
HB0397

Handbook
CoreAXItoAHBL v3.5

50200397. 9.0 12/19

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2019 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 iii

Contents

1 Revision History . 1
1.1 Revision 9.0 . 1
1.2 Revision 8.0 . 1
1.3 Revision 7.0 . 1
1.4 Revision 6.0 . 1
1.5 Revision 5.0 . 1
1.6 Revision 4.0 . 1
1.7 Revision 3.0 . 1
1.8 Revision 2.0 . 1
1.9 Revision 1.0 . 1

2 Introduction . 2
2.1 Overview . 2
2.2 Features . 2
2.3 Core Version . 2
2.4 Supported Families . 2
2.5 Device Utilization and Performance . 3

3 Functional Description . 6
3.1 AXI Slave Control . 6
3.2 Write FIFO RAM . 7
3.3 Read FIFO RAM . 7
3.4 AHBL Master Control . 7
3.5 Clock Domains . 7
3.6 AXI-AHBL Interface Support . 7

3.6.1 AHBL Address (HADDR) Generation . 7
3.6.2 AXI Transfer Size: Translation of AXI Interface à AHBL Interface . 8
3.6.3 AXI Burst Length: Translation of AXI Interface à AHBL Interface . 8
3.6.4 AXI Burst Type: Translation of AXI Interface à AHBL Interface . 8
3.6.5 AXI Write Strobe: Translation of AXI Interface à AHB Interface . 16
3.6.6 AHBL Slave Size (32-Bit) . 17
3.6.7 Error Response . 17
3.6.8 Unaligned Address Support . 17

4 Interface . 18
4.1 Configuration Parameters . 18
4.2 I/O Signals . 19

5 Tool Flow . 24
5.1 License . 24

5.1.1 RTL . 24
5.2 SmartDesign . 24
5.3 Configuring CoreAXItoAHBL in SmartDesign . 25
5.4 Simulation Flows . 25
5.5 Synthesis in Libero . 25
5.6 Place-and-Route in Libero . 25

6 Testbench . 26

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 iv

6.1 User Testbench . 26

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 v

Figures

Figure 1 CoreAXItoAHBL Bridge Block Diagram . 2
Figure 2 CoreAXItoAHBL Block Diagram . 6
Figure 3 SmartDesign CoreAXItoAHBL Instance View . 24
Figure 4 SmartDesign CoreAXItoAHBL Configuration Dialog Box . 25
Figure 5 User Testbench . 26

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 vi

Tables

Table 1 Device Utilization and Performance . 3
Table 2 Fixed Address AXI Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64) 8
Table 3 Fixed Address AXI Transaction to AHB Transfer Conversion (AXI_DWIDTH = 32) 9
Table 4 Incrementing Address AXI Write Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64) . 10
Table 5 Incrementing Address AXI Write Transaction to AHB Transfer Conversion (AXI_DWIDTH = 32) . 12
Table 6 Incrementing Address AXI Read Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64) . 14
Table 7 Incrementing Address AXI Read Transaction to AHB Transfer Conversion (AXI_DWIDTH = 32) . 15
Table 8 CoreAXItoAHBL Configuration Options . 18
Table 9 CoreAXItoAHBL I/O Signals . 19

Revision History

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 9.0
Updated changes related to CoreAXItoAHBL v3.5.

1.2 Revision 8.0
Updated changes related to CoreAXItoAHBL v3.4.

1.3 Revision 7.0
Updated changes related to CoreAXItoAHBL v3.3.

1.4 Revision 6.0
Updated changes related to CoreAXItoAHBL v3.2.

1.5 Revision 5.0
Updated changes related to CoreAXItoAHBL v3.1.

1.6 Revision 4.0
Updated changes related to CoreAXItoAHBL v3.0.

1.7 Revision 3.0
Updated changes related to CoreAXItoAHBL v2.2.

1.8 Revision 2.0
Updated changes related to CoreAXItoAHBL v2.1.

1.9 Revision 1.0
Revision 1.0 was the first publication of this document. Created for CoreAXItoAHBL v2.0.

Introduction

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 2

2 Introduction

2.1 Overview
The CoreAXItoAHBL IP core is an Advanced eXtensible Interface (AXI) slave and an Advanced High-
performance Bus Lite (AHB-Lite) master. This provides an interface (bridge) between the AXI domain
and AHB-Lite domain. CoreAXItoAHBL allows an AXI bus system to be connected to an AHB-Lite bus,
enabling an AXI master to communicate with an AHBL slave/subsystem.

Figure 1 • CoreAXItoAHBL Bridge Block Diagram

2.2 Features
• Provides an interface (bridge) between the Advanced eXtensible Interface (AXI) domain and

Advanced High-performance Bus Lite (AHB-Lite) domain
• Makes alternate AXI write and AXI read transactions possible
• Supports AXI data bus width of 32-bits, with transfer size of 32/16/8 bit
• Supports AXI data bus width of 64-bits, with transfer size of 64/32/16/8 bit
• Maximum number of AXI beats or transfers of 16
• Supports unaligned AXI write / read transactions
• Permits the AXI and AHBL clocks to be derived from asynchronous sources
• Supports narrow transfers for the last transfer in AXI write transactions using write strobes
• Provides ERROR/OKAY response for every AXI master transaction
• Supports AHB data bus width of 32-bits
• Prevents sequential AHBL transfers from crossing 1 KB boundaries

2.3 Core Version
This handbook applies to CoreAXItoAHBL version 3.5.

2.4 Supported Families
CoreAXItoAHBL is a generic core and supports all the device families.

A
X

I
M

A
S

T
E

R

A
X

I
S

L
A

V
E

A
H

B
L

 M
A

S
T

E
R

A
H

B
L

 S
L

A
V

E

AXI
 INTERFACE

AHBL
 INTERFACE

AXI-AHBL
 BRIDGE

Introduction

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 3

2.5 Device Utilization and Performance
Utilization and performance data is listed in Table 1, page 3 for some of the device families. The data
listed in this table is indicative only. The overall device utilization and performance of the core is system
dependent.

Table 1 • Device Utilization and Performance

FA
M

IL
Y

Parameters Utilization Performance

A
XI

_D
W

ID
TH

N
O

_B
U

R
ST

_T
R

A
N

S

W
R

A
P_

SU
PP

O
R

T

A
SY

N
C

_C
LO

C
K

S

Se
qu

en
tia

l (
D

FF
)

C
om

bi
na

tio
na

l (
4L

U
T)

To
ta

l

Pe
rc

en
ta

ge

A
C

LK
 F

re
qu

en
cy

 (i
n

M
H

z)

H
C

LK
 F

re
qu

en
cy

 (i
n

M
H

z)

SmartFusion
(M2S050) /IGLOO2
(M2GL050)

32 0 0 0 429 1196 1625 2.88 157 111

32 0 0 1 437 1206 1643 2.92 129 111

32 0 1 0 434 1713 2147 3.81 162 106

32 0 1 1 442 1747 2189 3.89 140 107

32 1 0 0 416 812 1228 2.18 157 155

32 1 0 1 424 787 1211 2.15 151 179

32 1 1 0 421 1242 1663 2.95 157 131

32 1 1 1 429 1230 1659 2.94 133 113

64 0 0 0 725 1769 2494 4.43 131 118

64 0 0 1 733 1770 2503 4.44 129 118

64 0 1 0 728 2536 3264 5.79 133 112

64 0 1 1 736 2523 3259 5.78 132 109

64 1 0 0 712 1454 2166 3.84 135 132

64 1 0 1 720 1464 2184 3.88 132 129

64 1 1 0 715 1791 2506 4.45 138 109

64 1 1 1 723 1771 2494 4.43 137 113

Introduction

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 4

RTG4 (RT4G150) 32 0 0 0 429 1167 1596 1.05 137 106

32 0 0 1 437 1164 1601 1.05 137 101

32 0 1 0 438 1738 2176 1.43 148 93

32 0 1 1 442 1736 2178 1.43 143 88

32 1 0 0 416 777 1193 0.79 130 151

32 1 0 1 424 807 1231 0.81 140 138

32 1 1 0 421 1228 1649 1.09 126 119

32 1 1 1 429 1239 1668 1.10 147 113

64 0 0 0 725 1765 2490 1.64 115 106

64 0 0 1 733 1772 2505 1.65 115 105

64 0 1 0 728 2536 3264 2.15 109 99

64 0 1 1 736 2603 3339 2.20 104 99

64 1 0 0 712 1358 2070 1.36 114 122

64 1 0 1 720 1362 2082 1.37 114 125

64 1 1 0 715 1845 2560 1.69 106 96

64 1 1 1 723 1837 2560 1.69 106 102

Table 1 • Device Utilization and Performance (continued)

FA
M

IL
Y

Parameters Utilization Performance

A
XI

_D
W

ID
TH

N
O

_B
U

R
ST

_T
R

A
N

S

W
R

A
P_

SU
PP

O
R

T

A
SY

N
C

_C
LO

C
K

S

Se
qu

en
tia

l (
D

FF
)

C
om

bi
na

tio
na

l (
4L

U
T)

To
ta

l

Pe
rc

en
ta

ge

A
C

LK
 F

re
qu

en
cy

 (i
n

M
H

z)

H
C

LK
 F

re
qu

en
cy

 (i
n

M
H

z)

Introduction

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 5

Note:

1. The data in the Table 1, page 3 is achieved using Verilog RTL, typical synthesis and layout settings.
Frequency (in MHz) was set to 100 and speed grade was -1. The parameters ID_WIDTH is set to 4,
AXI_SEL_MM_S is set to 0 and EXPOSE_WID is set to 0.

2. In case of SmartFusion2, IGLOO2, and RTG4 device families, when AXI_DWIDTH is 64, the core
uses eight, 64 * 18 RAM blocks and when AXI_DWIDTH is 32, the core uses four, 64 * 18 RAM
blocks.

3. In case of PolarFire device family, when AXI_DWIDTH is 64, the core uses twelve, 64 * 12 RAM
blocks and when AXI_DWIDTH is 32, the core uses six, 64 * 12 RAM blocks.

 PolarFire (MPF300T) 32 0 0 0 357 1020 1377 0.46 181 140

32 0 0 1 365 1002 1367 0.46 157 147

32 0 1 0 362 1647 2009 0.67 197 131

32 0 1 1 370 1633 2003 0.67 213 136

32 1 0 0 344 714 1058 0.35 195 233

32 1 0 1 352 681 1033 0.34 192 228

32 1 1 0 349 1154 1503 0.50 201 159

32 1 1 1 357 1122 1479 0.49 199 157

64 0 0 0 581 1640 2221 0.74 147 151

64 0 0 1 589 1584 2173 0.73 142 145

64 0 1 0 584 2418 3002 1.00 144 131

64 0 1 1 592 2415 3007 1.00 144 121

64 1 0 0 568 1237 1805 0.60 141 188

64 1 0 1 576 1244 1820 0.61 149 174

64 1 1 0 571 1637 2208 0.74 146 143

64 1 1 1 579 1633 2212 0.74 147 143

Table 1 • Device Utilization and Performance (continued)

FA
M

IL
Y

Parameters Utilization Performance

A
XI

_D
W

ID
TH

N
O

_B
U

R
ST

_T
R

A
N

S

W
R

A
P_

SU
PP

O
R

T

A
SY

N
C

_C
LO

C
K

S

Se
qu

en
tia

l (
D

FF
)

C
om

bi
na

tio
na

l (
4L

U
T)

To
ta

l

Pe
rc

en
ta

ge

A
C

LK
 F

re
qu

en
cy

 (i
n

M
H

z)

H
C

LK
 F

re
qu

en
cy

 (i
n

M
H

z)

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 6

3 Functional Description

CoreAXItoAHBL appears as a slave on the AXI bus and operates as a master on the AHB-Lite bus. Read
and write transactions on the AXI interface are converted into corresponding transfers on the AHB-Lite
interface.

The ACLK and HCLK clocks are configurable to be synchronous or asynchronous via parameter/generic.
The core implements the clock-domain-crossing (CDC) logic, where the AHB clock and AXI clock are
asynchronous to each other.

CoreAXItoAHBL consists of the following four major functional blocks:

• write memory buffer
• read memory buffer
• AXI slave controller
• AHB-Lite master controller
A basic block diagram of the design for CoreAXItoAHBL is shown in Figure 2, page 6.

Figure 2 • CoreAXItoAHBL Block Diagram

3.1 AXI Slave Control
The AXI Slave Control block provides the AXI slave interface of the bridge. This block is responsible for
storing the AXI write data in the Write FIFO RAM block and returning the read data and error responses
to the AXI master from the Read FIFO RAM and AHB Master Control blocks.

Once address information has been detected (AxVALID high) and acknowledged (AxREADY high) on
either the AXI write address or read address channels, the AXI Slave Control block de-asserts the
AWREADY and ARREADY signals until the transaction related to that address has been completed (that
is, response returned to the AXI master and acknowledgment received). Write address requests have
priority over read address requests in the AXI Slave Control block. If the execution order of write and
read operations is critical, it is important to ensure that a write request is not issued after a read request
when the core is already processing a transaction (as the write will be allocated priority and get
performed ahead of the read operation). This block supports unaligned write transactions (that is,
transactions performed on addresses which are not aligned to the transfer size) through the use of write
strobes and unaligned read transfers through the use of address offsets.

AXI Slave
Control

AHBL
Master
Control

Write FIFO
RAM

Synchronizer

Read FIFO
RAM

AHBL Clock DomainAXI Clock Domain

AHBL BUSAXI BUS

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 7

3.2 Write FIFO RAM
The Write FIFO RAM block is a 16 deep, AXI_DWIDTH bits wide synchronous write, asynchronous read
RAM block. It stores the AXI write data received by the AXI Slave Control block. The AHBL Master
Control block generates the read enable to this FIFO when the AXI Slave Control block has stored all
data from the AXI write transaction.

3.3 Read FIFO RAM
The Read FIFO RAM block is a 16 deep, AXI_DWIDTH bits wide synchronous write, asynchronous read
RAM block. It stores the AXI read data received by the AHBL Master Control block. The AXI Slave
Control block generates the read enable to the FIFO when the AHBL Master Control block has stored all
data from the AHBL read transfers.

3.4 AHBL Master Control
The AHBL Master Control block is the AHBL master interface of the bridge. This block generates a
number of AHB write and read transactions on the AHBL bus based on the start address, burst type and
number of valid bytes specified by the AXI Slave Control block. Based on the configuration parameters,
the AHBL Master Control blocks ensure that transfer of the largest burst and transfer size possible are
performed. The AHBL address is incremented based on the size and burst type calculated. Error
responses received on the AHBL interface are forwarded to the AXI Slave Control block.

The AHBL Master Control block, controls the read enable to the Write FIFO RAM block and the write
enable to the Read FIFO RAM block.

3.5 Clock Domains
The CoreAXItoAHBL bridge consists of the following two clock domains:

• AXI clock domain
• AHB clock domain
The AXI Slave Control block operates in the AXI clock domain, while the AHB Master Control block
operates in the AHB clock domain. Where the two clock domains are derived from asynchronous
sources, the core makes use of the Write FIFO RAM and Read FIFO RAM blocks to pass data between
the two clock domains. Toggling signals are passed between the clock domains to indicate that data is
valid in the corresponding FIFO for sampling.

3.6 AXI-AHBL Interface Support
3.6.1 AHBL Address (HADDR) Generation

Since, the AXI master issues only the start address for read or write transactions, HADDR is required to
be generated for the subsequent read or write beats of the burst transfer. When a valid read or write
request is issued by the AXI interface, the start address of the transfer is registered. For subsequent
beats, the address (HADDR) is generated depending on the type (ARBURST or AWBURST), and length
(ARLEN/AWLEN) of the burst.

The AHBL Master Control block ensures that sequential AHB transfers do not cross 1 KB boundaries, to
support the minimum slave size defined in the AHB-Lite specification.

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 8

3.6.2 AXI Transfer Size: Translation of AXI Interface  AHBL Interface
When AXI_DWIDTH is set to 64, the core supports 64-bit transfer size (ARSIZE and AWSIZE = 3’b011),
32-bit transfer size (ARSIZE and AWSIZE = 3’b010), 16-bit transfer size (ARSIZE and AWSIZE =
3'b001), and 8-bit transfer (ARSIZE and AWSIZE = 3'b000). A slave error response will be returned to
the AXI master, if a transfer of size other than 64/32/16/8 bit is attempted.

When AXI_DWIDTH is set to 32, the core supports 32-bit transfer size (ARSIZE and AWSIZE = 3’b010),
16-bit transfer size (ARSIZE and AWSIZE = 3'b001) and 8-bit transfer (ARSIZE and AWSIZE = 3'b000).
A slave error response will be returned to the AXI master, if a transfer of size other than 32/16/8 bit is
attempted.

Note: Sparse assertion of the write strobes (that is, holes in the write strobes) are not supported by the core.
For example, WSTRB = 8’h5F (for 64-bit transfer size) and WSTRB = 8’h05 (for 32-bit transfer size).

3.6.3 AXI Burst Length: Translation of AXI Interface  AHBL Interface
The core supports a maximum of 16 AXI transfers per transaction. Depending on the burst length and
type of the AXI transaction, the AXI transaction is translated into multiple sequential and non-sequential
AHB transfers. The AHB Master Control block supports 4-beat, -8-beat, and 16-beat incrementing burst
AHB transfers. If an unaligned AXI transaction is received, which is not aligned to the transfer size, the
AHB Master Control block will perform a number of non-sequential transfers to move to a address
aligned to the transfer size before attempting AHB burst transfers.

A parameter exists to prevent the core from generating AHBL bursts when connecting to simple
slaves/subsystems. Once this parameter is set, the core will only issue non-sequential transactions on
the AHBL interface.

3.6.4 AXI Burst Type: Translation of AXI Interface  AHBL Interface
3.6.4.1 Fixed Address Bursts

The core provides support for AXI fixed address bursts. AXI transactions of this burst type perform
repeated access to the same location, typically peripheral FIFOs, where the address remains constant
for every beat of the burst. To convert this transaction type to the AHB interface, the core generates a
number of non-sequential AHBL transfers, with incrementing addresses based on the AHBL transfer
size. When the address reaches the AXI transfer size boundary, it wraps back to the initial base address
specified by the AXI master. CoreAXItoAHBL supports unaligned addresses being specified by the AXI
master for fixed address burst transactions.

Table 2, page 8 and Table 3, page 9 shows the resultant AHB transfers generated when the AXI master
performs fixed address AXI transactions.

Table 2 • Fixed Address AXI Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64)

AWADDR/ARADDR[2:0]
AXI Transfer
Size

WSTRB (in
case of write
transaction)

Burst Length
(AxLEN + 1) Resultant AHB Transfers

Non-sequential
8-bit 16-bit 32-bit

3’b000 (64-bit aligned) 64-bit 8’hFF 2 0 0 4

3’b100 (unaligned) 64-bit 8’hF0 2 0 0 2

3’b001 (unaligned) 64-bit 8’hFE 2 2 2 2

3’b000 (32-bit aligned) 32-bit 8’h0F 2 0 0 2

3’b100 (32-bit aligned) 32-bit 8’hF0 2 0 0 2

3’b001 (unaligned) 32-bit 8’h0E 2 2 2 0

3’b110 (unaligned) 32-bit 8’hC0 2 0 2 0

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 9

Note: CoreAXItoAHBL does not permit the use of narrow transfers for fixed address AXI write transactions. For
example, WSTRB = 8’h7F (for 64-bit transfers), WSTRB = 8’h07 (for 32-bit transfers) and WSTRB = 8’h01 (for
16-bit transfers).

Note: CoreAXItoAHBL does not permits the use of narrow transfers for fixed address AXI write transactions.
For example, WSTRB = 4'h7 (for 32-bit transfers) and WSTRB = 4'h1 (for 16-bit transfers).

3.6.4.2 Incrementing Address Bursts
CoreAXItoAHBL implements support for AXI incrementing address bursts. AXI transactions of this burst
type increment by the transfer size for every transfer of the transaction. To convert this transaction type to
the AHB interface, the core generates a number of non-sequential and sequential AHB transfers,
depending on the number of valid bytes in the AXI transaction. If an unaligned start address is specified
by the AXI master, the core performs a number of non-sequential transactions to move onto a address
aligned to the transfer size, before generating a combination of 4-beat, 8-beat, and 16-beat, 32/16/8-bit
AHB transfers based on the AXI transfer size. If the write strobes implement a narrow transaction during
the last beat of the AXI transaction, then the core finishes with a combination of non-sequential AHBL
transfers.

3’b000 (16-bit aligned) 16-bit 8’h03 2 0 2 -

3’b110 (16-bit aligned) 16-bit 8’hC0 2 0 2 -

3’b001 (unaligned) 16-bit 8’h02 2 2 0 -

3’b111 (unaligned) 16-bit 8’h80 2 2 0 -

3’b000 8-bit 8’h01 2 2 - -

3’b011 8-bit 8’h08 2 2 - -

3’b110 8-bit 8’h40 2 2 - -

Table 3 • Fixed Address AXI Transaction to AHB Transfer Conversion (AXI_DWIDTH = 32)

AWADDR/ARADDR[1:0] AXI Transfer Size
WSTRB (in case of
write transactions)

Burst Length
(AxLEN + 1) Resultant AHB Transfers

Non-sequential
8-bit 16-bit 32-bit

2'b00 (aligned) 32-bit 4'hF 2 0 0 2

2'b01 (unaligned) 32-bit 4'hE 2 2 2 0

2'b11 (unaligned) 32-bit 4'h8 2 2 0 0

2'b10 (unaligned) 32-bit 4'hC 2 0 2 0

2'b00 (aligned) 16-bit 4'h3 2 0 2 -

2'b10 (aligned) 16-bit 4'hC 2 0 2 -

2'b01 (unaligned) 16-bit 4'h2 2 2 0 -

2'b11 (unaligned) 16-bit 4'h8 2 2 0 -

2'b00 8-bit 4'h1 2 2 - -

2'b11 8-bit 4'h8 2 2 - -

2'b10 8-bit 4'h4 2 2 - -

2'b01 8-bit 4'h2 2 2 - -

Table 2 • Fixed Address AXI Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64) (continued)

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 10

Table 4, page 10, Table 5, page 12, Table 6, page 14 and Table 7, page 15 shows the resultant AHB
transfers generated when the AXI master performs incrementing address AXI write transactions.

Table 4 • Incrementing Address AXI Write Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64)
AW

A
D

D
R

 [2
:0

] (
O

ffs
et

 o
pt

io
na

l)

A
XI

 T
ra

ns
fe

r S
iz

e

W
ST

R
B

 F
irs

t B
ea

t

W
ST

R
B

 L
as

t B
ea

t

B
ur

st
 L

en
gt

h
(A

W
LE

N
 +

 1
)

Resultant AHB Transfers (Assuming transaction doesn't cross a 1
KB boundary and NO_BURST_TRANS = 0)
Non-
sequential

Sequential
8-

bi
t s

in
gl

e

16
-b

it
si

ng
le

32
-b

it
si

ng
le 8-bit 16-bit 32-bit

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

3'b000 64-bit 8'hFF
(aligned)

8'hFF 16 0 0 0 - - - - - - 0 0 2

3'b000 64-bit 8'hFF
(aligned)

8'hFF 8 0 0 0 - - - - - - 0 0 1

3'b100 64-bit 8'hF0
(unaligned)

8'hFF 8 0 0 3 - - - - - - 1 1 0

3'b000 64-bit 8'hFF
(aligned)

8'h03
(narrow)

8 0 1 2 - - - - - - 1 1 0

3'b101 64-bit 8'hE0
(unaligned)

8'h07
(narrow)

8 2 2 0 -- - - - - - 1 1 0

3'b010 64-bit 8'h1C
(unaligned &
narrow)

N/A 1 1 1 0 - - - - - - 0 0 0

3'b000 32-bit 8'h0F
(aligned)

8'hF0 16 0 0 0 - - - - - - 0 0 1

3'b100 32-bit 8'hF0
(aligned)

8'h0F 8 0 0 0 - - - - - - 0 1 0

3'b110 32-bit 8'hC0
(unaligned)

8'h0F 8 0 1 3 - - - - - - 1 0 0

3'b000 32-bit 8'h0F
(aligned)

8'h70
(narrow)

8 1 1 3 - - - - - - 1 0 0

3'b011 32-bit 8'h08
(unaligned)

8'h30
(narrow)

8 1 1 2 - - - - - - 1 0 0

3'b101 32-bit 8'h60
(unaligned &
narrow)

N/A 1 2 0 0 - - - - - - 0 0 0

3'b000 16-bit 8'h03
(aligned)

8'hC0 16 0 0 - - - - 0 0 1 - - -

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 11

Note: For AWSIZE = 3'b011 (64-bit), CoreAXItoAHBL expects all byte lanes to contain valid data (WSTRB =
8'hFF) for all transfers other than the first and last, in transactions greater than two transfers in length.

Note: For AWSIZE = 3'b010 (32-bit), CoreAXItoAHBL expects all byte lanes to contain valid data (WSTRB =
8'h0F or WSTRB = 8'hF0) for all transfers other than the first and last, in transactions greater than two
transfers in length.

Note: For AWSIZE = 3'b001 (16-bit), CoreAXItoAHBL expects all byte lanes to contain valid data (WSTRB =
8'h03 or WSTRB = 8'h0C or WSTRB = 8'h30 or WSTRB = 8'hC0) for all transfers other than the first and
last, in transactions greater than two transfers in length.

3'b110 16-bit 8'hC0
(aligned)

8'h30 8 0 0 - - - - 0 1 0 - - -

3'b101 16-bit 8'h20
(unaligned)

8'h0C 8 1 3 - - - - 1 0 0 - - -

3'b100 16-bit 8'h30
(aligned)

8'h04
(narrow)

8 1 3 - - - - 1 0 0 - - -

3'b111 16-bit 8'h80
(unaligned)

8'h10
(narrow)

8 2 2 - - - - 1 0 0 - - -

3'b000 8-bit 8'h01 8'h80 16 0 - - 0 0 1 - - - - - -

3'b101 8-bit 8'h10 8'h04 8 0 - - 0 1 0 - - - - - -

3'b010 8-bit 8'h04 8'h80 6 2 - - 1 0 0 - - - - - -

3'b110 8-bit 8'h40 8'h01 3 3 - - 0 0 0 - - - - - -

Table 4 • Incrementing Address AXI Write Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64)

AW
A

D
D

R
 [2

:0
] (

O
ffs

et
 o

pt
io

na
l)

A
XI

 T
ra

ns
fe

r S
iz

e

W
ST

R
B

 F
irs

t B
ea

t

W
ST

R
B

 L
as

t B
ea

t

B
ur

st
 L

en
gt

h
(A

W
LE

N
 +

 1
)

Resultant AHB Transfers (Assuming transaction doesn't cross a 1
KB boundary and NO_BURST_TRANS = 0)

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 12

Table 5 • Incrementing Address AXI Write Transaction to AHB Transfer Conversion (AXI_DWIDTH = 32)
AW

A
D

D
R

 [1
:0

] (
O

ffs
et

 o
pt

io
na

l)

A
XI

 T
ra

ns
fe

r S
iz

e

W
ST

R
B

 F
irs

t B
ea

t

W
ST

R
B

 L
as

t B
ea

t

B
ur

st
 L

en
gt

h
(A

W
LE

N
 +

 1
)

Resultant AHB Transfers
(Assuming transaction doesn't cross a 1 KB boundary and
NO_BURST_TRANS = 0)
Non-sequential Sequential

8-
bi

t s
in

gl
e

16
-b

it
si

ng
le

32
-b

it
si

ng
le 8-bit 16-bit 32-bit

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

2'b00 32-bit 4'hF
(aligned)

4'hF 16 0 0 0 - - - - - - 0 0 1

2'b00 32-bit 4'hF
(aligned)

4'hF 8 0 0 0 - - - - - - 0 1 0

2'b11 32-bit 4'h8
(Unaligned)

4'hF 8 1 0 3 - - - - - - 1 0 0

2'b00 32-bit 4'hF
(aligned)

4'h3
(narrow)

8 0 1 3 - - - - - - 1 0 0

2'b01 32-bit 4'hE
(Unaligned)

4'h1
(narrow

8 2 1 2 - - - - - - 1 0 0

2'b10 32-bit 4'h4
(Unaligned
and narrow)

N/A 1 1 0 0 - - - - - - 0 0 0

2'b00 16-bit 4'h3
(aligned)

4'hC 16 0 0 - - - - 0 0 1 - - -

2'b10 16-bit 4'hC
(aligned)

4'h3 8 0 0 - - - - 0 1 0 - - -

2'b01 16-bit 4'h2
(Unaligned)

4'hC 8 1 3 - - - - 1 0 0 - - -

2'b10 16-bit 4'hC
(aligned)

4'h1
(narrow)

8 1 3 - - - - 1 0 0 - - -

2'b11 16-bit 4'h8
(unaligned)

4'h1
(narrow)

8 2 2 - - - - 1 0 0 - - -

2'b00 8-bit 4'h1 4'h8 16 0 - - 0 0 1 - - - - - -

2'b10 8-bit 4'h4 4'h4 13 1 - - 1 1 0 - - - - - -

2'b11 8-bit 4'h8 4'h4 8 0 - - 0 1 0 - - - - - -

2'b01 8-bit 4'h2 4'h4 2 2 - - 0 0 0 - - - - - -

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 13

Note: For AWSIZE = 3'b010 (32-bit), CoreAXItoAHBL expects all byte lanes to contain valid data (WSTRB =
4'hF) for all transfers other than the first and last, in transactions greater than two transfers in length.

Note: For AWSIZE = 3'b001 (16-bit), CoreAXItoAHBL expects all byte lanes to contain valid data (WSTRB =
4'h3 or WSTRB = 4'hC) for all transfers other than the first and last, in transactions greater than two
transfers in length.

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 14

Table 6 • Incrementing Address AXI Read Transaction to AHB Transfer Conversion (AXI_DWIDTH = 64)

A
R

A
D

D
R

 [2
:0

]

A
XI

 T
ra

ns
fe

r S
iz

e

B
ur

st
 L

en
gt

h
(A

R
LE

N
 +

 1
)

Resultant AHB Transfers
(Assuming transaction doesn't cross a 1 KB boundary and NO_BURST_TRANS
= 0)
Non-sequential Sequential

8-
bi

t s
in

gl
e

16
-b

it
si

ng
le

32
-b

it
si

ng
le 8-bit 16-bit 32-bit

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

3'b000
(aligned)

64-bit 16 0 0 0 - - - - - - 0 0 2

3'b000
(aligned)

64-bit 8 0 0 0 - - - - - - 0 0 1

3'b100
(unaligned)

64-bit 8 0 0 3 - - - - - - 1 1 0

3'b001
(unaligned)

64-bit 8 1 1 3 - - - - - - 1 1 0

3'b110
(unaligned)

64-bit 8 0 1 2 - - - - - - 1 1 0

3'b000
(aligned)

32-bit 16 0 0 0 - - - - - - 0 0 1

3'b100
(aligned)

32-bit 8 0 0 0 - - - - - - 0 1 0

3'b011
(unaligned)

32-bit 8 1 0 3 - - - - - - 1 0 0

3'b110
(unaligned)

32-bit 8 0 1 3 - - - - - - 1 0 0

3'b000
(aligned)

16-bit 16 0 0 - - - - 0 0 1 - - -

3'b010
(aligned)

16-bit 8 0 0 - - - - 0 1 0 - - -

3'b001
(unaligned)

16-bit 8 1 3 - - - - 1 0 0 - - -

3'b111
(unaligned)

16-bit 8 1 3 - - - - 1 0 0 - - -

3'b000 8-bit 16 0 - - 0 0 1 - - - - - -

3'b010 8-bit 14 2 - - 1 1 0 - - - - - -

3'b101 8-bit 9 1 - - 0 1 0 - - - - - -

3'b111 8-bit 2 2 - - 0 0 0 - - - - - -

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 15

3.6.4.3 Wrapping Address Bursts
The address of AXI transactions of this burst type increments by the transfer size for every transfer of the
transaction until the wrap boundary is reached, at which point it returns to the lower wrap address. The
wrap boundary is determined by the number of transfers in the transaction times the transfer size. To
convert this transaction type to the AHB interface, the core generates a number of non-sequential and
sequential AHB transfers, depending on the number of valid bytes in the AXI transaction and the current
address location in relation to the wrap boundary.

Note: The core ensures that sequential AHB transfers do not cross the wrap boundary or 1 KB boundaries.

Support for wrapping AXI transactions is not instantiated by default in CoreAXItoAHBL. Instead, a
generic/parameter (WRAP_SUPPORT) exists to allow the logic to be instantiated if required, at the cost
of extra logic consumption and lower operating frequency.

Table 7 • Incrementing Address AXI Read Transaction to AHB Transfer Conversion (AXI_DWIDTH = 32)

A
R

A
D

D
R

 [1
:0

]

A
XI

 T
ra

ns
fe

r S
iz

e

B
ur

st
 L

en
gt

h
(A

R
LE

N
 +

 1
)

Resultant AHB Transfers
(Assuming transaction doesn't cross a 1 KB boundary and
NO_BURST_TRANS = 0)
Non-sequential Sequential

8-
bi

t s
in

gl
e

16
-b

it
si

ng
le

32
-b

it
si

ng
le 8-bit 16-bit 32-bit

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

4-
be

at

8-
be

at

16
-b

ea
t

2'b00 (aligned) 32-bit 16 0 0 0 - - - - - - 0 0 1

2'b00 (aligned) 32-bit 8 0 0 0 - - - - - - 0 1 0

2'b11 (unaligned) 32-bit 8 1 0 3 - - - - - - 1 0 0

2'b01 (unaligned) 32-bit 8 1 1 3 - - - - - - 1 0 0

2'b00 (aligned) 16-bit 16 0 0 - - - - 0 0 1 - - -

2'b10 (aligned) 16-bit 8 0 0 - - - - 0 1 0 - - -

2'b01 (unaligned) 16-bit 8 1 3 - - - - 1 0 0 - - -

2'b11 (unaligned) 16-bit 8 1 3 - - - - 1 0 0 - - -

2'b00 8-bit 16 0 - - 0 0 1 - - - - - -

2'b01 8-bit 11 3 - - 0 1 0 - - - - - -

2'b10 8-bit 5 1 - - 1 0 0 - - - - - -

2'b11 8-bit 1 1 - - 0 0 0 - - - - - -

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 16

3.6.5 AXI Write Strobe: Translation of AXI Interface  AHB Interface
The AXI write data channel contains write strobes providing AXI masters with a means to indicate byte
lanes which contain valid write data. CoreAXItoAHBL poses the following limitations to the use of the
write strobes by the AXI master.

When AXI_DWIDTH is set to 64:

• For AXI write transactions consisting of a single beat, the core permits the transfer to be both
unaligned and narrow using the write strobes. For example, WSTRB = 8’h7E, 8’h06, 8’h08 (for 64-bit
AXI transactions), WSTRB = 8’h70, 8’h08 (for 32-bit AXI transactions) and WSTRB = 8'h04, 8'h10
(for 16-bit AXI transfers).

• For AXI write transactions that consist of multiple transfers, the core permits the transfer to be
unaligned during the first data beat (for 64-bit AXI transactions WSTRB = 8’hFE, 8'hF8, 8’h80, for
32-bit AXI transactions WSTRB = 8’h0E, 8’hC0, 8’h08 and for 16-bit AXI transactions WSTRB =
8’h02, 8’h80, 8’h08, 8'h20), and narrow during the last data beat (for 64-bit AXI transactions WSTRB
= 8’h7F, 8’h03, 8’h01, for 32-bit AXI transactions WSTRB = 8’h30, 8’h07 and for 16-bit AXI
transactions WSTRB = 8’h01, 8’h40).

• The core permits write strobes to be unaligned for fixed address burst write transactions, where the
transfer is unaligned for every transfer in the transaction. For example, WSTRB = 8’hFE, 8’hF0,
8’hC0 (for 64-bit AXI transactions), WSTRB = 8’hE0, 8’h0C (for 32-bit AXI transactions), and
WSTRB = 8'h02, 8'h80 (for 16-bit AXI transfers).

• For all other circumstances (other than first and last transfer of a beat) the core expects the AXI
master to assert all 8 write strobes (WSTRB = 8'hFF) for 64-bit AXI transfers; 4 write strobes
(WSTRB = 8'h0F or WSTRB = 8'hF0) for 32-bit AXI transfers; 2 write strobes (WSTRB = 8'h03 or
WSTRB = 8'h0C or WSTRB = 8'h30 or WSTRB = 8'hC0) for 16-bit AXI transfers.

Note: CoreAXItoAHBL does not support sparse assertion of the write strobes. Example WSTRB = 8'h55 (for
64-bit AXI transactions), WSTRB = 8’h05 (for 32-bit AXI transactions).

When AXI_DWIDTH is set to 32:

• For AXI write transactions consisting of a single beat, the core permits the transfer to be both
unaligned and narrow using the write strobes. For example, WSTRB = 4’h4, 4’h6 (for 32-bit AXI
transactions) and WSTRB = 4'h4, 4'h1 (for 16-bit AXI transfers).

• For AXI write transactions that consist of multiple transfers, the core permits the transfer to be
unaligned during the first data beat (example: for 32-bit AXI transactions WSTRB = 4’hE, 4’hC, 4’h8
and for 16-bit AXI transactions WSTRB = 4’h2, 4’h8), and narrow during the last data beat (example:
for 32-bit AXI transactions WSTRB = 4’h3, 4’h7 and for 16-bit AXI transactions WSTRB = 4’h1,
4’h4).

• The core permits write strobes to be unaligned for fixed address burst write transactions, where the
transfer is unaligned for every transfer in the transaction. For example, WSTRB = 4’hE, 4’hC (for 32-
bit AXI transactions) and WSTRB = 4'h2, 4'h8 (for 16-bit AXI transfers).

• For all other circumstances (other than first and last transfer of a beat) the core expects the AXI
master to assert all 4 write strobes (WSTRB = 4'hF) for 32-bit AXI transfers; 2 write strobes (WSTRB
= 4'h3 or WSTRB = 4'hC) for 16-bit AXI transfers.

Note: CoreAXItoAHBL does not support sparse assertion of the write strobes. Example WSTRB = 4’h05 (for
32-bit AXI transactions).

Functional Description

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 17

3.6.6 AHBL Slave Size (32-Bit)
The core supports only 32-bit AHBL slaves. When a transfer transaction consisting of a single transfer of
size 64-bits is initiated by the AXI master, the transaction is split into at least two AHBL transfers of size
32-bit (transaction may result in up to six AHBL transfers of size 8-bit, 16-bit,and32-bit being generated
depending on the alignment of the AXI transaction).

3.6.7 Error Response
CoreAXItoAHBL returns a slave error response to the AXI master under the following circumstances:

• When AXI_DWIDTH parameter is configured as 64 and AXI master attempts a write or read
transaction with a transfer size other than 64/32/16/8 bit (AWSIZE/ARSIZE = 3’b011,
AWSIZE/ARSIZE = 3’b010, AWSIZE/ARSIZE = 3’b001, or AWSIZE/ARSIZE = 3’b000).

• When AXI_DWIDTH parameter is configured as 32 and AXI master attempts a write or read
transaction with a transfer size other than 32/16/8 bit (AWSIZE/ARSIZE = 3’b010, AWSIZE/ARSIZE
= 3’b001, or AWSIZE/ARSIZE = 3’b000).

• AXI master attempts a wrapping burst transaction without the wrapping burst logic instantiated
(WRAP_SUPPORT = 0 && AWBURST/ARBURST = 2'b10)

• AXI master attempts a wrapping burst when the burst length is something other than 2, 4, 8, or 16
(AWLEN/ARLEN = 4'b0001, 4'b0011, 4'b0111, 4'b1111)

• AXI master attempts either a write or read transaction with the burst type (AWBURST/ARBURST)
set to 2’b11. This burst type is defined as being ‘reserved’ in the AXI specification.

• Premature assertion of the WLAST signal
• Late assertion of the WLAST signal
• Error returned by the AHB slave during an AHB transfer

3.6.8 Unaligned Address Support
AXI transactions can be unaligned in two ways:

• The AXI master may choose to offset the lower n bits of the address. However, the lower n bits of the
address must match the write strobes in this case, where the transfer size is 2n. For example, for 64-
bit AXI transactions: AWADDR = 0x00000009, WSTRB = 0xFE; for 32-bit AXI transaction: AWADDR
= 0x0000000A, WSTRB = 0x0C; for 16-bit AXI transactions: AWADDR = 0x00000003, WSTRB =
0x08.

• The AXI master can use an address aligned to the transfer size but configure the write strobes to
only write to the upper byte locations. For example, for 64-bit AXI transactions: AWADDR =
0x00000000, WSTRB = 0xC0; for 32-bit AXI transactions: AWADDR = 0x00000000, WSTRB =
0x0E; for 16-bit AXI transactions: AWADDR = 0x00000000, WSTRB = 0x02.

In both the cases, the write strobes during the first transfer in the transaction need to reflect that the
transaction is unaligned.

Interface

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 18

4 Interface

4.1 Configuration Parameters
There are a number of configurable options which are applied to CoreAXItoAHBL (as shown in Table 8,
page 18). If a configuration other than the default is required, the configuration dialog box in the
SmartDesign should be used to select appropriate values for the configurable options.

Table 8 • CoreAXItoAHBL Configuration Options

Name Valid Range Default Description
ID_WIDTH - 4 Sets the width of the ID field supported. The ID width

should be sufficient to support the AXI master
transfer ID width and the unique master ID identifier
appended by the AXI interconnect when the core is
instantiated in multi-master AHBL systems.

AXI_DWIDTH 32 or 64 64 Sets the width of AXI read data, AXI write data and
AXI write-strobe signals. The width of AXI write
strobe signal is calculated using AXI_DWIDTH
parameter.
AXI WRITE STROBE WIDTH = AXI_DWIDTH/8

NO_BURST_TRANS 0 or 1 0 Prevents AHB-Lite burst transfers being generated
when set. AHBL burst transfers are enabled by
default.

WRAP_SUPPORT 0 or 1 0 Adds support for AXI wrapping burst transactions.
Wrapping burst transactions are disabled by default.
Note: This option should only be enable if required

as it has a significant impact on logic
resource consumption and maximum
operating frequency.

ASYNC_CLOCKS 0 or 1 0 Parameter should be set if the ACLK and HCLK
clock domains are asynchronous. Instantiates CDC
synchronizers in the design.

AXI_SEL_MM_S 0 or 1 0 Selects between the AXI Mirror Master BIF or AXI
Slave BIF for the AXI interface when core is used in
the Libero Smart Design.

0: AXI Slave BIF
1: AXI Mirror Master BIF

EXPOSE_WID 0 or 1 0 This parameter is valid only when the parameter
AXI_SEL_MM_S is 0 (AXI Slave BIF is selected).

0: WID signal is part of AXI BIF
1: WID signal is exposed out of the AXI BIF.

Interface

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 19

4.2 I/O Signals
Signal descriptions for CoreAXItoAHBL are defined in Table 9, page 19.

Table 9 • CoreAXItoAHBL I/O Signals

Port Name Width Direction Description

AHBL Slave Interface Ports
HCLK 1 In AHBL clock. All registers within the AHB Master Control block

are clocked on the rising edge of HCLK.

HRESETN 1 In AHBL Reset. Active low AHBL reset signal. Asynchronous
assertion and synchronous de-assertion. This is used to reset
all registers in the AHB Master Control block.

HADDR 32 Out AHBL address – 32 bit address on the AHB-Lite interface

HWRITE 1 Out AHBL write – When high, indicates that the current transfer is
a write transfer. When low, indicates that the current transfer is
a read transfer.

HTRANS 2 Out AHBL transfer type – Indicates the transfer type of the current
transaction:
b00: IDLE
b01: BUSY
b10: NON-SEQUENTIAL
b11: SEQUENTIAL

HSIZE 3 Out AHBL transfer size – Indicates the size of the AHBL transfer
Supported transfer sizes:
b000: 8-bit (byte) transaction
b001: 16-bit (half word) transaction
b010: 32-bit (word) transaction

HWDATA 32 Out AHBL write data – Write data from the AHB-Lite master to the
AHB-Lite slave

HBURST 3 Out Type of burst generated by the AHBL master
Supported burst types:
b000: Single burst
b011: 4-beat incrementing burst
b101: 8-beat incrementing burst
b111: 16-beat incrementing burst

HREADYIN 1 In AHBL ready input – Indicates that the previous bus transfer
has completed.

HRESP 1 In AHBL response status – Indicates that an error has occurred
during the transfer when driven high whilst HREADY is low.
HREADY must return high before the error response can be
considered complete (two cycle error response).
An ‘OKAY’ response can be returned in a single cycle when
HRESP is low whilst HREADY is high.

HRDATA 32 In AHBL read data – Read data from the AHBL slave to the
AHBL master

Interface

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 20

AXI Master Interface Ports

Global Signal Ports (Clocks)
ACLK 1 In AXI clock – All registers within the AXI Slave Control block are

clocked on the rising edge of ACLK.

ARESETN 1 In AXI reset signal – Active low reset signal. The signal is
asynchronously asserted and synchronously de-asserted.

AXI Write Address Channel
AWID ID_WIDTH In Write Address ID – Details the transaction identification tag.

The upper bits of this signal represent the unique master
identifier appended by the interconnect, when the core is
instantiated in multi-master AHB-Lite systems.

AWADDR 32 In Write address – Gives the address of the first transfer in a
write transaction
The associated control signals are used to determine the
addresses of the remaining transfers in the burst.

AWLEN 4 In Burst length – Denotes the number of transfers in a
transaction.

AWSIZE 3 In Burst size – Indicates the size of each transfer in the
transaction.
Supported burst sizes:
3’b000: 8-bit (byte) transactions
3’b001: 16-bit (half-word) transactions
3’b010: 32-bit (word) transactions
3’b011: 64-bit (double-word) transactions

AWBURST 2 In Burst type – Signals the type of burst transfer performed.
Supported AXI burst types:
2’b00: Fixed address burst
2’b01: Incrementing address burst
2’b10: Wrapping address burst
2’b11: Reserved

AWVALID 1 In Write address valid – Indicates that valid write address and
control information are available:
1: address and control available
0: address and control not available

AWREADY 1 Out Write address ready – Indicates that the slave is ready to
accept an address and associated control signals:
1: slave ready
0: slave busy

Table 9 • CoreAXItoAHBL I/O Signals (continued)

Interface

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 21

AXI Write Data Channel
WID ID_WIDTH In Write Data ID tag – The Identification tag for the write data

transaction.
This signal is generated and is exposed outside the AXI Slave
BIF when the parameters EXPOSE_WID = 1 and
AXI_SEL_MM_S = 0.
This signal is generated only for this configuration.

WID_BIF ID_WIDTH In Write Data ID tag – The Identification tag for the write data
transaction.
This signal is generated as a part of the AXI Slave BIF when
the parameters EXPOSE_WID = 0 and AXI_SEL_MM_S = 0.
This signal is generated and as a part of the AXI Mirror Master
BIF when AXI_SEL_MM_S = 1.
This signal is generated only for these two configurations.

WDATA AXI_DWIDTH In Write data bus is AXI_DWIDTH bits wide.

WSTRB AXI_DWIDTH/8 In Write strobes. – Indicates the byte lanes of the WDATA signal
that contain valid write data.
There is one write strobe for each 8 bits of the write data bus.
WSTRB[n] corresponds to WDATA [(8 × n) + 7 :(8 × n)].

WLAST 1 In Write last – Indicates that the current transfer is the last
transfer in the write transaction.

WVALID 1 In Write valid – Indicates that valid write data and strobes are
available:
1: write data and strobes available
0: write data and strobes unavailable.

WREADY 1 Out Write ready – Indicates that the slave will register the write
data and strobes on the next ACLK rising edge, at which point
the write data can be updated/removed.
1: slave ready
0: slave not ready

AXI Write Response Channel
BREADY 1 In Response ready – Indicates that the AXI master will register

the AXI slave write response on the next ACLK rising edge, at
which point the slave write response can be removed.
1: master ready
0: master not ready

BID ID_WIDTH Out Response ID – The Identification tag for the write response
The BID must match the AWID value of the write transaction to
which the slave is responding.

Table 9 • CoreAXItoAHBL I/O Signals (continued)

Interface

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 22

BRESP 2 Out Write response – Indicates the status of the write transaction.
Responses provided by CoreAXItoAHBL:
00: OKAY
10: SLVERR
Refer to the Error Response section of this document for
details of error conditions which are reported to the AXI master
by CoreAXItoAHBL.

BVALID 1 Out Write response valid – Indicates to the AXI master that
CoreAXItoAHBL is presenting valid write response.
1: write response available.
0: write response not available.

AXI Read Address Channel
ARID ID_WIDTH In Read Address ID – Details the transaction identification tag.

The upper bits of this signal represent the unique master
identifier appended by the interconnect, when the core is
instantiated in multi-master AHB-Lite systems.

ARADDR 32 In Read address – Gives the address of the first transfer in a
read transaction
The associated control signals are used to determine the
addresses of the remaining transfers in the burst.

ARLEN 4 In Burst length – Denotes the number of transfers in a
transaction.

ARSIZE 3 In Burst size – Indicates the size of each transfer in the
transaction.
Supported burst sizes:
3’b000: 8-bit (byte) transactions
3’b001: 16-bit (half-word) transactions
3’b010: 32-bit (word) transactions
3’b011: 64-bit (double-word) transactions

ARBURST 2 In Burst type – Signals the type of burst transfer performed.
Supported AXI burst types:
2’b00: Fixed address burst
2’b01: Incrementing address burst
2’b10: Wrapping address burst
2’b11: Reserved

ARVALID 1 In Read address valid – Indicates that valid read address and
control information are available:
1: address and control available
0: address and control not available

ARREADY 1 Out Read address ready – Indicates that the slave is ready to
accept an address and associated control signals:
1: slave ready
0: slave busy

AXI Read Data Channel
RREADY 1 In Read ready – Indicates that the AXI master will register the

read data on the next ACLK rising edge, at which point the
read data can be updated/removed.
1: slave ready
0: slave not ready

Table 9 • CoreAXItoAHBL I/O Signals (continued)

Interface

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 23

RID ID_WIDTH Out Read Data ID tag – The Identification tag for the read data
transaction.
The slaves generates RID, which must match the ARID value
of the read transaction.

RDATA AXI_DWIDTH Out Read data – Read data bus is AXI_DWIDTH bits wide

RRESP 2 Out Read response – Indicates the status of the read transaction.
Responses provided by CoreAXItoAHBL:
00: OKAY
10: SLVERR
Refer to the Error Response section of this document for
details of error conditions which are reported to the AXI master
by CoreAXItoAHBL.

RLAST 1 Out Read Last – Indicates that the current transfer is the last
transfer in the read transaction.

RVALID 1 Out Read Valid – Indicates to the AXI master that CoreAXItoAHBL
is presenting valid read data.
1: read data available
0: read data not available

Table 9 • CoreAXItoAHBL I/O Signals (continued)

Tool Flow

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 24

5 Tool Flow

5.1 License
No license is required to use this core.

5.1.1 RTL
Complete RTL source code is provided for the core and testbench.

5.2 SmartDesign
CoreAXItoAHBL is pre-installed in the Libero SmartDesign IP deployment design environment or
downloaded from the online repository. Figure 3, page 24 shows an example instantiated.

For information on using SmartDesign to instantiate and generate cores, refer to Libero User Guide.

Note: CoreAXItoAHBL is compatible with Libero System-on-Chip (SoC) and Libero System-on-Chip (SoC)
PolarFire. Unless specified otherwise, this document uses the name Libero to identify Libero SoC and
Libero SoC PolarFire.

Figure 3 • SmartDesign CoreAXItoAHBL Instance View

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents

Tool Flow

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 25

5.3 Configuring CoreAXItoAHBL in SmartDesign
The core can be configured using the configuration GUI within SmartDesign. An example of the GUI is as
shown in Figure 4, page 25.

Figure 4 • SmartDesign CoreAXItoAHBL Configuration Dialog Box

5.4 Simulation Flows
The User Testbench for CoreAXItoAHBL is included in all releases.

To run simulations, select the User Testbench flow within the SmartDesign CoreAXItoAHBL configuration
GUI, right-click the canvas, and select Generate Design.

When SmartDesign generates the design files, it installs the user testbench files.

To run the user testbench, set the design root to the CoreAXItoAHBL instantiation in the Libero design
hierarchy pane and click Simulation in the Libero Design Flow window. This invokes ModelSim® and
automatically runs the simulation.

5.5 Synthesis in Libero
To run synthesis on the CoreAXItoAHBL, set the design root to the IP component instance and run the
synthesis tool from the Libero design flow pane. This will invoke Synplify Pro and automatically runs the
synthesis.

5.6 Place-and-Route in Libero
After design is synthesized, click Place and Route in the Libero Design Flow pane to run place and route
on the CoreAXItoAHBL. No special place and route settings are required.

Testbench

 Microsemi Proprietary and Confidential HB0397 Handbook Revision 9.0 26

6 Testbench

This testbench integrates the CoreAXItoAHBL macro into a system and performs a basic loopback test
consisting of incrementing address burst AXI transactions of varying transaction lengths.

6.1 User Testbench
An example user testbench is included with CoreAXItoAHBL.

Figure 5 • User Testbench

As shown in Figure 5, page 26 the user testbench instantiates CoreAXItoAHBL design under test (DUT).
The CoreAXItoAHBL testbench environment consists of the following components:

• AXI master model: The AXI master model drives write and read AXI transactions to the DUT. The
AXI master model implements a set of functions which allow AXI transactions to be generated. For
write transactions, write data is taken from the wr_golden_mem RAM block, which gets initialized
with the contents of the ram_init.mem file. For read transactions, read data is stored in the
rd_actual_mem RAM block. A set of function calls are included in the AXI master model to perform a
basic loopback test to drive the user testbench. Users can create modified calls of these tasks and
replace the contents of the ram_init.mem file to simulate custom cases. An alternative .mem file and
RAM size can be specified by the RAM_INIT_FILE and RAM_ADDR_WIDTH parameters
respectively.

• AHB slave model: The AHBL slave model stores write data in the wr_actual_mem RAM block
during an AHBL write transfer. Data from the corresponding address locations of the
wr_actual_mem RAM block is returned during an AHBL read transfer. An alternative RAM size can
be specified through the RAM_ADDR_WIDTH parameter.

AXI_Master.v/vhd

AXI Write Logic
wr_golden_mem

RAM

rd_actual_mem
RAM

testbench.v/vhd

AXI Master
Model

AHBL Slave
Model

CoreAXItoAHBL
(DUT)

AHBL_Slave.v/vhd

AHBL Write Logic

wr_actual_mem
RAM

AHBL Read Logic

AXI Read Logic

ram_init.mem

A
X
I I
n
te
rf
ac
e

A
H
B
L
In
te
rf
ac
e

	1 Revision History
	1.1 Revision 9.0
	1.2 Revision 8.0
	1.3 Revision 7.0
	1.4 Revision 6.0
	1.5 Revision 5.0
	1.6 Revision 4.0
	1.7 Revision 3.0
	1.8 Revision 2.0
	1.9 Revision 1.0

	2 Introduction
	2.1 Overview
	2.2 Features
	2.3 Core Version
	2.4 Supported Families
	2.5 Device Utilization and Performance

	3 Functional Description
	3.1 AXI Slave Control
	3.2 Write FIFO RAM
	3.3 Read FIFO RAM
	3.4 AHBL Master Control
	3.5 Clock Domains
	3.6 AXI-AHBL Interface Support
	3.6.1 AHBL Address (HADDR) Generation
	3.6.2 AXI Transfer Size: Translation of AXI Interface à AHBL Interface
	3.6.3 AXI Burst Length: Translation of AXI Interface à AHBL Interface
	3.6.4 AXI Burst Type: Translation of AXI Interface à AHBL Interface
	3.6.4.1 Fixed Address Bursts
	3.6.4.2 Incrementing Address Bursts
	3.6.4.3 Wrapping Address Bursts

	3.6.5 AXI Write Strobe: Translation of AXI Interface à AHB Interface
	3.6.6 AHBL Slave Size (32-Bit)
	3.6.7 Error Response
	3.6.8 Unaligned Address Support

	4 Interface
	4.1 Configuration Parameters
	4.2 I/O Signals

	5 Tool Flow
	5.1 License
	5.1.1 RTL

	5.2 SmartDesign
	5.3 Configuring CoreAXItoAHBL in SmartDesign
	5.4 Simulation Flows
	5.5 Synthesis in Libero
	5.6 Place-and-Route in Libero

	6 Testbench
	6.1 User Testbench

