
HB0249

CoreRSDEC v3.6 Handbook
12 2016

HB0249: CoreRSDEC v3.6 Handbook

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its
products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or
use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products,
alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or
parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test
and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any
patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such
information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any
changes to the information in this document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace &
defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog
mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise
time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage
and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs
and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 4,800 employees globally. Learn more at www.microsemi.com.

©2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi
Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com
www.microsemi.com

 50200249-5.12/16 Revision 5 2

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

HB0249: CoreRSDEC v3.6 Handbook

1 Revision History

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

1.1 Revision 5.0
Updated changes related to CoreRSDEC v3.6.

1.2 Revision 4.0
Updated changes related to CoreRSDEC v3.5.

1.3 Revision 3.0
Updated changes related to CoreRSDEC v3.4.

1.4 Revision 2.0
Updated changes related to CoreRSDEC v3.1.

1.5 Revision 1.0
Revision 1.0 was the first publication of this document. Created for CoreRSDEC v3.0

 50200249-5.12/16 Revision 5 3

HB0249: CoreRSDEC v3.6 Handbook

Contents

1 Revision History .. 3
1.1 Revision 5.0 .. 3
1.2 Revision 4.0 .. 3
1.3 Revision 3.0 .. 3
1.4 Revision 2.0 .. 3
1.5 Revision 1.0 .. 3

2 Introduction ... 8
2.1 Overview .. 8
2.2 Features ... 9
2.3 Core Version ... 9
2.4 Supported Families .. 9
2.5 Device Utilization and Performance .. 10

3 Functional Description ... 12
3.1 Theory of Operation .. 12

3.1.1 Properties of Reed-Solomon Codes ... 12
3.1.2 Galois Field Math ... 13
3.1.3 Shortened Codes ... 13
3.1.4 Erasures ... 14
3.1.5 CoreRSDEC Block Diagram ... 14
3.1.6 CoreRSDEC Timing ... 16
3.1.7 Decoder Processing Cycle .. 17

4 Interface ... 19
4.1 Ports ... 19
4.2 Configuration Parameters .. 20

5 Timing Diagrams .. 22
5.1 I/O Signal Functionality .. 22

5.1.1 NGRST, RST Input ... 22
5.1.2 CLK, CLKEN Input ... 22
5.1.3 START Input .. 22
5.1.4 RFS Output ... 23
5.1.5 RFD Output .. 23
5.1.6 RDY Output .. 23
5.1.7 RECDIN Input ... 23
5.1.8 DATOUT Output ... 23
5.1.9 CODOUT Output .. 24
5.1.10 CODERDY Output ... 24
5.1.11 RDYPULSE Output .. 24

 50200249-5.12/16 Revision 5 4

HB0249: CoreRSDEC v3.6 Handbook

5.1.12 FLAGFAIL Output.. 24
5.1.13 FLAGNOERR Output ... 25
5.1.14 ERRCOUNT Output .. 25
5.1.15 ERAMARK Input ... 25
5.1.16 TAGIN, TAGOUT ... 25

6 Tool Flow .. 26
6.1 License ... 26
6.2 SmartDesign ... 26
6.3 Configuring CoreRSDEC in SmartDesign... 27
6.4 Simulation Flows .. 28
6.5 Synthesis in Libero ... 28
6.6 Place-and-Route in Libero .. 28

7 Testbench ... 29
7.1 User Test-bench ... 29
7.2 References ... 30

8 System Integration ... 31

9 Ordering Information ... 32
9.1 Ordering Codes .. 32

 50200249-5.12/16 Revision 5 5

HB0249: CoreRSDEC v3.6 Handbook

List of Figures

Figure 1 An Example of a Digital Communication System ... 9
Figure 2 The RS Code Structure ... 12
Figure 3 CoreRSDEC Block Diagram ... 15
Figure 4 CoreRSDEC in CCSDS /Conventional Usage Block Diagram ... 15
Figure 5 CoreRSDEC Latency .. 16
Figure 6 Codeword Length Determines Minimum Inter-Start Interval ... 17
Figure 7 Berlekamp Stage Determines Minimum Inter-Start Interval ... 18
Figure 8 Berlekamp Computation Time vs t .. 18
Figure 9 CoreRSDEC I/O Signals ... 19
Figure 10 RS Decoder Timing ... 22
Figure 11 RDY Signal Accompanies Corrected Output Data .. 23
Figure 12 RDYPULSE Signal .. 24
Figure 13 Flags Refer to the Last Output Data Portion or Codeword .. 24
Figure 14 Precise Timing for the Flags ... 25
Figure 15 SmartDesign CoreRSDEC Instance View .. 26
Figure 16 Configuring CoreRSDEC in SmartDesign .. 27
Figure 17 CoreRSDEC User Testbench ... 29

 50200249-5.12/16 Revision 5 6

HB0249: CoreRSDEC v3.6 Handbook

List of Tables

Table 1 CoreRSDEC Device Utilization and Performance .. 10
Table 2 CoreRSDEC Test Configurations .. 11
Table 3 Default Primitive Polynomials ... 13
Table 4 I/O Signal Description ... 20
Table 5 CoreRSDEC Configuration Parameters .. 21
Table 6·Ordering Codes ... 32

 50200249-5.12/16 Revision 5 7

HB0249: CoreRSDEC v3.6 Handbook

2 Introduction

2.1 Overview
CoreRSDEC is a register transfer level (RTL) generator that produces a Microsemi® fabric
programmable gate array (FPGA)–optimized Reed-Solomon (RS) decoder core based on user-defined
parameters.

RS code is a class of error-correcting codes used to detect and correct errors that might be
introduced into digital data when it is transmitted or stored. Error-correcting codes incorporate
redundancy in data. With this redundancy, only a subset of all possible transmissions contains valid
messages. This means the valid codes are separated from each other, so errors are not likely to
corrupt one valid code into another. The encoded data can then be transmitted or stored. When
recovering data, a decoder first determines if a received message is a valid one. This step is called
error detection. Once any error is detected, the decoder finds a valid message “closest” to the
received one. Provided the number of corrupted words (symbols) does not exceed a specified range,
the message found is the one that was transmitted. Thus, the decoder conducts error correction.

The number of errors the code can correct depends on the amount of redundancy added. In other
words, if more errors are expected to occur, more redundant symbols need to be added. The
number of redundant symbols directly impacts the complexity of the Reed-Solomon codec (encoder
and especially decoder).

The RS encoder and decoder do not necessarily have to be coupled. Both encoder and decoder
operate over an RS code that is entirely defined by a user through the core configuration
parameters. Once the same RS code parameters are defined, the encoder/decoder can
communicate to a different decoder/encoder at logical level. A physical level converters and
minimal handshaking logic are required to be provided if necessary. The RS encoders and decoders
work with each other with no extra logic or converters necessary.

The CoreRSDEC is configured through the Configurator GUI. Only the desired parameter values need
to be set. For a detailed description of the configuration parameters, refer to the Configuration
Parameters section.

An example of a digital communication system utilizing the RS codec is shown in Figure 1. Data gets
encoded then modulated and transmitted through a communication channel that could introduce
one or more errors. At the receiver end, a demodulated message gets decoded with erroneous
symbols corrected. The recovered data goes to its destination.

 50200249-5.12/16 Revision 5 8

HB0249: CoreRSDEC v3.6 Handbook

Figure 1 An Example of a Digital Communication System

Data
Source

RS
Encoder Modulator

Noisy
Channel of

Other Medium

DemodulatorRS
Decoder

Data
Destination

2.2 Features
CoreRSDEC is a highly configurable core and has the following features:

• Parameterizable CoreRSDEC generator
• Symbol widths from 3 to 8 bits
• Supports shortened code in conventional mode decoding
• Supports CCSDS-16 and CCSDS-8 decoding
• CCSDS mode supports data decoding presented in dual basis

2.3 Core Version
This handbook is for CoreRSDEC version 3.6.

2.4 Supported Families
• SmartFusion®2
• SmartFusion®
• Axcelerator®

• RTAX™-S
• ProASICPLUS®
• ProASIC®3
• ProASIC3E
• ProASIC3L
• Fusion®

• IGLOO®
• IGLOOe
• IGLOOPLUS
• IGLOO®2
• RTG4™
• PolarFire

 50200249-5.12/16 Revision 5 9

HB0249: CoreRSDEC v3.6 Handbook

2.5 Device Utilization and Performance
CoreRSDEC has been implemented in several Microsemi FPGA families. A summary of the data for
CoreRSDEC is listed in Table 1.

Table 1 CoreRSDEC Device Utilization and Performance

FPGA Family and
Device

Config Logic Elements Utilization % RAM Blocks Device
SpeedGrade

Clock Rate
(MHz) Comb Seq Total

Fusion® AFS600

1 4,721 1,201 5,922 42.84 1 -2 54.9

2 4,760 1,229 5,989 43.32 1 -2 56.8

3 7,582 2,075 9,657 69.86 1 -2 51.7

IGLOO® AGL600V5

1 4,720 1,203 5,923 42.85 1 STD 35.1

2 4,788 1,228 6,016 43.52 1 STD 35.3

3 7,628 2,073 9,701 70.18 1 STD 31.5

ProASIC®3 A3P600

1 4,728 1,202 5,930 42.90 1 -2 54.9

2 4,760 1,229 5,989 43.32 1 -2 56.8

3 7,582 2,075 9,657 69.86 1 -2 51.7

ProASICPLUS®
APA1000

1 7,027 1,268 8,295 14.7 2 STD 31.9

2 7,412 1,295 8,437 15 2 STD 31

3 11,830 2,157 13,987 24.8 2 STD 30

Axcelerator® AX1000

1 4,092 1,268 5,360 29.54 1 -2 63.1

2 4,116 1,347 5,463 30.11 1 -2 65.7

3 7,128 2,225 9,353 51.55 1 -2 59.5

RTAX™-S RTAX1000

1 4,027 1,305 5,332 29.39 1 -1 71.5

2 4,090 1,333 5,423 29.89 1 -1 66.5

3 7,126 2,215 9,341 51.48 1 -1 67.5

SmartFusion®2
M2SO50T

1 3,218 1,157 4,365 8.99 1 -1 115.8

2 3,230 1,184 4,414 9.07 1 -1 121.8

3 5,334 2,022 7,356 15.11 1 -1 116

IGLOO®2
M2GL005

1 3,275 1,198 4,473 36.90 1 -1 124.0

2 3,499 1,207 4,706 38.82 1 -1 116.6

3 5,486 2,039 7,525 62.08 1 -1 116.7

RTG4™
RT4G150

1 5,751 2,232 7,893 3.85 1 -1 93.6

2 3,623 1,364 4,987 1.64 1 -1 90.5

3 5,896 2,267 8,163 2.68 1 -1 85.2

PolarFire
MPF300T_ES

1 5,217 2,072 7,289 2.43 1 STD 119.6

2 3,422 1,230 4,652 1.55 1 STD 122.6

3 5,316 2,083 7,399 2.47 1 STD 114.7

Note: Data in this table is gathered using typical synthesis and layout settings. Throughput is computed as follows:
(Bit width / Number of cycles) × Clock Rate (Performance).

 50200249-5.12/16 Revision 5 10

HB0249: CoreRSDEC v3.6 Handbook

CoreRSDEC configuration parameters are set as listed in Table 2: Conventional, CCSDS-8, and
CCSDS-16 respectively.

Table 2 CoreRSDEC Test Configurations

Parameters Configuration

Name Description 1 2(CCSDS-8) 3(CCSDS-16)

m Symbol width, bits. 8 8 8

n Codeword length, symbols. 255 255 255

t Number of correctable symbols. 16 8 16

B0 First root of the Primitive polynomial. 112 120 112

prim_poly Primitive polynomial. 391 391 391

Enable erasure Erasure enabled. No No No

No Error Flag Error Flag enabled. No No No

Enable Tag Tag enabled. No No No

 50200249-5.12/16 Revision 5 11

HB0249: CoreRSDEC v3.6 Handbook

3 Functional Description

3.1 Theory of Operation

3.1.1 Properties of Reed-Solomon Codes
An RS is a block code generally designated as RS (n, k) with m-bit symbols, where k is the number of
data symbols per block, n is the number of symbols the encoded message contains, and the symbol
size m can be in a range from one to several bits [2, 4]. Obviously, the encoded message, called a
codeword, has n – k redundant parity symbols. The code can correct up to t = (n – k) / 2 symbols.

The RS code is also a systematic one since the encoder appends the parity symbols to the otherwise
unchanged original data sequence. Figure 2 shows the RS code structure.

The RS code is a linear code. In practice, this means every possible m-bit word is a valid symbol. For
instance, with 8-bit RS symbols, any 8-bit word can be transmitted directly in the data part of a
codeword (Figure 2), so the encoder does not care what the nature of the data is, whether it is a
binary stream separated into blocks of k 8-bit symbols, ASCII codes, and so on. Given a symbol size
m, the maximum RS codeword length is nmax = 2m – 1.

Figure 2 The RS Code Structure

m-bit Symbol Data Parity

k 2t

n

An RS (255, 223) code with 8-bit symbols utilized by many standards, should be considered. Each
codeword contains 223 data bytes and 32 parity bytes, a total of 255-byte codeword. The code is
capable of correcting up to 16 corrupted symbols.

Parameters of the code are as following:

• n = 255
• k = 223
• m = 8
• t = (255 – 223) / 2 = 16

A corrupted symbol can have one or more (up to m) erroneous bits. In the above example, the RS
code can correct up to 16 symbol errors while every erroneous symbol has one to eight corrupted
bits. This property makes RS codes a powerful tool for protecting data impacted by burst errors.

 50200249-5.12/16 Revision 5 12

HB0249: CoreRSDEC v3.6 Handbook

3.1.2 Galois Field Math

RS codes are based on Galois fields (GFs), also called finite fields. The rules of GF arithmetic are
different from the usual arithmetic rules. For instance, GFs are finite fields. To generate and decode
RS code of m-bit symbols, an m-bit wide Galois field is used. References section (Rorabaugh and
Sweeney) provides a gentle introduction to the GF math. Only a few notes on GFs are discussed
(those that help configure CoreRSENC and CoreRSDEC).

A Galois field used to generate RS code is defined by RS symbol size m and a primitive polynomial.
The polynomial has binary coefficients—that is., either 0 or 1.

For instance:

1 * x8 + 0 * x7 + 0 * x6 + 0 * x5 + 1 * x4 + 1 * x3 + 1 * x2 + 0 * x + 1

Depending on the size m, there might be one or more valid primitive polynomials. Different
polynomials generate different GFs and thus different RS codes. Usually, particular standards—for
example, 802.11—define the primitive polynomial to be used in an RS encoder/decoder. The
Microsemi RS cores support any user-defined polynomial valid with any symbol size m. Polynomials
are entered as decimal numbers. The bits of this number’s binary image correspond to the
polynomial coefficients.

For example:

1 * x8 + 0 * x7 + 0 * x6 + 0 * x5 + 1 * x4 + 1 * x3 + 1 * x2 + 0 * x + 1 => 100011101 = 285

Configurator provides a drop-down menu that lists all valid primitive polynomials. In case the user
does not select a specific polynomial, the core uses a default primitive polynomial. Default
polynomials are listed in Table 3.

Table 3 Default Primitive Polynomials

Symbol Size, m Default Polynomial Decimal Form

3 x3 + x + 1 11

4 x4 + x + 1 19

5 x5 + x2 + 1 37

6 x6 + x + 1 67

7 x7 + x3 + 1 137

8 x8 + x4 + x3 + x2 + 1 285

Another important polynomial an RS codec directly utilizes is a generator polynomial. This is derived
from the primitive polynomial based on the first root of the generator polynomial. Again, particular
standards often define the first root value to be used in the RS codec. Most common first root values
are: 0 or 1, but CoreRSDEC supports any value in the range from 0 to n – 1.

3.1.3 Shortened Codes
A shortened codeword contains fewer symbols than the maximum nmax = 2m – 1. The shortened
codeword keeps the same number of parity symbols, 2t, to correct up to t errors. Therefore, the
number of data symbols in the shortened code is reduced by RS (255, 239). Both codes have a
symbol width of 8 and use the same number of parity symbols, 16. Conceptually, shortening a
codeword is done by assuming initial extra data symbols of the maximum-length codeword are set
to 0. Though efficiency of the shortened code is lesser than the maximum-length code, some
standards require the RS codec to use it.

 50200249-5.12/16 Revision 5 13

HB0249: CoreRSDEC v3.6 Handbook

3.1.4 Erasures

Normally, the CoreRSDEC detects and corrects errors based solely on the n – k redundant parity
symbols. Additional data is not needed to perform data detection/correction.

Erasure is an instance when CoreRSDEC knows an incoming symbol is likely to be an error. This
knowledge comes from outside rather than from decoding the RS code and detecting the error
inside CoreRSDEC. For example, a receiver can have a threshold detector that decides whether an
input signal level carries a bit value of 0 or 1. It is reasonable to set the thresholds in such way that
there are thresholds where the receiver is certain it receives 0 or 1, and an uncertainty threshold
between the first two where the receiver refuses to make a decision. Such a receiver produces a
three-value bit: 0, 1, or X (uncertain). Erasure is an instance when an uncertain symbol gets into
CoreRSDEC.

Erasure locations (which symbols are uncertain) are known to the decoder beforehand.

CoreRSDEC can work with a mixture of errors and erasures. If the number of erasures in a codeword
is e and the number of errors in the same codeword is r, the following relation holds for the
codeword that includes 2t parity symbols (Morelos-Zaragoza, References): 2t > 2r + e.

Erasure mode can either be enabled or disabled when configuring the core. Enabling Erasure mode
substantially increases the FPGA resource utilization.

For example: in case of mixture of error and erasure in conventional mode of decoding.

if tt=8 then 16 > 2 * r + e . Specific case is 16 > 2 * 7 + 1 in that case 7 errors and 1 erasure mixture
can be correctable.

3.1.5 CoreRSDEC Block Diagram
Figure 3 shows a simplified block diagram of the CoreRSDEC. A received codeword comes at the
input recdIn of the CoreRSDEC. A Syndrome calculator calculates a set of Syndromes for every
received codeword. Next, a key equation solver determines an error location and any error value
polynomials. The key equation solver implements the Berlekamp-Massey algorithm. These
polynomials are used by the Chien search and Forney algorithm to determine the error locations and
values. The Chien-Forney block puts out errors detected. An actual error correction is happening at
the m-bit-wide XOR gates.

The three major blocks work concurrently: when the Syndrome calculator processes the codeword
(i), the key equation solver processes data relevant to the previous codeword (i – 1), and the Chien-
Forney block processes the data relevant to the yet older codeword (i – 2). The delay line serves to
balance the processing delay the three major blocks introduce, so the erroneous input symbol and
the corresponding error detected get to the symbol-wide XOR gate at the same time.

 50200249-5.12/16 Revision 5 14

HB0249: CoreRSDEC v3.6 Handbook

Figure 3 CoreRSDEC Block Diagram

Syndrome
calculator

Berlekamp-
Massey

key equation
solver

Chien Search,
Forney

algorithm

GF

RECDIN

error

Delay line DATOUT

Process
codeword i

Process
codeword i-1

Process
codeword i-2

codeword i-2

CCSDS Compliance

CoreRSDEC works in Conventional mode or in CCSDS mode. In conventional mode, the decoder
parameters supported are carried forward from the previous release. Refer to Table 5.

For making CoreRSDEC to CCSDS-compliant, a dual-to-conventional converter should be optionally
used in front of the existing traditional decoder.

Figure 4 CoreRSDEC in CCSDS /Conventional Usage Block Diagram

Dual to
Conventional

Converter

Conventional
To Dual Basis

Converter

Conventional
RSDEC

CCSDS
Mode

Dual Basis

Conventional Basis

CCSDS
Mode

Conventional Basis

If the dual basis code comes from a communications channel/encoder, a dual basis needs to be
applied to conventional converter. Then the decoder will always face conventional code only.

CoreRSDEC provides the dual basis output for the Dual basis input which is referred CCSDS mode.

CoreRSDEC provides the conventional basis output for the conventional basis input, which is
referred as conventional mode.

 50200249-5.12/16 Revision 5 15

HB0249: CoreRSDEC v3.6 Handbook

3.1.6 CoreRSDEC Timing

Latency

Figure 5 shows a sequence of the decoding process. The Syndrome calculator analyzes incoming
codeword symbols in real time. It keeps doing this while a codeword is entering the decoder. Ovals
called Syndrome i, i + 1, and i + 2 in Figure 5 shows time intervals when the Syndrome calculator is
busy processing incoming codewords i, i + 1, and i + 2, respectively. Once the codeword is over, the
Syndrome calculator transfers the syndromes to the Berlekamp block. The latter takes a certain time
to compute the necessary polynomials. The ovals Berlekamp i, i + 1, and i + 2 in Figure 5 show the
time intervals the Berlekamp block takes to perform appropriate computations. Once the Berlekamp
results are ready, they are transferred to the Chien-Massey block. This produces the final result of
the decoder with a small latency of a few clock periods. The ovals Corrected Code i, i + 1, and i + 2
reflect the time intervals when the corrected code is being put out. The overall delay from a START
signal to the moment the decoder starts generating the final result is shown in Figure 5 as the
latency.

As seen in Figure 5, the latency does not depend on the time interval between the incoming
codewords, as the Berlekamp computation immediately follows Syndrome completion, and then
Chien-Massey starts right after the Berlekamp is over.

In most practical cases, the latency equals approximately twice the codeword length. In some cases,
namely when the parameters are set so that n < 9t + 8, the latency equals approximately twice the
Berlekamp processing time. The Decoder Processing Cycle section provides a detailed explanation of
the difference. The precise latency value can be measured as a time interval between the input
START signal and the output RDY signal. The core generates the RDY signal to mark the time interval
when the corrected code is coming out.

Figure 5 CoreRSDEC Latency

Syndrome i

Berlekamp i+2

Chien-Massey i+2

START START

Syndrome i+1

Berlekamp i

Chien-Massey i+1

START

Syndrome i+2

Berlekamp i+1

Chien-Massey i

Corrected Code i Corrected Code i+1 Corrected Code i+2Latency

time

 50200249-5.12/16 Revision 5 16

HB0249: CoreRSDEC v3.6 Handbook

3.1.7 Decoder Processing Cycle

In Figure 5, Syndrome calculation, Berlekamp, and Chien-Massey times are shown equal for
simplicity. In reality, this is not a common case. Syndrome and Chien-Massey calculations take equal
time intervals of n clock cycles, but the Berlekamp algorithm time does not depend on the codeword
length of n but rather on the code correction capability of t. The Berlekamp block takes 9t + 8 clock
cycles to compute the necessary polynomials. The larger of those two times, n and 9t + 8,
determines the decoder processing cycle.

For certain n and t parameter selections, the decoder might not be ready for the next codeword if it
comes immediately after the previous one. Depending on actual values of n and t, two distinct
situations are possible. It is important to know which situation the decoder faces based on
parameter selection.

Figure 6 shows a practical case when the codeword length is larger than the Berlekamp computation
time. In this example, the Syndrome calculation and Chien-Massey time intervals each are equal to
the codeword length of n clock cycles. The Berlekamp block is busy only a fraction of the time; the
rest of the time it is idle. The decoder processing cycle that determines the minimum interval
between two consecutive START signals equals n clock cycles. This means the codewords can come
without gaps between.

Figure 6 Codeword Length Determines Minimum Inter-Start Interval

Syndrome

Berlekamp

Chien-Massey

Idle

n

START START

Figure 6 shows a different situation where the Berlekamp computation takes longer than the
codeword length. Such a situation occurs when the correction capacity t is relatively large and the
codeword length n is relatively small. In Figure 6, the Berlekamp computation determines the
decoder processing cycle while the Syndrome calculator and Chien-Massey block are idle during a
fraction of the cycle. The CoreRSDEC is not ready to accept another codeword in n clock cycles, even
though the Syndrome calculation is over, because the Berlekamp block is still busy processing the
data of the previous codeword.

 50200249-5.12/16 Revision 5 17

HB0249: CoreRSDEC v3.6 Handbook

Figure 7 Berlekamp Stage Determines Minimum Inter-Start Interval

Syndrome

Berlekamp

Chien-Massey

Idle

Idle

9t+8

START START

If parameters are selected so that 9t + 8 > n, the decoder is in the situation depicted in Figure 7.
There needs to be a gap between incoming codewords of at least n – 9t – 8 clock cycles. Otherwise,
the decoder is in the situation of Figure 7, where there is no need for the gap.

Figure 7 shows the Berlekamp processing time depending on the selected parameter t.

For example, at t = 3, the Berlekamp computation takes 35 clock cycles. The decoder can accept any
codewords longer than 35 symbols with no gaps in between. Once a crossing point of the selected
parameter values of t and n, falls in the white area of the Figure 7, a gap is not needed between the
incoming codewords.

Figure 8 Berlekamp Computation Time vs t

160

140

120

100

80

60

40

20

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
od

ew
or

d
Le

ng
th

, n

17 26 35 44 53 62 71 80 89 98 107 116 125 134 143 152

The same Figure 8 can be used to determine approximate decoder latency. If the above crossing
point falls in the white area, the latency is 2n, otherwise the latency is 18t + 16.

Note: When both ERA and CCSDS-16 parameters are enabled(that is, ERA = 1 and CCSDS = 2), then
the favourable decoder latency lies in the range between: 680 to 780 (2.6n to 3n) clock cycles.

 50200249-5.12/16 Revision 5 18

HB0249: CoreRSDEC v3.6 Handbook

4 Interface

4.1 Ports
The port signals for CoreRSDEC are described in Table 4 and as shown in Figure 9.

Figure 9 CoreRSDEC I/O Signals

RSDEC Engine

NGRST

RST
CLKEN

CLK

START

RECDIN [MM – 1] CODOUT

RFS

RFD

RDY

DATOUT

CODERDY

FLAGFAIL

ERAMARK

RDYPULSE

FLAGNOERR

ERRCOUNT
TAGIN
[TAGWIDTH – 1]

TAGOUT
[TAGWIDTH – 1]

 50200249-5.12/16 Revision 5 19

HB0249: CoreRSDEC v3.6 Handbook

Table 4 I/O Signal Description

Signal Direction Description

RECDIN Input (Received) codeword input to be decoded. The input bus is m bits wide.

START Input
Starts a new codeword cycle. It informs the decoder that, at the next clock
interval, the first m-bit symbol of the n-symbol codeword appears at RECDIN.

ERAMARK Input One-clock-wide erasure pulse marks symbols that are found to be corrupted prior
to entering CoreRSDEC.

CLK Input Decoder clock signal.

CLKEN Input Decoder clock enable signal.

RST Input Synchronous reset.

NGRST Input Asynchronous reset (active-low).

TAGIN Input
Optional tag bits the core attaches to every input symbol. Bit width of the tag can
be parameterized. Serves to help identify which delayed output symbol or
codeword corresponds to an input symbol or codeword.

DATOUT Output Corrected data output. The output is m bits wide.

CODOUT Output
Corrected codeword output. In addition to corrected data, it contains the
corrected parity symbols. The output is m bits wide.

RFS Output Ready for Start. This signal is active when the decoder is ready to accept a new
START signal.

RFD Output Ready for Data. This signal is active when the decoder is ready to accept a new
codeword at the RECDIN input.

RDY Output Corrected Data Ready. This signals that valid, corrected data is present at the
core output.

CODERDY Output
Corrected Codeword Ready. This signals that a valid, corrected codeword—that
is, data plus parity symbols—is present at the core output.

RDYPULSE Output A clock-wide pulse preceding the RDY signal.

FLAGFAIL Output Failure flag. This signals that the CoreRSDEC has failed to correct a codeword.

FLAGNOERR Output No Error Flag. This signals that there were no erroneous symbols in a codeword.

ERRCOUNT Output Number of erroneous symbols detected in a codeword, up on FLAGFAIL,
ERRCOUNT is set to “0” or invalid to consider.

TAGOUT Output
Output of the tag bits the core attaches to every input symbol. Bit width of the
tag can be parameterized. Serves to help identify which delayed output symbol
or codeword corresponds to an input symbol or codeword.

4.2 Configuration Parameters
CoreRSDEC generates the CoreRSDEC engine RTL code based on parameters set by the user.
CoreRSDEC supports the variations specified in Table 5.

 50200249-5.12/16 Revision 5 20

HB0249: CoreRSDEC v3.6 Handbook

Table 5 CoreRSDEC Configuration Parameters

Name Valid Values Description

m 3 to 8 Symbol width, bits.

n 5 to 2m – 1 Codeword length, symbols.

t 1 to 16 as long as t < n / 2 – 1 Number of corrupted symbols the RS code can correct.

Primitive Polynomial
Arbitrary valid polynomial
selectable from a drop-down
menu

Primitive polynomial identifying Galois field.

First Root 0 to n – 1 First root of the primitive polynomial (B0).

Enable Erasure On, Off

Enables/disables erasure support. Erasure support being enabled substantially
increases FPGA resource utilization.
Correcting mixture of error and erasure in CCSDS mode.
In case of CCSDS-8 maximum of 5 (6 > 2r + e) mixture of error and erasure can
be correctable.
In case of CCSDS-16 maximum of 11 (12 > 2r + e) mixture of error and erasure
can be correctable.
In case of CCSDS-8 or CCSDS-16 and Erasure enable but no erasures found can
correct tt number errors.

No Error Flag On, Off Enables/disables the Error flag.

Error Count On, Off Enables/disables Error Count at the output.

Enable Tag On , Off Enables / disables the tag support.

Tag width 1 to 10 Bit width of the tag.

Use Micro SRAM On, Off
For SmartFusion2 FPGA Family
On: use the micro static random access memory (uSRAM)
Off: use the large SRAM (LSRAM)

CCSDS compatibility Mode
Conventional
CCSDS: 8 (Error correction capacity of 8)
CCSDS: 16 (Error correction capacity of 16)

Dual to conventional
basis output
converter

Enable/Disable
Enable : Provide the conventional basis output for the for CCSDS mode dual
basis input
Disable: Provide the dual basis output for the for CCSDS mode dual basis input

Family Family

SmartFusion®2 (19)
SmartFusion® (18)
Axcelerator® (11)
RTAX™-S (12)
ProASICPLUS® (14)
ProASIC®3 (15)
ProASIC3E (16)
ProASIC3L (22)
Fusion® (17)
IGLOO® (20)
IGLOOe (21)
IGLOOPLUS (23)
IGLOO®2 (24)
RTG4™ (25)
PolarFire(26)

 50200249-5.12/16 Revision 5 21

HB0249: CoreRSDEC v3.6 Handbook

5 Timing Diagrams

5.1 I/O Signal Functionality

5.1.1 NGRST, RST Input
Both signals reset all registers of CoreRSDEC to bring it to an initial state. In the initial state, signals
RFS and RFD are active, and the RDY signal is inactive. CoreRSDEC is ready to accept fresh input data.
NGRST is an asynchronous signal (active-low), and RST (active-high) is synchronous to rising edge of
the clock signal.

5.1.2 CLK, CLKEN Input
Clock signal CLK is active on the rising edge.

When CLKEN is inactive (LOW), the core is frozen. When core is frozen all inputs except NGRST are
ignored and the core retains its current decoding state. The CLKEN going inactive for a cycle is valid
and makes the core frozen. When CLKEN returning to active has to be stable for 2 cycles, if not, the
core may not retain its current state.

5.1.3 START Input
This signal starts a new codeword cycle. It informs the decoder that, at the next clock interval, the
first m-bit data symbol RECDIN 0 of an n-symbol codeword appears on the RECDIN bus (Figure 10). It
is assumed that the CLKEN signal is active in Figure 10.

Normally, a codeword source is supposed to issue the START signal once the RFS (Ready for Start)
signal goes active. If START is asserted prior to completion of the current codeword—that is, when
RFS is still inactive—it will be ignored.

Figure 10 RS Decoder Timing

n-10 1RECDIN

START

RFD

0 1

RFS

Gap

codeword

As shown in Figure 10, the START can be asserted early to repeat the RFS signal. Figure 10 also
shows an example of a gap between the incoming codewords. The gap is caused by the START signal
being issued later than RFS turned active.

 50200249-5.12/16 Revision 5 22

HB0249: CoreRSDEC v3.6 Handbook

5.1.4 RFS Output

The core asserts this output when it is ready to process another codeword—that is, to accept
another START signal. With normal CoreRSDEC functionality, the data source should wait for RFS to
go active to issue another START signal. If START is asserted prior to completion of the current
codeword—that is when RFS is still inactive—it will be ignored.

When using CoreRSDEC, it is common to send the codewords side-to-side with no gaps between
them, which requires connecting the RFS output to the START input of the core.

5.1.5 RFD Output
This optional output signal is asserted when CoreRSDEC is ready for a fresh input codeword. Once
the core fetches n symbols of a codeword, RFD goes low, thus blocking input data when there is a
gap between the input codewords Figure 10. If there is no gap between the incoming codewords,
the RFD signal is permanently active.

5.1.6 RDY Output
The optional RDY signal marks an interval of time when decoded, corrected data is present at the
CoreRSDEC output DATOUT (Figure 11). Obviously, there are gaps between the output data that,
prior to decoding, were used to fit parity symbols.

Figure 11 RDY Signal Accompanies Corrected Output Data

RDY

k-10 1 0DATOUT

Room for
Parity
Symbols of
a Codeword

5.1.7 RECDIN Input
The m-bit symbols of the input codewords are supposed to come to this input when the signal RFD is
active. The symbols come at every clock without gaps between symbols belonging to the same
codeword. Gaps are allowed between codewords only.

5.1.8 DATOUT Output
The corrected data symbols appear one-by-one at the m-bit output. A new output symbol emerges
each clock period until all k data symbols of a codeword come out. The signal RDY accompanies the
k-symbol sequence.

 50200249-5.12/16 Revision 5 23

HB0249: CoreRSDEC v3.6 Handbook

5.1.9 CODOUT Output

Optional output m-bit bus similar to DATOUT. The CODOUT signal differs from DATOUT in that the
former contains corrected parity symbols in addition to the corrected data symbols. In other words,
the core puts out the whole corrected codeword through the CODOUT output. The signal CODERDY
accompanies the n-symbol sequence. If the input codewords come without gaps in between, the
output codewords follow the same pattern.
There is a delay between an input and output codeword. The same delay separates input and output
codeword data portions. The delay is termed the Decoder Latency and is explained in the Latency
section.

5.1.10 CODERDY Output
The optional CODERDY signal marks an interval of time when a decoded, corrected codeword is
present at the CoreRSDEC output CODOUT. Once the input and consequently output codewords
come without gaps between them, the CODERDY signal is permanently active.

5.1.11 RDYPULSE Output
This is an optional, short, one-clock signal that immediately precedes the RDY signal (Figure 12).

Figure 12 RDYPULSE Signal

CLK

RDY

RDYPULSE

5.1.12 FLAGFAIL Output
This is an optional one-bit flag that alerts that the decoder has detected more errors in a codeword
than it could correct.

Usually, it is possible for CoreRSDEC to detect such a situation, but in some cases it is not. The
FLAGFAIL signal, as well as other flags, follows an output data portion or a codeword, as shown in
Figure 13, which shows the precise timing for the flags the core optionally generates. It can be seen
that the flags become valid one clock period after CoreRSDEC completes putting out another
codeword. The flags stay valid until the flags relevant to the next codeword become valid.

Figure 13 Flags Refer to the Last Output Data Portion or Codeword

CODERDY

Valid Flag i Valid Flag i+1

Decoded Data of
Codeword i

Decoded Data of
Codeword i+1

ERRCOUNT, FLAGNOERR,
FLAGFAIL

 50200249-5.12/16 Revision 5 24

HB0249: CoreRSDEC v3.6 Handbook

Figure 14 Precise Timing for the Flags

Decoded Data Symbols

CLK

ERRCOUNT, FLAGNOERR,
FLAGFAIL

CODERDY

5.1.13 FLAGNOERR Output
This flag goes active if the just-processed codeword does not contain any errors. Erasures do not
influence the flag.

5.1.14 ERRCOUNT Output
This flag contains an error count for the just-processed codeword. Erasures do not influence the
error count.

5.1.15 ERAMARK Input
This one-bit input marks the positions of the symbols that are known to be erroneous prior to
entering CoreRSDEC.

5.1.16 TAGIN, TAGOUT
This optional tag gets attached to arbitrary symbols or codewords selected by a user. The number of
TAGIN bits can be parameterized and equals the number of TAGOUT bits. TAGIN gets delayed
exactly the same amount of time as the data entering CoreRSDEC. As a result, it is easy to locate any
symbol or codeword when it appears at the decoder output.

The tag feature being enabled virtually does not consume FPGA resources if the tag bit width does
not exceed 9 – m; otherwise, it may consume an extra on-chip RAM block.

 50200249-5.12/16 Revision 5 25

HB0249: CoreRSDEC v3.6 Handbook

6 Tool Flow

6.1 License
CoreRSDEC requires a RTL license to be used and instantiated. Complete source code is provided for
the core.

6.2 SmartDesign
CoreRSDEC is available for download in the Libero IP catalog through the web repository. Once it is
listed in the catalog, the core can be instantiated using the SmartDesign flow. For information on
using SmartDesign to configure, connect, and generate cores, refer to the Libero online help. An
example instantiated view is shown in Figure 15.

After configuring and generating the core instance, basic functionality can be simulated using the
testbench supplied with the core. The testbench parameters automatically adjust to the core
configuration. The core can be instantiated as a component of a larger design. Figure 15 shows an
example of a larger design that instantiates two instances of CoreRSDEC. Every instance is
configured separately.

Note: CoreRSDEC is compatible with both Libero integrated design environment (IDE) and Libero System-on-
Chip (SoC). Unless specified otherwise this document uses the common name Libero to identify Libero
IDE and Libero SoC.

Figure 15 SmartDesign CoreRSDEC Instance View

Note: For RTG4, asynchronous reset ports NGRST must be either tied to a single top-level reset net or tied

high so that only synchronous resets RST are used.

 50200249-5.12/16 Revision 5 26

HB0249: CoreRSDEC v3.6 Handbook

6.3 Configuring CoreRSDEC in SmartDesign

Figure 16 Configuring CoreRSDEC in SmartDesign

 50200249-5.12/16 Revision 5 27

HB0249: CoreRSDEC v3.6 Handbook

6.4 Simulation Flows
To run simulations, select the user testbench in the core configuration window. After generating the
core, the pre-synthesis testbench hardware description language (HDL) files are installed in Libero.
Consider an example of instantiating CoreRSDEC as an IP component named top_rsdec. To run the
testbench, set the Libero design root to the core instance top_rsdec_CORERSDEC_0_CORERSDEC
and run Pre-Synthesized design simulation.

6.5 Synthesis in Libero
To run synthesis on the core, set the design root to the IP component instance top_rsdec and run
the synthesis tool from the Libero Design Flow pane.

6.6 Place-and-Route in Libero
After the design is synthesized, run the compilation and then place-and-route the tools.

 50200249-5.12/16 Revision 5 28

HB0249: CoreRSDEC v3.6 Handbook

7 Testbench

A unified testbench is used to verify and test CoreRSDEC. It is called a user testbench.

7.1 User Test-bench
Included with the releases of CoreRSDEC is a user testbench that verifies operation of the
CoreRSDEC engine.

A simplified block diagram of the user testbench is as shown in Figure 17. The user testbench
instantiates the CoreRSDEC engine configured by the user, as well as behavioral, non-synthesizable
models of an input test vector generator, a golden codeword generator, a comparator, and a signal
generator that provides necessary clock, reset, and other signals. The testbench compares the actual
CoreRSDEC output codeword against the golden codeword vector. Data output of the decoder
present on the datOut bus is not tested since it is a part of the output codeword present on the
codOut bus. CoreRSDEC automatically generates Verilog or very high speed integrated circuit
(VHSIC) HDLalso known as VHDL testbench behavioral code based on the user selection of the
core language. Optional outputs such as RDYPULSE, FLAGFAIL, FLAGNOERR, and ERRCOUNT are
verified by visual inspection of the simulated waveforms.

The same testbench can be used for pre-synthesis and post-synthesis simulation. A simulation tool
displays the verification result.

Figure 17 CoreRSDEC User Testbench

Test Vector
Generator

Signal Generator

Golden Codeword
Generator

Compare

RSDEC Engine

NGRST

RST

CLKEN

CLK

RECDIN [MM – 1]
DATOUT [MM – 1]

RFS

CODOUT [MM – 1]

CODERDY

FLAGFAIL

ERAMARK

RDYPULSE

FLAGNOERR

ERRCOUNT

TAGIN

TAGOUT
[TAGWIDTH – 1]

START

RFD

RDY

 50200249-5.12/16 Revision 5 29

HB0249: CoreRSDEC v3.6 Handbook

7.2 References
1. Rorabaugh, C. Britton. Error Coding Cookbook. McGraw-Hill, 1995.

2. Sweeney, Peter. Error Control Coding. John Wiley & Sons, 2002.

3. Morelos-Zaragoza, Robert H. The Art of Error Correcting Coding. John Wiley & Sons, 2002.

4. Lin, Shu and Daniel J. Costello. Error Control Coding. Prentice Hall, 2004.

 50200249-5.12/16 Revision 5 30

HB0249: CoreRSDEC v3.6 Handbook

8 System Integration

This IP core is a generic design component to use in a system level design.

 50200249-5.12/16 Revision 5 31

HB0249: CoreRSDEC v3.6 Handbook

9 Ordering Information

9.1 Ordering Codes
CoreRSDEC can be ordered through your local Sales Representative. It should be ordered using the
following number scheme: CoreRSDEC-XX, where XX is listed in Table 6.

Table 6·Ordering Codes

XX Description

RM Available as Verilog and VHDL RTL source code

 50200249-5.12/16 Revision 5 32

	1 Revision History
	1.1 Revision 5.0
	1.2 Revision 4.0
	1.3 Revision 3.0
	1.4 Revision 2.0
	1.5 Revision 1.0

	2 Introduction
	2.1 Overview
	2.2 Features
	2.3 Core Version
	2.4 Supported Families
	2.5 Device Utilization and Performance

	3 Functional Description
	3.1 Theory of Operation
	3.1.1 Properties of Reed-Solomon Codes
	3.1.2 Galois Field Math
	3.1.3 Shortened Codes
	3.1.4 Erasures
	3.1.5 CoreRSDEC Block Diagram
	CCSDS Compliance

	3.1.6 CoreRSDEC Timing
	Latency

	3.1.7 Decoder Processing Cycle

	4 Interface
	4.1 Ports
	4.2 Configuration Parameters

	5 Timing Diagrams
	5.1 I/O Signal Functionality
	5.1.1 NGRST, RST Input
	5.1.2 CLK, CLKEN Input
	5.1.3 START Input
	5.1.4 RFS Output
	5.1.5 RFD Output
	5.1.6 RDY Output
	5.1.7 RECDIN Input
	5.1.8 DATOUT Output
	5.1.9 CODOUT Output
	5.1.10 CODERDY Output
	5.1.11 RDYPULSE Output
	5.1.12 FLAGFAIL Output
	5.1.13 FLAGNOERR Output
	5.1.14 ERRCOUNT Output
	5.1.15 ERAMARK Input
	5.1.16 TAGIN, TAGOUT

	6 Tool Flow
	6.1 License
	6.2 SmartDesign
	6.3 Configuring CoreRSDEC in SmartDesign
	6.4 Simulation Flows
	6.5 Synthesis in Libero
	6.6 Place-and-Route in Libero

	7 Testbench
	7.1 User Test-bench
	7.2 References

	8 System Integration
	9 Ordering Information
	9.1 Ordering Codes

