

 MIV_RV32 Handbook

Introduction
The MIV_RV32 is a processor core designed to implement the RISC-V instruction set for use in Microchip FPGAs.

The core includes the industry standard JTAG interface to facilitate debug access. Three optional bus interfaces are
available for peripheral and memory accesses: AHB, APB3, and AXI, which can be configured as AXI3 or AXI4.

There are three dedicated interrupts as well as six optional external interrupts in the MIV_RV32 processor core.

A quick start guide is available on how to create an MIV_RV32 Libero® design from the help menu in the core
configurator. A migration guide is available detailing how to migrate a legacy MIV core design to use an MIV_RV32.

Features
• Designed for low power FPGA soft-core implementations
• Supports the RISC-V standard RV32I ISA with optional Multiply and Divide (M) and Compressed (C) extensions
• Tightly-Coupled Memory (TCM) is available and the size, up to 256 Kbytes, is defined by address range
• TCM APB Slave (TAS) to TCM
• Boot ROM feature to load an image and run from memory
• External, Timer and Soft Interrupts
• Up to six optional external interrupts
• Vectored and non-vectored interrupt support
• Optional on-chip debug unit with a JTAG interface
• AHBL, APB3, and AXI3/AXI4 optional external bus interfaces

Core Version
This Handbook applies to MIV_RV32 version 3.0.

The six accompanying manuals for this core are as follows:

• The RISC-V Instruction Set Manual Volume I: Unprivileged ISA
• The RISC-V Instruction Set Manual Volume II: Privileged Architecture
• RISC-V External Debug Support Version 0.13.2
• MIV_RV32 Quick Start Guide
• MIV_RV32 Migration Guide
• Supplementary Resource Utilization and Performance (RUP) tables

Supported Families
• PolarFire®

• PolarFire® SoC
• RT PolarFire®

• RTG4™

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 1

• IGLOO®2
• SmartFusion®2

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 2

Table of Contents

Introduction...1

Features.. 1
Core Version... 1
Supported Families... 1

1. Resource Utilization and Performance..5

1.1. Typical Resource Utilization... 8
1.2. Benchmarks... 9

2. Functional Description...10

2.1. MIV_RV32 Architecture..10
2.2. Hart...11
2.3. Memory System..11
2.4. Interrupts.. 11
2.5. Debug Support Through JTAG...12
2.6. External Interfaces... 12
2.7. TCM..12
2.8. TAS Port... 12
2.9. Clocks...13
2.10. Resets.. 13

3. Interface.. 14

3.1. Configuration Parameters.. 14
3.2. I/O Signals..17

4. Programmer’s Model...21

4.1. Processor Operating States... 21
4.2. Reset Operation... 21
4.3. Data Types... 21
4.4. General Purpose Registers..21
4.5. Machine Control and Status Registers...22
4.6. Debug Module..28
4.7. Trigger Unit...31
4.8. Memory Map.. 33
4.9. Subsystem Restrictions..34
4.10. Exceptions..34
4.11. OPSRV Register.. 36
4.12. BOOT ROM..37
4.13. MTIME..38
4.14. ECC..40

5. Tool Flow... 41

5.1. License...41
5.2. SmartDesign...41
5.3. Configuring MIV_RV32...42
5.4. Debugging..46
5.5. Simulation Flows.. 46

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 3

5.6. Synthesis in Libero...46
5.7. Place-and-Route in Libero..46

6. System Integration.. 47

6.1. PolarFire Example System...47
6.2. RTG4/SF2/IG2 Example System... 47
6.3. Reset Synchronization... 48

7. Design Constraints..50

8. SoftConsole...51

8.1. Setting the System Clock Frequency and Peripheral Base Addresses......................................51

9. Revision History.. 53

The Microchip Website...54

Product Change Notification Service..54

Customer Support.. 54

Microchip Devices Code Protection Feature.. 54

Legal Notice... 55

Trademarks.. 55

Quality Management System... 56

Worldwide Sales and Service...57

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 4

1. Resource Utilization and Performance
The device Resource Utilization and Performance (RUP) data is listed in tables Table 1-1 to Table 1-9 for the
supported device families. The listed PolarFire information is also applicable to PolarFire SoC and RT PolarFire. This
data is indicative only. The overall resource utilization and performance of the core is system dependent.

The entire RUP data was generated using Libero SoC v 12.5 and Synplify Q-2020.03M. The P&R LEs signify the
number of logic elements used in the synthesized component for benchmarking. This value is for reference only and
varies between place-and-route runs. The following tables list the device resource utilization and performance for
selected configurations of the processor.
Table 1-1. RV32I APB TCM

Family Part Synthesis P&R
LEs

Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 1057 3723 4780 3788 108

RTG4 RTG4150L FCG1657 1091 3867 4958 3925 64

SmartFusion2 M2S150T FC1152 1094 3833 4927 3887 62

IGLOO2 M2GL150 FC1152 1091 3849 4940 3894 54

Configuration
Parameters

RISC-V Extensions: I, Multiplier: n/a, AHB Master: n/a, AHB Mirrored I/F: n, APB
Master: APB3, APB Mirrored I/F: n, AXI Master: n/a, AXI Mirrored I/F: n/a, Reset Vector
Address Upper 16bits: 0x4000, Reset Vector Address Lower 16bits: 0x0, BootROM: n,
Reconfigure BootROM: n, External IRQs: 0, Vectored Interrupts: n, TCM: y (4k), TCM
APB Slave (TAS): n/a, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n, Register
Forwarding: n, ECC: n, GPR Registers: n

Table 1-2. RV32I APB All Features

Family Part Synthesis P&R
LEs

Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 943 3744 4687 3807 105

RTG4 RTG4150L FCG1657 946 3900 4846 3947 64

SmartFusion2 M2S150T FC1152 945 3902 4847 3972 65

IGLOO2 M2GL150 FC1152 946 3913 4859 3957 56

Configuration
Parameters

RISC-V Extensions: IC, Multiplier: n/a, AHB Master: n/a, AHB Mirrored I/F: n, APB
Master: APB3, APB Mirrored I/F: n, AXI Master: n/a, AXI Mirrored I/F: n/a, Reset Vector
Address Upper 16bits: 0x4000, Reset Vector Address Lower 16bits: 0x0, BootROM: n,
Reconfigure BootROM: n, External IRQs: 0, Vectored Interrupts: n, TCM: y (4k), TCM
APB Slave (TAS): n/a, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n, Register
Forwarding: n, ECC: n, GPR Registers: n

Resource Utilization and Performance

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 5

Table 1-3. RV32IC APB TCM

Family Part Synthesis P&R LEs Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 943 3744 4687 3807 105

RTG4 RTG4150L FCG1657 946 3900 4846 3947 64

SmartFusion2 M2S150T FC1152 945 3902 4847 3972 65

IGLOO2 M2GL150 FC1152 946 3913 4859 3957 56

Configuration
Parameters

RISC-V Extensions: IC, Multiplier: n/a, AHB Master: n/a, AHB Mirrored I/F: n, APB
Master: APB3, APB Mirrored I/F: n, AXI Master: n/a, AXI Mirrored I/F: n/a, Reset Vector
Address Upper 16bits: 0x4000, Reset Vector Address Lower 16bits: 0x0, BootROM: n,
Reconfigure BootROM: n, External IRQs: 0, Vectored Interrupts: n, TCM: y (4k), TCM
APB Slave (TAS): n/a, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n, Register
Forwarding: n, ECC: n, GPR Registers: n

Table 1-4. RV32IC APB All Features

Family Part Synthesis P&R LEs Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 3819 9542 13361 10144 66

RTG4 RTG4150L FCG1657 3849 9307 13156 9913 38

SmartFusion2 M2S150T FC1152 3848 9376 13224 10124 48

IGLOO2 M2GL150 FC1152 3849 9421 13270 10126 41

Configuration
Parameters

RISC-V Extensions: IC, Multiplier: n/a, AHB Master: AHBLite, AHB Mirrored I/F: y, APB
Master: APB3, APB Mirrored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector
Address Upper 16bits: 0x8000, Reset Vector Address Lower 16bits: 0x0, BootROM: y,
Reconfigure BootROM: y, External IRQs: 6, Vectored Interrupts: y, TCM: y (4k), TCM
APB Slave (TAS): y, Internal MTIME: y, Internal MTIME IRQ: y, Debug: y, Register
Forwarding: y, ECC: y, GPR Registers: y

Table 1-5. RV32IM (MACC-Pipelined) APB TCM

Family Part Synthesis P&R LEs Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 1228 4168 5396 4226 93

RTG4 RTG4150L FCG1657 1132 4425 5557 4484 61

SmartFusion2 M2S150T FC1152 1224 4468 5692 4531 61

IGLOO2 M2GL150 FC1152 1225 4445 5670 4486 53

Configuration
Parameters

RISC-V Extensions: IM, Multiplier: MACC-Pipelined, AHB Master: n/a, AHB Mirrored I/F:
n, APB Master: APB3, APB Mirrored I/F: n, AXI Master: n/a, AXI Mirrored I/F: n/a, Reset
Vector Address Upper 16bits: 0x4000, Reset Vector Address Lower 16bits: 0x0,
BootROM: n, Reconfigure BootROM: n, External IRQs: 0, Vectored Interrupts: n, TCM:
y (4k), TCM APB Slave (TAS): n/a, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n,
Register Forwarding: n, ECC: n, GPR Registers: n

Resource Utilization and Performance

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 6

Table 1-6. RV32IM (MACC-Pipelined) All Features

Family Part Synthesis P&R LEs Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 4100 9836 13936 10453 65

RTG4 RTG4150L FCG1657 4130 9784 13914 10432 38

SmartFusion2 M2S150T FC1152 4022 9778 13800 10401 47

IGLOO2 M2GL150 FC1152 4028 9891 13919 10513 40

Configuration
Parameters

RISC-V Extensions: IM, Multiplier: MACC-Pipelined, AHB Master: y, AHB Mirrored I/F: y,
APB Master: APB3, APB Mirrored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector
Address Upper 16bits: 0x8000, Reset Vector Address Lower 16bits: 0x0, BootROM: y,
Reconfigure BootROM: y, External IRQs: 6, Vectored Interrupts: y, TCM: y (4k), TCM
APB Slave (TAS): y, Internal MTIME: y, Internal MTIME IRQ: y, Debug: y, Register
Forwarding: y, ECC: y, GPR Registers: y

Table 1-7. RV32IMC (Fabric) APB TCM

Family Part Synthesis P&R LEs Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 1115 4985 6100 5045 102

RTG4 RTG4150L FCG1657 1114 4867 5981 4929 62

SmartFusion2 M2S150T FC1152 1115 4906 6021 4971 65

IGLOO2 M2GL150 FC1152 1117 4809 5926 4889 57

Configuration
Parameters

RISC-V Extensions: IMC, Multiplier: Fabric, AHB Master: n/a, AHB Mirrored I/F: n, APB
Master: APB3, APB Mirrored I/F: n, AXI Master: n/a, AXI Mirrored I/F: n/a, Reset Vector
Address Upper 16bits: 0x4000, Reset Vector Address Lower 16bits: 0x0, BootROM: n,
Reconfigure BootROM: n, External IRQs: 0, Vectored Interrupts: n, TCM: y (4k), TCM
APB Slave (TAS): n/a, Internal MTIME: n, Internal MTIME IRQ: n, Debug: n, Register
Forwarding: n, ECC: n, GPR Registers: n

Table 1-8. RV32IMC (Fabric) All features

Family Part Synthesis P&R LEs Performance/MHz

DFF 4LUT Total

PolarFire MPF500T-1 FCG1152E 3792 9498 13290 10926 73

RTG4 RTG4150L FCG1657 3795 9403 13198 10919 42

SmartFusion2 M2S150T FC1152 3789 9488 13277 10894 49

IGLOO2 M2GL150 FC1152 3790 9446 13236 10898 41

Configuration
Parameters

RISC-V Extensions: IMC, Multiplier: Fabric, AHB Master: y, AHB Mirrored I/F: y, APB
Master: APB3, APB Mirrored I/F: n, AXI Master: y, AXI Mirrored I/F: y, Reset Vector
Address Upper 16bits: 0x8000, Reset Vector Address Lower 16bits: 0x0, BootROM: y,
Reconfigure BootROM: y, External IRQs: 6, Vectored Interrupts: y, TCM: y (4k), TCM
APB Slave (TAS): y, Internal MTIME: y, Internal MTIME IRQ: y, Debug: y, Register
Forwarding: y, ECC: y, GPR Registers: y

For more information, see the Supplementary RUP Tables manual, which is included with the core.

Resource Utilization and Performance

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 7

1.1 Typical Resource Utilization
The following table lists a breakdown of average resource usage for core options across the supported families.
Table 1-9. Option Resources

Feature Parts Synthesis

Average DFF Average 4LUT Average Total

AHBL

MPF500T-1FCG1152E

RTG4150L FCG1657

M2S150T FC1152

M2GL150 FC1152

108 102 210

APB 115 144 259

AXI 514 492 1006

Ext_sys_interrupts (6) 6 61 67

Vectored interrupts 35 154 189

BootROM 39 125 164

Reconfig BootROM 147 139 286

TCM (4k) 62 372 434

TAS 0 84 84

Mtime & Mtime irq 160 425 585

Debug 564 1756 2320

ECC 12 407 429

GPR Registers 989 1544 2533

Register Forwarding 5 289 294

Resource Utilization and Performance

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 8

1.2 Benchmarks
Benchmarks Memory

Location
RV32 Multiplier Reg

Fwd
Reg
GPRs

ECC Coremark/MHz

Ex
te

ns
io

n
be

nc
h-

 m
ar

ks

TCM IMC MACC 1 1 0 2.767

TCM IMC MACC 0 1 0 2.533

TCM IM MACC 0 0 0 1.567

TCM IM MACC Pipe 0 0 0 1.567

TCM IMC MACC 0 0 0 1.567

TCM IMC MACC 1 0 0 1.567

TCM IMC MACC Pipe 0 0 0 1.5

TCM IM Fabric 0 0 0 1.067

TCM I n/a 1 1 0 1.067

TCM IMC Fabric 0 0 0 1.033

TCM I n/a 0 1 0 0.967

TCM I n/a 0 0 0 0.533

TCM IC n/a 0 0 0 0.533

TCM I n/a 0 0 1 0.533

TCM I n/a 1 0 0 0.533

AHB IMC MACC 0 0 0 0.467

AHB IM MACC 0 0 0 0.433

AHB IC n/a 0 0 0 0.2

AHB I n/a 0 1 0 0.2

AHB I n/a 1 1 0 0.2

AHB I n/a 0 0 0 0.167

AHB I n/a 1 0 0 0.167

AXI IM MACC 0 0 0 0.4

AXI IMC MACC 0 0 0 0.4

AXI IC n/a 0 0 0 0.167

AXI I n/a 0 1 0 0.167

AXI I n/a 0 0 0 0.133

AXI I n/a 1 0 0 0.133

Resource Utilization and Performance

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 9

2. Functional Description
The following sections provide a functional description of the MIV_RV32 processor core.

2.1 MIV_RV32 Architecture
The core architecture comprises of a RV32IMC four stage pipelined processor unit integrated with an Offload
Processor Subsystem for RISC-V (OPSRV). The OPSRV consists of a system interconnect with a JTAG Debug
Module, System MTimer, TCM with a TCM APB Slave port (TAS), AHB\AXI\APB master interfaces, and OPSRV
registers. The following figure shows the block level architecture of MIV_RV32 device.
Figure 2-1. MIV_RV32 Block Diagram

Functional Description

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 10

The following table lists the key features of the core.
Table 2-1. MIV_RV32 Architecture Features

Feature Value Units Notes

ISA support RV32IMC — Base RV32I, optional multiply and divide, and
optional compressed extensions

Harts 1 — MIV_RV32 processor

Reset vector Configurable — Word aligned address 0x1000_0000 and above
available

Interrupts 13 — External, Software and Timer interrupts, six
optional external interrupts, and ECC interrupts.
Vectored interrupts supported.

Timers/Counters 1 — An MTIME block is available to generate a time
value and periodic interrupts

Bus interfaces AHB/AXI3/
AXI4/APB

— Optional AHB, AXI3/AXI4, and APB

JTAG debug transport address
width

7 Bits —

Local memories 1 — Width of TCM start and end address determines
the size of the local memory

Local memory access 1 — TAS provides access to TCM

2.2 Hart
The MIV_RV32 hart is based on the RISC-V Instruction Set Architecture (ISA). The hart supports the RISC-V
standard RV32 Integer (I), Multiply (M), and Compressed (C) ISA. It also supports the machine-mode privileged
architecture and debug mode.

The hart is a four-stage pipelined RISC-V processor, which has been designed to be highly configurable for use in
Microchip FPGAs. It is designed to be used as a standalone or auxiliary processor within FPGA designs. The hart
contains the base RISC-V Integer ISA extension. Optionally, the RISC-V M ISA extension adds hardware multiply
and divide instructions. Optionally, the RISC-V C ISA extension adds the compressed instruction set.

2.3 Memory System
The core is non-cached. Up to 256 Kbytes of TCM is available for instruction and data storage. A range of system
peripherals are accessed across AXI (AXI4/AXI3), AHB, and APB bus interfaces.

2.4 Interrupts
The RISC-V external interrupt is available for use as a top-level input to the core. Six optional external interrupts can
also be enabled at the top level for use as external interrupts. The RISC-V software interrupt is available and can be
accessed through the OPSRV register. The timer interrupt can be exposed to the top level or connected internally to
a compare register that can be accessed through software, and generates interrupts at a fixed interval. There is an
OPSRV register interrupt available that signals TCM single and double bit ECC errors, GPR single bit ECC errors, or
AXI write errors. Interrupts can be configured in vectored or non-vectored mode when the core is being configured to
allow for a defined vector for each interrupt, if required. Interrupts are positive edge triggered.

Functional Description

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 11

2.5 Debug Support Through JTAG
The core includes support for an external debugger using a JTAG port. This v0.13.2 debug implementation is abstract
command based and uses system bus access to write to memory. The core does not support the use of a program
buffer. The following debug features are provided:

• Hart can be halted and resumed
• All hart registers (including CSRs) can be read/written
• Memory can be accessed
• Binary files can be downloaded to memory
• Hart can be debugged from the very first instruction executed
• Debug can perform single-step operations and can execute one instruction at a time
• A RISC-V hart can be halted when a software breakpoint instruction is executed
• Single hardware breakpoint is available

2.6 External Interfaces
The core supports three optional external interfaces: AHB, APB, and AXI (AXI3/AXI4). Each interface has its own
address space mapped at compile time. The address spaces might not overlap.

The core can boot from a word aligned address range, within the configurator specified address space, by setting the
RESET_VECTOR and modifying the linker scripts for the firmware project. This address can be half word aligned, if C
extension is used.

2.7 TCM
The core supports up to 256 Kbytes of TCM. The size of the memory is defined by the start and end address of the
TCM. The processor can be booted from this memory region by setting the RESET_VECTOR_ADDRESS to the address
of the TCM.

The TCM can be programmed through the TAS interface on the MIV_RV32. On PolarFire and PolarFire SoC devices,
if enabled, the TCM can also be initialized by the System Controller using on-board storage, such as sNVM, uPROM,
or SPI.

The TCM initialization feature necessitates the use of PolarFire Low Power RAM, which adds significantly to the core
resource usage. For this reason, the TCM Initialization feature has not been fully adopted and is currently only
available by enabling a local parameter, l_cfg_hard_tcm0_en, in the miv_rv32_opsrv_cfg_pkg.v file prior to
synthesis, as shown in the following table.

Table 2-2. TCM Initialization

Local Parameter Value Description

l_cfg_hard_tcm0_en 1’b0 (default) Use inferred RAM for TCM

1’b1 Instantiate PF Low Power RAM for TCM which can be initialized by the
System Controller

This package file is read-only, so when the value of l_cfg_hard_tcm0_en is modified in Libero, the Remove the
read-only attribute and modify the file directly option must be selected.

2.8 TAS Port
The TAS port allows reading and writing to the TCM from an external source before the core is brought out of reset. It
is recommended that the address widths for the TCM and the TAS are of the same size to avoid memory read or
write violations.

Functional Description

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 12

2.9 Clocks
The system clock frequency must be chosen to meet design timing requirements with clock constraints applied. The
tables in the 1. Resource Utilization and Performance section list the upper clock frequency obtained for a specified
device from each supported FPGA family, whilst meeting the timing requirements for the configurations defined.
Sequential logic within the core is driven on the positive clock edge.

When the debug option is enabled, the JTAG debug signals are made available at the top level. The JTAG has a
clock signal TCK whose characteristics are determined by the connected JTAG debugger. It is advised that the
applied TCK frequency must remain within the maximum frequency permitted for the JTAG probe in use. The TCK
must have clock constraints applied. For more information, see the 7. Design Constraints section.

2.10 Resets
The RESETN is an active low hard reset, which resets everything within the core. An external reset synchronizer is
required (for more information, see the 6.3 Reset Synchronization section). In many cases, the synchronizer is
integrated within a family specific reset core, for example, Core_Reset_PF.

The EXT_RESETN is an active low reset output. This is fed through from RESETN and is also driven from the debug
module during a debug session to allow a system reset through the debugger.

There is an internal CPU Soft Reset feature accessible through software. For more information, see Table 4-36.

The JTAG_TRSTN is an active low reset signal for the JTAG Debug Transport module.

Functional Description

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 13

3. Interface

3.1 Configuration Parameters
The following table lists the parameters (Verilog) or generics (VHDL) for configuring the RTL code of the core.
Table 3-1. MIV_RV32 Parameters and Generics Descriptions

Name Range Default Value Description

RESET_VECTOR_ADDR_1 0x1000-0xFFFF 0x8000 This is the address from which the
processor starts executing after a
reset. This address is byte aligned.RESET_VECTOR_ADDR_0 0x0000-0xFFFC 0x0

DEBUGGER 0 or 1 1 JTAG Debugger
0: Disable

1: Enabled

AXI_MASTER_TYPE 0 to 2 0 AXI Master Type
0: None

1: AXI3
2: AXI4

AXI_SLAVE_MIRROR 0 or 1 0 AXI Slave Mirror
0: None

1: AXI Slave Mirror
Note1

AXI_START_ADDR_1 0x1000-0xFFFF 0x6000 This is the AXI start address.
AXI_START_ADDR_1 and A-
XI_START_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

AXI_START_ADDR_0 0x0000-0xFFFF 0x0

AXI_END_ADDR_1 0x1000-0xFFFF 0x6FFF This is the AXI end address.
AXI_END_ADDR_1 and AXI_
END_ADDR_0 represent the upper
and lower 16 bits of the address
respectively.

AXI_END_ADDR_0 0xFFFF-0xFFFC 0xFFFF

AHB_MASTER_TYPE 0 or 1 1 AHB Master Type
0: None

1: AHB-Lite

AHB_SLAVE_MIRROR 0 or 1 0 AHB Slave Mirror
0: None

1: AXI Slave Mirror
Note2

AHB_START_ADDR_1 0x1000-0xFFFF 0x8000 This is the AHB start address.
AHB_START_ADDR_1 and
AHB_START_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

AHB_START_ADDR_0 0x0000-0xFFFF 0x0

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 14

...........continued
Name Range Default Value Description

AHB_END_ADDR_1 0x1000-0xFFFF 0x8FFF This is the AHB end address.
AHB_END_ADDR_1 and AHB_
END_ADDR_0 represent the upper
and lower 16 bits of the address
respectively.

AHB_END_ADDR_0 0xFFFF-0xFFFC 0xFFFF

APB_MASTER_TYPE 0 or 1 1 APB Master Type
0: None

1: APB3

APB_SLAVE_MIRROR 0 or 1 0 AHB Slave Mirror
0: None

1: AXI Slave Mirror
Note2

APB_START_ADDR_1 0x1000-0xFFFF 0x7000 This is the APB start address.
APB_START_ADDR_1 and
APB_START_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

APB_START_ADDR_0 0x0000-0xFFFF 0x0

APB_END_ADDR_1 0x1000-0xFFFF 0x7FFF This is the APB end address.
APB_END_ADDR_1 and APB_
END_ADDR_0 represent the upper
and lower 16 bits of the address
respectively.

APB_END_ADDR_0 0xFFFF-0xFFFC 0xFFFF

TCM_PRESENT 0 or 1 0 TCM Present
0: Disabled

1: Enabled

TCM_START_ADDR_1 0x1000-0xFFFF 0x4000 This is the TCM start address.
TCM_START_ADDR_1 and
TCM_START_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

TCM_START_ADDR_0 0x0000-0xFFFF 0x0

TCM_END_ADDR_1 0x1000-0xFFFF 0x4000 This is the TCM end address.
TCM_END_ADDR_1 and TCM_
END_ADDR_0 represent the upper
and lower 16 bits of the address
respectively.

TCM_END_ADDR_0 0xFFFF-0xFFFC 0x0x3FFF

TCM_TAS_PRESENT 0 or 1 0 TCM ABP Slave Present
0: Disabled

1: Enabled

TAS_START_ADDR_1 0x1000-0xFFFF 0x4000 This is the TCM ABP Slave start
address. TAS_START_ADDR_1 and
TAS_START_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

TAS_START_ADDR_0 0x0000-0xFFFF 0x0

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 15

...........continued
Name Range Default Value Description

TAS_END_ADDR_1 0x1000-0xFFFF 0x4000 This is the TCM APB Slave end
address.
TAS_END_ADDR_1 and
TAS_END_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

TAS_END_ADDR_0 0xFFFF-0xFFFC 0x0x3FFF

BOOT_ROM 0 or 1 0 BOOT_ROM Present
0: Disabled

1: Enabled

SRC_START_ADDR_1 0x1000-0xFFFF 0x8000 This is the SRC_START (Source
starting) address read by the
BOOT_ROM. SRC_START_ADDR_1
and SRC_START_ADDR_0 represent
the upper and lower 16 bits of the
address respectively.

SRC_START_ADDR_0 0x0000-0xFFFF 0x0

SRC_END_ADDR_1 0x1000-0xFFFF 0x8000 This is the SRC_END (Source final)
address read by the BOOT_ROM.
SRC_START_ADDR_1 and
SRC_START_ADDR_0 represent the
upper and lower 16 bits of the
address respectively.

DEST_ ADDR_1 0x1000-0xFFFF 0x4000 This is the DEST_ADDR (Destination
starting) address written by the
BOOT_ROM. DEST_ADDR_1 and
DEST_ADDR_0 represent the upper
and lower 16 bits of the address
respectively.

DEST_ ADDR_0 0x0000-0xFFFF 0x3FFF

RECONFIG_BOOT_ROM 0 or 1 0 Reconfigurable BOOT_ROM Present
0: Disabled

1: Enabled

(Source/ destination addresses
reconfigurable in software)

GEN_DECODE_RV32 0 to 3 3 RISCV ISA Extension Select
0: I

1: IC
2: IM

3: IMC

GEN_MUL_TYPE 0 to 2 0 Multiplier Type
0: Fabric

1: MACC (non-pipelined)
2: MACC (pipelined)

VECTORED_INTERRUPTS 0 or 1 1 Vectored Interrupts
0: Disabled

1: Enabled

NUM_EXT_IRQS 0 to 6 6 Number of external interrupts

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 16

...........continued
Name Range Default Value Description

FWD_REGS 0 or 1 0 Forwarding Registers
0: Disabled

1: Enabled

ECC_ENABLE 0 or 1 0 ECC
0: Disabled

1: Enabled

INTERNAL_MTIME 0 or 1 1 Internal MTIME
0: Disabled

1: Enabled

MTIME_PRESCALER 0 to 65535 100 The MTIME_PRESCALER integer
value divided by the CLK frequency
derives an MTIME time base given by
the equation:
MTIME timebase =
MTIME_PRESCALAR/CLK (HZ)

INTERNAL_MTIME_IRQ 0 or 1 1 Internal MTIME
0: Disabled

1: Enabled

GPR_REGS 0 or 1 0 GPR Registers
0: Disabled

1: Enabled

Notes: 
1. This parameter is used only when an AXI Master is selected.
2. This parameter is used only when an AHB Master is selected.

3.2 I/O Signals
The following figure shows all the I/O signals for the core.

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 17

Figure 3-1. MIV_RV32 Full I/O View

Table 3-2. MIV_RV32 I/O Signal Description

Port Name Width Direction Description
Global Signals
CLK 1 In System clock. All other I/Os are synchronous to this clock.
RESETN 1 In Synchronized reset signal. This signal is active low.
EXT_RESETN 1 Out External system reset, active low. Driven by RESETN and

Debugger system reset (debug mode).
JTAG Interface Signals
JTAG_TDI 1 In Test Data In (TDI). This signal is used by the JTAG device for

downloading and debugging programs. Sampled on the rising
edge of TCK.

JTAG_TCK 1 In Test Clock (TCK). This signal is used by the JTAG device for
downloading and debugging programs.

JTAG_TMS 1 In Test Mode Select (TMS). This signal is used by the JTAG device
when downloading and debugging programs. It is sampled on the
rising edge of TCK to determine the next state.

JTAG_TRSTN 1 In Test Reset (TRSTN). This is an optional signal used to reset the
TAP controllers state machine. This signal is active low.

JTAG_TDO 1 Out Test Data Out (TDO). This signal is the data, which is shifted out
of the device during debugging. It is valid on FALLING/RISING
edge of TCK.

JTAG_TDO_DR 1 Out Drive Test Data Out (DRV_TDO). This signal is used to drive a tri-
state buffer.

Interrupt Signals

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 18

...........continued
Port Name Width Direction Description
EXT_IRQ 1 In External interrupt from peripheral source. An active high level

based interrupt signal. Tie this input low if unused.
MSYS_EI 6 In Optional External System Interrupts. This signal is active high. Tie

any unused inputs low.
TMR_IRQ 1 In A Timer interrupt input is exposed when the internal MTIME IRQ

parameter is not selected in the GUI. This in an active high level
based interrupt. Tie this input low, if unused.

System Time Signals
TIME_COUNT_IN 64 In External system timer count
TIME_COUNT_OUT 64 Out Internal system timer count
TCM Access Signals
TCM_CPU_ACCESS_DISABLE 1 In When asserted, CPU access to the TCM is disabled.
TCM_TAS_ACCESS_DISABLE 1 In When asserted, TAS access to the TCM is disabled.
APB Master Interface
APB_MSTR_PADDR 32 Out APB Master Interface. The address range is 0x1000_0000 to

0xFFFF_FFF-F. This interface can also be configured as a
mirrored slave through the GUI.

APB_MSTR_PSEL 1 Out
APB_MSTR_PENABLE 1 Out
APB_MSTR_PWRITE 1 Out
APB_MSTR_PRDATA 32 In
APB_MSTR_PWDATA 32 Out
APB_MSTR_PREADY 1 In
APB_MSTR_PSLVERR 1 In
AHB Master Interface
AHB_MSTR_ HMASTLOCK 1 Out AHB Master Interface. The address range is 0x1000_0000 to

0xFFFF_FFF-F. This interface can also be configured as a
mirrored slave through the GUI.

AHB_MSTR_ HTRANS 2 Out
AHB_MSTR_ HWRITE 1 Out
AHB_MSTR_ HADDR 32 Out
AHB_MSTR_ HSIZE 3 Out
AHB_MSTR_ HBURST 3 Out
AHB_MSTR_ HPROT 4 Out
AHB_MSTR_ HWDATA 32 Out
AHB_MSTR_ HREADY 1 In
AHB_MSTR_ HRESP 1 In
AHB_MSTR_ HRDATA 32 In
AHB_MSTR_ HSEL 1 Out HSEL is used only when AHB_SLAVE_MIRROR is set to 1.
AXI Master Interface

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 19

...........continued
Port Name Width Direction Description
AXI_MSTR_AWREADY 1 Out AXI (AXI3/AXI4) master interface. The address range is

0x1000_0000 to 0xFFFF_FFFF. This interface can also be
configured as a mirrored slave through the GUI.

AXI_MSTR_AWVALID 1 Out
AXI_MSTR_AWID 1 Out
AXI_MSTR_AWADDR 32 Out
AXI_MSTR_AWLEN 4 Out
AXI_MSTR_AWSIZE 3 Out
AXI_MSTR_AWBURST 2 Out
AXI_MSTR_AWLOCK 1 Out
AXI_MSTR_AWCACHE 4 Out
AXI_MSTR_AWPROT 3 Out
AXI_MSTR_WREADY 1 in
AXI_MSTR_WVALID 1 Out
AXI_MSTR_ WID 1 Out
AXI_MSTR_WDATA 32 Out
AXI_MSTR_WSTRB 4 Out
AXI_MSTR_WLAST 1 Out
AXI_MSTR_BREADY 1 Out
AXI_MSTR_BVALID 1 in
AXI_MSTR_BID 1 in
AXI_MSTR_BRESP 2 in
AXI_MSTR_BUSER 1 in
AXI_MSTR_ARREADY 1 in
AXI_MSTR_ARVALID 1 Out
AXI_MSTR_ARID 1 Out
AXI_MSTR_ARADDR 32 Out
AXI_MSTR_ARLEN 4 Out
AXI_MSTR_ARSIZE 3 Out
AXI_MSTR_ARBURST 2 Out
AXI_MSTR_ARLOCK 1 Out
AXI_MSTR_ARCACHE 4 Out
AXI_MSTR_ARPROT 3 Out
AXI_MSTR_RREADY 1 Out
AXI_MSTR_RVALID 1 Out
AXI_MSTR_RID 1 Out
AXI_MSTR_RDATA 32 Out
AXI_MSTR_RRESP 2 in
AXI_MSTR_RLAST 1 in
TCM APB Slave Interface (TAS)
TCM_APB_SLV_PADDR 32 In The address range is 0x1000_0000 to 0xFFFF_ FFFF.
TCM_APB_SLV_PSEL 1 In
TCM_APB_SLV_PENABLE 1 In
TCM_APB_SLV_PWRITE 1 In
TCM_APB_SLV_PRDATA 32 Out
TCM_APB_SLV_PWDATA 32 In
TCM_APB_SLV_PREADY 1 Out
TCM_APB_SLV_PSLVERR 1 Out

Interface

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 20

4. Programmer’s Model
This core implements the RISC-V Integer extension with optional support for the Multiplication and Division extension
(M) and the Compressed extension (C). The M provides hardware support for these operations and the C allows for a
subset of the integer instructions to be encoded as 16-bit instructions as opposed to 32-bit instructions.

The M improves operating performance of the processor at the expense of area and speed, while C allows for
reduced code size with additional area.

4.1 Processor Operating States
The processor has the following operating modes.

• Machine Mode: This core can be run in RISC-V Machine mode and is the standard operating state for the core.
In this mode, the 32-bit I and M instructions can be executed along with the 16-bit C instructions.

• Debug Mode: The core enters the Debug mode while debugging using the JTAG interface.

4.2 Reset Operation
Out of reset or as a result of a CPU soft reset, PC takes on the value of the Reset Vector Address (RVA) and begins
executing code from this address.

4.3 Data Types
This core supports the following data types:

• 32-bit words
• 16-bit halfwords
• 8-bit bytes

Instructions can be encoded as 32-bit words for all extensions and a subset of the Integer instructions can be
encoded as 16-bit words when the C extension is included.

4.4 General Purpose Registers
The following table lists the 32-bit RISC-V General Purpose Registers (GPRs) available in the core.
Table 4-1. General Purpose Registers

Register ABI Name Description

x0 zero Hardwired zero

x1 ra Return address

x2 sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer

x5–x7 t0–t2 Temporary registers

x8 s0/fp Saved register/Frame pointer

x9 s1 Saved Register

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 21

...........continued
Register ABI Name Description

x10–x11 a0–a1 Function arguments/Return values

x12–x17 a2–a7 Function arguments

x18–x27 s2–s11 Saved registers

x28–x31 t3–t6 Temporary registers

4.5 Machine Control and Status Registers
As the core only supports the Machine mode, it only needs to implement a small subset of the machine mode
registers defined in the RISC-V privileged architecture. The remaining registers and bits of registers are addressable,
and are hard-coded as defined by the privileged architecture specification.

The following table lists the implemented CSRs.
Table 4-2. mvendorid CSR (0xF11)

Bits 31:0

Field Vendor ID

R/W RO

Reset Preset value = l_core_vendorid

The vendor ID CSR reads the value defined by the l_core_vendorid constant configured at build time.

Table 4-3. marchid CSR(0xF12)

Bits 31:0

Field Architecture ID

R/W RO

Reset Preset value = l_core_marchid

Table 4-4. mimpid CSR(0xF13)

Bits 31:0

Field Implementation ID

R/W RO

Reset Preset value = l_core_mimpid

Table 4-5. mhartid CSR(0xF14)

Bits 31:0

Field Hart ID

R/W RO

Reset Preset value = l_hart_id

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 22

Table 4-6. mstatus CSR(0x300)

Bits 31 30:23 22 21 20 19 18 17

Field SD — TSR TW TVM MXR SUM MPRV

R/W RO WPRI RO RO RO R RO RO RO

Reset — — — — — — — —

Bits 6:15 4:13 2:11 10:9 8 7 6 5 4 3 2 1 0

Field XS FS MPP — SPP MPIE — SPIE UPIE MIE — SIE UIE

R/W RO R0 RO WPRI RO RW WPRI RW RO RO WPRI RO RO

Reset — — 3 — — — — — — 0 — — —

This core only supports the machine mode. It only implements the mie and mpie bits as actual read-write register
bits. The MPP is always hardwired to 3 as it can only be Machine mode. The remaining bits are tied off to 0.

When the status register is read using the supervisor, or user mode alias (sstatus(0x100) and ustatus(0x000)
respectively), they can still be accessed without an illegal instruction exception, as these registers are accessible
from machine mode. However, only the supervisor and user mode bits are available in sstatus, and only the user bits
are available in ustatus. Therefore, in both cases all bits read as 0 and not be writable.

The MPP is always in the machine mode (that is, 3) as the core only supports machine mode. The MIE is
architecturally defined to reset to 0. All other bits do not have a defined reset value.

The XS is currently not implemented. The SD bit reflects the state of the XS filed (the core does not support floating
point instructions. Therefore, FS is always == 0).

Table 4-7. misa CSR (0x301)

Bits 31:30 29:26 25:0

Field Base ISA — Extension

R/W RO WPRI RO

Note:  Base ISA is RV32 = 2’b01.

According to the RISC-V architecture, misa might optionally be implemented as a RW register to allow the supported
base ISA and extensions to change. However, in this core, it is implemented as hardwired read-only, as these
decisions are build time configuration options.
Table 4-8. misa CSR Extension Bit Description

Bit Character Description MIV_RV32 Implementation

0 A Atomic extension 0

1 B Bit manipulation extension 0

2 C Compressed extension Configuration option

3 D Double-precision floating-point extension 0

4 E RV32E base ISA 0

5 F Single-precision floating-point extension 0

6 G Additional standard extensions present 0

7 H Hypervisor mode implemented 0

8 I RV32I/64I/128I base ISA 1

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 23

...........continued
Bit Character Description MIV_RV32 Implementation

9 J Dynamically translated languages extension 0

10 K Reserved 0

11 L Tentatively reserved for Decimal Floating-Point extension 0

12 M Integer Multiply/Divide extension Configuration option

13 N User-level interrupts supported 0

14 O Reserved 0

15 P Packed-SIMD extension 0

16 Q Quad-precision floating-point extension 0

17 R Reserved 0

18 S Supervisor mode implemented 0

19 T Tentatively reserved for Transactional Memory extension 0

20 U User mode implemented 0

21 V Vector extension 0

22 W Reserved 0

23 X Non-standard extensions present 0

24 Y Reserved 0

25 Z Reserved 1 (for support of Zicsr and ZFencei)

Table 4-9. mie CSR (0x304) Machine Interrupt Enable Register

Bits 31 30 29:24 23:18 17 16

Field — OPSRV_IRQ_IE MSYS_EIE — MGECIE MGEUIE

R/W RO RW RW WPRI RW RW

Reset — — — — — —

Bits 15:12 11 10 9 8 7 6 5 4 3 2 1 0

Field — MEIE — — — MTIE — — — MSIE — — —

R/W WPRI RW WPRI RO RO RW WPRI RO RO RW WPRI RO RO

Reset — — — — — — — — — — — — —

Table 4-10. mip CSR (0x344) Machine Interrupt Pending Register

Bits 31 30 29:24 23:18 17 16

Field — OPSRV_IRQ_IE MSYS_EIP — MGECIP MGEUIP

R/W RO RW RW WPRI RO RO

Reset — — — — — —

Bits 15:12 11 10 9 8 7 6 5 4 3 2 1 0

Field — MEIP — — — MTIP — — — MSIP — — —

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 24

...........continued
Bits 15:12 11 10 9 8 7 6 5 4 3 2 1 0

R/W WPRI RO WPRI RO RO RO WPRI RO RO RO WPRI RO RO

Reset — — — — — — — — — — — — —

Table 4-11. Interrupt Bit Description

Name Description

MSI Software interrupt

MTI Timer interrupt

MEI External interrupt

MGEUI GPR ECC uncorrectable error. Exists if ECC is enabled, otherwise 0.

MGECI GPR ECC correctable error. Exists if ECC is enabled, otherwise 0.

MSYS_EI[5:0] System external interrupts. Exists if external interrupts are enabled.

When the ie register is read using the supervisor, or user mode alias (sie(0x104) and uie(0x004) respectively, and
similarly for ip (sip(0x144) and uip (0x044)), they can still be accessed without an illegal instruction exception, as
these registers are accessible from machine mode. However, only the Supervisor and the User mode bits are
available in sie/sip, and only the user bits in uie/uips. Therefore, in both cases all bits read as 0 and are not writable.
Table 4-12. mtvec CSR (0x305)

Bits 31:2 1:0

Field Exception vector base mode

R/W The mtvec exception base vector is a read/write RW register.

.

RW

Reset The reset value is not defined. 2’b00

(direct mode)

2’b01

(vectored mode)

Table 4-13. mepc CSR (0x341)

Bits 31:0

Field Machine exception program counter

R/W RW

Reset —

Note:  mepc[0] is always 0. Therefore, it is hardwired 0.

Table 4-14. mcause CSR (0x342)

Bits 31 30:0

Field Interrupt Exception code

R/W RW RW

Reset 0 0

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 25

The exception codes are as defined in the RISC-V privileged architecture. The core implements the architecturally
defined trap codes and additional custom trap codes as described in the following table. Therefore, only code[4:0] is
implemented as register bits, the remaining bits are hardwired to 0. The italicized interrupts and exceptions in the
following table are non-standard custom traps defined.

Table 4-15. mcause Exception Codes

Interrupt Exception code Description

1 3 MSI [Highest priority]

1 7 MTI

1 11 MEI

1 16 MGEUI

1 17 MGECI

1 24–29 MSYS_EI0-MSYS_EI5

1 30 OPSRV IRQ

0 3 Trigger breakpoint

0 2 Illegal instruction

0 0 Instruction address misalign

0 11 M env-call

0 3 Breakpoint

0 6 Store address misaligned

0 4 Load address misaligned

0 24 Instruction fetch read bus error

0 25 Instruction fetch read parity error

0 26 Data load bus error

0 27 Data load parity error [Lowest priority]

The mcause register is reset to 0 following hard or soft reset.
Table 4-16. mtval CSR (0x343)

Bits 31:0

Field mtval

R/W RW

Reset x

Table 4-17. MTVAL Value Following Trap Taken

Interrupt/exception cause MTVAL

MSI [Highest priority] 0

MTI 0

MEI 0

MGEUI 0

MGECI 0

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 26

...........continued
Interrupt/exception cause MTVAL

MICNT 0

MCCNT 0

MHCNT 0

MSYS_EI0-MSYS_EI7 0

Trigger breakpoint Program counter of the instruction retiring

Illegal instruction Encoding of instruction retiring

Instruction address misalign Program counter of the instruction retiring

M env-call 0

Breakpoint Program counter of the instruction retiring

Store address misaligned Store address of faulting access

Load address misaligned Load address of faulting access

Instruction fetch read bus error Program counter of the instruction retiring

Instruction fetch read parity error Program counter of the instruction retiring

Data load bus error Load address of faulting access

Data load parity error [Lowest priority] Load address of faulting access

Table 4-18. mscratch CSR (0x340)

Bits 31:0

Field mscratch

R/W RW

Reset —

Table 4-19. time CSR (0xC01)

Bits 31:0

Field time[31:0]

R/W RO

Reset x

Table 4-20. timeh CSR (0xC81)

Bits 31:0

Field timeh[63:32]

R/W RO

Reset x

Time is a read-only user CSR.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 27

4.6 Debug Module
The MIV_RV32 debug module is implemented in compliance with the RISC-V External Debug Support specification
v0.13.2. The debug module consists of the following three main blocks:

• Debug Transfer module with an interface module DMI
• Debug Unit—abstract command based with System Bus Access
• Hart Debug Logic—debug CSR’s and halt or run logic

4.6.1 Debug Transport Module
An external debugger communicates with the core’s debug sub-system through a JTAG interface with a Test Access
Port (TAP) controller. The TAP Controller Instruction Register has a length of five bits. Upon reset, its value is 0x01,
selecting the IDCODE instruction. The following table lists the full instruction set.

Table 4-21. TAP Controller Instructions

Address Mnemonic Full name

0x00 — Reserved

0x01 IDCODE IDCODE

0x02–0x03 — Reserved

0x04 — Reserved

0x05–0x0F — Reserved

0x10 DTMCS DTM Control and Status

0x11 DMI_ACCESS (DMI) Debug Module Interface Access

0x12–0x1E — Reserved

0x1F BYPASS BYPASS instruction

Internal connection between TAP and DM is a form of serial scan interface. Source and destination of the TAP
controller scan interface are in different clock domains. The TAP runs in the JTAG’s TCK clock domain, whereas the
DM are in the system clock domain. Therefore, the TAP controller scan interface must pass through a clock domain
crossing process.

Using the Debug Module Interface (DMI), the debug module (DM) exposes a standard register interface to the core’s
debug features:

• Run control of the core’s single hart
• Access to its internal registers (GPRs and CSRs)
• Access to its memory space

4.6.2 Debug Unit
The Debug module implementation is abstract command based for GPR or CSR access and uses system bus
access to perform read or write operations to memory locations. The following table lists the registers implemented in
Debug module.

Table 4-22. Debug Module Registers

Address Mnemonic Full name

0x00–0x03 — Reserved

0x04 DATA0 Abstract Data 0

0x05 — Abstract Data 1, not implemented

0x06–0x0F — Reserved

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 28

...........continued
Address Mnemonic Full name

0x10 DMCONTROL Debug Module Control

0x11 DMSTATUS Debug Module Status

0x12 — Reserved

0x13 HALTSUM1 Halt Summary 1 (single bit)

0x14–0x15 — Reserved

0x16 ABSTRACTCS Abstract Control and Status

0x17 COMMAND Abstract Command

0x18 — Abstract Command Autoexec, not implemented

0x19 — Configuration String Pointer, not implemented

0x1A–0x37 — Reserved

0x38 SBCS System Bus Access Control and Status

0x39 SBADDRESS System Bus Address [31:0]

0x3A–0x3B — Reserved

0x3C SBDATA System Bus Data [31:0]

0x3D–0x3F — Reserved

0x40 HALTSUM0 Halt Summary 0 (single bit)

0x41–0x7F — Reserved

4.6.3 Hart Debug Logic
The MIV_RV32 hart implements the halt\run logic and required debug CSR registers.

Two debug CSRs: DCSR, and DPC are accessible using the abstract debug commands when in Debug mode.

Table 4-23. Debug Control and Status Registers

Address Mnemonic Full name

0x7B0 DCSR Debug Control and Status

0x7B1 DPC Debug PC

0x7B2 – 0x7BF — Reserved

4.6.3.1 Debug Control and Status CSR (DCSR–0x7B0)
The following table lists the debug control and status registers.

Table 4-24. Debug Control and Status Registers

Bits Name Access Reset Value Description

31:28 xdebugver RO 4 The value of the field (4) indicates that the debug
support exists as described in the RISC-V Debug
Spec version 0.13.

27:16 rsrv3 RO 0 Reserved for future use.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 29

...........continued
Bits Name Access Reset Value Description

15 ebreakm RW 0 Encoding:

• 0 - ebreak instructions in M-mode behave as
described in the Privileged Specification.

• 1 - ebreak instructions in M-mode enter
Debug mode (Soft Breakpoint).

14:12 rsrv2 RO 0 Reserved for future use. (Supervisor/User modes
not supported).

11 stepie RW 0 Encoding:

• 0 - Interrupts are disabled during single
stepping.

• 1 - Interrupts are enabled during single
stepping.

The debugger must not change the value of this bit
while the hart is running.

10:9 rsrv1 RO 0 Reserved for future use. (system counter/timer
halting not supported).

8:6 cause RO 0 Explains why Debug mode was entered. When
there are multiple reasons to enter Debug mode in
a single cycle, hardware should set cause to the
cause with the highest priority. Encoding:

1. An ebreak instruction was executed (priority
3);

2. The trigger module caused a breakpoint
exception (priority 4, highest);

3. The debugger requested entry to Debug
mode using haltreq (priority 1);

4. The hart single stepped because step was
set (priority 0, lowest); Other values are
reserved for future use.

5:3 rsrv0 RO 0 Reserved for future use (mprven or nmip not
supported).

2 step RW 0 When set and not in Debug mode, the hart only
executes a single instruction and then enters
debug mode. If the instruction does not complete
due to an exception, the hart immediately enters
the Debug mode before executing the trap
handler, with appropriate exception registers set.
The debugger must not change the value of this bit
while the hart is running.

1:0 prv RW 3 Contains the privilege level the hart was operating
in when debug mode was entered. The Mi-V
debug has the field hardwired to 3. Only machine
mode is supported.

4.6.3.2 Debug Program Counter CSR (DPC–0x7B1)
Upon entry to debug mode, DPC is updated with the virtual address of the next instruction to be executed. The
following table lists the behavior.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 30

Table 4-25. DPC CSR Address Behavior

Cause Virtual Address in DPC

ebreak Address of the ebreak instruction.

Single step Address of the instruction that would be executed next, that is, PC + 4 or the destination PC, if jumps/
branches taken.

Halt request Address of the next instruction to be executed at the time that debug mode was entered.

When resumed, the hart’s PC is updated to the virtual address stored in DPC. A debugger might write DPC to
change where the hart resumes.

Table 4-26. DPC CSR Register

Bits Name Access Reset Value Description

31:0 dpc RW — Field contains the debug PC value.

4.7 Trigger Unit
The MIV_RV32 core supports basic hardware trigger functionality. The Trigger Unit is only active in configurations
were the Debug module is present. There is a single hardware trigger, which can be set to fire on the execution of
instructions at a given memory address. Once the trigger fires, the core enters Debug mode and halts. Breakpoint
exceptions are not supported. The following tables list and describe the implemented trigger registers.
Table 4-27. Trigger Registers

Address Mnemonic Full Name

0x7A0 TSELECT Trigger select

0x7A1 TDATA1/MCONTROL Trigger data 1 or Match control

0x7A2 TDATA2 Trigger data 2

0x7A3–0x7BF — Reserved

4.7.1 Trigger Data 1/Match Control

TDATA1/MCONTROL Register

Bits Name Access Reset Value Description

31:28 type RW 2 This bit field is described as a part of the TDATA1 register. As MCONTROL
is only implemented this field is hardwired to 4’h2.

27 dmode RO 0 This field is Hard encoded, tied 1. Only Debug mode can write TDATA
registers at the selected TSELECT. Writes from the Machine mode are
ignored.

26:21 rsv1 RO 0 Reserved for future use.

Maskmax = 0, sizehi = 0 (only Xlen =32 supported)

20 hit RO 0 The hardware sets this bit when the given trigger matches. The trigger’s
user can set or clear it at any time.

It determines the matching trigger(s).

19 select RO 0 This bit is hardwired to 0, so that the trigger performs a match only on the
virtual address.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 31

...........continued
Bits Name Access Reset Value Description

18 timing RO 0 The bit is hardwired to 0, so that the action for this trigger is taken just
before the instruction that triggered it is executed, but after all preceding
instructions are committed.

17:16 sizelo RO 0 The field is hardwired to zero. The trigger attempts to match against an
access of any size.

15:12 action RO 0 Hard Encoded, tied 1. When the trigger fires, Debug Mode is entered.

11 chain RO 0 Hard Encoded, tied 0: When this trigger matches, the configured action is
taken.

10:7 match RO 0 Hard Encoded, tied 0: matches when the value equals TDATA2.

6 m RO 0 Hard Encoded, tied 1: trigger enabled in the Machine mode.

5:3 rsv0 RO 0 Reserved for future use.

2 execute RW 0 When set, the trigger fires on the virtual address of an instruction that is
executed.

1 store RO 0 Not used, tied 0.

0 load RO 0 Not used, tied 0.

4.7.2 Trigger Select
This register determines which trigger is accessible through the other trigger registers. The set of accessible triggers
begin at 0, and are contiguous. In this instance, a single trigger is implemented as listed in the following table.
Table 4-28. TSELECT Register

Bits Name Access Reset Value Description

31:1 rsv0 RO 0 Reserved for future use

0 index RO 0 This field determines which trigger is accessible through the other registers.
An index of 1 is supported in this instance.

4.7.3 Trigger Data 2
Table 4-29. TDATA2 Register

Bits Name Access Reset Value Description

31:0 data RW — The field contains trigger-specific data.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 32

4.8 Memory Map
The memory map of the core is highly configurable. The GPRs, CSRs, and debug registers are contained in the
reserved range. The OPSRV Register is memory mapped to 0x6000. The optional 64-bit timecmp register is mapped
to 0x0200_4000. The mtime pre-scaler is mapped to 0x0200_5000. The 64-bit mtime register is mapped to
0x0200_BFF8. The following figure shows the memory map.
Figure 4-1. Memory Map

The following figure shows the default memory map for the core.

Figure 4-2. Default Memory Map

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 33

The following figure shows a memory map using the full accessible range.

Figure 4-3. Example System Memory Map

4.9 Subsystem Restrictions
Very few restrictions are placed on the configuration of this core. Interface slots and TCM must have a start address ≥
0x1000_0000 and cannot have overlapping start and end addresses. These rules are enforced by the core
configurator. The TAS can have an address anywhere in this accessible range, but the TCM must be within this
address space to be accessed.

4.10 Exceptions
The core handles all exceptions. The core can be configured to handle interrupts in a vectored or non-vectored
mode, with faults causing the PC to jump to mtvec, regardless of vectored or non-vectored mode.

4.10.1 Vectored and Non-Vectored Interrupts
In the Vectored mode, the BASE field in the mtvec register is configured to reset vector + 0x04. Each interrupt makes
the PC to jump to a vector location determined by the mcause value.

In the Non-vectored mode, the mtvec is a RW register. All the interrupts make the PC to jump to the fixed value
determined by the mtvec register. The cause of the exception can then be determined by checking the value in the
mcause register. The default value of the mtvec register in this case is reset vector + 0x04.

The implementation is in accordance with the section 3.1.12 of the privileged specification.

4.10.2 Nested Interrupts
Nested interrupts are supported and interrupts can be re-enabled during an ISR by setting the mie bit in the mstatus
register. This bit is automatically un-set when taking an interrupt, and is re-enabled when an mret instruction is
executed.

4.10.3 Available Interrupts
The following interrupts are available to generate exceptions:

• External
• Software

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 34

• Timer
• GPR ECC uncorrectable
• GPR ECC correctable
• Custom external x 6
• OPSRV register

The OPSRV register interrupt is triggered by any of the following interrupts present in the OPSRV register:

• TCM ECC correctable error
• TCM ECC uncorrectable error
• AXI write error

The external interrupt is used as an input to the core. The software interrupt is internally connected to bit[1] of the
OPSRV soft register and writing a 1 to this bit causes a soft interrupt. The timer interrupt can be internally connected
to a counter and time compare register, which generates periodic interrupts, or a counter input can be made available
as a top-level input to the core and the compare register. The six custom external interrupts are available as inputs to
the core. The OPSRV register interrupt is internally connected to the OR’d outputs of the interrupts available in the
OPSRV pending register.

4.10.4 Interrupt Handling
When an exception is generated in non-vectored mode, the PC jumps to mtvec. Once there, the register states can
be pushed to the stack. The cause of the exception determined, if it is not a fault, can be handled and register states
restored. An mret instruction sets the PC to the value of the next instruction following when the exception was taken
and re-enables interrupts. This ISR is used in the Microchip RISC-V HAL.

4.10.5 Vectored Interrupt Offsets and Exception Priorities
When an exception is generated in vectored mode, the PC jumps to the defined address for each interrupt source
with a defined priority. The following table lists the defined priorities.
Table 4-30. Vectored Interrupt Offsets and Exception Priorities

Priority Exception Source Start Address from MTVEC End Address from MTVEC

Highest Software interrupt 0xC 0x1B

Timer interrupt 0x1C 0x2B

External interrupt 0x2C 0x3B

GPR ECC uncorrectable error interrupt 0x3C 0x4B

GPR ECC correctable error interrupt 0x4C 0x5B

Custom external interrupt 0 0x60 0x63

Custom external interrupt 1 0x64 0x67

Custom external interrupt 2 0x68 0x6B

Custom external interrupt 3 0x6C 0x6F

Custom external interrupt 4 0x70 0x73

Custom external interrupt 5 0x74 0x77

OPSRV interrupt 0x78 0x8B

Lowest Fault 0x0 0xB

4.10.6 OPSRV Register Interrupts
The OPSRV register interrupt handler manages the following interrupts.

• TCM ECC correctable error
• TCM ECC uncorrectable error

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 35

• AXI Write response error

When any of the OPSRV register interrupts are triggered, the OPSRV interrupt to the core asserts and remains
asserted until the interrupt is handled.

Each interrupt has an enable bit in the OPSRV Register Interrupt Enable register addressed at 0x6010:
Table 4-31. OPSRV Interrupt Enable Register

Bit Interrupt Enabled

0 TCM ECC correctable error

1 TCM ECC uncorrectable error

4 AXI write response error

Each interrupt has a pending bit in the OPSRV Register Interrupt Pending Register addressed at 0x6014:
Table 4-32. OPSRV Interrupt Pending Register

Bit Interrupt Pending

0 TCM ECC correctable error

1 TCM ECC uncorrectable error

4 AXI write response error

The interrupt pending register of the OPSRV register should be read to determine which interrupt occurred causing the
OPSRV register interrupt to assert. Interrupts from the OPSRV register can be cleared by writing to the corresponding
interrupt pending bit in the interrupt pending register. The priority with which OPSRV register interrupts are serviced is
defined by the software.

The soft interrupt is also contained within the OPSRV register, but not managed in the same way as the TCM, ECC, or
AXI interrupts. It is bit[1] in the OPSRV soft register addressed at 0x6020. Writing a 1 to this bit causes a soft interrupt
to occur. It can be cleared by writing a 0 to the bit.

4.11 OPSRV Register
The offload processor subsystem interfaces with the hart and provides an interconnect for the interfaces. The TAS,
TCM, and OPSRV registers are accessed by the hart. The following table lists the several additional configuration
registers of the OPSRV register for features of the core.
Table 4-33. opsrv_cfg (0x6000)

Bits 31:1 0

Field — opsrv_parity_en
R/W R0 RW

Reset — 0

Setting the opsrv_parity_en bit enables parity checking on TCM and interface transactions. Data in the TCM must
be written with parity when this feature is enabled, and bus parity must be generated by peripherals connected to the
core. In this release of the core, the parity enable register has been tied to 0, as parity is not being supported.

Table 4-34. opsrv_irq_en (0x6010)

Bits 31:5 4 3:2 1 0

Field — AXI write response err irq en — TCM ECC uncorrectable err irq
en

TCM ECC correctable err irq
en

R/W R0 RW R0 RW RW

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 36

...........continued
Bits 31:5 4 3:2 1 0

Reset — 0 0 — 0

This register contains the enable bits for each of the OPSRV interrupts. Setting any of the available interrupt bits
allows that interrupt to assert opsrv_irq. Machine interrupts still needs to be enabled.

Table 4-35. opsrv_irq_pend (0x6014)

Bits 31:5 4 3:2 1 0

Field — AXI write response err irq
pend

— TCM ECC uncorrectable err irq
pend

TCM ECC correctable err irq
pend

R/W R0 RW R0 RW RW

Reset — 0 0 — 0

This register contains the pending bits for each of the OPSRV interrupts. When any of these bits assert, the
opsrv_irq is triggered, if the corresponding enable bit is set. Writing a 1 to any set bit clears it.

Table 4-36. opsrv_soft_reg (0x6020)

Bits 31:3 2 1 0

Field — core_gpr_ded_reset soft_irq soft_rst
R/W R0 RW RW RW

Reset 0 0 0 0

Setting the soft_irq bit in this register causes a soft interrupt to be triggered in the core. The machine interrupts
and the software interrupt must be enabled for this interrupt to be taken. Writing 0 to this bit clears it. Setting the
soft_rst bit causes a CPU soft reset. This bit unsets after 1 clock cycle to prevent lockup.

The core_gpr_ded_reset_reg is set, when the core has reset due to GPR DED error, when ECC is enabled. It
can be cleared by writing 0 to the bit.

4.12 BOOT ROM
An optional Boot ROM feature is available for this core. Once enabled in the GUI, on reset, the core copies data from
a memory mapped source memory into a destination memory location and then the core will boot from the
destination memory location. The source start or end addresses and thedestination start address can be
provided through GUI inputs. If the RECONFIG_BOOTROM option is enabled, then the addresses become software
reconfigurable, which can be used with a soft reset to reboot and run alternative code. The BOOT ROM associated
address registers are listed in the following table.
Table 4-37. src_start_addr (0xA100)

Bits 31:0

Field src_start_addr

R/W RW

Reset Last written value

Table 4-38. src_end_addr (0xA104)

Bits 31:0

Field src_start_addr

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 37

...........continued
Bits 31:0

R/W RW

Reset Last written value

Table 4-39. destination_addr (0xA108)

Bits 31:0

Field destination_addr

R/W RW

Reset Last written value

4.13 MTIME
The MTIME is an optional block for this core. It contains a compare register (mtimecmp), which sources a time count
from an external source (TIME_COUNT) or an internal counter (mtime).
Table 4-40. mtimecmp (0x200_4000)

Bits 31:0

Field mtimecmp

R/W RW

Reset FFFF_FFFF

Table 4-41. mtimecmph (0x200_4004)

Bits 31:0

Field mtimecmph

R/W RW

Reset FFFF_FFFF

The mtimecmp and mtimecmph registers contain the time value that triggers a timer interrupt to the core. When
mtime is greater than or equal to this value, an interrupt is generated to the core. The machine interrupts and timer
interrupts must be enabled for this interrupt to be taken.

Table 4-42. mtime_prescaler (0x200_5000)

Bits 31:0

Field mtime_prescaler

R/W RO

Reset Value set from core configurator

The mtime prescaler register is read only and populated with the mtime prescaler value set in the core configurator.
This register exists to indicate the configured prescaler value for mtime relative to the system clock.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 38

Table 4-43. mtime (0x200_BFF8)

Bits 31:0

Field mtime

R/W RW

Reset 0

Table 4-44. mtimeh (0x200_BFFC)

Bits 31:0

Field mtimeh

R/W RW

Reset 0

The mtime and mtimeh registers contain the time value.

The mtimecmp register is 64-bits wide and initialized to a value of 0xFFFF_FFFF_FFFF_FFFF. The mtime register
is also a 64-bit value and is initialized to 0x0. It is incremented by an internal counter, if selected from the configurator
or from a 64-bit TIME_COUNT input to the core. Once mtime≥ mtimecmp, a timer interrupt is generated to the core.
This interrupt is serviced only if machine interrupts and the timer interrupt are enabled.

The lower 32 bits of the mtimecmp register can be written as follows:

C:

int *time_cmp_addr;
time_cmp_addr = 0x02004000;
*time_cmp_addr = time_count; // time_count is the value written to the timecmp register

The upper 32 bits of the mtimecmp(mtimcmph) register can be written as follows:

C:
int *time_cmph_addr;
time_cmph_addr = 0x02004004;
*time_cmph_addr = time_count;// time_count is the value written to the timecmp register

Note:  On first use of the system timer interrupt, the timecmp and timecmph reset values are 0xFFFF_FFFF.
These values generate an interrupt and should be set by the user as well.

The mtime register can also be written by using the following code. The lower 32 bits of the mtime register can be
written as follows:

C:

int *time _addr; time_addr = 0x02004BFF8;
*time_addr = time_count; // time_count is the value written to the time register

The upper 32 bits of the mtime(mtimeh) register can be written as follows:

C:

int *time _addr; timeh_addr = 0x02004BFFC;
*timeh_addr = time_count; // time_count is the value written to the time register

Note:  Ensure that an overflow situation must not occur when using the mtime compare register. For example, with
a prescaler of 50 and a 50 MHz system clock, it takes approximately 500,000 years to reach overflow. However, if a
lower prescaler value is set, this occurs sooner, or the software must have appropriate handling in place to prevent
an overflow situation.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 39

For example:

mtime value == 0xFFFF_FFFF_FFFF_FFF0

An interrupt is required in 0xFFFF cycles of mtime. This occurs when:

mtime value == 0x0000_0000_0000_FFF0

Setting an mtimecmp value == 0x0000_0000_0000_FFF0 causes an immediate interrupt, as mtime is greater than
mtimecmp. To resolve this, mtime and mtimeh should first be written with 0x0 and an mtimecmp value of 0xFFFF
must be set.

4.14 ECC
Error Correcting Codes (ECC) can be enabled for the core through the configurator. They encode parity with data in
RAM and can correct single bit errors and detect double bit errors, Single Error Correct Double Error Detect
(SECDED).

If RAM based GPRs are used (default) and ECC is enabled, a fabric encoder and decoder is instantiated for the
RAM. If the TCM is used, an encoder and decoder isl also instantiated for the memory when ECC is enabled.

When ECC is enabled for the GPRs, the core are held in soft reset for several cycles on start-up, while the GPRs are
initialized to 0. This prevents erroneous SECDED errors on uninitialized RAM.

If a double bit error is detected from a GPR, the core automatically initiates a soft reset and the GPRs are reinitialized
before start-up. This prevents bad data from the GPR being used. In the event of a DED, soft reset bit[2] of the
OPSRV Soft register sets to indicate that the core has recovered from a double bit error and this bit can be cleared
by writing to it. The individual machine ECC interrupts have to be enabled for an ECC error to be handled, but the
soft reset occurs on a DED regardless of the interrupts being enabled.

When ECC is enabled for the TCM, ECC bit is not initialized. This process must be undertaken in software before
enabling the TCM ECC interrupts in the OPSRV register.

Sample code to initialize the TCM to 0:

C:
volatile uint32_t *tcm_addr;
tcm_addr = 0x40000000; // Memory mapped start address of TCM
uint32_t tcm_end_addr = 0x40002000; // Memory mapped end address of TCM
while (tcm_addr != tcm_end_addr){ // loop until end is reached
*tcm_addr = 0x0; // write 0 to memory location tcm_addr = tcm_addr + 0x1; // increment pointer
}

Sample code to scrub the TCM and generate parity for initialized memory: C:
volatile uint32_t *tcm_addr;
tcm_addr = 0x40000000; // Memory mapped start address of TCM
uint32_t tcm_end_addr = 0x40002000; // Memory mapped end address of TCM
while (tcm_addr != tcm_end_addr){
*tcm_addr = *tcm_addr; tcm_addr = tcm_addr + 0x1;
}

Programming the TCM through the TAS also generates parity if ECC is enabled.

Programmer’s Model

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 40

5. Tool Flow

5.1 License
This core is released under the Apache 2.0 license and is freely available through Libero.

5.1.1 RTL
Complete Verilog source code is provided for the core. The core can be readily instantiated within SmartDesign.
Simulation, synthesis, and layout can be performed within Libero SoC.

5.2 SmartDesign
The MIV_RV32 is pre-installed in the SmartDesign IP deployment design environment. The core is available from the
Libero catalog.

For more information on using SmartDesign to instantiate and generate cores, see the Using DirectCore in Libero
SoC User Guide.

Tool Flow

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 41

Figure 5-1. SmartDesign MIV_RV32 Instance Views

5.3 Configuring MIV_RV32
The core is configured using the configuration GUI within SmartDesign, as shown in the following figure.

Note:  Leading zeros are suppressed. For example, 0x8000 0000 is displayed as 0x8000 0x0. The reset vector is
word-aligned.

Tool Flow

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 42

Figure 5-2. Configuration GUI for MIV_RV32 in SmartDesign

5.3.1 Extension Options
Under the Extension Options heading, the core can be configured to use a combination of the following RISC-V
standard extensions:

• I—Base Integer instruction set
• M—Multiply and Divide instruction set (optional)
• C—Compressed instruction set (optional)

The core Multiplier can be set to either use the Fabric Multiplier or the MACC multiplier:

• Fabric—multiply operations complete in 32 clock cycles.

Tool Flow

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 43

• MACC (Non–pipelined)—multiply operations complete in one clock cycle. However, the maximum operating
frequency of the processor decreases in comparison to the fabric multiplier.

• MACC (Pipelined)—multiply operations complete in typically one extra clock cycle. The maximum operating
frequency of the processor increases in comparison to the non-pipelined MACC multiplier.

5.3.2 Interface Options
Under the Interface Options heading, the core can be configured to use the following bus interfaces:

• AHB master: AHBLite
• APB master: APB 3.0
• AXI master: AXI3 or AXI4

The option to configure these interfaces as mirrored slaves is available. This option allows a single slave component
(for example, RAM or UART) to be connected directly to the interface at the start address, without the need for a bus
master.

5.3.3 Reset Vector Address
Under the Reset Vector Address heading, the reset vector address of the core can be configured. The default boot
address is 0x8000_0000. The code that runs from initialized memory must be built using the correct linker script. For
example, in the RISC-V HAL, which can be generated from the Firmware catalog, there are two example linker
scripts: Microsemi-riscv-ram.ld and Microsemi-riscv-ilgoo2.ld.

Microsemi-riscv-ram.ld is configured for a single memory at address 0x8000_0000 in Random Access
Memory (RAM), such as DDR or LSRAM. The Microsemi-riscv-igloo2.ld is configured to use NVM (ROM) at
address 0x6000_0000 and RAM at 0X8000_0000. To boot from initialized memory on power-up, the reset vector and
RAM start address in the linker script must match, otherwise, the core will not boot as expected.

5.3.4 Interrupt Options
Under the Interrupt Options heading, up to six optional external interrupts are available alongside the standard
external interrupt.

5.3.5 TCM Options
Under the TCM Options heading, the option to enable TCM along with the additional option to enable a TAS is
available. This option allows reading and writing to the TCM by an external core over the APB Interface. The TCM
depth is limited to a maximum of 256 Kbytes. TCM depth is determined by the address space allocated in the
interface memory mapping configuration.

5.3.6 Other Options
Under the Other Options heading, the option to enable register forwarding is available. This option increases the area
and decreases the maximum operating frequency of the system, while increasing the core performance.

Option to enable ECC is available, which instantiates fabric ECC encoding and decoding logic for the TCM and
GPRs, if they are RAM based.

Debug option to enable or disable the JTAG debug feature is also available.

Tool Flow

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 44

5.3.7 Memory Map Tab
The address range for each interface can be configured through the core configurator’s memory map tab. The
following figure shows the default address ranges used for each interface.
Figure 5-3. Memory Map GUI for MIV_RV32 in SmartDesign

In the event of an overlap conflict between address ranges, the configurator displays a warning and does not
generate the core until the conflict is resolved.

Tool Flow

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 45

5.4 Debugging
The CoreJTAGDebug v3.1.100 or later, is used to enable debugging of MIV_RV32. This is available in the Libero
Catalog.
Note:  Ensure that the TRST polarity is configured for active low operation as per the MIV_RV32 requirements.

5.5 Simulation Flows
The user testbench for MIV_RV32 is not included in this release.

The MIV_RV32 RTL can be simulated using a standard Libero generated HDL testbench. An example subsystem is
shown in the following figure. A hex file found in the Debug or Release folders generated by SoftConsole is needed
for this method. When the hex file is generated, remove the first line before importing it into memory. The
RESET_VECTOR of the MIV core is set to 0x8000_0000. Therefore, it boots from the LSRAM_0. Using this design,
the MIV core can be simulated.
Figure 5-4. Example Subsystem

5.6 Synthesis in Libero
To run synthesis on the core, set the SmartDesign sheet as the design root and click Synthesize in the Libero SoC.

5.7 Place-and-Route in Libero
After the design is synthesized, run the compilation and the place-and-route tools. Click the Layout icon in Libero
SoC to invoke designer.

Tool Flow

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 46

6. System Integration

6.1 PolarFire Example System
The following figure shows the block diagram containing the basic building blocks to start using the core in a simple
system.
Figure 6-1. MIV_RV32: An Example System

MIV_RV32

CoreAPB3

CoreGPIO_OUT CoreUARTapb

CoreJTAGDebug

CCC

PolarFire
Initialization

Monitor

PolarFire SRAM

JTAG
Header

APB I/F
AHBLite Mirror Slave I/F

Oscillator

CoreReset_PF

Lock

JTAG I/F

RESETN

EXT_RESETN

CLK

CLK

CLK

RESETN

RESETN

6.2 RTG4/SF2/IG2 Example System
The following figure shows the block diagram containing the basic building blocks to start using the core in a simple
system for the RTG4/SF2/IG2.
Figure 6-2. MIV_RV32: An Example System for RTG4/SF2/IGL2

MIV_RV32

CoreAPB3

CoreGPIO_OUT CoreUARTapb

CoreJTAGDebug

CCC

PolarFire
Initialization

Monitor

PolarFire SRAM

JTAG
Header

APB I/F
AHBLite Mirror Slave I/F

Oscillator

CoreReset_PF

Lock

JTAG I/F

RESETN

EXT_RESET

CLK

CLK

CLK

RESETN

RESETN

Note:  The difference between the PolarFire and the other design is the use of the PolarFire Initialization Monitor and
CoreReset_PF. The HDL reset synchronizer acts as the CoreReset_PF, as this IP is only available on PolarFire.
For other families, the reset synchronizer is used. The HDL code for the reset synchronizer is available in 4.2 Reset
Operation.

System Integration

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 47

6.3 Reset Synchronization

6.3.1 RESETN
All sequential elements are clocked by the CLK signal, which requires that resets to employ a synchronous reset
topology. As most designs source CLK from a CCC/PLL, it is a common practice to AND the LOCK output of the
CCC with the push button reset (PB_RESET), to generate the RESETN input for core. However, this results in the
reset being de-asserted when the CLK comes up. Therefore, the reset de-assertion is not clocked through the
sequential reset elements and goes unnoticed most commonly leading to the processor locking-up. To guarantee that
the RESETN de-assertion is seen by all sequential elements, a reset synchronizer is required on the RESETN input,
as shown in Figure 6-2.
Figure 6-3. RESETN Reset Synchronization

Reset Synchronizer

MIV_RV32

Q

Q
SET

CL R

D

Q

Q
SET

CL R

D

Q

Q
SET

CL R

D

Q

Q
SET

CL R

D

Q

Q
SET

CL R

D

CCC

SYSRESET

LOCK

GLx

CLK

Optional
Buffer

CLKINT

1 RESETN

The following Verilog code snippet implements the reset synchronizer block shown in Figure 5-1. The function of this
block is to make the reset assertion and de-assertion synchronous to CLK while guaranteeing that the reset is
asserted for one or more CLK cycles to the core to ensure that it is registered by all sequential elements.
module reset_synchronizer (
 input clock,
 input reset,
 output reset_sync
);
reg [1:0] sync_deasert_reg;
reg [1:0] sync_asert_reg;

always @ (posedge clock or negedge reset)
 begin
 if (!reset)
 begin
 sync_deasert_reg[1:0] <= 2'b00;
 end
 else
 begin
 sync_deasert_reg[1:0] <= {sync_deasert_reg[0], 1'b1};
 end
 end
always @ (posedge clock)
 begin
 sync_asert_reg[1:0] <= {sync_asert_reg[0], sync_deasert_reg[1]};
 end
assign reset_sync = sync_asert_reg[1];
endmodule

Perform the following steps to include this synchronizer in your Libero design.
1. Select Create HDL from the Design Flow tab in your Libero project.
2. In the pop-up window, name the HDL file accordingly and select Verilog as the HDL type.
3. Uncheck the option to initialize file with standard template.
4. Copy and paste the Verilog code (above) into this file and save the changes.
5. Build the Design Hierarchy, and then from the Design Hierarchy tab, drag and drop the file into the

SmartDesign containing the core instance and connect the pins as shown in the preceding figure.

System Integration

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 48

6.3.2 JTAG_TRSTN
No reset synchronization is required on this reset input, as all sequential elements in the debug logic in the core use
an asynchronous reset topology.

System Integration

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 49

7. Design Constraints
Designs containing core require the application of the following constraints in the design flow to allow timing-driven
Place-And-Route (PAR) and timing analysis to be performed on the design. The procedure for adding the required
constraints in the enhanced constraints flow in Libero SoC is as follows:

1. Double-click Constraints > Manage Constraints in the Design Flow window and click the Timing tab.
Assuming the system clock SYS_CLK, which used to clock the core, is sourced from a CCC. Select Derive
Constraints to automatically create a constraints file containing the CCC constraints. Select Yes when
prompted to allow the constraints to be automatically included for Synthesis, Place-and- Route, and Timing
Verification stages.

If changes are made to the CCC configuration in the design, update the contents of this file by clicking Derive
Constraints again. Select Yes when prompted to allow the constraints to be overwritten.

2. In the Timing tab of the Constraint Manager window, select New to create a new SDC file, and name it.
Design constraints other than the system clock source derived constraints can be entered in this blank SDC
file. Keeping derived and manually added constraints in separate SDC files allows the Derive
Constraints stage to be re-performed, if changes are made to the CCC configuration, without deleting all
manually added constraints in the process.

3. Calculate the TCK period and half period. TCK is typically 6 MHz when debugging with a FlashPro, with a
maximum frequency of 30 MHz supported by FlashPro5. Populate the following constraint with the TCK values
and paste it into the blank SDC file:
create_clock -name { TCK } \
-period TCK_PERIOD \
-waveform { 0 TCK_HALF_PERIOD } \ [get_ports { TCK }]

As TCK is in a clock domain independent and asynchronous to the SYS_CLK, a set_clock_groups
constraint is also required. A set_clock_groups constraint is also required.

set_clock_groups -name {group_name} \
-asynchronous \
-group [get_clocks {……/SYS_CLK }] \
-group [get_clocks { TCK }]

For example, the following constraints need to be applied for a design that uses a TCK frequency of 6 MHz
with a CCC generated system clock called OUT0:
#Constraining the JTAG clock to 6 MHz create_clock -name {TCK}\
-period 166.67 \
-waveform {0 83.33} \ [get_ports {TCK}]
JTAG and Mi-V clocks are independent - adding asynchronous clock group
set_clock_groups -name {async1}\
-asynchronous\
-group [get_clocks {CCC_0_inst_0/CCC_0_0/pll_inst_0/OUT0}]\
-group [get_clocks {TCK}]

4. Associate all constraints files with the Synthesis, Place-and-Route, and Timing Verification stages in the
Constraint Manager > Timing tab by selecting the related check boxes for the SDC files in which the
constraints were entered in.

5. Save the changes made in the Constraint Manager > Timing dialog.

Design Constraints

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 50

8. SoftConsole
The SoftConsole version 6.4 or later is required to use the MIV_RV32. Each SoftConsole project requires the
MIV_RV32 Hardware Abstraction Layer (HAL) version 3.0 or greater. For more information on setting up project for
RISC-V, see the SoftConsole release notes. The following steps briefly explain the changes that might be made to a
SoftConsole project. More information on setting up SoftConsole for this core can be found in the Quick Start Guide.
It can be found in the Help menu in the configurator, or if the core is selected in the catalog.

8.1 Setting the System Clock Frequency and Peripheral Base Addresses
If UART is being used, the system clock frequency is provided to the software and is done in the hw_platform.h
file by changing the #define SYS_CLK_FREQ to the clock frequency.

Note:  This value should be in hertz.

Figure 8-1. Setting Clock Frequency and Peripheral Base Addresses

The hw_platform.h file sets the base address for peripherals. The base address of a peripheral can be found in
the project memory map generated by Libero.

Note:  Some versions of Libero do not support the memory map feature as shown in the following figure.

SoftConsole

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 51

Figure 8-2. Modify Memory Map Dialog

The peripheral address in the hw_platform.h file must match the address in Libero for the peripheral to function
correctly. These peripherals are addressed for 0x0 because the MIV_RV32 core redirects these addresses
accordingly. The following figure shows the MIV_RV32 configuration settings for peripherals.

Figure 8-3. RV32 Configurator Memory Map

SoftConsole

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 52

9. Revision History
Revision Date Description

A October 2020 Following is the summary of changes:

• Document formatted to Microchip template and DS number assigned.
• Document updated with the configuration neutral core name

MIV_RV32 to allow for future expansion support for additional RISC-V
ISA extension options.

1.0 March 2020 This is the first publication of the MIV_RV32IMC IP.

Revision History

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 53

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 54

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-7047-2

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 55

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 56

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. User Guide DS00003721A-page 57

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Features
	Core Version
	Supported Families

	Table of Contents
	1. Resource Utilization and Performance
	1.1. Typical Resource Utilization
	1.2. Benchmarks

	2. Functional Description
	2.1. MIV_RV32 Architecture
	2.2. Hart
	2.3. Memory System
	2.4. Interrupts
	2.5. Debug Support Through JTAG
	2.6. External Interfaces
	2.7. TCM
	2.8. TAS Port
	2.9. Clocks
	2.10. Resets

	3. Interface
	3.1. Configuration Parameters
	3.2. I/O Signals

	4. Programmer’s Model
	4.1. Processor Operating States
	4.2. Reset Operation
	4.3. Data Types
	4.4. General Purpose Registers
	4.5. Machine Control and Status Registers
	4.6. Debug Module
	4.6.1. Debug Transport Module
	4.6.2. Debug Unit
	4.6.3. Hart Debug Logic
	4.6.3.1. Debug Control and Status CSR (DCSR–0x7B0)
	4.6.3.2. Debug Program Counter CSR (DPC–0x7B1)

	4.7. Trigger Unit
	4.7.1. Trigger Data 1/Match Control
	4.7.2. Trigger Select
	4.7.3. Trigger Data 2

	4.8. Memory Map
	4.9. Subsystem Restrictions
	4.10. Exceptions
	4.10.1. Vectored and Non-Vectored Interrupts
	4.10.2. Nested Interrupts
	4.10.3. Available Interrupts
	4.10.4. Interrupt Handling
	4.10.5. Vectored Interrupt Offsets and Exception Priorities
	4.10.6. OPSRV Register Interrupts

	4.11. OPSRV Register
	4.12. BOOT ROM
	4.13. MTIME
	4.14. ECC

	5. Tool Flow
	5.1. License
	5.1.1. RTL

	5.2. SmartDesign
	5.3. Configuring MIV_RV32
	5.3.1. Extension Options
	5.3.2. Interface Options
	5.3.3. Reset Vector Address
	5.3.4. Interrupt Options
	5.3.5. TCM Options
	5.3.6. Other Options
	5.3.7. Memory Map Tab

	5.4. Debugging
	5.5. Simulation Flows
	5.6. Synthesis in Libero
	5.7. Place-and-Route in Libero

	6. System Integration
	6.1. PolarFire Example System
	6.2. RTG4/SF2/IG2 Example System
	6.3. Reset Synchronization
	6.3.1. RESETN
	6.3.2. JTAG_TRSTN

	7. Design Constraints
	8. SoftConsole
	8.1. Setting the System Clock Frequency and Peripheral Base Addresses

	9. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

