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1 Revision History

The revision history describes the changes that were implemented in the document. The changes are 
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1.2 Revision 10.0
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1.3 Revision 9.0
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1.6 Revision 6.0
Updated changes related to CoreEDAC v2.5.

1.7 Revision 5.0
Updated changes related to CoreEDAC v2.4.

1.8 Revision 4.0
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1.10 Revision 2.0
Updated changes related to CoreEDAC v2.1.

1.11 Revision 1.0
Revision 1.0 was the first publication of this document. Created for CoreEDAC v2.0.



Overview
2 Overview

CoreEDAC produces Microsemi® field programmable gate array (FPGA)-optimized error detection and
correction (EDAC) logic based on user-defined parameters. For ease of use, the core enables
generation of logic integrated with on-chip RAM.

In space applications, storage elements such as static random access memory (SRAM) are susceptible
to soft (transient) errors caused by heavy ions. Errors can be detected and corrected by employing error
correction codes (ECCs). ECCs incorporate redundancy in the user data by forming codewords. With
this redundancy, only a subset of all possible codewords contains valid messages. Valid codewords are
separated from each other, so that errors are not likely to corrupt one valid codeword into another. The
RAM protected by the EDAC stores the codewords. The capacity of the storage device must
accommodate the data and the incorporated redundancy.

While recovering the data, a decoder first determines if a message read from the RAM is valid. This step
is called error detection. If an error is detected, the decoder finds a valid message that is similar to the one
that is read and corrects the error.

Theoretically, it is possible to detect and correct an arbitrary number of errors. Practically, a large number
of errors require a larger redundant bit number and more complex encoder and decoder circuitry, which
results in longer encoder and decoder latency. Latency is a crucial characteristic for the RAM. EDAC
circuitry cannot use ECC such as Reed-Solomon, more efficient in terms of redundancy, because it
introduces extreme latency. The error correction in RAM traditionally implements the single error
correction double error detection (SECDED) technique based on Hamming code. This technique
provides the best characteristics in terms of redundancy bits, the die area used, and the shortest encoder
or decoder latency.

As memory density increases, a single-ion impact can cause multiple-bit upsets in nearby cells. Though
SECDED cannot correct multiple errors, it is quite safe to use it with the Microsemi FPGAs, since these
are well protected against multiple-bit upsets by design. Microsemi SRAM blocks are designed so that
two bits of the same RAM word are never stored in nearby cells, whether in horizontal or vertical
direction. Therefore, the probability of multiple-bit upset in SRAM blocks is negligible, and the SECDED
technique proves to be highly efficient.

CoreEDAC is based on a special shortened Hamming code proposed by Hsiao. This code provides
better latency and area characteristics than other Hamming codes.

Figure 1 • Protected RAM Example

An example of a RAM protected with EDAC is as shown in Figure 1. During user write, user data comes
to the EDAC encoder, which calculates the parity bits and appends these to the user data, forming a
codeword. The codeword is stored in the RAM. 

Write Data 
Source

User Data User Data 

User Data +
Parity Bits

User Data + 
Parity Bits

EDAC
Encoder

EDAC
DecoderRAM

RAM Protected with EDAC

Read Data 
Recipient
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During user read, the read codeword first comes to the decoder, which detects and corrects errors (if
any), discards parity bits, and outputs the corrected user data word.

The core can generate EDAC circuitry for both internal (on-chip) and external RAM blocks. For the
internal RAM, CoreEDAC provides an integrated solution that includes the EDAC circuitry, RAM, and all
necessary connections between the two. From a user's perspective, the solution looks like a configurable
RAM block capable of detecting and correcting errors. This handbook often uses the acronym EDAC to
name the EDAC logic, along with the RAM included in the integrated solution. It only differentiates the
two wherever it is appropriate.

2.1 Key Features
Following are the key features of CoreEDAC:

• Parameterizable RTL generator
• Modes of operation:

• EDAC with internal RAM. EDAC RAM generation with optional background scrubbing circuitry
• EDAC encoder and decoder generation. The mode can be used to apply EDAC encoder and

decoder to external memories.
• Flexible user data size from 4 to 64 bits. This corresponds to a codeword size from 8 to 72 bits
• User-defined pipeline options to enhance EDAC throughput
• Parameterizable refresh (scrubbing) rate
• Improved latency and area characteristics
• Correctable and error flags
• Option to suppress write-back during the scrubbing session
• Optional triple EDAC redundancy

2.2 Supported Families
The following families are supported in this version:

• PolarFire™

• RTG4™

• SmartFusion®2
• IGLOO®2
• SmartFusion®

• IGLOO®

• IGLOO®e
• IGLOO® PLUS
• Fusion®

• ProASIC®3
• ProASIC®3E
• ProASIC®3L
• Axcelerator®

• RTAX-S/SL and RTAX-DSP

2.3 Core Version
This handbook supports CoreEDAC v2.10.
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2.4 Utilization and Performance
CoreEDAC has been implemented in Microsemi SmartFusion2, RTG4, RTAX-S, and ProASIC3L
devices. The core benchmarks are listed in Table 1 to Table 6. Test configurations are listed in Table 8.

Note: Data is achieved using typical synthesis and layout settings.

Table 1 • Utilization and Performance for a Common Read and Write Clocks

 Data Width

Pipelines Cells
RAM 
Blocks

Maximum 
Clock Rate 
(MHz)Decoder RAM Sequential Combinational Total %

 Device: RTAX1000S, Speed Grade –1

12 0 0 200 223 432 2.3% 5 77

12 1 1 266 237 503 2.8% 5 124

 16 0 0 216 242 458 2.5% 6 77

 16 2 0 291 282 573 3.2% 6 109

 32 0 0 306 366 672 3.7% 10 66

 32 2 0 446 440 886 4.9% 10 86

 64 0 0 475 596 1,071 5.9% 18 58

 64 2 1 796 776 1,572 8.7% 18 79

 Device: A3P1000L, Speed Grade –1

 12 0 0 117 355 472 1.9% 4 71

 12 1 1 164 372 536 2.2% 4 97

 16 0 0 126 456 582 2.4% 8 50

 16 1 1 178 464 642 2.6% 8 92

 32 0 0 160 633 793 3.2% 12 51

 32 1 1 230 662 892 3.6% 12 80

 64 0 0 225 773 998 4.0% 16 49

 64 2 1 435 930 1,365 5.5% 16 91
HB0143 Handbook Revision 11.0 4



Overview
Note: Data is achieved using typical synthesis and layout settings.

Table 2 • A3P1000L Utilization and Performance for Independent Read and Write Clocks

Data Width

Pipelines Cells
RAM 
Blocks

Maximum 
Clock Rate 
(MHz)Decoder RAM Sequential Combinational Total %

12 0 0 132 362 494 2.0% 4 142 71

12 1 1 181 384 565 2.3% 4 152 83

16 0 0 141 462 603 2.4% 8 102 60

16 1 1 195 474 669 2.7% 8 134 81

32 0 0 176 640 816 3.3% 12 110 53

32 1 1 248 675 923 3.7% 12 111 80

64 0 0 239 783 1,022 4.1% 16 89 49

64 2 1 455 938 1,393 5.6% 16 93 82

Table 3 • RTAX1000S Utilization and Performance for Independent Read and Write Clocks

Data  
Width

Pipelines Cells RAM 
Blocks

Max Clock Rate (MHz)

Decoder RAM Sequential Combinatorial Total % Read Write

12 0 0 289 274 563 3.1 5 79 115

12 1 1 363 321 684 3.8 5 131 131

16 0 0 317 302 619 3.4 6 72 101

16 2 0 410 363 773 4.3 6 119 117

32 0 0 432 431 863 4.8 10 63 78

32 2 0 579 527 1,106 6.1 10 111 93

64 0 0 668 641 1,309 7.2 18 58 68

64 2 1 989 856 1,845 10.2 18 71 69
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Note: Data is obtained using High Effort Five Passes Layout configuration options.

Note: Data is obtained using High Effort Five Passes Layout configuration options.

Note: Data is obtained using High Effort Five Passes Layout configuration options.

Table 4 • Common Read and Write Clocks for M2S025 Device at Speed Grade – 1 and COM conditions

Data        
Width

Pipelines

RAM 1K18

Other Resource Utilization
Maximum Clock 
Rate (MHz)Decoder Encoder RAM 4-LUT DFF

12 1 0 1 1 358 257 375

16 2 0 1 2 432 356 357

32 3 1 1 3 631 526 361

64 3 1 1 4 938 783 350

Table 5 • Common Read and Write Clocks for M2S025T Device at Speed Grade – 1 and MIL conditions

Data        
Width

Pipelines

RAM 1K18

Other Resource Utilization

Maximum Clock Rate (MHz)Decoder Encoder RAM 4-LUT DFF

12 1 0 1 1 358 257 300

16 2 0 1 2 432 356 297

32 3 1 1 3 631 526 300

64 3 1 1 4 938 783 300

Table 6 • Common Read and Write Clocks for RT4G150 Device at Speed Grade – 1 and MIL conditions

Data        
Width

Pipelines

RAM 1K18

Other Resource Utilization

Maximum Clock Rate (MHz)Decoder Encoder RAM 4-LUT DFF

12 1 0 1 1 357 252 221

16 2 0 1 2 432 356 221

32 3 1 1 3 615 529 203

64 3 1 1 4 938 782 201

Table 7 • Common Read and Write Clocks for MPF300 Device at speed Grade -1 and MIL conditions

Data        
Width

Pipelines

RAM 1K18

Other Resource Utilization

Maximum Clock Rate (MHz)Decoder Encoder RAM 4-LUT DFF

12 1 0 1 1 233 187 231.1

16 2 0 1 2 293 283 231.1

32 3 1 1 3 372 390 231.1

64 3 1 1 4 597 614 231.1
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Table 8 • CoreEDAC Test Configuration

Parameter Value

RAM depth, word 1,024

Scrubbing mode On

Wirteback mode On

Number of encoder pipelines 0

Scrubbing period binary divider bit width 10

Scrubbing period arbitrary divider bit width 17

Scrubbing range 0 – 1,023

Generate delayed copy of the read address Off
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3 Operation

3.1 SECDED Algorithm
Hamming code is a linear error-correcting code. It means that every possible k-bit word can be encoded.
Hamming codes can detect and correct single-bit errors. The codeword is guaranteed to be corrected if
the Hamming distance1 between the original and corrupted words is two or more.

Alternatively, Hamming code can detect (but not correct) up to two simultaneous bit errors. Because of
the simplicity of Hamming codes, they are widely used in computer memory. Figure 2 shows the
Hamming code structure.

Figure 2 • Hamming Code Structure

Parameters of the maximal length Hamming code (n, k) relate as follows:

n = 2r – 1

k = n – r = 2r – r – 1

SECDED code has an extra parity bit to increase the minimal Hamming distance from 3 to 4. To support
the flexible data bit width, shortened Hamming codes are used in SECDED. A shortened codeword
contains fewer data bits than the maximal length code. The shortened codeword keeps the same number
of parity bits to correct one and detect two errors. Therefore, the number of data bits in the shortened
code is reduced by the same amount as the overall codeword length.

Hamming encoder and decoder implementation uses a number of wide (multi-input) XOR gates. The
wide gates not only consume the die area but also introduce a certain amount of latency because they
are built as multi-layer tree logic. The gate input count primarily depends on the user data bit width, k.
Given the k width, XOR input count can be minimized by a clever selection of shortened Hamming codes.
CoreEDAC implements the Hsiao code, optimized for the least XOR input count. 

Table 9 shows the Hsiao codec ECC parameters (n and k).

Note: The Hamming distance is the number of positions for which the corresponding bits are different.

Table 9 • SECDED (n, k) Code Parameters

 User Data Bitwidth, k Parity Bits, n-k Codeword Bitwidth, n

 4 4 8

 5–11 5 10–16

 12–26 6 18–32

 27–57 7 34–64

 58–64 8 66–72
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Table 10 shows the maximum user data widths that can be accommodated by various RAM blocks.

Hamming ECC adopted by the core can correct a single-bit error and detect a double-bit error per word.
The core generates two flags that identify a number of erroneous bits detected and/or corrected. Once
the number exceeds two per word, the algorithm may yield incorrect flags.

Figure 3 shows the arrangement of the parity and data bits in a 16-bit example of the codeword.

Figure 3 • Parity and Data Bits Arrangement in a Codeword

3.2 Scrubbing
The section states that the Microsemi RAM design precludes multi-bit upsets from single-ion impact. Still,
multiple impacts, given enough time, can cause uncorrectable errors if they hit a nearby area. To prevent
the RAM from collecting soft errors over extended time periods, it is important to check each memory
location periodically, before the next impact is likely to happen. This is accomplished by using the
scrubbing process.

Scrubbing periodically checks every memory location using the ECC decoder. If a particular location
contains a corrupted word, the decoder detects and corrects the word. The scrubbing circuitry then
writes the corrected word back to the same location.

To provide a normal access to the RAM and prevent decreasing performance, scrubbing is only done
during idle periods. Since scrubbing consists of regular read and write operations, it may increase power
consumption. Therefore, scrubbing is not done continuously, but periodically. Usually, the scrubbing
refresh period—the time interval between two consecutive scrubbing sessions—is much longer than the
session itself.

A simplified block diagram of the scrubbing circuitry that complements the EDAC protected memory is
shown in Figure 4. Once the scrubbing starts, it acts as another memory user, providing the RAM with
read address and read enable signals through multiplexers (MUXes). During the scrubbing process,
the MUXes disconnect user signals such as user read and write addresses, user codeword, and user
read and write enable. The EDAC decoder reads the codewords from the RAM one by one. If the EDAC
decoder detects an error, it corrects the codeword and raises an internal error flag.

As a result, the scrubbing circuitry sets a proper write address and write-enable signals, writing the
corrected codeword back to the RAM. Writeback occurs only upon detecting an error. 

Table 10 • Maximum User Word Sizes Fault-Tolerant RAM Accommodates

 RAM Bit Width Maximum User Data Bit Width

 9 4

 18 12

 27 21

 36 29

 54 47

 72 64
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Figure 4 • EDAC with Scrubbing

3.3 Triple-Modular Redundancy
As the EDAC circuitry occupies certain die area, the circuitry itself can be hit by a heavy ion and it is
susceptible to soft errors. Normally, such errors are not likely to impact the user data, but some of the
most demanding applications may require additional protection. CoreEDAC supports optional triple-
module redundancy (TMR). TMR is a fault-tolerant technique, in which three parallel systems perform a
process and three process results are processed by a voting system to produce a single result. If any
one of the three systems fails, the other two can correct and mask the fault.

When the TMR option is enabled, the EDAC encoder, decoder, and scrubber are replicated three times,
and appropriate majority vote logic is inserted. Figure 5 shows a simplified block diagram of the EDAC
TMR. User signals, such as read or write address, read or write enable, write data, and scrub control,
come to the three EDAC instances. Every instance implements the complete EDAC logic. The enabled
TMR option triplicates the amount of resources utilized.

Every EDAC instance generates signals to control the RAM block. Voting logic merges the three sets into
a single set that actually controls the RAM. The RAM read data output results in the three EDAC
instances, where every instance decodes the same data. Voting logic again merges the three decoded
results into a single user RD Data set. The TMR option is disabled on RTG4 family where the triple
redundancy along with voting logic is built in every FPGA fabric component.

Figure 5 • EDAC TMR

3.4 Internal or External RAM
Depending on needs, CoreEDAC can generate two basic EDAC configurations: Protected RAM and
EDAC codec. The protected RAM integrated configuration delivers the configurable internal (on-chip)
RAM block and connects it to the configurable EDAC circuitry. The latter includes the encoder and
decoder, as well as an optional scrubber.
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The core supports only a  two-port RAM configuration with equal read and write data width.
CoreEDAC also supports an optional built-in RAM read pipeline and both common and independent read
and write clocks. In independent read and write clock signals, all write operations, including Hamming
encoding, are performed in the write clock domain. Read operations, including Hamming decoding, are
performed within a read clock domain. Scrubbing uses both the clock domains, as it performs both read
and write operations.

Configured as the EDAC codec, the core generates the configurable encoder and decoder only,
comprising the ECC codec. It is required to provide other signals necessary to write the encoded data to
the external RAM, route the read data from the external RAM to the decoder input, and read the decoded
data.

Figure 6 shows a simplified block diagram of the EDAC codec connected to the external RAM.

Figure 6 • EDAC with External RAM

3.5 EDAC Pipelines
Hamming encoder and decoder circuitry uses a number of wide (multi-input) XOR gates. While the Hsiao
code minimizes the XOR input count, it is still high enough to impact the data rate. To improve the
achievable data rate, CoreEDAC offers an optional EDAC logic pipelining. The core also enables you to
optionally enable a read data pipeline register built in an on-chip RAM. Every inserted pipeline introduces
a latency of one clock cycle, so pipelining can be enabled if a RAM application can tolerate the latency.

Specify the maximum tolerable latencies separately for the encoder and decoder. CoreEDAC analyzes
the encoder and decoder structure and the implementation platform (FPGA family selected). The family
influences a number of logic tree layers needed to implement a given wide XOR gate. Based on the
analysis, CoreEDAC inserts only pipelines that actually improve the data rate.

Therefore, the actual number of pipelines can be either equal to or smaller than the maximum latency
specified. CoreEDAC posts the actual latency values through a configuration window.

To achieve the highest data rate, it is necessary to conduct experiments while enabling pipeline insertion
at a critical path.
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4 Interface Description

4.1 Ports
Figure 7 shows the core I/O ports. The ports shown are a superset of all possible ports. In every given
EDAC configuration, only a subset of the ports is used.

Some input ports are tripled to support the EDAC TMR. When the TMR option is disabled, input signals
are to be supplied to the input pins with names ending in_TRP1. This section describes port connections
with the TMR option disabled. The functionality of the complementary TMR ports with names ending
in_TRP2 or _TRP3 is the same as that of the _TRP1 ports. These input ports provide access to the
two redundant instances of the EDAC circuitry when the TMR option is enabled. For the RTG4 family, the
TMR option is not available as the triple redundancy is built in every FPGA fabric component.
Accordingly, for the RTG4 family all the ports ending in _TRP2 and _TRP3 are not available as well.

The write data, write address, and write enable come to the MSG_TRP1, USER_WA_TRP1, and
USER_WEN_TRP1 ports respectively. The read address and read enable signal come to
USER_RA_TRP1 and USER_REN_TRP1, respectively. Corrected read data appears at the DATA_OUT
port and corrected parity bits appear on the PARITY_OUT port. The core provides optional matching
delay for the user read address USER_RA_TRP1. With this option enabled, the core delays the read
address so that it appears at the RAM_RA_LAT port, along with user read data DATA_OUT and
PARITY_OUT.

CoreEDAC generates two flags, ERROR and CORRECTABLE, to report detected and corrected errors.
The INIT_DONE flag marks completion of the optional RAM initialization.

When the core is used with external RAM, the user write data is supplied on the same MSG_TRP1 port.
After encoding, the user data codeword appears at the CODED port of the core.
CODE_FROM_EXT_RAM accepts codewords coming from the external RAM for decoding. The
decoded data appear at the DATA_OUT port, while the parity bits appear on the PARITY_OUT port.

Figure 7 • CoreEDAC Pinout
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Two ports, INJ_ERR and CODE_FROM_RAM, are provided to test the EDAC ability to detect and
correct the errors. The artificial errors can be injected through the INJ_ERR port in the data path
between the encoder and the RAM. By using the CODE_FROM_RAM output port, the codewords can
be accessed directly from the RAM, bypassing the decoder. The testbench uses the direct RAM output
to verify scrubbing if it is capable of correcting the errors.

The STOP_SCRUB_TRP1 input signal transfers full control over the RAM to the user access. The active
STOP_SCRUB_TRP1 signal prevents scrubbing from start or interrupts the scrubbing that has already
started.

START_SCRUB_TRP1 starts the scrubbing session, provided STOP_SCRUB_TRP1 is inactive. This
optional signal can be used to launch an unscheduled scrubbing session. RST_TIMER_TRP1 resets a
scrubbing timer that sets timing intervals between the scrubbing sessions. The signal can be used to
resynchronize scheduled scrubbing refresh periods. The output flags, NOW_SCRUBBING,
SCRUB_DONE, SLOWDOWN, and TMOUTFLG, provide feedback on the scrubbing status.

Finally, write and read clock signals are supplied on WCLK and RCLK. If a common read and write clock
is used, this clock connects to the RCLK input port. The RST and NGRST ports accept synchronous and
negative global asynchronous resets.

Table 11 contains more information on the EDAC ports.

Note: The ports ending in _TRP2 or _TRP3 are not available for the RTG4 family.

Table 11 • CoreEDAC Ports

Signal Relevant TMR Inputs In/Out Description

MSG_TRP1 MSG_TRP2, MSG_TRP3 In Data input word to be encoded and written in the 
RAM. The input is k bits wide.

USER_WEN_ TRP1 USER_WEN_ TRP2, 
USER_WEN_TRP3

In Write enable signal. It marks a clock cycle when a 
user data is ready to be written. Signal polarity is 
positive. 

USER_WA_ TRP1 USER_WA_ TRP2, 
USER_WA_ TRP3

In Write address. The input is ceil(log2(RAM depth)) 
bits wide. For example, at a RAM depth of 1200 
words, the write address equals 11 bits.
Write address bit width must be equal to the read 
address bit width. 

USER_REN_ TRP1 USER_REN_ TRP2, 
USER_REN_TRP3

In Read enable signal. Signal polarity positive. 

USER_RA_ TRP1 USER_RA_ TRP2, 
USER_RA_ TRP3

In Read address. The input is ceil(log2(RAM depth)) 
bits wide. For example, at RAM depth of 1200 
words, the read address equals 11 bits.
Read address bit width must be equal to the write 
address bit width. 

CODE_FROM_EXT_RAM – In Optional read data input from the external RAM. 
The input is n bits wide. Used only with external 
RAM to decode the external RAM data. 

INJ_ERR – In Error input used for the test purpose. The input is n 
bits wide. Error code present on this input are 
XORed with the encoded data prior to be written to 
the RAM. The parameter/generic TEST has to be 
set to 1 to enable the port.

STOP_SCRUB_TRP1 STOP_SCRUB_TRP2, 
STOP_SCRUB_TRP3

In Input to control scrubbing process. User asserts the 
signal when accessing the RAM. Scrubbing can 
only run when the signal is deasserted. Active high.
Note: Valid only when SCRUB_ON=1. This should 
be set to 0 when it is not used.
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START_ SCRUB_TRP1 START_ SCRUB_TRP2, 
START_ SCRUB_TRP3

In Optional input to start scrubbing process. Active 
high.
Note: Valid only when SCRUB_ON=1. This should 
be set to 0 when it is not used.

RST_TIMER_ TRP1 RST_TIMER_ TRP2, 
RST_TIMER_ TRP3

In Optional input to reset scrubbing timer. Active high.
Note: Valid only when SCRUB_ON=1. This should 
be set to 0 when it is not used.

WCLK – In Write clock signal. It is used when the core is 
configured for independent read/write clocks. If both 
read and write sides utilize a single-clock, the RCLK 
port is used to input the single-clock signal.

RCLK – In Read clock signal. If both read and write sides 
utilize a single-clock, the RCLK is used as the read 
and write clock signal.

RST – In Optional synchronous reset signal. Active high. The 
signal puts design in a valid initial state. In 
particular, all the generated flags become valid after 
the RST or NGRST signals are asserted and de-
asserted. If the encoder or decoder pipeline 
registers are enabled, then the RST signal keeps 
the encoder or decoder output signals in state 
0(zero). If independent read and write clocks are 
used, then the signal should last long enough to 
cover at least one period of both clocks. The length 
of the RST signal of two or more slower clock 
periods satisfies the condition. After deactivating the 
RST signal, the core takes up to 6 clock cycles to 
return to normal functionality.
Actions of the RST and NGRST signals are the 
same except for an auto RAM initialization, which 
starts on NGRST when proper configuration 
(INIT_RAM=1) is selected. The RST signal does not 
start the auto initialization. 

NGRST – In Asynchronous reset. Active low. Once the 
asynchronous reset is complete, CoreEDAC state 
machine is set to a valid initial state. In particular, all 
the generated flags become valid after the RST or 
NGRST signals are asserted and de-asserted. 
The signal is also used as a sign of powering up the 
FPGA device. It is the only signal that starts the 
RAM initialization process when the core is 
configured for automatic RAM initialization 
(INIT_RAM = 1). You must use the NGRST signal 
when the core is configured for auto initialization 
mode. If the auto initialization is not required, then 
you can use the RST signal instead of NGRST. 

DATA_OUT – Out Corrected read data output. It is k bits wide. The 
output is synchronous with RCLK.

PARITY_OUT – Out Parity bits of the corrected codeword. It is r bits 
wide. The output is synchronous with RCLK.

Table 11 • CoreEDAC Ports
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CODE_FROM_RAM – Out Direct RAM output is used to test scrubbing results. 
It is n bits wide. The k most significant bits (MSBs) 
of the signal are the decoded (corrected) data, the r 
least significant bits (LSBs) are the corrected parity 
bits. The output is synchronous with RCLK.

CODED – Out Encoded user data to be written to the external 
RAM. The output is n (user data width+ parity width) 
bits wide.

RAM_RA_LAT – Out Optional read address signal. It replicates the user 
read address delayed to match read data delay 
caused by ECC decoder and RAM output pipeline 
register. The signal bit width equals the bit width of 
the user_rA_trp1 signal. The output is synchronous 
with RCLK.

ERROR – Out Optional error flag. Active high. The signal flags 
uncorrectable double errors detected during user 
read access. The signal is not registered. If a glitch-
free flag is required, the signal needs to be 
registered at RCLK positive edge.

CORRECTABLE – Out Optional correctable error flag. Active high. It flags 
correctable errors detected during user read 
access. The signal is not registered. If a glitch-free 
flag is required, the signal needs to be registered at 
RCLK positive edge.

INIT_DONE - Out Optional flag. Active high. When INIT_RAM mode is 
enabled, the flag indicates completion of the 
initialization process. The flag is synchronous with 
WCLK. 

NOW_SCRUBBING - Out Optional flag. Active high. Indicates the scrubbing is 
in progress. The flag is synchronous with RCLK.

SLOWDOWN – Out Optional flag. Active high. The core raises the flag 
when a scrubbing session is due, but has not 
completed by the time a scheduled scrubbing 
refresh period timed out. This happens due to 
extensive user access to the RAM, and the flag 
indicates the user should slow down user access. 
The flag is synchronous with RCLK.

TMOUTFLG – Out Optional scrub timeout flag. Active high. It signals 
the scheduled scrubbing refresh period is about to 
expire and the scrubbing session is due. The output 
is synchronous with RCLK.

SCRUB_DONE – Out Optional flag signal. Indicates a scrubbing session 
has ended. Active high. The output is synchronous 
with RCLK.

SCRUB_CORR - Out Optional flag. Active high. Marks time intervals 
when the scrubber writes a corrected code back to 
the RAM; that is, actually corrects RAM contents. 
The flag is synchronous with WCLK. 

Table 11 • CoreEDAC Ports
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4.2 Interface Examples
Figure 8 shows an example of an EDAC configuration that includes the RAM and the scrubber, but not
TMR. Optional in/out signal names are in grey in Figure 8.

Figure 8 • Protected RAM Interface Example

Figure 9 shows another interface example where the core is configured as the EDAC codec to
protect the external RAM. TMR is not enabled.

Figure 9 • EDAC Codec Interface Example

Figure 10 shows an example of an EDAC configuration utilizing TMR. The core input triplets are
connected, so that every user input signal drives all the three redundant EDAC instances.

Note: The ports ending in _TRP2 or _TRP3 are not available for the RTG4 family.
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Figure 10 • TMR Interface Example

Figure 11 shows another example of using TMR. The user circuitry can employ TMR as well. Thus, the
whole logic around the RAM is protected by TMR.

Note: The example is not applicable to the core implementation on the RTG4 family.
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Figure 11 • EDAC TMR Interface to TMR User Circuitry

4.3 Parameters or Generics
CoreEDAC parameters or generics are shown in Table 12.

Table 12 • Parameters or Generics

No. Name Valid Range Description

1 MODE 0, 1 The parameter sets either ECC Codec mode (0) or Protected RAM 
mode (1). The latter configuration is available only when using the 
internal (on-chip) RAM.

2 TMR 0, 1 TMR disabled (0) or enabled (1). Once enabled, the core generates 
three independent sets of the EDAC circuitry and majority vote logic 
to protect the EDAC itself from soft errors.
When the core is instantiated on the RTG4 FPGA family, the TMR is 
always disabled, TMR=0. RTG4 FPGA design provides the triple 
redundancy at the silicon level.

3 DAT_WIDTH 4–64 User data bit width, k 

4 SINGLECLK 0, 1 The parameter sets either independent write or read clocks (0), or a 
common single-clock (1).

read clock

Delayed read address

Slowdown Flag

Error Flag

Scrub done Flag

write clock

sync reset

async reset

Correctable Error Flag

user Write Data 2

user Write En 2

user Write Addr 2

user Read En 2

user Read Addr 2

user Stop Scrub 2 

user Start Scrub 2 

Scrub Timer Rst 2 

Corrected Data

Corrected parity bits 

Scrub Timeout Flag

user Write Data 1

user Write Data 3

user Write En 1

user Write En 3

user Write Addr 1

user Write Addr 3

user Read En 1

user Read En 3

user Read Addr 1

user Read Addr 3

user Stop Scrub 1 

user Stop Scrub 3 

user Start Scrub 1 

user Start Scrub 3 

Scrub Timer Rst 1 

Scrub Timer Rst 3 

CoreEDAC

MSG_TRP1 DATA_OUT

RCLK

RST

NGRST

USER_WA_TRP1

USER_WEN_TRP1

WCLK

RAM_RA_LAT

SLOWDOWN

ERROR

CORRECTABLE

SCRUB_DONE

User

Scrub

Common

USER_REN_TRP2

USER_RA_TRP1

START_SCRUB_TRP2

RST_TIMER_TRP1

PARITY_OUT

TMOUTFLG

MSG_TRP2

MSG_TRP3

USER_WEN_TRP2

USER_WEN_TRP3

USER_WA_TRP2

USER_WA_TRP3

USER_REN_TRP1

USER_REN_TRP3

USER_RA_TRP2

USER_RA_TRP3

STOP_SCRUB_TRP1

STOP_SCRUB_TRP2

STOP_SCRUB_TRP3

START_SCRUB_TRP1

START_SCRUB_TRP3

RST_TIMER_TRP2

RST_TIMER_TRP3

INIT_DONE

NOW_SCRUBBING

SCRUB_CORR

RAM initialization ended

Scrub in progress Flag

Scrub fixes error Flag
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5 RAM_DEPTH 8– 543744 Depth (capacity) of the RAM block expressed in words. The 
maximal RAM_DEPTH value depends on the FPGA device 
selected, which defines available RAM capacity and the User data 
width DAT_WIDTH, which defines encoded word bit width. The core 
automatically calculates the valid upper limit of the RAM_DEPTH 
based on the FPGA device and DAT_WIDTH selected. The 
parameter makes sense in the protected RAM configuration only 
when MODE is equal to 1. Otherwise, it does not affect the 
generated RTL.

6 USER_ENC_PIPE 0–2 Maximum number of pipelines allowable for the encoder. The actual 
pipeline count can be equal to or less than the USER_ENC_PIPE. 
Every pipeline inserted introduces the encoder latency by 1 clock 
cycle.

7 USER_DEC_PIPE 0–3 Maximum number of pipelines allowable for the decoder. The actual 
pipeline count can be equal to or less than the USER_DEC_PIPE. 
Every pipeline inserted introduces the decoder latency by 1 clock 
cycle.

8 RAM_PIPE 0, 1 Disable (0) or enable (1) the RAM read data output pipeline. The 
Pipeline is a part of the RAM hard macro. The pipeline being 
enabled increases the overall read data latency by one clock cycle. 
The option is available in the protected RAM configuration only 
when MODE = 1. Otherwise, it does not affect the generated RTL.

Note: On AX or RTAX-S/SL/DSP devices, the hard RAM 
macro pipeline is always bypassed. When the 
RAM_PIPE option is set on the core configuration 
window, the core implements the read data pipeline 
as an FPGA fabric register   

9 DLY_RD_A_ON 0, 1 Disable (0) or enable (1) the RAM read data matching delay. Once 
enabled, the option delays the user read address by the overall 
read data delay imposed by the decoder and optional RAM output 
pipeline. As a result, the read data and corresponding read address 
appear at the outputs simultaneously. The option is available in the 
protected RAM configuration only when MODE is 1. Otherwise, it 
does not affect the generated RTL.

10 SCRUB_ON 0, 1 Disable (0) or enable (1) scrubbing. The option is available in the 
protected RAM configuration only when MODE is 1. Otherwise, it 
does not affect the generated RTL.

11 WRBK_ON 0, 1 Disable (0) or enable (1) writing the corrected word back to RAM 
during the scrubbing session. When disabled, scrubbing only 
detects errors but does not correct them. The option is available in 
the protected RAM configuration if scrubbing is enabled; that is, 
when MODE is 1 and SCRUB_ON is 1. Otherwise, it does not affect 
the generated RTL.

12 SCRUB_AMIN 0 to 
RAM_DEPTH-2

Lower limit of the RAM location range allocated for scrubbing. The 
parameter makes sense in the protected RAM configuration if 
scrubbing is enabled; that is, when MODE is 1 and SCRUB_ON is 
1. Otherwise, it does not affect the generated RTL. At the very first 
session after nGrst, the scrubbing starts from address 0.

Table 12 • Parameters or Generics
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13 SCRUB_AMAX 1 to 
RAM_DEPTH-1

Upper limit of the RAM location range allocated for scrubbing. The 
parameter makes sense in the protected RAM configuration if 
scrubbing is enabled; that is, when MODE is 1 and SCRUB_ON is 
1. Otherwise, it does not affect the generated RTL. If 
SCRUB_AMAX is lower than RAM_DEPTH, a scrubber looks at a 
few RAM cells above SCRUB_AMAX. Once it detects errors, it 
raises the ERROR and/or CORRECTABLE flags, but it does not 
attempt to correct these cells.

14 DIV_WDTH 1–31 Binary divider bit width of the scrubbing refresh period timer. The 
parameter makes sense in the protected RAM configuration if 
scrubbing is enabled; that is, when MODE is1 and SCRUB_ON is 1. 
Otherwise, it does not affect the generated RTL.

15 TMOUT_SET 2-1,000,000 Scrubbing interval timeout setting. The parameter makes sense in 
the protected RAM configuration if scrubbing is enabled; that is, 
when MODE is 1 and SCRUB_ON is 1. Otherwise, it does not affect 
the generated RTL.

16 URAM 0-1 The parameter defines which kind of on-chip RAM hard blocks is 
going to be used to build the protected RAM. The parameter makes 
sense on SmartFusion2 family only. If URAM is 0, the Large SRAM 
is used, otherwise micro RAM. 

17 INIT_RAM 0-1 Initialize RAM. If the parameter is set to be 1, upon power-on the 
core fills out the RAM with all 0s, which are valid Hamming codes. 
The RAM addresses from SCRUB_AMIN to SCRUB_AMAX are 
initialized. The option is available when SCRUB_ON is 1.

18 TEST 0-1 Creates a test error input INJ_ERR used for the test purpose.

19 FAMILY 10-26 The target FPGA family numerical value. The parameter is set 
through the Libero® Project settings dialog and automatically 
transfers to the core. If the Libero device selection changes, you 
must invoke the core configuration interface and regenerate RTL.

Table 12 • Parameters or Generics
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5 Core Description

5.1 User Access

5.1.1 User Write Mode
This section describes the user modes when the EDAC is in protected RAM mode.

Figure 12 shows a functional block diagram of EDAC in Write mode. In this mode, the user-scrub switch
is in the position shown in Figure 12. The Hamming encoder receives a user data word on the
MSG_TRPx input1, calculates parity bits, and creates the codeword, appending the parity bits to the user
word. The encoder generally introduces the latency Lenc of 0 to 2 clock cycles, depending on the
user configuration. Figure 12 shows the latency as a delay behind the encoder. It reflects the
functionality of the encoder, but in reality, the pipeline delays are evenly distributed over the
encoder logic. The core circuitry automatically delays the user write address USER_WA_TRPx and
the user write enable signal USER_WEN_TRPx, by the same amount of time of Lenc to compensate for
the encoder latency. The user encoded data word, address, and write enable signal reach the RAM at the
same time.

Figure 12 • EDAC Write Mode

1.TRPx refers to TRP1, TRP2, or TRP3. With the TMR option disabled, TRPx = TRP1.

Figure 13 shows an example of Write mode timing when the actual encoder latency Lenc equals two write
clock cycles. Write mode lasts as long as the write enable signal is active. Write mode operates in the
write clock domain.
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Figure 13 • User Write Mode Timing
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Figure 14 • User Write Mode Timing when Actual Encoder Latency is One Clock Cycle

Figure 15 • User Write Mode when Encoder Latency is Zero
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5.1.2 User Read Mode
The EDAC Read mode is shown in Figure 16. The user read address, USER_RA_TRPx, and read
enable signal, USER_REN_TRPx, go directly to the RAM, through a user-scrub switch. However, the
corresponding codeword appears at the RAM array output one clock cycle later. The optionally enabled
RAM pipeline adds one more clock cycle to the delay, and then the codeword goes to the decoder that
corrects possible errors and outputs the corrected user read data DATA_OUT, along with the corrected
parity bits, PARITY_OUT. The decoder introduces yet another delay, Ldec, of 0 to 3 clock cycles,
depending on the user configuration. The overall delay between the instance (clock cycle) when the user
read address and read enable are issued and the point when the user read data is available can range
from 1 to 5 clock cycles. The delay equals 1 + Ldec + RAM_PIPE. The latter parameter or generic can
take a value of 0 (RAM pipeline disabled) or 1 (RAM pipeline enabled).

The core provides optional matching delay for the user read address. With the option enabled (parameter
or generic DLY_RD_A_ON = 1), the core delays the read address so that the user read data and
corresponding read address appear at the core ports simultaneously. Read mode uses the RCLK signal.

Figure 16 • EDAC Read Mode

An example of Read mode timing is shown in Figure 17. For this example, the RAM pipeline is
enabled (RAM_PIPE = 1), and the actual decoder latency, Ldec, equals 3 read clock cycles.

The overall delay = 1 + Ldec + RAM_PIPE = 5 rClk.
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Figure 17 • User Read Mode Timing

Figure 18 • User Read Mode Timing

In Figure 18, the RAM pipeline is enabled (RAM_PIPE = 1), and the actual decoder latency Ldec equals 
2 read clock cycles.

The overall delay = 1 + Ldec + RAM_PIPE = 4 rClk.
HB0143 Handbook Revision 11.0 25



Core Description
Figure 19 • User Read Mode Timing

Figure 19 shows the user read mode timing when the actual decoder latency Ldec is zero and 
RAM_PIPE = 0, the overall delay = 1 + Ldec + RAM_PIPE = 1 rclk

Note: In decoder latency zero mode, even after asserting reset, the output data comes directly from RAM as 
the RAM does not have any reset. Hence, user need to control read enable and resets.

5.1.3 Flags Generation
Figure 20 shows the valid flag generation. All the valid flags goes to default state when RST and NGRST 
is asserted.

Figure 20 • Valid Flag Generation
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5.2 Scrubbing Mode

5.2.1 Scrubbing Refresh Period
The refresh period defines how often the scrubbing sessions run. The block diagram of the refresh period
timer is shown in Figure 21. The timer is driven by the RCLK signal. The binary divider that has a
configurable bitwidth of DIV_WDTH, generates a relatively slow signal, dec. The frequency of the dec
signal equals the frequency of the read clock divided by 2DIV_WDTH. The dec signal serves as an input to
the configurable arbitrary divider. It divides dec frequency by arbitrary number TMOUT_SET. As a result,
the circuitry generates a timeout output signal once per TMOUT_SET × 2DIV_WDTH RCLK periods. The
Refresh Period Setup Examples section provides a detailed explanation of setting the refresh period
timer.

Figure 21 • Refresh Period Timer

The refresh period must be more than ten times the scrubbing time that is, DIV_WDTH and
TMOUT_SET parameters must satisfy the following condition:

TMOUT_SET*2DIV_WDTH > 10*(SCRUB_AMAX - SCRUB_AMIN)

Normally, the timeout signal initiates another scrubbing session. As the user access takes priority over
scrubbing, there might be an exception. The Flags section covers details of the exception.

5.2.2 RAM Initialization
SECDED Hamming code successfully deals with up to two erroneous bits per word. If the number of
errors happens to be more than two, the code is useless. Neither it is able to signal such event took
place. Therefore, it is very important to make sure the protected RAM initially contains valid encoded
words. At power-on, the RAM contains garbage until some meaningful data are written in the RAM. If a
scrubbing session ran over the garbage contents, it would try to fix the garbage data. Every such attempt
to correct a data word slows down the scrubbing process and raises meaningless flags until the valid
codes are written in the scrubbed space. 

To avoid this, Microsemi recommends filling the RAM with valid codes prior to running the scrubbing
session. You can initialize the RAM with valid codes or you can make the core do this by selecting the
Initialize RAM with 0 check box on the core UI. Scrubbing space (from Start Address to End Address) is
initialized, if the option is enabled. The initialization period starts automatically after the NGRST signal is
de-asserted. It is assumed that the NGRST signal follows a beginning of powering up an FPGA device.
During the initialization period, the RAM is not available for writing user data. Upon completion of the
initialization period, the core generates the INIT_DONE flag. The initialization option is available when
scrubbing is enabled.

5.2.3 User Access and Scrubbing
The scrubbing process utilizes time intervals when the RAM is free of user access. It is necessary to
allocate enough time for scrubbing to prevent collecting the soft errors. The scrubber needs at least
SCRUB_AMAX –  SCRUB_AMIN + 5 read clock periods to scan through the RAM addresses
designated for scrubbing. If the scrubber detects an error, it takes several additional slower1 clock
intervals to complete each writeback.

User access takes priority over scrubbing. While user access remains active, scrubbing does not start
even if timeout occurs. Upon user access completion, the core starts the scrubbing session. In this case,
the core generates the SLOWDOWN flag. The flag tells the user that user access is too extensive for the
scrubbing to occur with the predefined timeout period. If user access starts in the middle of the scrubbing
session, the latter stops and the user gets the access. The interrupted scrubbing waits until the user
access is over to complete a session. It is highly desirable for the user to allocate a long enough solid

Binary Dividerread clk

DIV_WDTH bits

dec
Arbitrary Divider 

counts up to 
TMOUT_SET

timeout
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time interval for the whole scrubbing session. It is a bad practice to interrupt the scrubbing session often,
as it heavily extends the scrubbing time. Once the user access interrupts the scrubbing, it takes several
clock cycles to return to the scrubbing mode. If gaps between user accesses are too short, the
scrubbing does not start or resume until the gaps are longer.

User access manifests itself as the active STOP_SCRUB_TRPx signal.

Figure 22 shows the recommended STOP_SCRUB_TRPx generation, in case of a common read or
write clock.

Figure 22 • Recommended STOP_SCRUB_TRPx for the Common Read or Write Clock

For independent read or write clocks, the STOP_SCRUB_TRPx signal must be activated prior to the
actual user access to provide sufficient transition time. The transition period should not be less than
USER_ENC_PIPE + 2 slower clock periods. The same transition period must apply after the user
transaction by keeping the STOP_SCRUB_TRPx signal active after the actual user access ends. An
example of the timing diagram (encoder latency = 0) is shown in Figure 23.

The slower of the two independent clocks, rClk and wClk, which happens to be the write clock, wClk, in
Figure 23, determines the margin intervals. The STOP_SCRUB signal is two slower clock intervals wider
on each end than the actual user access.

Figure 23 • Recommended STOP_SCRUB Generation for Independent Clocks

The slower clock period (read or write) is the larger one; or a clock period of the clock with the lower
frequency. If the write clock frequency is lower than the read clock frequency, the slower clock period is a
period of the write clock.

5.3 Flags
When CoreEDAC detects an error, it raises either ‘correctable’ or ‘error’ internal flags. Table 13 shows
meaning of the internal flags. 

Table 13 • Correctable and Error Internal Flags

Errors Detected Correctable Error

No errors 0 0

Single error detected and corrected 1 0

Double error detected 0 1

Multiple errors present Undefined Undefined
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Internal flags are generated solely based on a codeword analysis. Depending on configuration, the core
can apply additional logic prior to generating the user flags CORRECTABLE and ERROR. Table 14
explains the logic for the most common core configurations. The user flags appear at the core outputs
simultaneously with the relevant read data and parity bits.

The core also generates flags that indicate the scrubbing process status.

During the scrubbing session, CoreEDAC does not generate CORRECTABLE or ERROR flags. Instead, the
core generates the SCRUB_CORR flag. The flag goes high when the correctable one-bit error is detected,
corrected and the corrected codeword writes back to the RAM. 

During the scrubbing session, the core also generates NOW_SCRUBBING flag. It marks the time
intervals when actual scrubbing takes place. As the scrubbing session can be interrupted by user
accesses, the flag goes low during the interrupts and additional time necessary to resume the scrubbing
session. The flag is always low outside of the scrubbing session.

Table 14 • CORRECTABLE and ERROR User Flags

CoreEDAC 
Configuration

Configuration Parameter

Flag LogicMODE SCRUB_ON INIT_RAM

ECC Codec only 0 - - No additional logic. The user flags are equal to the internal 
ones, that is CORRECTABLE=Correctable, ERROR=Error. 
The flags become valid only after the RAM is initialized with 
valid encoded data. Make sure that the flags are only used 
after the initialization.

Protected RAM, 
scrubber 
disabled

1 0 - The core holds flags low from power-on time when NGRST=0 
until the USER_REN_TRPx signal(s) is asserted. Keep the 
USER_REN_TRPx signal(s) low until after the RAM 
initialization is completed and a guard period is expired.
The guard period starts at the clock period when the last RAM 
cell is initialized. The guard period lasts for 1 + 
USER_ENC_PIPE clock cycles if common write and read 
clock is used, that is, SINGLECLK=1. If independent clocks, 
the guard period equals (1+USER_ENC_PIPE) write clock 
periods + 2 read clock periods.

Protected RAM, 
scrubbing on, 
custom RAM 
initialization

1 1 0 The core separates flags into two groups: ERROR and 
CORRECTABLE are the flags generated during user access 
and SCRUB_CORR, SCRUB_DONE, NOW_SCRUBBING, 
SLOWDOWN, and TMOUTFLAG are the flags set during 
scrubbing session.
The core holds the user flags CORRECTABLE and ERROR 
low from power-on time when NGRST=0 until the 
USER_REN_TRPx signal is asserted. Keep the 
USER_REN_TRPx signal(s) low until the RAM is initialized 
and a guard period is expired.
The guard period starts at the clock period when the last RAM 
cell is initialized. The guard period lasts for 1 + 
USER_ENC_PIPE clock cycles if common write and read 
clocks are used (SINGLECLK=1). If independent clocks, the 
guard period equals (1+USER_ENC_PIPE) write clock 
periods + 2 read clock periods.

Protected RAM, 
scrubbing on, 
automatic RAM 
initialization

1 1 1 The core separates flags generated during the user access 
and the flags set during scrubbing sessions.
The core holds the user access flags low from power-on time 
when NGRST=0 until the initialization is completed and the 
flags become valid.
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The SCRUB_DONE flag goes active when the scrubbing session is over. It stays active for one clock
cycle when the SINGLECLK = 1 or for two RCLK cycles when independent read or write clocks are
used. 

TMOUTFLG goes high on the scrubbing timer timeout. It signals the scrubbing refresh period has
expired and it is time to start another scrubbing session. Starting from that moment, the core gives the
scrubber a grace period to complete scrubbing. The grace period lasts 2*(SCRUB_MAX-
SCRUB_MIN) clock intervals, which should be sufficient to complete scrubbing. However, there is a
possibility that the scrubbing session does not have enough time to complete due to the user activity.
As a result, the core raises the SLOWDOWN flag. This flag signals that the user should "slow down"
the access to the RAM to free up necessary time for the scrubbing to complete. The SLOWDOWN
flag stays active until the scrubbing session ends. 

The flag INIT_DONE is described at the RAM Initialization section.
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6 Tool Flows

6.1 License
CoreEDAC is included free in the Libero catalog and does not require a separate license to be
instantiated and used in the Microsemi devices. Complete source code and a testbench are provided for
the core.

6.1.1 RTL
Complete RTL source code is provided for the core.

6.2 SmartDesign
CoreEDAC is available for download to the Libero IP catalog through the web repository. Once it is listed
on the catalog, the core can be instantiated using the SmartDesign flow. For information on using the
SmartDesign to configure, connect, and generate cores, refer to the Libero online help.

Figure 24 • SmartDesign CoreEDAC Instance View

Figure 28 shows the CoreEDAC configuration window. The user interface is context-sensitive, thus its
details may look different for a particular configuration. The window displays the encoded word width,
which equals a user word width plus the parity bits. The field Max RAM depth to the right of the user
selected parameter Depth (words) indicates potential FPGA capacity for the RAM depth. It is provided
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as an estimate since Libero determines actual depth limit at the compilation stage. The window also
displays the actual encoder and decoder latencies. Refer to the EDAC Pipelines section for more
information. After configuring and generating the core instance, basic functionality can be simulated
using the testbench supplied with the core. The testbench parameters automatically adjust to the core
configuration.

Note:

1. For RTG4, SmartFusion2, and IGLOO2 families, the core provides one extra parameter to select 
large RAM or micro RAM. Depending upon which RAM has been selected, that RAM gets generated 
and ‘?’ is observed for the other one in Libero design hierarchy.

Example: Figure 25 shows the Libero design hierarchy when micro RAM is selected in the configurator.

Figure 25 • Libero Design Hierarchy view when Micro RAM is Selected

Figure 26 shows the design hierarchy when Large RAM is selected.

Figure 26 • Libero Design Hierarchy view when Large RAM is Selected

2. For families other than RTG4, SmartFusion2, and IGLOO2, the large RAM gets generated and ‘?’ is 
observed for Micro RAM in design hierarchy, as shown in Figure 27.
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Figure 27 • Libero Design Hierarchy View

6.3 Simulation Flows
To run simulations, select the user testbench in the core configuration window. After generating the core,
the Libero software installs the pre-synthesis testbench HDL files.

Consider an example of instantiating CoreEDAC as an IP component named tst_edac. To run the
testbench, set the Libero software design root to the core instance tst_edac_tst_edac_0_COREEDAC,
and run pre-synthesized design simulation.

Note: The RAM output gives 'X' or invalid data even after reset is de-asserted. Read enable should be asserted 
to get the valid output.
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Figure 28 • CoreEDAC Configuration Window

6.4 Synthesis in Libero
To run synthesis on the CoreEDAC, set the design root to the IP component instance and click on
Synthesize in Libero Design Flow pane. This will invoke Synplify Pro and automatically runs the synthesis.

6.5 Place-and-Route in Libero
After the design has been synthesized, run Compile and then place-and-route tools.
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7 User Testbench Operation and Modification

This release of CoreEDAC includes a user testbench that verifies operation of the CoreEDAC engine.
The user testbench tests the protected RAM configuration of the EDAC. The TMR option is disabled.

A simplified block diagram of the user testbench is shown in Figure 29. The user testbench instantiates
the EDAC engine configured, as well as behavioral non-synthesizable models of an input test vector
generator, golden behavioral encoder (codeword generator), comparator, and a signal generator that
provides necessary clock, reset, and other signals.

Figure 29 • User Testbench

The testbench injects single errors in the codewords at the core encoder output by XORing the
codewords with an error vector INJ_ERR (Figure 30). The testbench then compares the actual EDAC
output data DATA_OUT and parity bits PARITY_OUT against the golden codeword vector.

Figure 30 • Testbench Injects Errors in Codewords

CoreEDAC automatically generates the Verilog or VHDL testbench behavioral code based on the
selected core language.
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8 Refresh Period Setup Examples

The refresh period setup can be explained using the following examples.

8.1 Example 1
In this example, the desired refresh period is 10 hours. It can tolerate a limited resolution of one minute
(the refresh period = 10 hours ± 1 minute.). Read clk frequency fread is 17.895697 MHz. This is a good
number to start with, but the next example demonstrates that any number is OK.

Set the DIV_WDTH parameter to 30. The binary divider divides the read clk frequency by 2DIV_WDTH (in
this example, it divides by 230 = 1073741824). The frequency at the binary divider output equals
17.895697 MHz/1073741824 to 1/60 Hz. In other words, the binary divider output signal dec toggles
once a minute.

10 hours contain 10 times 60 minutes, which equals to 600 minutes. It requires 10 bits to be presented.
Set the TMOUT_SET to 600 to make the arbitrary divider divide the frequency by 600. The TIMEOUT
signal shows at an interval of one minute, times 600, which is equal to 10 hours.

8.2 Formal Algorithm
A formal algorithm to select the two parameters, DIV_WDTH and TMOUT_SET is described below:

1. Check if the quotient 231/f
read does not exceed the resolution expressed in seconds. 

For example, at fread = 100 MHz, the quotient

2. Reduce DIV_WDTH by 1 iteratively, until the quotient 2DIV_WDTH/f
read is less than the resolution

expressed in seconds. The goal is to get a period of the binary divider output signal dec as large

as possible, but not to exceed the refresh period resolution. For example, at fread = 10 MHz, the
quotient.

Then set DIV_WDTH to 29.

Calculate TMOUT_SET = ceil (required refresh period × fread / 2DIV_WDTH). 

For example, with DIV_WDTH = 29, fread = 10 MHz, and required refresh period = 10 hours.

Verify that the actual timeout interval is what is expected. There are two consecutive counters: the binary
divider, and the arbitrary divider with a total division coefficient of 229 × 671.
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8.3 Example 2
This example, applies the algorithm above to the following conditions:

• Required refresh period = 24 hours
• Acceptable resolution = 15 minutes
• Read clock frequency = 50 MHz

Step 1 of the algorithm yields DIV_WDTH = 31 as the quotient:

Step 2 yields:

The actual Timeout interval should be verified. The two consecutive counters provide a total division 
coefficient of 231 × 2012.
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