCLK Input
AHB clock: All AHB signals are synchronous to the rising edge of
this clock signal.

HRESETN Input AHB active-low asynchronous reset.

HADDR[13:0] Input
AHB address bus: This port is used to address registers and message
data within CoreMBX.

HSEL Input
AHB slave select: This signal selects CoreMBX for reads or writes
via the first processor.

HREADYIN Input
AHB ready input: This signal indicates that all other slaves are
ready when high.

HTRANS[1:0] Input

AHB transfer type: Indicates the type of current transfer:

00 - Idle

01 - Busy

10 - Non-sequential

11 - Sequential

HCLK
HRESETN
HADDR[13:0]

HWDATA[31:0]

HREADY

INTERRUPT_AHREADYIN

INITDONE
INITADDR[x:0]
INITDATA[8:0]

INITDATVAL

PCLK
PRESETN
PADDR[13:0]

PWDATA[w:0]

PSEL
PENABLE
PWRITE

PRDATA[w:0]

INTERRUPT_B

HSEL

HWRITE

HRESP[1:0]
HRDATA[31:0]

HTRANS[1:0]

ROMSEL_A
ROMSEL_B
18 CoreMBX v2.0 Handbook

Ports
HWRITE Input
AHB write/read: If high, a write will occur when an AHB transfer
to CoreMBX takes place; if low, a read from CoreMBX will take
place.

HWDATA[31:0] Input AHB write data from AHB master.

HRDATA[31:0] Output AHB read data to AHB master.

HRESP[1:0] Output

AHB transfer response:

00 - Okay

01 - Error

10 - Retry

11 - Split

These pins are fixed to always return 00 (Okay response).

HREADY Output
AHB ready signal: used to insert wait states on writes to the Init/
Config interface in order to synchronize to the “B” clock domain
PCLK.

Port B (APB Slave) Signals

PCLK Input
APB clock: All APB signals are synchronous to the rising edge of
this clock signal.

PRESETN Input APB active-low asynchronous reset.

PADDR[13:0] Input
APB address bus: This port is used to address registers and message
data within CoreMBX.

PSEL Input
APB slave select: This signal selects CoreMBX for reads or writes
via the second processor.

PENABLE Input
APB strobe: This signal indicates the second cycle of an APB
transfer.

PWRITE Input
APB write/read: If high, a write will occur when an APB transfer to
CoreMBX takes place; if low, a read from CoreMBX will take
place.

PWDATA[w:0] Input APB write data: w = PORT_B_WIDTH-1.

PRDATA[w:0] Output APB read data: w = PORT_B_WIDTH-1.

ROM Select Signals

ROMSEL_A Input

ROM select A: This input is used to select the optional ROM that
can be read from processor A. If high (logic 1), processor A can read
the optional ROM contents when addressing the DPRAMA
register space (refer to Table 4-11 on page 26). If low (logic 0),
processor A can read the DPRAMA contents when addressing the
DPRAMA register space. If the CFG_ROM parameter is 0, this
input is ignored and should be permanently tied low.

Table 3-2 · CoreMBX Signal Descriptions (continued)

Name Type Description
CoreMBX v2.0 Handbook 19

Interface Descriptions
ROMSEL_B Input

ROM select B: This input is used to select the optional ROM that
can be read from processor B. If high (logic 1), processor B can read
the optional ROM contents when addressing the DPRAMB
register space (refer to Table 4-19 on page 31). If low (logic 0),
processor B can read the DPRAMB contents when addressing the
DPRAMB register space. If the CFG_ROM parameter is 0, this
input is ignored and should be permanently tied low.

Interrupt Signals

INTERRUPT_A Output

Processor A interrupt: This interrupt output has different meanings
depending on whether FIFO or dual-port SRAM elements are
used. If FIFO elements are used (USE_FIFOS=1), this signal
indicates that the B->A FIFO is not empty or that the A->B FIFO
is full. If dual-port SRAM elements are used (USE_FIFOS=0), this
signal indicates that a write from the B processor into the dual-port
SRAM macros has occurred. This signal also contains contributions
from optional flag logic from processor B to processor A.

INTERRUPT_B Output

Processor B interrupt: This interrupt output has different meanings
depending on whether FIFO or dual-port SRAM elements are
used. If FIFO elements are used (USE_FIFOS=1), this signal
indicates that the A->B FIFO is not empty or that the B->A FIFO
is full. If dual-port SRAM elements are used (USE_FIFOS=0), this
signal indicates that a write from the A processor into the dual-port
SRAM macros has occurred. This signal also contains contributions
from optional flag logic from processor A to processor B.

INITCFG Signals

INITDATVAL Output

This output can be connected to the INITDATVAL input of
CoreABC to indicate that the INITADDR[x:0] and
INITDATA[8:0] outputs are valid. It can be left unconnected if
unused. If USE_INIT=0, this output is permanently tied low.

INITDONE Output

This output can be connected to the INITDONE input of
CoreABC to indicate that initialization of CoreABC's internal
RAM blocks has completed. It can be left unconnected if unused. If
USE_INIT=0, this output is permanently tied low.

INITADDR[x:0] Output

These outputs can be connected to the INITADDR[x:0] inputs of
CoreABC to configure the RAM blocks within CoreABC, when
using it in soft mode (x=INITWIDTH-1). These outputs can be
left unconnected if unused. If USE_INIT=0, these outputs are
permanently tied low.

INITDATA[8:0] Output

These outputs can be connected to the INITDATA[8:0] inputs of
CoreABC to configure the RAM blocks within CoreABC, when
using it in soft mode. These outputs can be left unconnected if
unused. If USE_INIT=0, these outputs are permanently tied low.

Note: All signals are active-high (logic 1) unless otherwise noted.

Table 3-2 · CoreMBX Signal Descriptions (continued)

Name Type Description
20 CoreMBX v2.0 Handbook

4
Register Maps: Programmer’s View

Port A (AHB Slave) Register Interface
Processor A has access to the register address map listed in Table 4-1. Individual register descriptions are listed in Table
4-1 to Table 4-11 on page 26. All registers are read/write unless otherwise noted. Any bits that are not listed in the
descriptions of the registers will return logic 0 values when read by processor A, and will be ignored on writes from
processor A.

Table 4-1 · Port A Register Address Map

HADDR[13:0] Type Register Name Reset Value Description

0x0000 R/W INTCTRLA 0x00000000 Interrupt A control register.

0x0004 R INTSTATA 0x00000000 Interrupt A status register (read-only).

0x0010 R/W A_FLAGS_B2A 0x00000000

32 possible flag logic bits that can be
used to send interrupts from processor B
to processor A (readable and clear-able
from processor A).

0x0020 R/W A_FLAGS_A2B 0x00000000

32 possible flag logic bits that can be
used to send interrupts from processor A
to processor B (readable and set-able
from processor A).

0x0030 R/W INITWADDR 0x00000000

INITCFG indirect address register: the
outputs of this register are connected to
the INITADDR outputs. The contents
are incremented after each write to the
INITWDATA register.

0x0040 W INITWDATA Undefined

Write-only access to INITCFG
initialization address space (used to write
to the INITDATA[8:0] inputs of
CoreABC).

0x0048 R/W INITCTRL 0x00000000
Control register to set or clear the
INITDONE output signal.

0x0050 W FIFOWDA2B N/A

Write-only access to send message from
processor A to processor B.

This address is only used if
USE_FIFOS=1.

0x0054 R FIFORDB2A Undefined

Read-only access to read message from
processor B to processor A.

This address is only used if
USE_FIFOS=1.

0x2000-0x3FFC R/W DPRAMA Undefined

Processor A access to port A of internal
dual-port SRAM instance(s) or optional
ROM.

This address space is only used if
USE_FIFOS=0.

Note: Type designations: “R” = read-only, “R/W” = read/write, “W” = write-only
CoreMBX v2.0 Handbook 21

Register Maps: Programmer’s View
Table 4-2 · Interrupt A Control (INTCTRLA) Register Bit Description

Bit Name Description

3 EN_A_FLAGS_B2A_OR

Enable A_FLAGS_B2A_OR bit: This bit controls whether or
not the ORed version of the flag bits from processor B to
processor A (A_FLAGS_B2A[31:0]) contributes to the
INTERRUPT_A output or if it is masked. If set to 1, the ORed
flag contribution is enabled; otherwise, if set to 0, the ORed flag
contribution is masked. The default value of 0 disables (masks)
the contribution of the ORed flags to the INTERRUPT_A
output.

2 EN_DPWRB

Enable DPWRB bit: This bit controls whether or not the
DPWRB bit of the INTSTATA register contributes to the
INTERRUPT_A output or if it is masked. If set to 1, the
DPWRB bit contribution is enabled; otherwise, if set to 0, the
DPWRB bit is masked. The default value of 0 disables (masks)
the contribution of the DPWRB bit to the INTERRUPT_A
output.

1 EN_FULL_A2B

Enable FULL_A2B bit: This bit controls whether or not the
FULL_A2B bit of the INTSTATA register contributes to the
INTERRUPT_A output or if it is masked. If set to 1, the
FULL_A2B bit contribution is enabled; otherwise, if set to 0, the
FULL_A2B bit is masked. The default value of 0 disables
(masks) the contribution of the FULL_A2B bit to the
INTERRUPT_A output.

0 EN_MSG_B2A

Enable MSG_B2A bit: This bit controls whether or not the
MSG_B2A bit of the INTSTATA register contributes to the
INTERRUPT_A output or if it is masked. If set to 1, the
MSB_B2A bit contribution is enabled; otherwise, if set to 0, the
MSG_B2A bit is masked. The default value of 0 disables (masks)
the contribution of the MSG_B2A bit to the INTERRUPT_A
output.
22 CoreMBX v2.0 Handbook

Port A (AHB Slave) Register Interface
Table 4-3 · Interrupt A Status (INTSTATA) Register Bit Description

Bit Name Description

3 A_FLAGS_B2A_OR

ORed flag bits from processor B to processor A: If set to 1, this bit
indicates that processor B has set one or more general purpose
flags in the A_FLAGS_B2A[31:0] register to indicate to
processor A that it must take some action, followed by clearing of
these general purpose flags. This action is entirely application
specific. This bit will not be cleared when reading this register, but
rather when all bits of the A_FLAGS_B2A[31:0] register are
cleared. If MSG_B2A_FLAGS=0, this bit will be permanently
tied to logic 0.

2 DPWRB

Processor B has written to dual-port SRAM: If set to 1, this bit
indicates that processor B has written data into the B port of the
dual-port SRAM. This bit will be cleared when reading this
register. If USE_FIFOS=1, this bit will be permanently tied to
logic 0.

1 FULL_A2B

FIFO A->B is full: If set to 1, this bit indicates that the A->B
FIFO (from processor A to processor B) is full. This bit will be
cleared when at least one message has been read from the A->B
FIFO by the B processor. If USE_FIFOS=0, this bit will be
permanently tied to logic 0.

0 MSG_B2A

Message(s) available in FIFO B->A: If set to 1, this bit indicates
that at least one message is available in the B->A FIFO (from
processor B to processor A). This bit will be cleared when all
messages have been read from the B->A FIFO. If
USE_FIFOS=0, this bit will be permanently tied to logic 0.

Table 4-4 · Processor B to Processor A Flags (A_FLAGS_B2A) Register Bit Description

Bit Name Description

31:0 FLAGS

Message flag bits from processor B to processor A: These 32
possible flag logic bits can be used to send interrupts from
processor B to processor A. Processor A can clear any of the 32 bits
by writing a logic 1 in that bit position. For example, if the
A_FLAGS_B2A[31:0] register value contains 0xFFAA0000 and
processor A writes the value 0xFF000000 to this register, the value
will be changed to 0x00AA0000 on subsequent reads, since
writing logic 0 values to any of the bits is ignored.
CoreMBX v2.0 Handbook 23

Register Maps: Programmer’s View
Table 4-5 · Processor A to Processor B Flags (A_FLAGS_A2B) Register Bit Description

Bit Name Description

31:0 FLAGS

Message flag bits from processor A to processor B: These 32
possible flag logic bits can be used to send interrupts from
processor A to processor B. Processor A can set any of the 32 bits
by writing a logic 1 in that bit position. For example, if the
A_FLAGS_A2B[31:0] register value contains 0x00550000 and
processor A writes the value 0xAA000000 to this register, the
value will be changed to 0xAA550000 on subsequent reads.
Writing logic 0 values to any of the bits is ignored.

Table 4-6 · Init/Config Write Address (INITWADDR) Register Bit Description

Bit Name Description

n:0 INITADDR

Init/Config write address (n = INITWIDTH-1): If the parameter
USE_INIT=1, this register is connected to the INITADDR[n:0]
outputs. Note that the actual width of this register will be
determined by the INITWIDTH parameter and can range from 1
to 16 bits; unused bits will return 0 when read, and will be ignored
if processor A writes to them. If the Init/Config interface is used
(USE_INIT=1), processor A should first write the starting address
for the INITADDR[n:0] outputs to this register, followed by
subsequent writes to the INITWDATA register, after which the
contents of this register will be automatically incremented by 1.
The Init/Config interface can be initialized in a connected
instance of CoreABC operating in soft mode. If the parameter
USE_INIT=0, these bits are permanently tied to logic 0 and
writes to it have no effect and the INITADDR outputs will be tied
to logic 0).

Table 4-7 · Init/Config Write Data (INITWDATA) Register Bit Description

Bit Name Description

8:0 INITDATA

Init/Config write data: If the parameter USE_INIT=1, these
write-only bits are used to send initialization data out of the
INITDATA[8:0] and INITDATAVAL ports that may be
connected to an instance of CoreABC configured to operate in
soft mode. If the parameter USE_INIT=0, these bits are
permanently tied to logic 0 and writes to it have no effect.
24 CoreMBX v2.0 Handbook

Port A (AHB Slave) Register Interface
Table 4-8 · Init/Config Control (INITCTRL) Register Bit Description

Bit Name Description

0 INITDONE

Init/Config done bit: If the parameter USE_INIT=1, this bit
controls the state of the INITDONE output pin to indicate that
the initialization/configuration process is completed. This signal
should only be set to logic 1 by processor A after it has completed
writing all initialization data to the INIT* outputs that may be
connected to an instance of CoreABC configured to operate in
soft mode; this is accomplished by processor A writing to the
INITWADDR and INITWDATA registers. If the
INITWIDTH parameter is 0, this register bit is permanently tied
to logic 0 and writes to it have no effect.

Table 4-9 · FIFO Write Data A->B (FIFOWDA2B) Register Bit Description

Bit Name Description

n:0 DATA

FIFO write data (n = MBX_WIDTH-1): During a write cycle,
this data will be written from processor A into the A->B FIFO
(for sending message data from processor A to processor B) if
USE_FIFOS=1. If USE_FIFOS=0, writing to this address has no
effect. This register is write-only.

Table 4-10 · FIFO Read Data B->A (FIFORDB2A) Register Bit Description

Bit Name Description

n:0 DATA

FIFO read data (n = MBX_WIDTH-1): During a read cycle, this
data will be read by processor A from the B->A FIFO, for sending
message data from processor B to processor A, if USE_FIFOS=1.
If USE_FIFOS=1, reading from this address has no effect,
unknown logic values are returned and should be ignored. This
register is read-only.
CoreMBX v2.0 Handbook 25

Register Maps: Programmer’s View
Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface
Processor B has access to the register address map listed in Table 4-12. Individual register descriptions are listed in Table
4-13 on page 27 to Table 4-19 on page 31. All registers are read/write unless otherwise noted. Any bits that are not listed
in the descriptions of the registers will return logic 0 values when read by processor B, and will be ignored on writes from
processor B.

Table 4-11 · Dual-Port SRAM A (DPRAMA) Register Bit Description

Bit Name Description

n:0 DATA

Dual-port SRAM data (n = MBX_WIDTH-1): During a write
cycle, this data will be written from processor A into the dual-port
SRAM, if USE_FIFOS=0. Note that only every fourth 32-bit
word aligned address is used: 0x2000, 0x2004, 0x2008, ...,
0x3FFC. If USE_FIFOS=1, writing to these addresses has no
effect. During a read cycle, data from the dual-port SRAM will be
read by processor A, if USE_FIFOS=0.

Note that if the CFG_ROM parameter is greater than 0 and the
ROMSEL_A input is high (logic 1), then reads from this address
space will return data from the optional ROM; however, writes to
this address space will still write to the dual-port RAM. If the
CFG_ROM parameter is greater than 0 and the ROMSEL_A
input is low (logic 0), then reads from this address space will return
data read from the dual-port RAM. Note that each address in this
range is 32-bit word aligned, therefore when reading from the
ROM, keep in mind that the values specified in the
ROM_ADDR_1 to ROM_ADDR_40 parameters will actually
need to be multiplied by 4 (shifted to left by 2 bits) to access the
desired ROM contents. For example, for processor A to read the
contents of ROM address 255 (0xFF), it will need to set the
ROMSEL_A input high and read from address 0x2000 +
(0xFF<<2) = 0x23FC.

If USE_FIFOS=1 and CFG_ROM=0, reading from these
addresses has no effect (unknown logic values are returned and
should be ignored).

Table 4-12 · Port B Register Address Map

PADDR[13:0] Type Register Name Reset Value Description

0x0000 R/W INTCTRLB 0x00000000 Interrupt B control register.

0x0004 R INTSTATB 0x00000000 Interrupt B status register (read-only).

0x0010 - 0x001C R/W B_FLAGS_B2A 0x00000000

32 possible flag logic bits that can be used to
send interrupts from processor B to
processor A, readable and setable from
processor B.
26 CoreMBX v2.0 Handbook

Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface
0x0020 - 0x002C R/W B_FLAGS_A2B 0x00000000

32 possible flag logic bits that can be used to
send interrupts from processor A to
processor B, readable and clearable from
processor B.

0x0050 R FIFORDA2B Undefined

Read-only access to read message from
processor A to processor B.

This address is only used if USE_FIFOS=1.

0x0054 W FIFOWDB2A N/A

Write-only access to send message from
processor B to processor A.

This address is only used if USE_FIFOS=1.

0x2000 -
0x3FFC

R/W DPRAMB Undefined

Processor B access to port B of internal
dual-port SRAM instance(s) or optional
ROM.

This address space is only used if
USE_FIFOS=0.

Note: Type designations: “R” = read-only, “R/W” = read/write, “W” = write-only

Table 4-13 · Interrupt B Control (INTCTRLB) Register Bit Description

Bit Name Description

3 EN_B_FLAGS_A2B_OR

Enable B_FLAGS_A2B_OR bit: This bit controls whether the
ORed version of the flag bits from processor A to processor B
(B_FLAGS_A2B[31:0]) contributes to the INTERRUPT_B
output or it is masked. If set to 1, the ORed flag contribution is
enabled; otherwise, if 0, the ORed flag contribution is masked.
The default value of 0 disables (masks) the contribution of the
ORed flags to the INTERRUPT_B output.

2 EN_DPWRA

Enable DPWRA bit: This bit controls whether the DPWRA bit
of the INTSTATB register contributes to the INTERRUPT_B
output or it is masked. If set to 1, the DPWRA bit contribution is
enabled; otherwise, if 0, the DPWRA bit is masked. The default
value of 0 disables (masks) the contribution of the DPWRA bit to
the INTERRUPT_B output.

Table 4-12 · Port B Register Address Map (continued)

PADDR[13:0] Type Register Name Reset Value Description
CoreMBX v2.0 Handbook 27

1 EN_FULL_B2A

Enable FULL_B2A bit: This bit controls whether the
FULL_B2A bit of the INTSTATB register contributes to the
INTERRUPT_B output or it is masked. If set to 1, the
FULL_B2A bit contribution is enabled; otherwise, if 0, the
FULL_B2A bit is masked. The default value of 0 disables (masks)
the contribution of the FULL_B2A bit to the INTERRUPT_B
output.

0 EN_MSG_A2B

Enable MSG_A2B bit: This bit controls whether the MSG_A2B
bit of the INTSTATB register contributes to the
INTERRUPT_B output or it is masked. If set to 1, the
MSB_A2B bit contribution is enabled; otherwise, if 0, the
MSG_A2B bit is masked. The default value of 0 disables (masks)
the contribution of the MSG_A2B bit to the INTERRUPT_B
output.

Table 4-14 · Interrupt B Status (INTSTATB) Register Bit Description

Bit Name Description

3 B_FLAGS_A2B_OR

ORed flag bits from processor A to processor B: If set to 1, this bit
indicates that processor A has set one or more general purpose
flags in the B_FLAGS_A2B[31:0] register to indicate to processor
B that it must take some action, followed by clearing of these
general purpose flags. This action is entirely application specific.
This bit will not be cleared when reading this register, but rather
when all bits of the B_FLAGS_A2B[31:0] register are cleared. If
MSG_A2B_FLAGS=0, this bit will be permanently tied to logic
0.

2 DPWRA

Processor A has written to dual-port SRAM: If set to 1, this bit
indicates that processor A has written data into the A port of the
dual-port SRAM. This bit will be cleared when reading this
register. If USE_FIFOS=1, this bit will be permanently tied to
logic 0.

1 FULL_B2A

FIFO B->A is full: If set to 1, this bit indicates that the B->A
FIFO (from processor B to processor A) is full. This bit will be
cleared when at least one message has been read from the B->A
FIFO by the A processor. If USE_FIFOS=0, this bit will be
permanently tied to logic 0.

0 MSG_A2B

Message(s) available in FIFO A->B: If set to 1, this bit indicates
that at least one message is available in the A->B FIFO (from
processor A to processor B). This bit will be cleared when all
messages have been read from the A->B FIFO. If
USE_FIFOS=0, this bit will be permanently tied to logic 0.

Table 4-13 · Interrupt B Control (INTCTRLB) Register Bit Description (continued)

Bit Name Description

Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface
Table 4-15 · Processor B to Processor A Flags (B_FLAGS_B2A) Register Bit Description

Bit Name Description

31:0 FLAGS

These 32 possible flag logic bits can be used to send interrupts
from processor B to processor A. Processor B can set any of the 32
bits by writing a logic 1 in that bit position. For example, if the
B_FLAGS_B2A[31:0] register value contains 0xFFAA0000 and
processor B writes the value 0x00000055 to this register, the value
will be changed to 0xFFAA0055 on subsequent reads, since
writing logic 0 values to any of the bits is ignored.

Note that the organization of this 32-bit register will differ
depending on the value of the PORT_B_WIDTH parameter.

If the PORT_B_WIDTH parameter is 8, the internal 32-bit
register B_FLAGS_B2A[31:0] is read/write accessible by
processor B in 4 groups of 8 bits, via the 4 word-aligned addresses
from 0x0010 to 0x001C:

B_FLAGS_B2A[7:0] accessible at address 0x0010,

B_FLAGS_B2A[15:8] accessible at address 0x0014,

B_FLAGS_B2A[23:16] accessible at address 0x0018, and

B_FLAGS_B2A[31:24] accessible at address 0x001C.

If the PORT_B_WIDTH parameter is 16, the internal 32-bit
register B_FLAGS_B2A[31:0] is read/write accessible in 2 groups
of 16 bits, via the 4 word-aligned addresses from 0x0010 to
0x001C:

B_FLAGS_B2A[15:0] accessible at addresses 0x0010 and 0x0014,
andB_FLAGS_B2A[31:16] accessible at addresses 0x0018 and
0x001C,

If the PORT_B_WIDTH parameter is 32, the internal 32-bit
register B_FLAGS_B2A[31:0] is read/write accessible as a single
group of 32 bits at any of the 4 word-aligned addresses from
0x0010 to 0x001C.
CoreMBX v2.0 Handbook 29

Register Maps: Programmer’s View
Table 4-16 · Processor A to Processor B Flags (B_FLAGS_A2B) Register Bit Description

Bit Name Description

31:0 FLAGS

Message flag bits from processor A to processor B:

These 32 possible flag logic bits can be used to send interrupts
from processor A to processor B. Processor B can clear any of the
32 bits by writing a logic 1 in that bit position. For example, if the
B_FLAGS_A2B[31:0] register value contains 0x00550000 and
processor B writes the value 0xFF55FFFF to this register, the
value will be changed to 0x00000000 on subsequent reads. Writing
logic 0 values to any of the bits is ignored.

Note that the organization of this 32-bit register will differ
depending on the value of the PORT_B_WIDTH parameter.

If the PORT_B_WIDTH parameter is 8, the internal 32-bit
register B_FLAGS_A2B[31:0] is read/write accessible by
processor B in 4 groups of 8 bits, via the 4 word-aligned addresses
from 0x0020 to 0x002C:

B_FLAGS_A2B[7:0] accessible at address 0x0020,

B_FLAGS_A2B[15:8] accessible at address 0x0024,

B_FLAGS_A2B[23:16] accessible at address 0x0028, and

B_FLAGS_A2B[31:24] accessible at address 0x002C.

If the PORT_B_WIDTH parameter is 16, the internal 32-bit
register B_FLAGS_A2B[31:0] is read/write accessible in 2 groups
of 16 bits, via the 4 word-aligned addresses from 0x0020 to
0x002C:

B_FLAGS_A2B[15:0] accessible at addresses 0x0020 and 0x0024,
and

B_FLAGS_A2B[31:16] accessible at addresses 0x0028 and
0x002C,

If the PORT_B_WIDTH parameter is 32, the internal 32-bit
register B_FLAGS_A2B[31:0] is read/write accessible as a single
group of 32 bits at any of the 4 word-aligned addresses from
0x0020 to 0x002C.

Table 4-17 · FIFO Read Data A->B (FIFORDA2B) Register Bit Description

Bit Name Description

n:0 DATA

FIFO read data (n = MBX_WIDTH-1): During a read cycle, this
data will be read by processor B from the A->B FIFO (for sending
message data from processor A to processor B) if USE_FIFOS=1.
If USE_FIFOS=1, reading from this address has no effect, as
unknown logic values are returned and should be ignored. This
register is read-only.

Note that if PORT_B_WIDTH is less than MBX_WIDTH,
then the number of data bits accessible from processor B will be
limited to the value of PORT_B_WIDTH rather than the value
of MBX_WIDTH.
30 CoreMBX v2.0 Handbook

Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface
Table 4-18 · FIFO Write Data B->A (FIFOWDB2A) Register Bit Description

Bit Name Description

n:0 DATA

FIFO write data (n = MBX_WIDTH-1): During a write cycle,
this data will be written from processor B into the B->A FIFO
(for sending message data from processor B to processor A) if
USE_FIFOS=1. If USE_FIFOS=0, writing to this address has no
effect. This register is write-only.

Note that if PORT_B_WIDTH is less than MBX_WIDTH,
then the number of data bits accessible from processor B will be
limited to the value of PORT_B_WIDTH rather than the value
of MBX_WIDTH.

Table 4-19 · Dual-port SRAM B (DPRAMB) Register Bit Description

Bit Name Description

n:0 DATA

Dual-port SRAM data (n = MBX_WIDTH-1): During a write
cycle, this data will be written from processor B into the dual-port
SRAM if USE_FIFOS=0. Note that only every fourth 32-bit
word aligned address is used: 0x2000, 0x2004, 0x2008, ...,
0x3FFC. If USE_FIFOS=1, writing to these addresses has no
effect. During a read cycle, data from the dual-port SRAM will be
read by processor B if USE_FIFOS=0.

Note that if the CFG_ROM parameter is greater than 0 and the
ROMSEL_B input is high (logic 1), then reads from this address
space will return data from the optional ROM; however, writes to
this address space will still write to the dual-port RAM. If the
CFG_ROM parameter is greater than 0 and the ROMSEL_B
input is low (logic 0), then reads from this address space will return
data read from the dual-port RAM. Note that each address in this
range is 32-bit word aligned, therefore when reading from the
ROM, keep in mind that the values specified in the
ROM_ADDR_1 to ROM_ADDR_40 parameters will actually
need to be multiplied by 4 (shifted to left by 2 bits) to access the
desired ROM contents. For example, for processor B to read the
contents of ROM address 255 (0xFF), it will need to set the
ROMSEL_B input high and read from address 0x2000 +
(0xFF<<2) = 0x23FC.

If USE_FIFOS=1 and CFG_ROM=0, reading from these
addresses has no effect, as unknown logic values are returned and
should be ignored.

Note that if PORT_B_WIDTH is less than MBX_WIDTH,
then the number of data bits accessible from processor B will be
limited to the value of PORT_B_WIDTH rather than the value
of MBX_WIDTH.
CoreMBX v2.0 Handbook 31

5
Testbench Operation and Modification

User Testbench
Included with the releases of CoreMBX is a user testbench that gives an example of how to use the core with two
processors. The user testbench (Figure 5-1) instantiates two behavioral Actel DirectCore AMBA BFM modules to
emulate using an AHB-Liter master on the AHB port of CoreMBX and an APB master on the APB port of
CoreMBX.

Figure 5-1 · CoreMBX User Testbench

Two BFM ASCII script source files (*.bfm), with comments, are included in the directory YourLiberoProjectDirectory/
simulation; where YourLiberoProjectDirectory represents the path to your Libero IDE project. The BFM source files
(corembx_usertb_ahb_master.bfm and corembx_usertb_apb_master.bfm) are for controlling the AHB-Lite master and APB
master processors respectively. These two BFM source files are automatically recompiled each time the simulation is
invoked from Libero IDE by the bfmtovec.exe executable, if running on a Windows® platform, or by the bfmtovec.lin
executable, if running on a Linux platform. The output.vec vector files, created by the bfmtovec executable, are read in by
the BFM modules for simulation in ModelSim.

The source code for the user testbench and BFM scripts is available with the CoreMBX obfuscated and RTL releases. A
compiled ModelSim simulation library containing the BFM modules is available with the CoreMBX obfuscated release.
Obfuscated RTL versions of the BFM modules are available with the CoreMBX RTL release.

User Testbench

BFM_AHBL

AHB I/F

GP I/O

File I/O

BFM_APB

APB I/F

GP I/O

File I/O

CoreMBX

AHB I/F

Misc I/O Misc I/O

APB I/F

AHB_Lite Master
BFM Script
(.bfm file)

bfmtovec.exe
compiler

AHB-Lite Master
Vectors

(.vec file)

APB Master
BFM Script
(.bfm file)

bfmtovec.exe
compiler

APB Master
Vectors

(.vec file)
CoreMBX v2.0 Handbook 33

6
System Operation

This chapter provides various hints to ease the process of implementation and integration of CoreMBX into your own
design.

Usage with Cortex-M1 and CoreABC
CoreMBX can be used with Cortex-M1, Actel's soft IP version of the popular ARM® microprocessor that has been
optimized for the M1 Fusion flash-based FPGA devices, and with CoreABC. To create a design using Cortex-M1,
CoreMBX, and CoreABC, you should use CoreConsole or SmartDesign. An example CoreConsole sub-system using
Cortex-M1, CoreMBX, and CoreABC is shown in Figure 6-1. Please refer to the CoreConsole online help on how to
create your Cortex-M1-based design using the CoreConsole IDP. Please refer to the Libero IDE online help for
information on creating a Cortex-M1-based design using SmartDesign.

Figure 6-1 · Example System using CoreMP7 and CoreMBX
CoreMBX v2.0 Handbook 35

7
Ordering Information

Ordering Codes
CoreMBX can be ordered through your local Actel sales representative. It should be ordered using the following number
scheme: CoreMBX-XX, where XX is listed in Table 7-1.

Table 7-1 · Ordering Codes

XX Description

OM RTL for Obfuscated RTL – multiple-use license

RM RTL for RTL source – multiple-use license

Note: CoreMBX-OM is included free with a Libero IDE license
CoreMBX v2.0 Handbook 37

i
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
CoreMBX v2.0 Handbook 39

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
40 CoreMBX v2.0 Handbook

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

CoreMBX v2.0 Handbook 41

A
Actel

electronic mail 39
telephone 40
web-based technical support 39
website 39

AHB 5
APB 5

B
block diagram 6

C
contacting Actel

customer service 39
electronic mail 39
telephone 40
web-based technical support 39

Core8051s 5
CoreABC 5
CoreConsole 11
CoreMBX 5

block diagram 6
configuration 12
features 7
overview 5
typical application 6

Cortex-M1 5
customer service 39

E
example system 35

F
flag 10

I
interface descriptions 15

L
Libero IDE 11

importing into 13
synthesis in 14

Libero ODE
place-and-route in 14

O
obfuscated 11
ordering code 37

P
parameters 15
ports 17
product support 39–40

customer service 39
electronic mail 39
technical support 39
telephone 40
website 39

programmer’s view 21

R
RTL 11

S
simulation 14
SmartDesign 13

T
technical support 39
testbench operation 33

W
web-based technical support 39

Index

For more information about Actel’s products, visit our website at
www.actel.com

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 • USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • http://jp.actel.com

Actel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200138-0/10.08

	Introduction
	Core Overview
	Key Features
	Core Version
	Supported Interfaces
	Utilization and Performance

	Functional Block Descriptions
	Memory Usage
	FIFO Usage
	Dual-Port SRAM Usage
	Optional ROM Usage
	Flag Logic

	Tool Flows
	Licenses
	Obfuscated
	RTL

	CoreConsole
	Importing into Libero IDE
	SmartDesign
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Interface Descriptions
	Parameters/Generics
	Ports

	Register Maps: Programmer’s View
	Port A (AHB Slave) Register Interface
	Port B (AMBA 2 or AMBA 3 APB Slave) Register Interface

	Testbench Operation and Modification
	User Testbench

	System Operation
	Usage with Cortex-M1 and CoreABC

	Ordering Information
	Ordering Codes

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

