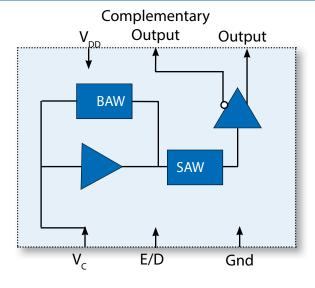


The VS-702 is a SAW Based Voltage Controlled Oscillator that achieves low phase noise and very low jitter performance. The VS-702 is housed in an industry standard hermetically sealed LCC package and available in tape and reel.

Features

- Industry Standard Package, 5.0 x 7.5 x 2.0 mm
- ASIC Technology for Ultra Low Jitter
 0.100 ps-rms typical across 12 kHz to 20 MHz BW
 0.120 ps-rms typical across 50 kHz to 80 MHz BW
- Output Frequencies from 150 MHz to 1 GHz
- 3.3 V Operation
- LV-PECL or LVDS Configuration with Fast Transition Times
- Improved Temperature Stability over Standard VCSO (±20 ppm)
- Output Disable Feature
- 0/70°C or -40/85°C operating temperature
- Product is free of lead and compliant to EC RoHS Directive


Applications

Ideal for PLL circuits for clock smoothing and frequency translation

- · SONET, SDH
- Synchronous Ethernet
- Fiber Channel
- LAN / WAN
- · Test and Measurement

Block Diagram

(Pb)

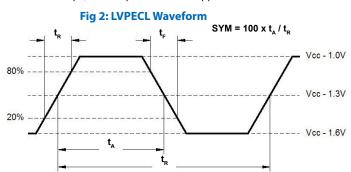

Performance Specifications

Table 1. Electrical Performance							
Parameter	Symbol	Min	Typical	Maximum	Units		
Supply							
Voltage ¹	$V_{_{\mathrm{DD}}}$	2.97	3.3	3.63	V		
Current (No Load)	l _{DD}		70	90	mA		
		Frequency					
Nominal Frequency ²	f_N	150		1000	MHz		
Absolute Pull Range 3,6	APR	±50			ppm		
Linearity ³	Lin		5	10	%		
Gain Transfer Positive ³ (See pg 5)	K_{v}		+100		ppm/V		
Temperature Stability ³	$f_{\scriptscriptstyleSTAB}$		±20		ppm		
		Outputs					
Mid Level ³		V _{DD} -1.5	V _{DD} -1.3	V _{DD} -1.2	V		
Single Ended Swing ³			750		mV-pp		
Double Ended Swing ³			1.5		V-pp		
Current	l _{out}			20	mA		
Rise Time⁴ Fall Time⁴	t _R t _F			500 500	ps ps		
Symmetry ³	SYM	45	50	55	%		
Jitter (12 kHz - 20 MHz BW)622.08MHz ⁵	фЈ		0.1	0.250	ps-rms		
Jitter (50 kHz - 80 MHz BW)155.52MHz ⁵	фЈ		0.12	0.300	ps-rms		
Period Jitter, RMS (622.08MHz) ⁷	фЛ		2.5	3.0	ps		
Period Jitter, Peak - Peak (622.08MHz) ⁷	фЛ		16	24	ps		
Spurious Suppression ²			-60	-50	dBc		
	Con	trol Voltage					
Control Voltage Range for APR	V_{c}	0.3		3.0	V		
Control Voltage Input Impedance	Z _{IN}	75			ΚΩ		
Control Voltage Modulation BW	BW	50			kHz		
	Enable/Disable						
Output Enabled, Option A Output Disabled, Option A	$oldsymbol{V}_{IH}$	0.7*V _{DD}		0.3*V _{DD}	V V		
Output Enabled, Option C Output Disabled, Option C	V _{IL} V _{IH}	0.7*V _{DD}		0.2*V _{DD}			
Operating Temperature	T _{OP}		0/70 or -40/85		°C		
Package Size		5.0 x 7.5 x 2.0 mm					

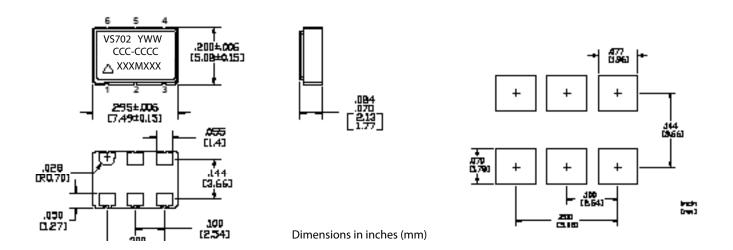

- 1] The VS-702 power supply should be filtered, eg, 0.1 and 0.01uF to ground
- 2] See Standard Frequencies and Ordering Information tables for more specific information
- Parameters are tested with production test circuit below (Fig 1).
- 4] Measured from 20% to 80% of a full output swing (Fig 2).
- 5] Integrated across stated bandwidth.
- 6] Tested with Vc = 0.3V to 3.0V unless otherwise stated in part description
- 7] Broadband Period Jitter measured using Lecroy Wavemaster 8600A 6 GHz Oscilloscope, 25K samples taken. See application note.

Fig 1: Test Circuit Vc (-1.0V to +1.7V) O O Vcc (+2V) OD (-1.3V), OE (Open) O COutput Vee (-1.3V) O ${}^{\downarrow}_{50\Omega}$ 50Ω

- Test Circuit Notes: 1) To Permit 50Ω Measurement of Outputs, all DC Inputs are Biased Down 1.3V. 2) All Voltage Sources Contain Bypass Capacitors to Minimize Supply Noise. 3) 50Ω Terminations are Within Test Equipment.

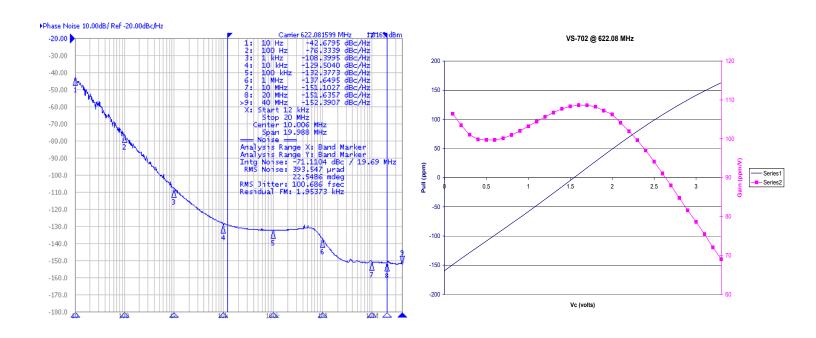
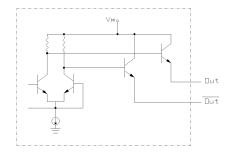
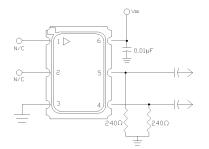
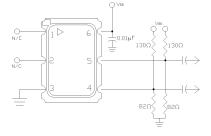

Outline Drawing & Pad Layout

Table 2. Pin Out						
Pin	Symbol	Function				
1	V _C	VCXO Control Voltage				
2	OE	Enable/Disable **See Ordering Options**				
3	GND	Case and Electrical Ground				
4	Output	Output				
5	COutput	Complementary Output				
6	$V_{_{\mathrm{DD}}}$	Power Supply Voltage (3.3V ±10%)				

Typical Phase Noise


Typical Gain




Suggested Output Load Configurations

The VS-702 incorporates a standard PECL output scheme, which are un-terminated emitters as shown in Figure 3. There are numerous application notes on terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 4, and a pull-up/pull-down scheme as shown in Figure 5. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage.

One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems.

Figure 3 Standard PECL Output Configuration

Figure 4 Single Resistor Termination Scheme Resistor values are typically 120 to 240 ohms

Figure 5 Pull-Up Pull-Down Termination

Reliability

VI qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VS-702 family is capable of meeting the following qualification tests:

Table 3. Environmental Compliance					
Parameter	Conditions				
Mechanical Shock	MIL-STD-883, Method 2002				
Mechanical Vibration	MIL-STD-883, Method 2007				
Solderability	MIL-STD-883, Method 2003				
Gross and Fine Leak	MIL-STD-883, Method 1014				
Resistance to Solvents	MIL-STD-883, Method 2015				
Moisture Sensitivity Level	MSL 1				
Contact Pads	Gold over Nickel				

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if OD or Vc is applied before Vcc.

Table 4. Absolute Maximum Ratings						
Parameter	Symbol	Ratings	Unit			
Power Supply	$V_{_{ m DD}}$	0 to 6	V			
Output Current	I _{OUT}	25	mA			
Voltage Control Range	V _c	0 to V _{DD}	V			
Storage Temperature	TS	-55 to 125	°C			
Soldering Temp/Time	T _{LS}	260 / 40	°C / sec			

Although ESD protection circuitry has been designed into the VS-702 proper precautions should be taken when handling and mounting. VI employs a human body model (HBM) and a charged device model (CDM) for ESD susceptibility testing and design protection evaluation.

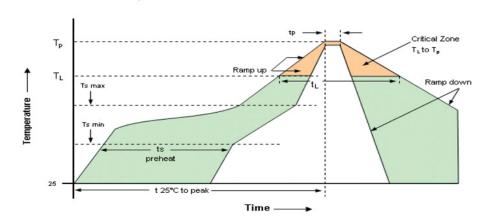
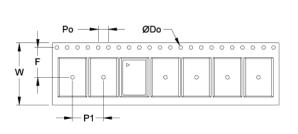
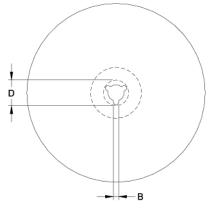
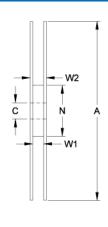

Table 5. ESD Ratings						
Model	Minimum	Conditions				
Human Body Model	500V	MIL-STD-883, Method 3015				
Charged Device Model	500V	JESD22-C101				

Table 6. Reflow Profile (IPC/JEDEC J-STD-020C)						
Parameter	Symbol	Value				
PreHeat Time Ts-min Ts-max	t _s	60 sec Min, 180 sec Max 150°C 200°C				
Ramp Up	R_{UP}	3 °C/sec Max				
Time Above 217 °C	t _L	60 sec Min, 150 sec Max				
Time To Peak Temperature	T 25C to peak	480 sec Max				
Time at 260 °C	t _P	20 sec Min, 40 sec Max				
Ramp Down	$R_{_{DN}}$	6 °C/sec Max				


The device is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The VS-702 device is hermetically sealed so an aqueous wash is not an issue.


Termination Plating: Electroless Gold Plate over Nickel Plate


Solderprofile:

Tape & Reel (EIA-481-2-A)

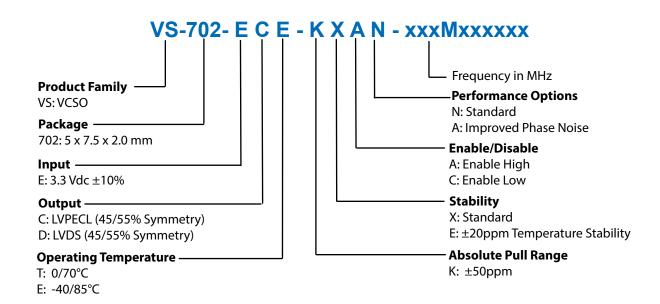


Table 7. Tape	and Re	el Inform	nation										
	Tape	Dimensi	ons (mm)				Ree	l Dimen	sions (m	m)		
Dimension	w	F	Do	Po	P1	Α	В	c	D	N	W1	W2	# Per
Tolerance	Тур	Тур	Тур	Тур	Тур	Тур	Min	Тур	Min	Min	Тур	Max	Reel
VS-702	16	7.5	1.5	4	8	178	1.5	13	20.2	50	16.4	22.4	200

Table 8. Stand	ard Output Fre	quencies (MH:	z)				
155M520000	156M250000	160M000000	162M000000	175M000000	187M500000	200M000000	212M500000
240M000000	245M760000	250M000000	260M000000	268M800000	300M000000	311M040000	312M500000
320M000000	324M000000	350M000000	375M000000	384M000000	389M600000	400M000000	480M000000
491M520000	500M000000	531M250000	532M000000	533M000000	537M600000	622M080000	625M000000
635M040000	637M500000	640M000000	644M531300	657M421900	666M514300	669M326600	672M162700
690M569200	693M483000	704M380600	707M352700	720M000000	742M434700	768M000000	796M875000
800M000000	901M120000	1000M00000					

Ordering Information

*Note: not all combination of options are available. Other specifications may be available upon request.

Example: VS-702-ECE-KXAN-622M080000

* Add **_SNPBDIP** for tin lead solder dip Example: VS-702-ECE-KXAN-622M080000_SNPBDIP

Revision History

Revision Date	Approved	Change Summary
Feb 12, 2014	SD	Updated VI Asia address.
July 7, 2015	VN	Change current specification in Table 1 to reflect 70 ma typical and 90mA maximum.
Aug 10, 2018	FB	Update logo and contact information, add "SNPBDIP" ordering information.

Microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-circuits delignment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any pend-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi, it is the Buyer's responsibility to independently determine suitability of any pend-products and to test and verify the same. The information provided by Microsemi and verify the same. The information provided by Microsemi does not grant, explicitly or implicitly, to any patty any pattent rights, licensee, or any other IP rights, whether with regard to such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any patty any pattent rights, licenses, or any other IP rights, whether with regard to such information is entirely on any patty and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and senice marks are the property of their respective owners.