
CoreFMEE Handbook

v2.0

Actel Corporation, Mountain View, CA 94043

© 2007 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200098-0

Release: March 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

CoreFMEE Handbook v2.0 3

Table of Contents

Introduction . 5
Core Overview . 5

Device Utilization and Performance . 6

1 Tool Flows . 9
Licenses . 9

CoreConsole . 9

Importing into Libero IDE . 11

Simulation Flows . 11

Synthesis in Libero IDE . 12

Place-and-Route in Libero IDE . 12

2 Interface Description . 13
Parameters . 13

Signals . 14

3 Functional Description . 17
Flash Memory Endurance Algorithm . 17

Flash Memory Initialization . 18

Flash Memory Interface Operation . 20

Serial Interface Operation . 22

Flash Memory Arbitration . 28

4 Testbench Operation and Modification . 29
Verification Testbench . 29

Simple Application Testbench . 30

5 Implementation Hints . 31
Usage with Internal Flash Memory . 31

A VHDL Testbench Support Routines . 33

B Product Support . 35
Customer Service . 35

Actel Customer Technical Support Center . 35

Actel Technical Support . 35

Website . 35

Contacting the Customer Technical Support Center . 35

Index . 37

Introduction

Core Overview
The CoreFMEE (Flash Memory Endurance Extender) macro uses the internal Flash memory blocks of Actel Fusion™
devices to emulate a serial EEPROM and to extend the life of the memory. It typically exists in a Fusion system between
a microcontroller core and Flash memory. The serial EEPROM emulation allows users to reduce board-level
components and save valuable board area by using a highly integrated design approach (internal Flash memory and
FPGA logic). CoreFMEE has write protection modes for the Flash memory that can be controlled either by hardware or
by software. Several sizes of emulated EEPROM devices are supported, from 128 bytes up to 2,048 bytes, and several
physical-to-logical page mapping schemes are allowed, from 1 physical page per logic page up to 128 physical pages per
logic page. CoreFMEE keeps track of when physical pages within the internal Flash memory blocks need to be used to
extend the endurance of logical pages.

The block diagram for CoreFMEE is shown in Figure 1. CoreFMEE is broken into two functional blocks: a serial slave
block that decodes serial commands synchronously to the user serial clock (SCL) and an NVM interface block that
translates the decoded serial commands into Fusion Flash memory operations.

A typical application using the CoreFMEE macro is shown in Figure 2 on page 6. This typical application shows that
CoreFMEE can work in conjunction with a user application that also accesses the internal Flash memory of a Fusion
device, the arbitration of which is controlled by the user application.

CoreFMEE supports all devices in the Fusion family. Note that this handbook focuses on the operation of CoreFMEE
and does not provide detail on the structure or behavior of the Fusion Flash memory. Refer to the Fusion Family of
Mixed-Signal FPGAs datasheet for details on the Fusion Flash memory. Note that CoreFMEE has been designed to be
used with an external device, but it could be adapted for use with user-created custom logic within the Fusion FPGA
fabric.

CoreFMEE has five top-level parameters (Verilog) or generics (VHDL) used to configure the core. For a detailed
description of the parameters and generics, refer to Table 2-1 on page 13.

Figure 1 · CoreFMEE Block Diagram

nvm_intserial_slave

Flash Memory InterfaceSerial Slave Interface

SDA_IN
WP

SDA_OUT
SDA_CTL

ADD
SCL

CLK
NRST

FM_READ
FM_WRITE
FM_AUX_BLOCK
FM_OVERWRITE_PAGE
FM_ADDRESS
FM_DATA_IN
FM_PROGRAM
FM_DATA_WIDTH

FM_DATA_OUT
FM_BUSY
FM_STATUS
FM_REQ

FM_ACK
CoreFMEE Handbook v2.0 5

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf

Introduction
Figure 2 · CoreFMEE Typical Application

Device Utilization and Performance
CoreFMEE has been implemented in the Actel Fusion device family. A summary of the implementation data is listed in
Table 1 through Table 3 on page 7.

Fusion Device

Flash
Memory

Serial
Interface

User Application

CoreFMEE

Microcontroller

Table 1 · CoreFMEE Device Utilization and Performance (minimum configuration)

Family
Tiles Utilization

NVM
Performance

Serial
Performance

Sequential Combinatorial Device Total

Fusion 94 251 AFS090-2 14% 88 MHz 5.5 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level generics/

parameters were set as follows: WP_MODE = 0, DEV_CONFIG = 0, ENDURANCE = 0,
PAGE_MODE = 1, BASE_ADD = 0.

Table 2 · CoreFMEE Device Utilization and Performance (typical configuration)

Family
Tiles Utilization

NVM
Performance

Serial
Performance

Sequential Combinatorial Device Total

Fusion 117 420 AFS090-2 23% 56 MHz 3.5 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level generics/
parameters were set as follows: WP_MODE = 0, DEV_CONFIG = 2, ENDURANCE = 4,

PAGE_MODE = 1, BASE_ADD = 0.
6 CoreFMEE Handbook v2.0

Device Utilization and Performance
This core does not require the use of external device package pins, and it does not directly instantiate the Flash memory,
though it does interface with the Flash memory, as shown in Figure 2 on page 6. The user instantiates the Flash memory
either manually or within the Actel Libero® Integrated Design Environment (IDE). This macro has no specific
electrical requirements and can be used in any of the Fusion devices.

Table 3 · CoreFMEE Device Utilization and Performance (maximum configuration)

Family
Tiles Utilization

NVM
Performance

Serial
Performance

Sequential Combinatorial Device Total

Fusion 238 1,113 AFS090-2 60% 52 MHz 3.25 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level generics/

parameters were set as follows: WP_MODE = 0, DEV_CONFIG = 4, ENDURANCE = 7,
PAGE_MODE = 1, BASE_ADD = 0.
CoreFMEE Handbook v2.0 7

1
Tool Flows

Licenses
CoreFMEE is licensed in three ways. Depending on your license type, tool flow functionality may be limited.

Evaluation
Pre-compiled simulation libraries are provided, allowing the core to be instantiated in CoreConsole and simulated within
Libero IDE as described below. The design may not be synthesized as source code is not provided.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated with CoreConsole and Simulation,
Synthesis, and Layout to be performed within Libero IDE. The RTL code for the core is obfuscated,1 and some of the
testbench source files are not provided; they are pre-compiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
CoreFMEE is preinstalled in the CoreConsole IP Deployment Platform (IDP). To use the core,2 simply drag it from
the IP core list into the main window. The CoreConsole project can be exported to Libero IDE at this point, providing
access just to CoreFMEE, or other IP blocks can be interconnected, allowing the complete system to be exported from
CoreConsole to Libero IDE.

The core can then be configured using the configuration GUI within CoreConsole, as shown in Figure 1-1 on page 10,
Figure 1-2 on page 10, and Figure 1-3 on page 11. Parameters can be entered manually within the CoreConsole GUI or
imported from the SmartGen configuration file; the parameters are fully described in “Parameters” on page 13.

1. Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names have been replaced

with random character sequences.

2. A CoreFMEE license is required to generate the design for export to Libero IDE for simulation and synthesis .
CoreFMEE Handbook v2.0 9

Tool Flows
Figure 1-1 · CoreFMEE Configuration within CoreConsole

Figure 1-2 · CoreFMEE Configuration within CoreConsole (continued)
10 CoreFMEE Handbook v2.0

Importing into Libero IDE
Figure 1-3 · CoreFMEE Configuration within CoreConsole (continued)

Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core may be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will then install
the core and the selected testbenches, along with constraints and documentation, into its project.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

Simulation Flows
To run simulations, select the required testbench flow within CoreConsole and run Save & Generate from the Generate
pane. The required testbench is selected through the Core Testbench Configuration GUI. Two simulation testbenches
are supported with CoreFMEE:

• Simple CoreFMEE user application testbench (both VHDL and Verilog)

• Full CoreFMEE verification testbench (VHDL only)

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files. To run either the
simple application or the full verification environment, simply set the design root to the CoreCFI instantiation in the
Libero IDE design hierarchy and click the Simulation icon in the Libero IDE Design Flow window. This will invoke
ModelSim® and automatically run the simulation.
CoreFMEE Handbook v2.0 11

Tool Flows
Synthesis in Libero IDE
Set the design root appropriately and click the Synthesis icon in Libero IDE. The synthesis window appears, displaying
the Synplicity® project. Set Synplicity to use the Verilog 2001 standard if Verilog is being used. To run Synthesis, click
the Run icon.

Place-and-Route in Libero IDE
After setting the design root appropriately and running Synthesis, click the Layout icon in Libero IDE to invoke
Designer. CoreFMEE requires no special place-and-route settings.
12 CoreFMEE Handbook v2.0

2
Interface Description

Parameters
CoreFMEE has parameters (Verilog) and generics (VHDL), described in Table 2-1, for configuring the RTL code. All
parameters and generics are integer types.

Table 2-1 · CoreFMEE Parameter/Generic Descriptions

Name Type Description

FAMILY Integer 0 to 99
Must be set to match the supported FPGA family:

17 – Fusion

WP_MODE Integer 0 or 1
Determines which write protect operation is supported.
0 = Hardware mode
1 = Software mode

DEV_CONFIG Integer 0 to 4

Indicates which size EEPROM is supported.
0 = 128 bytes (1 logical page)
1 = 256 bytes (2 logical pages)
2 = 512 bytes (4 logical pages)
3 = 1 kbyte (8 logical pages)
4 = 2 kbytes (16 logical pages)

BASE_ADD Integer 0 to (218 – 1) Starting Fusion Flash memory address (sector, page) for CoreFMEE1

ENDURANCE Integer 0 to 7

Number of physical pages available for each logical page2

0 = 1 physical page per logical page
1 = 2 physical pages per logical page
2 = 4 physical pages per logical page
3 = 8 physical pages per logical page
4 = 16 physical pages per logical page
5 = 32 physical pages per logical page
6 = 64 physical pages per logical page
7 = 128 physical pages per logical page

PAGE_MODE Integer 0 or 1

Determines whether the change to a new physical page occurs from
FM_STATUS[1:0] being over threshold or due to a compare failure.
0 = Change on overwrite threshold
1 = Change on compare failure

Notes:

1. BASE_ADD must be set to a page boundary.

2. The more physical pages used, the longer the life of the Flash memory blocks is extended.
CoreFMEE Handbook v2.0 13

Interface Description
Signals
The port signals for the CoreFMEE macro are defined in Table 2-2 on page 15 and shown in Figure 2-1. CoreFMEE
has 57 I/O signals. This core is typically used with external device package pins (ADD[2:0], SDA, SCL, and WP as I/O
pads—a total of six external I/Os). It does not directly instantiate the Flash memory, though it does interface with the
Flash memory, as shown in Figure 2-1 (Flash memory interface signals begin with “FM_”). Note that if using SDA as a
bidirectional signal at the top level of the FPGA design, the user will need to create the device SDA pin by instantiating
tristate I/O pads using the SDA_CTL signal and the CoreFMEE SDA_IN and SDA_OUT signals. The user
instantiates the Flash memory either manually or within Libero IDE.

Figure 2-1 · CoreFMEE I/O Signal Diagram

NRST

CoreFMEE

CLK

FM_REQ

FM_DATA_OUT[7:0]

FM_PAGE_STATUS

FM_BUSY

FM_ACK

FM_DATA_IN[7:0]SDA_IN

WP
SCL

FM_STATUS[1:0]

FM_READ
FM_WRITE

FM_ADDRESS[17:0]

FM_PROGRAM
FM_OVERWRITE_PAGE

FM_AUX_BLOCK
ADD[2:0]

FM_DATA_WIDTH[1:0]

SDA_OUT
SDA_CTL
14 CoreFMEE Handbook v2.0

Signals
Table 2-2 · CoreFMEE I/O Signal Descriptions

Name Type Description

NRST Input Active low asynchronous reset

CLK Input
Flash memory interface clock—all Flash memory operations and status will be
synchronous to the rising edge of this clock signal.

FM_READ Output When asserted, initiates a Flash memory read operation.

FM_WRITE Output
When asserted, interface data present on FM_DATA_IN[7:0] is stored in the assembly
buffer of the Flash memory.

FM_PROGRAM Output
When asserted, this signal writes the contents of the assembly buffer into the cell array
page addressed in the Flash memory within the Fusion device.

FM_OVERWRITE_PAGE Output
When asserted, the page addressed is overwritten with the contents of the assembly buffer
if the page is writeable.

FM_ADDRESS[17:0] Output The byte offset into the Flash memory cell array, assembly buffer, or data register

FM_AUX_BLOCK Output
When this signal is asserted together with the FM_ADDRESS[17:0] signals, the
contents of the auxiliary block of the Fusion Flash memory is being addressed.

FM_PAGE_STATUS Output
When this signal is asserted during a read, it indicates that the status for the currently
addressed page is being accessed.

FM_DATA_IN[7:0] Output Write data to the Fusion Flash memory.

FM_DATA_WIDTH[1:0] Output
These output signals are used to select the data width mode of the Fusion Flash memory,
and are fixed at '00' (byte mode). Only byte mode is used by CoreFMEE.

FM_BUSY Input Indicates that the Fusion Flash memory is performing an operation.

FM_DATA_OUT[7:0] Input Read data from the Fusion Flash memory

FM_STATUS[1:0] Input Status of the last operation completed

FM_REQ Output Arbitration request for the Fusion Flash memory

FM_ACK Input Arbitration acknowledge from the Fusion Flash memory

ADD[2:0] Input Device address pins

SDA_IN Input Serial data input

SDA_OUT Output Serial data output

SDA_CTL Output

This signal needs to be connected to the bidirectional control for the top-level I/O pad to
which the SDA_IN input and SDA_OUT output are also connected. When this signal is
logic 0, the SDA_OUT output is allowed to propagate out. When it is logic 1, the
SDA_IN input is allowed to propagate in.

SCL Input Serial Clock Input—the serial_slave block is synchronous to this clock domain.

WP Input Write Protect—if hardware write protect is not used, this signal should be tied to logic 0.

Note: All signals are active high (logic 1) unless otherwise noted.
CoreFMEE Handbook v2.0 15

3
Functional Description

Flash Memory Endurance Algorithm
The logical-to-physical mapping of Flash memory pages in CoreFMEE utilizes a mechanism called linear/forward
mapping, in which a logical page is mapped into N physical pages (where N is determined by the ENDURANCE
generic/parameter). Physical pages are mapped to the logical pages based on a simple address calculation. The writes
begin at the first physical page and will continue in this page until a Flash memory program failure is detected. When a
failure is detected at the end of a Flash memory programming sequence, the next write/program will be to the next
sequential physical page. This write sequence continues until all N physical pages for this logical page have failures when
programming. If the user continues to perform writes after the last page has encountered the failure mechanism,
CoreFMEE will continue to write and program but will no longer be able to guarantee accurate data content.

Mapping of logical addresses to the N physical Flash memory pages is done in the following fashion:

Physical base address = BASE_ADD + {Logical page number concatenated with the endurance offset}

CoreFMEE essentially shifts the logical page number left, depending on the setting of the ENDURANCE
generic/parameter. For example, if ENDURANCE is set to 0, a shift will not occur; if ENDURANCE is set to 1, a shift
of one bit place will occur; if ENDURANCE is set to 2, a shift of two bits will occur; etc.

Table 3-1 · Addressing Example

FM Address EE Logical Page EE Physical Page

0x00000 0 0

0x00080 0 1

0x00100 0 2

0x00180 0 3

0x00200 1 0

0x00280 1 1

0x00300 1 2

0x00380 1 3

0x00400 2 0

0x00480 2 1

0x00500 2 2

0x00580 2 3

0x00600 3 0

0x00680 3 1

0x00700 3 2

0x00780 3 3

Note: For this example BASE_ADDRESS = 0,
DEV_CONFIG = 2, ENDURANCE = 2
CoreFMEE Handbook v2.0 17

Functional Description
Flash Memory Initialization
During initialization, CoreFMEE uses the four configuration generics/parameters: BASE_ADD, ENDURANCE,
PAGE_MODE, and DEV_CONFIG. The initialization routine determines the read and write physical addresses for
each logical Flash memory page. The number of logical pages is determined by the DEV_CONFIG generic/parameter.
CoreFMEE supports from 1 to 16 logical pages.

Initialization will be performed when a LOW to HIGH transition occurs on the NRST input signal.

Starting at the BASE_ADD address, CoreFMEE will read all the locations of each page until it has determined the read
pointer for the logical page. If the first physical page does not have the IN_USE1 bit set in the user data, the read pointer
is set to page 0. Data reads for a logical page with no IN_USE indicators will return whatever data is in physical page 0.
If the physical page contains a valid IN_USE indicator, but there is a compare error or write threshold error (depending
on the setting of the PAGE_MODE generic/parameter) during the read of the page, then the read pointer is set to this
page address, but the write indicator shows the page is not available for writes. If the page contains a valid IN_USE
indicator and there is no ECC or write threshold error, both the read and write indicators are loaded with the current
page address.

When the read pointer and write indicator have been initialized for a logical page, the process is repeated for the next
logical page until the last set of logical page pointers has been initialized. Refer to Figure 3-1 on page 19 for a flow
diagram of the initialization process.

The write protect setting for CoreFMEE is determined during the read of logical page 0. If the IN_USE bit is set in the
auxiliary block of the Flash memory, the write protect state is initialized.

1. IN_USE is a status bit stored in the auxiliary block of the Fusion Flash memory and indicates that the current page is in use.
18 CoreFMEE Handbook v2.0

Flash Memory Initialization
Figure 3-1 · Initialization Flow Diagram

Initialization
Start

Set Logical Address to
EEPROM Page 0

Set Physical Address to
FM Page 0

Page Mode?

Sequentially Read a Word from Each
Data Block in the Physical Page

Read Page Status of
This Physical Page

PAGE_MODE = 1PAGE_MODE = 0

Is the
Physical Page Over

Threshold?

Did Any
Blocks Have ECC

Errors?

Set the “Bad” Flag for
This Logical Page

Yes Yes

Clear the “Bad” Flag for
This Logical Page

Clear the “Bad” Flag for
This Logical Page

Read Aux Block of This
Logical Page

Is the
“In Use” Flag

Set?

Update the Page Mapping
for This Logical Page to Point

to Current Physical Page

Set the Page Mapping for
This Logical Page to Point to

the Current Physical Page

Yes

No No

Is This the
Last Physical Page in the

Logical Page?

No

Increment Logical
Page Number

Increment FM Physical
Page Number?

No

Yes

NoIs This the
Last Logical Page in the

EEPROM?

Initialization
Complete

Yes
CoreFMEE Handbook v2.0 19

Functional Description
Flash Memory Interface Operation
CoreFMEE utilizes the Fusion Flash memory commands listed in Table 3-2.

The COREFMEE_SERIAL_SLAVE block begins an EEPROM operation by sending a request to the
COREFMEE_NVM_INT block. The COREFMEE_NVM_INT logic will then begin an arbitration phase where the
output signal FM_REQ is set. Upon receipt of the FM_ACK input signal, it is passed along to the
COREFMEE_SERIAL_SLAVE block as an acknowledge. The COREFMEE_NVM_INT block will hold the
FM_REQ active until either the read is complete or the program is complete after the write or protect operation is
complete.

When a read or write operation is initiated from the COREFMEE_SERIAL_SLAVE block, the
COREFMEE_NVM_INT block will perform the logical-to-physical translation of the requested address. The
COREFMEE_NVM_INT block will then perform a read/write operation on the Flash memory within the Fusion
device. For read operations, the data from the Flash memory will be registered and presented to the
COREFMEE_SERIAL_SLAVE block when the FM_BUSY input is no longer active. For write operations, the
FM_DATA_IN[7:0] outputs will present the data byte as received and registered by the
COREFMEE_SERIAL_SLAVE block.

The COREFMEE_NVM_INT block will perform a program operation to the Flash memory under two conditions: at
the completion of write operations by the COREFMEE_SERIAL_SLAVE block and with the setting of serial
protection logic by the COREFMEE_SERIAL_SLAVE block. When a program sequence is started, the
COREFMEE_NVM_INT block will perform a write to the USER_DATA field in the auxiliary block of the Fusion
Flash memory to set the IN_USE bit and to store WRITE_PROTECT information. The COREFMEE_NVM_INT
block will then assert the FM_PROGRAM output signal and start a program operation. After completion of the
program sequence, the COREFMEE_NVM_INT block will monitor the FM_STATUS[1:0] inputs. If the
FM_STATUS[1:0] inputs are equal to '10' or '11' (depending on PAGE_MODE), indicating a program issue, the
COREFMEE_NVM_INT block will store this information for the next program operation. If there was an issue on the
previous program operation, the COREFMEE_NVM_INT block will perform the writes to the current physical page,
but will change the FM_ADDRESS[17:0] outputs to the new physical page and assert the FM_PROGRAM and
FM_OVERWRITE_PAGE signals. If the current physical page is the last physical page for the logical page, the current
page will be programmed again.

Table 3-2 · Fusion Flash Memory Commands Used

Command How Command Is Used

READ

Utilized to read data for the serial interface.

Used in conjunction with FM_AUX_BLOCK to read user data from the current page.

Used in conjunction with FM_PAGE_STATUS to determine overwrite threshold during the initialization
sequence.

WRITE
Used to write serial data to the Flash memory.

Used with FM_AUX_BLOCK to write user data to the auxiliary block of the page.

PROGRAM

Used to program page to physical address after write to physical page.

Used in conjunction with FM_OVERWRITE_PAGE to overwrite data in NVM to different page address
when a failure occurs.
20 CoreFMEE Handbook v2.0

Flash Memory Interface Operation
Refer to Figure 3-2 for a high-level overview flow diagram of the write process.

Figure 3-2 · Write Flow Diagram

Write Start

Serial Write Command
Issued

Serial Address (logical
page and page location)

Write
Complete?

Good

Write Complete

No

Serial Write Data Byte

Data Is Written to FM
Assembly Buffer Location
for Physical Page Based on
Current Mapping for the

Logical Page

Set “In Use” Flag in Aux
Block

Check
“Bad” Bit

Program the Page to the
Mapped FM Physical Page

Set Overwrite Page and
Point to the Newly

Mapped Physical Page

Yes

Increment the Physical
Page Mapping for This
Logical Page and Clear

“Bad” Bit

Cleared

Set

Programming
Status?

Set the “Bad” Bit for
This Logical Page

Page Mode 0: Page Over Threshold Error
Page Mode 1: ECC1 Error in Page Compare
CoreFMEE Handbook v2.0 21

Functional Description
Serial Interface Operation
CoreFMEE responds to a number of serial interface commands. The following subsections outline all the commands
that CoreFMEE responds to and the handshaking involved. Note that, due to the use of a serial protocol, the read/write
(R/W) flag depends on the context of the master data input. In general, the following conventions are followed:

• SDA is a bidirectional open-drain serial data signal at the pin level of the Fusion device, consisting of the SDA_IN
input and SDA_OUT output, the direction of which is controlled by the SDA_CTL signal. The open drain should
be implemented using a tristate buffer.

• Data (SDA) is latched at the destination on the rising edge of SCL. Data is sent on the falling edge of SCL.

• A data transition while SCL is HIGH is considered either a start or a stop indicator.

• A start indicator is defined as a HIGH to LOW transition of SDA while SCL is HIGH.

• A stop indicator is defined as a LOW to HIGH transition of SDA while SCL is HIGH.

• SCL is originated at the master and is used by all slave devices.

• SCL is not a continuous running clock and is only active when the master has commands for a slave.

• The ACK cycle may be driven by either the master or CoreFMEE and is dependent on the command being executed.

• An ACK is performed by putting a 0 on the SDA line during the ACK cycle. A NO ACK is performed by driving a
1 on the SDA line during the ACK cycle.

• CoreFMEE will only perform the duties of a slave device.

Serial Write
A serial write is initiated as shown in Figure 3-3.

Figure 3-3 · Serial Write

A serial write is initiated by the master, which asserts a start pulse and puts a control byte on the SDA line. The control
byte contains the following data:

• C6–C3 = '1010'

• C2–C0 = Device address in smaller devices. For larger devices, these bits are used as extended address bits.

• R/W = 0 for write

• ACK = 0 – This is sent by the CoreFMEE device that is being addressed in C2–C0. If the CoreFMEE device does
not match the address on C2–C0 with the ADD[2:0] inputs, CoreFMEE does not respond to the command. If for
some reason the Fusion Flash memory is unavailable, CoreFMEE will drive a NO ACK on the SDA line, and the
master will terminate the transfer with a stop indicator.

After the ACK from CoreFMEE, the master will issue the remainder of the starting address on the SDA line.
CoreFMEE will only issue the ACK if it has been granted access to the Flash memory for the write/program sequence.
At the end of the address, CoreFMEE is required to issue the ACK for the write address.

After the word address, the master will begin to transmit data bytes on the SDA line. CoreFMEE will acknowledge each
byte as it is received. When the master has completed sending the last byte, it will terminate the transfer by executing a
stop command. Data transmitted is stored linearly in the Flash memory, starting at the logical address sent by the master.

SCL

Control ByteStart
Indicator

C6 R/WC0C1C2C3C4C5 ACK

Word Add

ACKA7 A0A1A2A3A4A5A6SDA D7 D0D1D2D3D4D5D6 ACK

Stop
Indicator

Note: R/W = 0 for Write

Data Byte
22 CoreFMEE Handbook v2.0

Serial Interface Operation
Page Write
A page write is initiated as shown in Figure 3-4.

Figure 3-4 · Page Write

A page write is initiated in exactly the same way that a serial write occurs. The control byte, word address, and first data
byte are the same. The only difference is that the master does not issue a stop at the end of the first data byte. It will
continue to send data bytes until it has finished sending all bytes for the page.

When the master has finished sending the last byte, it will issue a stop indicator to terminate the transfer. CoreFMEE
will ACK each data byte as it is received. Upon terminating the transfer, CoreFMEE will program the data into
contiguous locations within Flash memory, as indicated by the logical address.

Page writes are limited to either the size of the Flash memory page (128 bytes) or the end of the Flash memory page. A
page write does not have to start at the beginning of the page boundary, but it must terminate at the end of a page
boundary (otherwise the address will wrap around to the beginning of the page).

Random Read
A random read is initiated as shown in Figure 3-5.

Figure 3-5 · Serial Read

The master initiates a random read by starting to perform a serial write. The sequence for the control byte and word byte
are exactly the same as in a serial write. The reason for this is that there is no other mechanism in the serial protocol to
load the current read address into CoreFMEE. The way CoreFMEE determines that the command is a read is that the

SCL

Control ByteStart
Indicator

C6 R/WC0C1C2C3C4C5 ACK

Word Add

ACKA7 A0A1A2A3A4A5A6SDA ACKD7 D2D3D4D5D6 D1 D0

Data Byte

D1D2D3D4D5D6D7 D0 ACK

Stop
Indicator

Data
Continued

SDA (cont.)

Note: R/W = 0 for Write

SCL

Control ByteStart
Indicator

C6 R/WC0C1C2C3C4C5 ACK

Word Add

ACKA7 A0A1A2A3A4A5A6SDA C6 C1C2C3C4C5 C0 R/W

Start
Indicator

Control Byte

D1D2D3D4D5D6D7 D0 NO
ACK

Stop
Indicator

Data
Continued

SDA (cont.) Note: R/W = 0 for first control word
 and 1 for second control word

Serial Write
CoreFMEE Handbook v2.0 23

Functional Description
master will issue a second start command after the CoreFMEE ACK for the word address. The second start indicates to
CoreFMEE that the command is a serial read starting at the address just received.

After the Word Address/Start sequence, the master will issue another control byte, which will contain the same
information as the first control byte, except that the R/W indicator will be set to 1. CoreFMEE will ACK this control
word and proceed to send out the byte that was located at the logical address. At the end of the data, the master will issue
a NO ACK and stop indicator, terminating the transfer.

The address transmitted for the read is stored in a local address register and is incremented by 1 after the read.
Subsequent reads from the master from this base address will not send an address during the command phase.

Current Address Read
A current read operation will read the last byte location read, plus one. If, for example, the master initiated a serial read at
address 0x10, a follow-on current address read would retrieve data from address 0x11. If the master performs a read
operation that causes the current address to go beyond the end of the logical address range, the address is wrapped
around to the first location in the logical address space. Figure 3-6 outlines the interface requirements.

Figure 3-6 · Current Address Read

The current address read contains a command byte and a data byte. The command byte is proceeded by a start command;
the command byte contains the correct command sequence in C6–C3 and device address in C2–C0, and the R/W bit is
set to 1. CoreFMEE will acknowledge the command if it has gained access to the Flash memory.

The data for the logical address will be sent out on the SDA line during the data byte transmission. The master will set
NO ACK and the stop bit to terminate the transfer.

CoreFMEE will increment the local logical read address for any subsequent reads.

SCL

Control ByteStart
Indicator

C6 R/WC0C1C2C3C4C5 ACK

Data Byte

NO
ACKSDA D7 D0D1D2D3D4D5D6

Stop
Indicator

Note: R/W = 1 for Read
24 CoreFMEE Handbook v2.0

Serial Interface Operation
Sequential Read
A sequential read is initiated as shown in Figure 3-7.

Figure 3-7 · Sequential Address Read

A sequential read is continuation of a current address read. The sequential read differs from the current address read in
that the master does not terminate the data read after the first byte. When this occurs, CoreFMEE must continue to
send data to the master until the master sends a NO ACK and stop indicator. When the end of a 128-byte logical page
is reached, the address will wrap back to the beginning of the page. CoreFMEE will increment its internal address to
coincide with the logical address the master is requesting.

Write Protect Operation
A write protect operation is initiated as shown in Figure 3-8.

Figure 3-8 · Write Protect

The fields for a write protect operation are similar to those used in a write operation. The differences are that C6–C3 of
the control byte are set to '0110' and the word address and data byte fields are “don’t care.”

SCL

Control ByteStart
Indicator

C6 R/WC0C1C2C3C4C5 ACK

Data Byte

ACKSDA

SDA (cont.)

D7 D0D1D2D3D4D5D6

Stop
Indicator

Note: R/W = 1 for Read

ACKD0D1D2D3D4D5D6D7

D0D1D2D3D4D5D7 D6 ACK D0D1D2D3D4D5 NO
ACKD6D7

Data Byte

Data ByteData Byte

SCL

Control ByteStart
Indicator

C6 R/WC0C1C2C3C4C5 ACK

Word Add

ACKA7 A0A1A2A3A4A5A6SDA D7 D0D1D2D3D4D5D6 ACK

Stop
Indicator

Note: R/W = 0 for Write

Data Byte
CoreFMEE Handbook v2.0 25

Functional Description
Write protection is supported in accordance with Table 3-3.

Table 3-3 · Write Protect Operations

WP_MODE Generic WP Input WP Internal Register Part of Array Protected

0 1 X Full Array

0 0 X None

1 1 X Full Array

1 0 Not Programmed None

1 0 Programmed Full Array

Notes:

1. ‘X’ indicates “don’t care.”

2. Once a portion of the logical address space has been write-protected, there is no provision for changing the write protections.

3. If a write operation is attempted to a write-protected portion of the Fusion Flash memory, CoreFMEE will ACK the
operation but no writes will occur to the Flash memory.
26 CoreFMEE Handbook v2.0

Serial Interface Operation
Acknowledge Operation for Write Protect
When CoreFMEE is in software write protect mode (WP_MODE generic set to 1), it provides different responses to
commands depending on its write protect state. Table 3-4 outlines the operations.

Acknowledge Polling
Once the internal circuitry has started a program sequence for the Flash memory and no other operations are allowed,
the master can perform acknowledge polling. The master sends a start condition followed by a device address word. If
CoreFMEE is available for read/write operations, it will acknowledge the command. Otherwise, the master will assume
that CoreFMEE is still busy performing the write/program.

Table 3-4 · Software Write Protect Operations

Start
Command

R/W Write Protect State
ACK / NO ACK
from CoreFMEE

Action from CoreFMEE

WP Input Connected to Logic 0

1010 R X ACK Read CoreFMEE

1010 W Programmed ACK CoreFMEE write-protected

1010 W Not programmed ACK Write to CoreFMEE

0110 R Programmed NO ACK Indicates WP register programmed

0110 R Not programmed ACK Indicates WP register not programmed

0110 W Programmed NO ACK Already programmed

0110 W Not programmed ACK Sets WP register state

WP Input Connected to Logic 1

1010 R X ACK Read CoreFMEE

1010 W Programmed ACK CoreFMEE write-protected

1010 W Not programmed ACK CoreFMEE write-protected

0110 R Programmed NO ACK Indicates WP register programmed

0110 R Not programmed ACK Data is “don’t care”

0110 W Programmed NO ACK Already programmed

0110 W Not programmed ACK Sets WP register state

Note: ‘X’ indicates “don’t care.”
CoreFMEE Handbook v2.0 27

Functional Description
Serial Interface Reset
After an interruption in protocol, power loss, or system reset, CoreFMEE can be reset by following these steps:

1. Clock up to nine cycles.

2. Look for SDA HIGH in each cycle while SCL is HIGH.

3. Create a start condition.

One caveat to the reset operation is what happens when the Flash memory is in the middle of a program operation. The
Flash memory cannot abort the program (without unrecoverable results), so the interface will be held off after a reset
until the Flash memory finishes the program.

Flash Memory Arbitration
The COREFMEE_SERIAL_SLAVE block will make a request to the COREFMEE_NVM_INT block when it sees
an address during the control period of the serial transfer that matches the internal address. If the block does not actively
receive the FM_ACK signal 1¾ SCL clock periods later, the COREFMEE_SERIAL_SLAVE block will NO ACK the
command. Upon the request made by the COREFMEE_SERIAL_SLAVE block to the COREFMEE_NVM_INT
block, the COREFMEE_NVM_INT block will activate the FM_REQ signal. When the COREFMEE_NVM_INT
block actively receives the FM_ACK signal, it sends an acknowledge to the COREFMEE_SERIAL_SLAVE block.

The COREFMEE_SERIAL_SLAVE block will make an active request to the COREFMEE_NVM_INT block as
long as the serial interface is active; it will cease this request upon the receipt of a STOP indicator. The arbitration logic
within the COREFMEE_NVM_INT block will continue to hold the FM_REQ signal active after the
COREFMEE_SERIAL_SLAVE block ceases its request if the COREFMEE_SERIAL_SLAVE block has been
performing a write operation or if its serial protection has been set. In either case, the COREFMEE_NVM_INT block
will perform a program operation, and the arbitration logic will keep the FM_REQ signal active until the program
operation(s) have completed. The arbitration logic within the COREFMEE_NVM_INT block will not acknowledge
another request from the COREFMEE_SERIAL_SLAVE block until the program operation has finished.
28 CoreFMEE Handbook v2.0

4
Testbench Operation and Modification

Verification Testbench
Included with the release of CoreFMEE is a verification testbench that verifies operation of the CoreFMEE macro. A
simplified block diagram of the verification testbench is shown in Figure 4-1.

The verification test suite includes a verification testbench, which exercises the CoreFMEE design and scripts to run the
testbench for different combinations of generics/parameters. The testbench instantiates and interconnects the design
under test (DUT), which is the CoreFMEE macro and the Fusion Flash memory behavioral model. Note that to fully
verify the CoreFMEE macro, regression scripts are included that run the macro using all legal combinations of
generics/parameters.

Figure 4-1 · CoreFMEE Verification Testbench

The source code for the verification testbench is available only with the CoreFMEE RTL release.

CoreFMEE

Test Procedure

Testbench

Test Configuration

Flash
Memory

Initialization
File

Fusion
Flash

Memory
BMOD

Test
Result

(log file)
CoreFMEE Handbook v2.0 29

Testbench Operation and Modification
Verification Tests
CoreFMEE is verified through a number of tests that exercise CoreFMEE through the external interface. The
CoreFMEE verification testbench uses the Fusion Flash memory behavioral model to simulate the behavior of the Flash
memory in Fusion devices. The memory behavioral model is provided (as a library cell) as part of Libero IDE for Actel
Fusion products.

The verification testbench includes test procedures to check the following FMEE operations:

• Serial Write, using single-byte and page mode

• Serial Read, using random, current, and sequential modes

• Write Protect and Unprotect, both hardware and software

• Endurance extension using ECC errors to advance the logical page pointer

• Endurance extension using overthreshold flag to advance the logical page pointer

• Rejection of invalid serial commands

• Address matching on the ADD[2:0] inputs

Simple Application Testbench
An example user testbench is included with the Evaluation, Obfuscated, and RTL releases of CoreFMEE. The user
testbench is provided in pre-compiled ModelSim format and in RTL source code for all releases (Evaluation,
Obfuscated, and RTL) for you to examine and modify to suit your needs. The source code for the user testbench is
provided to ease the process of integrating the CoreFMEE macro into your design and verifying according to your own
custom needs. A block diagram of the user testbench is shown in Figure 4-2.

Figure 4-2 · CoreFMEE User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to implement their
own designs.

The testbench for the example user design implements a subset of the functionality tested in the verification testbench,
described in “Verification Testbench” on page 29. Conceptually, as shown in Figure 4-2, CoreFMEE and the Fusion
Flash memory BMOD are instantiated into a chip-level wrapper, which is instantiated along with an external two-wire
serial master, which generates serial commands to read and write the CoreFMEE.

Once you have familiarized yourself with the HDL source code for the user testbench, you may wish to customize it,
recompile, and run the simulation, as described in the “Implementation Hints” on page 31.

User Testbench

Serial
Command

Generator and
Response
Checker

Fusion
Flash

Memory
BMOD

CoreFMEE

CoreFMEE_chip
30 CoreFMEE Handbook v2.0

CoreFMEE Handbook v2.0 31

5
Implementation Hints

This chapter provides various hints to ease the process of implementation and integration of CoreFMEE into your own
design.

Usage with Internal Flash Memory
Proper operation of the CoreFMEE design requires the use of the Fusion Flash memory. The Fusion Flash memory is
an integral part of the CoreFMEE design—CoreFMEE will not function properly without it. CoreFMEE provides a
transparent interface to the Flash memory that should not be modified. CoreFMEE should be connected to the Flash
memory as shown in the example designs provided. If the interface is altered, it is likely that CoreFMEE will cease to
function properly.

It is anticipated that CoreFMEE will be used as an interface for components external to the Actel Fusion device.
Components internal to the Fusion device will see the best performance if they use a direct interface to the internal Flash
memory.

The Fusion Flash memory used with CoreFMEE can be programmed through the FMEE interface, or it can be pre-
programmed independently from the FPGA fabric by use of the FlashPro software and hardware (refer to the FlashPro
User’s Guide for details on how to program the Flash memory within Fusion devices).

The Fusion Flash memory program operation always writes 128 bytes of data, regardless of the actual write size desired.
For a given page (128 bytes) being written, if only one of the 128 bytes was changed by the user, the other 127 bytes will
be written again with the unchanged value. It is best to keep this in mind when writing to the Flash memory. Though
the purpose of this macro is to maximize the lifetime of the Flash memory by using multiple physical pages to store each
logical page, the endurance (lifetime) of the Flash memory will be maximized (especially for low values of the
ENDURANCE generic) if the user minimizes single-location writes (e.g., write all of the desired locations for a given
page using a page write instead of multiple single writes). Refer to the Fusion Family of Mixed-Signal FPGAs datasheet
for information on the Flash memory endurance specifications.

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/flashpro_ug.pdf
http://www.actel.com/documents/flashpro_ug.pdf

CoreFMEE Handbook v2.0 33

A
VHDL Testbench Support Routines

The user application testbench for the CoreFMEE macro makes use of VHDL procedures (or tasks in the Verilog
version). The main support procedures that are useful in developing customized testbenches are described in this
appendix.

The support procedures are incorporated into the testbench procedure to reduce the number of signals that need to be
passed in the procedure calls.

procedure do_eeprom (-- note that this is an overloaded procedure

constant operation : in t_eeprom_accesses;

constant dev_addr : in natural;

constant byte_addr : in natural;

constant data_in : in t_eeprom_data;

constant check_data : in boolean := false; -- only for reads

variable data_out : out t_eeprom_data;

variable ack : inout boolean)

procedure do_eeprom (

constant operation : in t_eeprom_accesses;

constant dev_addr : in natural;

constant byte_addr : in natural;

constant data_in : in t_eeprom_data;

constant check_data : in boolean := false; -- only for reads

variable data_out : out t_eeprom_data;

chk_timeout : in boolean := true;

variable chk_prot_ack : out boolean)

procedure poll_acknowledge (

constant dev_addr : in natural)

procedure write_page (

constant page_addr : in natural;

constant ee_add : in natural)

procedure read_page (

constant page_addr : in natural;

constant ee_add : in natural)

B
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
CoreFMEE Handbook v2.0 35

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
36 CoreFMEE Handbook v2.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 35
telephone 36
web-based technical support 35
website 35

addressing example 17

B
block diagram 5

C
contacting Actel

customer service 35
electronic mail 35
telephone 36
web-based technical support 35

contacting the Customer Applications Center 35
CoreConsole 9
customer service 35

D
device

support 5
utilization and performance 6

E
Evaluation license 9
example user testbench 30

F
Flash memory 31

arbitration 28
commands used 20
endurance algorithm 17
initialization 18
initialization flow diagram 19
instantiation 7
interface operation 20
write flow diagram 21

functional description 17

I
I/O signals

descriptions 15
diagram 14

implementation hints 31
interface description 13

L
Libero IDE 11
licenses 9

Evaluation 9
Obfuscated 9
RTL 9

linear/forward mapping 17
logical-to-physical mapping 17

O
Obfuscated license 9
overview 5

P
parameters 13
performance 6
place-and-route 12
product support 35–36

customer service 35
electronic mail 35
technical support 35
telephone 36
website 35

R
RTL license 9

S
serial interface

acknowledge for write protect 27
acknowledge polling 27
commands 22
current address read 24
operation 22
page write 23
random read 23
reset 28
sequential read 25
write 22
write protect 25

signals 14
descriptions 15
I/O diagram 14
CoreFMEE Handbook v2.0 37

Index
simple application testbench 30
simulation 11
synthesis 12

T
technical support 35
testbenches 29

simple application (user) 30
verification 29
VHDL support routines 33

typical application 5

U
user testbench 30
utilization 6

V
verification testbench 29
VHDL testbench support routines 33

W
web-based technical support 35
38 CoreFMEE Handbook v2.0

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom

Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200098-0 /3.07

	Introduction
	Core Overview
	Figure 1 · CoreFMEE Block Diagram
	Figure 2 · CoreFMEE Typical Application

	Device Utilization and Performance
	Table 1 · CoreFMEE Device Utilization and Performance (minimum configuration)
	Table 2 · CoreFMEE Device Utilization and Performance (typical configuration)
	Table 3 · CoreFMEE Device Utilization and Performance (maximum configuration)

	Tool Flows
	Licenses
	CoreConsole
	Figure 1-1 · CoreFMEE Configuration within CoreConsole
	Figure 1-2 · CoreFMEE Configuration within CoreConsole (continued)
	Figure 1-3 · CoreFMEE Configuration within CoreConsole (continued)

	Importing into Libero IDE
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Interface Description
	Parameters
	Table 2-1 · CoreFMEE Parameter/Generic Descriptions

	Signals
	Figure 2-1 · CoreFMEE I/O Signal Diagram
	Table 2-2 · CoreFMEE I/O Signal Descriptions

	Functional Description
	Flash Memory Endurance Algorithm
	Table 3-1 · Addressing Example

	Flash Memory Initialization
	Figure 3-1 · Initialization Flow Diagram

	Flash Memory Interface Operation
	Table 3-2 · Fusion Flash Memory Commands Used
	Figure 3-2 · Write Flow Diagram

	Serial Interface Operation
	Serial Write
	Figure 3-3 · Serial Write

	Page Write
	Figure 3-4 · Page Write

	Random Read
	Figure 3-5 · Serial Read

	Current Address Read
	Figure 3-6 · Current Address Read

	Sequential Read
	Figure 3-7 · Sequential Address Read

	Write Protect Operation
	Figure 3-8 · Write Protect
	Table 3-3 · Write Protect Operations

	Acknowledge Operation for Write Protect
	Table 3-4 · Software Write Protect Operations

	Acknowledge Polling
	Serial Interface Reset

	Flash Memory Arbitration

	Testbench Operation and Modification
	Verification Testbench
	Figure 4-1 · CoreFMEE Verification Testbench
	Verification Tests

	Simple Application Testbench
	Figure 4-2 · CoreFMEE User Testbench

	Implementation Hints
	Usage with Internal Flash Memory

	VHDL Testbench Support Routines
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

