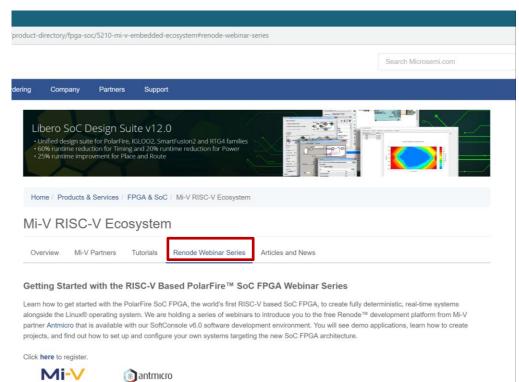
Getting Started with the RISC-V Based PolarFire[®] SoC FPGA Webinar Series Session 17 AMP Mode



A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Hugh Breslin, Design Engineer Thursday Sept. 10, 2020

Supporting Content www.microsemi.com/Mi-V "Renode Webinar Series"

Webinar 1 (May 2): Discover Renode for PolarFire™ SoC Design and Debug

In this introductory session, we will provide you with an overview of SoftConsole 6.0 with Renode™ integration. We will introduce you to the Renode development framework and provide an overview of the platform and its features. You will also learn about the PolarFire™ SoC architecture and how to use Renode to develop your application.

Webinar 1: Discover Renode for PolarFire[®] SoC Design and Debug Webinar 2: How to Get Started with Renode for PolarFire SoC Webinar 3: Learn to Debug a Bare-Metal PolarFire SoC Application with Renode Webinar 4: Tips and Tricks for Even Easier PolarFire SoC Debug with Renode Webinar 5: Add and Debug PolarFire SoC Models with Renode Webinar 6: Add and Debug Pre-Existing Model in PolarFire SoC Webinar 7: How to Write Custom Models Webinar 8: What's New in SoftConsole v6.2 Webinar 9: Getting Started with PolarFire SoC Webinar 10: Introduction to the PolarFire SoC Bare-Metal Library Webinar 11: Handling Binaries Webinar 12: Simple Peripheral as Software Stimulus Webinar 13: Two Baremetal Applications on PolarFire SoC Webinar 14: The PolarFire SoC Icicle Kit Model on Renode Webinar 15: Building and running Linux Webinar 16: Linux on PolarFire SoC

Coming Soon! RISC-V® Innovation Unleashed

- New PolarFire SoC webinar series
- Registrations go live from September 16th
- https://www.microchip.com/training/webinars

Webinars Microchip Technology × +										—	Ć	7	×	
\leftarrow \rightarrow C \triangle	🗎 microchip.com/training/webinars									☆	8	*	\$:
Міскосні р	Products	Applications	Tools and Software	Support and Training	Order Now	About					-	}	-	Q
Home / Training	g / Webina	ars												

Webinars

Design Resources

Discover how to use our ecosystem of hardware tools, software and other resources to simplify and speed up your development.

Development Tools

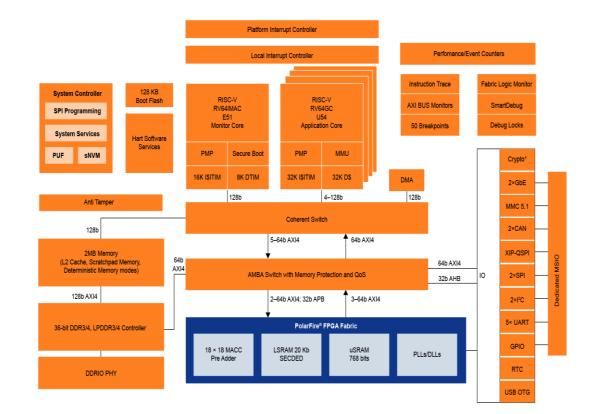
Security

Learn about the latest trends and new developments for safeguarding your designs.

• SHIELDS UP! Webinar Series

Agenda

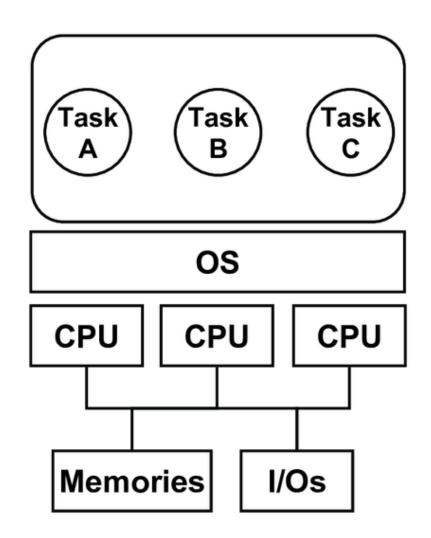
- Multiprocessing
- Symmetric Multiprocessing
- Asymmetric Multiprocessing
- Configuring Asymmetric Multiprocessing



Multiprocessing

Multiprocessing

- Multiple CPUs in a single system
- Shared memory and peripherals
- Execute multiple tasks simultaneously
- This is not the same as parallel processing



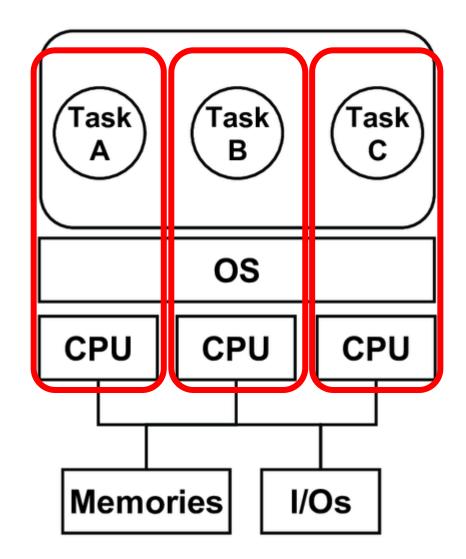
Multiprocessing CPU Affinity

- This binds a process to a core / cores
- Run a process on a subset of cores
- Run a process on a specific core
- Achieved through a system call

✓ Improve cache performance

Multiprocessing CPU Affinity

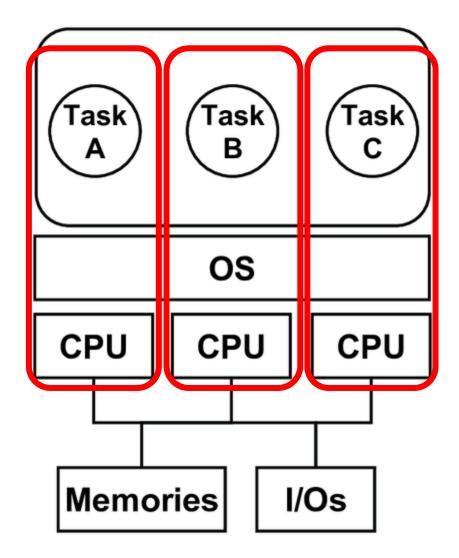
- Check affinity with taskset -cp [PID]
- Returns


pid 9726's current affinity list: 0-3

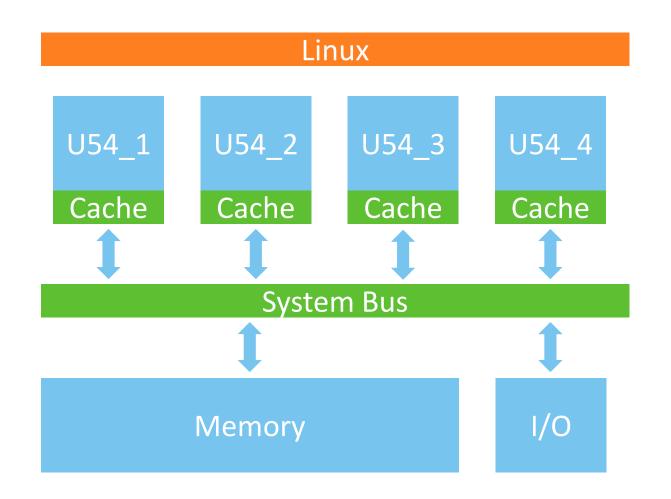
Set affinity with

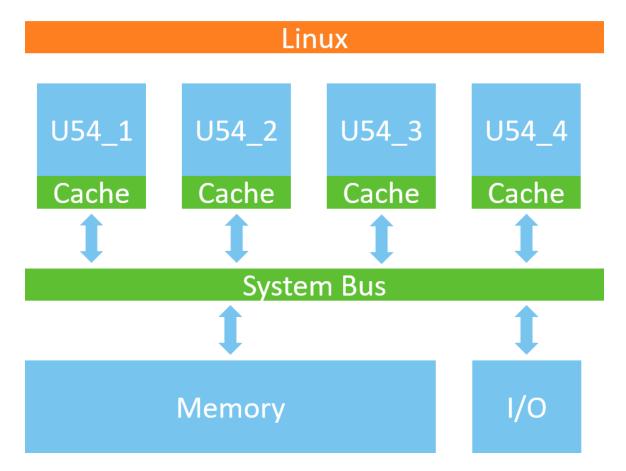
taskset -cp 0,3 9726

• Returns

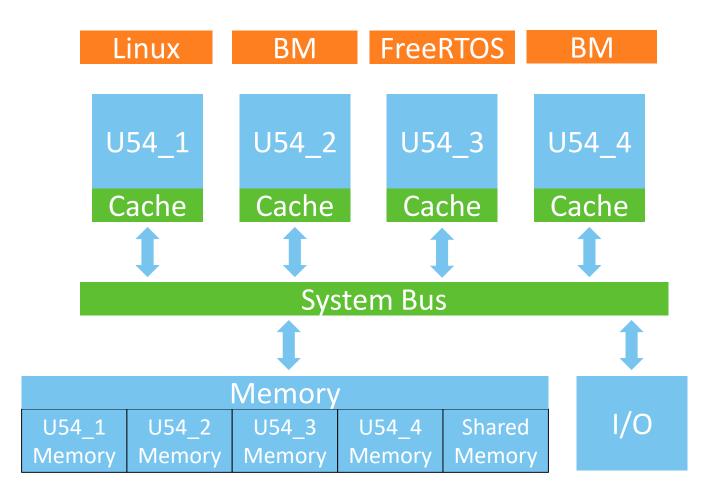

pid 9726's current affinity list: 0,1,2,3 pid 9726's new affinity list: 0,3

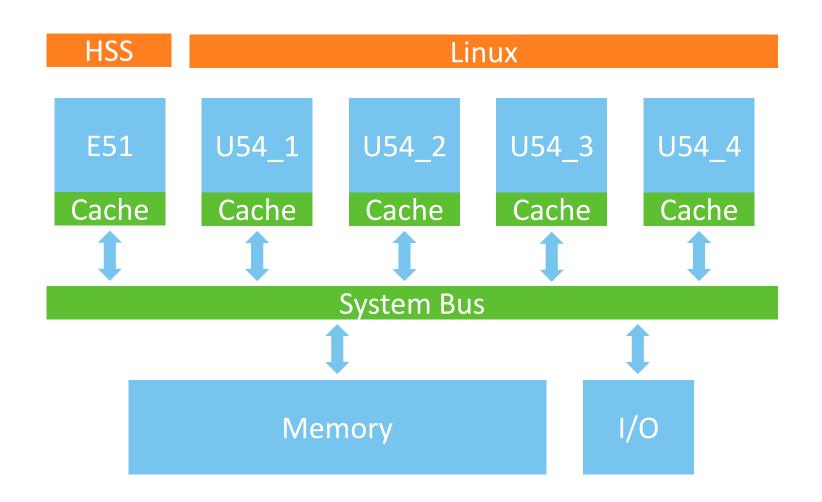
Multiprocessing CPU Affinity


- Launch a process with a certain affinity taskset OxA webserver
- 0xA == 1010 cores 1 and 3

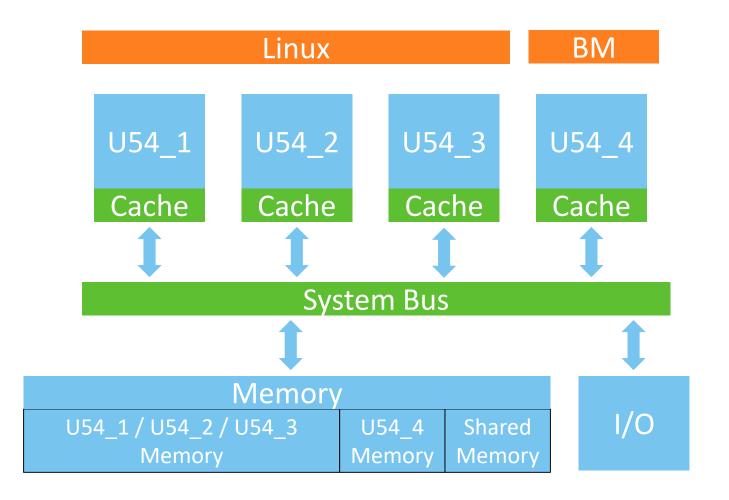


• A single OS with two or more of the same processor

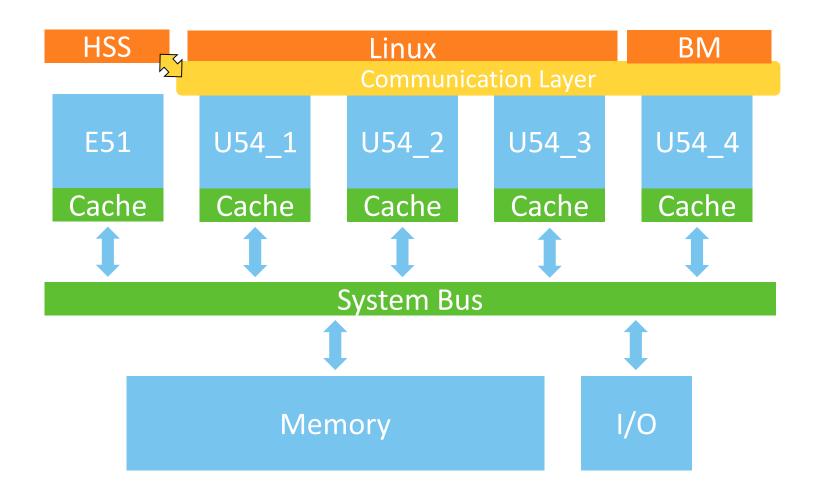

- All processors are treated equally
- Shared memory space
- Tasks can be run on any CPU
- The same task should not be run on 2 CPUs
- If a processor fails, the system stays up



Multiple OS's / bare metal running on separate processors



Multiple OS's / bare metal running on separate processors



Blend SMP system into AMP

Inter processor communication

Configuring Asymmetric Multiprocessing

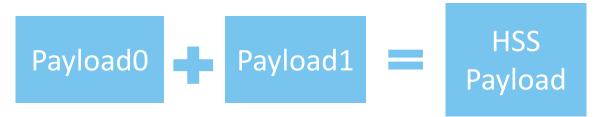
Asymmetric Multiprocessing The HSS

- A superloop monitor running on the E51 processor, which receives requests from the individual U54 application processors to perform certain services on their behalf.
- A Machine-Mode software interrupt trap handler, which allows the E51 to send messages to the U54s and request them to perform certain functions for it related to rebooting a U54.

SSMB – "Secure Software Messaging Bus"

Asymmetric Multiprocessing The HSS: Payloads

 Payloads are created for the system configuration containing the binaries to be run



• See Webinar 13 "Two Bare-Metal Applications on PolarFire SoC"

Asymmetric Multiprocessing The HSS: Payloads

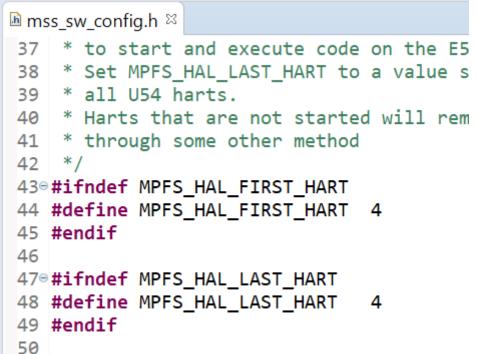
- Payload 0: Linux for harts 1, 2 & 3
- Payload 1: Bare metal for hart 4

Asymmetric Multiprocessing The HSS: Linux payload

• Linux for harts 1, 2 & 3

• Edit the device tree to remove hart 4 and build

P master • polarfire-soc-buildroot-sdk / conf / icicle-kit-es / icicle-kit-es.dts	meta-polarfire-soc-yocto-bsp / recipes-kernel / linux / files / icicle-kit-es / icicle-kit-es / icicle-kit-es-a000-microchip.dts										
ConchuOD dts: update dts from yocto	Ihanlyu Clock Driver remove spaces in names Latest commit 1										
All contributor	A 1 contributor										
325 lines (321 sloc) 10.9 KB Raw Blame	351 lines (346 sloc) 11.7 KB Raw Blame Copy File 11.73 K										
<pre>// { // { #address-cells = <2>; #size-cells = <2>; #size-cells = <2>; compatible = "SiFive,FU540G-dev", "fu540-dev", "sifive-dev"; model = "SiFive,FU540G"; L45: cpus { #address-cells = <1>; #size-cells = <1>; #size-cells = <0>; timebase-frequency = <1000000>; L8: cpu@0 {</pre>	<pre>1 /dts-v1/; 2 / { 3 #address-cells = <2>; 4 #size-cells = <2>; 5 compatible = "SiFive,FU540G-dev", "fu540-dev", "sifive-dev"; 6 model = "SiFive,FU540G"; 7 L45: cpus { 8 #address-cells = <1>; 9 #size-cells = <0>; 10 timebase-frequency = <1000000>; 11 L8: cpu@0 { 12</pre>										

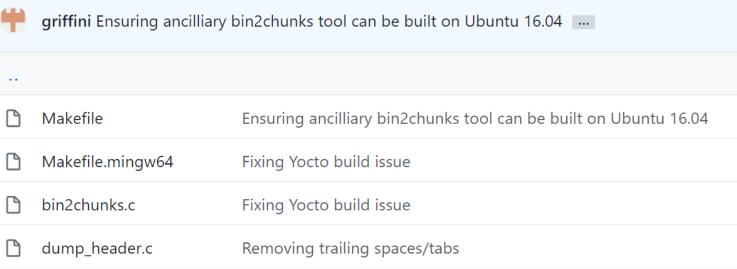


Asymmetric Multiprocessing The HSS: Bare metal payload

- Set the system "MPFS_HAL_FIRST_HART" to 4
- Target the desired memory in the linker script (e.g LIM / DDR)

• Build

Watch webinar 11 "Handling Binaries"



Asymmetric Multiprocessing The HSS: Payloads

- Use the payload generator in the HSS to generate a payload
 - Currently bin2chunks this will be updated

Asymmetric Multiprocessing The HSS: Payloads

- Program the eNVM with the HSS (if not done already)
- Program the target (e.g eMMC / SD)
- Boot
- Voila!

Agenda

- Multiprocessing
- Symmetric Multiprocessing
- Asymmetric Multiprocessing
- Configuring Asymmetric Multiprocessing

Coming Soon! RISC-V® Innovation Unleashed

- New PolarFire SoC webinar series
- Registrations go live from September 16th
- https://www.microchip.com/training/webinars

Webinars Microchip Technology × +										—	ć]	×			
$\leftrightarrow \rightarrow$	CÒ	🗎 microchip.com/training/webinars								☆	8	*	\$:		
Міс я	OCHIP	Products	Applications	Tools and Software	Support and Training	Order Now	About						-]_		Q
Home / Training / Webinars																

Webinars

Design Resources

Discover how to use our ecosystem of hardware tools, software and other resources to simplify and speed up your development.

Development Tools

Security

Learn about the latest trends and new developments for safeguarding your designs.

• SHIELDS UP! Webinar Series

Thank you!

Any questions?

