Vectron's VV-701 Voltage Controlled Crystal Oscillator (VCXO) is a quartz stabilized square wave generator with a CMOS output. The VV-701 uses fundamental crystals resulting in low jitter performance and a monolithic IC which improves reliability and reduces cost. #### **Features** - **CMOS output VCXO** - Output Frequencies from 1.544 MHz to 77.760 MHz - 5.0 or 3.3 V Operation - High Impedance Control Voltage Option - Fundamental Crystal Design with Low Jitter Performance - **Output Disable Feature** - Excellent 20ppm Temperature Stability, - 0/70°C or -40/85°C Operating Temperature - Small Industry Standard Package, 5.0x7.0x1.8mm - Product is free of lead and compliant to EC RoHS Directive ### **Applications** - SONET/SDH/DWDM - Ethernet, SynchE - xDSL, PCMIA - Digital Video - **Broadband Access** - Base Stations, Picocells ## **Block Diagram** Vectron International • 267 Lowell Road, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com ### **Performance Specifications** | Table 1. Electrical Performance | | | | | | | | | | | |---|------------------|---------------------|--|--------------------------------|----------|--|--|--|--|--| | Parameter | Symbol | Min | Typical | Maximum | Units | | | | | | | Supply | | | | | | | | | | | | Voltage ¹ , 5V option
3.3V option | V _{DD} | 4.750
3.135 | 5.0
3.3 | 5.250
3.465 | V | | | | | | | Current ² , 5V option, 1.544-30MHz
30.001-50.000
50.001-77.760MHz
3.3V option, 1.544-30MHz
30.001-50.000
50.001-77.760MHz | I _{DD} | | | 10
12
18
5
9
14 | mA | | | | | | | | | Frequency | T | 1 | | | | | | | | Nominal Frequency ³ | f _N | 1.544 | | 77.760 | MHz | | | | | | | Pull Range ^{2,6} , ordering option | APR
TPR | | ±50, ±80, ±100
±50, ±100, ±150 | | ppm | | | | | | | Linearity ² | Lin | | 5 | | % | | | | | | | Gain Transfer ² | K _v | | Positive, +65 | | ppm/V | | | | | | | Temperature Stability | $f_{_{STAB}}$ | | ±20 | | ppm | | | | | | | | | Outputs | | | | | | | | | | Output Logic Levels ² Output Logic High Output Logic Low | | 0.9*V _{DD} | | 0.1*V _{DD} | V | | | | | | | Load | I _{OUT} | | | 15 | pF | | | | | | | Rise Time ^{2,4} | t _R | | | 5 | ns | | | | | | | Fall Time ^{2,4} | t _F | | | 5 | ns | | | | | | | Symmetry ² | SYM | 45 | 50 | 55 | % | | | | | | | Period Jitter ^{5,7} , RMS (61.44 MHz)
Peak-Peak (61.440MHz) | фЈ | | 3.0
23 | | ps | | | | | | | Jitter ⁸ , 12kHz-20MHz (61.44 MHz) | фЛ | | 90 | | fs | | | | | | | Phase Noise ^{8,} 10Hz
100Hz
1kHz
10kHz
100kHz
1MHz
10MHz | | | -63
-97
-129
-144
-157
-159 | | dBc/Hz | | | | | | | | Con | trol Voltage | | | | | | | | | | Control Voltage Range for Pull Range | V _c | 0.5
0.3 | | 4.5
3.0 | V | | | | | | | Control Voltage Input Impedance
"E" Ordering option | Z _{IN} | 2 | 100 | | KΩ
MΩ | | | | | | | Control Voltage Modulation BW | BW | 10 | | | kHz | | | | | | | Output Enable/Disable ⁹
Output Enabled
Output Disabled | | 0.9*V _{DD} | | 0.1*V _{DD} | V | | | | | | | Start-Up Time | | | | 10 | ms | | | | | | | Operating Temp, ordering option | T _{OP} | | °C | | | | | | | | | Package Size | | | 5.0 x 7.0 x 1.8 | for examples 0.1 a | mm | | | | | | - 1] The power supply should have by-pass capacitors as close to the supply and to ground as possible, for examples 0.1 and 0.01uF - 2] Parameters are tested with production test circuit (Fig 1). - 3] See Standard Frequencies and Ordering Information tables for more specific information - 4] Measured from 20% to 80% of a full output swing (Fig 2). - 5] Not tested in production, guaranteed by design, verified at qualification. - 6] Tested with Vc = 0.3V to 3.0V unless otherwise stated in part description - 7] Broadband Period Jitter measured using Wavecrest SIA3300C, 90K samples, see Application Note for Typical Phase Noise and Jitter Performance - 8] Phase Noise is measured with an Agilent E5052A, see Application Note for Typical Phase Noise and Jitter Performance - 9] The Output is Enabled if the Enable/Disable is left open. Test Circuit Waveform Fig 1: Test Circuit Fig 2: Output Waveform | Table 2. Absolute Maximum Ratings | | | | | | | | | |-----------------------------------|-----------------|----------------------|----------|--|--|--|--|--| | Parameter | Symbol | Ratings | Unit | | | | | | | Power Supply | V _{cc} | 0 to 6 | V | | | | | | | Voltage Control Range | V _c | 0 to V _{cc} | V | | | | | | | Storage Temperature | TS | -55 to 125 | °C | | | | | | | Soldering Temp/Time | T _{LS} | 260 / 20 | °C / sec | | | | | | Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied at these or any other conditions in excess of conditions represented in the operational sections of this datasheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Permanent damage is also possible if OD or Vc is applied before Vcc. # **Typical Gain** #### Reliability VI qualification includes aging at various extreme temperatures, shock and vibration, temperature cycling, and IR reflow simulation. The VV-701 family is capable of meeting the following qualification tests: | Table 3. Environmental Compliance | | | | | | | |-----------------------------------|--------------------------|--|--|--|--|--| | Parameter | Conditions | | | | | | | Mechanical Shock | MIL-STD-883, Method 2002 | | | | | | | Mechanical Vibration | MIL-STD-883, Method 2007 | | | | | | | Solderability | MIL-STD-883, Method 2003 | | | | | | | Gross and Fine Leak | MIL-STD-883, Method 1014 | | | | | | | Resistance to Solvents | MIL-STD-883, Method 2015 | | | | | | | Moisture Sensitivity Level | MSL 1 | | | | | | | Contact Pads | Gold over Nickel | | | | | | #### **Handling Precautions** Although ESD protection circuitry has been designed into the VV-701 proper precautions should be taken when handling and mounting. VI employs a human body model (HBM) and a charged device model (CDM) for ESD susceptibility testing and design protection evaluation. | Table 4. ESD Ratings | | | | | | | | |----------------------|---------|--------------------------|--|--|--|--|--| | Model | Minimum | Conditions | | | | | | | Human Body Model | 500V | MIL-STD-883, Method 3015 | | | | | | | Charged Device Model | 500V | JESD22-C101 | | | | | | | Table 5. Reflow Profile | | | | | | | | |----------------------------------|--------------------------|---|--|--|--|--|--| | Parameter | Symbol | Value | | | | | | | PreHeat Time
Ts-min
Ts-max | t _s | 60 sec Min, 260 sec Max
150°C
200°C | | | | | | | Ramp Up | R _{UP} | 3 °C/sec Max | | | | | | | Time Above 217 °C | t _L | 60 sec Min, 150 sec Max | | | | | | | Time To Peak Temperature | T _{25C to peak} | 480 sec Max | | | | | | | Time at 260 °C | t _P | 30 sec Max | | | | | | | Ramp Down | R _{DN} | 6 °C/sec Max | | | | | | #### Solderprofile: The device is qualified to meet the JEDEC standard for Pb-Free assembly. The temperatures and time intervals listed are based on the Pb-Free small body requirements. The VV-701 device is hermetically sealed so an aqueous wash is not an issue. Termination Plating: Electroless Gold Plate over Nickel Plate # **Outline Drawing & Pad Layout** | Table 6. Pin Out | | | | | | | |------------------|----------------------|----------------------------|--|--|--|--| | Pin | Symbol Function | | | | | | | 1 | V _C | VCXO Control Voltage | | | | | | 2 | E/D | Enable Disable or NC | | | | | | 3 | GND | Case and Electrical Ground | | | | | | 4 | Output | Output | | | | | | 5 | E/D | Enable Disable or NC | | | | | | 6 | $V_{_{\mathrm{DD}}}$ | Power Supply Voltage | | | | | # Tape & Reel (EIA-481-2-A) | Table 7. Tape | and Ree | el Inform | ation | | | | | | | | | | | |----------------------|---------|-----------|-------|----------------------|-----|-----------------|------|-----|------|-----|-------|------|------| | Tape Dimensions (mm) | | | | Reel Dimensions (mm) | | | | | | | | | | | Dimension | W | F | Do | Po | P1 | A B C D N W1 W2 | | | | | # Per | | | | Tolerance | Тур | Тур | Тур | Тур | Тур | Тур | Min | Тур | Min | Min | Тур | Max | Reel | | VV-701 | 12 | 5.5 | 1.5 | 4 | 8 | 178 | 1.78 | 13 | 20.6 | 55 | 12.4 | 22.4 | 500 | | Table 8. Standard Output Frequencies (MHz) | | | | | | | | | | | |--|----------|----------|----------|----------|----------|----------|----------|--|--|--| | 1.54400 | 2.04800 | 4.09600 | 6.17600 | 8.19200 | 10.00000 | 12.00000 | 12.28800 | | | | | 12.35200 | 13.00000 | 14.31800 | 15.44000 | 16.00000 | 16.38400 | 18.00000 | 18.43200 | | | | | 19.20000 | 19.44000 | 20.00000 | 20.48000 | 24.57600 | 24.70400 | 25.00000 | 27.00000 | | | | | 30.00000 | 32.00000 | 32.76800 | 34.36800 | 35.32800 | 38.88000 | 40.00000 | 40.96000 | | | | | 42.66000 | 44.73600 | 48.89600 | 50.00000 | 50.68800 | 51.84000 | 52.00000 | 54.00000 | | | | | 57.1429 | 62.20800 | 65.53600 | | | | | | | | | #### **Ordering Information** Example: VV-701-EAE-KNAB-51M8400000 * Add **_SNPBDIP** for tin lead solder dip Example: VV-701-EAE-KNAB-51M8400000 SNPBDIP Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products, timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices, RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products, Ethernet solutions, Power-over-Ethernet ICs and midspans, as well as custom design Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any er-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi eriginal faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. ©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.