HB0085
Handbook
CoreABC v3.8

& Microsemi

a A8\ MicrocHIP company

& Microsemi

a G\MICHOCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
Www.microsemi.com

©2020 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

50200085. 12.0 1/20

mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a AS\MicrocHip company

Contents

Revision History 1
1.1 ReVISION 12.0 e 1
1.2 ReVISION 11.0 . ..o e 1
1.3 ReVISION 10.0 e 1
14 ReVISION 9.0 e 1
1.5 ReVISION 8.0 e e e 1
1.6 REVISION 7.0 . .. e e 1
1.7 ReVISION 6.0 e e 1
1.8 ReVISION 5.0 e 1
1.9 ReVISION 4.0 e 1
1.10 ReVISION 3.0 e e 1
1.11 ReVISION 2.0 e e e 2
1.12 ReVISION 1.0 e e 2
Introduction 3
2.1 CoreAB C OVEIVIBW . . oo e 3
22 Supported Device Families e 4
2.3 COrE VIS ION . .o e 4
2.4 Supported INterfaces 4
2.5 Supported ToOl FIOWS e 4
2.6 Utilization and Performance e 5
Functional Description 9
Interface 10
4.1 Overview of Interfaces 10
4.2 Parameters 10
4.3 EN_DATAM Parameter e e 13
4.4 POMS . . e 14
CoreABC Programmers Model 15
5.1 AdAress SPaCESttt 15

511 Internal Data RAM Address Space (optional) 15

51.2 /O AdAresSs SpPaCEot 15

51.3 APB AdAress Spacei i e 16
5.2 Registers . .. 16

5.21 ACCUMUIALOr . . . e e 16

5.2.2 Z Register (Optional) 16

5.2.3 Flags Register—Inputs and Condition Codes 16
53 INStrUCHiON Set e 17

5.31 Constant EXPressions i 22

5.3.2 Conditional Code i e 22
CoreABC Operation 23
6.1 ACM Lookup Table for Use with CoreAl e 23
6.2 SHACK . . 23
6.3 Interrupt Operation e e 23

HB0085 Handbook Revision 12.0 iii

& Microsemi

a AS\MicrocHip company

7 CoreABC Configuration 25
71 Configurable Options o 25
711 Data Bus Width 25

71.2 Number of APB SIots 26

713 APB SIot Size ... 26

714 Maximum Number of Instructions e 26

715 ZRegister Size 26

7.1.6 Number of /O Inputs 26

717 Number of /O Flag Inputs e e 26

71.8 Number of I/O OUtpULS 26

719 StacKk Size ..o 26

7.1.10 Instruction Store 26

7.1.11 Init/Config Address Width 26

7.1.12 Instruction Store APB ACCESSo 27

7.1.13 Use Calibration NVM 27

7.1.14 Internal Data/Stack Memory 27

7.1.15 ALU Operation from Memory 27

7.1.16 APB Indirect ADAressingo 27

7117 Supported Data SoUrCeS 27

7118 Interrupt SUPPOrt . ..o 27

7219 ISR AAAreSS . .o 27

7.1.20 Optional InsStructions e 27

TA21 LICENSE .t 27

7122 Testbench 27

7.1.23 Verbose Simulation LOg i 28

7.2 Cross-Validation of Configuration Fields 28
7.3 NVM Data Width on AFS090 Device o e e e 29
8 CoreABC Programmingt e 30
8.1 ANAlY SIS . . 30
8.2 CoreABC Instruction Modes e 30
8.2.1 Hard Mode 31

8.2.2 Soft Mode 31

8.2.3 NVMMOGE . ..o 36

9 Tool FIoWs . .. o 46
9.1 LiCeNSING . .t 46
9.1.1 Obfuscated e 46

9.1.2 RTL o 46

9.2 SMAM DESIgN . . . o 46
9.3 Simulation FIOWS 46
9.4 Synthesis in Libero IDE 46
9.5 Place-and-Route in Libero IDE e 46
9.6 Design Constraintso 47
9.6.1 Timing Constraints e 47

10 Testbench 48
10.1 Unit Testbencho 48
10.2 System Simulation 48
10.3 Simulation Loggingot 48
11 Example Design Using CoreABC 49
11.1 Create a New Projecto 50
11.2 Create a SmartDesign Design it 51
11.3 Instantiate, Configure, and Connect the Components 51
HB0085 Handbook Revision 12.0 iv

& Microsemi

a A8\ MicrocHiP company

11.4 System Simulation 54
11.5 Simulation of CoreABC Only (unittest) 57
11.6 SYNENESIS . .o o 58
11.7 Place-and-Route 58
12 CoreABC v2.3 Migration Guide i 59
13 Example Instruction Sequence 60
14 Instruction Summary 64
14.1 INStrUCHIONS . . . o 64
1411 NOP 64

14.1.2 LOAD DAT Dataot e e e e e 64

14.1.3 LOAD RAM AdAressSottt e e e e e e e e e 64

1414 INC e 64

14.1.5 AND DAT Dataot 65

14.1.6 AND RAM AdAressot e e 65

1417 OR DAT Data e e e 65

14.1.8 OR RAM AdAresso e e e 65

14.1.9 XOR DAT Datao e e e 65

14.1.10 XOR RAM AdAressttt e e e e e e e e e e e e 66

14111 ADD DAT Data .. .ottt e e e e e 66

14.1.12 ADD RAM Address e e 66

14.1.13 SUB DAT Data ... oot e e 66

T4.1.14 SHLO . .. 66

14115 SHRO . oo 67

14116 SHLA L. 67

14117 SHR 67

14118 SHLE . . .o 67

14.1.19 SHREo e 67

14.1.20 RO L ... 68

141,21 ROR .. e e 68

14.1.22 CMP DAT Dataot e e e 68

14.1.23 CMP RAM AdAreSSottt e e e e e e 68

14.1.24 CMPLEQ DAT Data oo e e e e e e e e 68

14.1.25 BITCLR N .. e 69

14.1.26 BITSET N ..o e e e e 69

14.1.27 BITTST N .o e e e 69

14.1.28 APBREAD SIOt AdAressttt 69

14.1.29 APBWRT ACC SIot AdAresst e e 69

14.1.30 APBWRT ACM Slot Addressottt e e e e e e 70

14.1.31 APBWRT DAT Slot Address Data e e 70

14.1.32 APBWRT DAT8 Slot Address Data e 70

14.1.33 APBWRT DAT16 Slot Address Data i 70

14.1.34 APBREADZ Sloto e 70

14.1.35 APBWRTZ ACC Sloto e e e e e 71

14.1.36 APBWRTZ ACM SIoto e e e e e e e 71

14.1.37 APBWRTZ DAT SlotData e e e e e 71

14.1.38 APBWRTZ DAT8 SlotDatat e e e e e 71

14.1.39 APBWRTZ DAT16 SlotDatao e e e 72

14.1.40 LOADZ DAT Data . ..ot e e e e e e e e 72

141,41 DECZ . .. 72

141,42 INCZ .. 72

14143 ADDZ Data e 72

14.1.44 IOREAD 73

14.1.45 IOWRT DAT Datao e e e e 73

14.1.46 IOWRT ACC . .. e e e e 73

14.1.47 RAMREAD AdAressttt e e e e 73

HB0085 Handbook Revision 12.0 v

14.1.48
14.1.49
14.1.50
14.1.51
14.1.52
14.1.53
14.1.54
14.1.55
14.1.56
14.1.57
14.1.58
14.1.59
14.1.60
14.1.61
14.1.62
14.1.63

& Microsemi

a A8\ MicrocHiP company

RAMWRT Address ACC i e e e 73
RAMWRT Address DAT Data e 74
PO . e 74
PUSH DAT Dataottt e e e s 74
PUSH ACC . .. 74
JUMP AdAressS . .. oo 74
JUMP IF|IFNOT Condition ADdressot 75
CALL AdAress e e e e e e 75
CALL IF|IFNOT Condition Addressttt e e e e e 75
RETURN . 75
RETURN IFJIFNOT Condition e e e 75
RETISR . 76
RETURN IFJIFNOT Condition e e e 76
WAIT UNTIL|WHILE Condition e 76
HALT o 76
Condition CodeSo 77

HB0085 Handbook Revision 12.0 vi

Figures

& Microsemi

a A8\ MicrocHiP company

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40

Typical CoreABC System 3
CoreABC BlocK Diagramo e e e e 9
CoreAPB Data Address SPaces oo u it 15
Flags and Inputs Register 16
Conditional Code e e 22
Configuration Parameters e 25
Error Symbol e 28
CoreABC Configuration Validation e 28
AFS090 Data Width Messaget e 29
CoreABC Programming SCre Nttt it e 30
Init/Config Address Width 32
Initialization Client Configuration 33
CoreABC INStANCE i 33
Modify Initialization Client 34
Flash Memory System Builder Initialization Client 35
Connect Initialization Client's Signal 35
Import Updated Input File e 36
Instruction Store Option 37
ANalYSiS VW . ..o e 38
CoNfigure COre . ..o e 39
Add Data Storageo 39
Configure Data Storage Client 40
Hierarchy Tab in Design EXplorer 40
Block Not Configured Warning i e 41
Modify Block Dialog o 41
Client Content File Has Changed Warning e 42
Configuration Upto Date e 42
Derive Constraints - Timing Constraints 47
CoreABC Verification Testbench 48
Example CoreABC Designo 49
New Project Wizard e 50
Select Family, Die,and Package 50
Name the SmartDesign Component e 51
Program Tab 52
CoreABC DESIgN . ..ot 53
Project Settings — Simulation Time 54
Simulation Settings 55
ModelSim Simulation Showing IO_OUT Waveform 56
Set AS ROOT . ..o e 57
ModelSim Simulation WIindow e 58

HB0085 Handbook Revision 12.0 vii

Tables

& Microsemi

a A8\ MicrocHiP company

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20

CoreABC Utilization Data (Hard Mode—instructions held intiles) 5
CoreABC Utilization Data (Soft Mode—instructions heldin RAM) 6
CoreABC Parameters 10
Accumulator Only (EN_DATAM = 0) . ..ot e e e 13
Immediate Only (EN_DATAM = 1) ... e e 13
Accumulator and Immediate (EN_DATAM =2) e 13
Instruction-Dependent (EN_DATAM = 3)t e e 13
CoreABC Port DesCriptionSot 14
The Boolean and Arithmetic Instruction Group 17
The Boolean and Arithmetic Instruction Group (continued) 18
The Memory Instruction Group it e e 18
The Z Register® Instruction Group 19
The Z Register” Instruction Groupt e e e e 19
The APB INStruction GrouUpt e e e e e e e 20
The /O INStruction Groupot e e e e 20
The Flow Control Instruction Group e e e e 21
Conditions for Flow Control Instruction Group 21
Other INStruCtionNS 21
Address Map of APB Slave Interface, NVM Mode Only 44
Condition COdESot 77

HB0085 Handbook Revision 12.0 viii

Revision History

& Microsemi

a @Mlcno:mn company

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 12.0

Updated changes related to CoreABC v3.8 release.

1.2 Revision 11.0

Updated changes related to CoreABC v3.7 release.

1.3 Revision 10.0

Updated changes related to CoreABC v3.6 release.

1.4 Revision 9.0

Updated changes related to CoreABC v3.5 release.

1.5 Revision 8.0

Updated changes related to CoreABC v3.4 release.

1.6 Revision 7.0

The following is a summary of the changes in revision 7.0 of this document.

* Added "Constant Expressions" and "Conditional Code" section
+ Added Figure 5

1.7 Revision 6.0

Updated changes related to CoreABC v3.3 release.

1.8 Revision 5.0

Updated changes related to CoreABC v3.1 release.

1.9 Revision 4.0

Updated changes related to CoreABC v3.0 release.

1.10 Revision 3.0

The following is a summary of the changes in revision 3.0 of this document.

* The "Supported Device Families" section was added.

* Anote regarding frequency of IGLOO devices was added to Table 1 and Table 2.

* The “Fusion, ProASIC3/E, ProASIC3L, Axcelerator, and RTAX-S Families” section was updated to
include ProASIC3L.

HB0085 Handbook Revision 12.0 1

Revision History

& Microsemi

a A8\ MicrocHiP company

1.11 Revision 2.0

The following is a summary of the changes in revision 2.0 of this document.

» Supported core version updated in "Core Version" section.

» Supported version of Libero IDE updated in “Supported Tool Flows” section.

+ The LOADLOORP register was renamed Z Register. The LOADZ condition flag was renamed
ZZERO.

* Table 1 replaced and Table 2 created.

» "Utilization and Performance" section updated.

» Figure 2 updated.

« EQ1-2 and EQ 1-4 updated.

« Figure 8 updated.

* The "Simulation Flows" section was updated.

. Table 3 updated, with numerous parameter changes, additions, and deletions.

* THe "EN_DATAM Parameter" section was added.

* "Internal Data RAM Address Space (optional)" and "I/O Address Space" sections updated.

* The “Instruction Set” section was replaced.

+ CoreABC Instruction Encoding updated variously.

» "Simulation Logging" section updated.

+ Figure 6 and Figure 8 were updated.

* "Number of I/O Inputs" section added and "Number of I/O Flag Inputs" section modified.

* "ALU Operation from Memory", "APB Indirect Addressing", and "Supported Data Sources" sections
added.

« Figure 10 and Figure 11 were updated.

» "Verification Tests" section updated.

* “Example Instruction Sequence” section modified.

* Many instructions were added or changed in the "Instruction Summary" section.

+ The “Core Version” and "Supported Interfaces" sections are new.

* Values in the Configuration column were updated in Table 1.

* The last paragraph was changed in the "ACM Lookup Table for Use with CoreAl" section.

* The "Automatically Created Memory Image Files" section is new.

* The "Updating the Program and Flash Memory Contents" section is new.

* The "Instruction Summary" section is new.

112 Revision 1.0

Revision 1.0 was the first publication of this document.

HB0085 Handbook Revision 12.0 2

Introduction

& Microsemi

a A8\ MicrocHiP company

2 Introduction

2.1 CoreABC Overview

CoreABC (ABC = APB bus controller) is a simple, configurable, low gate count, programmable state
machine/controller primarily targeted toward the implementation of Advanced Microcontroller Bus
Architecture (AMBA®) Advanced Peripheral Bus (APB) based designs. It is particularly suitable in the
following situations:

* Aprogrammable controller is required but a full featured CPU such as Core8051s or
ARM® Cortex®-M1 is not needed or cannot be justified due to cost or resource/size constraints.

+ Afull featured CPU based system requires a CoreABC based programmable offload
engine/coprocessor subsystem for performance reasons.

* AFusion AFS system using CoreAl or CorePWM, for example, requires programmable control
either as a standalone design or as a Fusion AFS analog offload engine/coprocessor for a larger
CPU based system.

CoreABC supports a comprehensive assembler based configurable instruction set architecture and
extensive and flexible configuration of size and feature options, allowing it to be tuned to meet the
resource constraints and processing power requirements of a wide variety of applications.

CoreABC supports three program storage modes:

* Hard mode: Program image is stored in an internal ROM implemented in FPGA fabric tiles

+ Soft mode: Program image is stored in Microsemi FPGA RAM blocks which are initialized at
runtime from the binary image stored in Fusion AFS NVM or an external flash memory

* NVM mode (Fusion AFS only): Program image stored in and executed directly from Fusion AFS
NVM

CoreABC is available through the Libero® Integrated Design Environment (IDE) IP Catalog, through
which it can be downloaded from a remote web-based repository and installed into the user's local vault,
ready for use. It operates natively within the SmartDesign design entry environment, allowing it to be
easily instantiated, configured, and connected to other IP core instances and generated ready for
simulation, synthesis, etc. CoreABC is an AMBA3 APB master which can connect to and manage any
APB slave peripherals via an AMBA3 APB bus fabric component such as CoreAPB3.

Figure 1 shows a CoreABC based system that can monitor analog inputs, adjust output levels, and report
status via an RS-232 link using CoreUART.

Figure 1+ Typical CoreABC System

CoreAl
Parallell/O Out

CoreABC APB Bus CorePWM

N\

Parallell/O In

CoreUART

HB0085 Handbook Revision 12.0 3

Introduction

2.2

2.3

2.4

2.5

Supported Device Families
PolarFire SoC
PolarFire®
RTG4™
IGLOO®2
IGLOO
IGLOOe
IGLOO PLUS
ProASIC3
ProASIC3E
ProASIC®3L
SmartFusion®2
SmartFusion ™
Fusion
ProASICPLUS®
Axcelerator®
RTAX-S

Core Version
This handbook supports CoreABC v3.8.

Supported Interfaces

& Microsemi

a AS\MicrocHip company

CoreABC has an AMBA3 APB master interface, which is described in the section Interface, page 10.
When configured in NVM mode, an additional AMBA3 APB slave interface is available for accessing the
NVM block used to store instructions within CoreABC. APB access to the instruction NVM block may be
used, for example, to maintain a nonvolatile log of data values in cases where only one NVM block is

available for CoreABC's use.

When configured in soft mode, an initialization and configuration (InitCfg) interface is used for initializing

the RAM blocks used for CoreABC's instruction memory.

Supported Tool Flows

CoreABC requires Libero IDE v8.6 SP1 or later. Additionally, Verilog users MUST use Synplicity® v8.6.1 or

later, which is downloadable from www.synplicity.com.

HB0085 Handbook Revision 12.0

www.synplicity.com

Introduction

& Microsemi

a A8\ MicrocHiP company

2.6 Utilization and Performance

CoreABC utilization varies depending on how it is configured Table 1 below and Table 2 provide typical
utilization data for a range of devices and data widths. The other configuration options for the core are
collectively grouped to give three different CoreABC configurations named small, medium, and large;
these configurations are listed in Table 3. CoreABC can be implemented in several Microsemi FPGA
devices.

Table 1+ CoreABC Utilization Data (Hard Mode—instructions held in tiles)

Data Frequency
Family Width |Config. Comb. Seq. RAM Total Device Utilization |MHz*
Fusion ProASIC®3/E 8 Small 179 46 0 225 AFS600 A3P600 AGL600 1.6% 92
IGLOO™/e
ProASICPLUS 8 Small 195 51 0 246 APA450 2.0% 81
Axcelerator® RTAX-S 8 Small 96 45 0 141 AX250 RTAX250 3.3% 123
Fusion ProASIC3/E 16 Small 238 59 0 297 AFS600 A3P600 AGL600 21% 79
IGLOO/e
ProASICPLUS 16 Small 269 63 0 332 APA450 2.7% 79
Axcelerator RTAX-S 16 Small 127 57 0 184 AX250 RTAX250 4.4% 98
Fusion ProASIC3/E 32 Small 319 74 0 393 AFS600 A3P600 AGL600 2.8% 58
IGLOO/e
ProASICPLUS 32 Small 381 84 0 465 APA450 3.9% 60
Axcelerator RTAX-S 32 Small 192 78 0 270 AX250 RTAX250 6.4% 97
PolarFire 8 Small 61 40 0 101 MPF300TS 0.03% 200
PolarFire 16 Small 83 48 0 131 MPF300TS 0.05% 200
PolarFire 32 Small 120 65 0 185 MPF300TS 0.06% 200
RTG4 8 Small 7 38 0 101 RT4G150 0.08% 100
RTG4 16 Small 93 46 0 139 RT4G150 0.09% 100
RTG4 32 Small 130 63 0 193 RT4G150 0.13% 100
IGLOO2 /SmartFusion2 |8 Small 61 40 0 101 M2S150TS 0.07% 150
IGLOO2/ SmartFusion2 |16 Small 83 48 0 131 M2S150TS 0.09% 150
IGLOO2/ SmartFusion2 |32 Small 120 65 0 185 M2S150TS 0.12% 150
Fusion ProASIC3/E 8 Medium 363 76 1 439 AFS600 A3P600 AGL600 3.2% 55
IGLOO/e
ProASICPLUS 8 Medium 439 88 1 527 APA450 4.3% 41
Axcelerator RTAX-S 8 Medium 229 76 1 305 AX250 RTAX250 7.2% 86
Fusion ProASIC3/E 16 Medium 558 88 1 646 AFS600 A3P600 AGL600 4.7% 41
IGLOO/e
ProASICPLUS 16 Medium 630 95 2 725 APA450 5.9% 32
Axcelerator RTAX-S 16 Medium 307 92 1 399 AX250 RTAX250 9.4% 73
Fusion ProASIC3/E 32 Medium 896 104 2 1,000 AFS600 A3P600 AGL600 7.2% 37
IGLOO/e
ProASICPLUS 32 Medium 947 112 4 1,059 APA450 8.6% 28
Axcelerator RTAX-S 32 Medium 442 108 2 550 AX250 RTAX250 13.0% 64
PolarFire 8 Medium 578 148 2 726 MPF300TS 0.24% 130

HB0085 Handbook Revision 12.0 5

Introduction

& Microsemi

a A8\ MicrocHiP company

Table 1+ CoreABC Utilization Data (Hard Mode—instructions held in tiles)

PolarFire 16 Medium 770 234 4 1,004 MPF300TS 0.34% 130
PolarFire 32 Medium 1,208 394 8 1,602 MPF300TS 0.53% 120
IGLOO2/ SmartFusion2 |8 Medium 471 146 2 617 M2S150TS 0.42% 125
IGLOO2/ SmartFusion2 |16 Medium 685 232 4 917 M2S150TS 0.63% 125
IGLOO2/ SmartFusion2 |32 Medium 1,429 396 8 1825 M2S150TS 1.25% 100
RTG4 8 Medium 492 144 2 636 RT4G150 0.41% 88
RTG4 16 Medium 652 227 4 879 RT4G150 0.58% 84
RTG4 32 Medium 785 171 2 956 RT4G150 0.63% 74
Fusion ProASIC3/E 8 Large 474 82 1 556 AFS600 A3P600 AGL600 4.0% 42
IGLOO/e

ProASICPLUS 8 Large 565 94 1 659 APA450 5.4% 38
Axcelerator RTAX-S 8 Large 291 86 1 377 AX250 RTAX250 8.9% 71
Fusion ProASIC3/E 16 Large 648 94 1 742 AFS600 A3P600 AGL600 5.4% 27
IGLOO/e

ProASICPLUS 16 Large 763 105 2 868 APA450 71% 24
Axcelerator RTAX-S 16 Large 399 98 1 497 AX250 RTAX250 11.8% 69
Fusion ProASIC3/E 32 Large 1,014 111 2 1,125 AFS600 A3P600 AGL600 8.1% 34
IGLOO/e

ProASICPLUS 32 Large 1,082 126 4 1,208 APA450 9.8% 18
Axcelerator RTAX-S 32 Large 586 119 2 705 AX250 RTAX250 16.7% 53
PolarFire 8 Large 692 227 4 919 MPF300TS 0.31% 130
PolarFire 16 Large 710 229 4 939 MPF300TS 0.32% 130
PolarFire 32 Large 1,427 397 8 1824 MPF300TS 0.61% 110
SmartFusion2/ IGLOO2 |8 Large 532 220 4 752 M2S150TS 0.51% 125
SmartFusion2/ IGLOO2 |16 Large 641 230 4 871 M2S150TS 0.6% 125
SmartFusion2 32 Large 1,400 395 8 1795 M2S150TS 1.23% 105
RTG4 8 Large 482 146 2 628 RT4G150 0.42% 88
RTG4 16 Large 692 227 4 919 RT4G150 0.61% 81
RTG4 32 Large 1,138 173 2 1311 RT4G150 0.86% 64

Note: The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run significantly slower than the speed
listed in the table.

Table 2 » CoreABC Utilization Data (Soft Mode—instructions held in RAM)

Family Data |Config.|Comb.|Seq.|RAM | Total Device Utilization | Frequency
Width MHz*

Fusion ProASIC3/E 8 Small | 126 | 27 | 3 | 153 AFS600 A3P600 1.1% 68

IGLOO/e AGL600

ProASICPLUS 8 Small | 137 | 30 | 6 | 167 APA450 1.4% 53

HB0085 Handbook Revision 12.0 6

Introduction

& Microsemi

a A8\ MicrocHiP company

Table 2 » CoreABC Utilization Data (Soft Mode—instructions held in RAM)

Axcelerator RTAX-S 8 Small 61 27 3 88 AX250 RTAX250 2.1% 95
Fusion ProASIC3/E 16 Small 179 | 36 4 | 215 AFS600 A3P600 1.6% 67
IGLOO/e AGL600

ProASICPLUS 16 Small | 213 | 41 8 | 254 APA450 2.1% 50
Axcelerator RTAX-S 16 Small 94 35| 4 129 AX250 RTAX250 3.1% 84
Fusion ProASIC3/E 32 Small | 353 | 53 5 | 406 AFS600 A3P600 2.9% 46
IGLOO/e AGL600

ProASICPLUS 32 Small | 359 | 58 | 10 | 417 APA450 3.4% 42
Axcelerator RTAX-S 32 Small 155 | 52 5 207 AX250 RTAX250 4.9% 65
Fusion ProASIC3/E 8 Medium| 326 | 56 4 | 382 AFS600 A3P600 2.8% 46
IGLOO/e AGL600

ProASICPLUS 8 Medium| 409 | 59 7 | 468 APA450 3.8% 34
Axcelerator RTAX-S 8 Medium| 210 | 55 4 265 AX250 RTAX250 6.3% 59
Fusion ProASIC3/E 16 Medium| 548 | 64 5 | 612 AFS600 A3P600 4.4% 40
IGLOO/e AGL600

ProASICPLUS 16 Medium| 659 | 73 | 10 | 732 APA450 6.0% 28
Axcelerator RTAX-S 16 Medium | 271 64 5 335 AX250 RTAX250 7.9% 58
Fusion ProASIC3/E 32 Medium | 851 80 8 | 931 AFS600 A3P600 6.7% 32
IGLOO/e AGL600

ProASICPLUS 32 Medium| 892 | 96 | 16 | 988 APA450 8.0% 26
Axcelerator RTAX-S 32 Medium| 399 | 80 8 | 479 AX250 RTAX250 11.3% 50
Fusion ProASIC3/E 8 Large | 462 | 62 5 | 524 AFS600 A3P600 3.8% 40
IGLOO/e AGL600

ProASICPLUS 8 Large | 534 | 67 9 | 601 APA450 4.9% 31
Axcelerator RTAX-S 8 Large | 282 | 61 5 | 343 AX250 RTAX250 8.1% 63
Fusion ProASIC3/E 16 Large | 626 | 71 6 | 697 AFS600 A3P600 5.0% 25
IGLOO/e AGL600

ProASICPLUS 16 Large | 732 | 83 | 12 | 815 APA450 6.6% 21
Axcelerator RTAX-S 16 Large | 380 | 70 6 | 450 AX250 RTAX250 10.7% 56

HB0085 Handbook Revision 12.0

Introduction Q Mic em’.

a A8\ MicrocHiP company

Table 2 » CoreABC Utilization Data (Soft Mode—instructions held in RAM)

Fusion ProASIC3/E 32 Large | 1,053 | 86 8 (1,139 AFS600 A3P600 8.2% 34
IGLOO/e AGL600

ProASICPLUS 32 Large | 1,228 | 106 | 16 [1,334 APA450 10.9% 27
Axcelerator RTAX-S 32 Large | 579 | 85 8

664 AX250 RTAX250 15.7% 46

Note: *The frequency given in the table does not apply to the IGLOO devices. IGLOO family devices will run
significantly slower than the speed listed in the table.

HB0085 Handbook Revision 12.0

Functional Description

& Microsemi

a A8\ MicrocHiP company

3 Functional Description

CoreABC internal architecture is shown in Figure 2, page 9. The core consists of six main blocks:

* Instruction block

+ Sequencer

« ALU and Flags

+ Storage

* Analog configuration MUX (ACM)
« APB controller

Figure 2+ CoreABC Block Diagram

APB Slave Interface(NVM mode only)
A

Address
Data
Address RAM
APBAccess ul Register
Bankand [
Operation Stack
| T >
) Storage
Next Instruction . .
Address Address _\rnastt)[:ct\on — \Rn:tg t;tr\on 1 ALU
Address >Register g
|+ _,:O— MuLT ACM
Instruction Block - Lookup |
Table
O
ot
ACM
5
Data 2
L O—or :
I ZRegister Command g
])— ADD &
! B E
O g
Control State Machine
> L s
Sequencer
4 il LOAD e | Datacut |
Dat:
Interrupt /
Parallel1/0 In Data in
Parallel1/0 Out ~g——— ALU and Flags
Data

Address

Address

7

APB Interface
State Machine
>

APB Controller

Y
APB Masterinterface

The Instruction block contains the instruction counter and the instruction table that contains the
instructions to be executed. In soft mode, these instructions are fetched from RAM internal to CoreABC.

The ALU and Flags block implements the main ALU block. Each of the supported operations can be
disabled to obtain a minimal-gate-count solution. The Storage block provides local storage for data
values and implements the stack required by the call instruction.

The ACM block implements a small lookup table that can be initialized with the configuration data
required by CoreAl. This allows the analog functions within a Fusion AFS FPGA to be easily configured.

HB0085 Handbook Revision 12.0 9

Interface

4

& Microsemi

a A8\ MicrocHiP company

Interface

4.1

Note:

4.2

Overview of Interfaces

CoreABC has an AMBA3 APB master interface which typically will be connected to CoreAPB3. When in
NVM mode (INSMODE parameter set to 2), an additional AMBAS3 APB slave interface is available for
data type access to the (NVM) instruction store.

When CoreABC is mastering CoreAPB3, the APB Slot Size configuration option settings should match for
both of these cores.

In soft mode (INSMODE parameter set to 1), an initialization and configuration (InitCfg) interface is
available for initializing the RAM blocks used as CoreABC's instruction store. This interface is intended to
be used to connect to a Flash Memory System Builder (FMSB) RAM Initialization client. The use of
FMSB clients is supported only on Fusion AFS devices. On other device families, a different means must
be employed to initialize the instruction RAM blocks through the InitCfg interface. This could involve
implementing some logic to allow another processor in the system to communicate with the InitCfg
interface.

In addition to the interfaces already mentioned, CoreABC has clock, reset, and interrupt related signals
as well as general purpose parallel input and output buses. The widths of these input and output buses
are configurable.

Parameters

The parameters described are those directly in the RTL. When working with CoreABC in the
SmartDesign tool, a configuration GUI is available for setting these parameters. The recommended
configuration flow is to use the configuration GUI in SmartDesign, which will then set these parameters
correctly. Importantly, when using the configuration GUI, the parameter settings will be cross checked
with the CoreABC program (which is entered in another tab of the configuration GUI). The configuration
GUI will indicate any inconsistencies between the program and the parameter settings. For more
information about configuring GUI, refer section “CoreABC Configuration, page 25".

Table 3 » CoreABC Parameters
Value
Parameter Values Description Small Medium |Large
APB_AWIDTH |81to 16 Sets the width of the APB address bus. 8 8 8
APB_DWIDTH |8, 16, or 32|Sets the width of the APB data bus. 8,16,32 |8, 16,328, 16, 32
APB_SDEPTH |1to 16 Sets the number of supported APB devices. 1 4 16
ICWIDTH 1t0 16 Sets the maximum number of supported instructions. |5 8 8
Number of allowed instructions is 2'°WIPTH,
ICWIDTH must be < APB_AWIDTH.
ZRWIDTH Oto16 Sets the width of the Z register. A setting of 8 would |0 8 8
allow for a maximum value of 28 (i.e., 256). Zero will
disable and remove the Z register.
IIWIDTH 11032 Sets the width of the IO_IN input. IIWIDTH must be < |1 4 4
APB_DWIDTH.
IFWIDTH 11028 Sets how many of the I0_IN bits can be used with
the conditional instructions. IFWIDTH must be <
APB_DWIDTH — 4.

HB0085 Handbook Revision 12.0 10

Interface

& Microsemi

a A8\ MicrocHiP company

Value

Parameter Values |Description Small |Medium |Large
IOWIDTH 1 to 32 | Sets the width of the IO_OUT output. IOWIDTH must be < APB_DWIDTH. 1 8 8
STWIDTH 1to 8 |Sets the size of the internal stack counter used to support the call instruction and |1 4 4

interrupt function. The depth of the stack is 25TWIPTH,
EN_RAM 0or1 |When 1, a RAM block is used in the core to provide 256 storage locations. This |0 1 1

RAM is also used to store return addresses for the call and interrupt functions.
EN_RAM_ECC |0or1 |When 1, enables ECC support for the RAM blocks. When 0, disables ECC

support for the RAM blocks. EN_RAM_ECC parameter is valid only when

parameter EN_RAM is set to 1. EN_RAM_ECC parameter is valid only for

RTG4, PolarFire, and PolarFire SoC device families.
EN_AND 0or1 |When 1, the ALU supports the AND function. 1 1 1
EN_XOR 0or1 |When 1, the ALU supports the XOR function. 1 1 1
EN_OR 0or1 |When 1, the ALU supports the OR function. 0 1 1
EN_ADD 0or1 |When 1, the ALU supports the ADD function. 0 1 1
EN_INC 0or1 |When 1, the ALU supports the INC function. 0 1 1
EN_SHL 0or1 |When 1, the ALU supports the SHL/ROL function. 0 1 1
EN_SHR 0or1 |When 1, the ALU supports the SHR/ROR function. 0 1 1
EN_CALL 0or1 |When 1, the core supports the call and return operations. 0 1 1
EN_PUSH 0or1 |When 1, the core supports the push and pop operations. 0 1 1
EN_ACM 0or1 |When 1, enables the ACM initialization table. 0 1 1
EN_DATAM 0to 3 |Controls internal multiplexing; see EN_DATAM Parameter, page 13 1 1 1
EN_INT 0to2 |Enables the external interrupt function. When 0, interrupts are disabled. When |0 1 1

1, INTREQ is active high. When 2, INTREQ is active low.
EN_MULT 0to 3 |[Enables the hardware multiplier; four options exist (example for 16-bit core): 0 0 0

0: No hardware multiplier

1: Half multiplier, P(15:0) <= A(7:0) * B(7:0)

2: Full multiplier returning lower half, P(15:0) <= A(15:0) * B(15:0)

3: Full multiplier returning upper half, P(31:16) <= A(15:0) * B(15:0)
EN_IOREAD 0or1 |When 1, the IOREAD instruction is enabled. 0 1 1
EN_IOWRT 0or1 [When 1, the IOWRT instruction is enabled. 1 1 1
EN_ALURAM 0or1 |When 1, the Boolean and Arithmetic instructions can operate on memory 0 1 1

contents.
EN_INDIRECT |0or1 |When 1, the Z register can be used to generate the APB address, and the 0 0 1

APBWRTZ and APBREADZ instructions are enabled.
ISRADDR 0to The address CoreABC should jump to when responding to an interrupt request. |0 220 220

65,535
HB0085 Handbook Revision 12.0 11

Interface

& Microsemi

a A8\ MicrocHiP company

Parameter

Values

Description

Value

Small

Medium

Large

INSMODE

0to 2

\When 0, the instructions are contained in internal logic
gates, implementing a ROM function. When 1, internal
RAM blocks are used to hold the instruction
sequence. When 2, internal NVM is used to hold the
instruction sequence. INSMODE = 2 is supported only
on Fusion AFS devices.

0

0

ACT_CALIBRATIONDATA

0or1

When 1, the NVM block containing the calibration data
for the device is selected if INSMODE = 2. When 0,
any available NVM block may be used. This option is
only applicable when

INSMODE = 2, which implies that a Fusion AFS
device is being used.

N/A

N/A

N/A

IMEM_APB_ACCESS

0to2

When 0, APB access to instruction memory is not
supported. When 1, read only APB access to
instruction memory is possible. When 2, read and
write APB access to instruction memory is supported.

N/A

N/A

N/A

INITWIDTH

11016

Specifies the width of the INITADDR input used to
initialize the instruction RAM blocks when INSMODE
= 1. The actual width depends on several generic
\values. Utilities used to support soft operation
calculate this value.

16

DEBUG

0or1

When 1 during simulation, a detailed log will be
generated of the internal operation.

N/A

N/A

N/A

TESTMODE

0to 16

Selects a predefined set of instructions used for core
verification. This should be set to 0 unless the
verification test sequences are being used.

N/A

N/A

N/A

UNIQ_STRING_LENGTH

to 256

This parameter gives the length (number of
characters) of the unique string which is derived from
the instance name of a particular CoreABC instance.
IThis parameter forms part of the mechanism which
allows multiple instances of CoreABC to be easily
used in a single design.

N/A

N/A

N/A

MAX_NVMDWIDTH

16 or 32

Indicates the maximum bit width supported on
the data buses connecting to any NVM macro within
CoreABC. This parameter is only applicable when
CoreABC is configured to operate in NVM mode which
is only possible for a Fusion AFS device. This
parameter is not directly controllable from the
configuration GUI but is instead automatically set to
match the target device. A setting of 16 is applied
when an AFS090 device is targeted. For all other
devices the parameter is set to 32.

N/A

N/A

N/A

HB0085 Handbook Revision 12.0

12

Interface

& Microsemi

a A8\ MicrocHiP company

4.3 EN_DATAM Parameter

This allows various internal multiplexers to be optimized out of the core, lowering tile counts. The settings
supported are given in Table 4 through Table 7, and the tables show which instructions are allowed with
each setting.

Table 4+ Accumulator Only (EN_DATAM = 0)

Immediate Data Accumulator
APBWRT No Yes + ACM
RAMWRT No Yes
PUSH No Yes
LOADZz No Yes
IOWRT No Yes

Table 5 « Immediate Only (EN_DATAM = 1)

Immediate Data Accumulator
APBWRT Yes No
RAMWRT Yes No
PUSH Yes No
LOADZ Yes No
IOWRT Yes No

Table 6 * Accumulator and Immediate (EN_DATAM = 2)

Immediate Data Accumulator
APBWRT Yes Yes + ACM
RAMWRT Yes Yes
LOADZ Yes Yes
PUSH Yes Yes
IOWRT Yes Yes

Table 7 Instruction-Dependent (EN_DATAM = 3)

Immediate Data Accumulator
APBWRT No Yes + ACM
RAMWRT No Yes
PUSH No Yes
LOADz Yes No
IOWRT Yes No

HB0085 Handbook Revision 12.0 13

Interface

4.4

Ports

& Microsemi

a A8\ MicrocHiP company

All CoreABC inputs are sampled, and outputs clocked, on the rising edge of PCLK.

Table 8 « CoreABC Port Descriptions

Name Typ|Description

PCLK In |Clock input.

NSYSRESET |In [Resetinput (asynchronous active low).

PRESETN Out |Reset output; synchronized version of NSYSRESET.
PENABLE_M |Out|APB master interface enable signal.

PWRITE_M Out |APB master interface write signal.

PSEL_M Out |APB master interface select signal.

PADDR_M[19:0]

Out

APB master interface address bus. The width of this address bus is fixed at 20 bits but some
of the upper bits may not be significant, depending on the configuration of the core. The
number of significant bits is determined by the APB_AWIDTH and the APB_SDEPTH
parameters. Number of significant bits = APB_AWIDTH + log base 2 (APB_SDEPTH).

PWDATA_M[x:0]

APB master interface write data bus. The width is controlled by APB_DWIDTH.

PRDATA_MI[x:0] |In |APB master interface read data bus. The width is controlled by APB_DWIDTH.

PREADY_M In |APB master interface ready input.

PSLVERR_M In |APB master interface slave error signal. This input currently is not used by CoreABC.

10_IN[x:0] In |General-purpose inputs. The width is controlled by IIWIDTH.

10_OUT[x:0] Out |General-purpose outputs. The width is controlled by IOWIDTH.

INTREQ In |Interrupt request input. When this input is asserted, the instruction sequence will jump to the
address set by the ISRADDR parameter.

INTACT Out |Indicates that the core has entered the interrupt service routine.

INITDATVAL In |Enable signal (active high) indicating that the INITADDR and INITDATA inputs are valid.
When using a SmartGen initialization client, this signal connects to the client select signal.

INITDONE In |Indicates that initialization has been completed (active high) and the core should start
operating.

INITADDR[x:0] |[In [Connects to the INITADDR output of the INITCFG block used to configure the RAM blocks
when INSMODE = 1. When INSMODE = 0, these inputs should be tied to logic 0. The width
of this input is controlled by the INITWIDTH generic.

INITDATA[8:0] |In |Connects to the INITDATA output of the INITCFG block, used to configure the RAM blocks
when INSMODE = 1. When INSMODE = 0, these inputs should be tied to logic 0.

PSEL_S In |Select signal of APB slave interface used to access instruction memory in NVM mode.

PENABLE_S In |Enable signal of APB slave interface used to access instruction memory in NVM mode.

PWRITE_S In | Write signal of APB slave interface used to access instruction memory in NVM mode.

PADDR_S[x:0] |In |Address bus of APB slave interface used to access instruction memory in NVM mode. Width
is determined by APB_AWIDTH.

PWDATA_S[x:0] |In |Write data bus of APB slave interface used to access instruction memory in NVM mode.
Width is determined by APB_DWIDTH.

PRDATA_S[x:0] |Out|Read data bus of APB slave interface used to access instruction memory in NVM mode.
Width is determined by APB_DWIDTH.

PSLVERR_S Out |Error signal of APB slave interface used to access instruction memory in NVM mode.

PREADY_S Out |Ready signal of APB slave interface used to access instruction memory in NVM mode.

HB0085 Handbook Revision 12.0

14

CoreABC Programmer’s Model

5

& Microsemi

a AS\MicrocHip company

CoreABC Programmer’s Model

5.1

Figure 3 »

5.1.1

5.1.2

CoreABC is an accumulator based load/store architecture with multiple independent memory spaces. It
is effectively a Harvard architecture (independent instruction and data address spaces). Most instructions
act only on the accumulator, but there are specific instructions to access the memory spaces described

below.

Address Spaces

The instruction address space is linear and is implemented as a hard-coded instruction table (hard
mode), or an internal instruction RAM (soft mode), or an internal NVM block (NVM mode). This is
implicitly accessed by control transfer instructions such as JUMP and CALL, but it cannot be directly read
or written otherwise, except in the case where APB read/write data type access to instruction memory is
enabled in NVM mode. In NVM mode, if APB data type read/write access to the instruction memory is
enabled, it is possible to modify or overwrite CoreABC's program. Normally you will not want to do this
and you must take care to ensure that the CoreABC program does not unintentionally corrupt itself. In
practice this usually just means setting the SECTOR, PAGE, and SPARE_PAGE registers in the APB
interface to NVM instruction memory to sufficiently high values. That is, read and write data type
accesses to the NVM instruction memory should normally be to a region of the NVM above the program
which is located from address 0x0000 onwards. For more information, refer to section "APB Access to
Instruction Memory, page 43" .

The data address spaces are shown in Figure 3. There are three separate, independent addressable
areas. These are accessed by using instructions or instruction modes unique to each one.

CoreAPB Data Address Spaces
RAM 1/0 APB

OXFF /0 - IN

Slot n

I/O-0UT

Slot 0

0x00

Internal Data RAM Address Space (optional)

This is an optional internal 256-location RAM storage area. It can be accessed directly using the
RAMREAD and RAMWRT instructions, and implicitly using the PUSH and POP instructions (the stack, if
one is present, is located at the top of RAM). The ALU instructions can also source the secondary
operand from the RAM storage area. The width of each RAM location is equal to the data width of the
processor (APB_DWIDTH) or the width of the instruction counter (ICWIDTH), whichever is greater.

/O Address Space

This is a general-purpose input/output area that is accessed by IOREAD (to load the accumulator from
the input) or IOWRT (to write the accumulator to the output) and the INPUTn test instructions (to read the
inputs—for example, JUMP IF INPUT3).

HB0085 Handbook Revision 12.0 15

CoreABC Programmer’s Model

& Microsemi

a AS\MicrocHip company

5.1.3 APB Address Space

The APB master interface of CoreABC typically will be connected to CoreAPB3 to provide access to up to
16 peripherals. If CoreABC is connected to CoreAPB3, the settings for the APB Slot Size configuration
options of these cores must match. For example, if CoreABC is configured for a slot size of 256 locations,
CoreAPB3 must also have its slot size set to 256 locations. APB peripherals are accessed by APBWRT
(to write to an APB peripheral) and APBREAD (to read from an APB peripheral). Both the slot number
and the address within the slot must be specified in these instructions.

5.2 Registers

5.21 Accumulator
The accumulator (ACC) holds the result of data operations and is APB_DWIDTH (8, 16, or 32) bits wide.

5.2.2 ZRegister (Optional)

The optional Z register (Z) is a general purpose register which may be used, for example, as a loop
counter. The Z register is used to provide the address to the APB space when the APBREADZ and
APBWRTZ instructions are executed. When present, the Z register is ZRWIDTH (1 to 16) bits wide.

5.2.3 Flags Register—Inputs and Condition Codes

CoreABC maintains a control register that is used in the conditional instructions; for example, JUMP and
CALL. This register cannot be read or used directly; instead, each named field can be used to control
particular instructions. The Flags register has two sections, as shown in Figure 4.

Figure 4+ Flags and Inputs Register

Z Register Acc Acc
INPUTO Zero Neg Zero

INPUTN

A
\ 4

There are three condition code type flags:

+ ZERO: Accumulator zero
+ NEGATIVE: Accumulator negative
* ZZERO: Register zero

There are n INPUTS (n <28), INPUTO ... INPUTn, which are directly mapped to the general purpose
inputs connected to CoreABC's I0_IN[n:0] port. The number of these is configurable up to the lower of 28
or APB_DWIDTH - 4, where APB_DWIDTH is the width specified for the external APB data bus.

From these basic fields, other conditions are constructed and made available in the instruction set.

HB0085 Handbook Revision 12.0 16

CoreABC Programmer’s Model

& Microsemi

a A8\ MicrocHiP company

5.3 Instruction Set

Table 9 through Table 18 list the supported instructions. On the right hand side of these tables there are
columns entitled Flags and Cycles. The Flags column contains two sub-columns, Acc. Zero and Acc.
Neg., and the entries under these columns are either Yes or No. "Yes" indicates that the relevant flag,
accumulator zero (Acc. Zero) or accumulator negative (Acc. Neg.), is affected by the instruction named in
that row of the table. Similarly, a "No" entry indicates that the flag is not affected by the instruction. The
entries in the Cycles column give the number of (PCLK) clock cycles required for each instruction.

Table 9 « The Boolean and Arithmetic Instruction Group

Flags
Instructiont, 2 Description Acc.Zero |Acc. Neg. |Cycles
LOAD DAT Data Load accumulator with value. Yes Yes 3
LOAD RAM Address Load accumulator with value. Yes Yes 3
AND DAT Data Bitwise AND accumulator with immediate data. Yes Yes 3
AND RAM Address Bitwise AND accumulator with RAM location. Yes Yes 3
OR DAT Data Bitwise OR accumulator with immediate data. Yes Yes 3
OR RAM Address Bitwise OR accumulator with RAM location. Yes Yes 3
XOR DAT Data Bitwise XOR accumulator with immediate data. Yes Yes 3
XOR RAM Address Bitwise XOR accumulator with RAM location. Yes Yes 3
INC Increment accumulator. Yes Yes 3
DEC Decrement accumulator. Yes Yes 3
ADD DAT Data Add immediate data to accumulator. Yes Yes 3
ADD RAM Address Add RAM location to accumulator. Yes Yes 3
SUB DAT Data Subtract immediate data from accumulator. SUB RAM |Yes Yes 3
is not supported.
MULT DAT Data Multiply accumulator by immediate data. Yes Yes 3
Core parameters determine multiplier return value.
MULT RAM Address Multiply accumulator by RAM location. Yes Yes 3
Core parameters determine multiplier return value.
CMP DAT Data Compare accumulator to immediate data. Yes Yes 3
ZERO set if equal; NEGATIVE set if MSBs differ.
CMP RAM Address Compare accumulator to RAM location. Yes Yes 3
ZERO set if equal; NEGATIVE set if MSBs differ.
CMPLEQ DAT Data Compare accumulator to immediate data. Yes Yes 3
ZERO set if equal; NEGATIVE set if ACC < Data.
CMPLEQ RAM is not supported.
SHLO Shift accumulator left and infill with 0. Yes Yes 3

Note:

—

For most instructions, when using the configuration GUI, the DAT keyword can be omitted.

2. DAT may be replaced with DAT8 or DAT16 when only lower 8 or 16 data bits contain valid data. Using
DATB8/DAT16 will reduce tile counts when instructions are held in logic tiles (that is, when the core is
configured to operate in hard mode).

HB0085 Handbook Revision 12.0 17

CoreABC Programmer’s Model

& Microsemi

a A8\ MicrocHiP company

Table 10 « The Boolean and Arithmetic Instruction Group (continued)

Flags
Instructiont, 2 Description Acc.Zero |Acc.Neg. |Cycles
SHRO Shift accumulator right and infill with 0. Yes Yes 3
SHLA1 Shift accumulator left and infill with 1. Yes Yes 3
SHR1 Shift accumulator right and infill with 1. Yes Yes 3
SHLE Shift accumulator left and infill with LSB. Yes Yes 3
SHRE Shift accumulator right and infill with MSB. Yes Yes 3
ROL Rotate accumulator left. Yes Yes 3
ROR Rotate accumulator right. Yes Yes 3
BITCLR Data Clear one bit in accumulator specified by argument Yes Yes 3
(AND). In this case, the data value specifies the bit
BITSET Data Set one bit in accumulator specified by argument (OR). | Yes Yes 3
In this case, the data value specifies the bit position.
BITTST Data Test one bit in accumulator. ZERO set if all requested |Yes Yes 3
bits are clear. In this case, the data value specifies the
bit position.

Note:

—_

For most instructions, when using the configuration GUI, the DAT keyword can be omitted.

2. DAT may be replaced with DAT8 or DAT16 when only lower 8 or 16 data bits contain valid data. Using
DAT8/DAT16 will reduce tile counts when instructions are held in logic tiles (that is, when the core is
configured to operate in hard mode).

Table 11+ The Memory Instruction Group

Flags
Instruction Description Acc. Zero |Acc.Neg. |Cycles
PUSH Push the accumulator onto the stack. No No 3
PUSHACC Push the accumulator onto the stack. No No 3
PUSH DAT Data Push immediate data onto stack. No No 3
POP Pop data from the stack to the accumulator |Yes Yes 3
and update the flags.
RAMWRT Address ACC Write accumulator to RAM address. No No 3
RAMWRT Address DAT Data Write immediate data to RAM address. No No 3
RAMREAD Address Read data from RAM address to the Yes Yes 3
accumulator and update the flags.

HB0085 Handbook Revision 12.0 18

CoreABC Programmer’s Model

Table 12+ The Z Register* Instruction Group

& Microsemi

a A8\ MicrocHiP company

Flags
Instruction Description Acc.Zero |Acc.Neg. |Cycles
LOADZ ACC Load Z with accumulator. No No 3
LOADZ DAT Data Load Z with immediate value. No No 3
Note: *The Z register is intended to be used as loop counter or APB address register.
Table 13+ The Z Register* Instruction Group
Flags
Instruction Description Acc.Zero |Acc.Neg. |Cycles
ADDZ ACC Add accumulator to Z and store in Z. Only ZZERO flag |No No 3
is affected.
ADDZ DAT Data Add immediate data to Z and store in Z. Only ZZERO |No No 3
flag is affected.
SUBZ DAT Data Subtract immediate data from Z and store in Z. Only |No No 3
ZZERO flag is affected
SUBZ ACC is not supported.
INCZ Increment Z. Only ZZERO flag is affected. No No 3
DECZ Decrement Z. Only ZZERO flag is affected. No No 3

Note: *The Z register is intended to be used as loop counter or APB address register.

HB0085 Handbook Revision 12.0

19

CoreABC Programmer’s Model

& Microsemi

a A8\ MicrocHiP company

Table 14« The APB Instruction Group

Flags
Instruction Description Acc.Zero |Acc.Neg. |[Cycles
APBREAD Slot Address Read from APB. No No 5
APBWRT ACC Slot Address Write accumulator to APB at chosen No No 5
APBWRT ACM Slot Address Write value of ACM table, at location given |No No 5
by accumulator, to APB at chosen address.
APBWRT DAT Slot Address Data |Write data to chosen address. No No 5
APBREADZ Slot Read from APB. The Z register specifies the |No No 5
APB address.
APBWRTZ ACC Slot Write accumulator to APB. The Z register No No 5
specifies the APB address.
APBWRTZ ACM Slot Write value of ACM table, at location given [No No 5
by accumulator. The Z register specifies the
APB address.
APBWRTZ DAT Slot Data Write data; the Z register specifies the APB |No No 5
address.
Table 15+ The I/O Instruction Group
Flags
Instruction Description Acc.Zero |Acc.Neg. |Cycles
IOWRT ACC Write accumulator to I/O register. No No 3
IOWRT DAT Data Write data value to I/O register. No No 3
IOREAD Load the accumulator with the I/O input value. No No 3

HB0085 Handbook Revision 12.0 20

CoreABC Programmer’s Model

& Microsemi

a A8\ MicrocHiP company

Table 16 = The Flow Control Instruction Group

Flags

Instruction Description Acc. Zero |Acc. Neg. |Cycles
JUMP Condition $Label Jump to label. No No 3
JUMP IF/IFNOT Condition $Label |Jump on condition to label. No No 3
WAIT UNTIL/WHILE Condition Stop at this instruction until condition is No No 3

TRUE.
CALL $Label As JUMP, but puts return address on No No 3
CALL IF/IFNOT Condition $Label |As JUMP, but puts return address on No No 3
RETURN Return from a CALL. No No 3
RETURN IF/IFNOT Condition Return from a CALL on condition. No No 3
RETISR Condition Return from an interrupt. No No 3
RETISR IF/IFNOT Condition Return from an interrupt on condition. No No 3
HALT Stop at this instruction. Interrupts will still |No No Indefinite

be processed. HALT is a synonym for

WAIT, and generally used without a
Table 17 « Conditions for Flow Control Instruction Group
Condition Description
ALWAYS Always. You can get the same effect as this by not specifying any condition.
ZERO Accumulator zero
NEGATIVE Accumulator negative
ZZERO Z register zero
INPUTO InputO set
INPUT1 Input1 set and similarly for higher Inputs, if available.
POSITIVE Equivalent to NOT NEGATIVE
LTE_ZERO Less than or equal to zero; the combination NEGATIVE OR ZERO
GT_ZERO Greater than zero; the combination NOT (NEGATIVE OR ZERO)
Table 18 « Other Instructions

Flags

Instruction Description Acc. Zero Acc. Neg. Cycles
NOP No operation No No 3

HB0085 Handbook Revision 12.0 21

CoreABC Programmer’s Model C Mic em’

5.3.1

5.3.2

Figure 5 «

a AS\MicrocHip company

ConstantExpressions
In most places where a constant appears in a CoreABC instruction a constant expression can be used
instead. The expression canuse +, -, *, /, &, *, |, <, ==, >, <=, |=, >=, <<, >> and braces. Constants can

use decimal, a prefix of Ox for hexadecimal or Ob for binary. An ASCII character in single " can also be
used; for example, 'a' is equivalent to 97 or 0x61. Labels and named constants created using 'DEF' can
also be used. Labels begin with $. Examples of labels are $LABEL_1 and $LABEL_2. In the example
program illustrated in Figure 5, the use of constant expressions is shown in the top half of the program.

Conditional Code

There is limited support for conditional code. Anything inside a #if, #endif pair will be excluded if the
constant expression after the #if is zero or negative, and will be included otherwise. You can also use an
#if, #else, #endif construct, where depending on the expression after the #if, either the assembly code
between the #if and the #else or the assembly code between the #else and #endif is included. Code that
is not being included is shown greyed out. An #if, #else, #endif construct is shown towards the end of the
program illustrated in Figure 5. In this example, IsUpCounter has been defined as 1 so the INCZ
instruction is included and the DECZ instruction is omitted. DECZ is greyed out to indicate that it is not
included.

Conditional Code

e e

” Parameters | Program |Ana|ysis|

HOP

$fred

/7 LOADs the value 98 into ACC
LOAD "a'+1

ff ADDs the wvalue 16 to ACC
ADD 1+3=5

DEF Size 5
DEF Count 3

f// Also ADDs 16 to ACC
ADD 1+Count=Size

// Pushes the address of label $fred onto the stack
ff and then returns to that address.

LOAD %fred

PUSH

RETURH

DEF IsUpCounter 1

// Limited support for conditional code.
#if IsUpCounter
INCZ
#telse
DECZ
ttendif

Analyze program as I type

HB0085 Handbook Revision 12.0 22

CoreABC Operation

6

& Microsemi

a AS\MicrocHip company

CoreABC Operation

6.1

6.2

6.3

Note:

ACM Lookup Table for Use with CoreAl

When generating a SmartDesign design that contains an instance of CoreABC, a check is made to detect
if an instance of CoreAl is being mastered by CoreABC’s APB master interface. CoreAl may be
connected directly to CoreABC if it is the only APB slave being controlled by CoreABC but, more typically,
CoreAl will be one of a number of slaves under the control of CoreABC, with all the cores connected
together using the CoreAPB3 bus fabric core. In either scenario the presence of CoreAl in CoreABC’s
APB address space will be detected.

If CoreABC is controlling a CoreAl instance, a lookup table will be implemented within CoreABC. This
lookup table will hold data for initializing the CoreAl analog configuration multiplexer (ACM) and the
table’s contents will be derived from the configuration information entered in CoreAl’s configuration GUI.
The APBWRT ACM instruction can be used in CoreABC’s program to easily load the ACM initialization
values for CoreAl. This instruction uses the accumulator value to index into the ACM lookup table to
generate the actual data value written. The "Example Instruction Sequence, page 60" shows the
initialization of ACM registers (within the instruction loop beginning with the label "$WaitRegProg").

CoreAl is a Fusion AFS-specific core, which means that it can only be used on a Fusion AFS device. This
implies that the ACM lookup table and the APBWRT ACM instructions described in the preceding
paragraphs are only relevant when designing for a Fusion AFS device.

Stack

The upper 25™IPTH memory locations in the 256-location internal storage are used for storing the stack
contents. If STWIDTH = 4 (stack is 16 locations deep), the stack will occupy locations 0xFO to OxFF.
There is no underflow or overflow detection on the stack pointer, so it will simply wrap around from OxFO
to OxFF on push operations and OxFF to 0xFO on pop operations (assuming STWIDTH = 4).

The RAMREAD and RAMWRT instructions can be used to read and modify the values pushed onto the
stack. An indirect jump instruction can be implemented by pushing the required jump address on the
stack and executing a return instruction.

Interrupt Operation

When INTREQ is asserted, the core will jump to the interrupt service routine (ISR) on completion of the

current instruction. As it does so, it will assert the INTACT (interrupt active) output. The last instruction in
the ISR should be a RETISR (return from ISR) instruction. When the RETISR instruction is executed, the
INTACT outputis cleared. INTACT acts as the interrupt acknowledge, and INTREQ should be deactivated
when INTACT becomes active. The core will ignore additional interrupt requests while INTACT is active.

The core will respond to an interrupt request within six clock cycles—five clock cycles for the current
instruction to complete, 1p|us one additional clock cycle in the core. The value held in the instruction
counter is pushed onto the stack on entering the interrupt service routine. This value is popped from the
stack when exiting the routine to provide the return address. The contents of the ZERO and NEGATIVE
flags are saved internally (rather than on the stack) on entry to the interrupt service routine and restored
on the RETISR instruction. When the ISR is entered, the ZERO and NEGATIVE flags will contain the flag
values present when the previous ISR was executed. The accumulator register is not saved on entry to
the ISR. The ISR should push and pop the accumulator to preserve its contents.

The INTREQ polarity can be active low or active high. This is set by the EN_INT parameter.

If an interrupt occurs when the HALT or WAIT instructions are being executed, then, after completion, the
ISR will return to the HALT or WAIT instruction, unless the ISR does something to remove the reason for

1. If an APB-related instruction (such as APBREAD or APBWRT) is active when the interrupt
occurs, more than five cycles may be required for the instruction to complete if the APB access
is extended by pulling the PREADY _M input low for a number of cycles.

HB0085 Handbook Revision 12.0 23

CoreABC Operation

& Microsemi

a AS\MicrocHip company

the WAIT or modifies the stack contents; for example, it could POP the return address, modify it, and
PUSH it back on the stack.

When the interrupt functionality is being used, CoreABC's program will often be structured such that the
first instruction (at instruction address 0) is a JUMP to the main loop of the program and the ISR will be
located immediately after this, at instruction address 1. The instructions of the main loop will be located
just after the ISR in the program memory.

HB0085 Handbook Revision 12.0 24

CoreABC Configuration

7

CoreABC Configuration

& Microsemi

a @Mlcno:mn company

Figure 6

71

711

The CoreABC configuration GUI is launched when instantiating the core in a SmartDesign design. After
instantiation, the configuration GUI can be opened by double-clicking on the CoreABC instance or by
right-clicking and selecting Configure Component.

The configuration GUI has three tabs: Parameters, Program, and Analysis.

Select the Parameters tab on the CoreABC configuration GUI to begin configuring the core. When you do
shown in Figure 6.

this, you will see the screen

Configuration Parameters

& Configuring COREABC_0 (COREABC 3.0.105)

Parameters

| Program | Anabysis

License

Size Settings

Mermary and Inkerrupk

Data Bus Width

Number of APB Slots :

APE Sk Size :

Mazimum Number of Instructions :

Z Register Size (Bits) :

Mumber of IfQ Inputs

Mumber of IfO Flags @

Nurnber of L/O Outputs @

Stack Size : | 16 -

InitfConfig Address Width @

Instruction Stare :
Instruction Stare APE Access

Use Calibration HyM ©

Internal Data/stack Memory :

AL Operations from Memory : |:|

APE Indirect Addressing : []

Supporked Data Sources ;| Accumulator and Immediate ~

Optional Instructions

Interrupt Support
AMD, BITCLR, BITTST ROR, CMP ¢
OR, BITSET ADD), SUE, DEC, CMPLEL) ¢
NG SHL, ROL ¢
SHR, ROR ¢ CALL, RETURN, RETISR ¢
PLISH, POP APEWRT ACM ¢ []
IOREAD ! TOMIRT ¢

MULT : | Mot Implemented ~
License : | Obfuscated v

Werbose Simulation Log ©

Cther Settings

H
=

Cancel

Configurable O

ptions

Each of the configurable options presented on the Parameters tab of the configuration GUI is explained

in the following sections.

Data Bus Width

Selects the width of the data bus within CoreABC and on the APB master interface (and on the APB slave
interface, if present). Possible settings are 8, 16, or 32 bits. The accumulator width is equal to the value

set for Data Bus Width.

HB0085 Handbook Revision 12.0

25

CoreABC Configuration

& Microsemi

a AS\MicrocHip company

71.2 Number of APB Slots

This sets the maximum number of APB slots CoreABC can address. Each slot is a location for connecting
an APB peripheral, so ensure that you allocate enough slots for your design. It is easy to set this at a later
stage in your design if you wish, when you have a clear understanding of the peripherals you are
connecting.

71.3 APB Slot Size

This sets the number of locations in each APB slot. Possible settings range from 256 to 64K locations.
This setting should match the corresponding setting (also called APB Slot Size) on any instance of
CoreAPB3 mastered by CoreABC.

714 Maximum Number of Instructions

This allocates the instruction space for your program (in a range from 2 to 65,536 instructions). You
should not make this larger than necessary, as it is used for configuring multiplexers and will directly
impact the size of the core.

71.5 ZRegister Size

This sets the maximum Z register size you intend to use in your program. This is used to set the size on
the Z register and associated logic, so the smaller you make it, the smaller your core. There is also a
disable setting to remove this feature.

71.6 Number of I/O Inputs

This sets the number of inputs configured on CoreABC. These can be read using the IOREAD instruction.
The range is 1-32.

7.1.7 Number of I/O Flag Inputs

This sets the number of inputs connected into the conditional logic. These are accessible for controlling
JUMP and similar instructions as INPUTO — INPUT27 (note that the first input is INPUTO!). The range is
1-28.

71.8 Number of I/O Outputs

This sets the maximum number of output lines from CoreABC. The range is 1-32. These can be written
to using the IOWRT instruction, which allows the accumulator to be written to the output register.

71.9 Stack Size

CALL and RETURN instructions use a stack to store the return address when subroutines are used. The
stack size can be set in this drop-down list. Note that this list will be grayed out (disabled) if Internal
Data/Stack Memory is not enabled, because the stack is allocated from that memory.

7.1.10 Instruction Store

This is a very important setting that determines whether CoreABC is in hard, soft, or NVM mode. The
options are as follows:

* Hard (FPGA tiles) — The program instructions are stored in FPGA tiles which are effectively used to
build a hard-coded ROM. No RAM or NVM blocks are instantiated for instruction storage.

+ Soft (FPGA RAM) — The program instructions are stored in RAM blocks instantiated inside CoreABC.

* NVM - The program instructions are stored in an NVM block instantiated within CoreABC. This
instruction store option is only available on Fusion AFS devices.

7.1.11 Init/Config Address Width

This is only applicable when Instruction Store is set to Soft. This option sets the address width of the
InitCfg interface for initializing the RAM blocks which provide the instruction store inside a soft mode
CoreABC. The easiest way to determine the setting for this option is to look at the Instruction Store
Details section under the Analysis tab. The fifth bullet point in this section gives the required width in
number of bits.

HB0085 Handbook Revision 12.0 26

CoreABC Configuration

7112

7113

7114

7115

7.1.16

7117

7.1.18

7119

7.1.20

7.1.21

7.1.22

& Microsemi

a AS\MicrocHip company

Instruction Store APB Access

This is only applicable when Instruction Store is set to NVM. This option sets the type of access to the
instruction store NVM. Possible settings are None, Read Only, or Read/Write.

Use Calibration NVM

This check box option is only applicable when Instruction Store is set to NVM and, when selected, causes
CoreABC to request use of the NVM block holding the device calibration data for its instruction store. One
of the NVM blocks on the device will hold the calibration data in a spare page. Checking this option
causes the ACT_CALIBRATIONDATA parameter to be set to 1 on the NVM instance within (an NVM
mode) CoreABC instance. It is possible that some other NVM instance not related to CoreABC in the
design may also have its ACT_CALIBRATIONDATA parameter set to 1. In this case, CoreABC is not
guaranteed to be allocated the NVM block holding the calibration data.

Internal Data/Stack Memory
Set this option ON if you are going to use the internal scratchpad RAM (with RAMREAD and RAMWRT
instructions) or the stack (for CALL and RETURN instructions).

ALU Operation from Memory

This allows the ALU data input to accept both immediate data and data from the RAM. It enables ADD
RAM and similar instructions.

APB Indirect Addressing

This allows the Z register to be used as the source of the APB address for APB instructions (that is,
setting this option effectively enables instructions such as APBREADZ and APBWRTZ).

Supported Data Sources

This controls the EN_DATAM parameter; refer to “EN_DATAM Parameter, page 13". Setting this to
“Accumulator and Immediate” will increase tile counts.

Interrupt Support

This allows you to enable or disable interrupt support. If you specify active high or active low interrupt, the
interrupt logic is automatically included. When you enable the interrupt logic, you should also set the ISR
Address.

ISR Address

The ISR address should be set when you have enabled the interrupt logic. It is the instruction address
from which CoreABC will fetch the next instruction to be executed after an interrupt is detected. At the
end of the ISR, you will have a return from interrupt (RETISR) instruction. The default value for ISR
address is 1. This setting is suitable for a program which is structured such that the first instruction (at
address 0) is a jump to the main part of the program and the ISR is located from address 1 onward (the
main part of the program would be located just after the ISR code).

Optional Instructions

There is a range of instructions that can be omitted or included in CoreABC to control the size. This
empowers you to make size/performance tradeoffs. If you have used omitted instructions in your
program, you will receive a validation warning.

License

This option is used to generate either obfuscated or plain text RTL code for the core, depending on the
type of license you have. An obfuscated license enables you to generate obfuscated RTL code. An RTL
license permits generation of either obfuscated or plain text RTL code.

Testbench

Set this to User if you want a user testbench generated with your core.

HB0085 Handbook Revision 12.0 27

CoreABC Configuration

7.1.23

7.2

Figure 7 »

Figure 8 »

& Microsemi

a @MI:HGCHIP company

Verbose Simulation Log

This enables the feature that allows CoreABC to log the operations being performed during simulation
along with the current accumulator values. See the "Testbench, page 48" for more details.

Cross-Validation of Configuration Fields

There is extensive cross-validation of settings in the CoreABC configuration screen to ensure that the
overall configuration is consistent. This also extends to validation between the program and the
configuration. Most possible inconsistencies are covered.

Figure 8 shows the symbols that are displayed to indicate a possible error. When you click the symbol
(Figure 7), information is given as to the precise nature of the problem.

A

In the example shown in Figure 8, the Maximum Z Register has been set to Disabled, but there is an
instruction in the program (LOADZ) which requires that the Z register features are available.

Error Symbol

CoreABC Configuration Validation

B Configuring COREABC_0 (COREABC 3.0.105) =3

#| Program || Analysis

Data Bus Width :
MNumber of APE Slots :
APE Slot Size @ | 256 locations

Maxirnum Mumber of Instructions :

B>

Z Reqister Size (Bits) : | Disabled
Mumber of I/0 Inputs

Mumber of IjO Flags

= |[a][~ o ra | [oo
F1

Mumber of IjQ Outputs ;

Stack Size

=
<

Init/Config Address Width

Memory and Inkerrupt

Instruction Stare : |NVM v|

Instruction Stare APE Access @ |N0ne b |

Use Calibration MM ;

Internal DatafStack Memory
AL Operations from Memary : |:|
APE Indirect Addressing : []

Supported Data Sources |Accumulat0r and Immediate w |

Interrupt Support | Disabled w |

ISR Address : | b

[Ok][Cancel]

In general, the validation is more extensive on the Parameters tab than on the Program tab, so itis a
good idea to take a look at the Parameters tab when you have completed writing your program.

Some cross-validation actually grays out fields that are inappropriate when other settings have not been

made.

HB0085 Handbook Revision 12.0

28

CoreABC Configuration

7.3

Figure 9 «

& Microsemi

a AS\MicrocHip company

NVM Data Width on AFS090 Device

On an AFS090 device, the data width when accessing NVM is limited to a maximum of 16 bits. On other
Fusion AFS devices, 32 bit access to NVM is supported. This has implications when targeting an NVM
mode CoreABC design at an AFS090 device. For such a design, if a data bus width of 32 is selected along
with read only or read/write APB access to the instruction store NVM, the message shown in Figure 9 will
be displayed on pressing the OK button of the CoreABC configuration GUI.

AFS090 Data Width Message

Note: IX |

AFS090 Data Width

You have opted to use an AFS090 device and have configured
CoreABC to have a 32 bit data bus width and to allow data type
APB accesses to CoreABC's instruction store NYh.

Please note that the data width of the APB slave interface used
to access the NYM will be limited to 16 bits on an AFS090
device. The data width of CoreABC's master interface will be 32
bits, matching the data bus width setting for the core.

As the message indicates, APB accesses to the NVM instruction store will be limited to 16 bits in this
case, even though a data width of 32 has been selected. 32-bit access is supported to any other slaves
which may be connected to the APB bus. Click the OK button on this message to dismiss the message
(and the CoreABC configuration window).

HB0085 Handbook Revision 12.0 29

CoreABC Programming

& Microsemi

a AS\MicrocHip company

8 CoreABC Programming

CoreABC programs are written and assembled under the Program tab of the CoreABC Configuration GUI,
as shown in Figure 10. You can view an analysis of your code under the Analysis tab.

Figure 10 = CoreABC Programming Screen

B Configuring COREABC_0 (COREABC 3.0.105) =3

Parameters | Program | analysis

// Hultiply Example
// Hultiplies RAM location @ by 1
// and returns answer in location 2

DEF WORDSIZE 16
RAMWRT 2 DAT @
LOADZ DAT WORDSIZE
SNEXTBIT
RAMREAD @
BITTST @
JUHMP IF ZEROD $HOADD
RAMREAD 2
ADD RAM 1
RAMWRT 2 ACC
$NOADD
RAMREAD 1
SHLB
RAMWRT 1 ACC
RAMREAD @
SHRB
RAMWRT @ ACC
DEGZ
JUHP IFNOT ZZERO $HEXTBIT
RETURH

Analyze program as I bype

Ok][Cancel

8.1 Analysis

If the Analyze program as | type check box is selected (under the Program tab), your program is
continuously analyzed as you write it, to detect any syntax or other errors. These errors are immediately
flagged, and information about them is provided. Color coding of the program is used, with comments
appearing in green, valid instructions in blue, and errors in red. As the program becomes larger, analysis
takes longer with each character typed and this eventually impacts usability. If this is an issue, you can
turn off analysis (by clearing the check box) when you enter the program. You can then turn on the
analysis again when the program is complete or almost complete.

Under the Analysis tab, you will find useful information and statistics on your program, most of which is
self-explanatory. For example, the instructions used in the program are listed and this information may be
useful for optimizing your CoreABC instance by omitting support for any unused instructions (under the
Optional Instructions section of the Parameters tab). In soft or NVM mode, the Analysis tab will also
contain information of use when creating a Flash Memory System Builder Data Storage or Initialization
Client.

8.2 CoreABC Instruction Modes

The instruction store configuration option (INSMODE parameter) controls how CoreABC'’s instructions
are stored. For all device families, hard mode and soft mode instruction stores are possible. For the
Fusion AFS family, an additional NVM mode is also available. Each of these instruction storage modes is
described below.

HB0085 Handbook Revision 12.0 30

CoreABC Programming

8.21

8.2.2

& Microsemi

a A8\ MicrocHiP company

Hard Mode

In hard mode, the instructions are stored in FPGA tiles. Essentially, tiles are used to build an instruction
ROM. The instructions.v or instructions.vhd RTL file implements the instruction store and this file is
automatically created when a CoreABC based design is generated within SmartDesign.

From a design implementation point of view, hard mode is probably the simplest mode. The RTL files
completely describe the core and its program and can simply be run through synthesis, compile, layout,
etc., along with any other components in the design.

Soft Mode

In soft mode, the instructions are stored in RAM blocks on the device. The number of RAM blocks
required to hold the program increases with increasing program size and instruction width. The
instruction width increases with increasing address width (APB_AWDITH), data width (APB_DWIDTH),
and number of locations per APB slot (APB_SDEPTH). Details on the instruction width and the number of
instruction store RAM blocks required can be found under the Analysis tab of the CoreABC configuration
GUL.

In soft mode, the instructram.v or instructram.vhd RTL file instantiates the required number of RAM blocks
within CoreABC. When a design containing a soft mode CoreABC instance is generated in SmartDesign,
memory files are created for initializing the instruction RAM blocks during simulation. These files (one per
RAM block) are automatically placed in the project’s simulation folder to facilitate easy simulation. In
addition to these files, a single, consolidated memory file is created. This file is intended for use in
initializing the instruction RAM when the design is implemented on a device. When a Fusion AFS device is
being used, this consolidated memory file typically will be used to create a RAM Initialization client using
the Flash Memory System Builder (FMSB) utility. For a non-Fusion AFS device, you must manually
implement some other means of initializing the RAM blocks.

HB0085 Handbook Revision 12.0 31

CoreABC Programming C Mic em’.

a AS\MicrocHip company

8.2.2.1 Soft Mode Flow on a Fusion AFS Device

The following sequence of steps describes how to implement a soft mode CoreABC instance on a Fusion
AFS device. The steps describe the use of an FMSB RAM lInitialization client to initialize CoreABC’s
instruction RAM.

1. Set the Instruction Store option to Soft (FPGA RAM) as shown in Figure 11. If there are any
validation warnings, ensure that the Init/Config Address Width is configured appropriately.

Figure 11 » Init/Config Address Width

Program | Analysis
Size Settings L
Data Bus Width :
MNumber of APE Slots :
APE Slot Size :
Maxirurn Murber of Instructions @ | 128 v
Z Reqgister Size (Bits) :
Mumber of I/0 Inputs
Mumber of IjO Flags
Mumber of IjQ Outputs ;
Stack Size : |16 b
(Init,l’ConFig Address Width]
Memory and Inkerrupt
Instruction Store ; |SoFt (FPGA RAM) v|] o
Instruction Stare APE Access @
Use Calibration MM :
Internal DatafStack Memory
AL Operations from Memary : |:|
APE Indirect Addressing :
Supported Data Sources |Accumulat0r and Immediate w |
Inkerrupk Support @ |Active High v|
ISR, Address ¢ |1 | v
[Ok] [Cancel]

2. Inthe CoreABC configurator Analysis view, as shown in Figure 12, note the configuration details
which will be needed when configuring a Fusion AFS Flash Memory System Builder [RAM]
Initialization Client.

HB0085 Handbook Revision 12.0 32

CoreABC Programming

& Microsemi

a AS\MicrocHip company

Figure 12 » Initialization Client Configuration

B Configuring COREABC_O (COREABC 3.0.105) =3

Parameters || Program

"C:\.-"icteIprj\c0reahc\soﬂ\component\work\sd\COREAEIC_"

« Simulation BAM image file COLO ROW O
"ChActelpricoreabcisoftcomponentworkisdWCOREABC

« Simulation BAM image file COL 1 ROW O
"ChActelpricoreabcisoftcomponentworkisdWCOREABC

« Simulation BAM image file COLZ ROWO
"ChActelpricoreabcisoftcomponentworkisdWCOREABC

Fusion Flash Memory System Builder
Initialization Client configuration

« Memaory content file:
"ChActelpricoreabcisoftcomponentworkisdWCOREABC |

« Format of memory content file: Actel-Binary

« Start address: 0

e Size of word: 9 bits

* Number of words: 1536

Labels

Address 0: §StatOfProgram
Address 2: §MainLoop

v

< *

[Ok][Cancel]

3. These FMSB Initialization Client configuration details are also written to the CoreABC.log file, which
appears in the Design Explorer > Files view under Components > [SmartDesign-name]> Report
Files.

4. Save the CoreABC configuration. Note in SmartDesign that the InitCfg bus interface now appears on
the CoreABC instance Figure 13.

Figure 13 « CoreABC Instance

{ ™ FrTF
ﬁ E _»E Mame: InitCfg =% i Ol
Role: slave
State: Unconnected
Formal Actual
INITADDR INITADDR[10:0]
INITDATA INITDATA[S:0]
INITDATYALxD |INITDATVAL
INITDONE INITDONE
{my gy) -+
INTREG! INTACT K

1C_IN[1:0] 10_OUT[0]
MSYSRESET PRESETH
PCLK

COREABC T

5. The next task is to instantiate, configure, stitch, and generate a Fusion AFS Flash Memory System
Builder initialization client into the design to store the soft mode program image in an NVM block and
to initialize the CoreABC soft mode program storage RAM blocks at startup time. However, we do
not yet have the required soft mode program image so cannot do this yet. For this reason we must
generate the currently incomplete design first.

1P

HB0085 Handbook Revision 12.0 33

CoreABC Programming

& Microsemi

a AS\MicrocHip company

Choose SmartDesign > Generate Design.

You will get a warning about the CoreABC InitCfg bus interface not being connected, but you can
ignore this for now (or temporarily mark this bus interface unused when generating here).

6. Open the CoreABC.log file mentioned in step 2 so that you can view the configuration details
required for the soft mode CoreABC's FMSB initialization client. Select and copy the name of

the binary format RAM memory image file and keep CoreABC.log visible while configuring the
FMSB initialization client.

7. Go to the Libero IDE Catalog, expand the treeview under Fusion AFS Peripherals and double-
click on the Flash Memory System Builder. Choose an initialization client, click Add to
System, and then configure the client to match the details given in CoreABC.log (Figure 14).
Figure 14 « Modify Initialization Client

Modify Initialization Client

[Elient hame: abe_program]

Memory Content

(M emory content file: |E: “actelpritcoreabohsoftscomponentywork s dWCOREA]

Browse... |

[Format of memary content file: |Acte|-Binar}' j]

Pasition And Size

o ™ Use absolute addressing

Start address: 0 J;I [hexadecimal only]
Size of word: 9 - bits

(Ngmber of wards: |1 536] [decimal)

JTAG Protection

™ Prevent read ™ Prevent write

Initialization

™ Enable on-demand save ta Flash Memary

Llient zelect port name:
Save request port name:
Help ak. | Cancel

8. Click OK and then Generate. Name the instance and click OK again. Back in SmartDesign, the Flash
Memory System Builder initialization client instance should now appear as shown in Figure 15.

HB0085 Handbook Revision 12.0 34

CoreABC Programming

& Microsemi

a A8\ MicrocHiP company

Figure 15 + Flash Memory System Builder Initialization Client

abec_program_0

INIT CLK
SYS_RESET
INIT_P Oy,

abc_program

COREABC_D

INTREG INTACT —x
10_IM[1:0] 10_0UT(0)
MNEYSRES. . PRESETHM
PCLK

1P

COREABC

9. Select the Initialization client instance and choose SmartDesign > Auto Connect Selected
Instance(s) and SmartDesign will connect the CoreABC'’s slave InitCfg slave interface to the
initialization client’'s master interface. Manually connect the remaining initialization client’s signals,
as shown in Figure 16.

Figure 16 » Connect Initialization Client’s Signal
abc_program_0

SYSCLK INIT CLK
MNEYSRESET SYS_RESET
4 INIT_P Oy,

abc_prograrm

COREABC_D

INTREG INTACT p—x
10_IN[1:0] [10_IM[1:0] 10_0UT(0)
MNEYSRES. . PRESETHM
PCLK

COREABC

10. The design is now complete and can be generated using SmartDesign > Generate Design.

11. Go to the Libero IDE Project Flow view and click on Synplify® to run synthesis.

12. When synthesis has completed, exit Synplify and then click on Place & Route to run Compile,
Layout, and Programming File generation.

13. When you click on Programming File in Designer to run FlashPoint, to generate the programming
file (a PDB file, for example), you will get the warning shown in Figure 17 if the SmartDesign design
was recently regenerated. This is because the FMSB initialization client’s input binary soft mode
program image file is more recent than the generated EFC file, so you need to reimport the updated
input file.

HB0085 Handbook Revision 12.0 35

CoreABC Programming

Figure 17 »

8.23

& Microsemi

a AS\MicrocHip company

Import Updated Input File

FlashPoint - Programming File Generator, - Step 1 of 1

Silicon Featureds) to be programmed:
[Security settings
IV FPGA Array

I~ FlashRom

W“ 4

Some of the original client memory content files

could not be located from the disk or have

changed since they were imported,

Click on the Maodify button to view the details, iConfi ion File
o

2 abc_program_0/... 1 ChActelpricorfabchsofthsmartgent... | Modify...

Ernby

[Programming previously secured deviceds)

14. Click on Modify > Import Content and reimport the soft mode binary memory image file. The Import
dialog should open on the correct folder containing the file (that is, <Libero-project-
root>\component\work\<SmartDesign-name>\<CoreABC-instance-name>). Click OK and then
Finish to generate the programming file (PDB file). Click Generate and, if warned about overwriting
a previously generated programming file, accept/confirm this. Once the Programming File button in
Designer turns green, exit Designer and return to the Libero IDE Program Flow view.

15. You can now program the device. The program image will be programmed into an NVM block and,
at startup time, this image will be used to initialize the soft mode CoreABC instruction RAM blocks.
Note:If you change your CoreABC configuration or program, you must ensure that the Initialization
client configuration matches the details presented in the CoreABC configurator’s Analysis view. If
you forget to do this, it could result in an incorrectly formatted or incomplete program image being
stored or initialized to CoreABC RAM blocks.

NVM Mode

With a Fusion AFS device it is possible to set the Instruction Store option to NVM. When this setting is
selected, the CoreABC program is stored in an NVM block and the instructions are read directly from
NVM during operation.

In NVM mode, the instructnvm.v or instructnvm.vhd RTL file instantiates an NVM block within CoreABC.
When a design containing an NVM mode CoreABC instance is generated in SmartDesign, memory files
are created for initializing the NVM block during simulation and to enable the NVM block to be
programmed with the program image during programming of the Fusion AFS device. The simulation-
related memory file is automatically placed in the project’s simulation folder to facilitate easy simulation.
The file which is related to programming of the NVM block has a *.hex suffix and contains information in
the Intel Hex format. This file is intended to be used to create a Data Storage client using the Flash
Memory System Builder (FMSB) utility.

HB0085 Handbook Revision 12.0 36

CoreABC Programming C Mic em’.

8.2.31

Figure 18 ¢

a AS\MicrocHip company

NVM Mode Flow on a Fusion AFS Device

The following sequence of steps describes how to implement an NVM mode CoreABC instance on a
Fusion AFS device. The steps describe the creation of an FMSB Data Storage client to produce an
embedded flash configuration (EFC) file which contributes to the overall programming file for the device.
The CoreABC program is effectively contained in this EFC file.

1. Set the Instruction Store option to NVM, as shown in Figure 18.
Instruction Store Option

B Configuring COREABC_O (COREABC 3.0.105)

Parameters |Pr0gram Analysis
Size Settings L
Data Bus Width :
MNumber of APE Slots :
APE Slat Size :
Maxirurn Murber of Instructions @ | 128 v
Z Reqgister Size (Bits) :
Mumber of I/0 Inputs
Mumber of IjO Flags
Mumber of IjQ Outputs ;
Stack Size : |16 v
Init/Config Address Width
Memory and Inkerrupt
' Instruction Stare : I B
Instruction Stare APE Access @ |N0ne b |
Use Calibration MM ;
Internal DatafStack Memory
AL Operations from Memary : |:|
APE Indirect Addressing :
Supported Data Sources |Accumulat0r and Immediate w |
Inkerrupk Support @ |Active High v|
ISR Address |1 | »
[Ok] [Cancel]

2. The CoreABC configurator Analysis view note (Figure 19) shows the configuration details which will
be needed when configuring a Fusion AFS Flash Memory System Builder Data Storage Client.

HB0085 Handbook Revision 12.0 37

CoreABC Programming

Figure 19 « Analysis View

B Configuring COREABC_O (COREABC 3.0.105)

Parameters || Program

OF0F T = L300

o MWW programming file
"ChActelpricoreabcinvmicomponentiwork\s NCOREABC_

o [N simulation memaory image file
"ChActelpricoreabcinvmicomponentiwork\s NCOREABC_

o MWW uses 4 bytes per instruction (Actual Bits=23)
o MWW size 512 in byte mode

=

rFusion Flash Memory System Builder
Data Storage Client configuration

« Memaory content file:
"ChActelprtcoreabcinvmicomponentwork\s NCOREABC

« Format of memory content file: Intel-Hex
« Start address: 0
« Size of word: 8 bits

e MNurmnber of words: 512

Labels

Address 0: §StatOfProgram
Address 2: §MainLoop

(... 5

-

v

CEX

[Ok] [Cancel

]

& Microsemi

a AS\MicrocHip company

The CoreABC generator also emits a text version of the Analysis view content into a log file (<Libero-
project-root>\component\work\<SmartDesign-name>\<Core ABC-instance- name>\CoreABC.log). It will
appear in the Design Explorer > Files view under Components > [SmartDesign-name] > Report Files >
CoreABC.log. This will be used in the following steps when configuring the FMSB Data Storage Client.

3. Choose SmartDesign > Generate Design.

4. Go to Design Explorer > Files > Components > [SmartDesign-name] > Report Files and open
CoreABC.log, which contains the same details as the CoreABC configurator Analysis view. In
particular it includes the details required for configuration of the Fusion AFS Flash Memory System
Builder Data Storage Client required for the NVM mode CoreABC instance. Scroll down to the Fusion
AFS Flash Memory System Builder Data Storage Client configuration section. Select and copy the
name of the NVM mode Intel-Hex memory image file. You will paste this into the FMSB Data Storage
Client configuration in a subsequent step. Keep the CoreABC.log file open so that it is visible and you
can see the other FMSB Data Storage Client configuration details during the next steps.

5. Inthe Libero IDE Catalog, right-click the Fusion AFS Peripherals > Flash System Memory Builder
core and choose Configure core (Figure 20). It is not necessary to create an FMSB instance (by
double-clicking or choosing Instantiate in <SmartDesign-name>), although creating one will not
cause a problem.

HB0085 Handbook Revision 12.0

38

CoreABC Programming

& Microsemi

a @MI:HGCHIP company

Figure 20 » Configure Core

Catalog L o x
Filter: | * Add Core | Options
3 Function, Name: | Wersior:

Actel Macros

T

Basic Blocks

T

Bus Interfaces

T

Clock & Management

T

= Fusion Peripherals

Ol Instantiate in sd
Dseil Configure core
olta

+ Memory & Download all new cores

Periphera Show details. ..

+ Processol Open documentation

+ User Define

6. Select Data Storage client type and click Add to System, as shown in Figure 21.

Figure 21 » Add Data Storage

Client Type

Add ta System...

7. Configure the Data Storage Client according to the details displayed in the CoreABC.log file. In
particular, paste the NVM memory image file name copied earlier into the Memory content file field
and enter a Client name. Configure the Start address, Size of word, and Number of words options
(Figure 22).

HB0085 Handbook Revision 12.0 39

CoreABC Programming

& Microsemi

a AS\MicrocHip company

Figure 22 » Configure Data Storage Client

X

Add Data Storage Client

(Elient |abc:_program_in_nvm]

Memory Content

Edemmy content file: |ponent\work\sd\EDHEABE_D\sd_EDF!EABE_D_NVM.hex]

Browse... |

Eormat of memary content file: |InteI-Hex j]

Pasition And Size

o ™ Use absolute addressing

Gtart address: 0 J;I] [hexadecimal only]
Size of word: a - bits

Mumber of words: 514 [decimal]

JTAG Protection

™ Prevent read ™ Prevent write

Help ak. | Cancel

8. Click OK and then Generate. Name the core when prompted. The configured Fusion AFS Flash
Memory System Builder Data Storage Client component should now appear under the Hierarchy tab
in your Design Explorer, as shown in Figure 23.

Figure 23 » Hierarchy Tab in Design Explorer

Dresign Explarer I x

Shiow; |Comp0nents j

CoredPB3 [CoredPB3. Y]

= CoreTimer [CoreTimer.v)

= CorelJARTapb [CorelUARTap...
s COREABC_0_COREABC [cc

9. Go to the Libero IDE Project Flow view and click Synplify to run synthesis.

10. When synthesis has completed, exit Synplify and then click Place & Route to run Compile, Layout,
and Programming File generation. When you click Programming File in Designer to run FlashPoint
to generate the programming file (PDB file), you will receive the warning shown in Figure 24.

HB0085 Handbook Revision 12.0 40

CoreABC Programming

& Microsemi

a AS\MicrocHip company

Figure 24 » Block Not Configured Warning
FlashPoint - Programming File Generator, - Step 1 of 1 Pz|
Silicon Featureds) to be programmed:

[Security settings
IV FPGA Array

I~ FlashRom
Embe; ™y
The block is not configured.,
Click on the Modify button to configure this block, fi jon File
o
—_—
1 v |COREABC_O/ge... 0 Modify...

[Programming previously secured deviceds)

o Specify [j0 States During Programming. ..

Silicon signature {max length is 8 HEX chars):

Help | Finish | Cancel

11. In this case it is necessary to update the configuration. Click Modify to get the dialog shown in
Figure 25.

Figure 25 « Modify Block Dialog

Modify Embedded Flash Memory Block

Block name: COREABC_0fgenblk146, UINVM.UROM _x. ..
Block location: The block is not configured.,
) Please import configuration file to configure this block,
Block configuratl | Import Configuration File. ..

Block content:

Start —_— | JTAG Protection |
Program |Client Type| Client Name | Address e Prevent Prevent | Original
(hex) depthXwidth Road S

12. Click Import Configuration File. Browse to and select the relevant EFC file for the CoreABC NVM
mode program image. The EFC file should be in a subfolder of the <Libero-project- root>\smartgen
folder.

In this example, the file has the following location:

<Libero-project-root-folder>\smartgen\abc_program_in_nvm\abc_program_in_nvm.efc.

If the SmartDesign design was regenerated more recently than the FSMB Data Storage Client (which
is quite likely), you will receive the warning shown in Figure 26 because the input Intel Hex file is
more recent than the generated EFC file.

HB0085 Handbook Revision 12.0 41

CoreABC Programming

& Microsemi

a AS\MicrocHip company

Figure 26 » Client Content File Has Changed Warning

Modify Embedded Flash Memory Block PZ|
Block name: COREABC_0fgenblk146, UINVM.UROM _x. ..
Block location: 1]
Block configuration File: Ciactelpritcoreabcinyvm, . \abc_program_in_nwm.efc

Block content: @

Select All Clients | Unselect All Clients
The ariginal client memory content file has changed. .. .
You may click on the Impart Content button to reload the memary content from this file, pt | Original Memory Content File
1 ! I [rata Storage abe_program_in... 1] B12<8 I I C:h\Actelprivcoreabchsofthcompone. . Import content. .

13. Click Import Content to import the NVM mode program image Intel Hex file (the Import dialog
should open on the correct folder containing this file).
Once you have done this, the configuration should be up to date, as shown in Figure 27.

Figure 27 » Configuration Up to Date

Modify Embedded Flash Memory Block 53
Block name: COREABC_0fgenblk146, UINVM.UROM _x. ..
Block location: 1]
Block configuration File: Ciactelpritcoreabcinyvm, . \abc_program_in_nwm.efc Import Configuration File. ..
Block content:
Select All Clients Unselect All Clients
JTAG Protection
! i otar Chient [[-~ — .. !
Program |Client Type| Client Name | Address depthXwidth Prevent Prevent | Original Memory Content File
[hex] Read Write
1 2 [rata Storage abe_program_in... 1] 51248 I I C:h\Actelprivcoreabchsofthcompone. . Import content. .

Click OK, Finish, and then Generate. You may be asked to confirm the overwriting of
a previously generated programming (PDB) file, in which case confirm/accept this.

14. Once the programming file has been generated, exit Designer and return to the Libero IDE Program
Flow view. You can now program the board with your CoreABC NVM mode design.

15. IMPORTANT: Bear in mind that if you change the CoreABC program such that it becomes longer than
the size (number of words) previously configured in the Fusion AFS Flash Memory System Builder
Data Storage Client component (see step 7), you will need to reconfigure and regenerate the file. For
this reason you should always double check the CoreABC Analysis view NVM program details
against the currently configured FMSB Data Storage Client configuration to ensure consistency.

HB0085 Handbook Revision 12.0 42

CoreABC Programming

8.2.3.2

Note:

& Microsemi

a A8\ MicrocHiP company

APB Access to Instruction Memory

In NVM mode, it is possible to access the internal NVM block that stores CoreABC'’s instructions through
the APB slave interface. This functionality allows CoreABC to log and retrieve information to and from
NVM, for example, while simultaneously running from NVM in cases where only one NVM block is
available for use by the CoreABC subsystem. The Instruction Store APB Access configuration option is
used to select the type of APB access (if any) to the instruction memory in NVM mode. Possible options
are: None, Read Only, or Read/Write.

Where read only or read/write access to the instruction memory is required, the APB slave interface which
provides access to the instruction memory should ONLY be mastered by CoreABC’s APB master
interface, typically via CoreAPB3. A separate, independent APB master should not be used to
communicate with CoreABC'’s slave APB interface because this is likely to lead to erroneous behavior.
Arbitration between instruction fetches and data type read/write from/to (NVM) instruction memory is
deliberately kept as simple as possible to minimize the size of CoreABC.

The APB slave interface provides a register interface for accessing the NVM block. PAGE, SECTOR, and
SPARE_PAGE registers together are used to select a 128-byte page to be held in the NVM’s page buffer.
The page in the buffer can be read and written directly at offset 0x00 to Ox7F in the APB slave interface
address space. If writes have been used to modify the contents of the page buffer and the new data is
required to be saved in the nonvolatile array of the NVM, the PROGRAM_ENABLE and PROGRAM
registers must be written (in that order, using any data) to cause the new page to be programmed to the
array. The process of programming the array takes around 8 milliseconds to complete, during which time
CoreABC will stall.

HB0085 Handbook Revision 12.0 43

CoreABC Programming

Table 19 ¢

& Microsemi

a A8\ MicrocHiP company

It is possible for a CoreABC program to overwrite or corrupt itself when APB read/write access to the
instruction memory is enabled in NVM mode. You must take care to avoid this. In practice this usually just
means setting the SECTOR, PAGE, and SPARE_PAGE registers in the APB interface to NVM instruction
memory to sufficiently high values. That is, read and write data type accesses to the NVM instruction
memory should normally be to a region of the NVM above the program which is located from address
0x0000 onwards. Table 19 describes the register interface used to access the internal NVM block using

the APB slave interface.

Address Map of APB Slave Interface, NVM Mode Only

Offset

Register Name

R/W

Width

Reset
Value

Description

0x00
to Ox7F

(This is a range of offsets;
see description column for
more information.)

R/W

APB_DWIDTH
(8, 16, or 32)

Any access within this range of offsets
accesses offset[6:0] in the page held in the
NVM page buffer addressed by
{SPARE_PAGE_REG + SECTOR_REG +
PAGE_REG]}.

If APB_DWIDTH = 8, consecutive bytes are at
offsets 0x00, 0x01, 0x02, etc.

If APB_DWIDTH = 16, consecutive halfwords
are at offsets 0x00, 0x02, 0x04, and so on.

If APB_DWIDTH = 32, consecutive words are
at offsets 0x00, 0x04, 0x08, and so on.

The address to the NVM is always a byte
address and the lower one or two bits of the
address are ignored when the data size is 16 or
32 bits. This means that misaligned addresses
are automatically aligned.

On an AFS090 device, the data width is
restricted to 16 bits when accessing NVM.
When APB_DWIDTH is set to 32 in a design
targeted at an AFS090 device, APB accesses
to the NVM instruction memory will be
consistent with the behavior for APB_DWIDTH
= 16. That is, only the lowest bit of the (byte)
address to the NVM is ignored and only the
lower 16 bits of the read and write data buses
carry valid data.

0x80

PAGE_REG

0x0

Page of NVM being accessed during APB
accesses (to an offset in the range 0x00 to
Ox7F).

Bits [11:7] of ADDRESS input to NVM block.

0x84

SECTOR_REG

0x0

Sector of NVM being accessed during APB
accesses (to an offset in the range 0x00 to
Ox7F).

Bits [17:12] of ADDRESS input to NVM block.

0x88

SPARE_PAGE_REG

0x0

Drives SPAREPAGE input to NVM during APB
accesses (to an offset in the range 0x00 to
Ox7F).

0x8C

Reserved

0x90

Reserved

HB0085 Handbook Revision 12.0 44

CoreABC Programming

& Microsemi

a A8\ MicrocHiP company

Table 19« Address Map of APB Slave Interface, NVM Mode Only

0x94 PROGRAM_REG w1 0x0 [Any write to this register (regardless of the
value written) will cause the contents of the
page buffer to be programmed to the NVM
array, provided the PROGRAM_ENABLE bit is
set (see PROGRAM_ENABLE_REG at offset
0x9C).

0x98 Reserved - - - -

0x9C PROGRAM_ENABLE_REG |W 1 0x0 |Any write to this register (regardless of the
value written) causes a PROGRAM_ENABLE
control bit to be set.

This register is cleared by any access (read or
write) to any other APB address. This means
that the register will be cleared by writing to the
PROGRAM_REG. This register is also cleared
if it is read.

HB0085 Handbook Revision 12.0 45

Tool Flows

& Microsemi

a AS\MicrocHip company

9 Tool Flows

9.1 Licensing

CoreABC is licensed in two ways: Obfuscated and RTL. Tool flow functionality may be limited, depending
on your license.

9.1.1 Obfuscated

Complete RTL code is provided for the core, enabling the core to be instantiated, configured, and
generated within SmartDesign. Simulation, Synthesis, and Layout can be performed with Libero
Integrated Design Environment (IDE). The RTL code for the core is obfuscated.

912 RTL

Complete RTL source code is provided for the core.

9.2 SmartDesign

CoreABC is available for download to the SmartDesign IP Catalog via the Libero IDE web repository. For
information on using SmartDesign to instantiate, configure, connect, and generate cores, refer to the
Libero IDE online help.

The APB master interface of CoreABC will typically be connected to the mirrored master interface of
CoreAPB3, with various APB slaves connected to the slave interfaces of CoreAPB3.

The core can be configured using the configuration GUI within SmartDesign. See the CoreABC
Configuration, page 25 for more details on configuring CoreABC.

9.3 Simulation Flows

SmartDesign and Libero IDE facilitate running both a user (or unit) testbench for CoreABC and a basic
system testbench for the complete SmartDesign design. You may wish to expand on these simulation
capabilities to suit the particular needs of your project. For example, you could make a copy of the system
testbench, add additional code to monitor or interact with the design and then use this new testbench as
stimulus in a simulation.

To run the CoreABC unit testbench, set the Testbench configuration option to User in the CoreABC
configuration GUI before generating the design. After generation, set the design root to be the CoreABC
instance and click the Simulation (ModelSim) button. ModelSim will launch and run the unit test.

To run the system testbench for the SmartDesign design, set the design root to be the (SmartDesign)
design after generation and again click Simulation. ModelSim will launch and run the system simulation.

See Testbench, page 48 for more details on simulation.

9.4 Synthesis in Libero IDE

To run synthesis with the configuration selected in the configuration GUI, set the design root appropriately
and click the Synthesis icon in Libero IDE to launch the Synplicity® synthesis tool. Click the Run button
in the synthesis window to run synthesis.

9.5 Place-and-Route in Libero IDE

Having set the design route appropriately and run Synthesis, click the Place & Route icon in Libero IDE
to invoke Designer. CoreABC requires no special place-and-route settings.

HB0085 Handbook Revision 12.0 46

Tool Flows

9.6
9.6.1

Figure
Design Flow

Top Module(

& Microsemi

a AS\MicrocHip company

Design Constraints

Timing Constraints

Reset Synchronizer used in the core (for device families other than RTG4) to synchronize the

asynchronous reset input NSYSRESET in the APB clock domain requires timing constraint for synthesis,

place and route, and timing verification. To generate these timing constraints, select the Timing tab in

Constraint Manager, and click Derive Constraints, as shown in the following figure.

28 » Derive Constraints - Timing Constraints

root): sdc_test

Active Synthesis Implementation: synthesis

‘Tuol

= b Create Design

E3 Create SmartDesign
Create HDL
4 Create SmartDesign Testbench
B Create HDL Testbench
= b Verify Pre-Synthesized Design
Simulate

nt Design
2 Open Netlist Viewer
S Synthesize
= b Verify Post-Synthesized Design
L] Generate Simulation File

B Simulate
£ Place and Route
=- b Verify Post Layout Implementation
&, Verify Timing
& Open SmartTime
B Verify Power

O | O || SEmpOT || @Emimmn OF |

(Sl] oF vomr\huees=\aarmnner\Neeuszmnnmes\
New | mpot | unk | edtwih consraint ator [v| check |~[[oeme consromts] consiaint coverage [+] e 2]«
Sl P |

Design Hierarchy | _Stimulus Hierarchy | _Catalog | _Files

HB0085 Handbook Revision 12.0

47

Testbench

10

& Microsemi

a A8\ MicrocHiP company

Testbench

10.1

Figure 29 »

10.2

10.3

Unit Testbench

A unit (or user) testbench is packaged with CoreABC. A block diagram of the testbench is shown in
Figure 29. Identical testbenches are supplied for both the VHDL and Verilog versions of the core.

CoreABC Verification Testbench

APB Bus

Core ABC APB Slave Model APB Slave Model

The CoreABC unit testbench runs a canned program to exercise the core. APB slave models which
effectively implement some memory are included in the testbench to allow verification of write and read
back operations on the APB interface.

To run the unit testbench, simply set the design root to the CoreABC instance (using right-click, Set As
Root on the instance name in the Hierarchy tab of the Design Explorer) and click on the Simulation
(ModelSim®) button in the Project Flow. The unit testbench should automatically launch and run. A "Tests
Complete ... OKAY" type message will appear in the simulator transcript window if the simulation is
successful.

System Simulation

To simulate a CoreABC based design created in SmartDesign, generate the design and then ensure that
the design root is set to the SmartDesign design. During generation of the design, a basic system
testbench is created which instantiates the design and provides clock and reset signals to the design.
Clicking on the Simulation (ModelSim) button will run this testbench. When running the system
testbench, CoreABC will execute the program entered in the Program tab of its configuration GUI, rather
than a canned program, as is the case when running the CoreABC unit testbench.

By default, the system testbench will run and the clock and reset signals will be displayed in ModelSim's
waveform viewer. Often you will want to browse into the design and select other signals to display in the
waveform viewer before restarting and rerunning the simulation from within the simulator.

Simulation Logging

CoreABC includes debug code that logs the operations being performed during simulation, along with the
current accumulator values. A typical log is shown below.

INS:141: XOR 00 <= 0OA XOR 0A Flags:ZERO
INS:142: JUMP (Not Taken) NOT ZERO
INS:143: NOP

INS:144: LOAD 00 <= 00Flags:ZERO

INS:145: LOADZ <= 5h

This log starts at instruction 141 and shows the accumulator being XORed with 0x0A, a jump testing the
ZERO flag, a NOP instruction, and the accumulator being loaded with 00. Finally, the internal Z register is
loaded.

EE

This feature is only available when pre-synthesis simulation is carried out. During synthesis, the debug
code is removed from the core. To enable this feature, select the Verbose Simulation Log option on the
CoreABC configuration GUI.

HB0085 Handbook Revision 12.0 48

Example Design Using CoreABC

11

& Microsemi

a AS\MicrocHip company

Example Design Using CoreABC

Figure 30

This section describes the creation of a simple CoreABC based design. The design uses the general
purpose outputs of CoreABC to control eight outputs which may, for example, be used to drive LEDs on a
PCB. A "rotating 1"pattern is produced on the outputs and CoreTimer is used to create a delay between
pattern changes. CoreAPB3 provides the bus fabric that connects the processor and timer peripheral
together. The design is illustrated in Figure 30. In this example, a hard mode CoreABC will be used and
the design will be targeted at a Fusion AFS device. Follow the instructions beginning in the “Create a

New Project, page 50" to create the example design.
Example CoreABC Design
Outputs Are Looped Back to Inputs

» 16 Outputs

16
» [O_IN I0_OUT
CoreABC
INTREQ
CoreAPB 3
CoreTimer
TIMINT

HB0085 Handbook Revision 12.0

49

Example Design Using CoreABC - =
& Microsemi

a @Mlcno:mn company

11.1 Create a New Project

The first task is to create a new project using the Libero IDE Project Manager. Use the following steps to
create the project:

1. Start Project Manager and select Project > New Project. The New Project Wizard will appear. Enter

coreabc_example as the project name and select Verilog as the preferred HDL type, as shown in
Figure 31.

Figure 31 » New Project Wizard

New Project Wizard rg|
Welcome to the New Project Wizard
a Thiz wizard creates a new Libero project.

W start

X Froject name: |coreabc:_example
Select Device

Select Tools
Add Files Project Jocation: |EI:\Actelpn\coreabc_example Browse...

Finizh

Prefered HOL type:
: + Yerilog
%" " WHDL
v‘//é Help

| Mest > | Cancel

Click Next and on the next screen choose Fusion AFS for the Family and select the AFS600 die and
the 484 FBGA package, as shown in Figure 32.

Figure 32 »« Select Family, Die, and Package

2.

New Project Wizard rg|
Family, Die and Package
a Select the family, die and package of your new project.
Start Farnily: o
B Select Device Fusion - g
Select Taols Die: Package:
AFS030 A~ 208 FUFP
Add Files AF5250 5 256 FBGA
- M14F5250 E
Litish U14F5250
E M7AFSEOD v
< Back | Mest > | Finizh Cancel

3. Click Finish to exit the New Project Wizard.

HB0085 Handbook Revision 12.0 50

Example Design Using CoreABC

11.2

Figure 33

11.3

& Microsemi

a @MI:HGCHIP company

Create a SmartDesign Design

Click SmartDesign in the Project Flow window and enter abc_system as the name of the SmartDesign
component to be created, as shown in Figure 33.

Name the SmartDesign Component

New fgl
Select a Type: SmarDes
Schematic
SmartDesign Component Mame:
CoreConsale Component W

IP Component

WHOL Source File

Werilog Source File

WaveFormer Stimulus File

HOL Stimulus File

SDiC File {sdc)

Physical Design Constraint File {pdc)
DO File

WHOL Template

Werilog Template

Help QK | Cancel |

4. Click the OK button and the SmartDesign canvas for the abc_system will open.

Instantiate, Configure, and Connect the Components

Components can be instantiated on the SmartDesign canvas by dragging and dropping from the Catalog
pane on the right hand side of the Project Manager. When a component is dropped onto the canvas, a
configuration window will open for that instance of the component. You may need to expand some of the
categories in the catalog to see the cores you need. Follow the steps below to instantiate, configure, and
connect the components in the design:

1. Drag and drop a CoreABC instance onto the canvas. On the Parameters tab of the CoreABC
configuration window, most of the settings can be left at their default values apart from these
changes:

+ Set Data Bus Width to 16

* Set Number of I/O Inputs to 16

* Set Number of I/0O Outputs to 16

» Set Interrupt Support to Active High.

2. On the Program tab of the configuration window, enter the program shown in the screen shot in
Figure 34 and then click the OK button to dismiss the CoreABC configuration window.

HB0085 Handbook Revision 12.0 51

_Ref392777556 \r \h * MERGEFORMAT
_Ref392777556 \r \h * MERGEFORMAT

Example Design Using CoreABC

Figure 34

& Microsemi

a AS\MicrocHip company

Program Tab

B, Configuring system_COREABC_0 (COREABC 3.0.1... [2)[E]X]

Parameters | Program | analysis
[JUHP $HAIH

I
// Interrupt service routine
£

I0OREAD

// Read general purpose inputs
/¢4 (loopback of outputs)

ROL

/7 Rotate left

IOWRT ACC

// Write new value back to general
// purpose outputs

APBYRT DAT O 0x00 Ox000F

// Refresh timer

APBYRT DAT 8 Bx18 0x0000

// Clear timer interrupt
RETISR

17
// Hain loop
e
SHATN

IDWRT DAT Bxea81

// Initialize outputs

APBYWRT DAT B Bx0880 Bx000F

// Load timer

APBYWRT DAT B Bx88 Bx00083

/7 Enable timer (and timer interrupt)

SLooP
HOP
// Continuous, empty loop.
// Will be periodically interrupted
// by timer interrupt
JUHP LOOP

Analyze program as I bype

[Ok][Cancel]

Drag and drop CoreAPB3 onto the SmartDesign canvas. Accept the default configuration by clicking
OK on the CoreAPB3 configuration window. Note that the APB Slot Size settings should always
match for CoreABC and CoreAPB3. This setting has a default value of 256 locations on both cores.
Drag and drop CoreTimer onto the SmartDesign canvas. In the CoreTimer configuration window, set
the Width option to 16 bit and leave the Interrupt active level as High and click OK.

Choose SmartDesign > Auto Connect (or right-click on a blank area of the canvas and select Auto
Connect). A window entitled Modify Memory Map will appear, which provides the opportunity to move
the timer peripheral to a different slot on the APB3 bus. Accept the default (slot 0) location by clicking
the OK button. Auto connect will connect the clock, reset, and bus connections.

Some manual connections must be made as follows. Click on the TIMINT pin of CoreTimer and,
while holding the CTRL key down on the keyboard, click on the INTREQ pin of CoreABC. Right-
click on either of these highlighted pins and select Connect to connect the two pins together. Right-
click on the 10_OUT[15:0] pin of CoreABC and select Promote to Top Level to connect the outputs
to the top level. Next click again on the 10_OUT[15:0] pin of CoreABC and, while holding down the
CTRL key, also click on the 10_IN[15:0] pin of CoreABC. Then right-click on either of these high-
lighted pins and select Connect to loop the general purpose outputs back to the general purpose
inputs. Finally, right-click on each of the unconnected ports and select Mark Unused (the uncon-
nected ports are INTACT on CoreABC and ports S1 to S15 on CoreAPB3). An X will appear at the end
of the open wire connected to each port marked as unused. The design should resemble the one
shown in Figure 35.

HB0085 Handbook Revision 12.0 52

Example Design Using CoreABC

Figure 35 + CoreABC Design

COREABC_D

INTREQ

10_IN[15:0]
NSYSRESET [} NSYSRESET
SYSCLK PCLK

INTACT [}
10_0UT[5:0] [}
PRESETN

p—x

COREABC

ComAPE3

CoraTimer_0

FRESETn

Coie Tiwrer

TIMINT [§

P

& Microsemi

a A8\ MicrocHiP company

10_0UT[5:0]

6. Choose SmartDesign > Generate Design (or right-click on a blank area of the canvas and select
Generate Design) to generate the design. If you have omitted marking unconnected ports as
unused, an information window mentioning warnings will pop up. If there are any warnings, choose

SmartDesign > Check Design Rules and review the warnings.

HB0085 Handbook Revision 12.0

53

Example Design Using CoreABC

1.4

Figure 36

& Microsemi

a AS\MicrocHip company

System Simulation

Before running a simulation of the system, we will adjust some of the simulation options.

1. Inthe Project Flow window, right-click on the Simulation (ModelSim®) button and select Options.

A Project Settings window will appear, with the Simulation tab selected. In the left pane visible in the
Simulation tab, click on DO File under ModelSim options. In the right pane set the Simulation runtime to
100 ps, shown in Figure 36.

Project Settings — Simulation Time

Project Settings g|

Device] Flow Simulation l

- ﬁ ModelSim options MName ‘ VYalue ‘
D0 File
waveforms Uze autormatic DO File Ird
Wzim command

- @ Libraries =]
Fusion Simulation runtime ‘ = ‘

Testbench module
name

Top level instance
hame in the testbench

testbench

<topx_0

do command
parameters

Generate YCD file I

Default
QK | Cancel | Help |

2. Inthe left pane, click on Waveforms under ModelSim options and in the right pane click the check box
to select Log all signals in the design, as shown in Figure 37.

Logging all signals allows signals to be added to the waveform viewer in the simulator after the simulation
has completed. For a large design and/or a long simulation run time, it is probably better first to run a short
simulation and then add the signals of interest to the waveform viewer. The waveform format would then
be saved to a DO file (typically named wave.do) and, in the Waveforms options window, you would click
the Include DO File option and enter the appropriate filename for the Included DO File value. The Log all
signals in the design option would be deselected.

HB0085 Handbook Revision 12.0 54

Example Design Using CoreABC

& Microsemi

a AS\MicrocHip company

Figure 37 « Simulation Settings

Project Settings §|

Device] Flow Simulation l

-} M MadelSim options Mame Value
D0 File
W aveforms Include DO File r
Wzim command
Z1-fiffl Libraries o
Fusion
Dizplay waveforms for top_level testbench

Log all signalz in the
deszign ¥

Default
QK | Cancel | Help |

Click OK to dismiss the window.

Back in the Project Flow window, click Simulation (ModelSim) to launch the simulation. The
simulator will launch and run and, by default, all testbench signals will be displayed in the waveform
viewer.

The testbench automatically created for this design, when the design was generated in SmartDesign,
contains only clock and reset signals and these are displayed in the ModelSim Wave window (wave-
form viewer) with their exact names of SYSCLK and NSYSRESET. The 10_OUT output from Core-
ABC is also of interest in this design. We should be able to observe the moving 1 pattern on this port.

To view 10_OUT in the Wave window, click on the abc_system instance name (which should be
abc_system_0 by default) in the simulation window. After doing this, the Objects window will list all of
the signals present in abc_system. Scroll to the |O_OUT signal in the Objects window and drag and
drop this onto the Wave window. It should be possible to observe the moving 1 pattern on the I0_OUT
trace. It may be easier to see the pattern by viewing IO_OUT in hexadecimal form. To do this, right-
click the 10_OUT signal in the Wave window and select Radix > Hexadecimal. Figure 38 illustrates
what should be observed when IO_OUT is displayed as a hexadecimal signal.

HB0085 Handbook Revision 12.0 55

Example Design Using CoreABC

Figure 38 » ModelSim Simulation Showing I0_OUT Waveform

& Microsemi

a @Mlcno:mn company

7] ModelSim ACTEL 6.5a

File Edit Yiew Compile Simulate Add Wave Tools Layout ‘Window Help

O-20 & $ 2R D éaﬁ&%ﬁ“ Helpﬁau &

@m

@t e B oatRBBE Bees Y Ho| xox

% H Lavaut Wj ‘

QAQLAQE |

ANE Y| EEeT eS| a-aa3] %]
TR W

@sim — e H A X ‘IObjects
|¥|Instance

testbench

o FALWAYSHIZ
|g #vsim_capacity #

4 l Transcript

INS:11: JUMP ALWAYS 10
INS: 100 MOP

INS:11: JUMP ALWAYS 10
Entering ISR {SP=fe)

INS: 100 MOP

INS:1: IOREAD 10

INS:2: ACCUM 20 <= 10 ROL
NS5 IOWRT &CC 20

INS:4: APEWRT DAT 0:00 = OF
INS:5: APEWRT DAT 0:10 =00

WSIM 25

I|N0w: 100us Delta: 2 |sim:,l’testbench,l’abc_system_ﬂ

0psto 37211196 ps

MNow: 100us Delea: 2

K
A

HB0085 Handbook Revision 12.0

56

Example Design Using CoreABC

& Microsemi

a @MI:HGCHIP company

11.5 Simulation of CoreABC Only (unit test)

As well as running a system simulation, it is also possible to run a unit test on CoreABC only. To do this,
ensure that the Testbench configuration option for CoreABC is set to User (which is the default setting)
before generating the design in SmartDesign. In the Hierarchy tab of the Design Explorer window of
Project Manager, browse to the CoreABC instance. Right-click on the instance and select Set As Root,
as illustrated in Figure 39.

Figure 39 » Set As Root

o Project Manager - C:\Actelprjlcoreabc_examplelcoreabc_example. prj - [Project Flow]
gﬁroject File Edit Yiew Tools Window Help

FE@ DE @l
Current Designer view: |Impll 4 3 @
Dresign Explarer I x
Show: | Companents | Desig
=il wark ~E
E
=[] abe_system 10 Atbute | | o Eoior | s
- [Editor

[CoretsPE3v)
E=j_ CoreTimer [CoreTimer.v)

Open HDL file

i

Check HDL file
Create Symbol

Constraints L4

Properties

Show Component

il

With the CoreABC instance set as the design root, click the Simulation button. ModelSim will launch and
automatically run the CoreABC unit testbench. A "Tests Complete OKAY" type message will be displayed
in the ModelSim transcript window on successful completion of the testbench, as shown in Figure 40.

HB0085 Handbook Revision 12.0 57

Example Design Using CoreABC

ModelSim Simulation Window

Figure 40

ﬁ ModelSim ACTEL 6.5a - Custom Actel Yersion

& Microsemi

a AS\MicrocHip company

File Edit Yiew Compile Simulate Add Wave Tools Layout ‘Window Help

O-eE &

AEE | B cERH

% H Lavaut Wj ‘

@t € F wedEnEn ntenyye| ko
IEEEEIE

|aaaamn

Instance
I + g UM[3]
+ g uM[z]
T’— o UM
[+ UM[o]
gl encode
—ml doins

— gl doinss

— il doins4

— gl doins3

— gl doinsz

— gl doins1

— .l to_logic
—ml to_logic_xhdl
il calc_irwidth
il calc_swidth
— ol logzr

— gl calc_inibwidt
—l max

— .l min

o logz

[T o

5 I 10011010 G0100101 00010111, _I
LT LT B . L]
IR T ST W R RREY

M Mioodioe [0

ooooooon [T W TTnnadio
ooooooon [T W iaigio

115541300 ps

L

3
Hd %

INS:551: NOP

INS:552: JUMP ALWAYS 240

INS:240: IOWRT DAT fd

Info: ABC Indicated that it has completed
#

Tests Complete TM=11 SP=0 C¥=1342 OKAY
#

0ps I
)l n

1 l Transcript e
IN5:580: JUMP MOTIF LCZERO 254 (not kaken) J

11.6

11.7

WSIM 2= j

I|N0w: 115,841,300 ps Delta: 1

|sim:,|’TESTBENCH 0 ps to 121633365 ps Mow: 115,841,300 ps Delta: 1

A

Synthesis

To synthesize the design, first ensure that the design root is set to the top level of the design, which is
abc_system. The design root may have changed if, for example, you ran a CoreABC unit test as
described in the Simulation of CoreABC Only (unit test), page 57. Click the Synthesis button in the
Project Flow window to launch the Synplify synthesis tool. Click Run to run synthesis.

Place-and-Route

To run place-and-route, click the Place&Route button in the Project Flow window to launch the Designer
tool. Some dialog windows will be displayed as Designer starts. Enter appropriate information in these
windows—normally the default entries can be accepted by clicking the OK button on each window. In
Designer, click the Compile button to run the compile stage. If you intend to implement the design on a
real board, you will need to make some pin assignments to suit the target board. One way of doing this is
to use the I/O Attribute Editor (by clicking on the button of the same name) after compile has completed.
After compiling and making any necessary pin assignments, click the Layout button to run the layout stage.
After layout has completed, a programming file can be created by clicking the Programming File button
and clicking OK to the subsequent windows which pop up after making any necessary edits to the
information presented in these windows.

HB0085 Handbook Revision 12.0 58

CoreABC v2.3 Migration Guide

12

& Microsemi

a A8\ MicrocHiP company

CoreABC v2.3 Migration Guide

Migrating an existing design which uses CoreABC v2.3 to one which uses CoreABC v3.0 or later involves
a number of steps. CoreABC v2.3 required the CoreConsole tool to either create a complete CoreABC
based design or to create a CoreABC component (essentially a wrapped CoreABC instance) which
would typically be instantiated in a SmartDesign design. CoreABC v3.0 or later can be instantiated
natively in a SmartDesign design and does not require the CoreConsole tool at all.

A key difference to be aware of between CoreABC v2.3 and CoreABC v3.0 or later is that the CoreABC
v2.3 is designed for use with CoreAPB whereas CoreABC v3.0 or later must be used with CoreAPB3.

Follow these steps to migrate a design using CoreABC v2.3 to one using CoreABC v3.0 or later:

Open the original CoreABC v2.3 based design in CoreConsole.

Note/record the CoreABC configuration settings and make a copy of the program code.

Delete the CoreABC instance from the design.

Save and generate the design minus the CoreABC instance. It may be necessary to make some

stitching/connection changes at this point to allow the design to be generated without the CoreABC

instance in place. For example, you may need to tie off some inputs to other cores which were

previously driven by outputs from CoreABC.

5. Import the generated design into Libero IDE / SmartDesign and, when prompted, allow the tool to
convert the design from a CoreConsole design to a SmartDesign design.

6. Open the SmartDesign design.

7. Ifin the original design CoreABC v2.3 was used to master CoreAPB, replace CoreAPB with
CoreAPB3.

8. Instantiate CoreABC v3.0 or later and apply the original configurations and program code from
Step 2.

9. Connect and generate the design.

pPON=

HB0085 Handbook Revision 12.0 59

Example Instruction Sequence

& Microsemi

a AS\MicrocHip company

13 Example Instruction Sequence

The following shows an example instruction sequence that uses CoreABC to control CoreAl, to detect
whether a voltage source is within a range.

// Sample code that reads an analog input and sets an output depending on a
threshold DEF

ACM SIZE 90

DEF ADC_STAT HI ADDR 0x11

DEF ACM CTRLSTAT 0x0

DEF ACM DATA ADDR 0x04

DEF ACM ADDR ADDR 0x02

DEF ADC_CTRL2 HI ADDR 0x09

// Set up UART and put out welcome 115200 baud assuming 50 MHz clock
SRESET

APBWRT DAT8 1 8 27

APBWRT DAT8 1 12 1

SWelcomeMessage

WAIT UNTIL INPUTO APBWRT
DAT8 1 0 'O' WAIT UNTIL
INPUTO APBWRT DAT8 1 0 'K'
WAIT UNTIL INPUTO APBWRT
DAT8 1 0 10 WAIT UNTIL INPUTO
APBWRT DAT8 1 0 13

// Set up core AI
// Reset ACM
WAIT WHILE INPUT1

APBWRT DAT8 0
ACM CTRLSTAT 1 WAIT
WHILE INPUTI1

// Wait until calibrated
SWaitCalibrate
APBREAD 0
ADC_STAT HI ADDR AND
0x8000

JUMP IFNOT ZERO
SWaitCalibrate

// Program AV, AC, AT, AG
registers LOAD 0

SWaitRegProg
WAIT WHILE INPUTL
APBWRT ACC 0

ACM ADDR ADDR APBWRT

HB0085 Handbook Revision 12.0 60

Example Instruction Sequence

ACM 0 ACM DATA ADDR

ADD 1

CMP ACM SIZE

JUMP IFNOT ZERO $WaitRegProg

// Wait for ADC
calibrated WAIT
WHILE INPUT1
IOWRT 1

// Now get the POT value, which is on AC5
// Also mask bits
Smainloop
APBWRT DAT16 0 ADC CTRLZ2 HI ADDR
0x1100 WAIT WHILE ENPUTO_ -
APBREAD 0 ADC STAT HI ADDR
AND O0xOFFF

& Microsemi

a @Mlcno:mn company

// Got the value in the accumalator, store in RAM in 1 mV

value SHLO
SHLO
RAMWRT O
// Now generate BCD value
LOAD O
RAMWRT 11
RAMWRT 12
RAMWRT 13
// 0 = Value; 11-14 is BCD value
SBCD1
SUB 1000

JUMP IF NEGATIVE $BCD2
PUSH

RAMREAD 11
INC
RAMWRT 11
POP
JUMP $BCD1
$SBCD2
ADD 1000
$SBCD3
SUB 100
JUMP IF NEGATIVE S$BCD4
PUSH
RAMREAD 12
INC
RAMWRT 12
POP
JUMP $BCD3
$SBCD4
ADD 100
$SBCD5

HB0085 Handbook Revision 12.0

61

Example Instruction Sequence

& Microsemi

a AS\MicrocHip company

SUB 10

JUMP IF NEGATIVE $BCD6
PUSH

RAMREAD 13

INC

RAMWRT 13

POP

JUMP $BCD5
$SBCD6

ADD 10

RAMWRT 14

// BCD value is now in memory; send to UART

SvalueToUart
WAIT UNTIL INPUTO
RAMREAD 14
ADD 0x30
APBWRT ACC 1 O
WAIT UNTIL INPUTO
APBWRT DAT8 1 0
'.'" WAIT UNTIL
INPUTO RAMREAD 13
ADD 0x30
APBWRT ACC 1 0
WAIT UNTIL INPUTO
RAMREAD 12
ADD 0x30
APBWRT ACC 1 O
WAIT UNTIL INPUTO
RAMREAD 11
ADD 0x30
APBWRT ACC 1 0

WAIT UNTIL INPUTO
APBWRT DAT8 1 O
'V' WAIT UNTIL
INPUTO APBWRT
DAT8 0 O 10 WAIT
UNTIL INPUTO
APBWRT DAT8 0 O
13

JUMP $mainloop

This sequence allows CoreABC to initialize CoreAl and then sample an ADC channel, converting the
value to BCD (binary coded decimal) and transmitting the value using CoreUART. In this case, the BUSY
output from CoreAl is connected to the 10_IN(0) input of CoreABC.

HB0085 Handbook Revision 12.0 62

Example Instruction Sequence

& Microsemi

a AS\MicrocHip company

The following shows a simple example instruction sequence that uses CoreABC to write and read to the
MSS peripherals in indirect addressing mode without Z registers.

JUMP $MAIN

SMAIN

$LOOP

APBWRT DAT 1 0xO
0x20000000

APBWRT DAT O
0x0008 0xAB

APBREAD 0 0x0008

IOWRT ACC

JUMP $LOOP
The following shows a simple example instruction sequence that uses CoreABC to write and read to the
MSS peripherals in indirect addressing mode with Z registers.

JUMP $MAIN

SMAIN

$LOOP

APBWRT DAT 1 0xO
0x20000000

LOADZ DAT 0x0008

APBWRTZ DAT O
0OxAA

APBREADZ O
IOWRT ACC
JUMP SLOOP

HB0085 Handbook Revision 12.0 63

Instruction Summary

14

& Microsemi

a @Mlcno:mn company

Instruction Summary

14.1
14.1.1

14.1.2

14.1.3

141.4

This section details all the CoreABC instructions. The encoding can be found in Table 20.

Instructions
NOP

Operation

No operation
Flags
Unchanged
Clock Cycles
3

LOAD DAT Data

Operation

Load accumulator with immediate data value.

Flags

ZERO: Set if value is zero. NEGATIVE: Set if value is negative.
Clock Cycles

3

LOAD RAM Address

Operation

Load accumulator with RAM location.

Flags

ZERO: Set if value is zero. NEGATIVE: Set if value is negative.
Clock Cycles

3

INC

Operation

Increment the accumulator.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

HB0085 Handbook Revision 12.0 64

Instruction Summary

& Microsemi

a AS\MicrocHip company

14.1.5 AND DAT Data

Operation

AND the accumulator with the immediate data value.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

14.1.6 AND RAM Address

Operation

AND the accumulator with the RAM location.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

14.1.7 OR DAT Data

Operation

OR the accumulator with the immediate data value.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

14.1.8 OR RAM Address

Operation

OR the accumulator with the RAM location.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

14.1.9 XOR DAT Data

Operation

XOR the accumulator with the immediate data value.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

HB0085 Handbook Revision 12.0 65

Instruction Summary

& Microsemi

a AS\MicrocHip company

14.1.10 XOR RAM Address
Operation
XOR the accumulator with the RAM location.
Flags
ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles
3

14.1.11 ADD DAT Data

Operation

ADD the immediate data value to the accumulator.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

14.1.12 ADD RAM Address
Operation
ADD the RAM location to the accumulator.
Flags
ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles
3

14.1.13 SUB DAT Data

Operation

Subtract the immediate data value from the accumulator.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

14.1.14 SHLO
Operation
Shift the accumulator left; LSB <= 0.
Flags
ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles
3

HB0085 Handbook Revision 12.0 66

Instruction Summary

14.1.15

14.1.16

14.1.17

14.1.18

14.1.19

& Microsemi
a AS\MicrocHip company
SHRO
Operation

Shift the accumulator right; MSB <= 0.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative (not set).
Clock Cycles

3

SHLA1

Operation

Shift the accumulator left; LSB <= 1.

Flags

ZERO: Set if resultant value is zero (not set). NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

SHR1

Operation

Shift the accumulator right; MSB <= 1.

Flags

ZERO: Set if resultant value is zero (not set). NEGATIVE: Set if resultant value is negative (set).
Clock Cycles

3

SHLE

Operation

Shift the accumulator left; LSB <= LSB.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

SHRE

Operation

Shift the accumulator right; MSB <= MSB.

Flags

ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles

3

HB0085 Handbook Revision 12.0 67

Instruction Summary

& Microsemi

a AS\MicrocHip company

14.1.20 ROL
Operation
Rotate the accumulator left; LSB <= MSB.
Flags
ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles
3

14.1.21 ROR
Operation
Rotate the accumulator right; MSB <= LSB.
Flags
ZERO: Set if resultant value is zero. NEGATIVE: Set if resultant value is negative.
Clock Cycles
3

14.1.22 CMP DAT Data

Operation

Compare the accumulator with the immediate data value. Uses Boolean AND.
Flags

ZERO: Set if values are equal. NEGATIVE: Set if both MSBs are set.

Clock Cycles

3

14.1.23 CMP RAM Address

Operation

Compare the accumulator with the RAM location. Uses Boolean AND.
Flags

ZERO: Set if values are equal. NEGATIVE: Set if both MSBs are set.
Clock Cycles

3

14.1.24 CMPLEQ DAT Data

Operation

Compare the accumulator with the immediate data value. Uses subtract operation.
Flags

ZERO: Set if values are equal.

NEGATIVE: Set if accumulator is less than the data value.

Clock Cycles

3

HB0085 Handbook Revision 12.0 68

Instruction Summary

14.1.25

14.1.26

14.1.27

14.1.28

14.1.29

& Microsemi
a AS\MicrocHip company
BITCLRN
Operation

Clear accumulator bit N. Uses Boolean AND.
Flags

ZERO: Set if resultant accumulator value is zero. NEGATIVE: Set if resultant accumulator value is
negative.

Clock Cycles
3

BITSET N

Operation
Set accumulator bit N. Uses Boolean OR.
Flags

ZERO: Set if resultant accumulator value is zero (not set). NEGATIVE: Set if resultant accumulator value
is negative.

Clock Cycles
3

BITTSTN

Operation

Tests accumulator bit N. Uses Boolean AND.
Flags

ZERO: Set if the bit is zero. NEGATIVE: Undefined
Clock Cycles

3

APBREAD Slot Address

Operation

Reads the APB from the specified slot and address, and stores the value in the accumulator.
Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT ACC Slot Address

Operation

Writes the accumulator to the APB at the specified slot and address.
Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

HB0085 Handbook Revision 12.0 69

Instruction Summary

14.1.30

14.1.31

14.1.32

14.1.33

14.1.34

& Microsemi
a AS\MicrocHip company
APBWRT ACM Slot Address
Operation

Writes the value in the ACM table indexed by the accumulator to the APB at the specified slot and
address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT DAT Slot Address Data

Operation

Writes the data value to the APB at the specified slot and address.
Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT DATS8 Slot Address Data

Operation

Writes only the lowest eight bits of the data value to the APB at the specified slot and address. Specifying
DATS8 rather than DAT may reduce tile count when AHB_DWIDTH > 16.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT DAT16 Slot Address Data

Operation

Writes only the lowest 16 bits of the data value to the APB at the specified slot and address. Specifying
DAT16 rather than DAT may reduce tile count when AHB_DWIDTH = 32.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBREADZ Siot

Operation

Reads the APB from the specified slot and address, and stores the value in the accumulator. The Z
register is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

HB0085 Handbook Revision 12.0 70

Instruction Summary

14.1.35

14.1.36

14.1.37

14.1.38

& Microsemi
a AS\MicrocHip company
APBWRTZ ACC Slot
Operation

Writes the accumulator to the APB at the specified slot and address. The Z register is used as the APB
address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ ACM S/ot

Operation

Writes the value in the ACM table indexed by the accumulator to the APB at the specified slot and
address. The Z register is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ DAT S/ot Data

Operation

Writes the data value to the APB at the specified slot and address. The Z register is used as the APB
address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ DAT8 Slot Data

Operation

Writes only the lowest eight bits of the data value to the APB at the slot and address pointed to by the Z
register. Specifying DAT8 rather than DAT may reduce tile count when AHB_DWIDTH > 16. The Z register
is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

HB0085 Handbook Revision 12.0 71

Instruction Summary

14.1.39

14.1.40

14.1.41

14.1.42

14.1.43

APBWRTZ DAT16 Slot Data

Operation

& Microsemi

a AS\MicrocHip company

Writes only the lowest 16 bits of the data value to the APB at the specified slot and address. Specifying
DAT16 rather than DAT may reduce tile count when AHB_DWIDTH = 32. The Z register is used as the

APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

LOADZ DAT Data

Operation

Loads the Z register with immediate data value.
Flags

ZZERO: Set if value is zero.

Clock Cycles

3

DECZ

Operation

Decrements the Z register.

Flags

ZZERQO: Set if the Z register decrements to zero.
Clock Cycles

3

INCZ

Operation

Increments the Z regqister.

Flags

ZZERO: Set if the Z register Increments to zero.
Clock Cycles

3

ADDZ Data

Operation

Adds Data to the Z register.

Flags

ZZERO: Set if the resultant Z register value is zero.
Clock Cycles

3

HB0085 Handbook Revision 12.0

72

Instruction Summary

& Microsemi

a @MI:HGCHIP company

14.1.44 IOREAD

Operation

Load the 10_IN port value into the accumulator.
Flags

Updated

Clock Cycles

3

14.1.45 IOWRT DAT Data

Operation

Writes the data value to the I/O register that drives the 10_OUT top-level port.
Flags

Unchanged

Clock Cycles

3

14.1.46 IOWRT ACC

Operation

Writes the accumulator to the 1/O register that drives the I0_OUT top-level port.
Flags

Unchanged

Clock Cycles

3

14.1.47 RAMREAD Address

Operation

Loads the accumulator with the value stored at the specified address in the internal memory.
Flags

ZERO: Set if read value is zero. NEGATIVE: Set if read value is negative.

Clock Cycles

3

14.1.48 RAMWRT Address ACC

Operation

Writes the accumulator to the specified address in the internal memory.
Flags

Unchanged

Clock Cycles

3

HB0085 Handbook Revision 12.0 73

Instruction Summary

& Microsemi

a AS\MicrocHip company

14.1.49 RAMWRT Address DAT Data

Operation

Writes the data value to the specified address in the internal memory.
Flags

Unchanged

Clock Cycles

3

14.1.50 POP

Operation

Decrements the stack pointer and then loads the accumulator with the internal memory location
addressed by the stack pointer.

Flags

ZERO: Set if read value is zero. NEGATIVE: Set if read value is negative.
Clock Cycles

3

14.1.51 PUSH DAT Data

Operation

Writes the immediate data to the internal memory location addressed by the stack pointer and then
decrements the stack pointer.

Flags
Unchanged
Clock Cycles
3

14.1.52 PUSH ACC

Operation

Writes the accumulator to the internal memory location addressed by the stack pointer and then
decrements the stack pointer.

Flags
Unchanged
Clock Cycles
3

14.1.53 JUMP Address

Operation

Jumps always to specified instruction address.
Flags

Unchanged

Clock Cycles

3

HB0085 Handbook Revision 12.0 74

Instruction Summary

14.1.54

14.1.55

14.1.56

14.1.57

14.1.58

& Microsemi

a @MI:HGCHIP company

JUMP IF|IFNOT Condition Address

Operation

Jumps on or not on condition to specified instruction address. Conditions are specified in Table 20.
Flags

Unchanged

Clock Cycles

3

CALL Address

Operation

Jumps always to specified instruction address. The following instruction address is pushed onto the stack
and the stack pointer decremented.

Flags
Unchanged
Clock Cycles
3

CALL IF|IFNOT Condition Address

Operation

Jumps on or not on condition to specified instruction address. The following instruction address is pushed
onto the stack and the stack pointer decremented. Conditions are specified in Table 20.

Flags
Unchanged
Clock Cycles
3

RETURN

Operation

Jumps to the instruction address read from the stack. The stack pointer is incremented.
Flags

Unchanged

Clock Cycles

3

RETURN IF|IFNOT Condition

Operation

Jumps on or not on condition to the instruction address read from the stack. The stack pointer is
incremented. Conditions are specified in Table 20.

Flags
Unchanged
Clock Cycles
3

HB0085 Handbook Revision 12.0 75

Instruction Summary

14.1.59

14.1.60

14.1.61

14.1.62

& Microsemi
a AS\MicrocHip company
RETISR
Operation

Jumps to the instruction address read from the stack. The stack pointer is incremented. The INTACT
output is deactivated.

Flags

Restored to the values preceding the interrupt.
Clock Cycles

3

RETURN IF|IFNOT Condition

Operation

Jumps on or not on condition to the instruction address read from the stack. The stack pointer is
incremented. The internal INTACT output is deactivated. Conditions are specified below.

Flags

Restored to the values preceding the interrupt.
Clock Cycles

3

WAIT UNTIL|WHILE Condition

Operation

Wait at the current instruction until or while a condition is true. Conditions are specified below.
Flags

Unchanged

Clock Cycles

3tow

HALT
Operation
Halt

Flags
Unchanged
Clock Cycles
¥

HB0085 Handbook Revision 12.0 76

Instruction Summary

& Microsemi

a A8\ MicrocHiP company

14.1.63 Condition Codes

The conditions codes are shown in Table 20.

Table 20« Condition Codes

Condition Encoding Description

ALWAYS 0x01 Always

ZERO 0x02 Accumulator zero

NEGATIVE 0x04 Accumulator negative

ZZERO 0x08 Z register zero

INPUTO 0x010 InputO set

INPUT1 0x020 Input1 set and similarly for higher inputs, if available

LTE_ZERO 0x06 Less than or equal to zero; the combination NEGATIVE OR ZERO

HB0085 Handbook Revision 12.0 77

	1 Revision History
	1.1 Revision 12.0
	1.2 Revision 11.0
	1.3 Revision 10.0
	1.4 Revision 9.0
	1.5 Revision 8.0
	1.6 Revision 7.0
	1.7 Revision 6.0
	1.8 Revision 5.0
	1.9 Revision 4.0
	1.10 Revision 3.0
	1.11 Revision 2.0
	1.12 Revision 1.0

	2 Introduction
	2.1 CoreABC Overview
	2.2 Supported Device Families
	2.3 Core Version
	2.4 Supported Interfaces
	2.5 Supported Tool Flows
	2.6 Utilization and Performance

	3 Functional Description
	4 Interface
	4.1 Overview of Interfaces
	4.2 Parameters
	4.3 EN_DATAM Parameter
	4.4 Ports

	5 CoreABC Programmer’s Model
	5.1 Address Spaces
	5.1.1 Internal Data RAM Address Space (optional)
	5.1.2 I/O Address Space
	5.1.3 APB Address Space

	5.2 Registers
	5.2.1 Accumulator
	5.2.2 Z Register (Optional)
	5.2.3 Flags Register—Inputs and Condition Codes

	5.3 Instruction Set
	5.3.1 Constant Expressions
	5.3.2 Conditional Code

	6 CoreABC Operation
	6.1 ACM Lookup Table for Use with CoreAI
	6.2 Stack
	6.3 Interrupt Operation

	7 CoreABC Configuration
	7.1 Configurable Options
	7.1.1 Data Bus Width
	7.1.2 Number of APB Slots
	7.1.3 APB Slot Size
	7.1.4 Maximum Number of Instructions
	7.1.5 Z Register Size
	7.1.6 Number of I/O Inputs
	7.1.7 Number of I/O Flag Inputs
	7.1.8 Number of I/O Outputs
	7.1.9 Stack Size
	7.1.10 Instruction Store
	7.1.11 Init/Config Address Width
	7.1.12 Instruction Store APB Access
	7.1.13 Use Calibration NVM
	7.1.14 Internal Data/Stack Memory
	7.1.15 ALU Operation from Memory
	7.1.16 APB Indirect Addressing
	7.1.17 Supported Data Sources
	7.1.18 Interrupt Support
	7.1.19 ISR Address
	7.1.20 Optional Instructions
	7.1.21 License
	7.1.22 Testbench
	7.1.23 Verbose Simulation Log

	7.2 Cross-Validation of Configuration Fields
	7.3 NVM Data Width on AFS090 Device

	8 CoreABC Programming
	8.1 Analysis
	8.2 CoreABC Instruction Modes
	8.2.1 Hard Mode
	8.2.2 Soft Mode
	8.2.3 NVM Mode

	9 Tool Flows
	9.1 Licensing
	9.1.1 Obfuscated
	9.1.2 RTL

	9.2 SmartDesign
	9.3 Simulation Flows
	9.4 Synthesis in Libero IDE
	9.5 Place-and-Route in Libero IDE
	9.6 Design Constraints
	9.6.1 Timing Constraints

	10 Testbench
	10.1 Unit Testbench
	10.2 System Simulation
	10.3 Simulation Logging

	11 Example Design Using CoreABC
	11.1 Create a New Project
	11.2 Create a SmartDesign Design
	11.3 Instantiate, Configure, and Connect the Components
	11.4 System Simulation
	11.5 Simulation of CoreABC Only (unit test)
	11.6 Synthesis
	11.7 Place-and-Route

	12 CoreABC v2.3 Migration Guide
	13 Example Instruction Sequence
	14 Instruction Summary
	14.1 Instructions
	14.1.1 NOP
	14.1.2 LOAD DAT Data
	14.1.3 LOAD RAM Address
	14.1.4 INC
	14.1.5 AND DAT Data
	14.1.6 AND RAM Address
	14.1.7 OR DAT Data
	14.1.8 OR RAM Address
	14.1.9 XOR DAT Data
	14.1.10 XOR RAM Address
	14.1.11 ADD DAT Data
	14.1.12 ADD RAM Address
	14.1.13 SUB DAT Data
	14.1.14 SHL0
	14.1.15 SHR0
	14.1.16 SHL1
	14.1.17 SHR1
	14.1.18 SHLE
	14.1.19 SHRE
	14.1.20 ROL
	14.1.21 ROR
	14.1.22 CMP DAT Data
	14.1.23 CMP RAM Address
	14.1.24 CMPLEQ DAT Data
	14.1.25 BITCLR N
	14.1.26 BITSET N
	14.1.27 BITTST N
	14.1.28 APBREAD Slot Address
	14.1.29 APBWRT ACC Slot Address
	14.1.30 APBWRT ACM Slot Address
	14.1.31 APBWRT DAT Slot Address Data
	14.1.32 APBWRT DAT8 Slot Address Data
	14.1.33 APBWRT DAT16 Slot Address Data
	14.1.34 APBREADZ Slot
	14.1.35 APBWRTZ ACC Slot
	14.1.36 APBWRTZ ACM Slot
	14.1.37 APBWRTZ DAT Slot Data
	14.1.38 APBWRTZ DAT8 Slot Data
	14.1.39 APBWRTZ DAT16 Slot Data
	14.1.40 LOADZ DAT Data
	14.1.41 DECZ
	14.1.42 INCZ
	14.1.43 ADDZ Data
	14.1.44 IOREAD
	14.1.45 IOWRT DAT Data
	14.1.46 IOWRT ACC
	14.1.47 RAMREAD Address
	14.1.48 RAMWRT Address ACC
	14.1.49 RAMWRT Address DAT Data
	14.1.50 POP
	14.1.51 PUSH DAT Data
	14.1.52 PUSH ACC
	14.1.53 JUMP Address
	14.1.54 JUMP IF|IFNOT Condition Address
	14.1.55 CALL Address
	14.1.56 CALL IF|IFNOT Condition Address
	14.1.57 RETURN
	14.1.58 RETURN IF|IFNOT Condition
	14.1.59 RETISR
	14.1.60 RETURN IF|IFNOT Condition
	14.1.61 WAIT UNTIL|WHILE Condition
	14.1.62 HALT
	14.1.63 Condition Codes

