

The VX-805 is a Voltage Control Crystal Oscillator that operates at the fundamental frequency of the internal crystal. The crystal is a high-Q quartz device that enables the circuit to achieve low phase noise jitter performance over a wide operating temperature range. The VX-805 is housed in an industry standard hermetically sealed LCC package and is available in tape and reel.

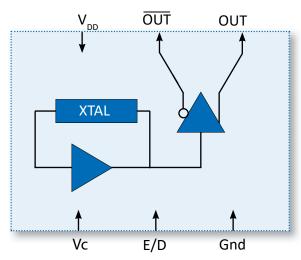
Features

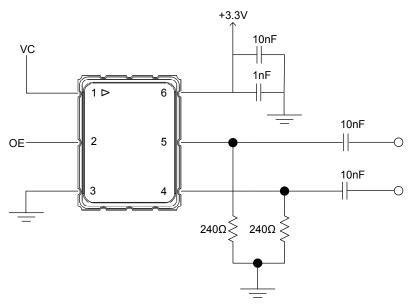
- LVPECL output VCXO
- Output Frequencies from 100 MHz to 204.8 MHz
- 3.3 V Operation
- Fundamental Crystal Design with Low Jitter Performance
- **Output Disable Feature**
- Excellent ±20 ppm Temperature Stability,
- 0/70°C, -40/85°C or -40/105°C Operating Temperature
- Small Industry Standard 5.0 x 3.2mm Package
- Product is free of lead and compliant to EC RoHS Directive

Applications

- LTE
- SONET/SDH/DWDM
- Ethernet, SyncE, GE
- xDSL, PCMIA
- Digital Video
- **Broadband Access**
- Base Stations, Picocells
- **Test and Measurement**

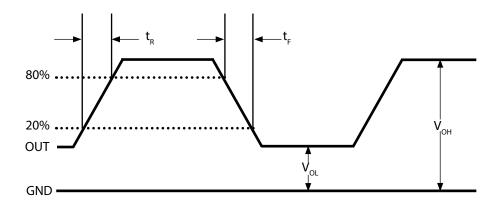
Block Diagram




Figure 1. Block Diagram

Performance Specifications

Table 1. Electrical Performance - 3.3V LVPECL							
Parameter	Symbol	Min	Typical	Max	Units		
Supply							
Voltage ¹	3.135	3.3	3.465	V			
Current ²	I _{DD}		50	90	mA		
		Frequency					
Nominal Frequency	f_N	100		204.8	MHz		
Absolute Pull Range ^{2,6} , ordering option	APR		±50		ppm		
Linearity ²	Lin		5		%		
Gain Transfer ²	K_{v}		+80		ppm/V		
Temperature Stability ³	f _{STAB}		±20		ppm		
		Outputs					
Output Logic Levels ² Output Logic High Output Logic Low	$oldsymbol{V}_{OH} \ oldsymbol{V}_{OL}$	V _{DD} -1.025 V _{DD} -1.810	V _{DD} -0.950 V _{DD} -1.700	V _{DD} -0.880 V _{DD} -1.620	V V		
Rise Time ^{2,4}	t _R		0.3	0.5	ns		
Fall Time ^{2,4}	t _F		0.3	0.5	ns		
Symmetry ² Symmetry ² (-40 °C to 105 °C)	SYM	45 40	50 50	55 60	% %		
Jitter, RMS ^{5,7} (12kHz to 20 MHz)	фЛ		0.2	0.5	ps		
Phase Noise ⁷ , 122.88MHz 10Hz 100Hz 1kHz 10kHz 100kHz 1MHz 10MHz			-68 -98 -125 -148 -157 -157		dBc/Hz		
	Con	trol Voltage					
Control Voltage Range for Pull Range	V_{c}	0.3		3.0	V		
Control Voltage Input Impedance	Z _{IN}	10			ΜΩ		
Control Voltage Modulation BW	BW	20			kHz		
Output Enable/Disable ⁸ Output Enabled, Option A Output Disabled, Option A	$oldsymbol{V}_{IH} \ oldsymbol{V}_{IL}$	0.9*V _{DD}		0.1*V _{DD}	V		
Start-Up Time	T_{s}			10	ms		
Operating Temp, Ordering Option	T_{OP}	0/70	or -40/85 or -40	/105	°C		
Package Size			5.0 x 3.2 x 1.2		mm		


- 1] The power supply should have by-pass capacitors as close to the supply and to ground as possible, for examples 0.1 and 0.01uF
- 2] Parameters are tested with production test circuit below as shown in Figure 2.
- 3] ± 20 ppm temperature stability is not available for -40 °C to 105 °C temperature range
- 4] Measured from 20% to 80% of a full output swing as shown in Figure 4.
- 5] Not tested in production, guaranteed by design, verified at qualification.
- 6] Tested with Vc = 0V to 3.3V unless otherwise stated in part description
- 7] Phase Noise is measured with an Agilent E5052A Signal Source Analyzer.
- 8] The Output is Enabled if the Enable/Disable is left open.

Test Circuit

Figure 2. LVPECL Test Circuit

Waveform

Figure 3. Output Waveform

Table 2. Absolute Maximum Ratings							
Parameter	Symbol	Ratings	Unit				
Power Supply	$V_{_{ m DD}}$	0 to 6	V				
Voltage Control Range	V _c	0 to V _{DD}	V				
Storage Temperature	TS	-55 to 125	°C				
Soldering Temp/Time	T _{LS}	260 / 20	°C / sec				

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if OD or Vc is applied before V_{DD}.

Reliability

VI qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VX-805 family is capable of meeting the following qualification tests:

Table 3. Environmental Compliance						
Parameter	Conditions					
Mechanical Shock	MIL-STD-883, Method 2002					
Mechanical Vibration	MIL-STD-883, Method 2007					
Solderability	MIL-STD-883, Method 2003					
Gross and Fine Leak	MIL-STD-883, Method 1014					
Resistance to Solvents	MIL-STD-883, Method 2015					
Moisture Sensitivity Level	MSL 1					
Contact Pads	Gold over Nickel					

Handling Precautions

Although ESD protection circuitry has been designed into the VX-805 proper precautions should be taken when handling and mounting. VI employs a human body model (HBM) and a charged device model (CDM) for ESD susceptibility testing and design protection evaluation.

Table 4. ESD Ratings						
Model	Minimum	Conditions				
Human Body Model	500V	MIL-STD-883, Method 3015				
Charged Device Model	500V	JESD22-C101				

Table 5. Reflow Profile						
Parameter	Symbol	Value				
PreHeat Time	t _s	60 sec Min, 260 sec Max				
Ramp Up	R _{UP}	3 °C/sec Max				
Time Above 217 °C	t _L	60 sec Min, 150 sec Max				
Time To Peak Temperature	T _{AMB-P}	480 sec Max				
Time at 260 °C	t _P	30 sec Max				
Ramp Down	R _{DN}	6 °C/sec Max				

Solderprofile:

The device is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The VX-805 device is hermetically sealed so an aqueous wash is not an issue.

Termination Plating: Electroless Gold Plate over Nickel Plate

Figure 4. Recommended Reflow Profile

Outline Drawing & Pad Layout

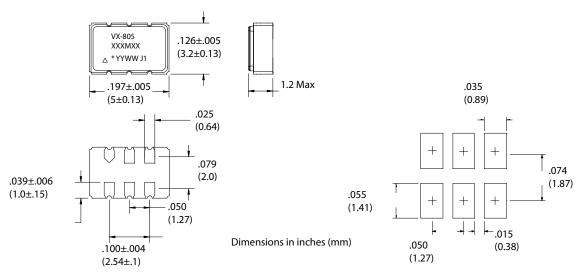


Figure 5. Outline Drawing and Pad Layout

Table 6. Pin Out							
Pin	Symbol	Function					
1	V _C	VCXO Control Voltage					
2	E/D	Enable Disable **See Ordering Options**					
3	GND	Case and Electrical Ground					
4	Output	Output					
5	COutput	Complementary Output					
6	V _{DD}	Power Supply Voltage					

Tape & Reel (EIA-481-2-A)

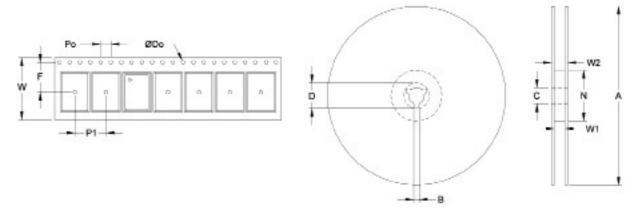
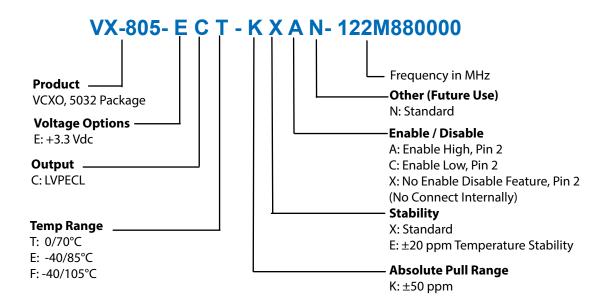



Figure 6. Tape and Reel Drawing

Table 7. Tape	and Ree	el Inform	ation										
Tape Dimensions (mm)				Reel Dimensions (mm)									
Dimension	w	F	Do	Ро	P1	Α	В	c	D	N	W1	W2	# Per
Tolerance	Тур	Тур	Тур	Тур	Тур	Тур	Min	Тур	Min	Min	Тур	Max	Reel
VX-805	16	5.5	1.5	4	8	178	1.78	13	20.6	55	12.4	22.4	500

Ordering Information

Example: VX-805-ECT-KXAN-122M880000

* Add **_SNPBDIP** for tin lead solder dip Example: VX-805-ECT-KXAN-122M880000_SNPBDIP

^{*}Note: not all combination of options are available. Other specifications may be available upon request. Please consult with factory.

Revision History

Revision Date	Approved	Description
January 17, 2017	RC	Update Reflow Profile
February 3, 2016	RC	Update Figure 3.
January 21, 2015	VN	Included Extended temperature Range of -40/105°C. Added revision history table.
May 28, 2015	VN	Changed maximum nominal output frequency from 250MHz to 204.8MHz
August 10, 2018	FB	Updated logo and contactinformation, added "SNPBDIP" odering option

a **MICROCHIP** company

Microsemi Headquarters

microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any endoutes. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information it has document or to any products and services at any time without notice.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.